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Abstract. Let G be a connected complex semisimple Lie group, equipped with a
standard multiplicative Poisson structure πst determined by a pair of opposite Borel
subgroups (B,B−). We prove that for each v in the Weyl group W of G, the double
Bruhat cell Gv,v = BvB ∩ B−vB− in G, together with the Poisson structure πst, is
naturally a Poisson groupoid over the Bruhat cell BvB/B in the flag variety G/B.
Correspondingly, every symplectic leaf of πst in Gv,v is a symplectic groupoid over
BvB/B. For u, v ∈ W , we show that the double Bruhat cell (Gu,v, πst) has a naturally
defined left Poisson action by the Poisson groupoid (Gu,u, πst) and a right Poisson
action by the Poisson groupoid (Gv,v, πst), and the two actions commute. Restricting
to symplectic leaves of πst, one obtains commuting left and right Poisson actions on
symplectic leaves in Gu,v by symplectic leaves in Gu,u and Gv,v as symplectic groupoids.

1. Introduction and statements of results

1. Introduction

Let G be a connected complex semisimple Lie group, and let (B,B−) be a pair
of opposite Borel subgroups of G. It is well-known [CP], [ES], [HL], [HKKR],
[KZ] that the choice of (B,B−), together with that of a symmetric non-degenerate
invariant bilinear form on the Lie algebra of G, determine a standard multiplicative
Poisson structure πst on G (see §1 for details), and that the complex Poisson Lie
group (G, πst) is the semi-classical limit of the quantized function algebra Cq[G]
of G. The Poisson structure πst is invariant under left and right translation by
elements of the maximal torus T = B∩B− of G, and it is well-known [HL], [HKKR]
that the double Bruhat cells

Gu,v = BuB ∩B−vB−, u, v ∈W,

where W is the Weyl group of (G,T ), are precisely all the T -leaves of (G, πst),
i.e., submanifolds of G of the form

⋃
t∈T Σt, where Σ is a symplectic leaf of πst in

G (see [LM2, §2] on some basic facts of T-leaves, where T is any torus). Double
Bruhat cells have been studied extensively and have served as motivating examples
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of the theories of total positivity and cluster algebras (see [BFZ], [FZ], [GY2] and
references therein). When G is simply connected, symplectic leaves of πst in each
double Bruhat cell Gu,v are explicitly described in [KZ].

The Poisson structure πst on G projects to a well-defined Poisson structure π1

on the flag variety G/B, and each Bruhat cell BvB/B ⊂ G/B, where v ∈ W , is
a Poisson subvariety of (G/B, π1). In this paper, we show that for every v ∈ W
and any representative v̄ of v in the normalizer subgroup NG(T ) of T in G, the
Poisson variety (Gv,v, πst) has a naturally defined groupoid structure over BvB/B,
giving rise to a Poisson groupoid (Gv̄,v̄, πst) over the Poisson variety (BvB/B, π1).
The symplectic leaf Σv̄ of πst through v̄ is then shown to be a Lie sub-groupoid
of Gv̄,v̄, becoming thus a symplectic groupoid over (BvB/B, π1). The groupoid
structure on Gv,v depends on the choice of v̄ ∈ NG(T ) (thus the notation Gv̄,v̄), but
different choices give isomorphic Poisson groupoids. For u, v ∈ W and respective
representatives ū, v̄ ∈ NG(T ), we show that the Bruhat cell (Gu,v, πst) has a left
Poisson action by the Poisson groupoid (Gū,ū, πst) and a right Poisson action by the
Poisson groupoid (Gv̄,v̄, πst), and the two actions commute. The two actions are
then shown to restrict to commuting Poisson actions of the symplectic groupoids
(Σū, πst) and (Σv̄, πst) on every symplectic leaf in Gu,v.

2. Statements of main results

Let v ∈ W , and let v̄ be any representative of v in NG(T ). Let Cv̄ = Nv̄ ∩ v̄N−,
where N and N− are respectively the uniradicals of B and B−. One then has the
unique decompositions BvB = Cv̄B and B−vB− = B−Cv̄ and the isomorphism

Cv̄
∼−→ BvB/B, c 7→ c·B, c ∈ Cv̄.

Writing an element g ∈ Gv,v uniquely as g = cb = b−c
′, where b ∈ B, b− ∈ B−,

and c, c′ ∈ Cv̄, the groupoid structure on Gv,v over BvB/B is defined as follows:

source map : θv̄(g) = g.B = c.B,

target map : τv̄(g) = c′.B,

inverse map : ιv̄(g) = c′b−1 = b−1
− c,

identity bisection : εv̄(c·B) = c ∈ Cv̄ ⊂ Gv,v,
multiplication : µv̄(g, h) = cbb′ = b−b

′
−c
′′, if h = c′b′ = b′−c

′′,

where b′ ∈ B, b′− ∈ B−, c′′ ∈ Cv̄.

We will denote by Gv̄,v̄ ⇒ BvB/B, or simply Gv̄,v̄, the double Bruhat cell
Gv,v with the groupoid structure thus defined. For another u ∈ W and any
representative ū ∈ NG(T ) of u, define

$ : Guv → BuB/B, $(cb) = c·B, b ∈ B, c ∈ Cū,
$′ : Gu,v → BvB/B, $′(b−c

′) = c′·B, b− ∈ B−, c′ ∈ Cv̄.

The main results of the paper, Theorem 13, Theorem 15, and Theorem 24, can
now be summarized as follows: let u, v ∈W and let ū and v̄ be any representatives
of u and v in NG(T ), respectively.
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Main Theorems. (1) The pair (Gv̄,v̄, πst) is a Poisson groupoid over the Poisson
manifold (BvB/B, π1), which, by restriction, also makes the symplectic leaf Σv̄ of
πst through v̄ into a symplectic groupoid over (BvB/B, π1).

(2)There is a natural left Poisson action of the Poisson groupoid (Gū,ū, πst) on
(Gu,v, πst) with moment map $ and a natural right Poisson action of the Poisson
groupoid (Gv̄,v̄, πst) on (Gu,v, πst) with moment map $′. The two actions com-
mute, and they restrict to Poisson actions of the symplectic groupoids (Σū, πst)
and (Σv̄, πst) on every symplectic leaf Σu,v of πst in Gu,v.

We remark that for any symplectic leaf Σu,v in Gu,v, the moment maps

$|Σu,v : (Σu,v, πst)→ (BuB/B, π1) and $′|Σu,v : (Σu,v, πst)→ (BvB/B,−π1)

for the Poisson actions of the symplectic groupoids (Σū, πst) and (Σv̄, πst) on
(Σu,v, πst) are symplectic realizations [W4], [X1] only in the sense that they are
Poisson submersions, but in general are not surjective (see Lemma 7, Lemma 8,
and Remark 14). More precisely, $(Σu,v) = BuB/B if and only if u ≤ v in the
Bruhat order, and $′(Σu,v) = BvB/B if and only if v ≤ u.

We in fact construct a Poisson groupoid ((G/B)×B−, π) over (G/B, π1), where
the groupoid structure is that of the action groupoid defined by the right action
of B− on G/B given by

(g·B) · b− = (b−1
− g)·B, g ∈ G, b− ∈ B−,

and the Poisson structure π is a mixed product Poisson structure in the sense of
[LM1], or, more precisely, π is the sum of the product Poisson structure π1 ×
(πst|B−) on (G/B)×B− and a certain mixed term determined by the action of B
on G/B by left translation and by the action of B− on itself by left translation. For
each v ∈W and a representative v̄ of v in NG(T ), the Poisson groupoid (Gv̄,v̄, πst)
is then realized as a Poisson subgroupoid of the Poisson groupoid ((G/B)×B−, π)
over (G/B, π1) via a Poisson embedding Iv̄ : (B−vB−, πst) → ((G/B) × B−, π)
(see §2 and §4 for detail). Using the embeddings Iv̄, we also interpret the Fomin–
Zelevinsky twist map on double Bruhat cells [FZ], [KZ] in terms of the inverse
map of the groupoid (G/B)×B− over G/B. See Remark 11.

The Poisson groupoid ((G/B) × B−, π) over (G/B, π1) is a special case of a
general construction of action Poisson groupoids associated to quasitriangular r-
matrices (see §2). More precisely, given a Lie algebra g, a quasitriangular r-matrix
r on g, and a Lie algebra action of g on a manifold Y such that the stabilizer
subalgebra of g at each point of Y is coisotropic with respect to the symmetric
part of r, Li-Bland and Meinrenken defined in [L-BM] an action Courant algebroid
over Y with two transversal Dirac structures. In §2, we construct a pair of dual
Poisson groupoids which integrate the two transversal Dirac structures in the sense
that they have the two Dirac structures as their Lie bialgebroids (see Corollary 5
and Remark 5 for detail). Applying the general construction to the semi-simple
Lie algebra g and the standard quasitriangular r-matrix rst on g (see §1), we obtain
the action Poisson groupoid ((G/B)×B−, π) over (G/B, π1).

Symplectic groupoids were introduced by Karasev [K] and Weinstein [W3] to
study singular foliations in Poisson geometry, and are expected to play a key role in
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the problem of quantization of Poisson manifolds. While symplectic groupoids have
been studied for almost three decades, not many explicit examples are known. This
paper thus fills a gap in the literature by providing a large class of naturally defined
algebraic symplectic groupoids. Relations between the symplectic groupoids of
Bruhat cells described in this paper and quantum Bruhat cells [DeCKP], [LY],
[Lus], [Y] will be investigated in the future.

The paper is organized as follows. Some basic facts on Poisson Lie groups
and Lie bialgebras are recalled in §2. In §3 we construct a pair of dual action
Poisson groupoids associated to quasitriangular r-matrices. Some properties of the
standard complex semisimple Poisson Lie groups are reviewed and proved in §4.
The main theorems of the paper are proved in §5 and §6, where we also generalize
some results of [KZ] on the symplectic leaves of πst in the double Bruhat cells to
the case when G is not necessarily simply connected.

Acknowledgements. This work was partially supported by the Research Grants
Council of the Hong Kong SAR, China (GRF HKU 703712 and 17304415).

3. Notation

Throughout this paper, vector spaces are understood to be real or complex. For
a finite-dimensional vector space V , denote by 〈 , 〉 the canonical pairing between
V and its dual space V ∗. If r =

∑
i xi ⊗ yi ∈ V ⊗ V , let r21 =

∑
i yi ⊗ xi ∈ V ⊗ V

and let r] : V ∗ → V be the linear map defined by

r](ξ) =
∑
i

〈ξ, xi〉yi, ξ ∈ V ∗.

For a smooth (resp. complex) manifold X, denote by TX its smooth (resp. holo-
morphic) tangent bundle. If k ≥ 1 is an integer and Φ : X → Y a smooth
(resp. holomorphic) map between smooth (resp. complex) manifolds X and Y ,
denote by the same symbol Φ : ∧kTX → ∧kTY the differential of Φ. The space
of smooth (resp. holomorphic) k-vector fields on X will be denoted by Vk(X), and
if VX ∈ Vk(X) and VY ∈ Vk(Y ), denote by (VX , 0) and (0, VY ) the k-vector fields
on X × Y whose values at (x, y) ∈ X × Y are respectively given by

(VX , 0)(x, y) = iyVX(x) and (0, VY )(x, y) = ixVY (y),

where iy : X → X × Y, x′ 7→ (x′, y) for x′ ∈ X, and ix : Y → X × Y, y′ 7→ (x, y′)
for y′ ∈ Y . We also denote (VX , 0) + (0, VY ) by VX × VY .

Let G be a Lie group with Lie algebra g. A left action of g on a manifold Y is
a Lie algebra anti-homomorphism λ : g → V1(Y ), while a right action of g on Y
is a Lie algebra homomorphism ρ : g→ V1(Y ). If λ : G× Y → Y, (g, y) 7→ gy is a
left action of G on Y , one has the induced left action of g on Y , also denoted by
λ, given by

λ : g→ V1(Y ), λ(x)y =
d

dt

∣∣∣
t=0

exp(tx)y, x ∈ g, y ∈ Y.

Similarly, a right Lie group action ρ : Y ×G→ Y, (y, g)→ yg induces a right Lie
algebra action

ρ : g→ V1(Y ), ρ(x)y =
d

dt

∣∣∣
t=0

y exp(tx), x ∈ g, y ∈ Y.
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For g ∈ G, the left and right translation on G by g, as well as their differentials, are
respectively denoted by lg and rg. If k ≥ 0 is an integer and x ∈ g⊗k, we denote
by xL and xR the respective left- and right-invariant k-tensor fields on G whose
value at the identity element e of G is x. If ξ ∈ ∧kg∗, we use similar notation for
the left and right invariant k-forms with value ξ at e.

Throughout the paper, if (X,π) is a Poisson manifold and X1 ⊂ X a Poisson
submanifold with respect to π, the restriction of π to X1 will also be denoted by
π unless otherwise specified.

2. Poisson Lie groups, r-matrices, and
mixed product Poisson structures

We recall from [CP], [ES], [LM1] some basic facts on Poisson Lie groups and
Lie bialgebras, and we refer to [LM1, §2] in particular on certain conventions on
constants and signs.

1. Poisson Lie groups and Lie bialgebras

A Lie bialgebra is a pair (g, δg), where g is a (real or complex) finite-dimensional
Lie algebra, and δg : g→ ∧2g a linear map satisfying

δg[x, y] = [x, δg(y)] + [δg(x), y], x, y ∈ g,

and such that the dual map δ∗g : ∧2g∗ → g∗ defines a Lie bracket on g∗. Given a
Lie bialgebra (g, δg), the pair (g∗, δg∗) is also a Lie bialgebra, where g∗ is equipped
with the Lie bracket dual to δg, and δg∗ : g∗ → ∧2g∗ is the dual map of the Lie
bracket on g. One calls (g∗, δg∗) the dual Lie bialgebra of (g, δg). If (g′, δg′) is any
Lie bialgebra isomorphic to (g∗, δg∗), we will call ((g, δg), (g′, δg′)) a pair of dual
Lie bialgebras.

Given a Lie bialgebra (g, δg), the vector space d = g ⊕ g∗ has a natural non-
degenerate symmetric bilinear form 〈 , 〉d defined by

〈x+ ξ, y + η〉d = 〈x, η〉+ 〈y, ξ〉, x, y ∈ g, ξ, η ∈ g∗, (1)

and it is well-known that d has a unique Lie bracket [ , ] such that both g and
g∗ are Lie sub-algebras of d and such that 〈 , 〉d is ad-invariant. One calls d or
(d, 〈 , 〉d) the double Lie algebra of (g, δg). Moreover, with δd : d→ ∧2d defined by

δd(x+ ξ) = δg(x)− δg∗(ξ), x ∈ g, ξ ∈ g∗,

the pair (d, δd) is a Lie bialgebra, called the double Lie bialgebra of (g, δg).
A Poisson Lie group is a pair (G, πG), where G is a Lie group and πG a Poisson

bivector field on G that is multiplicative in the sense that the group multiplication
G×G→ G is a Poisson map for the direct Poisson structure πG×πG on G×G and
πG on G. Given a Poisson Lie group (G, πG), the bivector field πG vanishes at the
identity element e of G, and the linearization deπG : g→ ∧2g of πG at e, defined by
deπG(x) = [x̃, πG](e), where x̃ is any local vector field such that x̃(e) = x, is a Lie
bialgebra structure on g, and one calls (g, deπG) the Lie bialgebra of the Poisson
Lie group (G, πG). If (G∗, πG∗) is any Poisson Lie group whose Lie bialgebra
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is isomorphic to the dual Lie bialgebra of (g, deπG), one says that (G, πG) and
(G∗, πG∗) form a pair of dual Poisson Lie groups.

Let (G, πG) be a Poisson Lie group with Lie bialgebra (g, δg), and let d be the
double Lie algebra of (g, δg). Then (G, d) is a Harish-Chandra pair in the sense
that the Lie algebra g of G is a Lie subalgebra of d, and the Adjoint action Ad
of G on g extends to an action, still denoted by Ad, of G on d by Lie algebra
automorphisms. Indeed, one has [Dr]

Adgξ = rg−1

(
π#
G (g)(l∗g−1ξ)

)
+ Ad∗g−1ξ, ξ ∈ g∗, (2)

where Ad∗g−1 : g∗ → g∗ is the dual map of Adg−1 : g→ g for g ∈ G.

For ξ ∈ g∗, the vector field d(ξ) = π#
G (ξR) on G is called the dressing vector

field defined by ξ, where ξR is the right invariant 1-form on G with value ξ at e.
By (2), one has

d(ξ)(g) = −lgpg(Adg−1ξ), ξ ∈ g∗, g ∈ G, (3)

where pg : d→ g is the projection with respect to the decomposition d = g + g∗.
A left Poisson action of a Poisson Lie group (G, πG) on a Poisson manifold

(Y, πY ) is, by definition, a left Lie group action λ : G × Y → Y which is also a
Poisson map with respect to the product Poisson structure πG × πY on G × Y
and the Poisson structure πY on Y . Right Poisson actions of (G, πG) are similarly
defined. A left Poisson action of a Lie bialgebra (g, δg) on a Poisson manifold
(Y, πY ) is a Lie algebra anti-homomorphism λ : g→ V1(Y ) such that

[λ(x), πY ] = λ(δg(x)), x ∈ g,

where λ also denotes the linear map ∧2g → V2(Y ) by λ(x ∧ y) = λ(x) ∧ λ(y) for
x, y ∈ g. It is shown in [W2] that when a Poisson Lie group (G, πG) is connected,
a Lie group action λ : G× Y → Y of G on a Poisson manifold (Y, πY ) is a Poisson
action of (G, πG) on (Y, πY ) if and only if the induced left Lie algebra action
λ : g→ V1(Y ) is a Poisson action of the Lie bialgebra (g, δg) of (G, πG) on (Y, πY ).
A similar statement holds for right Poisson Lie group actions.

2. Poisson structures defined by quasitriangular r-matrices

Recall that a quasitriangular r-matrix on a Lie algebra g is an element r ∈ g ⊗ g
such that its symmetric part 1

2 (r + r21) is invariant under the adjoint action of
g on g ⊗ g and that r satisfies the Classical Yang–Baxter Equation CYB(r) = 0.
Given a quasitriangular r-matrix r ∈ g⊗g, one has the Lie bialgebra (g, δg), where
δg : g→ ∧2g is defined by

δg(x) = adxr, x ∈ g. (4)

A Lie bialgebra (g, δg) for which (4) holds for some quasitriangular r-matrix r ∈
g⊗ g is said to be quasitriangular, and in such a case r is called a quasitriangular
structure of (g, δg).

Let r ∈ g⊗ g be a quasitriangular r-matrix on a Lie algebra g, and let σ : g→
V1(Y ) be a right Lie algebra action of g on a manifold Y . If r =

∑
i xi⊗x′i ∈ g⊗g,

define
σ(r) =

∑
i

σ(xi)⊗ σ(x′i),

which is a 2-tensor field on Y . The following observation was made in [LM1].
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Lemma 1. If the 2-tensor field σ(r) ∈ Γ(TY ⊗TY ) on Y is skew-symmetric, then
it is Poisson, and σ is a (right ) Poisson action of the Lie bialgebra (g, δg) on the
Poisson manifold (Y, σ(r)), where δg is defined in (4).

In the context of Lemma 1, when σ(r) is skew-symmetric, the Poisson structure
σ(r) on Y is said to be defined by the Lie algebra action σ and the r-matrix
r ∈ g⊗ g.

Remark 1. Let s = 1
2 (r + r21) be the symmetric part of r. It is not hard to

show ([LM1, §2.6]) that σ(r) is skew-symmetric, i.e., σ(s) = 0, if and only if the
stabilizer subalgebra of g at every y ∈ Y is coisotropic with respect to s. Here
a subspace c of g is said to be coisotropic with respect to s if s#(c0) ⊂ c, where
c0 = {ξ ∈ g∗ : 〈ξ, c〉 = 0} ⊂ g∗. �

Let (g, δg) be a quasitriangular Lie bialgebra with quasitriangular r-matrix r ∈
g⊗ g. Associated to r, one then [LM1, §2.3] has the Lie subalgebras

f+ = Im(r]) and f− = Im((r21)]) (5)

of g and the Lie bialgebras (f−, δg|f−) and (f+,−δg|f+), which are dual to each
other under the pairing 〈 , 〉(f−,f+) between f− and f+ defined by

〈(r21)](ξ), r](η)〉(f−,f+) = 〈ξ, r](η)〉 = 〈(r21)](ξ), η〉, ξ, η ∈ g∗. (6)

If (G, πG) is a connected Poisson Lie group with Lie bialgebra (g, δg), and if F+

and F− are the connected Lie subgroups of G with respective Lie algebras f+, f−,
then F+ and F− are Poisson Lie subgroups of (G, πG). Moreover, denoting by the
same symbol the restrictions of πG to both F− and F+, ((F−, πG), (F+,−πG)) is a
pair of dual Poisson Lie groups, with ((f−, δg|f−), (f+,−δg|f+)) as the corresponding
pair of dual Lie bialgebras.

Example 1. The double Lie bialgebra (d, δd) of any Lie bialgebra (g, δg) is quasi-
triangular, with a quasitriangular structure defined by the quasitriangular r-matrix

rd =
n∑
i=1

xi ⊗ ξi ∈ d⊗ d, (7)

where (xi)
n
i=1 is any basis of g and (ξ)ni=1 the dual basis of g∗. In this example,

the subalgebras f+ and f− in (5) are respectively g∗ and g. �

Remark 2. Let (g, δg) be a Lie bialgebra with a quasitriangular structure r ∈ g⊗g.
Let df− be the double Lie algebra of (f−, δg|f−), and let rdf−

∈ df−⊗df− be defined

as in (7). Identifying f∗−
∼= f+ via (6), the underlying vector space of df− is then

f− ⊕ f+, and the map

q : df− → g, q(x−, x+) = x− + x+, x− ∈ f−, x+ ∈ f+, (8)

is a Lie algebra homomorphism. Moreover (see [ES, Lecture 4] and [LM1, §2.3]),
q(rdf−

) = r. Thus if (Y, πY ) is a Poisson manifold with a right Lie algebra action

σ : g→ V1(Y ) such that πY is defined by σ and r, i.e., πY = σ(r), then πY is also
defined by the Lie algebra df− -action σ ◦ q : df− → V1(Y ) and the r-matrix rdf−
on df− . �
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3. Mixed product Poisson structures

If ((g, δg), (g∗, δg∗)) is a pair of dual Lie bialgebras and if (X,πX) and (Y, πY ) are
Poisson manifolds with respective right and left Poisson actions

ρ : g∗ → V1(X) and λ : g→ V1(Y )

by Lie bialgebras, the bivector field πX ×(ρ,λ) πY on the product manifold X × Y
given by

πX ×(ρ,λ) πY = (πX , 0) + (0, πY )−
n∑
i=1

(ρ(ξi), 0) ∧ (0, λ(xi)), (9)

is a Poisson structure on X ×Y , called the mixed product of πX and πY associated
to (ρ, λ), where (xi)

n
i=1 is any basis for g and (ξi)

n
i=1 the dual basis for g∗. We also

refer to

−
n∑
i=1

(ρ(ξi), 0) ∧ (0, λ(xi)) ∈ V2(X × Y )

as the mixed term of πX ×(ρ,λ) πY . Mixed product Poisson structures of the form
in (9) are studied in [LM1].

3. Action Poisson groupoids associated to quasitriangular r-matrices

1. Poisson groupoids

We recall from [MX], [W1], [X2] some basic facts on Poisson groupoids.
Let G ⇒ Y be a Lie groupoid, with θ, τ : G → Y its source and target maps,

ι : G → G the groupoid inverse map, and ε : Y → G the identity bisection. Let

G2 = {(a, b) ∈ G × G : τ(a) = θ(b)}

be the submanifold of G × G of composable elements. A Poisson bivector field π
on G is said to be multiplicative if the graph of the groupoid multiplication

{(a, b, ab) : (a, b) ∈ G2} ⊂ G × G × G

is a coisotropic submanifold of G × G × G, where G × G × G is equipped with the
Poisson structure π × π × (−π). A Poisson groupoid is a pair (G ⇒ Y, π), where
G ⇒ Y is a Lie groupoid and π is a multiplicative Poisson structure on G. In
such a case, ι(π) = −π, and πY = θ(π) = −τ(π) is a Poisson structure on Y , and
one also says that (G ⇒ Y, π) is a Poisson groupoid over (Y, πY ). If in addition π
is non-degenerate and dimG = 2 dimY , one says that (G ⇒ Y, π) is a symplectic
groupoid over (Y, πY ).

Given a Lie groupoid G ⇒ Y , the left translation by a ∈ G is a smooth map

la : θ−1(τ(a))→ θ−1(θ(a)).

Let ker θ → G be the vector sub-bundle of the tangent bundle of G whose fiber
over a ∈ G is the kernel of the differential of θ : G → Y . A vector field V on G is
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said to be left invariant if it is everywhere tangent to ker θ and is invariant under
the left translation by every element in G. The Lie algebroid of G ⇒ Y is then the
vector bundle A = ε∗ ker θ over Y with τ : A → TY as the anchor map and with
the Lie bracket on the space Γ(A) of its sections defined by

−−−−−−−→
[s1, s2]= [

→
s1,
→
s2],

where for s ∈ Γ(A),
→
s is the unique left invariant vector field on G which coincides

with s on ε(Y ) ∼= Y . As Tε(y)G = (ker θ)|ε(y) + Tε(y)ε(Y ) is a direct sum for every
y ∈ Y , A can be identified with the normal bundle of ε(Y ) in G.

If (G ⇒ Y, π) is a Poisson groupoid, then the identity section ε(Y ) is a coisotropic
submanifold with respect to the Poisson structure π, and the dual vector bundle
A∗ of A, identified with the co-normal bundle N∗ε(Y )Y of ε(Y ) in G, is then a Lie

sub-algebroid over Y ∼= ε(Y ) ↪→ G of the cotangent bundle Lie algebroid T ∗πG
over G defined by the Poisson structure π. The pair of Lie algebroids (A,A∗) is
then a Lie bialgebroid [MX] called the Lie bialgebroid of the Poisson groupoid
(G ⇒ Y, π). If (G′ ⇒ Y, π′) is Poisson groupoid with Lie bialgebroid (A∗, A), one
says that ((G ⇒ Y, π), (G′ ⇒ Y, π′)) is a pair of dual Poisson groupoids.

Recall also that if G is a Lie group and τ : Y × G → Y, (y, g) → yg, is a right
Lie group action of G on a manifold Y , the product manifold Y ×G then has the
structure of an action groupoid, with τ : Y ×G→ Y as the target map, with

θ(y, g) = y, y ∈ Y, g ∈ G,

as the source map, and with the groupoid multiplication, inverse map ι, and the
identity bisection ε respectively given by

(y1, g1)(y2, g2) = (y1, g1g2), if y1g1 = y2, (y1, g1), (y2, g2) ∈ Y ×G,
ι(y, g) = (yg, g−1), ε(y) = (y, e), y ∈ Y, g ∈ G.

Let g be the Lie algebra of G. Identifying ε∗ ker θ with the trivial vector bundle
A = Y × g over Y , the Lie algebroid of the action groupoid Y × G ⇒ Y is then
the action Lie algebroid Y × g with anchor map, also denoted by τ , given by

τ : Y × g→ TY, τ(y, x) =
d

dt

∣∣∣
t=0

y exp(tx), y ∈ Y, x ∈ g,

and the Lie bracket on its sections being the unique extending of the Lie bracket
on g, identified with the space of constant sections. For ϕ ∈ C∞(Y, g) ∼= Γ(Y × g),

the left-invariant vector field
→
ϕ on the action groupoid Y ×G ⇒ Y is then given

by
→
ϕ (y, g) = (0, lgϕ(yg)), y ∈ Y, g ∈ G. (10)

By an action Poisson groupoid we mean a Poisson groupoid whose underlying
groupoid structure is that of an action groupoid.
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2. Action Poisson groupoids associated to quasitriangular r-matrices

Let (G, πG) be a connected Poisson Lie group with Lie bialgebra (g, δg), and let
(g∗, δg∗) be the dual Lie bialgebra of (g, δg). Let (Y, πY ) be a Poisson manifold,
and assume that ρ : g∗ → V1(Y ) is a right Poisson action of the Lie bialgebra
(g∗, δg∗) on (Y, πY ). One then has the mixed product Poisson structure π on the
product manifold Y ×G given by

π = πY ×(ρ,λG) πG, (11)

where λG is the left Lie algebra action of g on G generated by the left action of G
on itself by left multiplication, i.e.,

λG(x) = xR, x ∈ g,

where recall that for x ∈ g, xR is the right invariant vector field on G with value
x at the identity element e. Assume that G also acts on the right of Y by

τ : Y ×G→ Y, (y, g) 7→ yg, y ∈ Y, g ∈ G.

Then Y × G has the corresponding structure of an action groupoid over Y . We
review in this section a necessary and sufficient condition for the pair (Y × G ⇒
Y, π) to be a Poisson groupoid.

Let (d, δd) be the double Lie bialgebra of (g, δg), where recall that d = g⊕ g∗ as
a vector space, and recall the quasitriangular r-matrix rd on d given in (7). Let

σ : d→ V1(Y ), σ(x+ ξ) = τ(x) + ρ(ξ), x ∈ g, ξ ∈ g∗, (12)

where τ also denotes the Lie algebra homomorphism g → V1(Y ) induced by the
group action τ : Y × G → Y (see notation in §3). The following Theorem 2 was
proved in [L].

Theorem 2 ([L, Thm. 3.32]). The pair (Y × G ⇒ Y, π) is a Poisson groupoid if
and only if σ : d → V1(Y ) defined in (12) is a right Lie algebra action of d on Y
and πY = −σ(rd).

As [L] is not published, for the convenience of the reader, we give an outline of
the proof of Theorem 2 given in [L]. We first prove a lemma which explains the
main part of Theorem 2.

For α ∈ Ω1(Y ), let Xα = π#(τ∗α) ∈ V1(Y ×G). By [X2, Prop. 2.7], if (Y ×G⇒
Y, π) is a Poisson groupoid, Xα is necessarily a left invariant vector field on Y ×G
for every α ∈ Ω1(Y ), i.e., θ(Xα) = 0 and Xα(ab) = laXα(b) for any composable
pair (a, b) in Y ×G.

Lemma 3. 1)One has θ(Xα) = 0 for all α ∈ Ω1(Y ) if and only if πY = −σ(rd).
2)Assume that πY = −σ(rd). Then Xα is left invariant for all α ∈ Ω1(Y ) if and

only if σ : d→ V1(Y ) is a right Lie algebra action. In such a case, for α ∈ Ω1(Y ),
one has

Xα =
→
φα,

where φα ∈ C∞(Y, g) is given by φα(y) = −ρ∗y(α(y)), with ρy : g∗ → TyY given by
ρy(ξ) = ρ(ξ)(y) for y ∈ Y and ξ ∈ g∗.
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Proof. For g ∈ G and y ∈ Y , let

τg : Y → Y, y′ 7→ y′g, y′ ∈ Y, and τy : G→ Y, g′ 7→ yg′, g′ ∈ G.

Let p1 : Y × G → Y and p2 : Y × G → G be respectively the projections to the
first and the second factors. Let α ∈ Ω1(Y ) and let y ∈ Y and g ∈ G. Then

(τ∗α)(y, g) = p∗1τ
∗
g (α(yg)) + p∗2l

∗
g−1τ∗yg(α(yg)) ∈ T ∗(y,g)(Y ×G).

Using the definition of π, one has

Xα(y, g) =
(
π#
Y (y)(τ∗g (α(yg))) + ρy(τ∗y τ

∗
g (α(yg))),

π#
G (g)(l∗g−1τ∗yg(α(yg)))− rgρ∗yτ∗g (α(yg))

)
.

(13)

1) Let {xi}ni=1 be any basis of g and {ξi}ni=1 the dual basis of g∗, so that rd =∑n
i=1 xi ⊗ ξi ∈ d⊗ d. Then πY = −σ(rd) if and only if πY = −

∑n
i=1 τ(xi)⊗ ρ(ξi),

which is equivalent to

π#
Y (y)(αy) = −ρy(τ∗y (αy)), y ∈ Y, αy ∈ T ∗y Y.

It is now clear from (13) that 1) holds.
2) Assume now that πY = −σ(rd). By (13), Xα is left invariant if and only if

−lgρ∗yg(α(yg)) = π#
G (g)(l∗g−1τ∗yg(α(yg)))− rgρ∗yτ∗g (α(yg)), (y, g) ∈ Y ×G. (14)

Pairing both sides of (14) with l∗g−1ξ ∈ T ∗gG, where ξ ∈ g∗, and using (2), one can

rewrite (14) as

0 = 〈α(yg), ρyg(ξ)− τgτy(pg(Adgξ))− τgρy(pg∗(Adgξ))〉, y ∈ Y, g ∈ G,

where recall that pg : d → g and pg∗ : d → g∗ are the projections with respect to
the decomposition d = g + g∗. Therefore Xα is left-invariant for all α ∈ Ω1(Y ) if
and only if

τg−1(ρ(ξ)) = σ(Adgξ) ∈ V1(Y ), g ∈ G, ξ ∈ g∗. (15)

Assuming (15) and differentiating g ∈ G in the direction of x ∈ g gives

[τ(x), ρ(ξ)] = σ([x, ξ]), x ∈ g, ξ ∈ g∗, (16)

so σ : d → V1(Y ) is a Lie algebra homomorphism. Conversely, assume that σ is
a Lie algebra homomorphism. The infinitesimal g-invariance of σ in (16) and the
connectedness of G imply the G-equivariance of the σ, namely (15). It is also clear

from (13) that in such a case, Xα =
→
ϕα with ϕα as described. �

Proof of Theorem 2. Assuming that σ : d→ V1(Y ) is a Lie algebra homomorphism
and that πY = −σ(rd), we now show that (Y ×G ⇒ Y, π) is a Poisson groupoid,
the other direction of Theorem 2 having been proved in Lemma 3.
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Note first that πY = −σ(rd) implies that σ is a right Poisson action of the
double Lie bialgebra (d,−δd) on (Y, πY ), so τ is a right Poisson action of the
Poisson Lie group (G,−πG) on (Y, πY ). It follows by an easy calculation that the
target map τ : (G, π) → (Y, πY ) is anti-Poisson, where G = Y ×G. As the source
map θ : (G, π)→ (Y, πY ) is Poisson, the submanifold

G2 = {(a, b) ∈ G × G : τ(a) = θ(a)} ⊂ G × G

of composable pairs is coisotropic with respect to the product Poisson structure
π × π on G × G. Note that the graph {(a, b, ab) : (a, b) ∈ G2} ⊂ G × G × G of the
groupoid multiplication is the graph of the map µ|G2

: G2 → G, where

µ : G × G → G : (y1, g1, y2, g2) 7→ (y1, g1g2), yi ∈ Y, gi ∈ G.

Note also that the map µ is Poisson with respect to the product Poisson structures
π × π on G × G and π on G. Indeed, µ = ν ◦ (IdG × p), where the projection
p : (Y ×G, π)→ (G, πG) to the second factor is Poisson, and the map

ν : (Y ×G, π)× (G, πG)→ (Y ×G, π), (y, g, g1) 7→ (y, gg1), y ∈ Y, g, g1 ∈ G

is Poisson. It is a general fact, the proof of which is straightforward (see [L, Lem.
3.33]), that for a Poisson map Φ : (P, πP )→ (Q, πQ) and a coisotropic submanifold
P1 ⊂ (P, πP ), the graph {(p, Φ(p)) : p ∈ P1} of Φ|P1

: P1 → Q is coisotropic in
(P ×Q, πP × (−πQ)) if and only if

π#
P (N∗P1

P ) ⊂ ker Φ,

where N∗P1
P ⊂ T ∗P |P1 is the co-normal space of P1 in P , and the sub-bundle

π#
P (N∗P1

P ) of TP1 is called the characteristic distribution of the coisotropic subma-
nifold P1 in P . Using Lemma 3, a direct calculation shows that the characteristic
distribution of G2 in G × G at the point (y1, g1, y2, g2) ∈ G2 is given by

{(0,−lg1
x,−τy2

x, rg2
x) : x ∈ ρ∗y2

T ∗y2
Y ⊂ g},

which is easily seen to be contained in the kernel of the differential of µ at
(y1, g1, y2, g2) ∈ G2. Thus the graph {(a, b, ab) : (a, b) ∈ G2} is a coisotropic
submanifold of G ×G ×G with respect to the Poisson structure π× π× (−π), and
hence (G ⇒ Y, π) is a Poisson groupoid. This finishes the proof of Theorem 2. �

Remark 3. In the context of Theorem 2, it is easy to see that the Lie algebroid
structure induced by π on the co-normal bundle of ε(Y ) in Y ×G, identified with
the trivial vector bundle Y × g∗ over Y , is that of the action Lie algebroid defined
by the right action ρ of g∗ on Y . Thus the Lie bialgebroid of the Poisson groupoid
(Y ×G⇒ Y, π) is the pair

(A = Y × g, A∗ = Y × g∗)

of action Lie algebroids. Their double, as a Courant Lie bialgebroid [LWX1], is
the action Courant algebroid Y × d over Y defined by σ that has been studied in
[L-BM]. �
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Let ((G, πG), (G∗, πG∗)) be a pair of dual Poisson Lie groups, with the corres-
ponding pair of dual Lie bialgebras ((g, δg), (g∗, δg∗)), and let (d, 〈 , 〉d) be their
double Lie algebra. Let again rd =

∑n
i=1 xi ⊗ ξi be the quasitriangular r-matrix

on d, where {xi}ni=1 is any basis of g and {ξi}ni=1 the dual basis of g∗. Assume that
σ : d → V1(Y ) is a right Lie algebra action of d on a manifold Y such that the
stabilizer subalgebra dy of d at every y ∈ Y is coisotropic with respect to 〈 , 〉d,
which, by Remark 1, is equivalent to σ(rd) being a Poisson structure on Y .

Corollary 4. 1) Assume that σ|g : g → V1(Y ) integrates to a Lie group action
Y ×G→ Y . Then one has the action Poisson groupoid (Y ×G ⇒ Y, πY×G) over
(Y,−σ(rd)), where Y ×G⇒ Y is the action groupoid over Y defined by the group
action of G on Y , and πY×G is the mixed product Poisson structure on Y × G
given by

πY×G = (−σ(rd), 0) + (0, πG)−
n∑
i=1

σ(ξi), 0) ∧ (0, xRi ).

2) Assume that σ|g∗ : g∗ → V1(Y ) integrates to a Lie group action Y ×G∗ → Y .
Then one has the action Poisson groupoid (Y × G∗ ⇒ Y, πY×G∗) over (Y, σ(rd)),
where Y × G∗ ⇒ Y is the action groupoid over Y defined by the group action of
G∗ on Y , and πY×G∗ is the mixed product Poisson structure on Y ×G given by

πY×G∗ = (σ(rd), 0) + (0, πG∗)−
n∑
i=1

σ(xi), 0) ∧ (0, ξRi ).

3) When the assumptions in both 1) and 2) hold, the two action Poisson grou-
poids in 1) and 2) form a pair of dual Poisson groupoids.

Proof. By Lemma 1, σ is a right Poisson action of the Lie bialgebra (d, δd) on
(Y, σ(rd)), where recall that δd(v) = advrd for v ∈ d. As δg = δd|g and δg∗ =
−δd|g∗ , σ|g∗ is a right Poisson action of the Lie bialgebra (g, δg∗) on (Y,−σ(rd)),
and σ|g is a right Poisson action of the Lie bialgebra (g, δg) on (Y, σ(rd)). Now
1) and 2) of Corollary 4 follow from Theorem 2 applied to the Poisson Lie groups
(G, πG) and (G∗, πG∗) respectively, and 3) follows from Remark 3. �

Remark 4. When σ|g : g→ V1(Y ) integrates to a Lie group action τ : Y ×G→ Y ,
the pair (τ, σ) can be thought of as a (right) action of the Harish-Chandra pair
(G, d) (see §1) on the manifold Y in the sense that τ is a right action of the Lie
group G on Y and σ is a right action of the Lie algebra d on Y such that σ|g
coincides with the action of g on Y induced by τ . �

Let (G, πG) now be any connected Poisson Lie group with Lie bialgebra (g, δg),
and assume that r ∈ g ⊗ g is a quasitriangular r-matrix for (g, δg). Let Y be a
manifold with a right G-action σ : Y × G → Y , and assume that the stabilizer
subalgebra of g at every y ∈ Y is coisotropic with respect to the symmetric part
of r. By Lemma 1 and Remark 1, σ(r) is a Poisson structure on Y , where σ : g→
V1(Y ) also denotes the right Lie algebra action induced by σ.

Recall from §2 the pair of dual Lie subalgebras ((f−, δg|f−), (f+,−δg|f+)). Let
again F− and F+ be the connected subgroups of G with Lie algebras f− and f+
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respectively, so (F−, πG|F−) and (F+,−πG|F+
) form a pair of dual Poisson Lie

groups. Restricting the action σ of G on Y to actions of F± on Y , one then has
the action groupoids

Y × F− ⇒ Y and Y × F+ ⇒ Y.

Let {xi}ni=1 be a basis of f− and {ξi}ni=1 the dual basis of f+ with respect to the
pairing 〈 , 〉(f−,f+) between f− and f+ given in (6).

Corollary 5. With the notation as above, let

πY×F− = (−σ(r))×(σ|f+ ,λ−) πG|F−

= (−σ(r), 0) + (0, πG|F−)−
n∑
i=1

(σ(ξi), 0) ∧ (0, xRi ),
(17)

πY×F+
= σ(r)×(σ|f− ,λ+) (−πG|F+

)

= (σ(r), 0) + (0,−πG|F+
)−

n∑
i=1

(σ(xi), 0)∧(0, ξRi ).
(18)

Then (Y ×F− ⇒ Y, πY×F−) and (Y ×F+ ⇒ Y, πY×F+) form a pair of dual Poisson
groupoids.

Proof. Let df− be the double Lie algebra of (f−, δg|f−). Then σ◦q : df− → V1(Y ) is
a Lie algebra homomorphism, where q : df− → g is the Lie algebra homomorphism
given in (8). By Remark 2, q(rdf−

) = r. Thus (σ ◦ q)(rdf−
) = σ(r) is a Poisson

structure on Y . Corollary 5 now follows by applying Corollary 4 to the pair of
dual Poisson Lie groups (F−, πG|F−) and (F+,−πG|F+

). �

Remark 5. The Lie algebra action σ ◦ q : df− → V1(Y ) of df− on Y gives rise to
the action Courant algebroid over Y as defined in [L-BM], with two transversal
Dirac structures defined by the splitting df− = f− + f+. The pair of dual Poisson
groupoids in Corollary 5 then have the two transversal Dirac structures as their
Lie bialgebroids. �

4. Review on standard complex semisimple Poisson Lie groups

1. The standard complex semisimple Poisson Lie group (G,πst)

For the rest of the paper, let G be a connected complex semisimple Lie group with
Lie algebra g. We recall the so-called standard multiplicative Poisson structures
on G and refer to [ES], [LM1], [LM2] for details.

Fix a pair (B,B−) of opposite Borel subgroups of G and a non-degenerate
symmetric ad-invariant bilinear form 〈 , 〉g on g, and let T = B ∩B−. Denote the
Lie algebras of B,B− and T by b, b− and h respectively. Let g = h +

∑
α∈∆ gα

be the root decomposition of g with respect to h, and let ∆+ ⊂ h∗ be the set
of positive roots with respect to b. We will also write α > 0 for α ∈ ∆+. Let
n =

∑
α∈∆+

gα, n− =
∑
α∈∆+

g−α, and let N , N− be the connected subgroups
of G with respective Lie algebras n and n−. For each α > 0, let Eα ∈ gα and
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E−α ∈ g−α be such that 〈Eα, E−α〉g = 1. Denote by 〈 , 〉 the bilinear form on
both h and h∗ induced by 〈 , 〉g, and let {hi}ri=1, r = dim h, be a basis of h such
that 〈hi, hj〉 = δij . The standard quasitriangular r-matrix associated to the choice
of the triple (b, b−, 〈 , 〉g) is the element

rst = 1
2

r∑
i=1

hi ⊗ hi +
∑
α>0

E−α ⊗ Eα ∈ g⊗ g. (19)

The bivector field on G defined by (see notation in §3)

πst = rLst − rRst (20)

is a multiplicative Poisson structure on G, and (G, πst) is called a standard semi-
simple Poisson Lie group. The Lie bialgebra of (G, πst) is (g, δst), where δst(x) =
adxrst for x ∈ g. In the notation of §2, one has

Im(r]st) = b and Im((r21
st )]) = b−.

Thus B and B− are Poisson Lie subgroups of (G, πst). Denoting the restrictions
of πst to B and to B− by the same symbol, the pair ((B−, πst), (B,−πst)) is then
a pair of dual Poisson Lie groups, with the pairing 〈 , 〉(b−,b) in (6) given explicitly
by

〈x−+x0, y++y0〉(b−,b ) =〈x−, y+〉g+2〈x0, y0〉g, x−∈n−, x0, y0∈h, y+ ∈ n. (21)

A basis for b− and its dual basis for b+ with respect to the pairing 〈 , 〉(b−,b) are
now given by

{hi/
√

2}ri=1 ∪ {E−α}α>0 ⊂ b− and {hi/
√

2}ri=1 ∪ {Eα}α>0 ⊂ b. (22)

The Poisson structure πst is invariant under the action of T on G by left or right
multiplication. Let W = NG(T )/T be the Weyl group of (G,T ), where NG(T ) is
the normalizer subgroup of T in G. For u, v ∈W , the double Bruhat cell (see [FZ])

Gu,v = BuB ∩B−vB−

is non-empty, and dimGu,v = l(u) + l(v) + r, where l is the length function on
W and recall that r = dim h. It is well-known [HL], [HKKR] that the T -leaves of
(G, πst) are precisely the double Bruhat cells in G. In particular, for each v ∈W ,
both BvB and B−vB− are Poisson submanifolds of G with respect to πst.

2. The Drinfeld double and the dressing vector fields of (G,πst)

The double Lie algebra (d, 〈 , 〉d) of the Lie bialgebra (g, δst) can be identified with
the quadratic Lie algebra (g ⊕ g, 〈 , 〉g⊕g), where g⊕ g has the direct product Lie
algebra structure, the invariant bilinear form 〈 , 〉g⊕g is defined by

〈(x1, y1), (x2, y2)〉g⊕g = 〈x1, x2〉g − 〈y1, y2〉g, x1, x2, y1, y2 ∈ g,
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and g is identified with g∆ = {(x, x) : x ∈ g} and g∗ with

g∗st = {(x+ + x0,−x0 + x−) : x+ ∈ n, x− ∈ n−, x0 ∈ h} (23)

(see [CP], [ES], [LM2]). Let r
(2)
st ∈ (g ⊕ g) ⊗ (g ⊕ g) be the r-matrix on g ⊕ g as

the double Lie algebra of (g, δst) (see Example 1), and let

Πst =
(
r

(2)
st

)L − (r(2)
st

)R
be the corresponding multiplicative Poisson structure on G×G. Then the Poisson
Lie group (G×G,Πst) is a Drinfeld double of (G, πst), and the diagonal embedding

(G, πst) ↪→ (G×G,Πst), g 7→ (g, g), g ∈ G, (24)

realizes (G, πst) as a Poisson subgroup of (G×G,Πst).
Let Bop

− be the Lie group which has the same underlying manifold as B−, but
with the opposite group structure. Then

(B̃−, πB̃−) = (B− ×Bop
− , πst × πst) and (B̃, πB̃) = (B ×B, (−πst)× πst)

form a pair of dual Poisson Lie groups. Consider the respective right and left
Poisson actions

ρ : (G, πst)× (B̃, πB̃)→ (G, πst),

ρ(g, (b1, b2)) = b−1
1 gb2, g ∈ G, b1, b2 ∈ B,

λ : (B̃−, πB̃−)× (G, πst)→ (G, πst),

λ((b−1, b−2), g) = b−1gb−2, g ∈ G, b−1, b−2 ∈ B−.

It is proved in [LM1, §6.2 and §8] that Πst is a mixed product Poisson structure
on G×G. Namely,

Πst = πst ×(ρ,λ) πst. (25)

We now present some explicit formulas for the dressing vector fields on (G, πst)
which will be used in the proof of Lemma 7. Let pg : g⊕ g→ g the projection to
g ∼= gdiag with respect to the splitting g⊕ g = gdiag + g∗st. Note that for any x ∈ g,
writing x = [x]− + [x]0 + [x]+ with [x]− ∈ n−, [x]0 ∈ h and [x]+ ∈ n, one has

pg(0, x) = 1
2 [x]0 + [x]+ ∈ b, pg(x, 0) = 1

2 [x]0 + [x]− ∈ b−. (26)

Thus for η ∈ n, the dressing vector field d(η, 0) at g ∈ G is given by

d(η, 0)(g) = −lgpgAd(g−1,g−1)(η, 0) = −lg
(

1
2 [Adg−1η]0 + [Adg−1η]−

)
= −rgη + lg

(
1
2 [Adg−1η]0 + [Adg−1η]+

)
∈ Tg(gB−) ∩ Tg(BgB).

(27)

Similarly, for η ∈ n−, and x ∈ h, one has

d(0, η)(g) = −lg
(

1
2 [Adg−1η]0 + [Adg−1η]+

)
= −rgη + lg

(
1
2 [Adg−1η]0 + [Adg−1η]−

)
∈ Tg(gB) ∩ Tg(B−gB−),

(28)

d(x,−x)(g) = lg
(
[Adg−1x]+ − [Adg−1x]−

)
= rgx− lg

(
[Adg−1x]0 + 2[Adg−1x]−

)
= −rgx+lg

(
[Adg−1x]0+2[Adg−1x]+

)
∈Tg(TgB−) ∩ Tg(TgB).

(29)
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Remark 6. Note that it also follows from (27), (28), and (29) that all the (B,B)-
double cosets and all the (B−, B−)-double cosets are Poisson submanifold of
(G, πst). �

3. Weak Poisson pairs

Consider the natural projections

$ : G→ G/B, g 7→ g·B, $− : G→ B−\G, g 7→ B−·g, g ∈ G. (30)

As both B and B− are Poisson Lie subgroups of (G, πst),

π1
def
== $(πst) and π−1

def
== $−(πst) (31)

are now well-defined Poisson structures on G/B and on B−\G, respectively. The
Poisson structure π1 is invariant under the action of T on G/B by left multiplica-
tion, and it is proven in [GY1] that the T -leaves of π1 are precisely the so-called
open Richardson varieties, i.e., non-empty intersections (BuB/B) ∩ (B−wB/B),
where u,w ∈W . In particular, every Bruhat cell BuB/B, for u ∈W , is a Poisson
subvariety of (G/B, π1). Similarly, every Bruhat cell B−\B−uB−, for u ∈W , is a
Poisson subvariety of (B−\G, π−1).

Definition 1 ([LM1, §8.6]). Two Poisson maps ρY : (X,πX) → (Y, πY ) and ρZ :
(X,πX)→ (Z, πZ) are said to form a Poisson pair if the map

(ρY , ρZ) : (X,πX)→ (Y × Z, πY × πZ), (y, z) 7→ (ρY (y), ρZ(z)), y ∈ Y, z ∈ Z,

is a Poisson map.

The following Lemma 6 is a special case of a fact proved in [LM1, §8.6], but for
the convenience of the reader, we give a proof which is much simpler in our special
case.

Lemma 6. The two Poisson maps

$ : (G, πst)→ (G/B, π1) and $− : (G, πst)→ (B−\G, π−1)

form a Poisson pair. Consequently, for u, v ∈ W and for any symplectic leaf
Σu,v ⊂ Gu,v, one has the Poisson pairs

$|Gu,v: (Gu,v, πst)→(BuB/B, π1) and $−|Gu,v: (Gu,v, πst)→(B−\B−vB−, π−1),

$|Σu,v: (Σu,v, πst)→(BuB/B, π1) and $−|Σu,v: (Σu,v, πst)→(B−\B−vB−, π−1).

Proof. Consider the projection Φ : G×G→ (G/B)× (B−\G) defined by

Φ(g1, g2) = (g1·B,B−·g2), g1, g2 ∈ G.

Using (25) to write Πst = (πst, 0) + (0, πst) + πmix, it follows from the definition of
the mixed term πmix that Φ(πmix) = 0. Thus

Φ: (G×G,Πst)→ ((G/B)× (B−\G), π1 × π−1)

is Poisson. As the diagonal embedding (G, πst) ↪→ (G × G,Πst) is Poisson, $
and $− form a Poisson pair. As Gu,v or any symplectic leaf in Gu,v are Poisson
submanifolds of (G, πst), the rest of Lemma 6 follows. �
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Note that in Definition 1 we do not require the two maps ρY and ρZ in a Poisson
pair to be surjective nor submersions. The next Lemma 7 and Lemma 8 say that the
Poisson maps in the Poisson pairs in Lemma 6, although not necessarily surjective,
are all submersions.

Lemma 7. For any u, v ∈ W and any symplectic leaf Σu,v of πst in Gu,v, the
maps

$|Σu,v : Σu,v → BuB/B and $−|Σu,v : Σu,v → B−\B−vB−
are submersions.

Proof. Let g ∈ Σu,v. By definition, the value at g of every dressing vector field on
(G, πst) is tangent to Σu,v. By (27) and (29), the differential of $|Σu,v at g is a
surjective linear map from TgΣ

u,v to Tg·B(BuB/B). Thus $|Σu,v : Σu,v → BuB/B
is a submersion. Similarly, $−|Σu,v : Σu,v → B−\B−vB− is a submersion. �

Remark 7. Lemma 7 implies that for any u, v ∈W , the maps

$|Gu,v: (Gu,v, πst)→(BuB/B, π1) and $−|Gu,v: (Gu,v, πst)→(B−\B−vB−, π−1)

are also submersions, a fact one can in fact see directly without computing the
dressing vector fields. Indeed, For any g ∈ G and x ∈ b, the element

zg,x
def
==rgx− lg

(
1
2

([
Adg−1x

]
0

)
+
[
Adg−1x

]
+

)
= lg

(
1
2

([
Adg−1x

]
0

)
+
[
Adg−1x

]
−

)
lies in Tg(BgB ∩ B−gB−) and $(zg,x) = $(rgx). It follows that the differential
of $ restricts to a surjective linear map from Tg(BgB ∩ B−gB−) to Tg·B(Bg·B)
for every g ∈ G. This shows in particular that for any u, v ∈W , the map $|Gu,v :
Gu,v → BuB/B is a submersion. Similarly, one sees that $−|Gu,v is a submersion.
�

Lemma 8. For any u, v ∈W and for any symplectic leaf Σu,v of πst in Gu,v, one
has

$(Σu,v) = $(Gu,v) =
⋃

w≤u,w≤v

(BuB/B) ∩ (B−wB/B) ⊂ BuB/B,

$−(Σu,v) = $−(Gu,v) =
⋃

w≤u,w≤v

(B−\B−wB) ∩ (B−\B−vB−) ⊂ B−\B−vB−,

where ≤ is the Bruhat order on W defined by the choice of B.

Proof. For w ∈W , B−wB ⊂ B−vB−B if and only if B−wB∩B−vB− 6= ∅, which,
by [De, Cor. 1.2], is equivalent to w ≤ v. Thus B−vB−B =

⋃
w≤v B−wB. It

follows that

$(Gu,v) = $(BuB) ∩$(B−vB−B) =
⋃

w≤u,w≤v

(BuB/B) ∩ (B−wB/B).

Since Gu,v = Σu,vT , one has $(Σu,v) = $(Gu,v). The claims on $−(Σu,v) and
$−(Gu,v) are proved similarly. �

Remark 8. For u, v ∈W and a symplectic leaf Σu,v of πst in Gu,v, the Poisson pair

$|Σu,v: (Σu,v, πst)→(BuB/B, π1) and $−|Σu,v: (Σu,v, πst)→(B−\B−vB−, π−1)

in Lemma 6 is in general not a symplectic dual pair [W4] which requires the two
Poisson maps to be surjective submersions and their fibers to be mutual symplectic
orthogonals of each other. �
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5. The double Bruhat cells Gv,v as Poisson groupoids

Let the notation be as in §4. In this section, we apply the results in §3 to the
Poisson Lie group (G, πst) to construct an action Poisson groupoid ((G/B)×B−, π)
over (G/B, π1). For v ∈W , the choice of a representative v̄ of v in NG(T ) is used
to identify (Gv,v, πst) with a Poisson subgroupoid of ((G/B) × B−, π) through a
Poisson embedding Iv̄ : (B−vB−, πst) ↪→ ((G/B)×B−, π).

1. The action Poisson groupoid ((G/B) ×B−, π) over (G/B, π1)

Let G act on the flag variety G/B from the right by

(G/B)×G→ G/B, (g·B, g1) 7→ g−1
1 g·B, g, g1 ∈ G,

and let σ : g → V1(G/B) be the induced right Lie algebra action of g on G/B
given by

σ(x) = −$(xR) or σ(x)(g·B) =
d

dt

∣∣∣
t=0

exp(−tx)g·B x ∈ g, g ∈ G, (32)

where recall that $ : G → G/B is the projection. Restricting the G-action on
G/B to one of B− on G/B, one then has the action groupoid (G/B)×B− ⇒ G/B,
with the source map θ, the target map τ , the groupoid multiplication µ, the inverse
map ι, and the identity bisection ε respectively given by

θ(g.B, b−)=g.B, τ(g.B, b−) = (b−1
− g).B, (33)

µ(g·B, b−, b
−1
− g·B, b

′
−)=(g·B, b−b

′
−), (34)

ι(g.B, b−)=(b−1
− g.B, b−1

− ), ε(g·B)=(g·B, e), b−, b
′
−∈B−, g∈G. (35)

Consider the Poisson structure π1 = $(πst) on G/B. As πst = rLst − rRst and
$(rLst) = 0, one has

π1 = −$(rRst) = −σ(rst). (36)

Let λ− : b− → V1(B−) be given by λ−(x) = xR for x ∈ b−. As σ|b : b→ V1(G/B)
is a right Poisson action of the Lie bialgebra (b,−δst|b) on (G/B, π1), one has the
mixed product Poisson structure π on (G/B)×B− given by

π = π1 ×(σ|b,λ−) πst = (π1, 0) + (0, πst)−
n∑
i=1

(σ(ξi), 0)∧(0, xRi ), (37)

where {xi}ni=1 is any basis of b− and {ξi}ni=1 the dual basis of b with respect to
the pairing 〈 , 〉(b−,b) between b− and b given in (21). By Corollary 5 and (36),

((G/B)×B− ⇒ G/B, π)

is an action Poisson groupoid over the Poisson manifold (G/B, π1). Note that the
bases for b− and b in (37) can be taken to be the ones in (21).
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2. The Poisson embedding of (B−vB−, πst) into ((G/B) ×B−, π)

Recall that NG(T ) is the normalizer subgroup of T in G. In this section, fix v ∈W
and let v̄ ∈ NG(T ) be any representative of v in NG(T ). Let

Cv̄ = Nv̄ ∩ v̄N− ⊂ G. (38)

It is well-known that the multiplication maps

Cv̄ ×B → BvB, (c, b) 7→ cb, c ∈ Cv̄, b ∈ B,
B− × Cv̄ → B−vB−, (b−, c) 7→ b−c, b− ∈ B−, c ∈ Cv̄,

are algebraic isomorphisms. Consider now the embedding

Iv̄ : B−vB− → (G/B)×B−, Iv̄(b−c) = (b−c·B, b−), b− ∈ B−, c ∈ Cv̄. (39)

The goal of §2 is to prove the following Proposition 9.

Proposition 9. The embedding Iv̄ : (B−vB−, πst)→ ((G/B)×B−, π) is Poisson.

To prepare for the proof of Proposition 9, we first prove some properties of Cv̄.

Lemma 10. The submanifold Cv̄ of G is coisotropic with respect to the Poisson
structure πst.

Proof. Consider first the subgroup Nv = N ∩ (v̄N−v̄
−1) with Lie algebra nv =

n ∩ Adv̄n−. We first show that Nv ⊂ G is coisotropic with respect to πst. With
g∗ ∼= g∗st, where the pairing between g ∼= gdiag and g∗st is via the bilinear form
〈 , 〉g⊕g on g⊕ g, the annihilator subspace n0

v = {ξ ∈ g∗ : ξ|nv = 0} of nv in g∗st is

{(x+ + x0,−x0 + x−) : x+ ∈ n, x0 ∈ h, x− ∈ n− ∩Adv̄n−},

which is a Lie subalgebra of g∗st. It follows [LW, STS] that Nv is a coisotropic
subgroup of (G, πst).

Let c ∈ Cv̄ and write c = nv̄, where n ∈ Nv. By the multiplicativity of πst, one
has

πst(c) = πst(nv̄) = lnπst(v̄) + rv̄πst(n).

As Nv is coisotropic with respect to πst, πst(n) ∈ (TnG) ∧ (TnNv), so rv̄πst(n) ∈
(TcG) ∧ (TcCv̄). On the other hand, it is easy to see that

πst(v̄) = −rv̄
( ∑
α>0,v−1α<0

E−α ∧ Eα
)
. (40)

It follows that lnπst(v̄) ∈ (TcG)∧ (TcCv̄). Thus Cv̄ is a coisotropic submanifold of
(G, πst). �

Lemma 11. The map

qv̄ : (B−vB−, πst)→ (B−, πst), qv̄(b−c) = b−, b− ∈ B−, c ∈ Cv̄,

is Poisson.
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Proof. (See also [GSV, Thm. 3.1]) Let b− ∈ B− and c ∈ Cv̄. By the multiplicativity
of πst, one has πst(b−c) = lb−πst(c)+rcπst(b−). As Cv̄ is a coisotropic submanifold
of (B−vB−, πst), one has πst(c) ∈ TcCv̄ ∧ Tc(B−vB−). As qv̄(lb−TcCv̄) = 0, one

has qv̄lb−πst(c) = 0. Using the fact that πst(b−) ∈ ∧2Tb−B−, one sees that

qv̄(πst(b−c)) = (qv̄rc)(πst(b−)) = πst(b−). �

Proof of Proposition 9. Let (B−vB−)diag = {(g, g) : g ∈ B−vB−}. Then Iv̄ is the
restriction to (B−vB−)diag ⊂ G× (B−vB−) of the map

Kv̄ : G× (B−vB−)→(G/B)×B−, (g, b−c) 7→(g·B, b−), g∈G, b−∈B−, c∈Cv̄.

By §2 and in particular (25), both (B−vB−)diag and G × (B−vB−) are Poisson
submanifolds of G×G with respect to the Poisson structure Πst. It is thus enough
to show that

Kv̄ : (G× (B−vB−),Πst)→ ((G/B)×B−, π)

is Poisson. Let again (xi)
n
i=1 be any basis of b− and (ξi)

n
i=1 the basis of b dual

to (xi)
n
i=1 under the pairing 〈 , 〉(b−,b) in (21). By (25), one has Πst = (πst, 0) +

(0, πst) + µ1 + µ2, where

µ1 =
n∑
i=1

(ξRi , 0) ∧ (0, xRi ) and µ2 = −
n∑
i=1

(ξLi , 0) ∧ (0, xLi ).

By the definition of π1, Kv̄(πst, 0) = (π1, 0). By Lemma 11, Kv̄(0, πst) = (0, πst).
Since for any ξ ∈ b, the vector field ξL on G vanishes when projected to G/B, one
has Kv̄(µ2) = 0. It is also clear from the definitions that Kv̄(µ1) coincides with
the mixed term of π. Thus Kv̄ is Poisson.

This finishes the proof of Proposition 9. �

Remark 9 (The Poisson structure πst on B−vB− as a mixed product). Define

Ψ: (G/B)×B− → B− × (G/B), Ψ(g·B, b−) = (b−1
− , g·B),

and consider the Poisson structure π′ = −Ψ(π) on B− × (G/B). It is easy to see
that

π′ = πst ×(ρ−,λ+) (−π1),

where ρ− and λ+ denote the Poisson Lie group actions as well as the induced Lie
bialgebra actions, respectively given by

(B−, πst)× (B−, πst)→ (B−, πst), (b−, b
′
−) 7→ b−b

′
−, b−, b

′
− ∈ B−,

(B,−πst)× (G/B,−π1)→ (G/B,−π1), (b, g·B) 7→ bg·B, b ∈ B, g ∈ G.

One then has the Poisson embedding

Ψ◦ι◦Iv̄ : (B−vB−, πst)→(B−×(G/B), π′), b−c 7→(b−, c·B), b−∈B−, c∈Cv̄, (41)

where ι is the inverse map of the Poisson groupoid ((G/B)×B− ⇒ G/B, π)). Note
the image of B−vB− under Ψ ◦ ι ◦ Iv̄ is the Poisson submanifold B− × (BvB)/B
of (B− × (G/B), π′). We have thus identified the restriction of πst to B−vB− as
the mixed product Poisson structure π′ on the product manifold B− × (BvB/B)
via the map in (41). �
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Remark 10. Consider also the Poisson embedding

Jv̄
def
== ι ◦ Iv̄ : (B−vB−,−πst)→ ((G/B)×B−, π),

Jv̄(b−c) = (c·B, b
−1
− ), b− ∈ B−, c ∈ Cv̄.

Then Jv̄(B−vB−) = (BvB/B) × B−. As v runs over W , one has the respective
disjoint unions

G =
⊔
v∈W

B−vB− and (G/B)×B− =
⊔
v∈W

(BvB/B)×B−

of the Poisson varieties (G,−πst) and ((G/B) × B−, π) into Poisson subvarieties,
together with piecewise Poisson isomorphisms {Jv̄ : v ∈ W}, but these piecewise
Poisson isomorphisms do not patch together to define a smooth map from G to
(G/B)×B−. �

Example 2. Let G = SL(2,C) and let B and B− be the subgroups of G consisting
of upper and lower triangular matrices respectively. Let s ∈ W be the non-trivial
element, so that

B−sB− =

{(
a b
c d

)
: ad− bc = 1, b 6= 0

}
.

Identify the flag variety G/B with the complex projective space CP1 via

(
a b
c d

)
.B

7→ [a, c]. For s̄ =

(
0 −1
1 0

)
, the map Js̄ : B−sB− → CP1 ×B− is given by

Js̄

(
a b
c d

)
=

(
[a,−b],

(
−b−1 0
d −b

))
,

which does not extend to a smooth map from G to CP1 ×B−. �

3. Poisson embeddings of (Gu,v, πst) into ((G/B) ×B−, π)

Recall that θ and τ are respectively the source and target maps of the action
groupoid (G/B) × B− over G/B, and note that the image of B−vB− under the
embedding Iv̄ is

Iv̄(B−vB−) = τ−1(BvB/B) = ι((BvB/B)×B−).

For u ∈ W , restricting Iv̄ to Gu,v = BuB ∩ B−vB− ⊂ B−vB−, one has the
embedding

Iv̄|Gu,v : Gu,v ↪→ (G/B)×B−. (42)

For u, v ∈W , set

Fu,v
def
= θ−1(BuB/B) ∩ τ−1(BvB/B) ⊂ (G/B)×B−, u, v ∈W. (43)

It is clear from the definitions that

Iv̄(G
u,v) = Fu,v, u ∈W. (44)

Let T act on (G/B)×B− via

t · (g·B, b−) = (tg·B, tb−), t ∈ T, g ∈ G, b− ∈ B−. (45)

786



DOUBLE BRUHAT CELLS AND SYMPLECTIC GROUPOIDS

Proposition 12. The mixed product Poisson structure π on (G/B)×B− is inva-
riant under the T -action, and its T -leaves are precisely the intersections Fu,v,
where u, v ∈W .

Proof. For each v ∈ W , choose a representative v̄ of v in NG(T ). Let T act on
B−vB− by left translation. Clearly, Iv̄ : B−vB− → (G/B)×B− is T -equivariant.
The statement of Proposition 12 now follows from the T -equivariant Poisson
isomorphisms Iv̄, v ∈ W , and the fact that the T -leaves of πst in B−vB− are
the Gu,v’s for u ∈W . �

Remark 11 (The Fomin–Zelevinsky twist map). Let u, v ∈ W and let ū and v̄ be
any representatives of u and v in NG(T ) respectively. Recall that the inverse map
ι of the Poisson groupoid ((G/B)×B−, π) satisfies ι(π) = −π. As ι(Fu,v) = F v,u,
by Proposition 9,

ιū,v̄
def
== (Iū|Gv,u)

−1 ◦ ι ◦ (Iv̄|Gu,v ) : (Gu,v, πst)→ (Gv,u, πst) (46)

is anti-Poisson. Explicitly, the map ιū,v̄ : Gu,v → Gv,u is given by

ιū,v̄(g) = b−1
− c = c′b−1,

if g = cb = b−c
′ ∈ Gu,v,where c ∈ Cū, b ∈ B, b− ∈ B−, c′ ∈ Cv̄,

or, if for h ∈ N−TN , we write h = [h]−[h]0[h]+ with [h]− ∈ N−, [h]0 ∈ T, [h]+ ∈ N ,
then

ιū,v̄(g) =
(
[ū−1g]−1

− ū−1gv̄−1[gv̄−1]−1
+

)−1
, g ∈ Gu,v. (47)

In [FZ, §1.5], Fomin and Zelevinsky introduced a twist map Gu,v → Gu
−1,v−1

(for certain special ways of choosing ū and v̄). By (47), the Fomin–Zelevinsky
twist map is the composition of ιū,v̄ with the group inverse G → G, g 7→ g−1, of
G and with an involutive automorphism x → xθ of G (see [FZ, Formula (1.11)],
while the latter two involutions are easily seen to be both anti-Poisson with respect
to πst. It follows that the Fomin–Zelevinsky twist (Gu,v, πst) → (Gu

−1,v−1

, πst) is
anti-Poisson, a fact already proved in [GSV, Thm. 3.1]. �

Remark 12. Consider the two disjoint union decompositions

G =
⊔

u,v∈W
Gu,v, (G/B)×B− =

⊔
u,v∈W

Fu,v. (48)

Let T act on G by left multiplication and on (G/B)×B− by (45). Then the two
decompositions in (48) are respectively that of T -leaves of (G, πst) and ((G/B)×
B−, π). Any choice {v̄ ∈ NG(T ) : v ∈ W} gives rise to piecewise T -equivariant
Poisson isomorphisms

Iv̄ : (B−vB− =
⊔
u∈W

Gu,v, πst)→ (τ−1(BvB/B) =
⊔
u∈W

Fu,v, π)

but the maps {Iv̄ : v ∈W} do not patch together to define a smooth map from G
to (G/B)×B−. See also Remark 10. �
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4. The double Bruhat cell Gv,v as Poisson groupoids

Observe that for any v ∈W ,

F v,v = θ−1(BvB/B) ∩ τ−1(BvB/B) ⊂ (G/B)×B−

is the subgroupoid of (G/B)×B− ⇒ G/B over the subset BvB/B of G/B.

Definition 2. For v ∈ W and any representative v̄ of v in NG(T ), denote by
Gv̄,v̄ ⇒ BvB/B the double Bruhat cell Gv,v, equipped with the groupoid structure
induced by the isomorphism Iv̄ : Gv,v → F v,v. In details, the groupoid structure is
defined as follows: for g = cb = b−c

′ ∈ Gv,v, where b ∈ B, b− ∈ B−, and c, c′ ∈ Cv̄,

source map : θv̄(g) = g.B = c.B,

target map : τv̄(g) = c′.B,

inverse map : ιv̄(g) = c′b−1 = b−1
− c,

identity bisection : εv̄(c·B) = c ∈ Cv̄ ⊂ Gv,v.

If h ∈ Gv,v is such that τv̄(g) = θv̄(h), so h = c′b′ = b′−c
′′, with b′ ∈ B, b′− ∈ B−,

and c′′ ∈ Cv̄, the groupoid product of g and h is given by

µv̄(g, h) = cbb′ = b−b
′
−c
′′. (49)

The following Theorem 13, which follows directly from Proposition 9, is the first
main result of this paper.

Theorem 13. For any v ∈ W and v̄ ∈ NG(T ), the pair (Gv̄,v̄, πst) is a Poisson
groupoid over the Poisson manifold (BvB/B, π1).

Proof. It is clear that all the structure maps of the groupoid Gv̄,v̄ ⇒ BvB/B are
smooth. As Cv̄ ⊂ Gv̄,v̄, the source map θv̄ is surjective. By Lemma 7, θv̄ is a
submersion. Thus Gv̄,v̄ is a Lie groupoid over BvB/B. As Iv̄(G

v,v) is a Poisson
submanifold of (G/B) × B− with respect to π, (Gv̄,v̄, πst) is a Poisson groupoid
over (BvB/B, π1). �

Remark 13. If v̄, ṽ are two representatives of v ∈ W and if t ∈ T is such that
v̄ = tṽ, then the left translation lt : (Gṽ,ṽ, πst)→ (Gv̄,v̄, πst) is a Poisson groupoid
isomorphism covering the Poisson isomorphism lt : (BvB/B, π1)→ (BvB/B, π1).
Hence the isomorphism class of (Gv̄,v̄, πst) as a Poisson groupoid is independent of
the choice of the representative v̄. �

Recall that $− : G→ B−\G is the projection, and for each v ∈W , B−\B−vB−
is a Poisson submanifold of B−\G with respect to the Poisson structure π−1 =
$−(πst). For v ∈W and any representative v̄ of v in NG(T ), define

Φv̄ : B−\B−vB− → BvB/B, B−·c 7→ c·B, c ∈ Cv̄. (50)

Lemma 14. For v ∈W and any representative v̄ of v in NG(T ),

Φv̄ : (B−\B−vB−, π−1)→ (BvB/B, π1)

is an anti-Poisson isomorphism.
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Proof. It is proved in [EL, Appendix A] that if ρY : (X,πX) → (Y, πY ) and ρZ :
(X,πX) → (Z, πZ) form a Poisson pair and if X ′ is a coisotropic submanifold of
(X,πX) such that ρY |X′ : X ′ → Y is a diffeomorphism, then Φ = ρZ ◦ (ρY |X′)−1 :
(Y, πY ) → (Z, πZ) is an anti-Poisson map. Applying the above statement to the
Poisson pair ($−|Gv,v , $|Gv,v ) in Lemma 6 and the coisotropic submanifold Cv̄ of
(Gv,v, πst), one proves Lemma 14. �

Remark 14. With Φv̄ defined in (50), for u ∈W , let

$u,v
v̄ = Φv̄ ◦ ($−|Gu,v ) : Gu,v → BvB/B, b−c 7→ c·B, b− ∈ B−, c ∈ Cv̄. (51)

It follows from Lemma 14 that $u,v
v̄ : (Gu,v, πst) → (BvB/B, π1) is anti-Poisson.

Consequently, by Lemma 6, one has the Poisson pairs

$|Gu,v : (Gu,v, πst)→ (BuB/B, π1) and $u,v
v̄ : (Gu,v, πst)→ (BvB/B,−π1),

$|Σu,v : (Σu,v, πst)→ (BuB/B, π1) and $u,v
v̄ : (Σu,v, πst)→ (BvB/B,−π1),

where Σu,v is any symplectic leaf of πst in Gu,v. Note that when u = v, $|Gv,v = θv̄
and $v,v

v̄ = τv̄, the source and target maps of the Poisson groupoid (Gv̄,v̄, πst) over
(BvB/B, π1). �

5. Commuting Poisson actions of (Gū,ū, πst) and (Gv̄,v̄, πst) on (Gu,v, πst)

Recall that if (G ⇒ Y, πG) is a Poisson groupoid over a Poisson manifold (Y, πY )
with target map τ : G → Y , a left Poisson action of (G, πG) on a Poisson manifold
(X,πX) is a left Lie groupoid G-action on X with a moment map ν : X → Y and
an action map

a : G ∗X def
== {(γ, x) ∈ G ×X : τ(γ) = ν(x)} → X

such that Graph(a)
def
== {(γ, x, a(γ, x)) : (γ, x) ∈ G∗X} is a coisotropic submanifold

of the Poisson manifold (G × X × X,πG × πX × (−πX)). In such a case, the
moment map ν : (X,πX) → (Y, πY ) is automatically Poisson [LWX2]. Note that
the moment map ν is required to be a submersion to ensure that G ∗X is a smooth
submanifold of G × X. Right Poisson actions of Poisson groupoids are similarly
defined, where the moment maps are necessarily anti-Poisson.

Let now u, v ∈ W and let ū, v̄ be any respective representatives of u and v in
NG(T ). Then it is straightforward to check that the groupoid Gū,ū acts on Gu,v

on the left with the moment map $|Gu,v : Gu,v → BuB/B, where the action of
g ∈ Gū,ū on x ∈ Gu,v with τū(g) = $(x) is the element g . x ∈ Gu,v given by

g . x
def
== cbb′ = b−b

′
−c
′′ if g = cb = b−c

′, x = c′b′ = b′−c
′′, (52)

with c, c′ ∈ Cū, c′′ ∈ Cv̄, b, b′ ∈ B and b−, b
′
− ∈ B−. Similarly the groupoid Gv̄,v̄

acts on Gu,v on the right with the moment map $u,v
v̄ : Gu,v → BvB/B (see (51)),

and the action of h ∈ Gv̄,v̄ on x ∈ Gu,v with $u,v
v̄ (x) = θv̄(h) is the element

x / h ∈ Gu,v given by

x / h
def
== c′b′b′′ = b′−b

′′
−c
′′′, if x = c′b′ = b′−c

′′, and h = c′′b′′ = b′′−c
′′′, (53)

with c′ ∈ Cū, c′′, c′′′ ∈ Cv̄, b′, b′′ ∈ B and b′−, b
′′
− ∈ B−. One can also check directly

that the two groupoid actions commute.
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Theorem 15. For any u, v ∈W and respective representatives ū, v̄ ∈ NG(T ), (52)
and (53) are respectively left and right Poisson actions of the Poisson groupoids
(Gū,ū, πst) and (Gv̄,v̄, πst) on (Gu,v, πst).

Proof. Consider first the right action of (Gv̄,v̄, πst) on (Gu,v, πst). Under the Pois-
son embedding Iv̄ : (B−vB−, πst) → ((G/B) × B−, π1), one has Iv̄(G

u,v) = Fu,v

and Iv̄(G
v,v) = F v,v (see (43)), and the right action of Gv̄,v̄ on Gu,v corresponds

to the right action of F v,v on Fu,v by restricting the right Poisson action of the
Poisson groupoid ((G/B)×B−, π) on itself by right multiplication with the target
map τ as the moment map. As F v,v and Fu,v are both Poisson submanifolds of
(G/B) × B− with respect to π, the right action of (Gv̄,v̄, πst) on (Gu,v, πst) is
Poisson.

By replacing (u, v) by (v, u) in the above arguments, one has a right Poisson
action

Gv,u ×Gū,ū 3 (x, g) 7→ x / g ∈ Gv,u if $v,u
ū (x) = θū(g). (54)

One now checks directly that under the Poisson isomorphisms

(ιū,v̄)−1 : (Gv,u, πst)→ (Gu,v,−πst) and ιū : (Gū,ū, πst)→ (Gū,ū,−πst),

where the Poisson isomorphism ιū,v̄ : (Gu,v, πst) → (Gv,u,−πst) is given in (46),
the right groupoid action of Gū,ū on Gv,u in (54) becomes precisely the left action
of the groupoid Gū,ū on Gu,v given in (52). This shows that the groupoid action
in (52) is Poisson. �

6. Symplectic groupoids associated to double Bruhat cells

1. Symplectic leaves in Gu,v

To describe the symplectic leaves of πst in G, it is enough to describe the symplectic
leaves in the double Bruhat cells, as the latter are the T -orbits of symplectic leaves
of πst in G. For u, v ∈ W , and for any symplectic leaf Σ of πst in Gu,v, let
TΣ = {t ∈ T : Σ t = Σ}. As T acts transitively on the set of all symplectic leaves
of πst in Gu,v, TΣ is independent of Σ ⊂ Gu,v. We define the leaf-stabilizer of T in
Gu,v to be

Tu,vstab = TΣ, (55)

where Σ is any symplectic leaf of πst in Gu,v. In particular, one has

dim(Σ) = l(u) + l(v) + dim(T u,vstab).

When G is simply connected, symplectic leaves of πst in each Gu,v are determined
by Kogan and Zelevinsky in [KZ] using specially chosen representatives in NG(T )
of elements in W . In this section, for G simply connected, we adapt the results
in [KZ] to describe the symplectic leaves of πst in G using arbitrary choices of
representatives of elements in W , and we describe the leaf-stabilizers of T in the
double Bruhat cells. We also extend some results from [KZ] to the case when G is
not necessarily simply connected.
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Assume first that G is connected but not necessarily simply connected. The
action of the Weyl group on T will be denoted as tv = v̄−1tv̄, where v ∈W, t ∈ T ,
and v̄ is any representative of v in NG(T ). For u, v ∈W , let

Tu,v = {(tu)−1tv : t ∈ T}.

Fix u, v ∈W and let ū, v̄ be any representatives of u and v in NG(T ), respectively.
Note that

ū−1BuB = ū−1CūB ⊂ N−TN and B−vB−v̄
−1 = B−Cv̄ v̄

−1 ⊂ N−TN,

and recall that for g ∈ N−TN , we write g = [g]−[g]0[g]+, where [g]− ∈ N−, [g]0 ∈
T, [g]+ ∈ N . For t ∈ T , define

Sū,v̄[t] =
{
g ∈ Gu,v :

[
ū−1g

]
0

[
g v̄−1

]v
0
∈ tTu,v

}
, (56)

where [t] denotes the image of t in T/Tu,v. Define the map

χ : Gu,v → T/Tu,v, χ(g) = [ū−1g]0[g v̄−1]v0 T
u,v ∈ T/Tu,v, g ∈ Gu,v. (57)

Then clearly Sū,v̄[t] = χ−1([t]) for t ∈ T , a level set of χ. One also has

χ(ga) = [a]2χ(g), g ∈ Gu,v, a ∈ T. (58)

The following Lemma 16 is proved in [KZ, Prop. 3.1] (neither the assumption that
G be simply-connected nor the special way of choosing representatives of Weyl
group elements in NG(T ) made in [KZ] is needed in its proof).

Lemma 16 ([KZ, Prop. 3.1]). The symplectic leaves of πst in Gu,v are the con-
nected components of the sets Sū,v̄[t] , t ∈ T . Moreover, for any t1, t2, t ∈ T , Sū,v̄[t1] =

Sū,v̄[t2] if and only if [t1] = [t2], and Sū,v̄[t1]t = Sū,v̄[t1t2].

Assume now that G is simply-connected, and let Γ ⊂ ∆+ be the set of simple
roots. For α ∈ Γ, let ωα ∈ Hom(T,C×) be the corresponding fundamental weight,
and let ∆α be the corresponding generalized principal minor [FZ], [KZ], which is a
regular function on G whose restriction to N−TN is given by ∆α(g) = [g]ωα0 . For
u, v ∈W , let I(u, v) = I(u) ∩ I(v), where

I(u) = {α ∈ Γ : u(ωα) = ωα} = Γ\{α1, . . . , αl}

for any reduced word u = sα1
sα2
· · · sαl , and define the maps δ, δ2 : G→ C|I(u,v)|

by

δ(g) = {∆α(g) : α ∈ I(u, v)} and δ2(g) = {(∆α(g))2 : α ∈ I(u, v)}.

We now modify the results from [KZ] to give a description of the connected
components of Sū,v̄[t] , and thus also of the symplectic leaves of πst in Gu,v.
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Proposition 17. Assume that G is simply connected. Let u, v ∈W and let ū and
v̄ be any respective representatives of u and v in NG(T ). Then for any t ∈ T , the
restriction of δ2 to Sū,v̄[t] is a constant map, or, more precisely,

(∆α(g))2 = ∆α(ū)∆α(v̄) tωα , ∀ g ∈ Sū,v̄[t] . (59)

The connected components of Sū,v̄[t] are the 2|I(u,v)| (all of which non-empty) level

sets of the map δ : Sū,v̄[t] → (C×)|I(u,v)|.

Proof. By first choosing a set {eα ∈ gα, fα ∈ g−α, α
∨ ∈ h : α ∈ Γ} of Chevalley

generators of g which determines Lie group homomorphisms φα : SL(2,C) →
G for each α ∈ Γ, one can choose the representative s̃α of sα in NG(T ) to be

s̃α = φα

(
0 −1
1 0

)
for each α ∈ Γ. For w ∈ W and any reduced word w =

sα1
sα2
· · · sαl of w, the element w̃ = s̃α1

s̃α2
· · · s̃αl is then a representative of w in

NG(T ) independent of the choice of the reduced word. Moreover [MR, Lem. 6.1],
∆α(w̃) = 1 if α ∈ I(w). Define

Su,ve =
{
g ∈ Gu,v :

[
ũ−1g

]
0

[
g ṽ−1

]v
0
∈ Tu,v

}
.

By [KZ, Thm. 2.3, Cor. 2.5, Lem. 3.2], [ũ−1g]ωα0 = ±1 for all g ∈ Su,ve and α ∈
I(u, v), and Su,ve has 2|I(u,v)| connected components Su,ve =

⊔
ε S

u,v
e (ε), where ε

runs over the set of all sign functions ε : I(u, v)→ {±1} on I(u, v), and

Su,ve (ε) =
{
g ∈ Su,ve :

[
ũ−1g

]ωα
0

= ε(α), ∀α ∈ I(u, v)
}
.

Let t0, t1 ∈ T be such that ũ = t0ū and ṽ−1v̄ = t1. One checks directly that for
g ∈ Gu,v, [

ũ−1g
]
0

=
[
ū−1g

]
0

(t−1
0 )u and

[
g ṽ−1

]v
0

=
[
g v̄−1

]v
0
t1.

It follows that for any t ∈ T and a ∈ T with a2 = (t−1
0 )ut1t, one has

Sū,v̄[t] =
{
g ∈ Gu,v :

[
ũ−1g

]
0

[
g ṽ−1

]v
0
∈ (t−1

0 )ut1tT
u,v
}

= Su,ve a.

Note now (see [KZ, (3.12)]) that
[
ũ−1g

]ωα
0

= ∆α(g) for any α ∈ I(u) and g ∈ BuB.
It follows that ∆α(g) = ±1 for all g ∈ Su,ve and α ∈ I(u, v). Consequently, for all
g ∈ Sū,v̄[t] and α ∈ I(u, v),

(∆α(g))2 = ∆α(a2) = t−ωα0 tωα1 tωα = ∆α(ū)∆α(v̄)tωα .

As there is one connected component of Su,ve for each sign function ε on I(u, v),
the connected components of Sū,v̄[t] = Su,ve a are precisely the 2|I(u,v)| level sets, all

of which non-empty, of the map δ : Sū,v̄[t] → (C×)|I(u,v)|. �

Recall the map χ : Gu,v → T/Tu,v defined in (57). The following Corollary 18
is also proved in [Y, Cor. 4.5].
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Corollary 18. For any g0 ∈ Gu,v, the symplectic leaf Σg0 of πst through g0 is
given by

Σg0 = {g ∈ Gu,v : χ(g) = χ(g0) and δ(g) = δ(g0)}. (60)

Remark 15. Using the decompositions BuB = CūB and B−vB− = B−Cv̄, one
can describe the maps χ and δ on Gu,v more explicitly. Indeed, writing an element
g ∈ Gu,v as g = ctn = n−t−c

′, where c ∈ Cū, c′ ∈ Cv̄, t, t− ∈ T , n ∈ N and
n− ∈ N−, one has χ(g) = [ttv−] ∈ T/Tu,v and ∆α(g) = tωα∆α(ū) for all α ∈ I(u).
�

When u = v, one has Tu,v = {e}. As a special case of Corollary 18, one has

Corollary 19. Assume that G is simply connected. Let v ∈ W and let v̄ be any
representative of v in NG(T ). Then the symplectic leaf Σv̄ of πst in G through v̄
is given by

Σv̄ =
{
g ∈ Gv,v :

[
v̄−1g

]
0

([
g v̄−1

]
0

)v
= e,∆α(g) = ∆α(v̄) ∀α ∈ I(v)

}
=
{
g ∈ Gv,v :

[
v̄−1g

]
0

([
g v̄−1

]
0

)v
= e,

[
v̄−1g

]ωα
0

= 1 ∀α ∈ I(v)
}

Still assuming that G is simply connected, let

T̃u,v = {t ∈ T : tωα = 1 ∀ α ∈ I(u, v)}.

It is clear that Tu,v ⊂ T̃u,v. As a direct consequence of Corollary 18 and (58), one
has

Corollary 20. Assume that G is simply connected. Then for u, v ∈ W , the leaf-
stabilizer of T in Gu,v is given by Tu,vstab = {t ∈ T̃u,v : t2 ∈ Tu,v}.

Returning now to the connected semisimple complex Lie group G which may
not be simply connected, let Ĝ be the connected and simply connected cover of G,
and let κ : Ĝ → G be the covering map with ker κ = Z, a subgroup of the center
of Ĝ. Denoting by π̂st the multiplicative Poisson structure on Ĝ defined by the
same r-matrix rst ∈ g ⊗ g, the map κ : (Ĝ, π̂st) → (G, πst) is then Poisson. For

ĝ ∈ Ĝ and g ∈ G, let again Σĝ ⊂ Ĝ and Σg ⊂ G respectively denote the symplectic
leaves of π̂st and πst through ĝ and g. Let T̂ = κ−1(T ), a maximal torus of Ĝ. By

Corollary 20, the leaf-stabilizer of T̂ in Ĝu,v is

T̂u,vstab = {â ∈ T̂ : âωα = 1 ∀ α ∈ I(u, v) and â2 ∈ T̂u,v}.

Let Zu,v = Z ∩ T̂u,vstab = {z ∈ Z : zωα = 1 ∀ α ∈ I(u, v) and z2 ∈ T̂u,v}.

Lemma 21. For any ĝ ∈ Ĝu,v, one has κ(Σĝ) = Σg, where g = κ(ĝ) ∈ Gu,v,
and κ : Σĝ → Σg is the quotient map Σĝ → Σĝ/Zu,v, where Zu,v acts on Σĝ by
multiplication.
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Proof. As κ : (Ĝ, π̂st) → (G, πst) is a local Poisson diffeomorphism, and as Σĝ is
connected, we have κ(Σĝ) ⊂ Σg. To show that Σg ⊂ κ(Σĝ), let h ∈ Σg and let
γ : [0, 1] → Σg be any smooth path in Σg such that γ(0) = g and γ(1) = h. Let

γ̂ : [0, 1] → Ĝ be the unique lifting of γ such that γ̂(0) = ĝ. Again as κ is a local
Poisson diffeomorphism, γ̂ is tangent to the symplectic leaf through γ̂(x) for every
x ∈ [0, 1]. Thus γ̂([0, 1]) ⊂ Σĝ. This shows that κ

(
Σĝ
)

= Σg.

Clearly the Zu,v-orbits in Σĝ are contained in the fibers of κ : Σĝ → Σg. Suppose

that ĥ, k̂ ∈ Σĝ are in the same fiber of κ : Σĝ → Σg. Then ĥz = k̂ for some z ∈ Z.
As Σĝz and Σĝ are both symplectic leaves of π̂st and have now a non-empty
intersection, Σĝz = Σĝ, and thus z ∈ Zu,v. �

Remark 16. The same arguments as in the proof of Lemma 21 show that if κ :
(X,πX)→ (Y, πY ) is a covering map that is also Poisson, then the images under κ
of the symplectic leaves of (X,πX) are precisely all the symplectic leaves of (Y, πY ).
�

Lemma 22. For any u, v ∈W , the leaf-stabilizer of T in Gu,v is given by Tu,vstab =

κ
(
T̂u,vstab

)
.

Proof. Let Σ̂ be a symplectic of π̂st in Ĝu,v, and let Σ = κ(Σ̂). If â ∈ T̂u,vstab, then

it follows from Σ̂â = Σ̂ that Σκ(â) = Σ, so κ(â) ∈ Tu,vstab. Conversely, let a ∈ Tu,vstab

and choose any â ∈ κ−1(a). Let ĝ ∈ Σ̂. Then κ(ĝâ) ∈ Σa = Σ, so κ(ĝâ) = κ(ĝ′) for

some ĝ′ ∈ Σ̂. Let z ∈ Z be such that ĝâz = ĝ′. As Σ̂âz and Σ̂ are two symplectic
leaves of π̂st and have a non-empty intersection, one must have Σ̂âz = Σ̂, and thus

a = κ(âz) ∈ κ
(
T̂u,vstab

)
. �

Recall from Lemma 16 that symplectic leaves of πst in Gu,v are the connected
components of the sets Sū,v̄[t] given in (56), where t ∈ T . Define

T (2) = {a ∈ T : a2 = e}.

It is clear that for each t ∈ T , Sū,v̄[t] is invariant under left translation by elements

in T (2).

Lemma 23. For any t ∈ T , the induced action of T (2) on the set of all symplectic
leaves of πst in Sū,v̄[t] is transitive.

Proof. Let Σ and Σ′ be any two symplectic leaves of πst in Sū,v̄[t] , and let Σ̂ and

Σ̂′ be two symplectic leaves of π̂st in Ĝu,v such that κ(Σ̂) = Σ and κ(Σ̂′) = Σ′.

Let [κ] : T̂ /T̂u,v → T/Tu,v be the group homomorphism induced by κ : T̂ → T .

Then the fibers of [κ] are the Z-orbits in T̂ /T̂u,v by multiplication. Let û and v̂

be any respective representatives of u and v in NĜ(T̂ ) ⊂ Ĝ. Recalling the map

χ̂ : Ĝû,v̂ → T̂ /T̂u,v defined as in (57), one has

[κ](χ̂(Σ̂)) = [κ](χ̂(Σ̂′)) = [t].
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Thus there exists z ∈ Z such that zχ̂(Σ̂) = χ̂(Σ̂′). Let â ∈ T̂ be such that â2 = z.

Then χ̂(Σ̂â) = χ̂(Σ̂′). By Proposition 17 (see also the proof of [KZ, Thm. 2.3]),

the group T̂ (2) = {x̂ ∈ T̂ : x̂2 = e} acts transitively on the set of the symplectic

leaves of π̂st in any level set of χ̂. Thus there exists x̂ ∈ T̂ (2) such that Σ̂âx̂ = Σ̂′.
Let a = κ(âx̂) ∈ T . Then a ∈ T (2) and Σa = Σ′. �

Remark 17. It follows from Lemma 23 and Lemma 22 that for t ∈ T , the number
of symplectic leaves of πst in Sū,v̄[t] is equal to

∣∣T (2)/T (2) ∩ Tu,vstab

∣∣. As T (2) is a

2-group, the number of symplectic leaves of πst in Sū,v̄[t] is always a power of 2. �

2. The symplectic leaf Σv̄ as a symplectic groupoid

Let now (G, πst) be any standard complex semisimple Poisson Lie group, where G
is connected but not necessarily simply connected. Let v, u ∈ W and let ū and v̄
be any respective representatives of u and v in NG(T ). One then has the Poisson
groupoid (Gū,ū, πst) over (BuB/B, π1) and the Poisson groupoid (Gv̄,v̄, πst) over
(BvB/B, π1). Recall their commuting (left and right) Poisson actions on (Gu,v, πst),
respectively given in (52) and (53).

Theorem 24. 1) The symplectic leaf Σv̄ of πst through v̄ is a Lie subgroupoid of
Gv̄,v̄. Consequently, (Σv̄, πst) is a symplectic groupoid over (BvB/B, π1).

2) For any symplectic leaf Σu,v of πst in Gu,v, the two commuting Poisson
actions in (52) and (53) restrict to Poisson actions of the symplectic groupoids
(Σū, πst) and (Σv̄, πst) on the symplectic manifold (Σu,v, πst).

Proof. Assume first that G is simply connected. Consider the action in (52).
Assume that g ∈ Σū and x ∈ Σu,v be such that τū(g) = $(x), and write g = ctn =
n−t−c

′ and x = c′t′n′ = n′−t
′
−c
′′, where c, c′ ∈ Cū, c′′ ∈ Cv̄, t, t−, t′, t′− ∈ T , n, n′ ∈

N , and n−, n
′
− ∈ N−. Then g . x = ctnt′n′ = n−t−n

′
−t
′
−c
′′. By Proposition 17,

ttu− = e, tωα = 1 for all α ∈ I(u, v), and Σu,v = {h ∈ Gu,v : χ(h) = χ(x),∆α(h) =
∆α(x) ∀ α ∈ I(u, v)}. By the definitions of the map χ and the functions ∆α (see
Remark 15),

χ(g . x) = [tt′(t−t
′
−)v] = [ttu−t

′(t′−)v(tu−)−1tv−] = [t′(t′−)v] = χ(x) ∈ T/Tu,v,

and for every α ∈ I(u, v), ∆α(g.x) = (tt′)ωα∆α(ū) = (t′)ωα∆α(ū) = ∆α(x). Thus
g .x ∈ Σu,v. Similarly, one shows that for all x ∈ Σu,v and h ∈ Σv̄ with $u,v

v̄ (x) =
θv̄(h) one has x/h ∈ Σu,v. Applying to the special case of u = v, ū = v̄ and Σu,v =
Σv̄, it shows in particular that Σv̄ is closed under the groupoid multiplication of
Gv̄,v̄. It is easy to see that Σv̄ is closed under the groupoid inverse of Gv̄,v̄. By
Lemma 7, both $|Σu,v : Σu,v → BuB/B and $u,v

v̄ |Σu,v : Σu,v → BvB/B are
submersions. Thus Σv̄ is a Lie subgroupoid of Gv̄,v̄, and since dim(Σv̄) = 2l(v)
by Corollary 20, it is a symplectic groupoid over (BvB/B, π1). Furthermore, the
two actions in (52) and (53) restrict to Poisson actions of the symplectic groupoids
(Σū, πst) and (Σv̄, πst) on the symplectic manifold (Σu,v, πst).

For an arbitrary G, let Ĝ be the simply connected cover of G with κ : Ĝ → G
the covering map and multiplicative Poisson structure π̂st, and choose any û, v̂ ∈ Ĝ
such that κ(û) = ū and κ(v̂) = v̄. Let Z = kerκ, and let Σ̂u,v be any symplectic

leaf of π̂st such that κ(Σ̂u,v) = Σu,v. By Lemma 21, the symplectic groupoids
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(Σū, πst) and (Σv̄, πst) are the respective quotients of the symplectic groupoids

(Σû, π̂st) and (Σv̂, π̂st) by Zu,u and Zv,v, and that κ : Σ̂u,v → Σu,v is the quotient
map by Zu,v. It is easy to see that Zu,u ⊂ Zu,v and Zv,v ⊂ Zu,v. Statements 1)

and 2) for G now follow from the corresponding statements for Ĝ. �

Remark 18. Let u, v ∈ W , and let Σu ⊂ Gu,u,Σu,v ⊂ Gu,v, and Σv ⊂ Gv,v

be arbitrary symplectic leaves of πst. As Σu = Σū and Σv = Σv̄ for some
representatives of ū and v̄, we conclude that Σu and Σv are symplectic groupoids,
respectively over (BuB, π1) and (BvB/B, π1), acting by commuting Poisson acti-
ons from the left and right on the symplectic groupoid (Σu,v, πst). �

Example 3. Let G = SL(2,C), where the pair (B,B−) consists of the subgroups
of respectively upper and lower triangular matrices, and where 〈x1, x2〉g =tr(x1x2),

x1, x2 ∈ sl(2,C). Writing g ∈ G as g =

(
g11 g12

g21 g22

)
, the Poisson brackets between

the coordinate functions are

{g11, g12} = g11g12, {g11, g21} = g11g21, {g12, g22} = g12g22,

{g21, g22} = g21g22, {g11, g22} = 2g12g21, {g12, g21} = 0.

Let s̄ =

(
0 −1
1 0

)
, so that Cs̄ =

{(
z −1
1 0

)
: z ∈ C

}
. Then

Gs,s =

{(
az a−1(abz − 1)
a b

)
: a, b, z ∈ C, a 6= 0, abz − 1 6= 0

}
,

with the Poisson structure given by {z, a} = za, {z, b} = a−1(abz−2), {a, b} = ab.
Let χ = a2(1− abz)−1. The groupoid structure on Gs̄,s̄ over C is given by

source map : θs̄(z, a, b) = z,

target map : τs̄(z, a, b) = χz,

inverse map : ιs̄(z, a, b) = (χz, a−1,−b),
identity bisection : z 7→ (z, 1, 0), z ∈ C,

multiplication : µs̄((z1, a1, b1), (z2, a2, b2)) = (z1, a1a2, a1b2 + b1a
−1
2 )

if z2 = τs̄(z1, a1, b1).

Note that χ is a Casimir function on Gs,s and the symplectic leaves in Gs,s are
precisely given by the (non-zero) level sets of χ. Hence the symplectic leaf Σs̄ of πst

through s̄ ∈ Gs̄,s̄ is Σs̄ =

{(
az −a
a b

)
: a, b, z ∈ C, a 6= 0, a2 = 1− abz

}
. Identify

Σs̄ with

Σ =

{(
pt −t
t −qt

)
: (p, q, t) ∈ C3, t2(1− pq) = 1

}
. (61)

The induced (non-degenerate) Poisson structure on Σ is given by

{p, q} = 2(1− pq), {p, t} = pt, {q, t} = −qt, (62)
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and the induced symplectic groupoid structure on Σ is given by

source map : θ(p, q, t) = p,

target map : τ(p, q, t) = p,

inverse map : ι(p, q, t) = (p,−qt2, t−1),

identity section : ε(p) = (p, 0, 1),

multiplication : µ((p1, q1, t1), (p2, q2, t2)) = (p1, q2 + q1t
−2
2 , t1t2) when p1 = p2.

Note that θ−1(0) = τ−1(0) is isomorphic to the non-connected abelian Lie group
C× Z2.

Consider now the group PSL(2,C), and write its elements as [g], where g ∈
SL(2,C). Then the symplectic leaf of πst through [s̄] ∈ PSL(2,C) is parametrized
by the surface

Σ0 = {(p, q) ∈ C2 : 1− pq 6= 0} ∼=
{[(

p −1
1 −q

)]
: (p, q) ∈ C2, 1− pq 6= 0

}
,

with the Poisson structure {p, q} = 2(1− pq) and the groupoid structure given by

source map : θ(p, q) = p,

target map : τ(p, q) = p,

inverse map : ι(p, q, t) = (p, q(pq − 1)−1),

identity bisection : {(p, 0) : p ∈ C},
multiplication : µ((p1, q1), (p2, q2)) = (p1, q2 + q1(1− p2q2)) if p1 = p2.

Note the Lie group isomorphisms θ−1(0) = τ−1(0) ∼= C and θ−1(p) = τ−1(p) ∼= C×
for p 6= 0. �

Example 4. Let G = SL(3,C), with B, B− respectively the subgroups of upper
and lower triangular matrices and the bilinear form 〈x1, x2〉g = tr(x1x2) on sl(3,C).
Let s1, s2 be the two generators of the Weyl group W , identified with the symmetric
group S3. Let v = s1s2,

s̄1 =

 0 −1 0
1 0 0
0 0 1

 , s̄2 =

 1 0 0
0 0 −1
0 1 0

 , and v̄ = s̄1s̄2.

Let Σs̄1 ,Σs̄2 ,Σv̄ be the symplectic leaves of πst through respectively s̄1, s̄2, v̄.
The group multiplication (Gs1,s1 , πst) × (Gs2,s2 , πst) → (Gv,v, πst) is a Poisson
morphism, and one can check that its restriction gives a Poisson isomorphism
(Σs̄1 , πst)× (Σs̄2 , πst) ∼= (Σv̄, πst). One thus has

Σv̄ =


 p1t1 −t1 0

t1 −q1t1 0
0 0 1

 1 0 0
0 p2t2 −t2
0 t2 −q2t2

 : t21(1−p1q1)=1, t22(1−p2q2)=1


∼= Σ× Σ = {(p1, q1, t1, p2, q2, t2) : (pj , qj , tj) ∈ Σ, j = 1, 2},
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where Σ is given in (61), and πst is identified with the direct Poisson bracket given
in (62). On the other hand, parametrize BvB/B ⊂ G/B by

C2 3 (z1, z2) 7→ [z1, z2]
def
==

 z1 −1 0
1 0 0
0 0 1

 1 0 0
0 z2 −1
0 1 0


·

B ∈ BvB/B.

The Poisson structure π1 on BvB/B is then given by {z1, z2} = −z1z2. One checks
that the groupoid structure on Σv̄ over BvB/B is given as follows:

source map : θ(p1, q1, t1, p2, q2, t2)=[p1, p2t
−1
1 ],

target map : τ(p1, q1, t1, p2, q2, t2)=[p1t
−1
2 , p2],

inverse map : ι(p1, q1, t1, p2, q2, t2)=(p1t
−1
2 ,−q1t

2
1t2, t

−1
1 , p2t

−1
1 ,−q2t1t

2
2, t
−1
2 ),

identity bisection : ε(z1, z2)=(z1, 0, 1, z2, 0, 1),

and the groupoid multiplication is given by

µ(γ, γ′) = (p1, q
′
1t
−1
2 + q1(t′1)−2, t1t

′
1, p
′
2, q
′
2 + q2(t′1)−1(t′2)−2, t2t

′
2),

if γ = (p1, q1, t1, p2, q2, t2) and γ′ = (p′1, q
′
1, t
′
1, p
′
2, q
′
2, t
′
2) with p1t

−1
2 = p′1 and

p2 = p′2(t′1)−1. �

Remark 19. For any v ∈W and any representative v̄ of v in NG(T ), the symplectic
groupoid (Σv̄, πst) over (BvB/B, π1) is algebraic in the sense that (Σv̄, πst) is an
algebraic symplectic variety and that the structure maps for the groupoid are all
algebraic morphisms. However, as one can already see in the example of SL(2,C),
the source fibers of these groupoids are not necessarily connected. It would be
interesting to understand how source-fiber connected symplectic groupoids can be
constructed from the ones in this paper. �.
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