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Abstract. We go back and forth between, on the one hand, presentations of arith-
metic and Kac–Moody groups and, on the other hand, presentations of profinite groups,
deducing along the way new results on both.

Introduction

In recent years several papers have been dedicated to showing that finite simple
groups or arithmetic groups have presentations with bounded number of generators
and relations [KL06], [GKKL07], [GKKL08], [GKKL11], [Cap13]. This paper is
about such quantitative results for some classes of profinite groups.
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More precisely, we will give essentially optimal bounds on the size of the presen-
tations of maximal compact subgroups and of maximal pro-p subgroups of simple
Chevalley groups over local fields. These results can be also expressed as bounds
on 2-cohomology groups — see below.

Let G be a simple, simply connected, Chevalley group scheme of Lie rank l
and let q be a power pa for some prime p and some exponent a > 1. The non-
Archimedean Lie group G

(
Fq((t))

)
acts simplicially on its Bruhat–Tits building

[Tit79]. In this action, each facet stabilizer is an extension of a finite group of Lie
type by a pro-p group. Combining this with a non-positive curvature argument
implies that maximal pro-p subgroups in G

(
Fq((t))

)
are all conjugate to one an-

other [Rém04, 1.C.2] (while this is not the case for maximal compact subgroups);
we henceforth call a pro-p Sylow subgroup a maximal pro-p subgroup of G

(
Fq((t))

)
.

If P is such a subgroup then, up to conjugating it, we can assume that we have
P < G(Fq[[t]]) < G

(
Fq((t))

)
. The group G(Fq[[t]]) is a special maximal compact

subgroup.

Theorem 1. There exists a constant C > 0 such that for any simple, simply
connected, Chevalley group G of rank > 2 and for any prime power q = pa > 4, the
group G = G(Fq[[t]]) admits a profinite presentation Σ(G), with DΣ(G) generators
and RΣ(G) relations, satisfying

DΣ(G) +RΣ(G) 6 C.

For a group X, let d(X) (respectively r(X)) denote the minimal number of gene-
rators (respectively relations) of X in any of its profinite or discrete presentations
(depending on whether X is a profinite or a discrete group). Then Theorem 1
implies that in particular

d(G) + r(G) 6 C.

Theorem 1 is proved by combining the results of [Cap13] on bounded presen-
tations of the discrete Kay–Moody group G(Fq[t, t

−1]), with the fact that it has
the congruence subgroup property. It is important at this point to note that the
above uniformness statement is not true globally, that is for abstract presenta-
tions of arithmetic groups obtained by replacing the local rings Fq[[t]] by rings of
integers of global fields (see §3 below).

Now, P as above is a subgroup of index qO(l2) of G(Fq[[t]]), from which one
deduces, using the Reidemeister–Schreier theorem, that P has a presentation Σ(P )
satisfying

DΣ(P ) +RΣ(P ) 6 q
O(l2).

By different methods, we obtain a presentation of the pro-p group P with much
better bounds. A word of explanation is needed here. Let rp(P ) be the minimal
number of relations needed to define P as a pro-p group. In [Lub01, Cor. 5.5] it is
shown that we have:

r(P ) = max{d(P ), rp(P )}.
Theorem 2. Let G be a simple, simply connected, Chevalley group scheme of
rank l. Let P be a Sylow pro-p-subgroup of G = G

(
Fq((t))

)
where q = pa. Then at

least for l > 3 and q > 16, we obtain that d(P ) = a(l + 1), so in particular d(P )
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FROM KAC–MOODY GROUPS TO PROFINITE AND BACK

is linear in a and in l. On the other hand, rp(P ) = r(P ) is bounded from below
and from above by polynomials of degree 2 in a and in l; these polynomials do not
depend on p.

The precise formula on the number of generators is deduced from Kac–Moody
theory [CR14, Cor. 2.5]. The lower bound on the number of relations is derived
from the Golod–Shafarevich inequality while the upper bound is again deduced
from the theory of Kac–Moody groups. More precisely, a discrete Kac–Moody
group Γ0 is chosen carefully so that P is equal to the pro-p completion of a well-
understood subgroup Γ of Γ0. The presentation of Γ in the discrete category serves
also as a presentation for P in the pro-p category.

The method of the proof enables us to go also backward and to deduce from
the Golod–Shafarevich inequality that the stated presentation of Γ is essentially
optimal (see Corollary 15).

Recall that for a profinite group the number of relations is expressed by the
dimensions of the 2nd cohomology groups of various modules [Lub01, Cor. 5.5,
5.6]. It gets a particular nice form for a pro-p group P , where

rp(P ) = dimZ/pZH2(P,Z/pZ).

Thus combining Theorems 1 and 2 we obtain

Corollary 3. Let G be a simple, simply connected, Chevalley group scheme of
rank l. Let P be a Sylow pro-p-subgroup in G = G

(
Fq[[t]]

)
with q = pa. Then the

following conditions hold:

(1) If l > 2 and q > 4, then there is a constant C such that dimFsH
2(G,M) 6

C · dimFsM for every simple Fs[G]-module M and every prime s.
(2) If l > 3 and q > 16, then dimZ/pZ H2(P,Z/pZ) is bounded from below and

from above by polynomials of degree 2 in a and in l; these polynomials do
not depend on p.

Theorems 1 and 2 suggest that similar results are valid also in characteristic 0,
but our methods are not that efficient there (see §3). There are two main differences
between the characteristic zero case and the positive characteristic case.

The first one is that in characteristic p all local fields are obtained as completions
of one global field Fp(t), while in characteristic 0, there is no such global field. In
our method of proof, which goes from global to local, this difference is crucial: we
prove a uniform result for all groups defined over a given global field k (Theorem
16), but there is no uniform result over all global fields (see Remark 3). Our uni-
form result for local fields in characteristic p uses substantially the fact that they
all are completions of one global field.

Secondly, the pro-p Sylow subgroup of G
(
Fq((t))

)
is the pro-p completion of

a suitable subgroup of a Kac–Moody group (see Lemma 7 below for the exact
result) and we are making a crucial use of this fact. No such result is known to us
in characteristic 0.

Still one has good reasons to believe that results like Theorem 0.1 and Theorem
0.2 are valid also in characteristic 0. In Section 3, we sketch a few partial results
in this direction.
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The structure of the paper is as follows. Section 1 deals with uniformly bounded
profinite presentations of maximal compact subgroups of non-archimedean Cheval-
ley groups in characteristic p. Section 2 investigates more carefully the maximal
pro-p subgroups of these groups. Section 3 goes back to the questions of §1 in
the characteristic 0 case. The proof for the global case is given in §4 and uses
K-theory.

Acknowledgements. The authors would like to thank the anonymous referee for
her/his detailed comments that helped to improve the paper. The third author
would like to thank Amaury Thuillier for many useful discussions.

1. Presentations of Fq[[t]]-points of split simple groups

Let q = pa with p a prime and a > 1. Let G be a simple, simply connected,
Chevalley group. In this section we are interested in controlling presentations of
the virtually pro-p groups G(Fqe [[t]]) for arbitrary exponent e > 1. The general
idea of this section is that G(Fqe [[t]]) appears as a factor of the profinite completion
of G(Fq[t, t

−1]) and that a presentation of the latter discrete group naturally gives
a profinite presentation of this completion.

Therefore, in the first half of the argument we are only interested in G(Fq[t, t
−1]).

Usually, the main viewpoint on the group G(Fq[t, t
−1]) is as an S-arithmetic group

[Mar91]. It provides a lot of information (cf. [PR94]), but another possibility is to
see it as a (split) Kac–Moody group of affine type. This gives additional informa-
tion of combinatorial nature. Indeed, this group acts on a product of two twin
buildings [Rém02, 12.6.3] and using the action on a single building, we can de-
duce from this a suitable amalgamation theorem for G(Fq[t, t

−1]). We use here a
combination of the two viewpoints.

1.1. Bounded presentation for affine Kac–Moody groups over finite
fields

To begin with, let us recall that by [Cap13, Thm. 2.1] there exists a so-called
bounded family of presentations for affine Kac–Moody groups (with the exception

of Ã1 and ∗Ã1). In particular, we have:

Theorem 4 ([Cap13]). There exists a constant C > 0 such that for any sim-
ple, simply connected, Chevalley group scheme G of rank > 2 and for any prime
power q > 4, the group G = G(Fq[t, t

−1]) admits a presentation Σ(G) with DΣ(G)

generators and RΣ(G) relations satisfying

DΣ(G) +RΣ(G) 6 C.

1.2. Bounded presentation for profinite Chevalley groups in
characteristic p

We can now turn to completion processes. The following proposition provides
a relationship between presentations of G(Fq[t, t

−1]) and of G(Fq[[t]]); it is a
quantitative version of a method already used in [Lub05].

Proposition 5. Assume that the rank of the simple, simply connected, Chevalley
group G is > 2 and that the arithmetic group G(Fq[t, t

−1]) has a presentation
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with d generators and r relations. Then for any e > 1, the group G(Fqe [[t]]) has
a profinite presentation with d generators and r + 1 relations.

Proof. Set A = Fq[t, t
−1] and denote by Â the profinite completion of this ring.

Let P be the set of monic irreducible polynomials in Fq[t] and Pe those of degree e.
The prime ideals in A = Fq[t][1/t] are parametrized by P \ {t}, so by the Chinese
remainder theorem, we have

Â ∼=
∏
f∈P\{t} Â

f

where Âf = lim←−n>1
A/(fn) is isomorphic to Fqdeg(f) [[x]]. Using P =

⊔
e>1 Pe, we

see therefore that

Â ∼= (Fq[[t]])
q−1 ×∏e>2(Fqe [[t]])

#Pe .

We set S = {0;∞}. The group G(A) is thus an S-arithmetic group. We denote

by Ĝ(A) its profinite completion and by G(A) its S-congruence completion. The

canonical map π : Ĝ(A)→ G(A) is a continuous group homomorphism restricting
to the identity map of the dense subgroup G(A); as a consequence, π is surjective.
Since there is no place of Fq(t) at which G is anisotropic and since G is simply
connected, strong approximation [Pra77] implies that the S-congruence completion
G(A) is described by means of the S-adèles AS of Fq(t). One therefore deduces:

G(A) ∼= G(Â) ∼= G(Fq[[t]])
q−1 ×∏e>2 G(Fqe [[t]])

#Pe .

For further use in the paper, let us quote a precise statement on the solution
to the congruence subgroup problem (see [Rag76], [PR83] and [Mar91, VIII.2.16
Thm.]).

Theorem 6. Let G be a simply connected Chevalley group, let k be a global
field and let S be a finite set of places of k. Let A denote the ring of S-integers
in k and for each v ∈ S, let kv be the corresponding completion of k. We set
rkS(G) =

∑
v∈S rkkv (G) and assume that rkS(G) > 2. Then the kernel of the

map π : Ĝ(A) → G(A) is cyclic; it is even trivial whenever S contains a non-
Archimedean place.

In our case, where G has rank > 2 and all places are non-Archimedean, the

map π is an isomorphism : Ĝ(A) ∼= G(Â). This implies that for any fixed e > 1,

one can write Ĝ(A) as a product:

Ĝ(A) = G(Fqe [[t]])×M
where M is a product of infinitely many groups of the form G(Fqs [[t]]) with finite
multiplicity for each exponent s > 1.

By our group-theoretic hypothesis, the abstract group G(A) has a presentation

with d generators and r relations, therefore so does Ĝ(A) as a profinite group.

Now, notice that M , as a normal subgroup of Ĝ(A), is generated by one ele-
ment! Indeed, every factor of the direct product M , say G(Fqs [[t]]), has no non-
trivial abelian quotient; moreover it admits a semi-direct product decomposition
G(Fqs)nQ where Q is a pro-p group [RR06, 1.C]. The semi-direct product decom-
position implies that G(Fqs [[t]]) has a unique maximal normal subgroup. Indeed,
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let π : G(Fqs [[t]]) → S be a quotient map to a simple (necessarily non-abelian)
group. The group Q is normal in G(Fqs [[t]]), therefore π(Q) is a normal p-group
in S, hence is trivial. This implies that π factorizes through the homomorphism
G(Fqs [[t]])→ G(Fqs), whose target group has a unique simple quotient.

Pick then g ∈ M such that each one of its coordinates is outside that max-
imal normal subgroup; it is not difficult to see that the normal closure 〈〈g〉〉M
of g in M is M itself. Thus we get a profinite presentation for G(Fqe [[t]]) =

Ĝ(A)/({1} × 〈〈g〉〉M ) which has d generators and r + 1 relations. �

Proof of Theorem 1. This statement is now a consequence of the combination of
Theorem 4 and Proposition 5. �

Remark 1. In Theorem 0.1 we assume that l > 2. We believe it is also true for
l = 1, i.e., for SL2(Fq[[t]]).

2. Sylow pro-p-subgroups of Chevalley groups over Fq((t))

The other type of compact subgroups we consider in this paper is given by the
maximal pro-p subgroups of G

(
Fq((t))

)
. To prove Theorem 0.2 we will use again

Kac–Moody theory, but in a different way than in Theorem 1.
The idea is to see the pro-p group we are interested in as the full pro-p com-

pletion of a suitable arithmetic group, which can itself be seen as a subgroup of
a Kac–Moody group over a finite field. Again we use the fact that a presenta-
tion for a discrete group naturally leads to a profinite or pro-p presentation of the
corresponding completion.

2.1. The pro-p completions

Let q = pa (a > 1) and G be a simple simply connected Chevalley group scheme
of rank l > 3. Take A = Fq[t] and consider Γ0 := G(A). Suppose further that
I = (f(t)) is an ideal of A generated by an irreducible polynomial f(t) and B is
the completion of A with respect to I. Let P be a pro-p-Sylow subgroup of G(B).
Then P is an open maximal pro-p subgroup of G(B). Now consider a very special
case: f(t) = t, so B ∼= Fq[[t]]. Set Γ = Γ0 ∩ P = G(A) ∩ P .

Lemma 7. The group P is the pro-p completion of Γ.

Proof. By the affirmative solution of the CSP (the congruence subgroup problem)

for Γ0 (see Theorem 6), its profinite completion Ĝ(A) is equal to
∏
Y G(Y ), where

Y runs over all the completions of A (one of which is B). As Γ is of finite index

in Γ0, the profinite completion of Γ can be easily read from that of Γ0: Γ̂ =∏
Y 6=B G(Y )×P when this time Y runs over all of the completions of A except for

B. The completion B contributes the factor P . Now, the pro-p completion of a
group is equal (by abstract nonsense) to the maximal pro-p quotient of its profinite
completion. But for Y 6= B, the group G(Y ) has no non-trivial p-quotient and so

the maximal pro-p quotient of Γ̂ is only P . This finishes the proof. �

In what follows, we sum up the lemma by writing P = Γp̂ (i.e., Γp̂ henceforth
denotes the pro-p completion of a discrete group Γ).
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2.2. Presentations of Sylow p-subgroups of SL3(Fq) and Sp4(Fq)

As a preparation for proving Theorem 0.2, we will now produce presentations of
Sylow p-subgroups of SL3(Fq) (i.e., A2(q)) and Sp4(Fq) (i.e., C2(q)), with q = pa.
We single out these p-groups because, as we will see in the next section, they will
turn out to be building blocks of Γ from Lemma 7.

Notation: For a group H and any a, b ∈ H, denote [a, b] := aba−1b−1 and ab :=
bab−1.

In what follows we will need the following well-known result attributed to
P. Hall.

Lemma 8. Let G be a group that is an extension of H by N

1→ N → G→ H → 1.

Suppose that N has a finite presentation

N = 〈n1, . . . , nr | R1(n1, . . . , nr), . . . , Rk(n1, . . . , nr)〉

and H has a finite presentation

H = 〈h1, . . . , hs |W1(h1, . . . , hs), . . . ,Wl(h1, . . . , hs)〉.

Then G has the following finite presentation

G = 〈n1, . . . , nr, g1, . . . , gs | R1(n1, ...nr), . . . , Rk(n1, . . . , nr),

ginjg
−1
i = Vij(n1, . . . , nr),

g−1
i njgi = Uij(n1, . . . , nr), 1 6 i 6 s, 1 6 j 6 r,

Wi(g1, . . . , gs) = W̃i(n1, . . . , nr), 1 6 i 6 l〉

where π(gi) = hi, 1 6 i 6 s, for the natural projection π : G → H and relations

Uij , Vij and W̃i are the obvious suspects.

The next statement is Theorem 2 of [BD01].

Lemma 9. Let S be a Sylow p-subgroup of the finite group SL3(Fq) where q = pa

for a > 1. Then |S| = q3 = p3a, the minimal number of generators of S is 2a, and
S has the following presentation on 2a generators and with 2a(a+ 1) relations.

There are elements s1(vk), s2(vk) ∈ S, 1 6 k 6 a, that generate S and are
subject to the following relations:

(A1) (si(vk))p = 1 for i = 1, 2 and 1 6 k 6 a,
(A2) [si(vk), si(vk′)] = 1 for i = 1, 2 and 1 6 k < k′ 6 a,
(A3) [s1(v1), [s1(vk), s2(v1)]] = [s2(v1), [s1(vk), s2(v1)]] = 1 for 1 6 k 6 a,
(A4) [s1(vk)−1, s2(vk′)

−1] =
∏

16r6a[s1(vr), s2(v1)]c(k,k
′,r) with some fixed

c(k, k′, 1), . . . , c(k, k′, a) ∈ Z, for 1 6 k 6 a and 2 6 k′ 6 a.
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Proof. This is the proof of Theorem 2 of [BD01]. �

Remark that for odd p, the presentation of S given above has not only minimal
number of generators, but also minimal number of relations [BD01, Thm. 3].

Notice that under a natural identification of S with the unipotent radical of the
standard Borel subgroup of SL3(Fq) (where the simple roots of A2 are denoted
by α1 and α2), we may choose s1(vk) and s2(vk) to correspond to xα1

(vk) and
xα2

(vk), 1 6 k 6 a, where v1, . . . , va are chosen to be some generators of Fq, with
v1 = 1.

Sylow p-subgroup of Sp4(Fq). We will now discuss presentations of Sylow p-sub-
groups of Sp4(Fq), q = pa, a > 1. For our purposes either p is odd, or p = 2 and
q > 16. Let S be a Sylow p-subgroup of Sp4(Fq).

On the one hand, as Sp4(Fq) is identified with the universal version of the group
C2(q), it has a natural Steinberg presentation [GLS98, Thm. 1.12.1] and thus so
does S. Unfortunately, this presentation of S has 4(q−1) generators and 16(q−1)2

relations.
On the other hand, as either p > 3, or p = 2 and q > 16, [GLS98, Thm. 3.3.1]

(together with some additional calculations in the case when p = 2) implies that
in fact S has a minimal set of generators {xα(vi), xβ(vi) | 1 6 i 6 a} where v1 = 1
and vi (2 6 i 6 a) generate Fq (here α and β are simple roots of C2, with α
being a short root and β a long one). In particular, S is a group of order q4 = p4a

with d(S) = 2a. We may now apply [LSe03, Prop. 3.4.1] to conclude that S has a
presentation with 2a generators and 8a2 relations.

However, shorter presentations of S exist and would give more precise estimates
for us. The reader who is not concerned with this difference is welcome to skip the
rest of this subsection. We will now produce a presentation of S (in the case when
p is odd) on 2a generators and with (7a2 + 13a)/2 relations. Using this technique,
one can also produce a shorter presentation in the case when p = 2. However, the
calculation is lengthy, and we decided to demonstrate how it can be done (and
get a good estimate) only for p > 3. The difference in those two cases happens
because of the redundancies in the commutator relations for p = 2.

Lemma 10. Let S be a Sylow p-subgroup of the finite group Sp4(Fq) where q = pa

for a > 1 and p is odd. Then |S| = q4 = p4a, the minimal number of generators of S
is 2a, and S has the following presentation on 2a generators and with (7a2 + 13a)/2
relations.

There are elements xα(vk), xβ(vk) ∈ S, 1 6 k 6 a, that generate S. For
1 6 i 6 a, set

xα+β(vi) = [xβ(v1), xα(vi)]
a∏

k=1

[xα
(

1
2vk
)
, [xβ(v1), xα(v1)]]rk and

x2α+β(vi) =
[
xα
(

1
2vi
)
, xα+β(v1)

]

where for each i, the element xα( 1
2vi) =

∏a
j=1 xα(vj)

m(j,i) with some m(j, i) ∈ Z,
1 6 j 6 a.

Then S has a presentation with the generators xα(vk), xβ(vk) ∈ S, 1 6 k 6 a,
and the following relations:
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(C1) (xα(vk))p = 1, (xβ(vk))p = 1 and (xα+β(vk))p = 1 for 1 6 k 6 a;
(C2) [xα(vk), xα(vk′)] = 1 for 1 6 k < k′ 6 a;
(C3) [xβ(vk), xβ(vk′)] = 1 for 1 6 k < k′ 6 a;
(C4) [xα+β(vk), xα+β(vk′)] = 1 for 1 6 k < k′ 6 a;
(C5) [xα(v1), [xα(vk), xα+β(v1)]] = [xα+β(v1), [xα(vk), xα+β(v1)]] = 1 for

1 6 k 6 a;
(C6) [xα(vk)−1, xα+β(vk′)

−1] =
∏

16r6a[xα(vr), xα+β(v1)]c(k,k
′,r) with some

fixed c(k, k′, 1), . . . , c(k, k′, a) ∈ Z, for 1 6 k 6 a and 2 6 k′ 6 a;
(C7) [xα+β(v1), xβ(vi)] = 1 for 1 6 i 6 a;
(C8) [xα+β(vi), xβ(v1)] = 1 for 1 6 i 6 a;
(C9) x2α+β(v2

i )−1 =
∏a
k=1 x2α+β(vk)rk for all 1 6 i 6 a where rk ∈ Z;

(C10) [xβ(v1), xα(vi)] = xα+β(vi)x2α+β(v2
i ) for 1 6 i 6 a;

(C11) [xα(vj)
−1, xβ(vi)

−1] = xα+β(vivj)x2α+β(viv
2
j )−1 for 1 6 i, j 6 a, where

xα+β(vivj) =
∏a
k=1 xα+β(vk)d(i,j,k) and

x2α+β(viv
2
j ) =

∏a
k=1 x2α+β(vk)f(i,j,k)

with some d(i, j, k), f(i, j, k) ∈ Z.

The rest of the section deals with the proof of Lemma 10.

Proof. Let S be a Sylow p-subgroup of Sp4(Fq), q = pa, a > 1 and p odd. Recall
that |S| = q4 = p4a and in the Lie theoretic notation, S is a product of four root
subgroups Xα, Xβ , Xα+β and X2α+β . Each root subgroup Xγ

∼= (Fq,+) and is
generated by root elements xγ(vi) for some vi’s , 1 6 i 6 a.

First of all notice that S is a semidirect product of its normal subgroup S0 =
XαXα+βX2α+β of order q3 and a subgroup S1 = Xβ of order q. The former one
is generated by xα(vi) and xα+β(vi) (for 1 6 i 6 a) and is isomorphic to a Sylow
p-subgroup of SL3(Fq). The latter one is a root subgroup of S generated by xβ(vi)
(for 1 6 i 6 a). To present S, we are going to use the presentation of S0 from
Lemma 9, then take an obvious presentation of S1 and finally use P. Hall’s lemma
(Lemma 8 above) to “glue” those two presentations together in order to obtain a
presentation of S. We will then add a few relations (that hold in S) and show that
some of the relations (in this newly obtained presentation) are redundant and can
be obtained as a consequence of other relations.

We begin by recording a combined list of generators and relations for a presen-
tation of S0 (given in Lemma 9) and for a presentation of S1

∼= (Fq,+):

Generators : xα(vk), xα+β(vk) and xβ(vk) with 1 6 k 6 a.
Relations :
(1) For 1 6 k 6 a,

1. (xα(vk))p = 1, (xβ(vk))p = 1, and
2. (xα+β(vk))p = 1,

(2) [xα(vk), xα(vk′)] = 1 for 1 6 k < k′ 6 a,
(3) [xβ(vk), xβ(vk′)] = 1 for 1 6 k < k′ 6 a,
(4) [xα+β(vk), xα+β(vk′)] = 1 for 1 6 k < k′ 6 a,
(5) [xα(v1), [xα(vk), xα+β(v1)]] = [xα+β(v1), [xα(vk), xα+β(v1)]] = 1 for

1 6 k 6 a,
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(6) [xα(vk)−1, xα+β(vk′)
−1] =

∏
16r6a[xα(vr), xα+β(v1)]c(k,k

′,r) with some
fixed c(k, k′, 1), . . . , c(k, k′, a) ∈ Z, for 1 6 k 6 a and 2 6 k′ 6 a.

Let us now introduce the following notation that will make the next step more
comfortable. It comes from the Steinberg notation. Let

x2α+β(vi) =
[
xα
(

1
2vi
)
, xα+β(v1)

]
for 1 6 i 6 a

where xα
(

1
2vi
)

=
∏a
j=1 xα(vj)

m(j,i) for all 1 6 i 6 a with some m(j, i) ∈ Z,
1 6 j 6 a.

To use P. Hall’s lemma, we need the following additional relations to hold:

(A) xβ(vi)
−1xα(vj)xβ(vi) = R′ij which is equivalent to

[xα(vj)
−1, xβ(vi)

−1] = xα+β(vivj)x2α+β(viv
2
j )−1 for 1 6 i, j 6 a,

(B) xβ(vi)xα(vj)xβ(vi)
−1 = Rij which is equivalent to

[xα(vj)
−1, xβ(vi)] = xα+β(vivj)

−1x2α+β(viv
2
j ) for 1 6 i, j 6 a,

(C) xβ(vi)xα+β(vj)xβ(vi)
−1 = xα+β(vj) for 1 6 i, j 6 a,

(D) xβ(vi)
−1xα+β(vj)xβ(vi) = xα+β(vj) for 1 6 i, j 6 a.

In (A) and (B) above, xα+β(vivj) =
∏a
k=1 xα+β(vk)d(i,j,k) and x2α+β(viv

2
j ) =∏a

k=1 x2α+β(vk)f(i,j,k) for all 1 6 i, j 6 a with some d(i, j, k), f(i, j, k) ∈ Z.
By Lemma 8, the group S has a presentation with 3a generators (listed above)

and in which the relations are given by (1)–(6) and (A)–(D).
Let us now observe that the following relations also hold in S. They are the

consequences of relations (C) and (D) and the Steinberg relations in Sp4(Fq) (cf.
[GLS98, Thm. 1.12.1]):

(7) [xα+β(v1), xβ(vi)] = 1 for 1 6 i 6 a,
(8) [xα+β(vi), xβ(v1)] = 1 for 1 6 i 6 a,
(9) x2α+β(v2

i )−1 =
∏a
k=1 x2α+β(vk)r(k,i) for all 1 6 i 6 a where r(k, i) ∈ Z,

(10) [xβ(v1), xα(vi)] = xα+β(vi)x2α+β(v2
i ) for 1 6 i 6 a.

Consider the combined list of relations (1)–(10) and (A), (B), (C), (D). They all
hold in S and give a presentation of S on the set of 3a generators given above. We
will now show that in fact we may reduce the list of generators and that relations
(B), (C) and (D) follow from (1)–(10) and (A).

In what will follow the following commutator identity will be very useful:

[a, bc] = [a, b][a, c]b. (∗)

First of all, notice that (9) and (10) together with the identity (∗) imply that
for 1 6 j 6 a, we have:

xα+β(vi) = [xβ(v1), xα(vi)]
∏a
k=1

[
xα
(

1
2vk
)
, [xβ(v1), xα(v1)]

]r(k,i)

where for each k, the element xα( 1
2vk) is expressed in terms of xα(vi)’s and xβ(vi)’s,

1 6 i 6 a, as above. In particular, we may remove xα+β(vi), 1 6 i 6 a, from the
list of generators.

Now, let us prove the following statement.
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Claim 11. The following relations follow from the relations (1)–(10) and (A):

(1) [xβ(vj), x2α+β(vi)] = 1 for all 1 6 i, j 6 a;
(2) [[xα(vi), xβ(v1)], xβ(vj)] = 1 for 1 6 i, j 6 a;
(3) [xα+β(vi), xβ(vj)] = 1 for 1 6 i, j 6 a, i.e., relations (C) and (D);
(4) relations (B).

Proof. 1. Observe that [x2α+β(vi), xβ(vj)] = [[xα( 1
2vi), xα+β(v1)], xβ(vj)] for 1 6

i, j,6 a. Recall now the Hall–Witt identity formulated for our definition of the
commutators:

[[y, x−1], z−1]y
−1

[[z, y−1], x−1]z
−1

[[x, z−1], y−1]x
−1

= 1.

Let us apply it with y = xα( 1
2vi), x = xα+β(v1)−1 and z = xβ(vj)

−1. First notice
that

[[x, z−1], y−1] =
[
[xα+β(v1)−1, xβ(vj)], xα

(
1
2vi
)−1]

=
[
1, xα

(
1
2vi
)−1]

= 1

because of (7). Now,

[[z, y−1], x−1] =
[[
xβ(vj)

−1, xα
(

1
2vi
)−1]

, xα+β(v1)
]

= [[xβ(vj)
−1,
∏a
k=1 xα(vk)−m(i,k)], xα+β(v1)]

by (2). Let us look more closely at [xβ(vj)
−1,Πa

k=1xα(vk)−m(i,k)]. Using repeat-
edly the commutator identity (∗) together with relation (A) and the fact that
the subgroup H0 := 〈xα+β(vi), x2α+β(vi), 1 6 i 6 a〉 of S0 is normal in S0,
we see that [xβ(vj)

−1, xα( 1
2vi)

−1] ∈ H0 for all 1 6 i, j 6 a. Now the struc-
ture of S0 tells us that H0 is abelian and as xα+β(v1) ∈ H0, we conclude that
[[xβ(vj)

−1, xα( 1
2vi)

−1], xα+β(v1)] = 1.2 Finally, the Hall–Witt identity gives us
that [[xα( 1

2vi), xα+β(v1)], xβ(vj)] = 1 for 1 6 i, j 6 a, which implies the desired
result.

2. Our proof follows a similar one in [BD01]. We have that

xβ(vj)[xα(vi), xβ(v1)]

= xα(vi)xβ(vj)xβ(vj)
−1xα(vi)

−1xβ(vj)xα(vi)xβ(v1)xα(vi)
−1xβ(v1)−1

= xα(vi)xβ(vj)[xβ(vj)
−1, xα(vi)

−1]xβ(v1)xα(vi)
−1xβ(v1)−1.

Since [xβ(vj)
−1, xα(vi)

−1] = [xα(vi)
−1, xβ(vj)

−1]−1, using relations (A) to-
gether with part 1 and relations (8), we observe that [xβ(vj)

−1, xα(vi)
−1]xβ(v1) =

xβ(v1)[xβ(vj)
−1, xα(vi)

−1]. As, furthermore, xβ(v1) commutes with xβ(vj), we
have that

xβ(vj)[xα(vi), xβ(v1)]

= xα(vi)xβ(v1)xβ(vj)xβ(vj)
−1xα(vi)

−1xβ(vj)xα(vi)xα(vi)
−1xβ(v1)−1

= xα(vi)xβ(v1)xα(vi)
−1xβ(vj)xβ(v1)−1

= xα(vi)xβ(v1)xα(vi)
−1xβ(v1)−1xβ(vj)

= [xα(vi), xβ(v1)]xβ(vj).

2We may use the facts about the structure of S0 since S0 is given by relations (1),
(2), (4), (5) and (6), and (9) holds in S0.
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3. From (10) and (9) we have

xα+β(vi) = [xβ(v1), xα(vi)]x2α+β(v2
i )−1 = [xβ(v1), xα(vi)]

∏a
k=1 x2α+β(vk)r(k,i).

As [a, bc] = [a, b][a, c]b, we have

[xβ(vj),xα+β(vi)]

= [xβ(vj), [xβ(v1), xα(vi)]
∏a
k=1 x2α+β(vk)r(k,i)]

= [xβ(vj), [xβ(v1), xα(vi)]][xβ(vj),
∏a
k=1 x2α+β(vk)r(k,i)][xβ(v1),xα(vi)].

Using Part 2, we see that [xβ(vj), [xβ(v1), xα(vi)]] = 1, and from part 1 it
follows that the commutator [xβ(vj),

∏a
k=1 x2α+β(vk)r(k,i)] = 1. This gives (C).

Now notice that (D) is an immediate consequence of (C).

4. Finally we observe that relations (A) together with Parts 1 and 3 imply that
xβ(vi)

−1 commutes with [xα(vj)
−1, xβ(vi)

−1]. Therefore by [BD01, Lem. 2] we
have:

[xα(vj)
−1, xβ(vi)] = [xα(vj)

−1, xβ(vi)
−1]−1,

which in turn (using the relations in S0) implies relations (B). �

Thus we have shown that S has a presentation with the generators xα(vk)
and xβ(vk), 1 6 k 6 a, subject to the relations (1)–(10) and (A). Rename the
relations (1)–(10) into (C1)–(C10) and relations (A) into (C11). Finally, counting
the number of those relations, we obtain a presentation of S on 2a generators and
the promised number of relations. �

2.3. Kac–Moody groups: presentation of Γ = U+

Recall that G = G
(
Fq((t))

)
can be thought of as a topological Kac–Moody group.

Since the rank of it as a Chevalley group is l, its Kac–Moody rank is l + 1. Then
G(Fq[[t]]) can be naturally identified with a maximal parahoric subgroup and P
with the pro-unipotent radical U+ of the standard Iwahori subgroup B+. Thus
P = U+ is the closure of U+ in G where U+ is the subgroup of the corresponding

minimal Kac–Moody group G̃ = G(Fq[t, t
−1]) generated by the positive real root

subgroups of G̃ [RR06, Thm. 1.C].
In the notation of §2.1, we apply Lemma 7 with Γ = U+: this tells us that P is

the pro-p completion of the group U+ which, in what follows, is better understood
than P thanks to a combination of §2.2 and of Kac–Moody arguments which we
explain in the rest of the subsection. We will then deduce a presentation of P from
a presentation of Γ = U+ because P = Γp̂.

Let us go first a bit deeper into Kac–Moody theory. Let A be the generalized
Cartan matrix of G̃ and π = {α0, α1, . . . , αl} be the set of its fundamental roots.
Corollary 1.2 of [DM07] implies that if A is 3-spherical and q > 16, then U+ is
an amalgamated product of the system {Xαi} ∪ {Xαi,αj}, 0 6 i, j 6 l, where

each Xαi = 〈xαi(c) | c ∈ Fq〉 ∼= (Fq,+) is a fundamental root subgroup of G̃
and Xαi,αj = 〈Xαi , Xαj | Ri,j〉 where Ri,j comes from the rank 2 subsystem with
fundamental roots αi and αj . To simplify things, let us denote Xi := Xαi and
Xi,j := Xαi,αj (in particular, remark that Xi,j = Xj,i for all 0 6 i, j 6 l). Thus
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in fact, U+ is a group generated by the elements of the root subgroups Xi’s for
i = 0, 1, ..., l and presented by the relations between those generators that hold in
Xi,j for 0 6 i, j 6 l (we may let Xi,i := Xi).

Recall that the 3-spherical condition is relevant to generalized Dynkin diagrams
as obtained for instance in Kac–Moody theory. In our situation the Dynkin di-
agram of the (untwisted) affine Kac–Moody group G̃ = G(Fq[t, t

−1]) obtained
from G, is the diagram obtained by adding suitably a single vertex to the (classi-
cal, i.e., spherical) Dynkin diagram of G. The resulting Dynkin diagram is called
the completed Dynkin diagram of G; the vertex and the edges emanating from it
are added in such a way that any subdiagram obtained by removing an arbitrary
vertex (and the edges emanating from it) is of finite type. Geometrically, this
corresponds to the fact that we pass from a finite Weyl group to an affine one
acting on a Euclidean tiling so that any vertex stabilizer is a finite Weyl group. In
other words, if G is a Chevalley group of rank l, then the Kac–Moody group G̃ is
l-spherical.

Let us now discuss the tools we will need to obtain an explicit presentation of
U+. Let v1, . . . , va be generators of Fq with v1 = 1. It is obvious that for each i,

〈{xαi(vk)}16k6a | xαi(vk)p = 1, [xαi(vk), xαi(vk′)] = 1 for 1 6 k < k′ 6 a〉

is a presentation of Xi. Therefore U+ is generated by elements {xαi(vk)}16k6a,06i6l
and the following a(l + 1) + a(a − 1)(l + 1)/2 = a(a+ 1)(l + 1)/2 relations must
hold:

(1) xαi(vk)p = 1 for 1 6 k 6 a and 0 6 i 6 l.
(2) [xαi(vk), xαi(vk′)] = 1 for 1 6 k < k′ 6 a and 0 6 i 6 l.

The remaining relations will come from the subsystems Xi,j for 0 6 i 6= j 6 l.
Clearly, those depend on the type of Xi,j which is determined by the type of root
system generated by αi and αj . Let us discuss those case-by-case.

Suppose first that Xi,j is of type A1 × A1. Then Xi,j
∼= Xi ×Xj and we would

need the following additional relations to describe Xi,j in this case:

(3) [xi(vk), xj(vk′)] = 1 for 1 6 k, k′ 6 a. Thus for every subsystem Xi,j of
type A1 × A1, we will have a2 additional relations.

(4) If Xi,j is of type A2, then Xi,j is isomorphic to a Sylow p-subgroup of
SL3(Fq), and so using Lemma 9, we notice that we need relations (A3) and
(A4) with si(vk) = xi(vk), 1 6 k 6 a. Thus for every subsystem Xi,j of
type A2, we will have 2a+ a(a− 1) = a(a+ 1) additional relations.

(5) Finally, if Xi,j is of type C2, then Xi,j is isomorphic to a Sylow p-subgroup
of Sp4(Fq). If p is odd, we may use the results of §2.2.1 telling us that we
need

7a2 + 13a

2
− 2a− a(a− 1) =

5a2 + 11a

2
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additional relations. These are relations (C4)–(C11) and some of relations
(C1). If p = 2, we use the result of [LSe03, Prop. 3.4.1] to say that Xi,j

requires 8a2 additional relations.

Finally, notice that all of the above relations are products of p-powers and
commutators. Therefore, U+/([U+, U+]Up+) is an elementary abelian p-group of

order at most pa(l+1). To see that the exact order of this quotient is pa(l+1), it is
enough to exhibit a quotient of U+ which is an elementary abelian p-group whose
order is equal to this upper bound. This can be seen by considering the action of
U+ on the set of alcoves sharing a codimension 1 face with the alcove c stabilized
by U+. These alcoves are in one-to-one correspondence with the set of simple roots

of the Kac–Moody group G̃ defined by c. Moreover, by the commutation relations
between root groups in G̃, each given simple root group acts simply transitively
on the alcoves sharing a given panel with c (but 6= c) and acts trivially on the
remaining alcoves of the finite set under consideration. The image of U+ for this
action is the desired quotient. Therefore we obtain that

U+/([U+, U+]Up+) ∼= Fa(l+1)
p

(see also Corollary 2.5 of [CR14]).

We can now summarise:

Proposition 12. Let G̃ = G(Fq[t, t
−1]) be a minimal affine untwisted Kac–Moody

group of rank l + 1 > 4 defined over a field Fq where q = pa, a ∈ N, q > 16. Let

U+ be the subgroup of G̃ generated by the positive real root subgroups. Then the
the following conditions hold:

(1) U+/([U+, U+]Up+) ∼= F
a(l+1)
p , and so d(U+) = a(l + 1).

(2) The group U+ has a presentation 〈{xi(vk)}06i6l,16k6a | R〉 such that R are
as described in (1)–(5) above.

(3)

r(U+) 6
a(a+ 1)(l + 1)

2
+ |{Xi,j | Xi,j is of type A1 × A1}| · a2

+ |{Xi,j | Xi,j is of type A2}| · a(a+ 1)

+ |{Xi,j | Xi,j is of type C2}| · |RC2 |

where |RC2 | = (5a2 + 11a)/2 if q is odd, and |RC2 | = 8a2 if q is even.

We may now evaluate r(U+) in each case using Proposition 12. We then record
the datum and the outcomes of the calculations in Table 1. For groups of type
Bn, Cn and F4, we only record the estimates for p odd (though all the estimates
appear in the next section). We do it because the bound for p = 2 is quite far
away from being sharp.
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Table 1.

Type Kac–Moody |{Xi,j}| |{Xi,j}| |{Xi,j}| r(U+) 6
of G diagram for |{Xi,j}| for |{Xi,j}| for |{Xi,j}| (∗ is given only

of G̃ =A1×A1 =A2 =C2 for p > 3)

Al

α

α2 αd

0

α1 αd−1
(l+1)(l−2)

2 l + 1 0
a2(l+1)2+3a(l+1)

2

Bl α0

α
2

αd

α
1

αd−1

l(l−1)
2 l − 1 1

a2(l+1)2+3a(l+1)+3a2+7a
2

∗

Cl α0 αdα1 αd−1
l(l−1)

2 l − 2 2
a2(l+1)2+3a(l+1)+6a2+16a

2

∗

Dl α0

α2

αd

αd−2

α
1

αd−1
l(l−1)

2 l 0
a2(l+1)2+3a(l+1)−2a

2

El

l = 6
l(l−1)

2 l 0
a2(l+1)2+3a(l+1)−2a

2

l = 7

l = 8

F4 6 = 4·3
2

3 = 4− 1 1 14a2 + 11a ∗

2.4. Conclusion

The number of generators of P = Γp̂ in its presentation coming from Γ is a(l+ 1).
This is in fact a presentation with a minimal number of generators (by Proposi-
tion 12 — see also [CR14, Cor. 2.5]). Moreover the generators can be chosen to be
x0(vk), . . . , xl(vk), 1 6 k 6 a. Our discussion gives us that P has a presentation
〈x0(vk), . . . , xl(vk), 1 6 k 6 a | R〉 with |R| 6 Ca2(l+ 1)2 (with C an appropriate
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constant as calculated in the previous section). More precisely, this proves the
upper bound in the next theorem:

Theorem 13. Let G
(
Fq((t))

)
be a simple, simply connected, Chevalley group of

rank l over a field Fq((t)) with q = pa > 16, and let P be its Sylow pro-p-subgroup.
Then

a2(l + 1)2

4
6 r(P )

and the following upper bounds hold:

1. If G has type Al and l > 3, we have r(P ) 6
(
a2(l + 1)2 + 3a(l + 1)

)
/2.

2. For type Bl and l > 3, we have r(P ) 6
(
a2(l + 1)2 + 3a(l + 1) + 3a2 + 7a

)
/2

for p > 3, and r(P ) 6
(
a2(l + 1)2 + 3a(l + 1) + 14a2 − 4a

)
/2 for p = 2.

3. For type Cl and l > 3, we have r(P ) 6
(
a2(l + 1)2 + 3a(l + 1) + 6a2 + 16a

)
/2

for p > 3, and r(P ) 6
(
a2(l + 1)2 + 3a(l + 1) + 28a2 − 6a

)
/2 for p = 2.

4. For type Dl and l > 4, we have r(P ) 6
(
a2(l + 1)2 + 3a(l + 1)− 2a

)
/2.

5. For type El and l ∈ {6, 7, 8}, we have r(P ) 6
(
a2(l + 1)2 + 3a(l + 1)− 2a

)
/2.

6. For type F4, we have r(P ) 6 14a2 + 11a for p > 3, and r(P ) 6 15a2 + 4a for
p = 2.

Proof. It remains to prove the lower bound. For this we use the Golod–Shafarevich
inequalities as stated in the Propostion below, with Q = P and d(P ) = a(l + 1).
�

Proposition 14. Let Q be a pro-p subgroup of G
(
Fq((t))

)
as in Theorem 13.

Then, with the obvious definitions for d(Q) and r(Q), we have r(Q) > d(Q)2/4.

Proof. We follow the lines given by the proof of Proposition 5.4 and the discus-
sion after Proposition 5.5 in [LS94]. With the notation and terminology there, the
group Q is commensurable with an Fq[[t]]-standard group [loc. cit., Def. 2.1], which
implies the subexponential growth of the sequence (rn)n>0 related to the powers of
the augmentation ideal ∆ of the group ring FqQ (more precisely: rn is defined to
be dimFp(∆n/∆n+1) [loc. cit., p. 320]). Subexponential growth of (rn)n>0 implies
the desired Golod–Shafarevich inequality. �

The equality P = Γp̂ = (U+)p̂ was used to derive an upper bound on the number
of relations needed to present P as a pro-p group. But it can be also used to deduce
a lower bound on the number of relations needed to present Γ = U+ in the discrete
category.

Corollary 15. For Γ = U+ we have:

d(Γ) = a(l + 1) and
a2(l + 1)2

4
6 r(Γ) 6 6.25 · a

2(l + 1)2

4
.

Proof. The result on d(Γ) was shown above (Proposition 12) and so was the upper
bound on r(Γ) (in fact, slightly better bounds are given in Table 1). The lower
bound is deduced from the fact that r(Γ) > rp(Γp̂) = rp(P ) and the Golod–
Shafarevich inequality given in Proposition 14. �
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Remark 2. The last corollary is slightly surprising: usually the Steinberg type
presentations of groups are far from being optimal. In our case the Steinberg-like
presentations are essentially optimal.

3. The characteristic 0 case

Some results like Theorems 1 and 0.2 can be proved also in characteristic 0.
But our results in this case are weaker than the above theorems.

In this section let k be a number field, O its ring of integers and V the set of its
finite valuations. For v ∈ V , let kv be the completion of k with respect to v, and
Ov the closure of O in kv. For such a v, denote by Fpavv the finite residue field of
k. Let G be a simple simply connected Chevalley group scheme of arbitrary rank
l > 1, let G = G(Ov) and let P be a Sylow pro-pv subgroup of G. Here is what
we can prove in this situation.

Theorem 16. There exists a constant C1 = C1(k) such that for every v ∈ V and
every G as above, G = G(Ov) has a presentation Σ(G), with DΣ(G) generators
and RΣ(G) relations, satisfying

DΣ(G) +RΣ(G) 6 C1.

Theorem 17. With the notations as above, assume that the following conditions
hold:

(1) If l = 1, then pv > 2.
(2) If l = 2, then pv > 2 if G is of type B2 = C2 and that pv > 3 if G is of

type G2.
(3) If l > 3, then one of the following conditions holds:

1. pavv > 16, or
2. if pavv < 16, then pv > 2 if G is of type Bl,Cl or F4.

Then P is generated by at least avl and at most av(l + 1) generators. Moreover,
there exist absolute constants C2 > 0 and C3 > 0 such that:

• the group P has a presentation with av(l+ 1) generators and at most C2a
2
vl

4

relations;
• any presentation of P needs at least C3a

2
vl

2 relations.

Theorem 16 can be deduced from the following result.

Theorem 18. There exists a constant C4 = C4(k) such that Λ = G(O) has a
presentation ΣΛ, with DΣΛ generators and RΣΛ relations, satisfying

DΣΛ +RΣΛ 6 C4.

Let us make the following remark.

Remark 3. (1) We believe that the lower bound in Theorem 17 above is sharp.
(2) We do not know if the constant C1(k) in Theorem 16 really depends on k.
(3) On the other hand, C4 does depend on k, or at least on the degree [k : Q].

To see this, let ki be a sequence of number fields with [ki : Q] = ni → ∞ such
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that there exists a rational prime p which splits completely in all the ki’s. Then
by the Strong Approximation Theorem, the group G(O) is mapped onto G(Fp)

ni

and since d(G(Fp)
ni) grows logarithmically with ni [Wie74], d(G(O)) grows to

infinity with [k : Q].
Such a sequence of fields exists. For example, denote by {pi}i∈N the sequence

of odd primes congruent to 2 = 32 modulo 7 : p1 = 23, p2 = 37, etc., and then
set k0 = Q and then ki+1 = ki(

√
pi+1). The polynomial x2 − pi+1 is irreducible

over ki, but reducible over F7. Hence, if Oi denotes the ring of integers of ki, we
should have Oi/7Oi = (Z/7Z)2i .

Let us postpone the proof of Theorem 18 until Section 4. Instead now we show
how it implies Theorem 16.

Proof of Theorem 16. Let us first assume that G is of rank > 2. Then the group

G(O) has the congruence subgroup property in the sense that Ĝ(O) → G(Ô) is
onto with a cyclic kernel (see Theorem 6). The presentation of G(O), promised

in Theorem 18, gives a profinite presentation of Ĝ(O) and so, with one additional

relation used to kill the cyclic kernel if needed, it serves as a presentation of G(Ô).

As in the proof of Proposition 1.2, since G(Ô) = G(Ov)×M where M is normally
generated by one element, Theorem 16 is proved with C1 6 C4 + 2.

The remaining case is when G = SL2. In this situation, we pick a prime v0

of O and work with the arithmetic group SL2(O[1/v0]) which enjoys the congru-
ence subgroup property: we can then use the surjective map with trivial kernel

̂SL2(O[1/v0])→ SL2(Ô[1/v0]) =
∏
v 6=v0

SL2(Ov) as before, in order to see that the
family {G(Ov)}v 6=v0 is boundedly presented. Finally, the single remaining group
SL2(Ov0) does not cause any problem since it is analytic over kv0 and therefore
finitely presented. �

In order to prove Theorem 17 we will need the following statement.

Lemma 19. Let G be a finite p-group that is an extension of U by N

1→ N → G→ U → 1.

Suppose further that N is abelian, the action of U on N is fixed, and let G0 be
such an extension that splits. Then d(G) 6 d(G0).

Proof. The minimal number of generators of a p-group H is dim(H/[H,H ]Hp).
We can therefore assume that N is an elementary abelian p-group. Moreover, if
H is either G or G0, we can factor out the subgroup [N,H], and so assume that
the action of U on N is trivial. In the split case we are looking now at N × U ,
and so the number of generators is d(G0) = d(N) + d(U). This is certainly an
upper bound for the number of generators of the non-split case. The latter will
indeed be smaller in general as can be seen easily in any non-abelian p-group with
elementary abelian centre where the number of generators of such H is strictly
less than d(Z(H))+d(H/Z(H)) since Z(H) has a non-trivial intersection with the
Frattini subgroup Φ(H). �

And now on with the proof of Theorem 17.
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Proof of Theorem 17. The group P is an extension of the Sylow pv-subgroup U
of G(Fpavv ) by the first congruence subgroup N := Ker

(
G(Ov) → G(Fpavv )

)
of

G(Ov). This group N is a uniform powerful group whose Frattini subgroup Φ(N)
is equal to the second congruence subgroup of G(Ov). In fact N/Φ(N) can be
identified with Lie(G)(Fpavv ) and G(Ov)/N ∼= G(Fpavv ) acts on N/Φ(N) by the
natural adjoint action of G(Fpavv ) on its Lie algebra Lie(G)(Fpavv ) [Wei84, Lem.
5.2]. It follows that d(P ) is equal to d

(
P/Φ(N)

)
and P/Φ(N) is an extension of

Lie(G)(Fpavv ) by U .

Now if P̃ is the corresponding Sylow pro-p subgroup in the group G(Fpavv [[t]])

over the characteristic p ring Fpavv [[t]], then P̃ is the split extension of U with

Ñ , where Ñ is the first congruence subgroup there, i.e., Ñ = Ker
(
G(Fpavv [[t]])→

G(Fpavv )
)
. Also there, the Frattini subgroup Φ(Ñ) of Ñ is the second congru-

ence subgroup of G(Fpavv [[t]]) and we have d(P̃ ) = d
(
P̃ /Φ(Ñ)

)
. In this situation

P̃ /Φ(Ñ) is also an extension of Lie(G)(Fpavv ) by U (via the adjoint action), but
this time the extension splits.

We may therefore apply Lemma 19 to deduce that

d(P ) = d
(
P/Φ(N)

)
6 d
(
P̃ /Φ(Ñ)

)
= d(P̃ ).

In §2, using the Kac–Moody methods, we showed that d(P̃ ) = av(l + 1) for
l > 3 and pavv > 16. But in fact, as was shown in [CR14, Cor. 2.5], this result is
true for all l as long as p > 2 for G being A1, Bl, Cl or F4 and p > 3 for G = G2.
Hence, under our hypotheses, d(P ) 6 av(l + 1). On the other hand, as P surjects
onto U , we have d(P ) > d(U) = avl.

Observe that N is a powerful uniform group on av ·dim(G) generators and hence
can be presented by C ′a2

v dim(G)2 relations [DDMS99, Thm. 4.35]. The group U
has a presentation with avl generators and at most C

′′
a2
vl

2 relations. Indeed, U
is a Sylow p-subgroup of G(Fpavv ). But the latter group is a special case of Kac–
Moody group, namely a Chevalley group over a finite field. Thus in particular,
U = U+ for this class of groups and so if l > 3, Proposition 12 holds for U implying
the desired estimate. If l 6 2, then U is a group on lav generators and of order
pavmv with m 6 6 by [GLS98, Thm. 3.3.1]. Now [LSe03, Prop. 3.4.1] implies that
U has a presentation on those generators with at most 12a2

v relations. Thus for all
l, U has a presentation with avl generators and at most C

′′
a2
vl

2 relations. Now we
may use P. Hall’s lemma to glue together the presentations of N and U to obtain
a presentation of P . As a result we conclude that P has a presentation with at
most av(l + 1) generators and at most C3a

2
vl

4 relations, as claimed.

The lower bound on the number of relations now follows from the Golod–
Shafarevich inequality [LS94, Prop. 5.4]. �

4. Characteristic 0: the global case

In this section, we prove Theorem 18. The proof follows the line of [Cap13]
where Theorem 1.1 is proved. Some results from K-theory are needed along the
way.
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4.1. Definitions and facts from K-theory

In what follows, Φ is a reduced, irreducible root system and R a commutative unit
ring. We denote by StΦ(R) the Steinberg group of type Φ over R, which is a group
defined by a presentation based on the root subgroups and commutator relation
between them.

If GΦ is the simply connected Chevalley group scheme of type Φ, there is a natu-
ral group homomorphism StΦ(R)→ GΦ(R) whose image is precisely the subgroup
EΦ(R) generated by the root groups Ua(R), a ∈ Φ, with respect to the standard
maximal split torus. By the very definition of the low-degree K-groups of a root
system and a ring, we have an exact sequence:

1→ K2(Φ, R)→ StΦ(R)→ GΦ(R)→ K1(Φ, R)→ 1, (†)

where (the image of) K2(Φ, R) is central in StΦ(R). Roughly speaking, K1(Φ, R)
measures the failure for GΦ(R) to be generated by its unipotent elements. When
K1(Φ, R) is trivial, the group StΦ(R) is a central extension of the Chevalley group
GΦ(R).

In the proof below, an important argument is the fact that the Steinberg ver-
sion of a celebrated theorem of Curtis and Tits holds over rings. This result was
announced almost 40 years ago by R.K. Dennis and M.R. Stein [DS74, Thm. B].
Our reference is D. Allcock’s recent paper [All13] which contains a vast generaliza-
tion of Curtis-Tits amalgamation theorem to Steinberg groups associated to some
classes of Kac–Moody groups.

Theorem 20. Let Φ be a reduced irreducible root system of rank l > 2 with Π =
{α1, . . . , αl} a system of simple roots in Φ. For each pair of integers {i, j} with
1 6 i, j 6 l, denote by Φij the subsystem of Φ spanned by αi and αj. Let R be a
commutative ring with 1, and define Σ(Φ, R) to be the group with generators xα(t)
for α ∈ ⋃Φij and t ∈ R subject to the relations:

1. xα(s)xα(t) = xα(s+ t), α ∈ ⋃Φij, s, t ∈ R,
2. [xα(s), xβ(t)] =

∏
xaα+bβ(Nαβabs

atb)

for all α, β ∈ Φij for some 1 6 i, j 6 l such that α+ β 6= 0, where the product and
the integers Nαβab are as in (R2) of [Ste71, 3.7]. Then Σ(Φ, R) ∼= StΦ(R).

4.2. Proof of Theorem 18

The proof of Theorem 18 is now as follows.

Step I: The groups GΦ(O) are all arithmetic groups and hence are finitely presented
[Rag68]. So in particular the groups GΦ(O), for Φ of rank l 6 5, are all presented
by at most C ′4(k) generators and relations. As there are only finitely many roots
systems of bounded rank, we have to deal from now on only with those of degree
at least 6.
Step II: Recall that Sym(n) and Alt(n) have presentations with a bounded number
of generators and relations independent of n [GKKL07]. This was used (together
with the fact that SL4(Z) is finitely presented) in [GKKL11] to show that the
groups SLn(Z), for n > 6, are boundedly presented. The proof works word to
word to show that StAl(O) are boundedly presented for l > 6.
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Step III: We now show that every Dynkin diagram Φ of rank at least 6 can be
covered by three subdiagrams Φi (for i = 1, 2, 3) such that:

(1) each Φi has at most two connected components, and every connected com-
ponent is either of type Al (for l > 2) or of rank at most 5;

(2) every two nodes of Φ belong to at least one of the Φi’s; and

(3) each intersection Φi ∩ Φj (for i 6= j) has at most two components, each
either empty or of type Al (for l > 2), B3 or C3.

Let us list explicitly Φi, i = 1, 2, 3, in each particular case:

• for Bl, l > 6, take Φ1 = Al−1, Φ2 = B3 t Al−4 and Φ3 = ∅;

• for Cl, l > 6, take Φ1 = Al−1, Φ2 = C3 t Al−4 and Φ3 = ∅;

• for Dl, l > 6, take Φ1 = Al−1, Φ2 = Al−1 (different from Φ1) and Φ3 = A3

(the one containing the “fork”);

• for El, l ∈ {6, 7, 8}, take Φ1 = Al−1, Φ2 = A4 (the one containing one of the
end-nodes and the vertex missed by Φ1) and Φ3 = Al−2 (the one containing
the other end-node and containing the vertex missed by Φ1).

Step IV: Given Φ =
⋃3
i=1 Φi as in the previous step, the Curtis–Tits Theorem

guarantees that a presentation for StΦ(O) is obtained by taking the union of the
presentation of StΦi(O) and gluing them along the intersections. As we have
arranged that all the StΦi(O) as well as their intersections have bounded presen-
tations, the same now applies to StΦ(O).

Step V: We now use the stability results to deduce that by adding a bounded num-
ber of relations to the presentation of StΦ(O), we obtain a bounded presentation
for GΦ(O) as promised, where the bound depends on O only.

First of all notice that by the results of Mennicke, Bass–Milnor–Serre and Mat-
sumoto (cf. Theorem 7.4 of [Spl86]), the group K1(Φ,O) is trivial when l > 2, and
therefore definitely in our case.

Thus in view of (†) and the result just obtained in Step IV, to finish our proof
it remains to show that for all Φ of rank at least 6, the corresponding family of
groups {K2(Φ,O)}Φ is boundedly generated.

To do that, let us recall the stability results of Dennis, Van der Kallen and Stein
that are summarised in [Spl86, Thm. 7.5] and in the example following it. Applied
to our situation they imply that for l > 6 and Φl = Al,Bl,Cl or Dl, the maps

K2(Φ6,O)→ K2(Φl,O)

are surjective, as well as for l = 6, 7, 8, are the maps

K2(A6,O)→ K2(El,O).

It follows that K2(Φl,O), l > 6, is boundedly generated provided we can show
that K2(Φ6,O) are finitely generated. But this follows immediately as StΦ6

(O) is
boundedly presented (as we showed in the previous step) while GΦ6

(O) is finitely
presented (as an arithmetic group): this implies that K2(Φ6,O) is finitely gener-
ated as a normal subgroup; being central, it is also finitely generated as a group.
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Remark 4. As pointed out above in Remark 3, the constant C4(k) in Theorem 18
does depend on k. In fact we observed there that there exist sequences of fields ki
with |ki : Q|→∞ such that C4(ki)> c0 log |ki : Q| for some absolute constant c0.
One can carefully analyse the proof of Theorem 18 to deduce that C4(k)6C0|k :Q|2
(when l > 6).
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[CR14] I. Capdeboscq, B. Rémy, On some pro-p groups from infinite-dimensional Lie
theory, Math. Zeitschrift 278 (2014), no. 1–2, 39–54.

[Car05] R. W. Carter, Lie Algebras of Finite and Affine Type, Cambridge Studies
in Advanced Mathematics, Vol. 96, Cambridge University Press, Cambridge,
2005.

[DDMS99] J. D. Dixon, M. du Sautoy, A. Mann, D. Segal, Analytic Pro-p Groups, 2nd
ed., Cambridge Studies in Advanced Mathematics, Vol. 61, Cambridge Uni-
versity Press, Cambridge, 1999.
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