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Abstract. Let G be a connected complex semisimple Lie group, equipped with a
standard multiplicative Poisson structure mgy determined by a pair of opposite Borel
subgroups (B, B_). We prove that for each v in the Weyl group W of G, the double
Bruhat cell G*"Y = BvB N B_vB_ in G, together with the Poisson structure mg, is
naturally a Poisson groupoid over the Bruhat cell BuB/B in the flag variety G/B.
Correspondingly, every symplectic leaf of mg¢ in GV is a symplectic groupoid over
BvB/B. For u,v € W, we show that the double Bruhat cell (G*", mst) has a naturally
defined left Poisson action by the Poisson groupoid (G"“, mst) and a right Poisson
action by the Poisson groupoid (G"",mst), and the two actions commute. Restricting
to symplectic leaves of mgt, one obtains commuting left and right Poisson actions on
symplectic leaves in G**¥ by symplectic leaves in G*'* and G** as symplectic groupoids.

1. Introduction and statements of results

1. Introduction

Let G be a connected complex semisimple Lie group, and let (B, B_) be a pair
of opposite Borel subgroups of G. It is well-known [CP], [ES], [HL], [HKKR],
[KZ] that the choice of (B, B_), together with that of a symmetric non-degenerate
invariant bilinear form on the Lie algebra of G, determine a standard multiplicative
Poisson structure ms on G (see §1 for details), and that the complex Poisson Lie
group (G, mg) is the semi-classical limit of the quantized function algebra C,[G]
of G. The Poisson structure 7y is invariant under left and right translation by
elements of the maximal torus T'= BNB_ of G, and it is well-known [HL], [HKKR]
that the double Bruhat cells

G“’" =BuBNB_vB_, uveW,

where W is the Weyl group of (G,T), are precisely all the T-leaves of (G, 7g),
i.e., submanifolds of G of the form | J,. ¥t, where ¥ is a symplectic leaf of my; in
G (see [LM2, §2] on some basic facts of T-leaves, where T is any torus). Double
Bruhat cells have been studied extensively and have served as motivating examples
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of the theories of total positivity and cluster algebras (see [BFZ], [FZ], [GY2] and
references therein). When G is simply connected, symplectic leaves of 7y in each
double Bruhat cell G** are explicitly described in [KZ].

The Poisson structure ms on G projects to a well-defined Poisson structure
on the flag variety G/B, and each Bruhat cell BvB/B C G/B, where v € W is
a Poisson subvariety of (G/B, ). In this paper, we show that for every v € W
and any representative v of v in the normalizer subgroup N¢(T) of T in G, the
Poisson variety (G"V, 7y ) has a naturally defined groupoid structure over BvB/B,
giving rise to a Poisson groupoid (GV:?, ) over the Poisson variety (BvB/B, ).
The symplectic leaf ¥? of 7y through o is then shown to be a Lie sub-groupoid
of G%7, becoming thus a symplectic groupoid over (BvB/B,w1). The groupoid
structure on G¥* depends on the choice of o € N (T') (thus the notation G”?), but
different choices give isomorphic Poisson groupoids. For w,v € W and respective
representatives 4,0 € Ng(T'), we show that the Bruhat cell (G*Y, 7 ) has a left
Poisson action by the Poisson groupoid (G*“, 74 ) and a right Poisson action by the
Poisson groupoid (G7?, my ), and the two actions commute. The two actions are
then shown to restrict to commuting Poisson actions of the symplectic groupoids
(X%, mgt) and (XY, 7)) on every symplectic leaf in G%V.

2. Statements of main results

Let v € W, and let © be any representative of v in Ng(T). Let C; = NoNoN_,
where N and N_ are respectively the uniradicals of B and B_. One then has the
unique decompositions BvB = C3 B and B_vB_ = B_Cj; and the isomorphism

Cy = BuB/B, c+c¢.B, c€ Cy.

Writing an element g € GV*¥ uniquely as g = ¢b = b_¢’, where b € B, b_ € B_,
and ¢, ¢ € Cy, the groupoid structure on G¥"¥ over BuB/B is defined as follows:

source map : 05
target map : Ty
inverse map : (g
identity bisection : €5

multiplication : pz(g,h) = cbb’ =b_ V" " if h =V =b"_¢",
where b’ € B,b_ € B_,c" € Cy.

We will denote by G» = BvB/B, or simply G%?, the double Bruhat cell
Gv" with the groupoid structure thus defined. For another v € W and any
representative @ € N (T) of u, define

w : Guv — BuB/B, w(ch) = ¢. B, be B,ce Cy,
@' : G’ — BvB/B, @' (b_c)=cB, b_€B_,deC;.
The main results of the paper, Theorem 13, Theorem 15, and Theorem 24, can

now be summarized as follows: let u,v € W and let u and v be any representatives
of u and v in Ng(T), respectively.
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Main Theorems. (1) The pair (G, 7st) is a Poisson groupoid over the Poisson
manifold (BvB/B, ), which, by restriction, also makes the symplectic leaf 3V of
Tst through U into a symplectic groupoid over (BvB/B, ).

(2) There is a natural left Poisson action of the Poisson groupoid (G%%, ms) on
(G™Y, 7rgt) with moment map w and a natural right Poisson action of the Poisson
groupoid (G%Y,ms) on (G™V,ms) with moment map w'. The two actions com-
mute, and they restrict to Poisson actions of the symplectic groupoids (X%, mg)
and (X7, mg) on every symplectic leaf XY of mg in GUV.

We remark that for any symplectic leaf ¥ in G*¥, the moment maps
@|guw: (%Y, mgt) — (BuB/B,m) and @'|gu.: (3", 1) = (BvB/B,—m)

for the Poisson actions of the symplectic groupoids (X% mg) and (X9, 7g) on
(3"", my) are symplectic realizations [W4], [X1] only in the sense that they are
Poisson submersions, but in general are not surjective (see Lemma 7, Lemma 8,
and Remark 14). More precisely, w(X*") = BuB/B if and only if u < v in the
Bruhat order, and w’(X*") = BvB/B if and only if v < u.

We in fact construct a Poisson groupoid ((G/B) x B_, ) over (G/B,m), where
the groupoid structure is that of the action groupoid defined by the right action
of B_ on G/B given by

(9¢.B)-b_=(b"'g).B, geG,b_ecB_,

and the Poisson structure 7 is a mized product Poisson structure in the sense of
[LM1], or, more precisely, 7 is the sum of the product Poisson structure m X
(mst|s_) on (G/B) x B_ and a certain mixed term determined by the action of B
on G/ B by left translation and by the action of B_ on itself by left translation. For
each v € W and a representative v of v in Ng(T'), the Poisson groupoid (G%7, )
is then realized as a Poisson subgroupoid of the Poisson groupoid ((G/B) x B_, )
over (G/B,m) via a Poisson embedding I : (B_vB_,7s) — ((G/B) x B_,m)
(see §2 and §4 for detail). Using the embeddings I;, we also interpret the Fomin—
Zelevinsky twist map on double Bruhat cells [FZ], [KZ] in terms of the inverse
map of the groupoid (G/B) x B_ over G/B. See Remark 11.

The Poisson groupoid ((G/B) x B_,r) over (G/B,m) is a special case of a
general construction of action Poisson groupoids associated to quasitriangular r-
matrices (see §2). More precisely, given a Lie algebra g, a quasitriangular r-matrix
r on g, and a Lie algebra action of g on a manifold Y such that the stabilizer
subalgebra of g at each point of Y is coisotropic with respect to the symmetric
part of r, Li-Bland and Meinrenken defined in [L-BM] an action Courant algebroid
over Y with two transversal Dirac structures. In §2, we construct a pair of dual
Poisson groupoids which integrate the two transversal Dirac structures in the sense
that they have the two Dirac structures as their Lie bialgebroids (see Corollary 5
and Remark 5 for detail). Applying the general construction to the semi-simple
Lie algebra g and the standard quasitriangular r-matrix rs on g (see §1), we obtain
the action Poisson groupoid ((G/B) x B_,x) over (G/B, ).

Symplectic groupoids were introduced by Karasev [K] and Weinstein [W3] to
study singular foliations in Poisson geometry, and are expected to play a key role in
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the problem of quantization of Poisson manifolds. While symplectic groupoids have
been studied for almost three decades, not many explicit examples are known. This
paper thus fills a gap in the literature by providing a large class of naturally defined
algebraic symplectic groupoids. Relations between the symplectic groupoids of
Bruhat cells described in this paper and quantum Bruhat cells [DeCKP], [LY],
[Lus], [Y] will be investigated in the future.

The paper is organized as follows. Some basic facts on Poisson Lie groups
and Lie bialgebras are recalled in §2. In §3 we construct a pair of dual action
Poisson groupoids associated to quasitriangular r-matrices. Some properties of the
standard complex semisimple Poisson Lie groups are reviewed and proved in §4.
The main theorems of the paper are proved in §5 and §6, where we also generalize
some results of [KZ] on the symplectic leaves of 7y in the double Bruhat cells to
the case when G is not necessarily simply connected.

Acknowledgements. This work was partially supported by the Research Grants
Council of the Hong Kong SAR, China (GRF HKU 703712 and 17304415).

3. Notation

Throughout this paper, vector spaces are understood to be real or complex. For
a finite-dimensional vector space V, denote by (, ) the canonical pairing between
V and its dual space V*. If r= > 2, @y, e VOV, let r?' =Yy, @z, e VRV
and let 7 : V* — V be the linear map defined by

rﬁ(é‘) = Z<£vx1>yzv 5 € V*

7

For a smooth (resp. complex) manifold X, denote by T'X its smooth (resp. holo-
morphic) tangent bundle. If k& > 1 is an integer and ® : X — Y a smooth
(resp. holomorphic) map between smooth (resp. complex) manifolds X and Y,
denote by the same symbol ® : AT X — AFTY the differential of ®. The space
of smooth (resp. holomorphic) k-vector fields on X will be denoted by V*(X), and
if Vy € VF(X) and Vi € VE(Y), denote by (Vy,0) and (0, V4 ) the k-vector fields
on X x Y whose values at (x,y) € X x Y are respectively given by

(Vx,0)(z,y) =iy Vi(xz) and (0,Vy)(z,y) =i Vi (v),

where iy : X - X xY,2' — (¢/,y) for 2’ € X, and i, : Y - X x Y, ¢/ — (2,¥)
for y' € Y. We also denote (Vy,0) + (0,Vy) by Vi x V4.

Let G be a Lie group with Lie algebra g. A left action of g on a manifold Y is
a Lie algebra anti-homomorphism \ : g — V(Y), while a right action of g on Y’
is a Lie algebra homomorphism p: g — VI(Y). If \: G xY — Y,(g,y) — gy is a
left action of G on Y, one has the induced left action of g on Y, also denoted by
A, given by

exp(tr)y, z€g,yeY.

d
At g %Vl(y)a AMz)y = — 0

T dt
Similarly, a right Lie group action p: Y x G = Y, (y,g9) — yg induces a right Lie
algebra action

d
p:g—VIY), p(z), = pr

Oyexp(tm), r€gycy.
t=
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For g € G, the left and right translation on G by g, as well as their differentials, are
respectively denoted by I, and ry. If £ > 0 is an integer and x € g®*, we denote
by x' and zf the respective left- and right-invariant k-tensor fields on G whose
value at the identity element e of G is z. If & € AFg*, we use similar notation for
the left and right invariant k-forms with value £ at e.

Throughout the paper, if (X, 7) is a Poisson manifold and X; C X a Poisson
submanifold with respect to m, the restriction of 7 to X; will also be denoted by
7 unless otherwise specified.

2. Poisson Lie groups, r-matrices, and
mixed product Poisson structures

We recall from [CP], [ES], [LM1] some basic facts on Poisson Lie groups and
Lie bialgebras, and we refer to [LM1, §2] in particular on certain conventions on
constants and signs.

1. Poisson Lie groups and Lie bialgebras

A Lie bialgebra is a pair (g,0g4), where g is a (real or complex) finite-dimensional
Lie algebra, and 64 : g — A?%g a linear map satisfying

5g[xay] = [x759(y)]+[59(x)7y]7 xvyegv

and such that the dual map d; : A%g* — g* defines a Lie bracket on g*. Given a
Lie bialgebra (g, d4), the pair (g*, d4+) is also a Lie bialgebra, where g* is equipped
with the Lie bracket dual to dq, and d4+ : g* — A%g* is the dual map of the Lie
bracket on g. One calls (g%, d4-) the dual Lie bialgebra of (g,d4). If (¢, d4) is any
Lie bialgebra isomorphic to (g*,d4-), we will call ((g,dq), (g',dy/)) a pair of dual
Lie bialgebras.

Given a Lie bialgebra (g,dy), the vector space d = g & g* has a natural non-
degenerate symmetric bilinear form (, ), defined by

(x+&y+no=(x,n) +(y,8), = yecgénecg, (1)

and it is well-known that d has a unique Lie bracket [ , | such that both g and
g* are Lie sub-algebras of ® and such that ( , ), is ad-invariant. One calls 0 or
(0, (, )o) the double Lie algebra of (g,d,). Moreover, with d, : 9 — A®d defined by

Go(r +&) =dg(x) — - (), w€g,§€Q,

the pair (9,d;) is a Lie bialgebra, called the double Lie bialgebra of (g, dg).

A Poisson Lie group is a pair (G, mg), where G is a Lie group and 7 a Poisson
bivector field on G that is multiplicative in the sense that the group multiplication
G X G — G is a Poisson map for the direct Poisson structure w5 X 75 on G x G and
e on G. Given a Poisson Lie group (G, 7¢), the bivector field 7 vanishes at the
identity element e of G, and the linearization d.mg, : g — A%g of 74 at e, defined by
deme(x) = [T, 7s](e), where T is any local vector field such that Z(e) = z, is a Lie
bialgebra structure on g, and one calls (g, d.7g) the Lie bialgebra of the Poisson
Lie group (G,7g). If (G*,mgx) is any Poisson Lie group whose Lie bialgebra
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is isomorphic to the dual Lie bialgebra of (g,d.m), one says that (G, ) and
(G*, g+ ) form a pair of dual Poisson Lie groups.

Let (G, m¢) be a Poisson Lie group with Lie bialgebra (g,d4), and let 9 be the
double Lie algebra of (g,dy). Then (G,9) is a Harish-Chandra pair in the sense
that the Lie algebra g of G is a Lie subalgebra of 9, and the Adjoint action Ad
of G on g extends to an action, still denoted by Ad, of G on ? by Lie algebra
automorphisms. Indeed, one has [Dr]

Adgé =rg-1 (7B (g)(I21€)) + Adj &, Eegr, (2)
where Adj-: : g* — g* is the dual map of Adg-1 : g — g for g € G.
For ¢ € g*, the vector field d(€) = 7 (¢8) on G is called the dressing vector

field defined by &, where ¢7 is the right invariant 1-form on G with value ¢ at e.
By (2), one has

d(é-)(g) = —lgpg(Adg—lf), g € g*7g S G7 (3)

where py : 0 — g is the projection with respect to the decomposition 0 = g + g*.

A left Poisson action of a Poisson Lie group (G,ms) on a Poisson manifold
(Y,my) is, by definition, a left Lie group action A : G x Y — Y which is also a
Poisson map with respect to the product Poisson structure no X 7y, on G X Y
and the Poisson structure m, on Y. Right Poisson actions of (G, 7s) are similarly
defined. A left Poisson action of a Lie bialgebra (g,dy) on a Poisson manifold
(Y, m) is a Lie algebra anti-homomorphism X : g — V*(Y) such that

[)\(LU)JTY] = )‘(59(1'»7 z €y,

where \ also denotes the linear map A%g — V2(Y) by Az Ay) = Mz) A A(y) for
x,y € g. It is shown in [W2] that when a Poisson Lie group (G, ) is connected,
a Lie group action A : G XY — Y of G on a Poisson manifold (Y, 7, ) is a Poisson
action of (G,ms) on (Y, 7wy ) if and only if the induced left Lie algebra action
A:g— V(YY) is a Poisson action of the Lie bialgebra (g, d,) of (G,7s) on (Y, 7y).
A similar statement holds for right Poisson Lie group actions.

2. Poisson structures defined by quasitriangular r-matrices

Recall that a quasitriangular r-matrix on a Lie algebra g is an element r € g® g
such that its symmetric part %(T + r21) is invariant under the adjoint action of
g on g ® g and that r satisfies the Classical Yang-Baxter Equation CYB(r) = 0.
Given a quasitriangular r-matrix r € g®g, one has the Lie bialgebra (g, d4), where
0g 19— A%g is defined by

dg(x) = ad,r, z€g. (4)
A Lie bialgebra (g, dy) for which (4) holds for some quasitriangular r-matrix r €
g ® g is said to be quasitriangular, and in such a case r is called a quasitriangular
structure of (g, dgq).

Let r € g ® g be a quasitriangular r-matrix on a Lie algebra g, and let o : g —
V1(Y) be a right Lie algebra action of g on a manifold Y. If r = Y, 2, @2} € g®g,

define
o(r) = Y o) @ o))

which is a 2-tensor field on Y. The following observation was made in [LM1].
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Lemma 1. If the 2-tensor field o(r) e T(TY QTY) on'Y is skew-symmetric, then
it is Poisson, and o is a (right) Poisson action of the Lie bialgebra (g,d4) on the
Poisson manifold (Y,o(r)), where dg is defined in (4).

In the context of Lemma 1, when o(r) is skew-symmetric, the Poisson structure
o(r) on Y is said to be defined by the Lie algebra action o and the r-matrix
regeg.

Remark 1. Let s = 3(r + r?!) be the symmetric part of r. It is not hard to
show ([LM1, §2.6]) that o(r) is skew-symmetric, i.e., o(s) = 0, if and only if the
stabilizer subalgebra of g at every y € Y is coisotropic with respect to s. Here
a subspace ¢ of g is said to be coisotropic with respect to s if s#(co) C ¢, where

d={¢eg :(&c)=0}Ccg. O

Let (g,04) be a quasitriangular Lie bialgebra with quasitriangular r-matrix r €
g ® g. Associated to r, one then [LM1, §2.3] has the Lie subalgebras

fr=Im(rf) and f- =Im((r*")) (5)

of g and the Lie bialgebras (f_,dg4l;_) and (fi, —d4ls, ), which are dual to each
other under the pairing (, )(;_s,) between f_ and f, defined by

(2, () 5 ) = (&P () = {(*D)H(©),m), € me g™ (6)

If (G, 7¢) is a connected Poisson Lie group with Lie bialgebra (g, d4), and if F.
and F_ are the connected Lie subgroups of G with respective Lie algebras f,, f_,
then F and F_ are Poisson Lie subgroups of (G, 7). Moreover, denoting by the
same symbol the restrictions of 7 to both F_ and Fy, ((F_,n¢), (F1,—7g)) is a
pair of dual Poisson Lie groups, with ((f_,dql;_), (f+, —dgls.)) as the corresponding
pair of dual Lie bialgebras.

Example 1. The double Lie bialgebra (9, d5) of any Lie bialgebra (g, d4) is quasi-
triangular, with a quasitriangular structure defined by the quasitriangular r-matrix

n
TaZZZIJi@&Ga@U, (7)

i=1
where (x;)™_, is any basis of g and (£)?_; the dual basis of g*. In this example,
the subalgebras f. and f_ in (5) are respectively g* and g. O
Remark 2. Let (g,d4) be a Lie bialgebra with a quasitriangular structure r € g®g.
Let 9;_ be the double Lie algebra of (f_, dg[;_), and let 75, € 05 ®0;_ be defined
as in (7). Identifying f* = f, via (6), the underlying vector space of d;_ is then
f— @+, and the map

q:fo -8 q($77$+):$7+$+, T— €f7,$+€f+, (8)

is a Lie algebra homomorphism. Moreover (see [ES, Lecture 4] and [LM1, §2.3]),
q(ro; ) =r. Thus if (Y, 7, ) is a Poisson manifold with a right Lie algebra action
o :g— VYY) such that 7, is defined by o and r, i.e., 1, = o(r), then 7, is also
defined by the Lie algebra 9;_-action coq: 5. — VYY) and the r-matrix To;
ond;_. U
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3. Mixed product Poisson structures

If ((g,0q), (g%, 0g4+)) is a pair of dual Lie bialgebras and if (X, 7y) and (Y, m,) are
Poisson manifolds with respective right and left Poisson actions

prgt = VH(X) and X:g— VHY)

by Lie bialgebras, the bivector field my x(, xy Ty on the product manifold X x Y
given by

n

Tx X(p,A) Ty = (’/TX’ O) + (OvﬂY) - Z(p(gl)v 0) A (Oa )\(1'2)), (9)

=1

is a Poisson structure on X x Y, called the mized product of 7« and my associated
to (p, A), where (x;)7 is any basis for g and (&;)!_; the dual basis for g*. We also

refer to
n

=3 (p(&),0) A (0, M) € VX (X x Y)
i=1
as the mized term of myx X, ») Ty. Mixed product Poisson structures of the form
in (9) are studied in [LM1].

3. Action Poisson groupoids associated to quasitriangular r-matrices

1. Poisson groupoids

We recall from [MX], [W1], [X2] some basic facts on Poisson groupoids.
Let G = Y be a Lie groupoid, with 6,7 : G — Y its source and target maps,
t: G — G the groupoid inverse map, and € : Y — G the identity bisection. Let

G2 ={(a,b) € G x G :7(a) =6(b)}

be the submanifold of G X G of composable elements. A Poisson bivector field m
on G is said to be multiplicative if the graph of the groupoid multiplication

{(a,b,ab) : (a,b) €Go} CGxGxG

is a coisotropic submanifold of G x G x G, where G x G X G is equipped with the
Poisson structure = x m x (—m). A Poisson groupoid is a pair (G = Y, ), where
G = Y is a Lie groupoid and « is a multiplicative Poisson structure on G. In
such a case, ((r) = —7, and 7, = §(7) = —7(r) is a Poisson structure on Y, and
one also says that (G =2 Y, ) is a Poisson groupoid over (Y, 7y ). If in addition 7
is non-degenerate and dim G = 2dim Y, one says that (G = Y, ) is a symplectic
groupoid over (Y, ).
Given a Lie groupoid G = Y, the left translation by a € G is a smooth map

lo: 07 (7(a)) = 071 (0(a)).

Let ker — G be the vector sub-bundle of the tangent bundle of G whose fiber
over a € G is the kernel of the differential of 8 : G — Y. A vector field V on G is
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said to be left invariant if it is everywhere tangent to ker # and is invariant under
the left translation by every element in G. The Lie algebroid of G = Y is then the
vector bundle A = €*kerf over Y with 7: A — TY as the anchor map and with
the Lie bracket on the space T'(A) of its sections defined by

—
(51, 52]= [51, 53],

where for s € T'(A), s is the unique left invariant vector field on G which coincides
with s on e(Y) 2 Y. As T.(,)G = (ker 0)|(y) + Te(y)e(Y) is a direct sum for every
y € Y, A can be identified with the normal bundle of ¢(Y) in G.

If (G = Y, ) is a Poisson groupoid, then the identity section €(Y") is a coisotropic
submanifold with respect to the Poisson structure m, and the dual vector bundle
A* of A, identified with the co-normal bundle N7V of ¢(Y) in G, is then a Lie
sub-algebroid over Y 2 €(Y) < G of the cotangent bundle Lie algebroid TG
over G defined by the Poisson structure 7. The pair of Lie algebroids (A, A*) is
then a Lie bialgebroid [MX] called the Lie bialgebroid of the Poisson groupoid
(G =Y,n). If (¢’ = Y,n') is Poisson groupoid with Lie bialgebroid (A*, A), one
says that (G = Y,n), (G’ =Y, 7)) is a pair of dual Poisson groupoids.

Recall also that if G is a Lie group and 7 : Y x G = Y, (y,9) — yg, is a right
Lie group action of G on a manifold Y, the product manifold Y x G then has the
structure of an action groupoid, with 7:Y x G — Y as the target map, with

0(y,9) =y, yeY,geg,

as the source map, and with the groupoid multiplication, inverse map ¢, and the
identity bisection € respectively given by

(Y1, 91) (W2, 92) = (Y1,9192), if g1 =v2, (W1,01), (y2,92) €Y X G,
Wy,9) = (yg,97"), €y)=(ye), yeY,ged.

Let g be the Lie algebra of G. Identifying €* ker 8 with the trivial vector bundle
A=Y x gover Y, the Lie algebroid of the action groupoid Y x G =2 Y is then
the action Lie algebroid Y x g with anchor map, also denoted by 7, given by

d
T:Y xg—=>TY, 7(y,2) = —

p t:OyeXp(tx), yeY,x €y,

and the Lie bracket on its sections being the unique extending of the Lie bracket
on g, identified with the space of constant sections. For ¢ € C>*(Y,g) 2 T'(Y x g),

the left-invariant vector field 2 on the action groupoid ¥ x G = Y is then given
by

—

® (y,9) = (0,1,0(yg9)), ye€Y,g€q. (10)

By an action Poisson groupoid we mean a Poisson groupoid whose underlying
groupoid structure is that of an action groupoid.
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2. Action Poisson groupoids associated to quasitriangular r-matrices

Let (G,m¢) be a connected Poisson Lie group with Lie bialgebra (g,dy), and let
(g%, 04+) be the dual Lie bialgebra of (g,d4). Let (Y,m,) be a Poisson manifold,
and assume that p : g* — V(Y) is a right Poisson action of the Lie bialgebra
(g*,94+) on (Y, 7). One then has the mixed product Poisson structure = on the
product manifold Y x G given by

T =Ty X(prg) Te (11)

where )\ is the left Lie algebra action of g on GG generated by the left action of G
on itself by left multiplication, i.e.,

Ae(x) = . zeyg,

where recall that for z € g, 2 is the right invariant vector field on G with value
x at the identity element e. Assume that G also acts on the right of Y by

T:YxG =Y, (y,9) —vyg, yeY, ged.

Then Y x G has the corresponding structure of an action groupoid over Y. We
review in this section a necessary and sufficient condition for the pair (Y x G =
Y, ) to be a Poisson groupoid.

Let (9, d5) be the double Lie bialgebra of (g, d4), where recall that d = g® g* as
a vector space, and recall the quasitriangular r-matrix r, on 0 given in (7). Let

c: 0= V(Y), o(x+&) =1(x)+pE), zegegh, (12)

where 7 also denotes the Lie algebra homomorphism g — V!(Y) induced by the
group action 7 : Y x G — Y (see notation in §3). The following Theorem 2 was
proved in [L].

Theorem 2 ([L, Thm. 3.32]). The pair (Y x G = Y, 7) is a Poisson groupoid if
and only if o : 0 — VYY) defined in (12) is a right Lie algebra action of @ on'Y
and my = —o(rp).

As [L] is not published, for the convenience of the reader, we give an outline of
the proof of Theorem 2 given in [L]. We first prove a lemma which explains the
main part of Theorem 2.

For a € QY(Y), let X, = 77 (7*a) € V(Y xG). By [X2, Prop. 2.7], if (Y xG =
Y, ) is a Poisson groupoid, X, is necessarily a left invariant vector field on ¥ x G
for every a € QY(Y), i.e., 0(X,) = 0 and X, (ab) = 1, X, (b) for any composable
pair (a,b) in Y x G.

Lemma 3. 1)One has 0(X,) =0 for all « € Q1Y) if and only if my = —o(r7).

2) Assume that Ty = —o(ry). Then X4 is left invariant for all o € QYY) if and

only if o : 0 — VYY) is a right Lie algebra action. In such a case, for a € Q1 (Y),
one has

—
Xa :¢)a7

where ¢, € C(Y, g) is given by ¢a(y) = —py(a(y)), with p, : g* = T,)Y given by
py(§) = p(&)(y) fory €Y and £ € g*.
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Proof. For g€ G and y €Y, let
7Y =Y, y—=yg yeY and 1, G-V ¢ —uyd, ¢ €G.

Let p1 : Y X G = Y and p2 : Y X G — G be respectively the projections to the
first and the second factors. Let o € Q'(Y) and let y € Y and g € G. Then

(T ) (y, 9) = pi74(a(yg)) + p3ly-17y0(a(yg)) € T(, (Y X G).

Using the definition of m, one has

Xa(y,9) = (7¥ ) (7} (alyg))) + py (T 7 (a(yg))),

#

13
72(9) (-1 7p ((yg))) — rgpy Ty (a(yg)))- (9)

1) Let {z;}_; be any basis of g and {&}?_; the dual basis of g*, so that r, =
S ;@& €0®0. Then my = —o(rp) if and only if w1y = = >0, 7(z;) ® p(&),
which is equivalent to

T W)ay) = —py(7y(ay)),  y€Y,ay €T)Y.

It is now clear from (13) that 1) holds.
2) Assume now that m, = —o(r5). By (13), X, is left invariant if and only if

—lgp},((yg)) = 78 (9) (11 7py (a(y9)) — ropima((yg)), (y,9) €Y x G. (14)

Pairing both sides of (14) with I5-1§ € T;G, where { € g%, and using (2), one can
rewrite (14) as

0= ((y9), pyg(§) — Tg7y(Pg(Adg)) — Typy(pg- (AdyS))), y €Y, 9€G,

where recall that pg : 0 — g and pg« : 9 — g* are the projections with respect to
the decomposition ? = g + g*. Therefore X, is left-invariant for all « € Q1(Y) if
and only if

7g-1(p(€)) = 0(Ady€) € VI(Y), geG,Eeg”. (15)
Assuming (15) and differentiating g € G in the direction of = € g gives

[T(z),p(g)] :O'([‘I,ﬂ), ng,ng*, (16)

so 0 : 0 — V(Y) is a Lie algebra homomorphism. Conversely, assume that o is
a Lie algebra homomorphism. The infinitesimal g-invariance of ¢ in (16) and the
connectedness of G imply the G-equivariance of the o, namely (15). It is also clear
from (13) that in such a case, X, =@, with ¢, as described. [

Proof of Theorem 2. Assuming that o : 0 — V1(Y) is a Lie algebra homomorphism
and that m, = —o(rp), we now show that (Y x G = Y, ) is a Poisson groupoid,
the other direction of Theorem 2 having been proved in Lemma 3.
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Note first that m,, = —o(ry) implies that o is a right Poisson action of the
double Lie bialgebra (9, —d,) on (Y, 7y ), so 7 is a right Poisson action of the
Poisson Lie group (G, —m¢) on (Y, m, ). It follows by an easy calculation that the
target map 7 : (G, ) — (Y, 7y ) is anti-Poisson, where G =Y x G. As the source
map 6 : (G, 7) — (Y, m,) is Poisson, the submanifold

Go={(a,b) eGxG:7(a)=0(a)} CGXG

of composable pairs is coisotropic with respect to the product Poisson structure
m x mon G xG. Note that the graph {(a,b,ab) : (a,b) € Go} C G x G x G of the
groupoid multiplication is the graph of the map plg, : Go — G, where

p:GxG—=G:(y1,91,92,92) = (y1,9192), vi €Y, 9 €G.

Note also that the map w is Poisson with respect to the product Poisson structures
mxmonGxgGand on G. Indeed, p = v o (Idg X p), where the projection
p: (Y xG,7) = (G,7s) to the second factor is Poisson, and the map

v: (YX Gaﬂ-) X <G77TG) — (YX G77T)a (y7gagl)'_> (ya991)7 yEK9791 eG

is Poisson. It is a general fact, the proof of which is straightforward (see [L, Lem.
3.33]), that for a Poisson map ® : (P, 7,) — (Q, 7g) and a coisotropic submanifold
P, C (P,mp), the graph {(p, ®(p)) : p € P1} of ®|p, : P, — Q is coisotropic in
(P x Q,mp x (—mg)) if and only if

T# (N}, P) C ker @,

where N P C T*P|p, is the co-normal space of P; in P, and the sub-bundle
i (N3, P) of TPy is called the characteristic distribution of the coisotropic subma-
nifold P; in P. Using Lemma 3, a direct calculation shows that the characteristic
distribution of Gs in G x G at the point (y1, g1, y2,92) € G2 is given by

{0, =lg 2z, —Ty,x,1g,2) : =€ Py LY C 9},

2

which is easily seen to be contained in the kernel of the differential of p at
(y1,91,92,92) € Ga. Thus the graph {(a,b,ab) : (a,b) € G2} is a coisotropic
submanifold of G x G x G with respect to the Poisson structure 7 x m x (—), and
hence (G =2 Y, 7) is a Poisson groupoid. This finishes the proof of Theorem 2. [

Remark 3. In the context of Theorem 2, it is easy to see that the Lie algebroid
structure induced by 7 on the co-normal bundle of ¢(Y) in YV x G, identified with
the trivial vector bundle Y x g* over Y, is that of the action Lie algebroid defined
by the right action p of g* on Y. Thus the Lie bialgebroid of the Poisson groupoid
(Y x G =Y, ) is the pair

(A=Y xg, A*=Y xg")

of action Lie algebroids. Their double, as a Courant Lie bialgebroid [LWX1], is
the action Courant algebroid Y x 0 over Y defined by o that has been studied in
[L-BM]. O
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Let ((G,7¢), (G*,mg~)) be a pair of dual Poisson Lie groups, with the corres-
ponding pair of dual Lie bialgebras ((g,dg), (g%,d4+)), and let (9,(, )») be their
double Lie algebra. Let again 5 = Y ., @; ® & be the quasitriangular r-matrix
on 0, where {x;}7_, is any basis of g and {&;}?_, the dual basis of g*. Assume that
o : 0 — VYY) is a right Lie algebra action of d on a manifold Y such that the
stabilizer subalgebra 9, of ? at every y € Y is coisotropic with respect to ( , )o,
which, by Remark 1, is equivalent to o(r;) being a Poisson structure on Y.

Corollary 4. 1) Assume that o|g : g — VI(Y) integrates to a Lie group action
Y x G — Y. Then one has the action Poisson groupoid (Y x G = Y, Ty xc) over
(Y,—0o(ry)), where Y x G =Y is the action groupoid over'Y defined by the group
action of G on'Y, and my ¢ is the mized product Poisson structure on Y X G
given by

n

Tyxa = (_0(70)70) + (Oaﬂ'c) - Za(gi)70) A (vazR)'

i=1

2) Assume that g« : g* — VYY) integrates to a Lie group action Y x G* — Y.
Then one has the action Poisson groupoid (Y x G* = Y, Ty xq+) over (Y, o(ry)),
where Y X G* =2'Y s the action groupoid over Y defined by the group action of
G* on'Y, and myx o+ is the mized product Poisson structure on'Y x G given by

n

Tyxar = (0(r2),0) + (0,mg-) = Y _o(a;),0) A (0,8

i=1

3) When the assumptions in both 1) and 2) hold, the two action Poisson grou-
poids in 1) and 2) form a pair of dual Poisson groupoids.

Proof. By Lemma 1, ¢ is a right Poisson action of the Lie bialgebra (9,d,) on
(Y,0(rp)), where recall that d(v) = ad,rp for v € 0. As 04 = y|q and dg- =
—Ja|g+, 0|g= is a right Poisson action of the Lie bialgebra (g,d4-) on (Y, —0o(13)),
and olg is a right Poisson action of the Lie bialgebra (g,dy) on (Y,0(ry)). Now
1) and 2) of Corollary 4 follow from Theorem 2 applied to the Poisson Lie groups
(G, mg) and (G*, mg«) respectively, and 3) follows from Remark 3. O

Remark 4. When oy : g — V}(Y) integrates to a Lie group action 7: Y x G — Y,
the pair (7,0) can be thought of as a (right) action of the Harish-Chandra pair
(G,0) (see §1) on the manifold Y in the sense that 7 is a right action of the Lie
group G on Y and o is a right action of the Lie algebra d on Y such that o|q
coincides with the action of g on Y induced by 7. O

Let (G, m) now be any connected Poisson Lie group with Lie bialgebra (g, dq),
and assume that r» € g ® g is a quasitriangular r-matrix for (g,dy). Let Y be a
manifold with a right G-action o : ¥ x G — Y, and assume that the stabilizer
subalgebra of g at every y € Y is coisotropic with respect to the symmetric part
of r. By Lemma 1 and Remark 1, o(r) is a Poisson structure on Y, where o : g —
VYY) also denotes the right Lie algebra action induced by o.

Recall from §2 the pair of dual Lie subalgebras ((f—,dglj_), (f+, —0gl5,))- Let
again F_ and Fl; be the connected subgroups of G with Lie algebras f_ and f+
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respectively, so (F_,7g|p_) and (F},—7g|r,) form a pair of dual Poisson Lie
groups. Restricting the action o of G on Y to actions of F. on Y, one then has
the action groupoids

YXF_.=Y and Y xF, =Y.

Let {z;}!"_, be a basis of f_ and {§}?_, the dual basis of f; with respect to the
pairing ( )(5_.7,) between f_ and f, given in (6).

Corollary 5. With the notation as above, let

Tyxp_ — (_U(T)) X(a|;+,)\ )7TG|F_
n 17
= (—o(r),0) + (0, 7g|#_) Z (0, =), (a7)
Tyxry = 0(1) X(ol;_ay) (—76lry)
(18)

(o(xi), 0)A0, ).

IV

Il
-

= (0(r),0) + (0, =7¢lr, ) —

?

Then (Y X F_ =Y, myxpr_) and (Y X FL Y,y xr, ) form a pair of dual Poisson
groupoids.

Proof. Let 9;_ be the double Lie algebra of (f_, d4]; ). Then ocog: 95 — V(Y is
a Lie algebra homomorphism, where ¢ : 9;_ — g is the Lie algebra homomorphism
given in (8). By Remark 2, ¢(rp; ) = . Thus (0 0 ¢q)(rs; ) = o(r) is a Poisson
structure on Y. Corollary 5 now follows by applying Corollary 4 to the pair of
dual Poisson Lie groups (F_,mg|r_) and (Fy, —7mg|e, ). O

Remark 5. The Lie algebra action o oq : 95 — VYY) of 05_ on Y gives rise to
the action Courant algebroid over Y as defined in [L-BM], with two transversal
Dirac structures defined by the splitting 9;_ = f_ + ;. The pair of dual Poisson
groupoids in Corollary 5 then have the two transversal Dirac structures as their
Lie bialgebroids. [

4. Review on standard complex semisimple Poisson Lie groups

1. The standard complex semisimple Poisson Lie group (G, mst)

For the rest of the paper, let G be a connected complex semisimple Lie group with
Lie algebra g. We recall the so-called standard multiplicative Poisson structures
on G and refer to [ES], [LM1], [LM2] for details.

Fix a pair (B,B_) of opposite Borel subgroups of G and a non-degenerate
symmetric ad-invariant bilinear form (, )y on g, and let ' = B N B_. Denote the
Lie algebras of B, B_ and T by b,b_ and b respectively. Let g = b+ > cA 0o
be the root decomposition of g with respect to b, and let A, C bh* be the set
of positive roots with respect to b. We will also write a > 0 for « € A;. Let
n= EaeA+ o, N_ = Za€A+ g_a, and let N, N_ be the connected subgroups
of G with respective Lie algebras n and n_. For each o > 0, let E, € g, and
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E_, € g_, be such that (E,,E_,)y = 1. Denote by ( , ) the bilinear form on
both h and h* induced by ( , )4, and let {h;}]_;, 7 = dimb, be a basis of h such
that (h;, h;) = d;;. The standard quasitriangular r-matriz associated to the choice
of the triple (b,b_, (, )4) is the element

re =1 hi®hi+Y Eo®E,€g®g. (19)

i=1 a>0
The bivector field on G defined by (see notation in §3)
g =i — 1 (20)

is a multiplicative Poisson structure on G, and (G, 7y ) is called a standard semi-
simple Poisson Lie group. The Lie bialgebra of (G, ms) is (g, dst), where dgt(x) =
ad,rs for z € g. In the notation of §2, one has

Im(rgt) =b and Im((rftl)ﬁ) =b_.

Thus B and B_ are Poisson Lie subgroups of (G, 7). Denoting the restrictions
of ms; to B and to B_ by the same symbol, the pair ((B_, 7y ), (B, —7st)) is then
a pair of dual Poisson Lie groups, with the pairing (, )(s_p) in (6) given explicitly
by

(x—+20, Y+ +Y0)(o_6)=(T—, Y+ )a+2(T0,Y0)g, T-EN_, To,Y0€h,y4 €n_(21)

A basis for b_ and its dual basis for by with respect to the pairing (, )(s_ ) are
now given by

{hi/V2Yioy U{E_a}aso C b and  {hi/V2}i_; U{Ba}aso Cb. (22)

The Poisson structure 7y is invariant under the action of 7' on G by left or right
multiplication. Let W = Ng(T')/T be the Weyl group of (G, T), where Ng(T') is
the normalizer subgroup of T'in G. For u,v € W, the double Bruhat cell (see [FZ])

G“Y" = BuBNB_vB_

is non-empty, and dim G*¥ = I(u) + I(v) + r, where [ is the length function on
W and recall that r = dim b. It is well-known [HL], [HKKR] that the T-leaves of
(G, st ) are precisely the double Bruhat cells in G. In particular, for each v € W,
both BvB and B_vB_ are Poisson submanifolds of G with respect to ;.

2. The Drinfeld double and the dressing vector fields of (G, mst)

The double Lie algebra (9, {, )») of the Lie bialgebra (g, ds;) can be identified with
the quadratic Lie algebra (g & g,( , )gag), Where g @ g has the direct product Lie
algebra structure, the invariant bilinear form ( , )4 qq is defined by

<(331a311)7 (5527242))9699 = <$17x2>g - <y17y2>g7 T1,T2,Y1,Y2 € 9,
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and g is identified with g, = {(z,2) : = € g} and g* with
g ={(x4 +xo,—xo+2_): x4 Enyz_ €n 9 € h} (23)

(see [CP], [ES], [LM2]). Let ré?) € (g@g) ® (g @ g) be the r-matrix on g ® g as
the double Lie algebra of (g, dst) (see Example 1), and let

My = ()" = ()"

be the corresponding multiplicative Poisson structure on G x G. Then the Poisson
Lie group (G x G, 1) is a Drinfeld double of (G, 7y ), and the diagonal embedding

(Gaﬂst) — (G X Gaﬂst)> g = (ga 9)7 g € Ga (24)

realizes (G, 7s) as a Poisson subgroup of (G x G, Ilg).
Let B°? be the Lie group which has the same underlying manifold as B_, but
with the opposite group structure. Then

(B_,m5 )= (B_ x B® 14 xmg) and (B,7z) = (B X B, (—ms) X Tst)

form a pair of dual Poisson Lie groups. Consider the respective right and left
Poisson actions

p: (G 7g) X (B, 75) — (G, 7).
p(g, (b1,b2)) = by 'gbs, g € G,by,by € B,

At (Bo,m5.) % (Gyma) = (Gomar),
/\((b_l,b_g),g) = b_lgb_g, g < G,b_l,b_g € B_.

It is proved in [LM1, §6.2 and §8] that Il is a mixed product Poisson structure
on G x GG. Namely,
Iy = g X(p,A) Tst- (25)

We now present some explicit formulas for the dressing vector fields on (G, 7t )
which will be used in the proof of Lemma 7. Let py : g © g — g the projection to
9 = gdiag With respect to the splitting g ® g = gdiag + 95;- Note that for any = € g,
writing « = [z]- + [z]o + [z]+ with [z]- € n™,[z]p € b and [z]+ € n, one has

pa(0,2) = 3[zlo + [z]+ € b, py(x,0) = F[a]o + [z]- € b7. (26)
Thus for 1 € n, the dressing vector field d(n,0) at g € G is given by

d(1,0)(g) = ~lgpgAd(g-1,4-1)(1,0) = Iy (3[Adg-1m]o + [Adg-17] )

) B (27)
= —rgn+1y (3[Ady-1n]o + [Ady-1m]4) € Ty(gB~) N Ty(BgB).
Similarly, for n € n_, and x € b, one has
d(0,7)(9) = ~lg (5[Adg-17]o + [Ady-17)) (28)

= —rgn +lg (3[Adg-1nlo + [Adg-11]-) € Ty(gB) N Ty(B~gB"),
d(z,—x)(g) = lg ([Adgr12]4 — [Adg-r12]-)
=rgx —ly ([Ad,-12]o + 2[Ad 1] ) (29)
= —rgz+ly ([Ady-12]o+2[Ady-12]4 ) €T, (TgB~) N Ty(TyB).
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Remark 6. Note that it also follows from (27), (28), and (29) that all the (B, B)-
double cosets and all the (B_, B_)-double cosets are Poisson submanifold of
(G7 ﬂ-st)’ D

3. Weak Poisson pairs

Consider the natural projections
w:G—G/B,g—~gB, w_-: G—B\G,g—~B_g, ge€qG. (30)
As both B and B_ are Poisson Lie subgroups of (G, mg),

m def w(mg) and w_q dof w_(Tgt) (31)

are now well-defined Poisson structures on G/B and on B_\G, respectively. The
Poisson structure 7 is invariant under the action of T on G/B by left multiplica-
tion, and it is proven in [GY1] that the T-leaves of 7 are precisely the so-called
open Richardson varieties, i.e., non-empty intersections (BuB/B) N (B_wB/B),
where u,w € W. In particular, every Bruhat cell BuB/B, for u € W, is a Poisson
subvariety of (G/B, ). Similarly, every Bruhat cell B_\B_uB_, for u € W, is a
Poisson subvariety of (B_\G,m_1).

Definition 1 ([LM1, §8.6]). Two Poisson maps py : (X,7x) — (Y,my) and p, :
(X,7mx) — (Z,7,) are said to form a Poisson pair if the map

(pyv,pz) s (X,7mx) = (Y x Zymy x75), (y,2) = (py(y), p2(2), y€EY,2€Z,
is a Poisson map.

The following Lemma 6 is a special case of a fact proved in [LM1, §8.6], but for
the convenience of the reader, we give a proof which is much simpler in our special
case.

Lemma 6. The two Poisson maps
w: (G,7st) = (G/B,m) and w_: (G,7g) = (B_\G,7_1)

form a Poisson pair. Consequently, for u,v € W and for any symplectic leaf
WY C G™Y, one has the Poisson pairs

wWlguv: (GYY, 1) = (BuB/B,m) and w_|guw: (GY?, mst) = (B_\B_vB_,m_1),
@lguw: (B 1) = (BuB/B,m) and w_|guv: (%Y, ms) = (B_\B_vB_,7_1).

Proof. Consider the projection ® : G x G — (G/B) x (B_\G) defined by

q)(glaQQ) = (gl.B7B7.92)7 g1,92 S G.

Using (25) to write Iy = (s, 0) + (0, Tst) + Tmix, it follows from the definition of
the mixed term mpyix that ®(mmix) = 0. Thus

O: (G xG,1g) = (G/B) x (B_\G), m X m_1)

is Poisson. As the diagonal embedding (G,7y) — (G x G,Il) is Poisson, w
and w_ form a Poisson pair. As G*" or any symplectic leaf in G*¥ are Poisson
submanifolds of (G, ), the rest of Lemma 6 follows. [
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Note that in Definition 1 we do not require the two maps p, and p, in a Poisson
pair to be surjective nor submersions. The next Lemma 7 and Lemma 8 say that the
Poisson maps in the Poisson pairs in Lemma 6, although not necessarily surjective,
are all submersions.

Lemma 7. For any u,v € W and any symplectic leaf X" of mgy in GV, the
maps

Wlguw: XY = BuB/B  and w_|guv: Y — B_\B_vB_
are submersions.

Proof. Let g € ¥*". By definition, the value at g of every dressing vector field on
(G, mst) is tangent to X*?. By (27) and (29), the differential of w|gu.v at g is a
surjective linear map from T, X% to T, p(BuB/B). Thus w|gu.» : ¥*¥ — BuB/B
is a submersion. Similarly, w_|guw : ¥%¥ — B_\B_vB_ is a submersion. [

Remark 7. Lemma 7 implies that for any u,v € W, the maps

w|guw: (GYY,7st) = (BuB/B,m) and w_|gu.v: (G, 7st) = (B_\B_vB_,m_1)
are also submersions, a fact one can in fact see directly without computing the
dressing vector fields. Indeed, For any g € G and = € b, the element
Zg,xd:efrgm_lg (% ([Adgra],) + [Adg*wL) =l (% ([Adg-ra]y) + [Adgflx]f)
lies in Ty(BgB N B_gB_) and w(zg,,) = w(rex). It follows that the differential
of w restricts to a surjective linear map from Ty (BgB N B_gB_) to T, p(Byg.B)
for every g € G. This shows in particular that for any u,v € W, the map w|gu.wv :

G*“? — BuB/B is a submersion. Similarly, one sees that @_|gu.» is a submersion.
O

Lemma 8. For any u,v € W and for any symplectic leaf X" of ms in G*", one
has
w(*) =w(@)= |J (BuB/B)n(B_wB/B)C BuB/B,
w<lu,wlv
o (3" =w (G*)= |J (B-\B-wB)n(B_\B_vB_)C B_\B_vB_,
wlu,w<v
where < is the Bruhat order on W defined by the choice of B.

Proof. Forw € W, B_wB C B_vB_B if and only if B_wBNB_vB_ # (), which,
by [De, Cor. 1.2], is equivalent to w < v. Thus B_vB_B = B_wB. It
follows that
@(G"") = w(BuB)Nw(B_vB_B)= | ) (BuB/B)N(B_wB/B).
w<u,wlv
Since G*¥ = £*"T, one has w(X*") = w(G*"). The claims on w_(X*") and
w_(G™") are proved similarly. O

w<v

Remark 8. For u,v € W and a symplectic leaf 3*? of 7y, in G*'V, the Poisson pair
w@lguw: (B, m5t) = (BuB/B,m) and w_|gu.w: (%Y, mg) = (B_\B_vB_,m_1)
in Lemma 6 is in general not a symplectic dual pair [W4] which requires the two

Poisson maps to be surjective submersions and their fibers to be mutual symplectic
orthogonals of each other. O
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5. The double Bruhat cells G¥'¥ as Poisson groupoids

Let the notation be as in §4. In this section, we apply the results in §3 to the
Poisson Lie group (G, mg) to construct an action Poisson groupoid ((G/B)x B_, )
over (G/B,m). For v € W, the choice of a representative ¥ of v in N¢(T) is used
to identify (G"¥,7s) with a Poisson subgroupoid of ((G/B) x B_,w) through a
Poisson embedding I : (B_vB_,7ms) — ((G/B) x B_, ).

1. The action Poisson groupoid ((G/B) x B_,w) over (G/B,m1)
Let G act on the flag variety G/B from the right by

(G/B) x G — G/B, (9.B,g1) — 97 '9.B, g¢,91 € G,

and let o : g — V'(G/B) be the induced right Lie algebra action of g on G/B
given by

By or o(z)(g.B) = 4 exp(—tr)g.B ze€g,g€ G, (32)

o(2) = —wl dt l=0

where recall that @w : G — G/B is the projection. Restricting the G-action on
G/B to one of B_ on G/B, one then has the action groupoid (G/B)x B_ = G/B,
with the source map 6, the target map 7, the groupoid multiplication p, the inverse
map ¢, and the identity bisection € respectively given by

0(9.B,b_)=g.B, 7(9.B,b_) = (b_'9g).B, (33)
p(9.B,b_,b="g.B,b_)=(g9.B,b_b"), (34)
W(9.B,b_)=(b"1g.B,b""), €(9.B)=(g.B,e), b_,b/_€B_,geqG. (35)

Consider the Poisson structure m = w(mg) on G/B. As mgy = rk — rfl and
w(rk) =0, one has
m = —w(rf) = —o(rs). (36)

Let A\_ : b_ — V}(B_) begiven by A_(z) =zft forx € b_. Asaly : b — V(G/B)
is a right Poisson action of the Lie bialgebra (b, —ds|s) on (G/B,m1), one has the
mixed product Poisson structure 7 on (G/B) x B_ given by

n

T =T1 X(g|s,A_) Tst = (m1,0) 4 (0, 7st) — Z(U<§i)’ O)/\(va?)’ (37)

i=1

where {z;}]; is any basis of b_ and {;}}_; the dual basis of b with respect to
the pairing (, )(p_ ) between b_ and b given in (21). By Corollary 5 and (36),

((G/B) x B_ = G/B, )

is an action Poisson groupoid over the Poisson manifold (G/B, ). Note that the
bases for b_ and b in (37) can be taken to be the ones in (21).
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2. The Poisson embedding of (B_vB_, ns) into ((G/B) X B_, )

Recall that N (T) is the normalizer subgroup of T in G. In this section, fix v € W
and let ¥ € Ng(T') be any representative of v in Ng(T). Let

Cy =NuvnNuoN_ C G. (38)
It is well-known that the multiplication maps

Cy; x B — BvB, (¢,b) — cb, ce Cy,be B,
B_xC; - B_vB_, (b_,¢)—b_c, b€ B_,ceCy,

are algebraic isomorphisms. Consider now the embedding
Ii: B.vB_ — (G/B) x B_, Iz(b_¢) = (b_¢.B,b_), b_€B_,ceC; (39)

The goal of §2 is to prove the following Proposition 9.
Proposition 9. The embedding I; : (B_vB_,ms) — ((G/B)x B_, ) is Poisson.
To prepare for the proof of Proposition 9, we first prove some properties of Cj.

Lemma 10. The submanifold C; of G is coisotropic with respect to the Poisson
structure Tyt .

Proof. Consider first the subgroup N, = N N (tN_v~1) with Lie algebra n, =
nN Adgn_. We first show that N, C G is coisotropic with respect to mg;. With
g* = g%, where the pairing between g = g4ine and gJ, is via the bilinear form
(,)g@mg On g & g, the annihilator subspace nY = {£ € g* : ¢|,, = 0} of n, in g is

{(x4 +xo,—xz0+2_): x4 Enyaxg €ha_ €n_NAdsn_},

which is a Lie subalgebra of g . It follows [LW, STS] that N, is a coisotropic
subgroup of (G, ms).
Let ¢ € Cp and write ¢ = nv, where n € N,,. By the multiplicativity of 7, one
has
Tst (¢) = Tt (nD) = Iyt (T) + rames(0).

As N, is coisotropic with respect to mst, mst(n) € (TG) A (T Ny), s0 r57si(n) €
(T.G) A (T.C3). On the other hand, it is easy to see that

Tst (17) = —T% ( Z E_a A Ea) . (40)
a>0,0"1a<0

It follows that L, 7 (v) € (T.G) A (T.C3). Thus Cj is a coisotropic submanifold of
(G, 7rst)~ [l

Lemma 11. The map
qy: (B—UB—77TSt)_>(B—77TSt)7 Q’U(b—c):b—a b EB—,C€C§7

is Poisson.
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Proof. (See also [GSV, Thm. 3.1]) Let b_ € B_ and ¢ € Cj. By the multiplicativity
of 7y, one has 7yt (b_c) = lp_ 7t (¢) +remse (b-). As Cj is a coisotropic submanifold
of (B_vB_,my), one has my(c) € T.Cy AN To(B_vB_). As q;(ly_T.C3) = 0, one
has gzlp_7st(c) = 0. Using the fact that 7 (b-) € A2T, B_, one sees that

o (st (b)) = (gore) (mst (b-)) = st (0-). [

Proof of Proposition 9. Let (B_vB_)diag = {(9,9) : g € B_vB_}. Then I is the
restriction to (B_vB_)giag C G X (B_vB_) of the map

Ky: Gx (B_vB_)—(G/B) x B_, (g,b_¢c)—(9.B,b_), g¢g€G,b_eB_,ceCs.

By §2 and in particular (25), both (B_vB_)giag and G x (B_vB_) are Poisson
submanifolds of G x G with respect to the Poisson structure Ilg. It is thus enough
to show that

K;: (G x (B_vB_),Ily) = ((G/B) x B_, )
is Poisson. Let again (x;)"_; be any basis of b_ and (&;)?_; the basis of b dual
to (x;)j—, under the pairing (, )(s_,p) in (21). By (25), one has IIg; = (7, 0) +
(0,7st) + p1 + p2, where

n n
H1 = Z( zR7O) A (0,.13?) and H2 = _Z( 1L7O) A (O’sz)

i=1 i=1
By the definition of 1, K;(ms,0) = (71,0). By Lemma 11, K;(0,ms) = (0, 7st)-
Since for any £ € b, the vector field £& on G vanishes when projected to G/B, one
has Ky3(p2) = 0. It is also clear from the definitions that K3(u1) coincides with
the mixed term of 7. Thus K5 is Poisson.

This finishes the proof of Proposition 9. O

Remark 9 (The Poisson structure mg, on B_vB_ as a mixed product). Define
Ui (G/B) x B- — B_ x (G/B), W(g.B,b_) = (b=",g.B),
and consider the Poisson structure 7/ = —¥(7) on B_ x (G/B). It is easy to see
that
T =T X(p_ay) (=),
where p_ and Ay denote the Poisson Lie group actions as well as the induced Lie
bialgebra actions, respectively given by
(B_,mst) X (B_,mst) = (B—,7st),  (b—,b_)—0b_b, b_,b €B_,
(B, —mst) X (G/B,—m) — (G/B,—m), (b,9.B)+ bg.B, be B,geG.

One then has the Poisson embedding
Voroly: (B_wB_,ms) = (B_x(G/B),n"), b_crs(b_,c.B), b_€B_,ceCy, (41)

where ¢ is the inverse map of the Poisson groupoid ((G/B)x B_ = G/B,7)). Note
the image of B_vB_ under ¥ oo I is the Poisson submanifold B_ x (BvB)/B
of (B_ x (G/B),n’). We have thus identified the restriction of ms to B_vB_ as
the mixed product Poisson structure n’ on the product manifold B_ x (BvB/B)
via the map in (41). O



786 JIANG-HUA LU, VICTOR MOUQUIN

Remark 10. Consider also the Poisson embedding

Iy ¥ oI, (BLvB_, —7y) — ((G/B) x B_, ),

Js(b_c) = (c.B,b="), b_ € B_,c€ Cy.
Then J;(B_vB_) = (BvB/B) x B_. As v runs over W, one has the respective
disjoint unions
G=||BwB. and (G/B)xB_=||(BvB/B)xB._
veW veW

of the Poisson varieties (G, —mg) and ((G/B) x B_,7) into Poisson subvarieties,
together with piecewise Poisson isomorphisms {J; : v € W}, but these piecewise
Poisson isomorphisms do not patch together to define a smooth map from G to
(G/B)xB_. O

Example 2. Let G = SL(2,C) and let B and B_ be the subgroups of G consisting
of upper and lower triangular matrices respectively. Let s € W be the non-trivial

element, so that
a b
BsB-{(C d).ad—bc-l,b;ﬁO}.

Identify the flag variety G// B with the complex projective space CP! via (Z Z) .B

— [a,c]. For § = (? _01>, the map Js : B_sB_ — CP' x B_ is given by

o2 =en ()

which does not extend to a smooth map from G to CP' x B_. [

3. Poisson embeddings of (G“", s ) into ((G/B) x B_, )
Recall that 6 and 7 are respectively the source and target maps of the action
groupoid (G/B) x B_ over G/B, and note that the image of B_vB_ under the
embedding I is
I;(B_vB_) = 7Y BvB/B) = «(BvB/B) x B_).

For u € W, restricting Iz to G*¥ = BuB N B_vB_ C B_vB_, one has the
embedding

Ijlguw: G < (G/B) x B_. (42)
For u,v € W, set

v def

F* 6~ (BuB/B)N7t Y(BvB/B) C (G/B) x B_, wu,vecW. (43)

It is clear from the definitions that
I;(G*"Y) = F*", ue W. (44)
Let T act on (G/B) x B_ via
t-(g.B,b_)=(tg.B,tb_), teT,g€ G,b_ € B_. (45)
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Proposition 12. The mized product Poisson structure = on (G/B) x B_ is inva-
riant under the T-action, and its T-leaves are precisely the intersections F™,
where u,v € W.

Proof. For each v € W, choose a representative v of v in Ng(T'). Let T act on
B_vB_ by left translation. Clearly, Iz: B_vB_ — (G/B) x B_ is T-equivariant.
The statement of Proposition 12 now follows from the T-equivariant Poisson
isomorphisms Iz, v € W, and the fact that the T-leaves of ms in B_vB_ are
the G“"’s foru e W. O

Remark 11 (The Fomin—Zelevinsky twist map). Let u,v € W and let @ and o be
any representatives of u and v in Ng(T') respectively. Recall that the inverse map
¢ of the Poisson groupoid ((G/B) x B_, ) satisfies ¢(7) = —7m. As ((F™") = FV¥,
by Proposition 9,

0 2 (o) T oo (Tnlgun )t (G, Ta) = (GO, et (46)
is anti-Poisson. Explicitly, the map (%7 : G%Y — G¥* is given by

Lﬂ,ﬁ(g) — b:lc _ Clb_l,
if g=cb=0b_c € G*",where c € Cy,bc B,b_ € B_,c € Cy,

or, if for h € N_TN, we write h = [h]_[h]o[h]+ with [A]- € N_,[h]o € T, [h]+ € N,
then o .
0g) = ([t~ a gu T oY), g e G (47)

-1

In [FZ, §1.5], Fomin and Zelevinsky introduced a twist map GU¥ — G*
(for certain special ways of choosing @ and v). By (47), the Fomin—Zelevinsky
twist map is the composition of ;%7 with the group inverse G — G, g + g~ ', of
G and with an involutive automorphism = — % of G (see [FZ, Formula (1.11)],
while the latter two involutions are easily seen to be both anti-Poisson with respect
to mg. It follows that the Fomin—Zelevinsky twist (G%, mgt) — (G“fl*’fl,?rst) is
anti-Poisson, a fact already proved in [GSV, Thm. 3.1]. O

Remark 12. Consider the two disjoint union decompositions

G= || ¢, (G/ByxB_= || F"". (48)

u,veW u,veW

Let T act on G by left multiplication and on (G/B) x B_ by (45). Then the two
decompositions in (48) are respectively that of T-leaves of (G, m) and ((G/B) x
B_,7). Any choice {t € Ng(T) : v € W} gives rise to piecewise T-equivariant
Poisson isomorphisms

I: (BwB- = | | G"",my) = (v (BuB/B) = | | F"",)
ueWw ueWw

but the maps {I; : v € W} do not patch together to define a smooth map from G
to (G/B) x B_. See also Remark 10. [
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4. The double Bruhat cell G”"V as Poisson groupoids
Observe that for any v € W,

=60"Y(BvB/B)nt"Y(BvB/B) C (G/B) x B_

is the subgroupoid of (G/B) x B_ =% G/B over the subset BuB/B of G/B.

Definition 2. For v € W and any representative o of v in N¢(T'), denote by
GV’ = BvB/B the double Bruhat cell G*?, equipped with the groupoid structure
induced by the isomorphism I : G¥"¥ — F¥". In details, the groupoid structure is
defined as follows: for g = cb = b_c’ € G¥?, whereb € B, b_ € B_, and ¢, ¢’ € Cj,

source map : 05(g) = g.B = c¢.B,
target map : 15(g9) = ¢'. B,

inverse map : t5(g) = =b"l¢,

identity bisection : €z(c. B) =ce(C; C Gv v

If h € G¥? is such that 75(g) = 65(h), so h =¥ =b_ ", with ¥ € B,V € B_,
and ¢ € Cy, the groupoid product of g and h is given by

ps(g,h) =cbt =b_b" c". (49)

The following Theorem 13, which follows directly from Proposition 9, is the first
main result of this paper.

Theorem 13. For any v € W and © € Ng(T'), the pair (G"7,7s) is a Poisson
groupoid over the Poisson manifold (BvB/B, ).

Proof. Tt is clear that all the structure maps of the groupoid G*¥ = BvB/B are
smooth. As Cy C G%7, the source map 0y is surjective. By Lemma 7, 05 is a
submersion. Thus G is a Lie groupoid over BvB/B. As I;(G"") is a Poisson
submanifold of (G/B) x B_ with respect to 7, (G%7, ) is a Poisson groupoid
over (BuB/B,m1). O

Remark 13. If v,v are two representatives of v € W and if ¢ € T is such that
v = tv, then the left translation [; : (G¥?, 1) — (G¥?, ) is a Poisson groupoid
isomorphism covering the Poisson isomorphism [; : (BvB/B,m) — (BvB/B,m1).
Hence the isomorphism class of (G"¥, 74 ) as a Poisson groupoid is independent of
the choice of the representative v. [

Recall that w_ : G — B_\G is the projection, and for each v € W, B_\B_vB_
is a Poisson submanifold of B_\G with respect to the Poisson structure m_; =
w_ (s ). For v € W and any representative 0 of v in Ng(T'), define

®;: B_\B_vB_ — BvB/B, B_c—cB, ceC(Cj;. (50)
Lemma 14. For v € W and any representative © of v in Ng(T),
®;: (B_\B_vB_,n_1) = (BvB/B,m)

is an anti-Poisson isomorphism.
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Proof. Tt is proved in [EL, Appendix A] that if py : (X, 7x) — (Y, 7y) and p; :
(X,7mx) = (Z,7,) form a Poisson pair and if X’ is a coisotropic submanifold of
(X, 7x) such that py|x : X’ — Y is a diffeomorphism, then ® = p, o (py|x/) ! :
(Y,my) = (Z,75) is an anti-Poisson map. Applying the above statement to the
Poisson pair (w_|gv.v,@|gv.v) in Lemma 6 and the coisotropic submanifold Cy of
(G¥?, g ), one proves Lemma 14. O

Remark 14. With @5 defined in (50), for v € W, let
wy = @50 (w_|guw): G — BuB/B, b_c—cB, b_e€B_,ceCy (51)

It follows from Lemma 14 that wy™ : (G, 7s) — (BvB/B, 1) is anti-Poisson.
Consequently, by Lemma 6, one has the Poisson pairs
@|guw: (G, 71) = (BuB/B,m) and wy": (G“", 7y) — (BvB/B,—m),
@lguw: (XY, 1) = (BuB/B,m) and oy’ (X%, 7s) = (BvB/B,—m1),

where X% is any symplectic leaf of 7g;, in G*¥. Note that when u = v, w|gv.w = 05
and wy” = 75, the source and target maps of the Poisson groupoid (G%?, 7y) over
(BvB/B,m). O

5. Commuting Poisson actions of (G*% my) and (G¥% 7s) on (G™7, mst)
Recall that if (G = Y, ng) is a Poisson groupoid over a Poisson manifold (Y, )
with target map 7: G — Y, a left Poisson action of (G, 7,) on a Poisson manifold

(X, mx) is a left Lie groupoid G-action on X with a moment map v : X — Y and
an action map

a:grx & {(v,2) eGxX:7(v)=v(z)} > X

such that Graph(a) dof {(v,z,a(y,x)) : (y,x) € GxX} is a coisotropic submanifold
of the Poisson manifold (G x X x X,mg X mx X (—7x)). In such a case, the
moment map v : (X, 7yx) — (Y, 7, ) is automatically Poisson [LWX2]. Note that
the moment map v is required to be a submersion to ensure that G * X is a smooth
submanifold of G x X. Right Poisson actions of Poisson groupoids are similarly
defined, where the moment maps are necessarily anti-Poisson.

Let now u,v € W and let @, 7 be any respective representatives of u and v in
N¢(T). Then it is straightforward to check that the groupoid G** acts on G*"
on the left with the moment map w|gu» : G** — BuB/B, where the action of
g€ G%" on xr € G with 75(g) = @w(x) is the element g>x € G*" given by

goa Xy =b_ b ' if g=cb=b_c,z=cb =b¢", (52)

with ¢, ¢ € Cg,c”’ € Cy,b,b' € B and b_,b’_ € B_. Similarly the groupoid G%?
acts on G*" on the right with the moment map wy;" : G“¥ — BvB/B (see (51)),
and the action of h € G"? on x € G“" with wy’(z) = 05(h) is the element
x<ah € G given by

zah & py = V' ifte=b =0 ", and h="b" =v"c", (53)

with ¢ € Cg, ', " € Cy,b',b" € Band b'_,b” € B_. One can also check directly
that the two groupoid actions commute.
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Theorem 15. For any u,v € W and respective representatives u,v € Ng(T), (52)
and (53) are respectively left and right Poisson actions of the Poisson groupoids

(G%Y 7)) and (G¥Y, ) on (G, mg).

Proof. Consider first the right action of (G%?, 7g) on (G*?, 7). Under the Pois-
son embedding I : (B_vB_,7ms) — ((G/B) x B_,m1), one has I;(G*") = F*"
and I;(G"?) = F"" (see (43)), and the right action of G"* on G*" corresponds
to the right action of F'¥ on F*™" by restricting the right Poisson action of the
Poisson groupoid ((G/B) x B_, ) on itself by right multiplication with the target
map 7 as the moment map. As F¥"Y and F*" are both Poisson submanifolds of
(G/B) x B_ with respect to m, the right action of (G%?,7g) on (G™", 7s) is
Poisson.
By replacing (u,v) by (v,u) in the above arguments, one has a right Poisson
action
G x G"" 3 (z,9) =~ x<ag € GV if wy(z) = 0a(9g). (54)

One now checks directly that under the Poisson isomorphisms
(BT (G ) — (G™Y, —mg)  and  1g: (G ) — (G™%, —7y),

where the Poisson isomorphism (*? : (G*",ms) — (GV*, —mgt) is given in (46),
the right groupoid action of G»% on G¥* in (54) becomes precisely the left action
of the groupoid G%% on G*"? given in (52). This shows that the groupoid action
in (52) is Poisson. O

6. Symplectic groupoids associated to double Bruhat cells

1. Symplectic leaves in G**¥

To describe the symplectic leaves of my in G, it is enough to describe the symplectic
leaves in the double Bruhat cells, as the latter are the T-orbits of symplectic leaves
of m¢t in G. For uw,v € W, and for any symplectic leaf ¥ of my in G*Y, let
T ={t €T :Xt=1%}. AsT acts transitively on the set of all symplectic leaves
of mgy in G*V, Ty, is independent of ¥ C G*“Y. We define the leaf-stabilizer of T in
G™" to be

T =Ty, (55)

stab

where ¥ is any symplectic leaf of 7y, in G**. In particular, one has
dim(X) = I(u) + (v) + dim(T5})-

When G is simply connected, symplectic leaves of mg; in each G are determined
by Kogan and Zelevinsky in [KZ] using specially chosen representatives in N (T)
of elements in W. In this section, for G simply connected, we adapt the results
in [KZ] to describe the symplectic leaves of my in G using arbitrary choices of
representatives of elements in W, and we describe the leaf-stabilizers of T in the
double Bruhat cells. We also extend some results from [KZ] to the case when G is
not necessarily simply connected.
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Assume first that G is connected but not necessarily simply connected. The

action of the Weyl group on T will be denoted as t’ = v~ 'tv, where v € W,t € T,
and ¢ is any representative of v in Ng(T). For u,v € W, let

T = {(t) " .t € T).

Fix u,v € W and let @, 7 be any representatives of u and v in Ng(T'), respectively.
Note that

@ 'BuB=u"1'C3gBC N.TN and B_vB_ v '=B_Cyz 'c N_TN,

and recall that for g € N_TN, we write g = [g]_[g]o[g]+, where [g]- € N_,[g]o €
T,[g]+ € N. For t € T, define

syt ={oecm s [utg), [gvp et} (56)

where [t] denotes the image of ¢ in T/T*™". Define the map

x: GYY = T/T“", x(9) = [a glo[go~ |y T™" € T/T™", ge G, (57)
Then clearly Sﬁ]v = x"([t]) for t € T, a level set of x. One also has
x(ga) = [a)*x(g), g€ G“",acT. (58)

The following Lemma 16 is proved in [KZ, Prop. 3.1] (neither the assumption that
G be simply-connected nor the special way of choosing representatives of Weyl
group elements in N¢(7T') made in [KZ] is needed in its proof).

Lemma 16 ([KZ, Prop. 3.1]). The symplectic leaves of ms in G** are the con-
nected components of the sets S[t] ,teT. Moreover for any t1,t2,t € T, S" v =

] if and only if [t1] = [t2], and S“ vt =8P

[t1t2]

Assume now that G is simply-connected, and let I' C A, be the set of simple
roots. For a € T', let w, € Hom(7', C*) be the corresponding fundamental weight,
and let A, be the corresponding generalized principal minor [FZ], [KZ], which is a
regular function on G whose restriction to N_T'N is given by A, (g) = [g]g~. For
u,v € W, let I(u,v) = I(u) N1(v), where

Iu)={a el : uws) =wa} =T\{oq,...,q}

for any reduced word u = 4, 5a, - - - Sa,, and define the maps 8,62 : G — CH/ (%)l
by

5(9) ={Aalg): a € I(u,v)} and 6*(g) = {(Aa(9))®: a € I(u,v)}.

We now modify the results from [KZ] to give a description of the connected
components of SE:]’U, and thus also of the symplectic leaves of my in G*°.
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Proposition 17. Assume that G is simply connected. Let u,v € W and let u and
v be any respective representatives of u and v in Ng(T'). Then for any t € T, the
restriction of 6% to S[’z]’v s a constant map, or, more precisely,

(Aa(9))” = Aa(@Aa(@) 1,V g e Sy (59)

The connected components of Sg]’ﬁ are the 2/7(wv)l (all of which non-empty) level

sets of the map 9§ : Sﬁ]’a — (Cx) (w2l

Proof. By first choosing a set {€a € ga, fa € §_a," € h: @ € T'} of Chevalley
generators of g which determines Lie group homomorphisms ¢, : SL(2,C) —
G for each a € T, one can choose the representative s, of s, in Ng(T) to be

Sa = Qa <(1) 01> for each o € I'. For w € W and any reduced word w =

SaySas - Say Of w, the element W = 54, Sy, -+ - 54, 1S then a representative of w in
N¢(T) independent of the choice of the reduced word. Moreover [MR, Lem. 6.1],
Ay (w) =11if « € I(w). Define

S = {g e Gv: [ﬂ_lg]o {gv 1};} € T"’”}.

By [KZ, Thm. 2.3, Cor. 2.5, Lem. 3.2], [u~1g]¢> = £1 for all g € S*? and «a €
I(u,v), and S*v has 2//(*?)l connected components SV = | |. S¥(e), where €
runs over the set of all sign functions € : I'(u,v) — {£1} on I(u,v), and

S50 (e) = {g eser: [5'g)e" = ea),Va € I(u, v)}.

Let tg,t1 € T be such that u = tou and v-1p = t1. One checks directly that for
ge GvY,
v

@]y = [ty ()" and [go71 ] = [go 5

It follows that for any ¢ € T and a € T with a® = (t;')"#;t, one has
SE]’T’ = {g e GW . [Tflg]o {g v‘l}o € (tgl)"tltT“’“} = S¥va.

Note now (see [KZ, (3.12)]) that [?I—lg]ga = A,(g) for any « € I(u) and g € BuB.
It follows that A,(g) = £1 for all g € S¥¥ and « € I(u,v). Consequently, for all

W,0

geSy andae I(u,v),
(Aa(9))? = Anla®) =ty @ty t¥e = Ay (T) Ay (D).

As there is one connected component of S¢¥ for each sign function € on I(u,v),
the connected components of Sﬁjv = S%Vq are precisely the 2//() level sets, all
of which non-empty, of the map ¢ : Sft]’f’ — (C)wl O

Recall the map x : G** — T/T™" defined in (57). The following Corollary 18
is also proved in [Y, Cor. 4.5].
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Corollary 18. For any go € G™", the symplectic leaf X9° of mg through go is
given by

Y9 ={g e G"": x(g) = x(g0) and 5(g) = (go)}- (60)

Remark 15. Using the decompositions BuB = CzB and B_vB_ = B_Cj, one
can describe the maps x and 6 on G** more explicitly. Indeed, writing an element
g e G¥ as g =ctn =n_t_c, where c € Cz, ¢ € Cy, t,t_ € T, n € N and
n_ € N_, one has x(g) = [tt"] € T/T™"" and A,(g) = t“~Ay(a) for all a € I(u).
O

When u = v, one has T%" = {e}. As a special case of Corollary 18, one has

Corollary 19. Assume that G is simply connected. Let v € W and let © be any
representative of v in Ng(T). Then the symplectic leaf XY of wsy in G through v
s given by

= {g e Gv: [@_19}

={gec: [, ([977Y],)" = e [77']y" = 1Va e 1(v)}

o
—~
SS
<
=
(=)
~
|
o
>
Q
—~
K
~
|
>
—~
~
<
Q
m
~
—~
~
—

Still assuming that G is simply connected, let
V={teT: tY“=1Vael(uv)}.

It is clear that Tv C T"". As a direct consequence of Corollary 18 and (58), one
has

Corollary 20. Assume that G is simply connected. Then for u,v € W, the leaf-
stabilizer of T in G is given by Tory = {t € T“V : t? € T""}.

Returning now to the connected semisimple complex Lie group G which may
not be simply connected, let G be the connected and simply connected cover of G,
and let £ : G — G be the covering map with ker k = Z, a subgroup of the center
of G. Denoting by 7rs; the multiplicative Poisson structure on G defined by the
same r-matrix ryy € g ® g, the map £ : (G Tst) — (G, mst) is then Poisson. For
ge G and g € G, let again X9 C G and X9 caG respectwely denote the symplectic
leaves of Ty, and 7y through g and g Let T = ki~ Y(T), a maximal torus of G. By
Corollary 20, the leaf-stabilizer of T in Gv i

smb_{aET a** =1V a € I(u,v) and aQEfu,v}.

Let Zy, = ZNTY" ={z€Z: 2% =1V a e I(u,v) and 22 € T""}.

Lemma 21. For any § € G*°, one has K(X9) = 29, where g = k(g) € G™Y,
and k : X9 — 39 is the quotient map X9 — ¥9/Z, ,, where Z,, acts on )30 by
multiplication.
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Proof. As k : (é, Tst) = (G,7g) is a local Poisson diffeomorphism, and as %9 is
connected, we have x(X9) C ¥9. To show that X9 C x(X9), let h € ¥9 and let
v :[0,1] — X9 be any smooth path in X9 such that ¥(0) = g and (1) = h. Let
y:10,1] — G be the unique lifting of 7 such that 4(0) = g. Again as « is a local
Poisson diffeomorphism, 7 is tangent to the symplectic leaf through 5(z) for every
z € [0,1]. Thus 5([0,1]) C £9. This shows that « (£9) = 9.

Clearly the Z,, ,-orbits in Y7 are contained in the fibers of x : £9 — %9. Suppose
that }\L,E € Y9 are in the same fiber of % : ©9 — 9. Then hz = k for some z € Z.
As Y9z and X9 are both symplectic leaves of 7y and have now a non-empty
intersection, X9z = %9, and thus z € Zyw. O

Remark 16. The same arguments as in the proof of Lemma 21 show that if « :
(X,7x) — (Y, 7y) is a covering map that is also Poisson, then the images under
of the symplectic leaves of (X, 7y ) are precisely all the symplectic leaves of (Y, 7y ).
O

Lemma 22. For any u,v € W, the leaf-stabilizer of T in G is gwen by T, =
< (Tin)-
stab
Proof. Let S be a symplectlc of T in GV, and let ¥ = KJ( ). Ifa e T;éa”b, then
it follows from 3@ = 3 that $k(d) = %, so /<;( ) € To. Conversely, let a € T
and choose any ae€ra) Letge 5. Then n(ga) € Ya =X, s0 k(ga) = k(q") for
some g € S Let z € Z be such that ga gaz =79 As $az and & are two symplectic

leaves of Tg; and have a non-empty intersection, one must have Saz = E and thus
a = rk(az) € (T;:;{)) O

Recall from Lemma 16 that symplectic leaves of 7 in G*'¥ are the connected
components of the sets SE;]’” given in (56), where t € T'. Define

T® ={aeT: a®=¢}.

It is clear that for each t € T, S’Ez]v is invariant under left translation by elements
in 7.

Lemma 23. For anyt € T, the induced action of T on the set of all symplectic
leaves of mg, in Sﬁ]’v is transitive.

Proof. Let ¥ and ¥’ be any two symplectic leaves of mg in S[q_:]’ﬁ, and let & and
5/ be two symplectic leaves of Ty in G such that x() = £ and x(Z') = ¥'.
Let [x] : T/T"" — T/T™" be the group homomorphism induced by x : T — T.
Then the fibers of [x] are the Z-orbits in 7'/7%" by multiplication. Let @ and ©
be any respective representatives of u and v in Ng (f) cG. Recalling the map
R:GE — f/f“” defined as in (57), one has

KI(R(E)) = [KI(RE) = [1)-
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Thus there exists z € Z such that zx(S) = X(2'). Let @ € T be such that a2 = z.
Then R(3@) = ¥(). By Proposition 17 (see also the proof of [KZ, Thm. 2.3]),
the group T(® = {Z € T : 72 = e} acts transitively on the set of the symplectic
leaves of Ty in any level set of . Thus there exists T € T® such that Saz = .
Let a = r(az) €T. Thena € T® and Sa =%, O

Remark 17. It follows from Lemma 23 and Lemma 22 that for ¢ € T', the number
of symplectic leaves of g in Sﬁ]’v is equal to ‘T(Q)/T(Q) N T;z;:b’. As T? is a

2-group, the number of symplectic leaves of 7y in S E]T’ is always a power of 2. [

2. The symplectic leaf 3? as a symplectic groupoid

Let now (G, ms;) be any standard complex semisimple Poisson Lie group, where G
is connected but not necessarily simply connected. Let v,u € W and let u and v
be any respective representatives of v and v in Ng(7'). One then has the Poisson
groupoid (G%% mg) over (BuB/B,m) and the Poisson groupoid (G%?, ) over
(BvB/B, 7). Recall their commuting (left and right) Poisson actions on (G*%, 7s),
respectively given in (52) and (53).

Theorem 24. 1) The symplectic leaf 7 of s through v is a Lie subgroupoid of
G%?. Consequently, (X%, ms) is a symplectic groupoid over (BvB/B, ).

2) For any symplectic leaf ¥V of mgy in G*“Y, the two commuting Poisson
actions in (52) and (53) restrict to Poisson actions of the symplectic groupoids
(X%, mst) and (X7, 7s) on the symplectic manifold (X%, ms).

Proof. Assume first that G is simply connected. Consider the action in (52).
Assume that g € X% and = € """ be such that 7;(g9) = @w(x), and write g = ctn =
n_t_c and z = dt'n’ =n’ t' ", where ¢, € Cy,” € Cy, t,t_,t',t" € T,n,n' €
N,and n_,n’ € N_. Then gz = ctnt'n’ = n_t_n’ ¢’ ¢'. By Proposition 17,
tth =e, t¥> =1 for all @ € I(u,v), and Z*? = {h € G : x(h) = x(x), Ax(h) =
Ay(z) VYV a € I(u,v)}. By the definitions of the map x and the functions A, (see
Remark 15),

x(g>x) = [t/ (t_t" )] = [ttt (¢ ) (t“) ] = [t'(t)"] =

x(x

and for every a € I(u,v), Ay(gbz) = ((t)“Ay(0) = (H)“>AL(7) = Ax(x ) Thus
g>x € X%V, Similarly, one shows that for all z € X% and h € X¥ with @y’ (z) =
05 (h) one has x<h € ¥%Y. Applying to the special case of u = v, 4 = v and X" =
¥? it shows in particular that X7 is closed under the groupoid multiplication of
G?7. Tt is easy to see that X7 is closed under the groupoid inverse of G%?. By
Lemma 7, both @|gu. : ¥%Y — BuB/B and wy’|sue : %Y — BuB/B are
submersions. Thus X7 is a Lie subgroupoid of G%?, and since dim(X%?) = 2[(v)
by Corollary 20, it is a symplectic groupoid over (BvB/B, ;). Furthermore, the
two actions in (52) and (53) restrict to Poisson actions of the symplectic groupoids
(X%, mgt) and (XY, 7s) on the symplectic manifold (X%, ).

For an arbitrary G, let G be the simply connected cover of G with & : G — G
the covering map and multiplicative Poisson structure 7, and choose any u, v € G
such that x(u) = @ and (V) = v. Let Z = ker k, and let ¥*¥ be any symplectic
leaf of Ty such that m(i"’”) = X%V, By Lemma 21, the symplectic groupoids

yeT/T*",
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(X%, 7st) and (X7, 7 ) are the respective quotients of the symplectic groupoids
(Za,%st) and (Zﬁ,%st) by Z,. and Z, ,, and that & : SV s S g the quotient
map by Z,,. It is easy to see that Z,, C Z,, and Z,, C Z,,. Statements 1)
and 2) for G now follow from the corresponding statements for G. O

Remark 18. Let u,v € W, and let ¥* C G**,X*¥ C G*", and X% C G""
be arbitrary symplectic leaves of 7. As L% = X% and XY = X7 for some
representatives of @ and v, we conclude that 3* and XV are symplectic groupoids,
respectively over (BuB,71) and (BvB/B, ), acting by commuting Poisson acti-
ons from the left and right on the symplectic groupoid (X*¥, 7g). O

Example 3. Let G = SL(2,C), where the pair (B, B_) consists of the subgroups
of respectively upper and lower triangular matrices, and where (21, x2) g =tr(z122),

x1,x2 € 5l(2,C). Writing g € Gas g = (gll 312 ), the Poisson brackets between
21 g22

the coordinate functions are

{9117912} = g11912, {911,921} = g11921, {912,922} = g12922;
{9217922} = g21922, {9117922} = 2912921, {9127921} =0.

_ 0 -1 z -1
Lets-(1 O),sothatCs—{<1 O).ZGC}.Then

1 N
Gsvsz{<a2 a (al;)z 1)>:a,b,zEC,a#O,abz—l;«éO},

a

with the Poisson structure given by {z,a} = za, {z,b} = a=(abz —2), {a, b} = ab.
Let x = a?(1 — abz)~!. The groupoid structure on G over C is given by

source map : 05(z,
target map : 75(

inverse map : t5(2,a,b) = (xz,a"*, —b),
— (2,1,0),2z € C,

multiplication : p3((21,a1,b1), (22,a2,b2)) = (21, a1a2,a1by + b1a2_1)

identity bisection :

N

lf zZ9 = Tg(Zl,al,[h).
Note that y is a Casimir function on G*° and the symplectic leaves in G*° are
precisely given by the (non-zero) level sets of x. Hence the symplectic leaf ¥z of 7y

@z —a) s a,b,ze€Ca#0,a°> =1 —abz}. Identify

_ T
through 5 € G** is 33 {( a b

35 with
s={(% L) et e -1} (1)

qt

The induced (non-degenerate) Poisson structure on ¥ is given by

{r,q} =201 —pq), {p.t}=pt, {qt} =—qt, (62)



DOUBLE BRUHAT CELLS AND SYMPLECTIC GROUPOIDS 797

and the induced symplectic groupoid structure on X is given by

source map : 6(p,q,t) = p,
target map : 7(p,q,t) = p,
inverse map : «(p, q,t) = (p, —qt?, t71),
identity section : €(p) = (p,0,1),
multiplication : u((p1,q1,t1), (P2, g2, t2)) = (p1,q2 + ity %, t1ta) when py = po.

Note that #=1(0) = 771(0) is isomorphic to the non-connected abelian Lie group
C x ZQ.

Consider now the group PSL(2,C), and write its elements as [g], where g €
SL(2,C). Then the symplectic leaf of mg through [5] € PSL(2,C) is parametrized
by the surface

Yo = {(p,q) € C*: l—pq#O}%{K‘? _(1])] : (p,q) ECQ,l—pq#O},

with the Poisson structure {p, ¢} = 2(1 — pq) and the groupoid structure given by

source map : 0(p,q) = p,
target map : 7(p,q) = p,

inverse map : «(p,q,t) = (p,q(pqg — 1)_1)7
identity bisection : {(p,0): p € C},

multiplication : u((p1,q1), (p2,q2)) = (P1,92 + 1 (1 — p2g2)) if p1 = pa.

Note the Lie group isomorphisms #~1(0) = 771(0) 2 C and 0~ (p) = 7~ (p) = C*
forp#0. O

Example 4. Let G = SL(3,C), with B, B_ respectively the subgroups of upper
and lower triangular matrices and the bilinear form (z1, z2)y = tr(z122) on sl(3, C).
Let s1, s2 be the two generators of the Weyl group W, identified with the symmetric
group S3. Let v = 5159,

0 -1 0 1 0
S1 = 1 0 0 s So = 0 0 -1 y and v = S189.
0 0 1 0 1
Let X5,,%5,, X5 be the symplectic leaves of 7y through respectively 31, 52, 0.
The group multiplication (G*1%1 1) X (G%2%2 1yy) — (G, 7st) is a Poisson

morphism, and one can check that its restriction gives a Poisson isomorphism
(Bs,, mst) X (B, mst) = (X5, 7). One thus has

pit1 —t1 0 1 0 0
So=<| t1 —ats OO0 pata —ta | :3(1—prg1)=1,13(1—pago)=1
0 0 1 0 t —qata

=¥ xX= {(p17Q1at1ap2aQZ7t2) . (pjvq]at]) S 27.] = 172}7
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where ¥ is given in (61), and 7 is identified with the direct Poisson bracket given
n (62). On the other hand, parametrize BvB/B C G/B by

z1 —1 0 1 0 0

C25 (z1,2) > [, 20) L |1 0 0]|[0 22 —1|BeBuB/B.
0 0 1 0 1 0
The Poisson structure m; on BvB/B is then given by {21, 20} = —z122. One checks

that the groupoid structure on XV over BuB/B is given as follows:

source map : 0(p1,qu,t1,p2,q2,t2) = [p1, P2ty '],

target map : 7(p1,q1,t1, P2, G2, t2) = [p1ty D2l

inverse map : t(p1,q1,t1, P2, ga, t2) = (p1ty ', —qutita, 17 poty s —qotats, t5 ),
identity bisection : €(z1,22)=(21,0,1, 22, 0,1),

and the groupoid multiplication is given by
p(v: ) = (o, dita "+ @ (8) 72, bty ph, o+ ga(t)) 71 (t5) 72, tath),

if v = (P11t 2, go,t2) and o' = (ph, q1, 1, Py, g, th) with pity ' = pf and
p2=ph(ty)". O

Remark 19. For any v € W and any representative v of v in N (T'), the symplectic
groupoid (X7, mg) over (BvB/B,m) is algebraic in the sense that (X7, mg) is an
algebraic symplectic variety and that the structure maps for the groupoid are all
algebraic morphisms. However, as one can already see in the example of SL(2,C),
the source fibers of these groupoids are not necessarily connected. It would be
interesting to understand how source-fiber connected symplectic groupoids can be
constructed from the ones in this paper. [.
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