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Abstract. Given an algebraic stack, we compare its Nori fundamental group with that
of its coarse moduli space. We also study conditions under which the stack can be
uniformized by an algebraic space.

Introduction

The aim here is to show that the results of [Noo04] concerning the étale funda-
mental group of algebraic stacks also hold for the Nori fundamental group.

Let us start by recalling Noohi’s approach. Given a connected algebraic stack
X, and a geometric point x : Spec Ω → X, Noohi generalizes the definition of
Grothendieck’s étale fundamental group to get a profinite group π1(X, x) which
classifies finite étale representable morphisms (coverings) to X. He then highlights
a new feature specific to the stacky situation: for each geometric point x, there is
a morphism ωx : Autx → π1(X, x).

Noohi first studies the situation where X admits a moduli space Y , and proceeds
to show that ifN is the closed normal subgroup of π1(X, x) generated by the images
of ωx, for x varying in all geometric points, then

π1(X, x)

N
' π1(Y, y) .

Noohi turns next to the issue of uniformizing algebraic stacks: he defines a Noethe-
rian algebraic stack X as uniformizable if it admits a covering, in the above sense,
that is an algebraic space. His main result is that this happens precisely when X

is a Deligne–Mumford stack and for any geometric point x, the morphism ωx is
injective.

For our purpose, it turns out to be more convenient to use the Nori fundamental
gerbe defined in [BV12]. For simplicity, we will assume in the rest of this intro-
duction that X is a proper, geometrically connected and reduced algebraic stack
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over a field k, so that a fundamental gerbe

X → πX/k

exists, and has a Tannakian interpretation. An essential role is played by residual
gerbes at closed points x of X, denoted by Gx → X.

Let us first describe the content of Section 2. We assume that X admits a good
moduli space Y in the sense of Alper [Alp08] (this is the case, for instance, when
X is tame as defined in [AOV08]) and proceed to compare the fundamental gerbes
πX/k and πY/k. We use a result of Alper relating vector bundles on X and on Y
to show that the morphism πX/k → πY/k is universal with respect to the property
that all composites

Gx → X → πX/k → πY/k

are trivial, in a natural sense (see Corollary 2). Using Alper’s theorem again, we
also prove (Proposition 5) that a given G-torsor X′ → X is the pullback of a
G-torsor on Y via the morphism X → Y if and only if it is isovariant.

In Section 3, we work with stacks with finite inertia (again, tame stacks are
examples). We say that such a stack X over a field k is Nori-uniformizable if there
exists a finite G-torsor X ′ → X, where the total space X ′ is an algebraic space.
Our main technical result (Proposition 11) states that X is Nori-uniformizable if
and only if all composite morphisms

Gx → X → πX/k

are representable. This is a “continuous” version of Noohi’s main theorem, and
this formulation also demonstrates how convenient it is to use Nori’s fundamental
gerbe instead of Nori’s fundamental group scheme. Our main result, Theorem 13,
is a Tannakian translation of Proposition 11 that gives a characterization of Nori-
uniformizability in terms of restriction of essentially vector bundles on X along all
morphisms Gx → X. It states, morally, that X is Nori-uniformizable if and only if
for all x, any representation of Gx comes from an essentially finite vector bundle
on X. We hope to be able to apply this result to certain orbifolds (called stack of
roots) to relate Nori-uniformizability to parabolic bundles.

We conclude this introduction by pointing out that no properness assumption
is needed to prove Proposition 11, while it is essential in our proofs of Corollary 2
and Proposition 5. Since Noohi’s counterparts hold for any algebraic stack, it is
an interesting question if it is possible to remove this hypothesis, but we have no
idea of a proof avoiding Tannaka duality at the moment.

Acknowledgements. We thank Angelo Vistoli for very useful advice and es-
pecially for pointing out [Alp08] to us. Proposition 9 and its proof are due to
him. We thank the two referees for detailed comments that helped in improving
the exposition. The first-named author wishes to thank Université Lille 1 for its
hospitality. He also acknowledges the support of a J. C. Bose Fellowship.

1. Preliminaries

We work over a base field k, and denote S = Spec k. We will mainly be
interested in the case where the characteristic p of k is positive.
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NORI FUNDAMENTAL GERBE OF TAME STACKS

Concerning Nori fundamental gerbes, we use the terminology introduced in
[BV12]. Let us sum up the conventions used and refer to [BV12] for more infor-
mation.

A Tannakian gerbe (see [BV12, 3]) over S is a fpqc gerbe with affine diagonal
and an affine chart. For such gerbes, Tannaka duality holds: our reference is [Saa72,
III, 3] in the corrected formulation given in [Del90]. The Nori fundamental gerbe
is a Tannakian gerbe.

It is even an inverse limit of finite gerbes. Recall from [BV12, 4] that a finite
gerbe is a fppf gerbe with finite diagonal and a finite flat chart. By Artin’s theorem,
this is an algebraic stack.

Given an algebraic stack X/S, we say that X is inflexible if any morphism to
a finite stack factors through a gerbe (see [BV12, Def. 5.3]). This condition is
equivalent to the existence of a Nori fundamental gerbe πX/S , i.e., a morphism to
a profinite gerbe X → πX/S which is universal. It is realized for instance when
X/S is of finite type, geometrically connected, and geometrically reduced.

We now turn to the Tannakian interpretation of the Nori fundamental gerbe.
Recall that according to Nori a vector bundle E is called finite if there is a non-
trivial relation between its tensor powers (see [Nor82]). Formally, this means that
there are two distinct polynomials f , g ∈ N[t] such that f(E) ' g(E), when we
replace + by ⊕ and · by ⊗ when we evaluate a polynomial at a vector bundle.
We adopt the definition of an essentially finite vector bundle given in [BV12], so
essentially finite vector bundles are precisely the kernels of morphisms between
two finite vector bundles.

We will say that an algebraic stack X/S is pseudo-proper if for any vector bundle
E on X, the space of global sections Γ(X, E) is finite-dimensional over k (see [BV12,
Def. 7.1] for the precise definition). If X/S is inflexible and pseudo-proper, pull-
back along X → πX/S identifies representations of πX/S with essentially finite
vector bundles on X ([BV12, Thm. 7.9]), thus we get in this situation a Tannakian
interpretation of the Nori fundamental gerbe.

Our main reference for stacks is the Stacks Project [Stacks]. If x is a point of
an algebraic stack X, we will write Gx for the residual gerbe at x; see [Stacks,
Tag 06ML]. This is a reduced stack with a single point, and there is a canonical
monomorphism Gx → X mapping this unique point to x. By closed point of a
stack, we mean as usual a geometric point with closed image.

2. Generators of the Nori fundamental gerbe

In this section, we will deal with algebraic stacks X with a good moduli space

ϕ : X → Y

in the sense of [Alp08].

2.1. Characterization of essentially finite vector bundles
coming from the moduli space

Proposition 1. Assume X is a locally Noetherian algebraic stack with good moduli

space

ϕ : X → Y .
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The functors ϕ∗ and ϕ∗ induce an equivalence of categories between the category

of essentially finite vector bundles F on Y and the full subcategory of essentially

finite vector bundles E on X satisfying the condition that for any closed point x,
the restriction E|Gx is trivial.

Proof. The fact that the same result holds for vector bundles is proved in [Alp08,
Thm. 10.3]. Since ϕ∗ is compatible with tensor products, so is the inverse equiva-
lence ϕ∗, hence the equivalence holds for finite vector bundles. By definition of a
good moduli space, the functor ϕ∗ is exact, and so is the inverse equivalence ϕ∗.
Since an essentially finite vector bundle is by definition the kernel of a morphism
between two finite vector bundles, the equivalence holds for essentially finite vector
bundles as well. �

Remark 1. It is unclear if the statement holds for adequate moduli spaces in the
sense of [Alp10]. For vector bundles it is false according to [Alp10, Example 5.6.1].

2.2. Fundamental gerbe of the moduli space

We now use Tannaka duality to translate Proposition 1 in terms of fundamental
gerbes. Morally, πY/S is the quotient gerbe obtained from πX/S after dividing
by the “normal sub-gerbe generated by the images of Gx → πX/S”. We must be
careful since the Gx are not necessarily defined over the base field k, but only over
the extension k(ϕ(x)). The precise definitions are as follows.

Definition 1. Let k′/k be a field extension, and G (respectively, G ′) a gerbe over
S = Spec k, (respectively, S ′ = Spec k′). A S′ → S-morphism G′ → G is trivial

if there is a morphism S′ → G (shown below in dotted arrow)

G′ //

� �

G

� �
S′

? ?

/ / S

making both triangles commute.

If the gerbes are Tannakian, this means by duality that the pullback functor

VectG → VectG′

sends any object to a trivial one.

Definition 2. Let (ki/k)i∈I be a family of field extensions, and for each i ∈ I ,
we are given a ki/k-morphism

αi : Gi → G

from a ki-gerbe Gi to a fixed k-gerbe G. We say that a morphism of k-gerbes G → G̃
is a quotient by the “normal sub-gerbe generated by the images of the αi’s” if all
composite morphisms Gi → G̃ are trivial, and G → G̃ is universal for this property.

It is clear that the quotient gerbe, if it exists, is unique. The existence follows,
when all gerbes are Tannakian, from duality; indeed, it is enough to define G̃ as
the Tannaka dual of the full subcategory of VectG generated by objects that are
trivialized by all pullback functors α∗

i : Vect G → VectGi.
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Remark 2. Even if the quotient makes sense, the “normal sub-gerbe generated by
the images of the αi’s” does not always exist, and even if it exists, it is not uniquely
defined (see [Mil07]).

Corollary 2. Let X be a locally Noetherian algebraic stack with good moduli space

ϕ : X → Y . Assume that both X and Y are inflexible (i.e., admit fundamental

gerbes ) and are pseudo-proper. Then the fundamental gerbe πY/S is the quotient

of πX/S by the normal sub-gerbe generated by the images of the morphisms Gx →
πX/S.

Proof. This follows from the Tannakian interpretation of fundamental gerbes (see
[BV12, Thm. 7.9]) and Proposition 1 by duality. �

Example 1. We assume that k is of positive characteristic p. Consider the stan-
dard action of µp ⊂ Gm on P1 and put

X = [P1/µp] .

Then ϕ : X → P1 is a good moduli space (because X is in fact tame; see [AOV08]),
and Corollary 2 applies: πX/S is generated by G0 and G∞. In fact, it is easy to
show directly that πX/S = Bµp.

2.3. Characterization of torsors coming from the moduli space

Definition 3. Let f : X → G be a morphism from an algebraic stack to a finite
gerbe. We say that f is trivial on inertia if the morphism IX → IG induced by f
factors through the unit morphism G → IG .

Clearly, f is trivial on inertia if and only if for any section σ : T → X, the
induced morphism of T -group spaces AutT σ → AutT f(σ) is trivial.

The following corollary of Proposition 1 provides us with an interpretation of

X → πY/S

as the limit over all morphisms X → G that are trivial on inertia.

Corollary 3. With the hypothesis of Corollary 2, a given morphism to a finite

gerbe

f : X → G

factors through X → Y if and only if f is trivial on inertia.

Proof. The “only if” direction is obvious, thus we assume f is trivial on inertia.
By Tannaka duality, we must prove that the functor

f∗ : VectG → EFVectX

factors through EFVectY ; or in other words, according to Proposition 1, that for
any representation V of G, and any closed point x of X, the restriction f ∗V |Gx is
trivial. This follows from the fact that for any geometric point x : SpecΩ → X,
the morphism

AutX x → AutG x

is trivial by hypothesis, and by the following lemma.
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Lemma 4 ([Alp08, Rem. 10.2]). Let F be a vector bundle on an algebraic stack

X, and x : SpecΩ → X be a geometric point with closed image. Then F|Gx is

trivial if and only if AutX x acts trivially on F
⊗

OX,x
Ω.

Proof. The last assertion means that F|BAutX x is trivial. If px : Gx → Spec k(x)
is the structure morphism, then F|Gx is trivial if and only if the morphism

px
∗px∗F|Gx → F|Gx

is an isomorphism. Since this property is local, it can be checked on the cover
BAutX x → Gx. �

Let us now specialize the previous discussion to neutral finite gerbes. We first
recall a definition due to Joshua [Jos03, Def. 3.1(i)].

Definition 4. A morphism of algebraic stacks X′ → X is isovariant if the follow-
ing diagram is Cartesian:

IX′/S
/ /

� �

IX/S

� �
X′ / / X

.

Remark 3.

(1) In [Noo04], the alternative name “fixed points reflecting morphism” is used.

(2) Monomorphisms of algebraic stacks are isovariant (Proposition 17). How-
ever, of course, there are many more examples; in particular, any morphism
between algebraic spaces is isovariant.

(3) It is easy to see that the property of being isovariant is stable by base
change, but is not local.

Corollary 5. Let G/S be a finite group scheme. With the hypothesis of Corollary

2, a G-torsor X′ → X descends to the moduli space if and only if it is isovariant.

Proof. According to Corollary 3, the corresponding morphism

X → BG

factors through X → Y if and only if it is trivial on inertia. But the sequence

X′ → X → BG

induces an exact sequence

1 → IX′/S →
(
IX/S

)
|X′ →

(
IBG/S

)
|X′

and the result follows. �
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3. Nori-uniformization of stacks with finite inertia

In this section, we will restrict ourselves to algebraic stacks with finite inertia,
that is, the inertia stack IX → X is a finite group space. In particular, tame stacks
in the sense of [AOV08] are of this class.

3.1. Nori-uniformizable stack

Definition 5. Let X be a stack over a field k. We will say that X is Nori-uni-

formizable if there exists a representable k-morphism X → G, where G/S is a finite
gerbe.

Example 2. Assume that k is of positive characteristic p and put

X = [P1/µp]

as in Example 1. Then X is Nori-uniformizable, but it is not uniformizable by
an algebraic space in the sense of [BN06], since it is evident that the pro-étale
fundamental gerbe πet

X/S is trivial.

Clearly, if there exists a finite k-group scheme G and a G-torsorX ′ → X, where
X ′ is an algebraic space, then X is Nori-uniformizable. As A. Vistoli indicated to
us, it turns out that the converse is true. The key point is the following:

Proposition 6. Let G/S be an algebraic stack that is a fppf gerbe. Then G/S is

smooth.

Proof. See [Ber14, Prop. A.2]. �

Lemma 7. Let G/S be a finite gerbe, and k′/k be a finite separable extension so

that G(k′) 6= ∅. Denote by Rk′/k· the Weil restriction along k′/k. Then

(1) Rk′/kGk′ is a finite neutral gerbe over k.
(2) The canonical morphism G → Rk′/kGk′ is representable.

Proof. We fix a separable closure ksep of k. Then if n = [k′ : k], we have:

(
Rk′/kGk′

)
ksep ' G×n

ksep .

(1) From [BV12, Lemma 6.2] we know that Rk′/kGk′ is a finite stack. To prove
that is it a finite gerbe, according to [BV12, Proposition 4.3], it is enough to
prove that it is geometrically connected and geometrically reduced. But if Gksep '
BG, it follows from the displayed formula that

(
Rk′/kGk′

)
ksep ' B (G×n); hence(

Rk′/kGk′

)
ksep is a gerbe, and so is geometrically connected and geometrically

reduced. To conclude, by definition of Weil restriction, Rk′/kGk′(k) = Gk′ (k′) 6=
∅, that is, Rk′/kGk′ is a neutral gerbe over k.

(2)Proposition 15(5) and the fact that being a monomorphism is local on the
base for the fppf topology [Stacks, Tag 02YK], together show that being repre-
sentable is also local on the base for the fppf topology. So it is enough to prove
that Gksep →

(
Rk′/kGk′

)
ksep is representable. But if Gksep ' BG, this morphism

identifies with BG → B (G×n), which is representable since the diagonal morphism
G → G×n is a monomorphism. �
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Proposition 8. Let X be a stack over a field k. Then X is Nori-uniformizable if

and only if there exists a finite k-group scheme G and a G-torsor X ′ → X, where

X ′ is an algebraic space.

Proof. It is enough to prove that any finite gerbe G/S has this last property.
Since surjective and smooth morphisms have sections étale locally, it follows from
Proposition 6 that there exists k′/k a finite separable extension so that G(k′) 6=
∅. Then according to Lemma 7, the canonical morphism G → Rk′/kGk′ is a re-
presentable morphism to a neutral gerbe. �

Proposition 9. The Noetherian inflexible stack X with finite inertia is Nori-

uniformizable if and only if the morphism

X → πX/S

is representable.

Proof. The “only if” part is clear. Indeed, if X → G is a representable morphism
to a finite gerbe, it factors through the morphism X → πX/S , that must then be
representable by Proposition 15(2).

We will now prove the “if” part. The morphism X → πX/S is the projective
limit over the directed set DX of all Nori-reduced morphisms X → G to a finite
gerbe (see [BV12, proof of Thm. 5.7]). It follows by commutation of limits that
for relative inertia stacks

IX/πX/S
' lim

←−
X→G

IX/G .

By Proposition 15(3), the assumption is equivalent to the fact that IX/πX/S
is

trivial as a group space over X. We have to prove that there exists a Nori-reduced
morphism

f0 : X → G0

such that IX/G0
is the trivial group space.

More generally, we can consider, for any closed sub-stack X′ ⊂ X, the issue of
finding such a morphism f0 : X → G0 satisfying the condition that IX′/G0

is trivial.
We proceed by Noetherian induction, and fix a closed sub-stack

X′ ⊂ X ,

assuming that the problem has a solution for any strict closed sub-stack X′′ ⊂ X′.
Using the fact that DX is directed, we can suppose that X′ is irreducible. The
same fact shows that it is enough to prove that there exists a non-empty open
sub-stack U of X′ for which there exists f0 : X → G0 such that IU/G0

is trivial.
Let f1 : X → G1 be an arbitrary element of DX. By generic flatness (see Propo-

sition 18), there exists a non-empty open sub-stack U1 of X′ such that IU1/G1
is

flat. Being also finite, this group has a well-defined order. If this order is not 1,
as shown below, we can produce an element

f2 : X → G2
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of DX and a non-empty open sub-stack U2 of X′ such that IU2/G2
is flat, and

#IU2/G2
< #IU1/G1

. This completes the proof of the proposition by induction.

To prove the above claim, assume that IU1/G1
is not trivial. Since by assumption

lim
←−X→G

IX/G is trivial, there exists a morphism f2 : X → G2 mapping to f1 in DX

such that the induced monomorphism IU1/G2
→ IU1/G1

is not an isomorphism.
Let U2 be a nonempty subset of U1 such that IU2/G2

is flat. Since the cokernel of
IU1/G2

→ IU1/G1
, namely f∗

2 IG2/G1
, is flat, it remains non-trivial after restriction

to U2. Hence we have #IU2/G2
< #IU1/G1

. �

Remark 4. We used mainly two aspects: the fact that DX is directed, and the fact
that when X is Noetherian and reduced, and X → G is a morphism, the relative
inertia stack IX/G is flat over a non-empty open subset U of X. This fact can be
interpreted in the following way: U is a gerbe over its coarse sheafification π0(U)
over G. When G = S, this is the core of the classical result called “stratification
by gerbes”. For the relative version of this result, see appendix C.

Notice, however, that the flatness of the relative inertia stack is IX/G over a
non-empty open subset does not follow from the flatness of the absolute inertia
stack IX/S , since the kernel of a morphism between two finite and flat group spaces
is not necessarily flat. This is the main difference between our situation and the
one considered in [Noo04]. Since the kernel of a morphism between two finite and
étale group spaces is finite and étale, Noohi can directly use stratification by gerbes
over S.

Corollary 10. Let k′/k be a finite separable extension. Then the stack X/S is

Nori-uniformizable if and only if Xk′ is Nori-uniformizable.

Proof. Since being representable by algebraic spaces is a local property, this follows
from Proposition 9 and [BV12, Prop. 6.1] (which asserts that the fundamental
gerbe commutes with finite separable base change). �

3.2. Nori-uniformization and residual gerbes

The following proposition generalizes Theorem 6.2 of [Noo04].

Proposition 11. Let X/S be an inflexible stack with finite inertia and of finite

type. Then X is Nori-uniformizable if and only if for any closed point x, the canon-

ical morphism

Gx → πX/S

is representable.

Proof. This follows from Proposition 9 and Lemma 12 below. �

Lemma 12. Let X be a stack of finite type over a field k and f : X → Y be a

morphism to an algebraic stack. Then f is representable if and only if for any

closed point x ∈ |X|0, the induced morphism Gx → Y is representable.

Proof. By Proposition 17, for any closed point x : Spec Ω → X, we have that(
IX/Y

)
|Gx ' IGx/Y, hence the statement follows from Proposition 15(3) and the

fact that the set of closed points is dense. �
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We recall that, using the terminology of [BV12], if X is pseudo-proper, then
the pull-back along X → πX/S identifies representations of πX/S with the category
EFVect(X) of essentially finite vector bundles on X. We can now state our main
theorem.

Theorem 13. Let X/S be an inflexible and pseudo-proper stack with finite inertia

and of finite type. Then X is Nori-uniformizable if and only if for any closed point

x, any representation V of Gx is a subquotient of the restriction of an essentially

finite vector bundle on X along Gx → X.

Proof. According to Proposition 11 and Proposition 15(2), the stack X is
Nori-uniformizable if and only if for any closed point x, the morphism

Gx → πX/S ⊗k k(x)

is representable. According to Proposition 21, this is equivalent to the fact that
any representation V of Gx is a subquotient of the restriction of a representation
of πX/S ⊗k k(x). Now the following lemma completes the proof.

Lemma 14. Let G/S be a Tannakian gerbe, k′/k an extension, and f : Gk′ →
G the canonical morphism. Then for any representation V ′ of Gk′ , the canonical

morphism f∗f∗V → V is an epimorphism.

Proof. The morphism f is affine, and in particular it is quasi-affine, and hence the
result follows (see [AE12, Prop. 6.2]). �

A. Representable morphisms

We start by recalling a characterization of representable morphisms.

Proposition 15. Let f : X → Y be a morphism of S-stacks. The following prop-

erties are equivalent:

(1) The morphism f is representable by algebraic spaces.

(2) For any section σ : T → X, the canonical morphism of T -group spaces

AutT σ → AutT f(σ)

has trivial kernel.

(3) The relative inertia stack IX/Y = X ×X×YX X is trivial (as a group space

over X).
(4) The group morphism IX/S → f∗IY/S is a monomorphism.

(5) The diagonal ∆ : X → X×Y X is a monomorphism.

Proof. See [Stacks, Tag 04YY] for the equivalence of the first three statements.
The fourth statement is equivalent to the third one, considering the following 2-
Cartesian diagram:

IX/Y
/ /

� �

IX/S

� �
Y / / IY/S

.

The fifth statement is a reformulation of the third one; see Proposition 16. �
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B. Monomorphisms of algebraic stacks

A morphism f : X′ → X of algebraic stacks is a monomorphism if it is repre-
sentable by a morphism of algebraic spaces that is a monomorphism (see [Stacks,
Tag 04ZV] for details).

For the convenience of the reader, we recall the following characterization.

Proposition 16. Let f : X′ → X be a morphism of algebraic stacks. The following

are equivalent:

(1) f is a monomorphism,

(2) f is fully faithful,

(3) the diagonal ∆f : X
′ → X′ ×X X′ is an isomorphism.

Proof. See [Stacks, Tag 04ZZ]. �

Proposition 17. Let S/S be a base stack, and let

X′ → X

be a S-monomorphism of S-algebraic stacks. Then the following diagram is 2-
Cartesian:

IX′/S
//

� �

IX/S

� �
X′ / / X

.

Proof. This follows from the absolute statement (S = S, [Stacks, Tag 06R5]) and
the following 2-Cartesian diagram:

IX/S
/ /

� �

IX/S

� �
S / / IS/S

. �

Remark 5. With the terminology introduced in Definition 4, Proposition 17 means
exactly that monomorphisms are isovariant.

C. Stratification by gerbes over a base stack

Let f : X → Y be a morphism of algebraic stacks over some base S. We assume
for simplicity that the diagonal ∆f : X → X×Y X is quasi-compact (equivalently,
it is of finite type). Then the relative inertia stack IX/Y → X is a group space of
finite type and, if we further assume that X is Noetherian and reduced, then we
can apply the classical generic flatness theorem, [Gro65, Thm. 6.9.1], to get the
following.

Proposition 18. Let f : X → Y be a morphism of algebraic stacks with quasi-

compact diagonal, and assume that X is Noetherian and reduced. Then there exists

a dense open sub-stack U ⊂ X such that IU/Y → U is flat.
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Proof. See [Stacks, Tag 06RC], for the absolute version. �

The flatness of the inertia stack has a standard interpretation. We start by
giving the definition of an “absolute” gerbe in this relative setting.

Definition 6. Let f : X → Y be a morphism of algebraic stacks. We say that X
is a gerbe in Y-stacks if there exists a factorization X → Z → Y of f such that
X → Z is a gerbe, and Z → Y is representable by algebraic spaces.

Remark 6.

(1) This definition is the direct generalization of the absolute version given in
[Stacks, Tag 06QC].

(2) The condition that X → Z is a gerbe roughly means that X is a gerbe if we
endow Z from the topology inherited from the base S; see [Stacks, Tag 06P2] for
details.

(3) The stack Z, if it exists, is unique, and it is obtained by sheafifying, over Y
endowed with its topology inherited from the base S, the presheaf U 7→ Ob(XU )/∼=
(see [Stacks, Tag 06QD]).

Proposition 19. The stack X is a gerbe in Y-stacks if and only if IX/Y → X is

flat and locally of finite presentation.

Proof. See [Stacks, Tag 06QJ], for the absolute version. �

From Proposition 18 we have the following:

Theorem 20. Let f : X → Y be a morphism of algebraic stacks with quasi-

compact diagonal, and assume that X is Noetherian. Then there exists a finite

decomposition X =
∐

i∈I Xi of X by locally closed sub-stacks such that, for all

i ∈ I, the stack Xi, endowed with the reduced structure, is a gerbe in Y-stacks.

Remark 7. Our formulation of the statement, based on the classical generic flatness
theorem (see [Gro65, Thm. 6.9.1]) is rather restrictive, even if it is more than
enough for our purposes (in fact we only need Proposition 18). For a more general
version, based on a more powerful generic flatness theorem, see [Stacks, Tag 06RF].

D. Morphisms of Tannakian gerbes

The following proposition is well known for neutral gerbes (see [Saa72, II 4.3.2]);
it is included here due to the lack of a reference for the more general statement.

Proposition 21. Let φ : G → G′ be a morphism between Tannakian gerbes, and

let φ∗ : VectG′ → VectG be the corresponding Tannakian functor.

(1) The morphism φ is representable if and only if any object of Vect G is a

subquotient of the image by φ∗ of an object of VectG ′.

(2) The morphism φ is a (relative) gerbe if and only the functor φ∗ is fully

faithful, and the essential image of φ∗ is stable by subobject.

Proof.

(1) We recall that given a base S, there is a canonical morphism

bd: GrS → BdS
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from the stack of groups to the stack of bands. A group morphism Φ: G → G′ is
a monomorphism if and only if the corresponding band morphism

bd(Φ): bd(G) → bd(G′)

is injective (indeed, by definition a morphism of bands is injective if it is locally
represented by a group monomorphism).

Moreover, each gerbe ϕ : G → S admits a well-defined S-band bd(G), and there
is a natural isomorphism ϕ∗(bd(G)) ' bd(IG). To check this, we recall that the
association G 7→ bd(G) is characterized by three properties: it is functorial, com-
patible with localization, and bd(BG) = bd(G). But when we base change G → S
by itself, it is easy to check that we get the neutral gerbe BIG → G.

According to [Saa72, III 3.3.3], any object of Vect G is a subquotient of the
image by φ∗ of an object of Vect G ′ if and only if the morphism

bd(φ) : bd(G) → bd(G′)

is injective.
Since the structural morphism ϕ : G → S is a covering, this is equivalent to

the assertion that ϕ∗bd(φ) : ϕ∗bd(G) → ϕ∗bd(G′) is injective; in other words,
equivalent to the assertion that the natural morphism bd(IG) → bd(φ∗IG′) is
injective. This is in turn equivalent to the fact that the morphism IG → φ∗IG′ is
a monomorphism, and we conclude by Proposition 15(4).

(2) Since this is similar to the proof of the first part, we omit the details. Also,
this is not used in the present article. This completes the proof. �
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