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Abstract. We define Lie algebra cohomology associated with the half-Dirac operators
for representations of rational Cherednik algebras and show that it has property described
in the Casselman–Osborne Theorem by establishing a version of the Vogan’s conjecture
for the half-Dirac operators. Moreover, we study the relationship between Lie algebra
cohomology and Dirac cohomology in analogy of the representations for semisimple Lie
algebras.

1. Introduction

The Dirac operator plays a pivotal role in mathematics and theoretical physics.
In representation theory, the Dirac operator was used for geometric construction
of discrete series representations by Parthasarathy [P], Atiyah and Schmid [AS].
In the later 1990s Vogan [V] formulated a conjecture on the Dirac operator in a Lie
algebra setting that reveals an interesting algebraic nature of the Dirac operator.
This conjecture was verified by Pandžić and the first named author [HP1]. Vogan’s
conjecture has been generalized to Kostant’s cubic Dirac operator [K3], as well as
various other settings in affine Lie algebras [KMP], Lie superalgebras [HP2], and
in particular to graded affine Hecke algebras [BCT]. More recently, Ciubotaru has
extended the definition of the Dirac operator and Vogan’s conjecture further to
Drinfeld’s graded Hecke algebras including symplectic reflection algebras [C]. The
Dirac cohomology HD(M) of an irreducible Harish-Chandra module M determines
the infinitesimal character ofM . Determination of Dirac cohomologyHD(M) lends
insight to many classical subjects such as Lie algebra cohomology [HP3], and it
has applications in branching rules [HPZ] and harmonic analysis [H].

The work of Etingof and Ginzburg on symplectic reflection algebras [EG] has
inspired interaction of representation theory with algebraic combinatorics, integr-
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able systems and algebraic geometry. Apart from a finite list of small rank
exceptions, there are only two families of symplectic reflection algebras: one
is associated with real or complex refection groups, namely rational Cherednik
algebras and the other is the wreath product. The representation theory of rational
Cherednik algebras has more analogues of semisimple Lie algebras, and we focus on
this case. Let h be a finite-dimensional C-vector space and W ⊂ GL(h) a complex
reflection group. The rational Cherednik algebras Ht,c(W, h) with parameter t ∈ C
and W -invariant functions c defined on the set of reflections of W is the symplectic
reflection algebras with W acting on V = h ⊕ h∗ with the naturally defined W -
invariant symplectic form (cf. Section 2). We denote it by Ht,c if h and W are
clear, and simply by H if both t and c are also fixed.

The purpose of this paper is to study the h∗-cohomologyH•(h∗,M):=
⊕

i H
i(h∗,

M) and the h-homology H•(h,M) :=
⊕

i Hi(h,M) (see Section 2 for the definiti-
ons) as W -modules. They are naturally associated with cohomology defined by
the half-Dirac operators Dx and Dy with the twist of a genuine character χ of

W̃ (see Proposition 2.12). We show that they have nice properties analogous
to that of semisimple Lie algebras obtained in [HPR] and [HPR′]; especially we
prove an analogue of the Casselman–Osborne Theorem for semisimple modules and
a Hodge decomposition theorem for unitarizable modules. Moreover, we obtain
some results on relations between HD(M) and Lie algebra cohomology H•(u∗,M)
and homology H•(u,M) analogous to the results on category Op obtained by Xiao
and the first named author [HX].

We now describe our main results more precisely. Most of the necessary definiti-
ons are introduced in Sections 2 and 3. We note that Theorems A to C remain true
upon replacing H•(h∗,M) with H•(h,M). Our first main result is an analogue of
the Casselman–Osborne Theorem for H•(h∗,M) and H•(h,M).

Theorem A (Theorem 3.7). Let B be an abelian subalgebra of H⊗C(V ) defined
before the statement of Theorem 3.6. Suppose σ ⊗ β is an isotypical component
in H•(h∗,M), where σ is an irreducible W -module and β is a B-character. Then
Vogan’s morphism

ζ∗d : Irr(W̃ ) → Spec B
satisfies the following condition

ζ∗d (σ ⊗ χ) = β.

Here χ : W̃ → C× is a genuine one-dimensional character of a double cover
p : W̃ → W of W , satisfying χ2(w̃) = deth∗(p(w̃)).

Then we study the relation between Lie algebra cohomology H•(h∗,M) and
Dirac cohomology HD(M) introduced in [C]. More precisely, we have the following

inclusion of W̃ -module homomorphisms.

Theorem B (Theorem 4.2). Let M be a H-module so that D2 acts semisimply on
M ⊗ S, where S is the spinor module (Definition 2.8 ). Then there is an injective

W̃ -module homomorphism: HD(M) ↪→ H•(h∗,M)⊗ χ.

If M is unitary, then the inclusion in Theorem B is an isomorphism. It follows
from a Hodge decomposition theorem for unitary modules.
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Theorem C (Theorem 5.1). Let M be a ∗-unitary module in the sense of [ES].
Then one has

(a) HD(M) = kerD = kerD2;
(b) M ⊗ S = kerD ⊕ imDx ⊕ imDy;
(c) kerDx = kerD ⊕ imDx, kerDy = kerD ⊕ imDy, where Dx, Dy are

half Dirac operators defined in Definition 2.10 satisfying D = Dx + Dy.
Consequently,

HD(M) = kerD = kerDx/imDx
∼= H•(h∗,M)⊗ χ.

In the last two sections we study the Lie algebra cohomology of certain types of
Ht,c-modules. Section 6 concerns the category O of H1,c-modules (see [GGOR]).
For example, we show that if M(σ) := H1,c ⊗S(h)oC[W ] σ is a standard object in
category O, then

HD(M(σ)) ∼= H•(h∗,M(σ))⊗ χ ∼= H•(h,M(σ))⊗ χ ∼= σ ⊗ χ−1.

This is a refinement of Proposition 5.6 in [C]. Moreover, if L(triv) be the finite-
dimensional irreducible quotient of M(triv) given in Proposition 1.3 of [BEG],
then

HD(L(triv)) ∼= H•(h∗, L(triv))⊗ χ ∼= H•(h, L(triv))⊗ χ ∼= ∧•h⊗ χ−1.

In other words, the inclusion in Theorem B is also an isomorphism for all standard
modules and finite-dimensional modules in category O.

Section 7 deals with the baby Verma modules for H0,c (see [G1]). We show that
if L(σ) is the irreducible head of a baby Verma module such that as W -modules,

H•(h∗, L(σ)) ∼=
k⊕

i=1

νi

with all νi being irreducible, then the whole set {νi ⊗ deth∗ | i = 1, . . . , k}
is contained in the same Calogero–Moser cell ([G1, Sect. 7]). Combining with
Theorem B, this gives an alternative proof of [C, Cor. 5.10].

2. Preliminaries

We begin this section by recalling the definition of rational Cherednik algebras
Ht,c given in [EG] and [GGOR].

Definition 2.1. Let W be a complex reflection group acting on a complex vector
space h, i.e., W is a group generated by the pseudo-reflections s ∈ R fixing a
hyperplane Hs ∈ h. Let αs ∈ h∗ be a non-zero vector so that the W -invariant
symmetric pairing ⟨ , ⟩ between h and h∗ gives ⟨y, αs⟩ = 0 for all y ∈ Hs. Similarly,
we can define α∨

s ∈ h corresponding to the action of s on h∗. Set V = h⊕ h∗. The
rational Cherednik algebra Ht,c associated to h, W , with parameters t ∈ C and

77



JING-SONG HUANG, KAYUE DANIEL WONG

W -invariant functions c : R → C is defined as the quotient of S(V )oC[W ] by the
relation

[y, x] = t⟨y, x⟩ −
∑
s∈R

c(s)
⟨y, αs⟩⟨α∨

s , x⟩
⟨α∨

s , αs⟩
s

for all y ∈ h and x ∈ h∗.

Let Ht,c be the rational Cherednik algebra corresponding to W, h with parame-
ters t and c. Let {y1, . . . , yn} be a basis of h, and {x1, . . . , xn} be the corresponding
dual basis of h∗. In [GGOR], a Casimir-type element h is defined by

h :=
∑
i

(xiyi + yixi) = 2
∑
i

xiyi + nt−
∑
s∈R

c(s)s ∈ HW
t,c.

It gives a natural grading on Ht,c when t = 1. Note that the definition of h does
not depend on our choice of basis. Following [GGOR], we make a shift and define
ΩHt,c in the following.

Definition 2.2.

ΩHt,c := h−
∑
s∈R

c(s)
1 + λs

1− λs
s = 2

∑
i

xiyi + nt−
∑
s∈R

2c(s)

1− λs
s ∈ HW

t,c,

where λs = deth(s) ∈ C×.

We now define the Lie algebra (co)homology of a Ht,c-module, analogous to the
case of the n and n-(co)homology of a g-module studied in [K1].

Definition 2.3. LetM be anHt,c-module. The pth h∗-cohomology groupHp(h∗,M)
of M arises as the pth derived functor of the covariant, left exact functor

M 7→ Mh∗ = H0((h∗,M)

and can be identified with the pth cohomology group of the cochain complex

0 → Homh∗(∧0h∗,M)
d0−→ Homh∗(∧1h∗,M)

d1−→ · · · dn−1−−−→ Homh∗(∧nh∗,M) → 0,

where the differential is defined by

dpf(xi1 ∧ · · · ∧ xip) :=
∑
j

(−1)jxij · f(xi1 ∧ · · · ∧ x̂il ∧ · · · ∧ xip).

If we identify Homh∗(∧ph∗,M) with M⊗∧ph, then Hp(h∗,M) is also identified

with the pth cohomology of the complex

0 → M ⊗∧0h
d0−→ M ⊗∧1h

d1−→ · · · dn−1−−−→ M ⊗∧nh → 0, (1)

where the differential is defined by

dp(m⊗ yi1 ∧ · · · ∧ yip) :=
∑
j

xj ·m⊗ yj ∧ yi1 ∧ · · · ∧ yip .

The boundary map dp is well defined because of the following proposition.
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Proposition 2.4.

(a) The definition of dp is independent of the choice of basis of h and h∗.
(b) Treating M and ∧ph as W -modules, then dp commutes with the action of

W on M ⊗∧ph.
(c) dp+1dp = 0.

Consequently, Hp(h∗,M) is a W -module for all p.

Proof. (a) Suppose we have another basis y′i of h given by y′i =
∑

j Ajiyj for some
invertible A = (Aij). Then the corresponding dual basis x′

i of h∗ must be given
by x′

i =
∑

k Bkixi, where B = (A−1)T . Then it is easy to check that∑
j

x′
j ·m⊗ y′j ∧ yi1 ∧ · · · ∧ yip =

∑
j

xj ·m⊗ yj ∧ yi1 ∧ · · · ∧ yip .

Hence, dp is independent of the basis of h.
(b) For all w ∈ W ,

w · dp(m⊗ yi1 ∧ · · · ∧ yip) = w
∑
j

xj ·m⊗ yj ∧ yi1 ∧ · · · ∧ yip

=
∑
j

wxj ·m⊗ w(yj) ∧ w(yi1) ∧ · · · ∧ w(yip)

=
∑
j

w(xj)w ·m⊗ w(yj) ∧ w(yi1) ∧ · · · ∧ w(yip)

= dp(w ·m⊗ w(yi1) ∧ · · · ∧ w(yip))

= dp(w · (m⊗ yi1 ∧ · · · ∧ yip)),

where the third equality follows from the definition of Ht,c, and the fourth equality
follows from (a).

(c) By the definition of dp,

dp+1dp(m⊗ yi1 ∧ · · · ∧ yip) =
∑
i,j

xixj ·m⊗ yi ∧ yj ∧ yi1 ∧ · · · ∧ yip

=
∑
i<j

xixj ·m⊗ (yi ∧ yj + yj ∧ yi) ∧ yi1 ∧ · · · ∧ yip

+
∑
i

x2
i ·m⊗ (yi ∧ yi) ∧ yi1 ∧ · · · ∧ yip ,

which is equal to 0 since yi ∧ yj = −yj ∧ yi for all i, j. �
Definition 2.5. Let M be an Ht,c-module. The pth h-homology group Hp(h,M)
of M arises as the pth derived functor of the covariant, right exact functor

M 7→ M/hM = H0(h,M)

on the category of h-modules. It can be calculated as the pth homology group of
the chain complex

0 → M ⊗∧nh
∂n−→ M ⊗∧n−1h

∂n−1−−−→ · · · ∂2−→ M ⊗ h
∂1−→ M → 0, (2)
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where the differential is defined by

∂p(m⊗ yi1 ∧ · · · ∧ yip) :=
∑
k

(−1)kyik ·m⊗ yi1 ∧ · · · ∧ ŷik ∧ · · · ∧ yip

=
∑
k

∑
j

(−1)k⟨xj , yik⟩yj ·m⊗ yi1 ∧ · · · ∧ ŷik ∧ · · · ∧ yip .

We have the following proposition whose proof is similar to that of h∗-cohomo-
logy.

Proposition 2.6.

(a) The definition of ∂p is independent of the choice of basis of h and h∗.
(b) Treating M and ∧ph as W -modules, then ∂p commutes with the action of

W on M ⊗∧ph.
(c) ∂p−1∂p = 0.

Consequently, Hp(h,M) is a W -module.

From now on, we write

H•(h∗,M) :=
⊕
i

Hi(h∗,M) and H•(h,M) :=
⊕
i

Hi(h,M)

as the ungraded sum of the (co)homology spaces. Similarly, we can define h∗-
homologyH•(h

∗,M) and h-cohomologyH•(h,M). They are related to h∗-cohomo-
logy and h-homology respectively by the Poincaré duality:

Proposition 2.7 (Poincaré duality). Let c = h or h∗, then the perfect pairing
∧pc × ∧n−pc → ∧nc gives a Poincaré duality between the Hi(c,M) and the
homology Hn−i(c,M) defined above. More precisely, for all i = 1, . . . n,

Hi(c,M) ∼= Hn−i(c,M)⊗∧nc, or Hi(c,M) ∼= Hn−i(c,M)⊗∧nc∗

as W -modules.

We now recall the Clifford algebra and spinor module of V = h⊕ h∗. Define a
W -invariant bilinear product on V by ⟨ , ⟩ by ⟨xi, xj⟩ = ⟨yi, yj⟩ = 0, ⟨xi, yj⟩ = δij
(this is the same as the pairing given in Definition 2.1). The Clifford algebra C(V )
with respect to ⟨ , ⟩ is the tensor algebra of V subject to the relations

xixj + xjxi = yiyj + yjyi = 0, xiyj + yjxi = −2δij .

There is a natural injection W̃ ↪→ Pin(V ) ↪→ C(V )×, where p : W̃ → W is the
double cover of W given by the pull-back of the Pin cover p : Pin(V ) → O(V ).
For any s ∈ R, let

µs =

√
λs − 1/

√
λs

2⟨α∨
s , αs⟩

αsα
∨
s +

√
λs ∈ C(V ), (3)

where
√
λs is a choice of the square root of λs = deth(s). Then the calculations in

Lemma 4.6 of [C] show that {±µs} = p−1(s) ⊂ W̃ , and {±µs | s ∈ R} generate W̃ .
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Definition 2.8. The spinor module S corresponding to the Clifford algebra C(V )
can be realized as S ∼= ∧•h as vector spaces. The action of C(V ) on S is defined by

x(yi1 ∧ · · · ∧ yip) = 2
∑
j

(−1)j⟨x, yij ⟩yi1 ∧ · · · ∧ ŷij ∧ · · · ∧ yip , x ∈ h∗;

y(yi1 ∧ · · · ∧ yip) = y ∧ yi1 ∧ · · · ∧ yip , y ∈ h.

The following proposition describes S as a W̃ -module:

Proposition 2.9. Every w̃ ∈ W̃ preserves every ∧lh ⊂ S. In particular, for every
vi ∈ h,

w̃ · v1 ∧ v2 ∧ · · · ∧ vl = χ(w̃) · (p(w̃)(v1) ∧ p(w̃)(v2) ∧ · · · ∧ p(w̃)(vl))

with χ being a genuine one-dimensional W̃ -module satisfying χ2(w̃) = deth∗(p(w̃)).

Therefore, as W̃ -modules,

S ∼= χ⊗ ∧•h, (4)

where ∧•h is considered as a W̃ -module that factors through p : W̃ → W .

Proof. We only need to prove the proposition for all generators ±µs ∈ W̃ . Let
α∨
s ∈ h, αs ∈ h∗ be as in Definition 2.1, and fix a basis {y1, . . . , yn} of h with

y1 = α∨
s , y2, . . . , yn ∈ ker(Id− s)|h. Then

s(y1) = λsy1, s(yi) = yi for i > 1.

For 1 ≤ l1 < · · · < lk ≤ n, it is easy to check that

αsα
∨
s · yl1 ∧ · · · ∧ ylk =

{
0, if l1 = 1;

−2⟨α∨
s , αs⟩yl1 ∧ · · · ∧ ylk , otherwise.

Using (3), ±µs acts on yl1 ∧ · · · ∧ ylk by ±µs · yl1 ∧ · · · ∧ ylk = (±1/
√
λs)s(yl1) ∧

· · ·∧s(ylk) in both cases. Hence the result follows from the fact that (±1/
√
λs)

2 =
λ−1
s = deth∗(s). �

Definition 2.10. Let Dx, Dy be elements in H⊗ C(V ) given by

Dx :=
∑
i

xi ⊗ yi, Dy :=
∑
i

yi ⊗ xi.

If M is a Ht,c-module, then Dx, Dy acts on M ⊗ S by

Dx(m⊗ s) =
∑
i

xi ·m⊗ yis; Dy(m⊗ s) =
∑
i

yi ·m⊗ xis.

Theorem 2.11 ([C, Lem. 2.4, Prop. 4.9]). We have
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(a) Dx and Dy are independent of the choice of basis of h.

(b) Let ∆ : C[W̃ ] → Ht,c⊗C(V ) be the diagonal map w̃ 7→ p(w̃)⊗ w̃. Then Dx

and Dy commute with ∆(C[W̃ ]).
(c) D2

x = D2
y = 0.

Consequently, kerDx/imDx and kerDy/imDy are naturally W̃ -modules.

Recall from Proposition 2.9 that we can identify S with ∧•h⊗χ as W̃ -modules.
With this identification,

Dx = d⊗ χ, Dy = 2∂ ⊗ χ.

Thus, we have the following proposition relating the above operators with the Lie
algebra (co)homology.

Proposition 2.12. There are W̃ -module isomorphisms:

kerDx/imDx
∼= H•(h∗,M)⊗ χ and kerDy/imDy

∼= H•(h,M)⊗ χ.

3. An analogue of Casselman–Osborne Theorem

In this section, we prove a version of the Casselman–Osborne Theorem for
Lie algebra cohomology of Ht,c and associated with Dx and Dy. It relates the
‘central character’ of a Ht,c-module M (denoted as B-character below) to the
central characters of C[W ]-modules H•(h∗,M) and H•(h,M).

We set H = Ht,c. Recall that we have the following Poincaré–Birkhoff–Witt
decomposition H ∼= S(h)⊗ C[W ]⊗ S(h∗) as vector spaces. We define a C∗-action
on H by

λ · x = λ−1x, λ · y = λy, λ · w = w

for all x ∈ h∗, y ∈ h and w ∈ W . We also define a C∗-action on C(V ) ∼= ∧•h⊗∧•h∗

by
λ · x = λ−1x, λ · y = λy

for all x ∈ h∗, y ∈ h.

Definition 3.1. We define a subalgebra A of H⊗ C(V ) by setting

A := (H⊗ C(V ))C
∗
.

It is easy to check that we have the following ∆(C[W̃ ])-module isomorphism

A ∼=
⊕

k1+l1=k2+l2

(Sk1(h)⊗ C[W ]⊗ Sk2(h∗))⊗ (∧l1h⊗∧l2h∗) ⊂ H⊗ C(V ).

We have a filtration H0 ⊂ H1 ⊂ H2 ⊂ · · · on H by taking deg(x) = deg(y) = 1
for x ∈ h∗, y ∈ h and deg(w) = 0 for all w ∈ W . Then the graded algebra is given
by gr(H) ∼= H0,0

∼= S(V ) o C[W ]. With the filtration on H, define the filtration
A0 ⊂ A1 ⊂ · · · of A, where An = A ∩Hn ⊗ C(V ). So we have a graded algebra

gr(A) ∼=
⊕

k1+l1=k2+l2

(Sk1(h)⊗ Sk2(h∗))oC[W ]⊗ (∧l1h⊗∧l2h∗) ⊂ H0,0 ⊗ C(V ).
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By definition, we have ∆(C[W̃ ]), Dx, Dy are all contained in A. Therefore, W̃

acts on A by conjugation. We denote by AW̃ the subalgebra of W̃ -invariants in A.

By Proposition 2.12(b), Dx, Dy ∈ AW̃ . Define the maps δd, δ∂ : AW̃ → AW̃ by

δda = Dxa− ϵ(a)Dx, δ∂a = Dya− ϵ(a)Dy, (5)

where ϵ(a) = a if a ∈ H⊗ Ceven(V ) and ϵ(a) = −a if a ∈ H⊗ Codd(V ).
The main theorem of this section is the following:

Theorem 3.2. For δd, δ∂ : AW̃ → AW̃ defined in (5), we have

ker δd = im δd ⊕∆(C[W̃ ]W̃ ).

The results hold analogously for δ∂ .

For the rest of this section, we will only prove the theorem for δd. The proof of
δ∂ is analogous to that of δd.

Lemma 3.3. We have

(a) δ2d = 0 and consequently im δd ⊂ ker δd.
(b) The map δd is an odd derivation, i.e., δd(ab) = δd(a)b+ϵ(a)δd(b). Therefore,

if a, b ∈ ker δd, ab ∈ ker δd and ker δd is a subalgebra of AW̃ .

Proof. (a) By the definition of δd, δ
2
da = D2

xa− aD2
x = 0− 0 = 0.

(b) δd(ab) = Dx(ab) − ϵ(ab)Dx = Dxab − ϵ(a)Dxb + ϵ(a)Dxb − ϵ(a)ϵ(b)Dx =
δd(a)b+ ϵ(a)δd(b). �

Note that the action δd increases the filtration by 1, while the action of ∆(w̃)

preserves the filtration. So gr(A)W̃ = gr(AW̃ ), and δd descend to the map

δd : gr(A)W̃ → gr(A)W̃ .

Lemma 3.4. Let δd : gr(A)W̃ → gr(A)W̃ be defined as in Equation (5). Then the
following holds:

(a) ∆(C[W̃ ]W̃ ) ⊂ ker δd.

(b) im δd ∩∆(C[W̃ ]W̃ ) = 0, hence

im δd ⊕∆(C[W̃ ]W̃ ) ⊂ ker δd.

Proof. (a) For all w̃ ∈ W̃ , Theorem 2.11(b) says that ∆(w̃)Dx − Dx∆(w̃) =
0. Also, recall w̃ is generated by ±µs ∈ Ceven(V ). Hence ϵ(∆(w̃)) = ∆(w̃) and

∆(C[W̃ ]W̃ ) ⊂ ker δd.

(b) We have already seen that δd
2
= 0. So im δd ⊂ ker δd. On the other

hand, every summand in im δd must have an xi ∈ h∗ in its S(V )-component, while

every element in ∆(C[W̃ ]W̃ ) does not contain any h∗ factor. Hence they must be
mutually disjoint. �
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Proposition 3.5. We have

ker δd = im δd ⊕ ∆(C[W̃ ]W̃ ).

Proof. By the above lemma, we just need to show

ker δd ⊂ im δd ⊕ ∆(C[W̃ ]W̃ ).

Suppose a ∈ ker δd, write a = a1 + · · ·+ a|W | ∈ gr(A)W̃ where ai is the sum of the

elements of the form fwi⊗g for f ∈ Sk1(h)⊗Sk2(h∗), wi ∈ W and g ∈ ∧l1h⊗∧l2h∗

with k1 + l1 = k2 + l2.
For simplicity of notation, we write δd(α) = Dxα − ϵ(α)Dx for all elements

α ∈ gr(A). Then δd(a) = δd(a1) + · · · + δd(a|W |) = 0. Note that δd does not
change the wi component on each ai. Hence, we must have

δd(ai) = 0 for all i.

The summands in ai are of the form

fwi ⊗ g = (f ⊗ g · w̃i
−1

)(wi ⊗ w̃i) = [(fwi ⊗ g) ·∆(w̃i
−1

)]∆(w̃i)

for some w̃i ∈ W̃ satisfying p(w̃i) = wi. Now δd(ai) = 0 means

0 = δd[ai ·∆(w̃i
−1

) ·∆(w̃i)] = δd(ai ·∆(w̃i
−1

)) ·∆(w̃i)± (ai ·∆(w̃i
−1

)) · δd(∆(w̃i)),

but we know δd(∆(w̃i)) = 0 since Dx commutes with ∆(C[W̃ ]), hence

δd(ai∆(w̃i
−1

)) = 0, ai∆(w̃i
−1

) ∈ (Sk1(h)⊗ Sk2(h∗))⊗ (∧l1h⊗∧l2h∗),

with k1 + l1 = k2 + l2.
It follows that δd is the differential in the Koszul complex⊕

m

⊕
k2+l2=m

Sk2(h∗)⊗∧l2h∗,

which has cohomology C on degree m = 0 and zero at other degrees. Therefore,
by restricting δd to⊕

m

⊕
k1+l1=k2+l2=m

Sk1(h)⊗∧l1h∗ ⊗ Sk2(h∗)⊗∧l2h∗,

we have

ker δd = im δd ⊕
⊕

k1+l1=0

Sk1(h)⊗∧l1(h)⊗ C(1⊗ 1) = im δd ⊕ C(1⊗ 1).

In particular, we have

ai∆(w̃i
−1

) = δdzi + βi(1⊗ 1),

where βi ∈ C and ai = δd(zi∆(w̃i)) + βi∆(w̃i). Hence,

a =
∑
i

ai = δd(
∑
i

zi∆(w̃i)) +
∑
i

βi∆(w̃i).

Therefore,
∑

i βi∆(w̃i) must be W̃ -invariant, i.e.,
∑

i βi∆(w̃i) ∈ ∆(C[W̃ ]W̃ ) and
the proposition is proved. �
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To finish the proof of Theorem 3.2, one needs to remove the −’s in Proposition
3.5:

Proof of Theorem 3.2. We have already shown in Lemma 3.4 that im δd⊕C[W̃ ]W̃ ⊂
ker δd so we check the reverse inclusion. Suppose a ∈ AW̃ ,n is in ker δd, then

a ∈ ker δd and δd(a) = 0. By Proposition 3.5, there exists b ∈ gr(AW̃ )n−1 and

s ∈ C[W̃ ]W̃ such that
a = δdb̄+∆(s).

Pick b ∈ AW̃ ,n−1 such that gr(b) = b. Then

a− δdb−∆(s) = 0

and hence a− δdb−∆(s) ∈ AW̃ ,n−1. Note that

a− δdb−∆(s) ∈ ker δd.

By induction on n, we have a − δdb −∆(s) ∈ im δd ⊕ C[W̃ ]W̃ . Thus, a ∈ im δd ⊕
C[W̃ ]W̃ as required. �

Let B be an abelian subalgebra of ker δd∩(H⊗Ceven(V )). Then, by definition of

δd, B commutes with Dx and ∆(C[W̃ ]). So kerDx/imDx is naturally a C[W̃ ]⊗B-
module.

Theorem 3.6. Let ζd : B → ∆(C[W̃ ]W̃ ) be the restriction to B of the projection
map given by Theorem 3.2. Then we have

(a) ζd is an algebra homomorphism.
(b) Suppose that σ̃⊗ β is an isotypical component in kerDx/imDx, where σ̃ is

an irreducible W̃ -module and β is a B-character. Then the morphism

ζ∗d : Irr(W̃ ) → Spec B

satisfies the following condition

ζ∗d (σ̃) = β.

The results hold analogously by replacing Dx with Dy.

Proof. We only present the proof for δd below:
(a) Let b1, b2 ∈ B, then bi = δd(ai) + ζd(bi) for some ai ∈ A, so

b1b2 = δd(a1)δd(a2) + δd(a1)ζd(b2) + ζd(b1)δd(a2) + ζd(b1)ζd(b2)

= δd(a1δd(a2) + a1ζd(b2) + ζd(b1)a2) + ζd(b1)ζd(b2).

The second equality comes from the facts that δ2d = 0, δd(∆(w̃)) = 0 and δd is a
derivation. Hence by the uniqueness of the decomposition in Theorem 3.2,

ζd(b1b2) = ζd(b1)ζd(b2)
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and the result follows.
(b) Let 0 ̸= z ∈ B. By Theorem 3.2, we have

z = ζd(z) +Dxa− ϵ(a)Dx

for some a ∈ H ⊗ C(V ). Let α̃ ̸= 0 be an element in the σ̃ ⊗ β component of
kerDx/imDx. Then

z · α̃ = ζd(z) · α̃+Dxa · α̃− ϵ(a)Dx · α̃
β(z)α̃ = σ̃(ζd(z))α̃+Dxa · α̃

(β(z)− σ̃(ζd(z)))α̃ = Dxa · α̃,

where the second equality comes from the fact that α̃ is an σ̃⊗ β isotypic element
in kerDx/imDx. Therefore, the left-hand side of the equality is in kerDx/imDx,
and the right-hand side is in imDx and hence it must be equal to zero, i.e.,

(β(z)− σ̃(ζd(z)))α̃ = 0.

However, α̃ ≠ 0, and it follows that β(z)− σ̃(ζd(z)) = 0 for all z ∈ B and the result
holds. �

With the identification kerDx/imDx
∼= H•(h∗,M) ⊗ χ, the following result is

straightforward:

Theorem 3.7. Retain the notations in Theorem 3.6. Suppose σ⊗β is an isotypical
component in H•(h∗,M), where σ is a W -module and β is a B-character. Then

ζ∗d (σ ⊗ χ) = β.

The similar statement holds for H•(h,M) and ζ∗∂ . (Note that σ⊗χ is an irreducible

W̃ -module for any irreducible W -module σ).

4. Embedding of Dirac cohomology into Lie algebra cohomology

In this section, we give a criterion such that the Dirac cohomology HD(M) of
M can be embedded into its Lie algebra (co)homology.

Definition 4.1 ([C]). Let D := Dx +Dy ∈ Ht,c ⊗ C(V ). The Dirac cohomology
of an Ht,c-module M is defined by

HD(M) := kerD/imD,

where D : M ⊗ S → M ⊗ S is defined as in Definition 2.10.

The main theorem of this section is the following:

Theorem 4.2. If M is an Ht,c-module so that D2 acts semisimply on M ⊗ S,

then we have the following W̃ -module injective homomorphisms

HD(M) ↪→ H•(h∗,M)⊗ χ, HD(M) ↪→ H•(h,M)⊗ χ.

We now prove the first inclusion of Theorem 4.2. The second inclusion can be
proved in an analogous way.
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Lemma 4.3. If we identify S with ∧•h as vector spaces (Definition 2.8) and define

an increasing W̃ -invariant filtration on kerD in M ⊗ S by

0 = (kerD)−1 ⊂ (kerD)0 ⊂ · · · ⊂ (kerD)n−1 ⊂ (kerD)n = kerD,

with (kerD)i = kerD ∩ (
⊕i

p=0 M ⊗ ∧ph). Then we have an injective W -module
homomorphism:

f : gr(kerD) ↪→ kerDx ∩ kerD2.

Remark 4.4. Since the action of ∆(C[W̃ ]) on M ⊗S preserves M ⊗∧lh for each l,

we have an isomorphism of W̃ -modules kerD ∼= gr(kerD) and hence the injection

of W̃ -modules in the above lemma can be rewritten as:

f ′ : kerD ↪→ kerDx ∩ kerD2.

Proof. Suppose m̃0 + · · ·+ m̃i ∈ (kerD)i, with m̃p ∈ M ⊗∧ph, then

0 = D(m̃0+· · ·+m̃i) = (Dx+Dy)(m̃0+· · ·+m̃i) =
i∑

p=0

Dym̃p+
i−1∑
p=0

Dxm̃p+Dx(m̃i).

Note that the last term is the only term in M ⊗∧i+1h, hence m̃i ∈ kerDx and we
can define a map

fi : (kerD)i/(kerD)i+1 → kerDx;

m̃0 + · · ·+ m̃i 7→ m̃i.

To check the image is in kerD2, we note that D2 = DxDy +DyDx preserves the
degrees. Then

0 = D2(m̃0 + · · ·+ m̃i) = D2(m̃0) + · · ·+D2(m̃i),

and it follows that D2(m̃i) = 0. Now we show that fi is injective. If m̃′ =
m̃0

′
+ · · ·+ m̃i

′ ∈ (kerD)i such that fi(m̃0
′
+ · · ·+ m̃i

′
) = 0, then m̃i

′
= 0. Hence,

m̃′ ∈ (kerD)i−1. Thus, we have an injective map

f :=
⊕
i

fi : gr(kerD) ↪→ kerDx ∩ kerD2. �

Proof of Theorem 4.2. By hypothesis, we can decompose M ⊗ S into M ⊗ S =
kerD2 ⊕ imD2. Let U := kerD2 and V := imD2, then it is obvious that D maps
U to U and V to V . Also, we have

D2Dx = (DxDy +DyDx)Dx = Dx(DxDy +DyDx) = DxD
2,

therefore Dx also maps U to U and maps V to V . We write D′ and D′
x as

restrictions of D and Dx to U , and similarly write D′′ and D′′
x as restrictions of D

and Dx to V .
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Note that HD(M) is a quotient of kerD ⊂ kerD2 = U , so we focus on our
study to U . Since (D′)2 = 0, so imD′ ⊂ kerD′ and HD(M) = kerD′/imD′. Also,

(D′
x)

2 = 0 implies imD′
x ⊂ kerD′

x. Now for any irreducible W̃ -module ν:

[ν : kerD′]
W̃

+ [ν : imD′]
W̃

= [ν : U ]
W̃

= [ν : kerD′
x]W̃ + [ν : imD′

x]W̃ .

(Note that [ν : U ] is finite, since U is finite-dimensional by Lemma 3.13 of [C])

By Lemma 4.3, [ν : kerD′]
W̃

≤ [ν : kerD′
x]W̃ for all ν. Hence, [ν : imD′]

W̃
≥

[ν : imD′
x]W̃ and consequently we have an inclusion of W -modules:

HD(M) = kerD′/imD′ ↪→ kerD′
x/imD′

x

Finally, note that

kerDx/imDx = kerD′
x/imD′

x ⊕ kerD′′
x/imD′′

x ,

so kerD′
x/imD′

x is naturally a subspace of the following space

kerDx/imDx
∼= H•(h∗,M)⊗ χ.

Thus, the theorem is proved. �

Remark 4.5. In fact, the hypothesis of Theorem 4.2 is satisfied when ΩHt,c
(Defi-

nition 2.2) acts semisimply on M . This can be seen from the formula of D2 given
by Equation (4.24) of [C]. For the rest of the manuscript, we will apply Theorem
4.2 in this setting.

We have an alternative proof of Theorem 3.14 in [C] for H-modules M which
ΩH acts semisimply upon:

Corollary 4.6. Let H = Ht,c with t ̸= 0, and M be an ΩH-semisimple module.
Suppose that σ̃⊗β is an isotypical component in HD(M), where σ̃ is an irreducible

W̃ -module and β is a B-character. Then the morphism ζ∗d : Irr(W̃ ) → Spec B
satisfies the following condition

ζ∗d (σ̃) = β.

Proof. By Equation (4.12) of [C], we have

[ΩH, x] = 2tx, [ΩH, y] = −2ty. (6)

Then it is easy to see our definition of A in Section 3 is the same as that in
Equations (3.4)–(3.5) of loc. cit. when Ht,c with t ̸= 0. Suppose σ̃⊗ β ∈ HD(M),
then by the above Remark, we can apply Theorem 4.2 so that σ̃⊗β ∈ kerDx/imDx.
Hence the result follows from Theorem 3.6. �
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5. Hodge decomposition for unitarizable modules

In this section, we show that Dirac cohomology is isomorphic to Lie algebra
cohomology up to a twist of a character for unitarizable modules. This follows
from a Hodge decomposition theorem for the Dirac operators.

We set H := Ht,c with t, c(s) ∈ R for all s ∈ R. Recall that a ∗-action is defined
on H in [ES]. For a suitable choice of the basis xi, yi in h∗ and h respectively, ∗ has
the property that x∗

i = yi, y
∗
i = xi. A H-module M has a Hermitian ∗-invariant

form if
(z ·m1,m2)M = (m1, z

∗ ·m2)M

for all z ∈ H and m1,m2 ∈ M . Furthermore, if the form is positive definite, we
call M a ∗-unitary module.

The main theorem of this section is the following:

Theorem 5.1. Suppose the M is a ∗-unitary H-module. Then the injection in
Theorem 4.2 is an isomorphism of W̃ -modules, i.e.,

HD(M) ∼= H•(h∗,M)⊗ χ.

The same result holds for H•(h,M).

In order to prove Theorem 5.1, we need a Hermitian form on M ⊗ S. In fact,
we can endow S with a positive definite Hermitian form (· , ·)S by the following:
Let {yI := yi1 ∧ · · · ∧ yik | I = {i1, . . . , ik} ⊂ {1, . . . , n}} be a basis of ∧•h ∼= S.
Then the Hermitian form on S is defined by (yI , yJ) := δI,J . One can verify that
(xi · s1, s2) = −(s1, yi · s2) for all s1, s2 ∈ S and all i = 1, . . . , n.

Now one can define Hermitian form (· , ·)M⊗S on M ⊗ S by:

(m1 ⊗ s1,m2 ⊗ s2)M⊗S = (m1,m2)M (s1, s2)S .

Lemma 5.2. The adjoint of the half-Dirac operator Dx is D∗
x = −Dy.

Proof.

(Dx(m1 ⊗ s1),m2 ⊗ s2)M⊗S =
∑
i

(xi ·m1 ⊗ yi · s1,m2 ⊗ s2)M⊗S

=
∑
i

(xi ·m1,m2)M (yi · s1, s2)S

= −
∑
i

(m1, yi ·m2)M (s1, xi · s2)S

= (m1 ⊗ s1,−
∑
i

(yi ⊗ xi) · (m2 ⊗ s2))M⊗S .

Thus, D∗
x = −Dy. �

Similarly, D∗
y = −Dx and we have

D∗ = (Dx +Dy)
∗ = −Dy −Dx = −D.
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Proposition 5.3. Let M be an irreducible H-module satisfying the hypothesis
given in Theorem 5.1. Then we have

kerD = kerD2 = kerDx ∩ kerDy.

Proof. It is easy to see kerD ⊂ kerD2. Suppose m̃ ∈ kerD2. Then

0 = (D2m̃, m̃) = (Dm̃,D∗m̃) = −(Dm̃,Dm̃).

It follows that Dm̃ = 0 and hence m̃ ∈ kerD. Also, since m̃ ∈ kerD = kerD2,

0 = D2m̃ = DxDym̃+DyDxm̃

and DxDym̃ = −DyDxm̃. Applying Dx to both sides, we have DxDyDxm̃ = 0
and

0 = (DxDyDxm̃,Dxm̃) = −(DyDxm̃,DyDxm̃).

It follows that DyDxm̃ = 0. Similarly, 0 = (DyDxm̃, m̃) = −(Dxm̃,Dxm̃) and
hence Dxm̃ = 0, i.e., m̃ ∈ kerDx. A similar argument also gives m̃ ∈ kerDy.
Therefore, we conclude that kerD2 ⊂ kerDx ∩ kerDy. For the other inclusion, we
note that Dxm̃ = Dym̃ = 0 implies D2m̃ = DxDym̃+DyDxm̃ = 0 + 0 = 0. �

We now prove a Hodge decomposition theorem for M⊗S. First of all, we notice
the following two facts:

Fact (i): We have imDx ∩ imDy = {0}. If m̃ ∈ imDx ∩ imDy, i.e., m̃ = Dxñ =
Dyñ

′, then Dxm̃ = D2
xñ = 0 = DxDyñ

′. By the same argument as in Proposition
5.3, DxDyñ

′ = 0 implies Dyñ
′ = m̃ = 0.

Fact (ii): We have kerDx ⊥ imDy. If m̃ ∈ kerDx, then 0 = (Dxm̃, ñ) =
−(m̃,Dyñ). Similarly, we have kerDy ⊥ imDx.

Theorem 5.4 (Hodge decomposition). Let M be a ∗-unitary H-module. Then
we have the following:

(a) M ⊗ S = kerD ⊕ imDx ⊕ imDy.
(b) kerDx = kerD ⊕ imDx, kerDy = kerD ⊕ imDy.

Proof. (a) By Proposition 5.3, kerD = kerD2 and hence we only need to prove
imD2 = imDx ⊕ imDy (recall imDx ∩ imDy = {0} by Fact (i)).

One inclusion is simple: suppose m̃ = DxDyñ + DyDxñ ∈ imD2, then it is
automatically in imDx ⊕ imDy.

Now suppose m̃ ∈ imDx, then m̃ ⊥ kerDy. But kerD
2 ⊂ kerDy by Proposition

5.3, hence m̃ ∈ (kerD2)⊥. Since M ⊗ S = kerD2 ⊕ imD2, and our Hermitian
product is positive definite, (kerD2)⊥ = imD2 and consequently m̃ ∈ imD2.
Similarly, one can prove imDy ⊂ imD2 and therefore (a) is proved.

(b) By Fact (ii) above, kerDx ⊂ (imDy)
⊥. Now (a) says (imDy)

⊥ = kerD ⊕
imDx. So we have the inclusion kerDx ⊂ kerD ⊕ imDx.

For the other inclusion, note that by Proposition 5.3 we have kerD ⊂ kerDx,
and imDx ⊂ kerDx since D2

x = 0 so the inclusion must be an equality.
The second part of the statement is analogous to the first part, and we omit

the proof of it. �
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Proof of Theorem 5.1. Since kerD = kerD2, kerD ∩ imD = {0} and hence
HD(M) = kerD. By the first equality of Theorem 5.4(b),

HD(M) = kerD ∼= kerDx/imDx
∼= H•(h∗,M)⊗ χ.

Similarly,
HD(M) = kerD ∼= kerDy/imDy

∼= H•(h,M)⊗ χ

by the second equality of Theorem 5.4(b). �

6. Lie algebra cohomology for Ht,c with t = 1

We note that the mapping x 7→ λx, y 7→ λy,w 7→ w for x ∈ h∗, y ∈ h and
w ∈ W induces an algebra isomorphism

Ht,c
∼= Hλ2t,λ2c.

Therefore, we need to consider only two cases, t = 1 and t = 0, up to equivalence.
In this section, we assume t = 1 and set H := H1,c. Recall from [GGOR],

the category O for H := H1,c is defined. For any irreducible W -module σ, the
standard module M(σ) is defined to be

M(σ) = H⊗S(h)oC[W ] σ.

As S(h∗) o C[W ]-module, it is isomorphic to S(h∗) ⊗ σ, and it has a unique
irreducible quotient L(σ). For most values of c, the standard module is irreducible,
i.e., M(σ) = L(σ).

The standard module M(σ) ∼= S(h∗)⊗ σ has an ΩH-eigenspace decomposition.
More precisely, ΩH acts semisimply on M(σ) with lowest weight vectors being of
the form 1 ⊗ vσ ∈ M(σ) and ΩH acting by the scalar a0. By Equation (6), if
m ∈ M is an eigenvector of ΩH of eigenvalue r, then x ·m is also an eigenvector
of eigenvalue r + 2 for any x ∈ h∗. Therefore, by letting ak = a0 + 2k, we have an
ΩH-eigenspace decomposition

M(σ) =
⊕

Mai with Mai = Sk(h∗)⊗ σ.

since every submodule of J ⊂ M(σ) is graded, i.e., J =
⊕

Jai with Jai ⊂ Mai , we
conclude that ΩH acts semisimply on every subquotient L of M(σ) and Theorem
4.2 applies.

Proposition 6.1. Suppose M ∈ O has a BGG resolution, i.e., there is a exact
sequence of H-modules

0 →
jn⊕
j=1

M(σn,j) →
jn−1⊕
j=1

M(σn−1,j) → · · · →
j0⊕
j=1

M(σ0,j) → M → 0. (7)

Then we have inclusions of W -modules for all i ≥ 0:

Hi(h
∗,M) ≤

ji⊕
j=1

σi,j .

Moreover, if σi,j�σi+1,j′ for all i, j, j
′, then the above inclusions are isomorphisms.
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Proof. We restrict our attention to the R = S(h∗)-module structure of a H-module
M . By (7), there is a free R-resolution of M by:

0 → R⊗
( jn⊕

j=1

σn,j

)
→ R⊗

( jn−1⊕
j=1

σn−1,j

)
→ · · · → R⊗

( j0⊕
j=1

σ0,j

)
→ M → 0.

Therefore, TorR• (C,M) can be computed by tensoring C⊗R • to the above sequen-
ce, which gives a complex of W -modules

0 →
jn⊕
j=1

σn,j →
jn−1⊕
j=1

σn−1,j → · · · →
j0⊕
j=1

σ0,j → 0. (8)

Hence, TorRi (C,M) ≤
⊕ji

j=1 σi,j and by the usual homological algebra argument,

we have TorRi (C,M) ∼= Hi(h
∗,M) and the first part of the proposition is proved.

Assume now that σi,j ̸= σi+1,j′ for all i, j, j
′. Then the differentials in the complex

(8) must be all zeros. So in this case

Hi(h
∗,M) ∼= TorRi (C,M) ∼=

ji⊕
j=1

σi,j .

Therefore, the proposition is proved. �
It follows from the Poincaré duality (Proposition 2.7) for c = h∗ that

H•(h∗,M)⊗ χ ∼= H•(h
∗,M)⊗ χ−1 ≤

n⊕
i=0

ji⊕
j=1

σi,j ⊗ χ−1, (9)

and the above inclusion is an isomorphism if σi,j � σi+1,j′ for all i, j, j
′.

The following corollary gives precisely the Dirac cohomology of a standard
module M(σ). This refines Proposition 5.6 of [C]:

Corollary 6.2. The standard module M(σ) has Dirac cohomology

HD(M(σ)) ∼= σ ⊗ χ−1.

Proof. The BGG resolution of M = M(σ) is obviously

0 → M(σ) → M → 0.

By Proposition 6.1, we have

Hi(h
∗,M(σ)) = 0 for i > 0, H0(h

∗,M(σ)) = σ.

Since M(σ) is ΩH-semisimple, we can apply Theorem 4.2 and Equation (9) to get
HD(M(σ)) ≤ H•(h

∗,M(σ))⊗χ−1 = σ⊗χ−1. On the other hand, Proposition 5.6
of [C] says σ ⊗ χ−1 ∈ HD(M(σ)). Therefore the result follows. �
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As another application of Proposition 6.1, we consider the finite-dimensional
H-modules L(triv) studied in [BEG]. In fact, Proposition 1.6 of [BEG] gives the
BGG resolution of L(triv) by

0 → M(∧nh∗) → M(∧n−1h∗) → · · · → M(∧1h∗) → M(triv) → L(triv) → 0.

For any Weyl group W , all ∧ih∗ ∼= ∧ih are distinct irreducible modules, so
Proposition 6.1 applies and

Hi(h
∗, L(triv)) ∼= ∧ih.

One would like to relate the above result with Dirac cohomology HD(L(triv)).
Indeed, by Theorem 4.2 and Equation (9), we have

HD(L(triv)) ≤ H•(h∗, L(triv))⊗ χ = H•(h
∗, L(triv))⊗ χ−1 = ∧•h⊗ χ−1.

To see the inclusion is an isomorphism, we need the following:

Theorem 6.3. Let M be an ΩH-semisimple H-module with an eigenspace decom-
position M =

⊕
λ Mλ. If M satisfies the parity condition, i.e.,

[Heven(h∗,M) : Hodd(h∗,M)]W = 0,

then HD(M) ∼= H•(h∗,M)⊗χ. The analogous statement holds also for H•(h,M).

Applying Theorem 6.3 to the finite-dimensional modules L(triv), we get the
following:

Corollary 6.4. Let M = L(triv) be a finite-dimensional H-module in [BEG], then

HD(L(triv)) ∼= ∧•h⊗ χ−1

Proof. Since all Hi(h∗,M) = Hn−i(h
∗,M) ⊗ deth = ∧n−ih ⊗ ∧nh ∼= ∧ih are

distinct W -modules, the hypothesis of Theorem 6.3 is satisfied. Hence the result
follows. �

As before, we only prove Theorem 6.3 for H•(h∗,M). The proof is analogous to
that of [HX]. However, the proof given there requires the fact that weight spaces
of M ⊗ S are finite-dimensional, yet in our setting the multiplicities of irreducible
W -modules can be infinite. So we have to decompose M ⊗ S into a direct sum
of finite-dimensional W -modules, where Dx, Dy and therefore D will act on each
summand individually.

Identify S with ∧•h as vector spaces. Under the hypothesis, we have the ΩH-
eigenspace decomposition of M =

⊕
a Ma. Define a bi-grading on M ⊗ S =⊕

a,j(M ⊗ S)a,j by

(M ⊗ S)a,l = Ma ⊗∧lh. (10)

By (6) and the definitions of Dx and Dy, Dx maps (M ⊗ S)a,l to (M ⊗ S)a+2,l+1,
and Dy maps (M ⊗ S)a,l to (M ⊗ S)a−2,l−1.
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Definition 6.5. Given the bi-grading of M ⊗ S in (10), set

Ur :=
⊕

a−2l=r

Ma,l, U+
r :=

⊕
a−4k=r

Ma,2k, U−
r :=

⊕
a−4k+2=r

Ma,2k−1.

We can express Ur as a complex :

0 → Mr,0
Dx−−→ Mr+2,1

Dx−−→ . . .
Dx−−→ Mr+2n,n → 0

We define

Hi(Ur,Dx)

:= ker(Dx : Mr+2i,i → Mr+2i+2,i+1)/im(Dx : Mr+2i−2,i−1 → Mr+2i,i).

Then we have

kerDx/imDx =
⊕
r

H•(Ur, Dx) =
⊕
r

(Heven(Ur, Dx)⊕Hodd(Ur, Dx)).

Replacing Dx with Dy, we define Hi(Ur, Dy) analogously.
As for D, let

Dr : Ur → Ur, D±
r : U±

r → U∓
r

be the restriction of D on Ur, and

HD(Ur) := kerDr/(kerDr ∩ imDr), H±
D(Ur) := kerD±

r /(kerD
±
r ∩ imD∓

r ).

Then
HD(M) =

⊕
r

HD(Ur) =
⊕
r

(H+
D(Ur)⊕H−

D(Ur)).

So we can work on the finite-dimensional space Ur instead of the whole space
M ⊗ S.

Lemma 6.6. In the above setting, we have the following:

(a) inclusions of W̃ -modules

H+
D(Ur) ↪→ Heven(Ur, Dx), H−

D(Ur) ↪→ Hodd(Ur, Dx); and

(b) identity for virtual W̃ -modules,

H+
D(Ur)−H−

D(Ur) = Heven(Ur, Dx)−Hodd(Ur, Dx).

Proof. (a) Follows directly from Theorem 4.2 when we restrict to Ur.
(b) By hypothesis and Theorem 2.11(e), D+

r ◦ D−
r and D−

r ◦ D+
r are both

semisimple. Then using linear algebra, e.g., Proposition 5.2 of [HX], one can
conclude that H+

D(Ur) − H−
D(Ur) is equal to U+

r − U−
r as W -modules. However,

U+
r − U−

r is the Euler characteristic of the half-Dirac complex in Ur, hence it is
also equal to Heven(Ur, Dx)−Hodd(Ur, Dx). �
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Proof of Theorem 6.3. Recall that

kerDx/imDx =
⊕
r

(Heven(Ur, Dx)⊕Hodd(Ur, Dx))

∼= (Heven(h∗,M)⊗ χ)⊕ (Hodd(h∗,M)⊗ χ).

By hypothesis, the two summands on the right-hand side are disjoint. Also,⊕
r

Heven(Ur, Dx) = Heven(h∗,M)⊗ χ,
⊕
r

Hodd(Ur, Dx) = Hodd(h∗,M)⊗ χ

implies Heven(Ur, Dx) and Hodd(Ur, Dx) are disjoint as well. By Lemma 6.6(b),
we have

H+
D(Ur) ⊃ Heven(Ur, Dx) and H−

D(Ur) ⊃ Hodd(Ur, Dx).

It follows from Lemma 6.6(a), the inclusions must be equalities and we have

H+
D(Ur) = Heven(Ur, Dx), H−

D(Ur) = Hodd(Ur, Dx).

Hence, HD(Ur)=H•(Ur, Dx). Adding up the r’s, we have HD(M)=kerDx/imDx

and the result follows. �
To conclude this section, we make the following:

Conjecture 6.7. For any irreducible modules L(σ), we have the W̃ -module iso-
morphisms

HD(L(σ)) ∼= H•(h∗, L(σ))⊗ χ ∼= H•(h, L(σ))⊗ χ.

7. Lie algebra cohomology for Ht,c with t = 0

In this section, we set H := H0,c. We study the center Z(H) of H first of all.
As opposed to the t = 1 case whose center only contains the constants, H has a
large center as shown in the following lemma:

Lemma 7.1. The center Z(H) of H is a free S(h)W ⊗ S(h∗)W -module of rank
|W |. More precisely, there exists γi ∈ HC∗

(recall the C∗-action on H in Definition
3.1) with γ1 = 1 such that

Z(H) ∼=
|W |⊕
i=1

(S(h)W ⊗ S(h∗)W ) · γi.

Proof. The first statement of the lemma is in Proposition 4.15 of [EG]. For the
last statement, note that by the commutation relations of H, a ∈ HC∗ ⇔ gr(a) ∈
gr(H)C

∗
, where the grading is the one given in Section 3. So we only need to prove

gr(γi) ∈ gr(H)C
∗
for all i. In this setting, the proof of Proposition 4.15 [EG] gives

the structure of gr(γi) precisely, with all gr(γi) being chosen to be in gr(H)C
∗
.

Hence, the Lemma follows. �
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Let m+ be the maximal ideal of S(h)W ⊗S(h∗)W consisting of all non-constant
polynomials. The restricted rational Cherednik algebra H is defined to be the
quotient H/m+H. Section 6 of [G2] says that H is of rank |W |3, and the center
of H is Z(H) = Z(H)/m+Z(H). Therefore, Lemma 7.1 says dimZ(H) = |W |.

Following to [G1], a family of H-modules called baby Verma modules is defined
as follows. For each σ ∈ Irr(W ), set

M(σ) := H⊗(S(h)W⊗S(h∗))oC[W ] σ,

where S(h)W ⊗ S(h∗) acts by evaluating at (0, 0). Since m+ annihilates M(σ), so
M(σ) becomes an H-module. By the results in [G1], it has a unique irreducible
head L(σ). Clearly, the dimension of L(σ) is bounded above by the dimension of
M(σ) which is equal to |W | · dimσ. Also, L(σ) ∼= L(λ) if and only if σ ∼= λ, and
{L(σ)|σ ∈ Irr(W )} is a complete set of irreducible H-modules up to equivalence.

The central character of all such L(σ) defines a map

Θ : Irr(W ) → Spec Z(H).

The elements in the pre-image of Θ of an element in Spec Z(H) form a Calegero-
Moser cell. This defines a partition of W . The Calogero–Moser cell carries
information on the smoothness of the variety Xc := Spec Z(H). More precisely, if
Xc is smooth, then all L(σ) has dimension |W | · dimσ, and every Calogero–Moser
cell is a singleton.

By Remark 4.10 of [C], all L(σ) are ΩH-semisimple, and Theorem 4.2 of inclu-
sion of Dirac cohomology into Lie algebra cohomology can be applied to M (regar-
ded as an H-module). We set

B := Z(H)C
∗
⊗ 1 =

( |W |⊕
i=1

⊕
k≥0

(Sk(h)W ⊗ Sk(h∗)W ) · γi
)
⊗ 1.

Then B is in (Z(H)⊗ 1) ∩A, so B ⊂ ker δd ⊂ AW (or B ⊂ ker δ∂ ⊂ AW ) satisfies
the hypothesis of Theorem 3.7. So we can define the homomorphism

ζd : Z(H)C
∗
⊗ 1 → ∆(C[W̃ ]W̃ ).

Proposition 7.2. We have

(m+Z(H))C
∗
⊗ 1 ∈ im δd,

hence ζd descends to the homomorphism:

ζd : Z(H)C
∗
⊗ 1/(m+Z(H))C

∗
⊗ 1 ∼= Z(H) → ∆(C[W̃ ]W̃ ).

Proof. By Lemma 7.1, all elements in (m+Z(H))C
∗
are of the form

∑
i figiγi,

where fi ∈ S(h)W+ , gi ∈ S(h∗)W+ are of the same (positive) degree. We first show
that g ⊗ 1 ∈ im δd for any g ∈ S(h∗)W+ : Consider the map

δd : (S(h∗)⊗∧•h∗)W → (S(h∗)⊗∧•h∗)W
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given by δd(a) = Dxa−ϵ(a)Dx. Since g ∈ Z(H), it is easy to see that g⊗1 ∈ ker δd.
Also, from the proof of Proposition 3.5, we have seen that the map δd is an exact
differential on non-zero degrees. Since g is of positive degree, g⊗1 ∈ ker δd = im δd
as follows.

If gi ⊗ 1 = Dxa− ϵ(a)Dx, then for figiγi ⊗ 1 ∈ (m+Z(H))C
∗
, and

figiγi ⊗ 1 = (fi ⊗ 1)(gi ⊗ 1)(γi ⊗ 1)

= (fi ⊗ 1)(Dxa− ϵ(a)Dx)(γi ⊗ 1)

= Dx(fi ⊗ 1)a(γi ⊗ 1)− ϵ((fi ⊗ 1)a(γi ⊗ 1))Dx,

where the last equality comes from that fact that both fi⊗1, γi⊗1 commute with
Dx. Hence, figiγi ⊗ 1 ∈ im δd as required. �

The morphism ζ∗d : Irr(W̃ ) → SpecZ(H) relates the central characters of an
irreducible H-module and its Lie algebra cohomology.

Theorem 7.3. Let M be an irreducible H-module with central character β ∈
Spec Z(H). Suppose ν is an irreducible W -module appearing in H•(h∗,M). Then
we have

β = ζ∗d (ν ⊗ χ).

Proof. The proof is similar to Theorem 3.7. �
We can now relate the maps Θ and ζ∗d . Combined with Theorem 4.2, part (b)

of the following Corollary gives an alternative proof of Corollary 5.10 of [C].

Corollary 7.4.

(a) For any σ ∈ Irr(W ),
Θ(σ) = ζ∗d (σ ⊗ χ−1).

(b) If H•(h∗, L(σ)) ∼=
⊕

i νi as W -modules with νi ∈ Irr(W ), then all such
νi ⊗ deth∗ ’s belong to the same Calogero–Moser cell.

Proof. (a) We claim that theW -module σ⊗deth ∼= (1⊗σ)⊗∧dim hh in L(σ)⊗∧•h is
in H•(h∗,M). Indeed, since ∧dim hh is in its top degree, Dx((1⊗σ)⊗∧dim hh) = 0.
Also, noting that (1⊗σ) has zero degree on its h and h∗ factor, it cannot be in the
image of imDx. So (1⊗σ)⊗∧dim h must be non-zero in kerDx/imDx = H•(h∗,M).

Taking M = L(σ) and ν = σ ⊗ deth in Theorem 7.3, we have

Θ(σ) = ζ∗d (σ ⊗ deth ⊗ χ) = ζ∗d (σ ⊗ χ−1).

(b) Suppose ν ∈ H•(h∗, L(σ)). By Theorem 7.3,

Θ(σ) = ζ∗d (ν ⊗ χ).

On the other hand, (a) says ζ∗d (ν ⊗ χ) = ζ∗d ((ν ⊗ deth∗) ⊗ χ−1) = Θ(ν ⊗ deth∗).

Hence ν ⊗ deth∗ , σ are in the preimage of the same element in Spec Z(H), i.e.,

they are in the same Calogero–Moser cell. �
Since Theorem 3.7 holds for both Dx and Dy, the above results also hold if we

replace H•(h∗,M) with H•(h,M). We skip the proofs here.
As in the case of t = 1, we make the following conjecture:

Conjecture 7.5. For irreducible H-module L(σ), there are W̃ -module isomor-
phisms

HD(L(σ)) ∼= H•(h∗, L(σ))⊗ χ ∼= H•(h, L(σ))⊗ χ.
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