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Abstract. To generalize the notion of Galois closure for separable field extensions, we
devise a notion of G-closure for algebras of commutative rings R→ A, where A is locally
free of rank n as an R-module and G is a subgroup of Sn. A G-closure datum for A over
R is an R-algebra homomorphism ϕ : (A⊗n)G → R satisfying certain properties, and
we associate to a closure datum ϕ a closure algebra A⊗n ⊗(A⊗n)G R. This construction
reproduces the normal closure of a finite separable field extension if G is the corresponding
Galois group. We describe G-closure data and algebras of finite étale algebras over a
general connected ring R in terms of the corresponding finite sets with continuous actions
by the étale fundamental group of R. We show that if 2 is invertible, then An-closure data
for free extensions correspond to square roots of the discriminant, and that D4-closure
data for quartic monogenic extensions correspond to roots of the cubic resolvent. This is
an updated and revised version of the author’s PhD thesis.

1. Introduction

In Manjul Bhargava’s groundbreaking series Higher composition laws, he intro-
duced an operation on rank-n Z-algebras called the Sn-closure in order to para-
meterize cubic, quartic, and quintic rings (see [1, 2.1]). Later, Bhargava and
Matthew Satriano extended this operation (modulo allowing torsion) in [2] to rank-
n algebras over arbitrary base rings; their new Sn-closure operation reduces to the
Galois closure for finite separable field extensions with associated Galois group Sn,
and also commutes with base change. The paper closes by asking whether similar
G-closure operations exist for other permutation groups G ⊆ Sn. We answer Yes,
provided that one is willing to parameterize such G-closures with what we call
G-closure data.

If L is a degree-n separable extension of a field K with separable closure K, we
can define the Galois closure N of L to be the minimal subfield of K containing
the images of all field homomorphisms L → K. Then the Galois group G =
Gal(N/K) is a permutation group: it comes with an action on the n-element set of
homomorphisms L→ N over K. Choosing an ordering of these n homomorphisms,
we identify G with a subgroup of Sn and can compile the n homomorphisms into
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a single G-equivariant K-algebra homomorphism

L⊗n := L⊗K L⊗K · · · ⊗K L→ N,

where G acts on N by definition but on L⊗n via the action of Sn on the tensor
factors. In particular, we obtain a homomorphism between the G-invariants of the
two K-algebras,

ϕ : (L⊗n)G → NG = K.

We will later see that this homomorphism is a G-closure datum for L over K,
because of where it sends certain elements of (L⊗n)G. For each element ` ∈ L,
denote the kth elementary symmetric polynomial in the elements

`(1) = `⊗ 1⊗ 1⊗ · · · ⊗ 1,

`(2) = 1⊗ `⊗ 1⊗ · · · ⊗ 1,

· · · · · · · · · · · · · · · · · ·
`(n) = 1⊗ 1⊗ · · · ⊗ 1⊗ `

by ek(`). Then ϕ(ek(`)) is the kth elementary symmetric polynomial in the n
conjugates of ` in N . In particular, ϕ sends e1(`) to the sum of `’s n conjugates,
that is, the trace of `. And ϕ(en(`)) is the product of `’s n conjugates, the norm
of `.

More generally, if ` is an element of L, we can regard multiplication by ` as a
K-linear map L → L. This linear map corresponds to an n × n matrix M` with
entries in K, for each choice of K-basis for L. The characteristic polynomial of
M` is independent of this choice of basis, so its coefficients are elements of K that
depend only on `. Write this characteristic polynomial as

p`(λ) := det(λI −M`) = λn − s1(`)λn−1 + s2(`)λn−2 − · · ·+ (−1)nsn(`).

Then the homomorphism ϕ : (L⊗n)G → K sends ek(`) to sk(`) for each k ∈
{1, . . . , n}; this is the defining feature of a closure datum.

Namely, the concept of characteristic polynomial extends to the following set-
ting: let R be a ring and A a rank-n R-algebra, i.e., an algebra that is locally free of
rank n as an R-module. (Note: in this paper all rings and algebras are commutative
by assumption; thus an R-algebra is just a ring A with a ring homomorphism
R → A.) Then for each a ∈ A, the multiplication-by-a homomorphism A → A
locally corresponds to action of an n × n-matrix on Rn, and the characteristic
polynomials of these matrices glue to a well-defined polynomial with coefficients
in R, which we again write as

pa(λ) = λn − s1(a)λn−1 + s2(a)λn−2 − · · ·+ (−1)nsn(a).

Then a G-closure datum for A over R is an R-algebra homomorphism ϕ : (A⊗n)G→
R that sends ek(a) to sk(a) for each a ∈ A and each k ∈ {1, . . . , n}.

A given ring R and algebra A may have G-closure data for only some groups
G; we will see in Theorem 4.5 that if K ↪→ L is a finite separable field extension,
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the only closure data are the above ϕ for various orderings of HomK(L,N), along
with their restrictions to the algebras of invariants under larger subgroups of Sn.

Now given such a ϕ : (L⊗n)G → K coming from a finite separable field extension
K ↪→ L with Galois closure N , consider the following commutative square:

(L⊗n)G
ϕ / /

��

K

��
L⊗n // N

.

In fact, the square is a tensor product diagram, that is, L⊗n ⊗(L⊗n)G K ∼= N .
In general, given a G-closure datum ϕ for A over R, we will associate to it the
closure algebra A⊗n ⊗(A⊗n)G R, thus generalizing the normal closure in the case
of fields.

The organization and main results of this paper are as follows.
In Section 2, we phrase the definition of closure datum in terms of the canonical

Ferrand homomorphism associated to a rank-n algebra, and we show that our
notion of closure algebra generalizes the “Sn-closure” in the sense of Bhargava and
Satriano in [2].

Theorem 1.1 (proven as Example 2.5). Let R be a ring and A a rank-n R-al-
gebra. The Ferrand homomorphism ΦA/R : (A⊗n)Sn → R is the unique Sn-closure
datum for A over R, and its associated closure algebra is Bhargava and Satriano’s
Sn-closure of A over R.

In Section 3, we consider the various ways of producing some closure data from
others, by varying the group, base ring, or algebra. In particular, a G-closure
datum induces an H-closure datum for each subgroup H of Sn containing G. The
motivating examples of closure data, those homomorphisms ϕ : (L⊗n)G → K that
arise from finite separable field extensions K ↪→ L with Galois group G, are always
minimal in the sense that they are not induced by a closure datum for any smaller
group than G. In Section 4 we show that for finite étale algebras over connected
rings, the minimal closure data are all of this form:

Theorem 1.2 (proven as Theorem 4.5). Let R be a connected ring with étale fun-
damental group πR. Let A be a rank-n étale R-algebra with corresponding πR-
set X, and let G be the image of πR in Bij(X,X). Let H be a subgroup of Sn.
Then minimal H-closure data for A over R are in one-to-one correspondence with
bijections f : {1, . . . , n} ∼−→ X such that f−1Gf = H, up to precomposing f by
permutations in H.

In Section 5 we consider the case of product algebras, and show that having a
closure datum on each factor gives closure data on the product:

Theorem 1.3 (proven as Theorems 5.1 and 5.5). Let R be a ring, and let Ai be
an R-algebra of rank ni for each i ∈ {1, . . . , k}, each with a Gi-closure datum ϕi
and associated closure algebra Bi. Let n = n1 + · · ·+nk and A = A1×· · ·×Ak, an
R-algebra of rank n, and set B = B1 ⊗ · · · ⊗Bk. Then for each subgroup H ⊆ Sn
such that H ∩ Sni = Gi—where we regard Sni as a subgroup of Sn via its action
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on {n1 + · · · + ni−1 + 1, . . . , n1 + · · · + ni−1 + ni}—there is an H-closure datum
for A whose associated closure algebra is B|H|/|G1|...|Gk|.

In Section 6 we use the results of [4] to classify An-closure data. Namely, for each
rank-n R-algebra A there is a rank-2 R-algebra ∆A/R such that An-closure data
for A over R are in one-to-one correspondence with R-algebra homomorphisms
∆A/R → R. The main theorem of that section is an analogue of the classical
criterion that the Galois group of a field extension (in characteristic not 2) is
contained in An if and only if its discriminant is a square:

Theorem 1.4 (proven as Theorem 6.5). Let R be a ring in which 2 is a unit, and
let A be an R-algebra equipped with an R-module basis of size n ≥ 2. Then An-
closure data for A over R correspond to square roots in R of the discriminant of
A with respect to that basis.

Finally, in Section 7 we explore the case of monogenic algebras, i.e., those rank-
n R-algebras of the form A ∼= R[x]/(f(x)). Cataloguing the G-closure data for
such an A over R is analogous to identifying the Galois group of f . We show first
that if G is an intransitive permutation group, then every G-closure datum for A
over R yields a nontrivial factorization of f ; thus if f is irreducible then all closure
data are with respect to transitive subgroups of Sn:

Theorem 1.5 (proven as Theorem 7.4). Let f(x) be a monic degree-n polynomial
with coefficients in a ring R, and let n1, n2, . . . , nk be natural numbers whose sum is
n. Then Sn1

×· · ·×Snk-closure data of A = R[x]/(f(x)) correspond to factorizations
of f into monic factors f1(x), . . . , fk(x) of degrees n1, . . . , nk, resepctively.

Given such a factorization f(x) = f1(x) . . . fk(x), set Ai = R[x]/(fi(x)) and
denote its Sni-closure algebra by Bi. Then the Sn1

× · · · × Snk-closure algebra
associated to this factorization is isomorphic to B1 ⊗ · · · ⊗Bk.

Finally, we show that under mild hypotheses on R and G, the G-closure data
for A over R correspond to homomorphisms (R[x]⊗n)G → R sending each ek(x)
to sk(a), where a ∈ A corresponds to the element x ∈ R[x]/(f(x)). We then
use this correspondence to show that D4-closure data for a quartic polynomial f
correspond bijectively to roots of f ’s cubic resolvent, with no assumptions on the
base ring R:

Theorem 1.6 (proven as Theorem 7.14). Let R be a ring and let A=R[x]/(f(x))
be a monogenic rank-4 R-algebra. Then D4-closure data for A over R correspond
to roots of f ’s cubic resolvent in R.

Remark 1.7. This paper is a condensed version of the author’s PhD thesis [3] under
Manjul Bhargava, and as such, the thanks expressed there to him and everyone
else who provided invaluable support to that project still apply. However, the
sections on universally norm-preserving homomorphisms and product algebras in
this paper are new, and nearly every definition, statement, and proof has been
revised from its original version. The author would therefore like to thank Maarten
Derickx, Bas Edixhoven, Riccardo Ferrario, Alberto Gioia, Hendrik Lenstra, Lenny
Taelman, and the two anonymous referees for their many helpful insights during
this revision process.
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2. The Ferrand homomorphism and closure data

We begin by reviewing the context in which our variant on Galois closures makes
sense:

Definition 2.1. Let R be a ring, M an R-module, and n a natural number. We
say that M is locally free of rank n if the unit ideal of R is generated by the set of
all r ∈ R such that the localization Mr is free of rank n as an Rr-module. Such
a module is automatically projective and finitely generated. An R-algebra of rank
n is an R-algebra that is locally free of rank n as an R-module.

Recall from [4, Def. 2.6] that for each pair (R,A) with R a ring and A an
R-algebra of rank n, there is a canonical R-algebra homomorphism (A⊗n)Sn →
R, which is denoted ΦA/R and called the Ferrand homomorphism for A over R.
Together, the Ferrand homomorphisms for various R and A have these properties:

(1) For each ring R and R-algebra A of rank n, and for each a ∈ A, we have

ΦA/R(a⊗ · · · ⊗ a) = NmA/R(a),

the norm of a, i.e., the element of R such that for every a1∧· · ·∧an ∈ ∧nA,
we have

(aa1) ∧ (aa2) ∧ · · · ∧ (aan) = NmA/R(a)(a1 ∧ · · · ∧ an).

(2) The Ferrand homomorphisms commute with base change: if R is a ring and
A is an R-algebra of rank n, and if furthermore R′ is any R-algebra and we
denote the rank-n R′-algebra R′ ⊗R A by A′, then the following square of
R′-algebra homomorphisms commutes:

R′ ⊗R (A⊗n)Sn ∼ //

idR′ ⊗ΦA/R

��

(A′⊗R′n)Sn

ΦA′/R′

��
R′ ⊗R R

∼ // R′

.

Properties 1 and 2 above uniquely identify the Ferrand homomorphisms through
the machinery of polynomial laws. A polynomial law from one R-module M to
another N is a family of functions fS : S ⊗R M → S ⊗R N for each R-algebra
S, such that for all R-algebra homomorphisms S → T , the square of functions
formed by fS , fT , and the base change homomorphisms S ⊗R M → T ⊗R M
and S ⊗R N → T ⊗R N commutes. In [9], Norbert Roby shows that homogeneous
degree-n polynomial laws f : M → N (those for which fS(s ·m) = sn · fS(m) for
all R-algebras S and elements s ∈ S and m ∈ S ⊗R M) correspond to R-module
homomorphisms ΓnR(M)→ N with ΓnR(M) the n-graded component of the divided
powers algebra of M . In [10] Roby also shows that if M and N are R-algebras and
the functions fS : S ⊗RM → S ⊗R N are multiplicative, then ΓnR(M) → N is an
algebra homomorphism.

A general presentation of ΓnR(M) is somewhat involved, but if M is flat then
by [5, 5.5.2.5 on p. 123] we have ΓnR(M) ∼= (M⊗Rn)Sn . The homomorphism
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ϕ : (M⊗n)Sn → N corresponding to a homogeneous degree-n polynomial law
(fS : S ⊗R M → S ⊗R N)S∈R -Alg is defined by the property that for every R-
algebra S, the base change

idS ⊗ϕ : ((S ⊗RM)⊗Sn)Sn ∼= S ⊗R (M⊗Rn)Sn → S ⊗R N

sends each element of the form m⊗ · · · ⊗m to fS(m).
The quintessential example of a multiplicative degree-n homogeneous polyno-

mial law is the family of norm maps NmS⊗RA/S : S ⊗R A → S for a rank-n R-
algebra A; in fact, according to [11] these are in some sense the only examples.
Thus we obtain a unique R-algebra homomorphism (A⊗n)Sn → R satisfying
properties 1 and 2, and this is Ferrand’s original construction of the Ferrand
homomorphisms in [6].

As a consequence of this abstract characterization of the Ferrand homomor-
phisms, we find that for each element a of a rank-n R-algebra A, the Ferrand
homomorphism ΦA/R applied coefficientwise to (x − a) ⊗ (x − a) ⊗ · · · ⊗ (x − a)
gives the characteristic polynomial pa(x) := NmA[x]/R[x](x − a) of a. In other
words,

Lemma 2.2. Denote the coefficient of (−1)kxn−k in (x − a) ⊗ · · · ⊗ (x − a) by
ek(a), the k-th elementary symmetric polynomial evaluated in the n elements a(1) =
a⊗ 1⊗ · · · ⊗ 1 up to a(n) = 1⊗ · · · ⊗ 1⊗ a in A⊗n. And denote the coefficient of
(−1)kxn−k in NmA[x]/R[x](x− a) = pa(x) by sk(a) ∈ R. Then

ΦA/R
(
ek(a)

)
= sk(a).

Remark 2.3. Note that by [12, Cor. 3.13(1)], which implies that elements of the
form ek(a) generate (A⊗n)Sn as an R-algebra, the fact that ΦA/R sends each ek(a)
to sk(a) uniquely characterizes the Ferrand homomorphism among all R-algebra
homomorphisms (A⊗n)Sn → R. The definition of closure datum given in the
introduction is thus equivalent to the following:

Definition 2.4. Let R be a ring and A a rank-n R-algebra. A closure datum
for A over R is a pair (G,ϕ), where G is a subgroup of Sn and ϕ is an R-
algebra homomorphism (A⊗n)G → R that extends the Ferrand homomorphism
ΦA/R : (A⊗n)Sn → R.

If (G,ϕ) is a closure datum for A over R, then we also say that ϕ is a G-closure
datum for A over R. Furthermore, given a G-closure datum ϕ, we denote the
R-algebra given by the tensor product

A⊗n
⊗

(A⊗n)G
R ∼= A⊗n/

(
α− ϕ(α) : α ∈ (A⊗n)G

)
by A⊗n/ϕ and call it the G-closure (or closure algebra) of A over R associated
with ϕ.

Example 2.5 (see Theorem 1.1). There is exactly one Sn-closure for each rank-n
R-algebra A: the one associated with ΦA/R itself. Its associated R-algebra is

A⊗n/ΦA/R ∼= A⊗n/
(
α− ΦA/R(α) : α ∈ (A⊗n)Sn

)
= A⊗n/

(
ek(a)− sk(a) : a ∈ A and k ∈ {1, . . . , n}

)
,
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where we have used the fact that the ek(a) generate (A⊗n)Sn from Remark 2.3 to
simplify the ideal presentation. This last quotient is exactly the Sn-closure of A
over R defined by Bhargava and Satriano in [2].

3. Relationships between closure data

In this section we demonstrate some ways of obtaining one closure datum from
another, either by replacing the group with a larger subgroup of Sn, changing the
base from R to an arbitrary R-algebra R′, or pulling back closure data for B to
closure data for A along certain R-algebra homomorphisms A→ B.

3.1. Inducing closure data

Varying the group gives us the most elementary means of producing new closure
data:

Proposition 3.1. Let R be a ring and A an R-algebra of rank n. If (G,ϕ) is
a closure datum for A over R, and H is a subgroup of Sn containing G, then
(H,ϕ|(A⊗n)H ) is also a closure datum for A over R.

Proof. The only criterion to check is that ϕ|(A⊗n)H restricts to the Ferrand homo-

morphism on (A⊗n)Sn , but this is true because ϕ does. �

We say that the G-closure datum ϕ induces the H-closure datum ϕ|(A⊗n)H for
each H containing G. In particular, the property of a given R-algebra having a G-
closure is upward-closed with respect to G. For this reason, “having a G-closure”
can be thought of as roughly corresponding to “having Galois group contained in
G”—the analogue of the Galois group, then, is a minimal group G for which a G-
closure datum exists. The following definition enriches this idea with the closure
data:

Definition 3.2. A closure datum (G,ϕ) for an R-algebra A of rank n is called
minimal if it is not induced by any other closure datum, i.e., if the homomorphism
ϕ : (A⊗n)G → R cannot be extended to a homomorphism (A⊗n)H → R for any
smaller subgroup H ( G.

For a given ring and algebra, is there always a unique minimal closure datum?
The answer is typically “No” for trivial reasons: if (G,ϕ) is a closure datum for an

R-algebra A of rank n, and σ ∈ Sn is any permutation, then (σGσ−1, ϕ◦(idA)⊗σ
−1

)

is another closure datum. (Here (idA)⊗σ
−1

is the automorphism of A⊗n sending

a(i) to a(σ−1(i)). It restricts to a map (A⊗n)σGσ
−1 → (A⊗n)G.) This describes

an action of Sn on the set of closure data for a given R-algebra, and the resulting
action groupoid gives us a notion of two closure data being isomorphic:

Definition 3.3. Let R be a ring and A an R-algebra of rank n. An isomorphism
of closure data (G,ϕ) → (H,ψ) for A over R is a permutation σ ∈ Sn for which

H = σGσ−1 and for which ψ = ϕ ◦ (idA)⊗σ
−1

.

Remark 3.4. The question we should be asking, then, is whether every pair of
minimal closure data is isomorphic in this sense. We will show in Section 4 that
this is the case if the ring is connected and the algebra is étale. There are also
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more examples; for instance, every free quadratic R-algebra has this property if
and only if R is a domain, as we will show in Remark 7.6.

The question of how unique minimal closure data need be has also been taken
up by Riccardo Ferrario for rank-4 algebras in [7], where he exhibits an example
of a quartic algebra with multiple minimal closure data with respect to groups
that are not even conjugate. On the positive side, Maarten Derickx shows in
forthcoming work that if R is a characteristic-zero integrally closed domain, then
for every finite-rank R-algebra A the groups with minimal closure data for A over
R are all conjugate. He also shows that this can fail in positive characteristic.

Note that with this definition of (iso)morphism of closure data, the operation
of taking the closure associated to a closure datum is then a functor:

Proposition 3.5. Let R be a ring and A an R-algebra of rank n. Let σ : (G,ϕ)→
(H,ψ) be an isomorphism of closure data for A over R. Then the automorphism
(idA)⊗σ of A⊗n descends to an R-algebra isomorphism A⊗n/ϕ

∼−→ A⊗n/ψ of the
associated closure algebras.

Proof. That σ : (G,ϕ) → (H,ψ) is an isomorphism of closure data reflects the
commutativity of the following diagram:

A⊗n
(idA)⊗σ

∼
// A⊗n

(A⊗n)G
. �

<<

ϕ

""

(idA)⊗σ

∼
// (A⊗n)H

. �

<<

ψ

""
R R

.

Therefore we obtain the desired isomorphism of the associated closure algebras

A⊗n/ϕ = A⊗n
⊗

(A⊗n)G
R
∼−→ A⊗n

⊗
(A⊗n)H

R = A⊗n/ψ. �

Remark 3.6. Note that for a fixed ring R with rank-n algebra A, and for a fixed
subgroup G ⊆ Sn, the set of G-closure data for A over R carries a natural action
by {σ ∈ Sn : σGσ−1 = G}, the normalizer NSn(G) of G. Those σ that belong to
G itself act trivially on the set of G-closure data, but induce generally non-trivial
automorphisms of the associated closure algebras. To summarize, for a fixed ring
R and rank-n algebra A:

• The set of all closure data for A over R has a natural Sn-action.
• For a fixed group G ⊆ Sn, the set of G-closure data for A over R carries a

natural action by the group NSn(G)/G. The orbits of this action are precisely
the isomorphism classes of G-closure data.

• For each G-closure datum ϕ, the associated closure algebra A⊗n/ϕ carries a
natural action by G.

3.2. Universally norm-preserving homomorphisms

We can also produce closure data by pulling it back along universally norm-
preserving R-algebra homomorphisms:
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Definition 3.7. Let R be a ring and A and B be R-algebras of rank n. An R-
algebra homomorphism f : A → B is called norm-preserving if for all a ∈ A, we
have NmA(a) = NmB(f(a)). We say that f is universally norm-preserving if for
every R-algebra S, the S-algebra homomorphism idS ⊗f : S ⊗R A → S ⊗R B is
norm-preserving.

Here are two alternative characterizations of universally norm-preserving homo-
morphisms:

Lemma 3.8. Let R be a ring and f : A → B a homomorphism of R-algebras of
rank n. The following are equivalent:

(1) The homomorphism f is universally norm preserving.
(2) The following triangle of R-algebra homomorphisms commutes:

(A⊗n)Sn

ΦA   

(f⊗n)Sn / / (B⊗n)Sn

ΦB} }
R

.

(3) The homomorphism f preserves characteristic polynomials, i.e., for all a ∈
A, we have pf(a)(λ) = pa(λ), or equivalently, sk(f(a)) = sk(a) for all
k ∈ {1, . . . , n}.

Proof. See [4, Prop. 7.1]. �

Proposition 3.9. Let R be a ring and A and B be R-algebras of rank n. If
f : A→ B is a universally norm-preserving homomorphism and (G,ϕ) is a closure
datum for B, then (G,ϕ ◦ (f⊗n)G) is a closure datum for A.

Furthermore, the homomorphism of R-algebras f⊗n : A⊗n → B⊗n descends to
a homomorphism of the G-closures A⊗n/(ϕ ◦ (f⊗n)G)→ B⊗n/ϕ.

Proof. We just need to check that ϕ◦(f⊗n)G, restricted to (A⊗n)Sn , is the Ferrand
homomorphism ΦA. This restriction is ϕ|(B⊗n)Sn ◦ (f⊗n)Sn = ΦB ◦ (f⊗n)Sn ,
which equals ΦA since f is universally norm-preserving. That the described
homomorphism of G-closures exists is elementary. �

3.3. Base extension of closure data

Finally, base change preserves closure data and commutes with forming the closure
algebra:

Proposition 3.10. Let R be a ring and A an R-algebra of rank n. Let R′ be any
R-algebra, and A′ = R′ ⊗R A the resulting R′-algebra of rank n. If (G,ϕ) is a
closure datum for A over R, then (G,ϕ′) is a closure datum for A′ over R′, where
ϕ′ is the composite homomorphism

ϕ′ : (A′⊗R′n)G ∼= R′ ⊗R (A⊗n)G
idR′ ⊗ϕ−−−−−→ R′ ⊗R R ∼= R′.

Furthermore, the canonical isomorphism R′ ⊗R A⊗n ∼= A′⊗R′n descends to an
isomorphism R′ ⊗R (A⊗n/ϕ) ∼= A′⊗R′n/ϕ′.
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Proof. First, note that because A is locally free as an R-module, the isomorphism
between A′⊗R′n and R′ ⊗R (A⊗n) does indeed restrict to one (A⊗R′n)G ∼= R′ ⊗R
(A⊗n)G by [4, Prop. 3.5], so the definition of ϕ′ makes sense. Then to check that
(G,ϕ′) is a closure datum for A′ over R′ is to check that ϕ′ restricts to ΦA′/R′ .
But this holds because ΦA′/R′

∼= idR′ ⊗ΦA/R, and ϕ restricts to ΦA/R.
The claim that R′⊗R(A⊗n/ϕ) ∼= A′⊗R′n/ϕ′ is easily checked using the presenta-

tion of the G-closure as a tensor product:

R′ ⊗R
(
A⊗n

⊗
(A⊗n)G

R

)
∼= (R′ ⊗R A⊗n)

⊗
R′⊗R(A⊗n)G

(R′ ⊗R R) ∼= A′⊗R′n
⊗

(A′⊗R′n)G
R′;

the tensor product on the left is R′ ⊗R (A⊗n/ϕ), and the one on the right is
A′⊗R′n/ϕ′. �

Note that in the special case G = Sn, this provides a much simpler proof of [2,
Thm. 1].

Remark 3.11. Let R be a ring, let A an R-algebra of rank n, let G be a subgroup
of Sn. Let R′ be an arbitrary R-algebra and A′ = R′⊗RA the resulting R′-algebra
of rank n, and consider the set of G-closure data for A′ over R′ as R′ varies. We
have the following bijections, natural in R′, making this functor representable:

{G-closure data for A′ over R′}
←→ {(A′⊗R′n)Sn -algebra homomorphisms (A′⊗R′n)G → R′}
←→ {R′-algebra homomorphisms (A′⊗R′n)G ⊗(A′⊗R′n)Sn R

′ → R′}

←→ {R′-algebra homomorphisms R′ ⊗R ((A⊗n)G ⊗(A⊗n)Sn R)→ R′}
←→ {R-algebra homomorphisms (A⊗n)G ⊗(A⊗n)Sn R→ R′}.

In particular, setting R′ = (A⊗n)G ⊗(A⊗n)Sn R, we find that A′ has a canonical
G-closure datum corresponding to the identity map on R′. This G-closure datum
is universal: every G-closure datum for every base extension of A can be obtained
via base extension from this G-closure datum for A′ over R′.

The special case of G = An is particularly nice: the resulting R-algebra ∆A/R =
(A⊗n)An ⊗(A⊗n)Sn R is the discriminant algebra for A over R defined in [4], which
we can now interpret as the universal R-algebra such that base-changing to it gives
A an An-closure. We explore An-closure data further in Section 6.

Letting R′ vary again, we find through similar reasoning that if H ⊆ G are
subgroups of Sn and ϕ is aG-closure datum for A over R, then R-algebra homomor-
phisms (A⊗n)H ⊗(A⊗n)G R → R′ correspond to the set of H-closure data on A′

over R′ inducing the closure datum (G,ϕ′) of Proposition 3.10.
In particular, we can now give an interpretation to the closure algebra associated

with a given closure datum (G,ϕ) for A over R: the closure algebra

A⊗n/ϕ = A⊗n ⊗(A⊗n)G R

is the universal R-algebra for which base changing to it gives A a 1-closure datum
inducing the given G-closure datum. If we think of a G-closure datum as partial
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factorization information for each characteristic polynomial of elements of A—a
more precise version of this idea is found in Theorem 7.4—then the G-closure
algebra is the universal algebra over which every characteristic polynomial splits
completely in a way respecting this partial information.

4. Étale algebras

In this section, we will consider closure data for finite étale algebras, namely
locally free algebras for which the trace form (a, a′) 7→ Tr(aa′) is non-degenerate.
Examples include the trivial étale algebras, of the form R → RX :=

∏
x∈X R for

some finite set X, as well as finite separable field extensions. First, we recall a
lemma characterizing finite étale algebras as those which are étale-locally trivial:

Lemma 4.1 ([2, Lem. 15]). Let R be a ring and A an R-algebra finitely generated
as an R-module. Then A is étale of rank n if and only if there is an étale cover
R→ S such that S ⊗R A ∼= Sn as S-algebras.

(An R-algebra S forms an étale cover of R if S is étale over R and Spec(S)→
Spec(R) is surjective, but we will not need this definition in order to apply Lemma
4.1.)

Thus is it helpful to first consider the Ferrand homomorphism and closure data
for trivial algebras:

Lemma 4.2. If R is a ring and X is an n-element set, then the Ferrand homomor-
phism of the trivial rank-n R-algebra RX

ΦRX/R : ((RX)⊗n)Sn ∼= RX
n/Sn → R

is the projection onto the factor indexed by the orbit of bijections Bij({1, . . . , n}, X).

Proof. See [6, Ex. 3.1.3(b)]. We could alternatively deduce this result from Propo-
sition 5.3, by choosing an arbitrary bijection π : X → {1, . . . , n} and pulling back
the canonical 1-closure datum on Rn to RX and then restricting it to ((RX)⊗n)Sn .
�

To understand closure data for finite étale algebras, then, it will be helpful to
understand closure data for trivial étale algebras.

Lemma 4.3. Let R be a ring, X a finite set of cardinality n, and G a subgroup
of Sn. Then G-closure data for RX over R correspond bijectively to R-algebra
homomorphisms RI → R, where I is the set of G-orbits of Bij({1, . . . , n}, X)
under the action of G by precomposition. Furthermore, every G-closure of RX is
isomorphic to R|G| as an R-algebra.

Proof. Recall from Remark 3.11 that G-closure data for RX over R correspond to
R-algebra homomorphisms

((RX)⊗n)G
⊗

((RX)⊗n)Sn
R→ R.

We can write (RX)⊗n as RMap({1,...,n},X), with G acting on the set of basis idempo-
tents {ef | f : {1, . . . , n} → X} via σ ·ef = ef◦σ−1 . The G-invariants, then, have an
R-basis of idempotents eO =

∑
f∈O ef for each G-orbit O of Map({1, . . . , n}, X).
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By Lemma 4.2, the Ferrand homomorphism RMap({1,...,n},X)/Sn → R is the
projection onto the factor indexed by Bij({1, . . . , n}, X). Hence every eO in the
ring RMap({1,...,n},X)/G with O 6⊆ Bij({1, . . . , n}, X) is sent to zero in the tensor
product. So G-closure data for RX over R are parametrized by homomorphisms
to R from

RMap({1,...,n},X)/G/
(
eO : O 6⊆ Bij({1, . . . , n}, X)

)
= RBij({1,...,n},X)/G = RI .

Now we show that each G-closure algebra of RX is isomorphic to R|G|. Choose
a homomorphism RI → R; this partitions Spec(R) into |I| disjoint affine open
subsets on which the map is a projection. Then working locally, assume we have
the G-closure datum corresponding to the projection RI → R indexed by the
Oth factor for some G-orbit O ⊆ Bij({1, . . . , n}, X). Then the associated closure
algebra is

RMap({1,...,n},X) ⊗
RMap({1,...,n},X)/G

R ∼= RO,

and since G acts freely on Bij({1, . . . , n}, X), we have |O| = |G| and RO ∼= R|G|.
In the general case, we find that Spec(R) is a disjoint union of open subsets on
which the closure algebra is trivial; the closure algebra is hence globally trivial as
well. �

Corollary 4.4. Let R be a ring and A a rank-n étale R-algebra. Then for every
closure datum (G,ϕ) for A over R, the associated closure algebra A⊗n/ϕ is a
rank-|G| étale R-algebra.

Proof. By Lemma 4.1, there is an étale cover R→ S such that S⊗RA ∼= Sn as S-
algebras. By Proposition 3.10, we obtain a G-closure datum ϕS for S⊗RA over S,
for which the associated closure (S ⊗R A)⊗Sn/ϕS is isomorphic to S⊗R (A⊗n/ϕ).
But by Lemma 4.3, the associated G-closure of S ⊗R A ∼= Sn is isomorphic to
S|G|. Therefore S ⊗R (A⊗n/ϕ) ∼= S|G|, so by Lemma 4.1 again A⊗n/ϕ is an étale
R-algebra of rank |G|. �

In case R is a connected ring, that is, R contains exactly two idempotents 0
and 1, then for each choice of homomorphism R → K with K a separably closed
field, there is a profinite group πR called the étale fundamental group of R, and a
contravariant equivalence of categories

{finite étale R-algebras} ←→ {finite sets with a continuous πR-action}

sending an étale algebra A to the finite πR-set HomR(A,K); see [8] for more
details. In this setting, we have the following interpretation of closure data and
closure algebras in terms of the corresponding πR-sets:

Theorem 4.5 (see Theorem 1.2). Let R be a connected ring with étale funda-
mental group πR. Let A be a rank-n étale R-algebra with corresponding πR-set X,
and let G be the image of πR in Bij(X,X). Let H be a subgroup of Sn. Then
H-closure data for A over R are in one-to-one correspondence with bijections
f : {1, . . . , n} ∼−→ X such that f−1Gf ⊆ H, up to precomposing f by permuta-
tions in H.

Furthermore, if B is the finite étale algebra corresponding to the πR-set G, then
every H-closure of A over R is isomorphic to B|H|/|G|.
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Proof. Recall that H-closure data for A over R correspond to homomorphisms

(A⊗n)H
⊗

(A⊗n)Sn
R→ R,

and thus to πR-equivariant maps

{∗} → Xn/H ×Xn/Sn {∗},

that is, πR-invariant elements of Xn/H whose images in Xn/Sn are the class of
bijections Bij({1, . . . , n}, X). These in turn correspond to the πR-invariant (i.e., G-
invariant, since the action is via πR � G) H-orbits of Bij({1, . . . , n}, X). Write
such an H-orbit as fH for some bijection f : {1, . . . , n} ∼−→ X; then the condition
that fH be G-invariant is the equality GfH = fH, or the containment Gf ⊆ fH.
Thus we may say that fH is a G-invariant H-orbit if and only if f−1Gf ⊆ H.
Therefore H-closure data correspond to bijections f (up to precomposition by
elements of H) such that f−1Gf ⊆ H, as desired.

Now given such a G-invariant H-orbit O of Bij({1, . . . , n}, X), giving a πR-
equivariant function {∗} → Xn/H, we find that the πR-set corresponding to the
associated H-closure algebra is

Xn ×Xn/H {∗} = O.

Now the action of πR on Bij({1, . . . , n}, X) is via G, and the G-action on
Bij({1, . . . , n}, X) is free, so as a πR-set it is isomorphic to a disjoint union of copies
of G. Then so is the G-invariant subset O, and by comparing cardinalities we find
that O ∼=

∐
|H|/|G|G as πR-sets. Therefore the H-closure algebra corresponding

to O is isomorphic to B|H|/|G|, as claimed. �

Remark 4.6. Note that if H ⊆ K are subgroups of Sn, then induction of H-closure
data to K-closure data sends the H-orbit of a bijection f : {1, . . . , n} ∼−→ X to
the larger K-orbit of f . Then for each bijection f , there is a smallest subgroup
Gf ⊆ Sn for which f gives a Gf -closure datum, namely Gf = f−1Gf , and this

Gf -closure datum is therefore minimal. Two bijections f, f ′ : {1, . . . , n} ∼−→ X
give the same minimal closure datum if and only if Gf = Gf ′ and fGf = f ′Gf ′ ,
which implies that Gf = Gf ′, so f and f ′ are related via postcomposition by an
element of G. Thus the minimal closure data for A over R are in bijection with
the G-orbits of Bij({1, . . . , n}, X). Since the action of Sn on these is transitive, all
the minimal closure data are isomorphic, as we claimed in Section 3. Note also
that the closure algebras associated to the minimal closure data are all isomorphic
to B, the étale algebra corresponding to the finite πR-set G, as in the usual Galois
theory of projective separable ring extensions.

5. Product algebras

In this section, we consider the closure data that arise on product algebras
A1× · · · ×Ak given closure data on each Ai. Our first main theorem is as follows,
and covers the case of Theorem 1.3 where H is the product of the factor groups
Gi:
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Theorem 5.1. Let R be a ring, and let Ai be an R-algebra of rank ni for each
i ∈ {1, . . . , k}, each with a closure datum (Gi, ϕi). Set

• n :=
∑k
i=1 ni.

• A :=
∏k
i=1Ai, an R-algebra of rank n.

• G :=
∏k
i=1Gi, considered as a subgroup of Sn via the action of each Gi on

the ni-element set {n1 + · · ·+ ni−1 + 1, . . . , n1 + · · ·+ ni−1 + ni}.
• ϕ : (A⊗n)G → R equal to the composite

(A⊗n)G ∼=
k⊗
i=1

(A⊗ni)Gi −−�
k⊗
i=1

(A⊗nii )Gi
⊗k
i=1 ϕi−−−−−→ R.

Then (G,ϕ) is a closure datum for A over R.

Furthermore, the R-algebra homomorphism A⊗n ∼=
⊗k

i=1A
⊗ni →

⊗k
i=1A

⊗ni
i

descends to an isomorphism A⊗n/ϕ ∼=
⊗k

i=1(A⊗nii /ϕi).

Proof. First we show that ϕ restricts to the Ferrand homomorphism (A⊗n)Sn → R.
Let a = (a1, . . . , ak) ∈ A, and consider the image of (x − a)⊗n under ϕ ⊗ idR[x].
We find

(x− a)⊗n =

k⊗
i=1

(x− a)⊗ni 7−→
k⊗
i=1

(x− ai)⊗ni 7−→
k∏
i=1

pai(x) = pa(x),

so looking at each coefficient of xn−k, we have that ϕ sends ek(a) to sk(a) as
desired. (That the characteristic polynomial pa(x) of a ∈ A factors as the product
of each characteristic polynomial pai(x) of ai ∈ Ai is easy to check locally when
each Ai has an R-basis: then a = (a1, . . . , ak) acts block diagonally.)

Next we show that the closure algebra associated to (G,ϕ) is the tensor product
of all the A⊗nii /ϕi. Note that

(A⊗G)n = (A⊗n1 ⊗ · · · ⊗ A⊗nk)G1×···×Gk ∼= (A⊗n1)G1 ⊗ · · · ⊗ (A⊗nk)Gk ,

since the natural map is easily checked to be an isomorphism whenever A is a free
R-module. So we obtain

A⊗n
⊗

(A⊗n)G
R ∼=

( k⊗
i=1

A⊗ni
) ⊗⊗k

i=1(A⊗ni )Gi

R ∼=
k⊗
i=1

(
A⊗ni

⊗
(A⊗ni )Gi

R

)
.

Then all we must show is that A⊗ni⊗(A⊗ni )GiR is isomorphic to A⊗nii ⊗
(A
⊗ni
i )Gi

R = A⊗nii /ϕi. Indeed, if we let ei ∈ A be the element (0, . . . , 0, 1, 0, . . . , 0) with a
1 in the ith place, then ei⊗ · · · ⊗ ei ∈ (A⊗ni)Gi is sent to 1 in R. Hence for each
element a ∈ I := {(a1, . . . , an) ∈ A : ai = 0}, the image of a(j) in A⊗ni⊗(A⊗ni )Gi R

is equal to that of a(j) · (ei⊗ · · · ⊗ ei) = 0. Therefore

A⊗ni
⊗

(A⊗ni )Gi

R ∼= (A/I)⊗ni
⊗

(A⊗ni )Gi

R ∼= A⊗nii

⊗
(A⊗ni )Gi

R.
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Last, observe that the two maps defining the tensor product

(A⊗ni)Gi → A⊗ni → A⊗nii and (A⊗ni)Gi → (A⊗nii )Gi → R

both factor through (A⊗nii )Gi ; we may therefore substitute it in the base of the
tensor product:

A⊗nii

⊗
(A⊗ni )Gi

R ∼= A⊗nii

⊗
(A
⊗ni
i )Gi

R = A⊗nii /ϕi.

Thus A⊗n/ϕ =
⊗k

i=1(A⊗nii /ϕi) as desired. �

Remark 5.2. Note that even if all the closure data (Gi, ϕi) in Theorem 5.1 are
minimal, the resulting closure datum on the product may or may not be. One
need not look farther than classical Galois theory for examples: let R = Q and
consider the product of A1 = Q[

√
2] and A2 = Q[

√
3]. Neither admits a 1-closure

datum, so the Ferrand homomorphisms ΦA1/R and ΦA2/R are minimal S2-closure
data for them, and in this case, the S2×S2-closure datum for A1×A2 of Theorem
5.1 is minimal. (To see this, look at the corresponding Gal(Q/Q)-sets: A1 × A2

corresponds to a disjoint union of two two-element sets and Gal(Q/Q) acts on
them via S2 × S2.

However, if we consider the product A1×A1, the resulting S2×S2-closure datum
is not minimal, since the corresponding Galois action is via the simultaneous action
of S2 on the disjoint union of two copies of the two-element set corresponding to
A1: the diagonal copy of S2 inside S2×S2. In future work we hope to characterize
exactly when the product closure datum of Theorem 5.1 is minimal in general.

Note that Theorem 5.1 implies that a universally norm-preserving homomor-
phism from a rank-n algebra A to a product of lower rank algebras

∏k
i=1Bi (with

each Bi of rank ni) produces a
∏k
i=1 Sni -closure datum for A. We might ask

whether all
∏k
i=1 Sni -closure data arise in this way. Theorem 7.4 shows that the

answer is yes if A is monogenic. We can also see elementarily that 1 = S1×· · ·×S1-
closures arise in this way via the following proposition:

Proposition 5.3. Let R be a ring and A an R-algebra of rank n. Let f1, . . . , fn
be R-algebra homomorphisms from A to R; we can compile these into two single
R-algebra homomorphisms

n⊗
i=1

fi : A
⊗n → R : a(i) 7→ fi(a) for each i ∈ {1, . . . , n},

n∏
i=1

fi : A→ Rn : a 7→ (f1(a), . . . , fn(a)).

Then
⊗

i fi is a 1-closure datum for A over R if and only if
∏
i fi is a universally

norm-preserving homomorphism from A to Rn.

Proof. First, note that the characteristic polynomial for an element (r1, . . . , rn)
of Rn is

∏n
i=1(x − ri), so the sk of this tuple is the kth elementary symmetric

polynomial in the ri. Then
∏
i fi being universally norm-preserving is equivalent
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to the kth elementary symmetric polynomial in the fi(a) always equaling sk(a).
But

⊗
i fi sends ek(a) to the kth elementary symmetric polynomial in the fi(a), so∏

i fi being universally norm-preserving is equivalent to
⊗

i fi sending each ek(a)
to sk(a). This is in turn equivalent to

⊗
i fi restricting to ΦA on (A⊗n)Sn by

Remark 2.3. �

Remark 5.4. In particular, the n projections π1, . . . , πn : Rn → R give a canonical
1-closure datum for Rn over R, thereby inducing a canonical G-closure datum
for each subgroup G ⊆ Sn. Furthermore, if

∏
i fi : A → Rn is universally norm-

preserving, then
⊗

i fi is the 1-closure datum for A obtained via
∏
i fi from the

canonical 1-closure datum for Rn. Then given any G-closure datum ϕ for A over
R, we can interpret the G-closure algebra A⊗n/ϕ as the universal R-algebra R′

such that A′ := R′ ⊗R A gains a universally norm-preserving homomorphism to
R′n for which the base change of ϕ is the pullback of the canonical G-closure datum
on R′n.

Our second main theorem of this section shows that if we replace G in Theorem
5.1 with a larger group H (while keeping H ∩ Sni equal to Gi) then the induced
closure algebra is just a power of the G-closure algebra, generalizing [2, Thm. 6]
that

A⊗n/ΦA ∼=
( k⊗
i=1

A⊗nii /ΦAi

)( n
n1,n2,...,nk

)
.

Theorem 5.5 (see Theorem 1.3). In the setting of Theorem 5.1, let H ⊆ Sn be a
subgroup such that H ∩ Sni = Gi, where we regard Sni as a subgroup of Sn via its
action on {n1 + · · · + ni−1 + 1, . . . , n1 + · · · + ni−1 + ni}. Then H ⊇ G, and the
induced H-closure datum ϕ|(A⊗n)H has associated closure algebra

A⊗n/(ϕ|(A⊗n)H ) ∼=
(
A⊗n/ϕ

)(H:G) ∼=
( k⊗
i=1

A⊗nii /ϕi

)(H:G)

.

Proof. Again, for i ∈ {1, . . . , k} denote by ei the idempotent (0, . . . , 0, 1, 0, . . . , 0) ∈
A =

∏k
j=1Aj with a 1 in the ith place. Let e be the idempotent of A⊗n given by

e = e1⊗ · · · ⊗ e1⊗ e2⊗ · · · ⊗ e2⊗ · · · ⊗ ek ⊗ · · · ⊗ ek,

with ni tensor factors of each ei. Then e is G-invariant, so the H-orbit {h.e : h ∈
H} of e will be in natural bijection with the set H/G of left cosets of G in H. Let
ẽ be the sum of all the elements of this orbit; then ẽ is H-invariant and sent to 1
under ϕ|(A⊗n)H .

Now the |H/G| idempotents {h.e : h ∈ H} map to idempotents of the H-closure
A⊗n/ϕ|(A⊗n)H that are permuted transitively by the action of H, and moreover
these idempotents are orthogonal and have sum 1. Therefore A⊗n/ϕ|(A⊗n)H splits
as a product of |H/G| isomorphic factors. We claim that the factor corresponding
to the idempotent e is canonically isomorphic to A⊗n/ϕ. Indeed, we are comparing
the two quotients

A⊗n/(e− 1, y − ϕ(y) : y ∈ (A⊗n)H) and A⊗n/(x− ϕ(x) : x ∈ (A⊗n)G).
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The right-hand ideal clearly contains the left-hand ideal; we show conversely
that everything in the right-hand ideal is already zero in the left-hand quotient.
Let x ∈ (A⊗n)G. By working locally, we may assume that the Ai are all free,
and by expanding x, we may assume x is a sum over the G-orbit of a pure tensor
with each tensor factor a basis element of some Ai. Let y be the corresponding
H-orbit sum. There are two cases, according as x · e = x (when, in order, the
tensor factors of x consist of n1 from A1, n2 from A2, etc.) or x · e = 0. In the
former case, we have y ·e = x as well, since e annihilates every term of y−x. Then
ϕ(x) = ϕ(y · e) = ϕ(y)ϕ(e) = ϕ(y), so in

(
A⊗n/ϕ|(A⊗n)H

)
/(e− 1) we have

ϕ(x) = ϕ(y) = y = y · 1 = y · e = x.

In the case that x · e = 0, then ϕ(x) = ϕ(x) · 1 = ϕ(x)ϕ(e) = ϕ(x · e) = 0. And in
A⊗n/ϕ|(A⊗n)H/(e− 1) we thus have

ϕ(x) = 0 = x · e = x · 1 = x.

Therefore the ideal (x−ϕ(x) : x ∈ (A⊗n)G) is equal to (y−ϕ(y) : y ∈ (A⊗n)H) +
(e − 1) as claimed. So A⊗n/ϕ|(A⊗n)H is isomorphic to a product of |H/G| copies
of A⊗n/ϕ. �

6. An-closure data

Recall from Remark 3.11 that if A is a rank-n algebra over R, then An-
closure data for A over R correspond to R-algebra homomorphisms to R from
the discriminant algebra

∆A/R := (A⊗n)An
⊗

(A⊗n)Sn
R.

The discriminant algebra is always a rank-2 algebra over the base ring, and fur-
thermore there is a canonical isomorphism

∧nA ∼−→ ∧2∆A/R

sending a1∧· · ·∧an to 1∧ γ̇(a1, . . . , an), where γ̇(a1, . . . , an) is the image in ∆A/R

of the An-invariant element γ(a1, . . . , an) =
∑
σ∈An

aσ(1)⊗· · ·⊗aσ(n) of (A⊗n)An .

This isomorphism respects the discriminant bilinear forms on ∧nA and ∧2∆A/R;
see [4, Thm. 4.1] for proofs of all the above statements.

If A is not merely locally free as an R-module, but free with R-basis (θ1, . . . , θn),
then ∧nA is free with generator θ1∧· · ·∧θn. Therefore ∧2∆A is free with generator
1 ∧ γ̇(θ1, . . . , θn), and hence ∆A itself has R-basis (1, γ̇(θ1, . . . , θn)). We can thus
present ∆A/R abstractly as an R-algebra R[y]/(q(y)), where q is a monic quadratic
polynomial, the characteristic polynomial of γ̇(θ1, . . . , θn) in ∆A/R. Futhermore,
the discriminant of q is the same as the discriminant of A with respect to its basis
(θ1, . . . , θn). So An-closures of A over R correspond to R-algebra homomorphisms
R[y]/(q(y))→ R, i.e., roots of q in R.
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Example 6.1. Let R be a ring with elements a, b ∈ R, and let A be the R-algebra
R[x]/(x3 + ax+ b) with R-basis (1, x, x2). Then ∆A/R has R-basis (1, γ̇(1, x, x2)).
Since the sum and product of γ̇(1, x, x2) and γ̇(1, x2, x) are both in R, we have a
monic quadratic polynomial of which γ̇(1, x, x2) is a root, and which must therefore
be its characteristic polynomial:

y2 −
(
γ̇(1, x, x2) + γ̇(1, x2, x)

)
y +

(
γ̇(1, x, x2)γ̇(1, x2, x)

)
.

We can compute these coefficients with the Ferrand homomorphism (A⊗3)S3→R:

γ̇(1, x, x2) + γ̇(1, x2, x) = ΦA/R(γ(1, x, x2) + γ(1, x2, x)) = 3b,

γ̇(1, x, x2)γ̇(1, x2, x) = ΦA/R(γ(1, x, x2)γ(1, x2, x)) = a3 + 9b2.

(See [4, Example 5.6] for the full and more general computation.) Then ∆A/R
∼=

R[y]/(y2− (3b)y+ (a3 + 9b2)), so A3-closure data for A over R correspond to roots
of y2 − (3b)y + (a3 + 9b2) in R. In particular, if an A3-closure datum exists then
the discriminant (3b)2 − 4(a3 + 9b2) = −4a3 − 27b2 is a square in R.

Example 6.2. Consider the degree-2 separable extension F4 over F2. Since any
quadratic algebra is canonically isomorphic to its discriminant algebra ([4, Prop.
5.1]), there exists an A2 = 1-closure datum if and only if there is a map F4 → F2,
which there is not, even though the discriminant of F4 over F2 is 1, a square. This
is consistent with the Galois group of F4 over F2 being S2.

On the other hand, the cubic F2-algebra F8
∼= F2[x]/(x3+x+1) has discriminant

algebra F2[y]/(y2 − (3 · 1)y + (13 + 9 · 12)) = F2[y]/(y2 − y), which does admit a
map to F2. Therefore F8 has an A3 = C3-closure datum, which is consistent with
having Galois group C3.

Note that this criterion for A to have an An-closure datum, namely that there
is an R-algebra homomorphism ∆A/R → R, works equally well in every characteri-
stic. In this respect, the discriminant algebra is a better quadratic resolvent than
testing whether the discriminant is a square, which for field extensions only works
in characteristic other than 2. However, the square-discriminant test does work in
a slightly larger generality: when 2 is a primoid non-zerodivisor.

Definition 6.3. Let p be an element of a ring R. We say that p is primoid if
whenever p2 divides a product ab, then p divides a or b.

For example, units and prime elements are primoid. More generally, every
power of a prime non-zerodivisor is primoid. The utility of this notion is that the
quadratic formula works over a ring R if 2 ∈ R is a primoid non-zerodivisor:

Lemma 6.4. Let R be a ring, and let x ∈ R be a solution to the equation x2 +bx+
c = 0 for fixed b, c ∈ R. Then 2x+ b is a square root of the equation’s discriminant
b2 − 4c. If 2 is a primoid non-zerodivisor in R, then this assignment x 7→ 2x + b
forms a one-to-one correspondence between the solutions to x2 + bx + c = 0 and
the square roots of the discriminant.
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Proof. That 2x + b is a square root of the discriminant is straightforward: (2x +
b)2 = 4x2 + 4bx+ b2 = 4(−bx− c) + 4bx+ b2 = b2 − 4c. Conversely, suppose that
2 is a primoid non-zerodivisor and that d is a square root of b2 − 4c. We show
that d can be uniquely written as 2x + b for some solution x to x2 + bx + c = 0.
Consider that (d + b)(d− b) = d2 − b2 = −4c, so since 2 is primoid we must have
2|(d+ b) or 2|(d− b). Then we conclude that since the difference between d+ b and
d− b is a multiple of 2, both are multiples of 2. In particular, d− b can be written
uniquely as 2x for some x, since 2 is a non-zerodivisor. And for that x, we have
4(x2 + bx+ c) = (2x)2 + 2b(2x) + 4c = (d− b)2 + 2b(d− b) + 4c = d2− b2 + 4c = 0,
so x2 + bx+ c = 0 as desired. �

Theorem 6.5 (see Theorem 1.4). Let R be a ring in which 2 is a primoid non-
zerodivisor (e.g., a unit), and let A be an R-algebra equipped with an R-module
basis of size n ≥ 2. Then An-closure data for A over R correspond to square roots
in R of the discriminant of A with respect to that basis.

Proof. We know that An-closure data for A correspond to roots in R of a quadratic
polynomial whose discriminant equals that of A with respect to the given basis.
But since 2 is a primoid non-zerodivisor, roots of such a quadratic polynomial
correspond to square roots of its discriminant, and thus square roots of the discri-
minant of A. �

Example 6.6. To see that the primoid hypothesis in Theorem 6.5 is necessary,
consider the ring R = Z[

√
5] and A = R[x]/(x2 − x − 1). The discriminant of A

over R is (−1)2 − 4(1)(−1) = 5, a square in R. But A does not have an A2 = 1-
closure as it does not admit a homomorphism to R; the golden ratio is not a
Z-linear combination of 1 and

√
5. This is because 2 is not primoid in R: we have

(1 +
√

5)(1−
√

5) = −4, a multiple of 22, but neither factor is a multiple of 2.

7. Monogenic algebras

Definition 7.1. Let R be a ring and A an R-algebra. We say that A is monogenic
of rank n if there exists an isomorphism A ∼= R[x]/(f(x)) for some monic degree-n
polynomial f(x). In particular, a monogenic rank-n R-algebra is necessarily free
of rank n as an R-module.

Remark 7.2. There is also a weaker notion of “monogenic,” meaning just that A is
generated by a single element as an R-algebra, but if A is a rank-n R-algebra then
these two notions are equivalent. Indeed, suppose A has rank n and is generated
as an R-algebra by a single element a. Then we have a surjective R-algebra
homomorphism R[x] � A sending x 7→ a, and since a is a root of its characteristic
polynomial pa(x), this map descends to a surjection R[x]/(pa(x)) � A. Locally,
this is a surjective homomorphism of free rank-n modules, hence must be (locally
and globally) an isomorphism. So R[x]/(pa(x)) ∼= A.

Remark 7.3. Note that given any element a ∈ A, not necessarily a generator,
we still obtain a well-defined algebra homomorphism R[x]/(pa(x)) → A. By [4,
Example 7.2], this homomorphism is universally norm-preserving. Therefore G-
closure data for A pull back to G-closure data for R[x]/(pa(x)). This may be
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viewed as a kind of obstruction to the existence of G-closure data for A over R;
there cannot be any unless R[x]/(pa(x)) has one too for every a ∈ A. For this
reason, criteria for monogenic algebras to admit G-closure data are useful even if
one is interested in algebras that are not necessarily monogenic.

7.1. Intransitive closure data

In this section we consider closure data for a monogenic algebra when the subgroup
of Sn is of the form Sn1

×· · ·×Snk , with each Sni acting on {1, . . . , n} by permuting
the ni elements

{n1 + · · ·+ ni−1 + 1, . . . , n1 + · · ·+ ni−1 + ni}

as in Theorem 5.1. We find that such closure data correspond to factorizations of
the defining polynomial of the monogenic algebra.

Theorem 7.4 (see Theorem 1.5). Let f(x) be a monic degree-n polynomial with
coefficients in a ring R, and let n1, n2, . . . , nk be natural numbers whose sum is n.
Then Sn1

× · · · × Snk-closure data of A = R[x]/(f(x)) correspond to factorizations
of f into monic factors f1(x), . . . , fk(x) of degrees n1, . . . , nk, resepctively.

Given such a factorization f(x) = f1(x) . . . fk(x), set Ai = R[x]/(fi(x)). Then
the Sn1 × · · ·× Snk -closure algebra associated to this factorization is isomorphic to

the tensor product
⊗k

i=1A
⊗ni
i /ΦAi .

Proof. To produce a
∏
i Sni -closure datum from a factorization, consider the R-

algebra homomorphism A →
∏k
i=1Ai : x 7→ (x, . . . , x). It is a universally norm-

preserving homomorphism because the characteristic polynomial of (x, . . . , x) in∏k
i=1Ai is the product f1(x) . . . fk(x) = f(x), which is the characteristic polyno-

mial of x in A. Therefore the
∏
i Sni -closure datum on

∏k
i=1Ai from Theorem 5.1

pulls back to a
∏
i Sni -closure datum on A.

Now we must show that every
∏
i Sni -closure datum on A arises in this way.

Given a homomorphism ϕ : (A⊗n)
∏
i Sni → R restricting to the Ferrand homomor-

phism, consider for each i ∈ {1, . . . , k} the image under ϕ ⊗ idR[λ] of the
∏
i Sni -

invariant element

1⊗n1 ⊗ · · · ⊗ 1⊗ni−1 ⊗ (λ− x)⊗ni ⊗ 1⊗ni+1 ⊗ · · · ⊗ 1⊗nk ;

this is a monic degree-ni polynomial in R[λ] which we denote by fi(λ). Then
because the product of these k invariant elements is (λ − x)⊗n and is sent to

f(λ), we therefore have a factorization f(λ) =
∏k
i=1 fi(λ). To see that this

factorization gives rise to the closure datum ϕ : (A⊗n)
∏
i Sni ∼=

⊗
i(A
⊗ni)Sni → R,

we show that ϕ’s ith component (A⊗ni)Sni → R factors via (A⊗nii )Sni . By the
fundamental theorem of elementary symmetric polynomials, it is sufficient to check
the images of each element of the form e`(x) ∈ (A⊗ni)Sni for ` ∈ {1, . . . , ni}. We
may check these simultaneously by adjoining an auxiliary indeterminate λ and
considering the single element (λ − x)⊗ni =

∑ni
`=1(−1)`λ`e`(x). Applying the

homomorphism (A⊗ni)Sni � (A⊗nii )Sni → R coefficientwise, this element is sent
to the characteristic polynomial of x in Ai, namely fi(λ). But this is equal, by
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definition of fi, to the image of (λ−x)⊗ni under ϕ’s ith component (A⊗ni)Sni → R.
Thus we recover ϕ as the

∏
i Sni -closure datum corresponding to the factorization

f =
∏
i fi.

Now we check that given such a factorization f(x) = f1(x) . . . fk(x), the corre-
sponding

∏
i Sni -closure algebra is isomorphic to

⊗
iA
⊗ni
i /ΦAi . Let ϕ be the

associated closure datum

(A⊗n)
∏
i Sni ∼=

k⊗
i=1

(A⊗ni)Sni �
k⊗
i=1

(A⊗nii )Sni → R.

We have the isomorphism

A⊗n/ΦA = A⊗n
⊗

(A⊗n)
∏
i Sni

R ∼=
k⊗
i=1

A⊗ni
⊗

(A⊗ni )Sni

R,

where for each i ∈ {1, . . . , k} the map (A⊗ni)Sni → R is the composite

(A⊗ni)Sni � (A⊗nii )Sni
ΦAi−−→ R

Note that this homomorphism tensored with R[λ] sends the element

ni∏
j=1

(λ− x(j)) = (λ− x)⊗ · · · ⊗ (λ− x) 7→ NmAi[λ](λ− x) = fi(λ),

and thus in A⊗ni ⊗(A⊗ni )Sni R we find that each fi(x
(j)) =

∏
j′(x

(j) − x(j′)) = 0.

Therefore we have
A⊗ni

⊗
(A⊗ni )Sni

R ∼= A⊗nii

⊗
(A⊗ni )Sni

R.

Now the two homomorphisms from (A⊗ni)Sni in the tensor product both factor
through its quotient (A⊗nii )Sni , so we obtain

A⊗nii

⊗
(A⊗ni )Sni

R ∼= A⊗nii

⊗
(A
⊗ni
i )Sni

R = A⊗nii /ΦAi .

Thus A⊗n/ϕ ∼=
⊗k

i=1A
⊗ni
i /ΦAi as desired. �

Corollary 7.5. If a polynomial f(x) ∈ R[x] is irreducible, then every G ⊆ Sn for
which R[x]/(f(x)) has a G-closure datum acts transitively on {1, . . . , n}.

Remark 7.6. Recall the question of whether the minimal closure data for a given
algebra are isomorphic. This holds for all free quadratic R-algebras if and only if R
is a domain, as we claimed in Remark 3.4. Namely, suppose that R is a domain and
A is a free quadratic R-algebra. Then A/R ∼= ∧2A is also free, so we can choose
a basis for A of the form {1, a}, so that A ∼= R[x]/(x2 − bx+ c) for some b, c ∈ R.
If the S2-closure datum of A is minimal, then it is the unique closure datum for
A over R, so the minimal closure data are trivially isomorphic. Otherwise, there
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is a 1 = S1 × S1-closure datum for A over R, corresponding to a factorization of
x2 − bx+ c into linear factors over R. If we have two such factorizations

x2 − bx+ c = (x− r)(x− s) = (x− t)(x− u),

then we have rs = c = tu = t(b− t) = t(r + s− t), so (r − t)(s− t) = 0. So since
R is a domain, we must have r = t (and s = u) or s = t (and r = u); either way,
the two factorizations correspond to isomorphic closure data.

Conversely, if rs = 0 in R with r and s nonzero, then we have

(x− r)(x− s) = x
(
x− (r + s)

)
,

factorizations which correspond to two non-isomorphic 1-closure data for the al-
gebra R[x]/(x2 − (r + s)x) over R.

Remark 7.7. More generally, isomorphic Sn1
× · · · × Snk -closure data correspond

to factorizations that differ only in the order of factors of the same degree. The
group of such reorderings is exactly the quotient by Sn1

×· · ·×Snk of its normalizer
in Sn—see Remark 3.6.

7.2. Parameterizing G-closure data

Note that in the case of monogenic algebras, Theorem 6.5 gives us the following
criterion for a monogenic rank-n algebra to have an An-closure datum:

Theorem 7.8. Let R be a ring in which 2 is a primoid non-zerodivisor, and let
A = R[x]/(f(x)) be a monogenic rank-n R-algebra. Then An-closure data for A
over R correspond to square roots of the discriminant of f .

We wish to produce similar parameterizations of monogenic algebras’ closure
data for other groups than An, where closure data for A over R correspond to
solutions in R of certain polynomial equations whose coefficients depend on A. The
main goal of this section is Lemma 7.13, which abstractly allows one to produce
such a parameterization whenever the pair (ring R, group G) forms a “benign
pair,” to be defined below.

Recall that an R-module M is called faithful if no nonzero element of R acts as
zero on M , and that an R-algebra B is faithful as an R-module if and only if the
structure map R→ B is injective.

Definition 7.9. Let R be a ring and G a subgroup of Sn for a fixed natural
number n. We say that the pair (R,G) is benign if for every R-algebra B with an
action of G by R-algebra homomorphisms, and for every R-algebra homomorphism
BG → R, the resulting tensor product B ⊗BG R is a faithful R-algebra.

Lemma 7.10. Either of the following two conditions is sufficient for the pair
(R,G) to be a benign pair:

(1) R is reduced.

(2) |G| is a non-zerodivisor in R.
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Proof. Recall that given a homomorphism of rings f : A → B, the corresponding
map of schemes Spec(B) → Spec(A) is surjective if and only if the kernel of f
consists of nilpotents. Then if R is reduced, injectivity of R → B ⊗BG R is
equivalent to surjectivity of Spec(B⊗BG R)→ Spec(R). But this is guaranteed by
surjectivity of Spec(B)→ Spec(BG), because BG → B is injective and surjectivity
of morphisms of schemes is preserved under base change.

Now suppose instead that |G| is a non-zerodivisor in R. Then consider the
BG-module homomorphism B → BG sending b 7→

∑
g∈G g.b. On elements b that

are already fixed by G, each term in the sum is just b again, so the composite

BG → B → BG

is multiplication by |G|. After base changing along the given R-algebra homomor-
phism BG → R, then, we find that the composite

R→ B ⊗BG R→ R

is multiplication by |G|, which is injective since |G| is a non-zerodivisor. Therefore
the map R→ B ⊗BG R must be injective as well. �

If (R,G) is a benign pair with G ⊆ Sn, then for every rank-n R-algebra A with
a G-closure datum ϕ, we find that the homomorphism R → A⊗n/ϕ is injective.
Not every pair is benign, however, and not every closure algebra is faithful:

Example 7.11. Let R = Z/(9) and G = A3. Then the R-algebra A = R[x]/(x3)
has a G-closure datum ϕ for which the map R→ A⊗3/ϕ sends 3 to 0.

Namely, since 2 is a unit in R we have a correspondence between A3-closure
data for A over R and square roots in R of the discriminant of A, which vanishes.
If we choose the square root 3 of 0 in R, the corresponding A3-closure datum sends
γ(1, x, x2) − γ(1, x2, x) to 3 ∈ R, and since the sum γ(1, x, x2) + γ(1, x2, x) must
be sent to zero by Example 6.1, we find that γ(1, x, x2) 7→ 6 and γ(1, x2, x) 7→ 3.

Then in the closure algebra A⊗3/ϕ, we find that

γ(1, x2, x) = 1⊗ x2 ⊗ x+ x2 ⊗ x⊗ 1 + x⊗ 1⊗ x2

= (1⊗ x2 ⊗ 1)(−x⊗ 1⊗ 1− 1⊗ x⊗ 1)

+ x2 ⊗ x⊗ 1

+ (x⊗ 1⊗ 1)(−x⊗ 1⊗ 1− 1⊗ x⊗ 1)2,

using the relation x⊗ 1⊗ 1 + 1⊗ x⊗ 1 + 1⊗ 1⊗ x = TrA(x) = 0,

= −x⊗ x2 ⊗ 1 + x2 ⊗ x⊗ 1 + x⊗ x2 ⊗ 1 + 2x2 ⊗ x⊗ 1

= 3x2 ⊗ x⊗ 1.

Therefore 3 = 3x2 ⊗ x ⊗ 1. Multiplying both sides by x2 ⊗ x ⊗ 1, we find that
3x2 ⊗ x⊗ 1 = 0. Thus by transitivity, 3 = 0 in the closure algebra.
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Remark 7.12. Even though the pair (R, Sn) is not always benign, the Sn-closure
of a rank-n R-algebra A is always faithful. If we use the Ferrand homomorphism
to equip the R-module ∧nA with an (A⊗n)Sn -module structure, then the defining
surjection A⊗n → ∧nA is actually a (A⊗n)Sn -module homomorphism by [4, Lem.
4.2]. Then tensoring with R over (A⊗n)Sn gives a surjection

A⊗n/ΦA = A⊗n
⊗

(A⊗n)Sn
R � ∧nA ⊗

(A⊗n)Sn
R ∼= ∧nA.

Since ∧nA is a locally free R-module of rank 1, it is faithful, and therefore A⊗n/ΦA
must be too.

But supposing that the pair (R,G) is benign, then we obtain the following
parameterization of G-closure data for monogenic R-algebras:

Lemma 7.13. Let R be a ring and A be a monogenic R-algebra with generator a.
Given a closure datum (G,ϕ) for A over R, we may compose ϕ with the projection
(R[x]⊗n)G → (A⊗n)G to obtain an R-algebra homomorphism (R[x]⊗n)G → R
such that ek(x) 7→ sk(a) for all k ∈ {1, . . . , n}.

If G is a subgroup of Sn for which (R,G) is benign, then this operation forms a
one-to-one correspondence between G-closure data for A over R and such homo-
morphisms (R[x]⊗n)G → R.

In particular, if we can present (R[x]⊗n)G as an algebra over (R[x]⊗n)Sn , then
G-closure data for A over R will correspond to solutions in R of a list of polynomial
equations, the way An-closure data correspond to square roots of the discriminant.
In the next section, we will do just that in the case G = D4 = 〈(13), (1234)〉 ⊆
S4. Since the publication of this argument in the author’s PhD thesis, Riccardo
Ferrario has produced similar results in [7] for the cases V4 = 〈(12)(34), (13)(24)〉
and C4 = 〈(1234)〉. The parameterization of V4-closure data is very similar to
the one that follows for D4—they correspond to splittings of the cubic resolvent
instead of roots—but so far there is no nice interpretation for the parameterization
of C4-closure data.

Proof of Lemma 7.13. Suppose that (G,ϕ) is a closure datum for A over R. Then
under the composite (R[x]⊗n)G → (A⊗n)G → R, we have ek(x) 7→ ek(a) 7→ sk(a).

Now conversely, suppose that (R[x]⊗n)G → R is an R-algebra homomorphism
sending ek(x) to sk(a) for all k ∈ {1, . . . , n}, and use the hypothesis that (R,G) is
a benign pair to obtain that the resulting tensor product

T := R[x]⊗n
⊗

(R[x]⊗n)G
R

is a faithful R-algebra. We will fill in the two dashed arrows in the following
commutative diagram:

(R[x]⊗n)G // / /
&& &&

� _

��

(A⊗n)G //
� _

��

R � _

��
R[x]⊗n 99 99

// // A⊗n // T

.
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For the existence of the lower dashed arrow, notice that for each i ∈ {1, . . . , n},
the image of pa(x(i)) under the map R[x]⊗n → T is

pa(x(i)) =
n∑
k=0

(−1)ksk(a)(x(i))n−k

=

n∑
k=0

(−1)kek(x)(x(i))n−k =

n∏
j=1

(x(i) − x(j)) = 0,

so each component of the map factors through the projection

R[x] � A ∼= R[x]/(pa(x)).

Then the existence of the upper dashed arrow follows elementarily: we have
the composite (A⊗n)G ↪→ A⊗n → T , and by the commutativity of the rest of the
diagram its image is contained in the subring R. Thus we obtain the existence of a
(necessarily unique) map (A⊗n)G → R commuting with the maps from (R[x]⊗n)G.
In particular, this map is a G-closure datum for A over R, because ek(x) in
(R[x]⊗n)G is sent to ek(a) in (A⊗n)G and sk(a) in R. �

7.3. D4-closure data

A classical result of Galois theory is that the Galois group of a separable irreducible
quartic polynomial

f(x) = x4 − s1x
3 + s2x

2 − s3x+ s4

is contained in the permutation group D4 = 〈(13), (1234)〉 ⊆ S4 if and only if that
polynomial’s cubic resolvent

m(y) = y3 − (s2)y2 + (s1s3 − 4s4)y − (s2
1s4 − 4s2s4 + s2

3)

has a root in the base field. In this section, we prove the following generalization:

Theorem 7.14 (see Theorem 1.6). Let R be a ring and let A = R[x]/(f(x)) be
a monogenic rank-4 R-algebra. Then D4-closure data for A over R correspond to
roots of f ’s cubic resolvent in R.

We will do so by first giving generators and relations for (R[x]⊗4)D4 as an
algebra over (R[x]⊗4)S4 , and then using this presentation to show that if R is
reduced, then D4-closure data of R[x]/(f(x)) correspond to roots in R of the cubic
resolvent of f(x). Finally, we will carefully lift the condition that R be reduced.

Lemma 7.15. The ring (Z[x]⊗4)D4 is a free (Z[x]⊗4)S4-module with basis {1,Λ,
Λ2}, where Λ = x(1)x(3) + x(2)x(4).

Proof. First, we fix some helpful notation. We will write x1, x2, x3, x4 for the
four conjugates x(1), x(2), x(3), x(4) in R[x]⊗4, identifying the latter R-algebra with
R[x1, x2, x3, x4]. If p ∈ Z[x1, x2, x3, x4]D4 , then we denote the polynomial (14).p =
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(23).p in Z[x1, x2, x3, x4] by p′, and the polynomial (12).p = (34).p by p′′. Each
transposition permutes {p, p′, p′′}:

(23) and (14) interchange p↔ p′ and fix p′′,

(12) and (34) interchange p↔ p′′ and fix p′,

(13) and (24) interchange p′ ↔ p′′ and fix p.

If p ∈ Z[x1, x2, x3, x4]D4 and any two of {p, p′, p′′} are equal, then we have
p ∈ Z[x1, x2, x3, x4]S4 . In particular, Λ,Λ′, and Λ′′ are all distinct:

Λ− Λ′ = (x1 − x4)(x3 − x2),

Λ− Λ′′ = (x1 − x2)(x3 − x4),

Λ′ − Λ′′ = (x1 − x3)(x2 − x4).

First, we show that 1, Λ, and Λ2 are Z[x1, x2, x3, x4]S4 -linearly independent.
Suppose qΛ2+rΛ+s = 0, with q, r, s ∈ Z[x1, x2, x3, x4]S4 . Then 0 = qΛ′2+rΛ′+s =
qΛ′′2 + rΛ′′ + s, so

0 =
q(Λ′2 − Λ′′2) + r(Λ′ − Λ′′)

Λ′ − Λ′′
= q(Λ′ + Λ′′) + r = −qΛ + (r + q(Λ + Λ′ + Λ′′)).

Therefore 0 = −qΛ′ + (r + q(Λ + Λ′ + Λ′′)) = −qΛ′′ + (r + q(Λ + Λ′ + Λ′′)), so
q(Λ′ − Λ′′) = 0, and q = 0. Then 0 = q(Λ′ + Λ′′) + r implies that r = 0, and
0 = qΛ2 + rΛ + s implies that s = 0.

To show that the elements 1, Λ, and Λ2 also generate Z[x1, x2, x3, x4]D4 as a
Z[x1, x2, x3, x4]S4 -module, we use the following observation:

If p ∈ Z[x1, x2, x3, x4]D4 , then p′ ≡ p′′ modulo either (x1 − x3) or (x2 − x4), so
p′−p′′ must contain factors of both (x1−x3) and (x2−x4). Since Z[x1, x2, x3, x4]
is a unique factorization domain, we find that p′ − p′′ is a multiple of Λ′ − Λ′′.

In fact, the ratio ρ = p′−p′′
Λ′−Λ′′ also belongs to Z[x1, x2, x3, x4]D4 , since it is fixed by

(13) and (1234) = (12)(23)(34):

ρ =
p′ − p′′

Λ′ − Λ′′
p(13)−−→ p′′ − p′

Λ′′ − Λ′
= ρ,

ρ =
p′ − p′′

Λ′ − Λ′′
p(34)−−→ p′ − p

Λ′ − Λ
p(23)−−→ p− p′

Λ− Λ′
p(12)−−→ p′′ − p′

Λ′′ − Λ′
= ρ.

Thus we can apply the same procedure to ρ as we did to p; set

q = − ρ′ − ρ′′

Λ′ − Λ′′
.

We claim that q ∈ Z[x1, x2, x3, x4]S4 . In fact, we can write

−q =
ρ′ − ρ′′

Λ′ − Λ′′

=

p− p′′

Λ− Λ′′
− p′ − p

Λ′ − Λ
Λ′ − Λ′′

=
(p− p′′)(Λ− Λ′)− (p− p′)(Λ− Λ′′)

(Λ− Λ′)(Λ− Λ′′)(Λ′ − Λ′′)

=
(p− p′)Λ′′ + (p′′ − p)Λ′ + (p′ − p′′)Λ

(Λ− Λ′)(Λ− Λ′′)(Λ′ − Λ′′)
.
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Every transposition changes the sign of both the numerator and the denominator
of the right-hand side, so q is fixed by the action of S4. Now set

r = ρ− q(Λ′ + Λ′′) ∈ Z[x1, x2, x3, x4]D4 .

Again, we claim that r ∈ Z[x1, x2, x3, x4]S4 , and calculate

r =
p′ − p′′

Λ′ − Λ′′
+

((p− p′)Λ′′ + (p′′ − p)Λ′ + (p′ − p′′)Λ)(Λ′ + Λ′′)

(Λ− Λ′)(Λ− Λ′′)(Λ′ − Λ′′)

=
(p− p′)Λ′′2 + (p′′ − p)Λ′2 + (p′ − p′′)Λ2

(Λ− Λ′)(Λ− Λ′′)(Λ′ − Λ′′)
.

Once again, every transposition changes the sign of both numerator and deno-
minator, so r is fixed by S4. Finally, set

s = p− qΛ2 − rΛ ∈ Z[x1, x2, x3, x4]D4 .

Again, we claim that s ∈ Z[x1, x2, x3, x4]S4 :

s = p− qΛ2 − rΛ

= p+
(p− p′)Λ′′ + (p′′ − p)Λ′ + (p′ − p′′)Λ

(Λ− Λ′)(Λ− Λ′′)(Λ′ − Λ′′)
Λ2

− (p− p′)Λ′′2 + (p′′ − p)Λ′2 + (p′ − p′′)Λ2

(Λ− Λ′)(Λ− Λ′′)(Λ′ − Λ′′)
Λ

=
p(Λ′ − Λ′′)Λ′Λ′′ + p′(Λ′′ − Λ)ΛΛ′′ + p′′(Λ− Λ′)ΛΛ′

(Λ− Λ′)(Λ− Λ′′)(Λ′ − Λ′′)
.

Once again, the numerator and denominator each change sign under the action
of any transposition, so s is fixed by Z[x1, x2, x3, x4]S4 . Thus we have written
p = qΛ2 + rΛ + s with q, r, s ∈ Z[x1, x2, x3, x4]S4 , as desired. �

Corollary 7.16. Let R be a ring. Then

(R[x]⊗4)D4 ∼= (R[x]⊗4)S4 [y]/((y − Λ)(y − Λ′)(y − Λ′′))

as (R[x]⊗4)S4-algebras.

Proof. The isomorphism from right to left is given by y 7→ Λ. This homomorphism
is bijective since it maps the (R[x]⊗4)S4 -module basis {1, y, y2} to the module basis
{1,Λ,Λ2}. �

Proof of Theorem 7.14. First we prove this in the case that R is reduced, so that
(R,D4) is a benign pair. Then by Lemma 7.13, isomorphism classes of D4-closures
of A over R correspond to R-algebra homomorphisms (R[x]⊗4)D4 → R sending
ek(x) 7→ sk. If we denote the R-algebra map (R[x]⊗4)S4 → R sending ek(x) 7→ sk
by ϕ, then such homomorphisms in turn correspond to R-algebra homomorphisms
to R from (R[x]⊗4)D4 ⊗(R[x]⊗4)S4 R, which by Corollary 7.16 is

R[y]/
(
y3 − ϕ(Λ + Λ′ + Λ′′)y2 + ϕ(ΛΛ′ + ΛΛ′′ + Λ′Λ′′)y − ϕ(ΛΛ′Λ′′)

)
= R[y]/

(
y3 − (s2)y2 + (s1s3 − 4s4)y − (s2

1s4 − 4s2s4 + s2
3)
)
,
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the cubic resolvent algebra.
One way of phrasing the conclusion of Lemma 7.13 is that every R-algebra

homomorphism
(R[x]⊗4)D4

⊗
(R[x]⊗4)S4

R→ R

factors through the quotient map

(R[x]⊗4)D4
⊗

(R[x]⊗4)S4

R� (A⊗4)D4
⊗

(A⊗4)S4

R

to give a D4-closure datum (A⊗4)D4 ⊗(A⊗4)S4 R → R. We now show that this
holds even if R is not reduced.

Indeed, consider the universal monogenic rank-4 algebra R0 → A0 given by

R0 = Z[S1, S2, S3, S4],

A0 = R0[x]/(x4 − S1x
3 + S2x

2 − S3x+ S4),

with the Si formal indeterminates. Then the algebra R→ A is the base change of
R0 → A0 along the ring homomorphism R0 → R sending each Si to si.

What we have already shown is that if R is any reduced R0-algebra, then every
R0-algebra homomorphism

(R0[x]⊗4)D4
⊗

(R0[x]⊗4)S4

R0 → R

factors through the quotient map

(R0[x]⊗4)D4
⊗

(R0[x]⊗4)S4

R0 � (A⊗4
0 )D4

⊗
(A⊗4

0 )S4

R0.

In particular, we can take R itself to be the tensor product

R : = (R0[x]⊗4)D4
⊗

(R0[x]⊗4)S4

R0

∼= R0[y]/
(
y3 − (S2)y2 + (S1S3 − 4S4)y − (S2

1S4 − 4S2S4 + S2
3)
)
,

which is reduced because y3− (S2)y2 + (S1S3− 4S4)y− (S2
1S4− 4S2S4 +S2

3) is an
irreducible element of the polynomial ring Z[S1, S2, S3, S4, y]—if it were not, every
cubic resolvent would have a root, and every separable quartic polynomial would
have Galois group contained in D4.

Therefore idR : R → R factors through R’s quotient (A⊗4
0 )D4 ⊗(A⊗4

0 )S4
R0, so

the quotient map must in fact be an isomorphism:

(R0[x]⊗4)D4
⊗

(R0[x]⊗4)S4

R0
∼= (A⊗4

0 )D4
⊗

(A⊗4
0 )S4

R0.

Changing base to a general ring R, then, we find that

(R[x]⊗4)D4
⊗

(R[x]⊗4)S4

R ∼= (A⊗4)D4
⊗

(A⊗4)S4

R,

so the conclusion of Lemma 7.13 holds even if R is not reduced, and D4-closure
data for R[x]/(f(x)) correspond to roots of f ’s cubic resolvent. �
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