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Abstract. We consider the set of forms of a toric variety over an arbitrary field: those
varieties which become isomorphic to a toric variety after base field extension. In contrast
to most previous work, we also consider arbitrary isomorphisms rather than just those
that respect a torus action. We define an injective map from the set of forms of a toric
variety to a non-abelian second cohomology set, which generalizes the usual Brauer class
of a Severi–Brauer variety. Additionally, we define a map from the set of forms of a toric
variety to the set of forms of a separable algebra along similar lines to a construction
of A. Merkurjev and I. Panin. This generalizes both a result of M. Blunk for del Pezzo
surfaces of degree 6, and the standard bijection between Severi–Brauer varieties and
central simple algebras.

1. Introduction

Let k be an arbitrary field. A toric variety is a normal variety X over k with a
faithful action of a torus T which has a dense open orbit.

When the field k is the complex numbers C, toric varieties have been extensively
studied (see, for example, [Ful93] or [Cox95]). Among the simplest examples is the
projective line P1 where the torus Gm acts via

λ · (x : y) = (λx : y)

for λ ∈ C× with open orbit x, y ̸= 0. In most literature, as part of the definition
of “toric variety” the torus is identified with the open orbit on which it acts. This
identification is always possible over C.

However, when the ground field k is not separably closed, the torus T may
not be the standard split torus Gn

m. Indeed, when k is the real numbers R, the
projective line also has an action of the circle group S1 via multiplication by
rotation matrices. Thus, P1

R has the structure of a toric variety for the two non-
isomorphic tori S1 and Gm. (Rotation matrices are diagonalizable over C so they
are isomorphic in that situation.)
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Moreover, for general base fields the open orbit may not even have a rational
point. Indeed, when k = R, the conic

C = {x2 + y2 + z2 = 0} ⊂ P1(R)

has an action under the circle group S1 via rotation matrices on the coordinates
x, y. Thus the conic C is a toric variety, but has no R-points. (Over C, we obtain
P1
C by projecting away from the point (1 : i : 0).)
Let us compare our description of the real forms of P1 to that of Section 3.1 of

[ELFST14]. Suppose C(t) is the function field of P1
C and λ ∈ C× acts by t 7→ λt.

We have three anti-holomorphic involutions which normalize the torus action given
by

t 7→ t̄, t 7→ t̄−1, and t 7→ −t̄−1

where t̄ denotes the complex conjugate. In the first two cases, the corresponding
real variety is P1

R since there are fixed points; while in the third, we obtain C since
there are no fixed points. For the torus, we obtain λ 7→ λ̄ for the first case, so the
real torus is R×. However, in the second two cases λ 7→ λ̄−1 and we obtain the
circle group S1 with |λ| = 1.

When the torus T is split, we call X a split toric variety. Most of the literature
on toric varieties is about the split case since this is the only case when k = C.
In [Vos82], V. Voskresenskĭı studies toric varieties for general tori T , but assumes
that the open orbit has a rational point; we will call these neutral toric varieties.

Recall that a k-form of a k-variety X is a k-variety X ′ such that

X ×Spec(k) Spec(K) ≃ X ′ ×Spec(k) Spec(K)

for some field extension K/k. For example, P1
R and the conic C both become

isomorphic to P1
C after base extension to C. All toric varieties are k-forms of a

split toric variety. The main goal of this paper is to study the set of isomorphism
classes of forms of toric varieties.

Note that there are several different natural notions of isomorphism that one
can use. We consider three different categories of toric varieties (made precise
in Section 3), each of which has a different notion of isomorphism, and thus, of
k-form.

When the toric variety is neutral we can identify the torus with its open or-
bit and consider the category W with toric morphisms which restrict to group
homomorphisms of the tori; this is the notion of isomorphism studied in [Vos82].
The category N consists of toric varieties with torus-equivariant morphisms; this
category is implicit in, for example, [VK84], [MP97], and [ELFST14]. Finally, the
category R consists of toric varieties with arbitrary morphisms which completely
ignore the toric structure. To see how the different categories differ, note that the
two different torus actions on P1

R discussed above give rise to two distinct isomor-
phism classes in N , but they are not distinct in R since the underlying varieties
are the same.

Our approach is a direct generalization of standard techniques for studying
forms of projective space. We review this now. Recall that a Severi–Brauer variety
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is a k-form of projective space. The set of isomorphism classes of k-forms of
a (suitably nice) algebraic object is in bijection with the étale cohomology set
H1(k,Aut(X)), which is simply Galois cohomology since k is a field. Thus the
set of isomorphism classes of Severi–Brauer varieties is in bijection with the set
H1(k,PGLn).

Recall that the projective space X = Pn−1 has a homogeneous coordinate ring
whose spectrum is a vector space V ≃ kn. The space X is a quotient of an open
subset of the vector space V by the group Gm. This construction gives rise to an
exact sequence

1 → Gm → GLn → PGLn → 1 (1.1)

where GLn acts on V and PGLn is the automorphism group of Pn−1.
From the exact sequence (1.1), the long exact sequence in non-abelian Galois

cohomology produces a well-known injection

H1(k,PGLn) ↪→ H2(k,Gm) (1.2)

where H1(k,PGLn) is in bijection with the set of isomorphism classes of Severi–
Brauer varieties of dimension n− 1 and the group H2(k,Gm) is the Brauer group
Br(k).

For a complete split toric variety X, the Cox ring of X, introduced in [Cox95],
generalizes the usual homogeneous coordinate ring for projective space. Again, the
spectrum of the Cox ring is a vector space V that has an open subset from which
X can be reconstructed as a quotient by a diagonalizable group S. Here S is the
Cartier dual of the class group of X, which generalizes Gm from the case where X
is Pn−1.

There exists a linear algebraic group Ãut(X) acting on the Cox ring, generalizing
GLn from the case of projective space, which has a more convenient description
than the automorphism group scheme Aut(X). Under certain assumptions on
X, the standard sequence (1.1) is generalized by the bottom row of the following
commutative diagram with exact rows

1 / / S / / T̃ oW / /

� �

T oW / /

� �

1

1 / / S / / Ãut(X) / / Aut(X) / / 1

(1.3)

where T is a maximal torus of Aut(X), the group T̃ is a maximal torus of Ãut(X),
and W is the group of toric automorphisms of X. The diagram (1.3) is essentially
due to D. Cox; it follows from Theorem 4.5 below.

Galois cohomology can be viewed as a functor H1(k,−) which behaves well in
exact sequences. In Theorem 5.1, we show how the sets of isomorphism classes
for the three categories, as well as their relationships to each other and to their
subsets of neutral forms, can be readily obtained from the Galois cohomology sets
associated to (1.3). Applying H1(k,−) to the rightmost square we may intrepret
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each set as the k-forms of X (up to isomorphism) in an appropriate category:

Forms in W
neutral X
specified T

� � / /

� ���

Forms in N
arbitrary X
specified T

� ���

q q \_b

-
neutral X

unspecified T

� � / /

S S

�

�
$

Forms in R
arbitrary X
unspecified T

q q \_b

. (1.4)

Here the vertical maps are surjections, the horizontal maps are injections and the
dashed arrows are canonical sections or retracts. We see that the isomorphism
classes are naturally partitioned into neutralization classes each of which contains
exactly one neutral toric variety.

Note that Aut(X) has a natural induced action on Cl(X) and thus on its Cartier
dual S. If J is the image of the action of Aut(X) on Cl(X), then the group J
is finite but non-trivial in general. Thus, unlike the sequence (1.1) for projec-
tive space, S is not necessarily central in (1.3) and one should not expect a map
H1(k,Aut(X)) → H2(k, S) for a general toric variety. Nevertheless, using the
theory of non-abelian H2 from [Spr66] and [Gir71], we prove in Theorem 7.4 that
there is an injection

H1(k,Aut(X)) ↪→ H2(k, S → J) (1.5)

where H2(k, S → J) is a structured set defined below which is a natural analog of
the Brauer group. One may view the map (1.5) as a refinement of the elementary
obstruction from [CTS87].

Finally, given a split smooth projective toric variety X, we construct a canonical
k-algebra B in a similar vein as a construction of A. Merkurjev and I. Panin in
[MP97]. To each k-form of X we associate a k-form of B. This construction is
a common generalization of the usual association of a Severi–Brauer variety to
a central simple algebra and a construction of M. Blunk [Blu10] for del Pezzo
surfaces of degree 6. We investigate when the isomorphism class of the k-forms of
X can be recovered from the isomorphism classes of B; it turns out to be closely
related to retract rationality of the k-forms of X.

The paper is structured as follows. In Sections 2, 3, and 4, we fix notation,
state definitions, and review basic facts that will be needed later in the paper. In
Section 5, we use Galois cohomology and the structure theory of split toric varieties
to classify their forms. In Section 6, we extend the structure theory of the split
toric variety to the general case. In Section 7, we define the set H2(k, S → J) and
prove the injection (1.5). In Sections 8, 9, and 10, we use the preceeding theory to
investigate when Blunk’s construction can be generalized to other toric varieties.

Acknowledgements. The author would like to thank B. Antieau, M. Borovoi,
M. Brown, D. Cox, A. Merkurjev, Z. Reichstein, A. Ruozzi, and anonymous re-
ferees for helpful comments and discussions.
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2. Preliminaries

Let k be a field. We will denote by ks a separable closure of k. We denote by
Γk the absolute Galois group of the field k, which is a profinite group.

A variety X is a geometrically integral separated scheme of finite type over a
field k. A group scheme G will always be a group scheme of finite type over a field
k. An algebraic group G is a smooth group scheme of finite type over a field k.

Given a field extension K/k we denote by

XK := X ×Spec(k) Spec(K)

the pullback, which is a variety defined over K. For the separable closure, we use
the shorthand X := Xks . A k-form of X is a variety X ′ defined over k such that
X ′

K ≃ XK for some field extension K/k.
We assume that reader is familiar with Galois cohomology (see, e.g., [Ser02]).

For an algebraic group G, Hi(k,G) will denote the ith Galois cohomology set
Hi(Γk, G(ks)). This is an abelian group when G is abelian, a group when i = 0,
and a pointed set when G is non-abelian and i = 1.

Of fundamental importance to this paper is the well-known functorial bijection
of pointed sets

H1(k,Aut(X)) ≃
{
isomorphism classes
of k-forms of X

}
which holds when X is quasiprojective and Aut(X) is an algebraic group.

For an algebraic group G, an element γ ∈ H1(k,G) can be represented by a
cocycle c or by a G-torsor T (also called a principal homogeneous space). If X is
an algebraic variety (or algebraic group, or k-algebra) with a G-action, then we
can construct the twisted variety cX or TX as in §5.3 of [Ser02].

2.1. Algebras

We refer the reader to §1, §18, and §23 of [KMRT98] for many of the results that
follow. We assume throughout that all algebras are associative and unital. Given
an algebra A, we denote its opposite algebra by Aop.

An étale k-algebra E is a direct product

E = F1 × · · · × Fr

where F1, . . . , Fr are separable field extensions of k. An étale algebra E is split
if every field Fi in the decomposition is isomorphic to k. The degree of an étale
algebra E is its dimension as a vector space over k.

A central simple algebra over k is a k-algebra A such that there exists a field
K for which AK ≃Mn(K) where Mn(K) is the algebra of n× n-matrices over K.
The algebra A is split if A ≃Mn(k) over the original field.

A separable algebra A is a finite-dimensional k-algebra which is a finite product

A = A1 × · · · × Ar

where each Ai is a central simple algebra over a finite separable field extension
Fi of k. The algebra A is neutral if every algebra Ai is split as a central simple
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algebra over Fi. The algebra A is split if F1 = · · · = Fr = k and every central
simple algebra Ai is split over k. Note that the number of simple algebras r may
increase after a base field extension.

Every separable algebra has a split form Asplit which is the unique split k-form
of A. Every separable algebra A has a neutralization Aneut where we replace each
Ai in the product with its split form as an Fi-algebra. We define a neutralization
class of a separable k-algebra A to be the set of k-forms of A which have the same
neutralization. The center Z(A) of a separable k-algebra is an étale k-algebra.
The center Z(A) is invariant within neutralization classes.

2.2. Automorphisms

Given a k-algebra A, let Aut(A) denote the group scheme of automorphisms of A.
If E is an étale k-algebra of degree n, then Aut(E) is a form of the symmetric

group Sn; thus, Aut(E) is finite étale over k.
Given a finite-dimensional k-algebra A, we denote by GL1(A) the algebraic

group representing the functor

R→ (AR)
×

on commutative k-algebras R (see §20 of [KMRT98]).
Let A be a separable k-algebra with center Z(A). By §23 of [KMRT98], the

connected component of Aut(A) is given by

Aut(A)◦ ≃ GL1(A)/GL1(Z(A))

and π0(Aut(A)), the quotient by the connected component, is a subgroup of
Aut(Z(A)).

Given an algebraic subgroup I of π0(Aut(A)), the I-restricted automorphism
group of A, denoted AutI(A), is the preimage of I in Aut(A). Note, in particular,
when I is trivial, Aut1(A) = Aut(A)◦.

2.3. Groups of multiplicative type

Most of the material here can be found in, e.g., [Vos98].
Let Gm = GL1(k). A group scheme S of finite type is diagonalizable if S is a

closed subgroup of (Gm)n for some positive integer n. A group of multiplicative
type is a group scheme S such that S is diagonalizable. A group of multiplicative
type is split if it is diagonalizable. An algebraic group S is a torus if S ≃ (Gm)n

for some non-negative integer n.
Let Γ be a profinite group. A Γ-module L is a finitely generated abelian group

L with a continuous action of Γ where L is endowed with the discrete topology. A
Γ-lattice is a torsion-free Γ-module.

There is an exact anti-equivalence between the category of groups of multi-
plicative type and the category of Γk-modules which we will call “duality.” Given
a group S of multiplicative type, the character group, Ŝ, is the corresponding
Γk-module. Conversely, given a Γk-module L, the corresponding group of multi-
plicative type will be denoted D(L). Under this equivalence, tori correspond to
Γ-lattices.
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We remark that if the torsion subgroup of the underlying abelian group of a
Γk-module L has order relatively prime to the characteristic, then D(L) is an
algebraic group (in other words, it is smooth).

The image of the map Γk → Aut(Ŝ) is a finite group which we call the decompo-
sition group of S. One can also define the cocharacter group of S as the Γk-lattice
Hom(Ŝ,Z). One can recover the original group scheme S from its cocharacter
lattice if and only if S is a torus.

2.4. Weil restrictions and Galois cohomology

Let E be an étale k-algebra and let F be a functor from E-algebras to sets. We
define theWeil restriction RE/k F of F as the functor from commutative k-algebras
to sets given by

RE/k F(R) = F(R⊗k E)

for each k-algebra R. The Weil restriction of an algebraic group (resp. variety) is
also an algebraic group (resp. variety).

Lemma 2.1. Let E be an étale k-algebra and G be an algebraic group over E.
There is a natural isomorphism Hi(k,RE/kG) ≃ Hi(E,G) of groups (or pointed
sets).

Proof. See Lemma 29.6 of [KMRT98]. �
Proposition 2.2 (Hilbert 90). For any separable k-algebra A, the cohomology set
H1(k,GL1(A)) is trivial.

Proof. See Theorem 29.2 of [KMRT98]. �
Proposition 2.3. For any separable k-algebra A and for any cocycle c represent-
ing an element in H1(k,Aut(A)), we have

cGL1(A) = GL1(cA)

where cA (resp. cGL1(A)) denotes the form of A (resp. GL1(A)) twisted by the
cocycle c.

Proof. The embedding GL1(A)(ks) → Aks is Aut(Aks)(ks)-equivariant. �
2.5. Permutation lattices and quasi-split tori

A Γ-lattice L is permutation if L has a basis which is permuted by Γ. A torus S
is quasi-split if Ŝ is permutation.

There is an antiequivalence of categories between the category of étale algebras
and the category of Γk-sets where Γk-orbits correspond to the subfields Fi of E.

Given an étale k-algebra E, the group GL1(E) is a torus. Indeed,

T = GL1(E) ≃ RE/k Gm,E

is a Weil restriction. The character lattice T̂ is a permutation Γk-lattice with a
basis indexed by the Γk-set corresponding to E. The torus T is always a quasi-
split torus and any quasi-split torus can arise in this way. Note, however, that
non-isomorphic étale algebras may give rise to isomorphic tori since the choice of
basis is not canonical.
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3. Preliminaries on general toric varieties

There are several reasonable notions of a “toric variety” over a general field.
Here we fix the definitions for the remainder of the paper.

Definition 3.1. Let T be a torus. A toric T -variety X is a normal k-variety with
a faithful T -action and a dense open T -orbit X0. A toric T -variety X is neutral if
there exists a T -equivariant isomorphism T → X0. A toric T -variety X is split if
T is a split torus.

Over an algebraically closed field, the notions of neutral and split are vacuous.
It is often desirable to keep track of a specific isomorphism T → X0 when X is
neutral, but this is not part of our definition. Note that there are no non-trivial
torsors under a split torus, so a split toric T -variety is always neutral.

Definition 3.2. We say X is a toric variety if there exists a torus T with an
action on X giving X the structure of a toric T -variety. We say X is neutral if
one can choose T such that X is neutral as a toric T -variety. We say X is split if
one can choose T such that X is split as a toric T -variety.

The difference between Definitions 3.1 and 3.2 is whether a specific torus is fixed
a priori or not. Note that a toric variety X is neutral for any choice of torus if it
is neutral for any one choice. However, beware that a split toric variety may also
be a toric T -variety for a different torus T that is not split.

We introduce 3 different categories of toric varieties to emphasize the different
kind of morphisms one might consider in light of the above considerations. In
Section 5, these categories will be used as natural settings for the machinery of
descent.

Definition 3.3. The category R:

(1) objects are toric varieties,

(2) morphisms are morphisms of varieties.

Definition 3.4. The category N :

(1) objects are pairs (T,X) where T is a torus and X is a toric T -variety,

(2) morphisms from (T,X) to (T ′, X ′) are pairs (g, f) where g : T → T ′ is a
group homomorphism and f : X → X ′ is a morphism of varieties which is
T -equivariant via g.

The automorphisms in the category N amount to automorphisms of the subva-
riety X0 which extend to all of X.

Definition 3.5. The category W:

(1) objects are triples (T,X, ι) where T is a torus, X is a neutral toric T -variety,
and ι : T ↪→ X is an isomorphism with the dense open orbit,

(2) morphisms from (T,X, ι) to (T ′, X ′, ι′) are pairs (g, f) where g : T → T ′ is
a group homomorphism and f : X → X ′ is a morphism of varieties such

770



TWISTED FORMS OF TORIC VARIETIES

that the diagram

X
f / / X ′

T
g / /?�

ι

O O

T ′?
�

ι′

O O

commutes.

The morphisms of W are called toric morphisms in the literature. Observe that
multiplication by a non-trivial element of the torus is an automorphism in N , but
not in W.

We mention two useful results regarding general toric varieties.

Proposition 3.6. If T is a torus then there exists a smooth projective T -variety X.

Proof. See [CTHS05]. �
Proposition 3.7. A smooth projective toric variety X is neutral if and only if X
has a rational k-point.

Proof. See Proposition 4 of [VK84]. �

4. Structure of split toric varieties

Throughout this section, X is a proper split toric T -variety with a specified
embedding T ↪→ X.

Hypothesis 4.1. Throughout the paper we will make the following additional
technical assumptions:

• the automorphisms functor Aut(X) is a linear algebraic group, and
• the order of the torsion subgroup of the class group Cl(X) is relatively prime
to the characteristic of k.

We shall see that both these assumptions hold when X is smooth or X has char-
acteristic 0.

Here we outline the well-known structure theory of a split toric variety to fix
notation. We assume the reader is familiar with standard references on toric
varieties (for example, [Ful93] or [CLS11]). Many references only consider the
base field C, but much of the theory goes through unchanged in the split case.

Let M = T̂ be the character lattice of T , and let N be the cocharacter lattice
of T . Of course, since T is split, both lattices have trivial Γk-action.

Split toric T -varieties X are in bijective correspondence with fans in their
cocharacter lattices N . From the data of a fan Σ, one can determine whether
X is smooth, projective, or proper over k. We denote by Σ(k) the set of cones

of dimension k in Σ; in particular, Σ(1) is the set of rays. We denote by M̃ the

free abelian group with basis indexed by Σ(1). The dual lattice Ñ is canonically

isomorphic to M̃ by using this basis. The lattice M̃ is isomorphic to the group of
T -invariant Weil divisors of X.

For a split toric variety, we have canonical isomorphisms Cl(X) = Cl(X) and
Pic(X) = Pic(X) (this follows from their descriptions via torus-invariant divisors
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as in, e.g., Theorem 4.1.3 of [CLS11]). The divisor class group, Cl(X), has a
natural structure as a (trivial) Γk-module. Let S be the group of multiplicative
type D(Cl(X)). Note that by our assumption above, S is a linear algebraic group.

There is an exact sequence

1 →M → M̃ → Cl(X) → 1 (4.1)

when ks[X]× ≃ ks. When X is smooth, Cl(X) is canonically isomorphic to Pic(X)
and is torsion free.

4.1. Cox rings

We now review the theory of Cox rings (see [Cox95]). For non-split toric varieties
this can be subtle (see Section 6 and [DP14]), but here we assume X is split and
proper.

The Cox ring Cox(X) of X is the polynomial ring

Cox(X) := k[x1, . . . , xr]

where the monomials x1, . . . , xr correspond to the rays ρ1, . . . , ρr in Σ(1). Let T̃

be the torus dual to M̃ . Note that Cox(X) has a canonical embedding into k[T̃ ]

where monomials can be identified with elements of M̃ . The ring Cox(X) has a

natural Cl(X) grading via the morphism M̃ → Cl(X) from (4.1).

For a Weil divisor D, we denote the graded component of Cox(X) corresponding
to [D] ∈ Cl(X) by Cox(X)[D] or Cox(X)D. Denoting OX(D) as the reflexive sheaf
associated to D, there are isomorphisms

Cox(X)D ≃ H0(X,OX(D)) = {f ∈ k(X)× : div(f) +D ≥ 0} ∪ {0}

for every Weil divisor D.

We define the irrelevant ideal B of Cox(X) as the monomial ideal generated by
products xi1 · · ·xir corresponding to subsets of rays {ρi1 , . . . , ρir} which are the
complement of a cone in Σ. Note that V = Spec(Cox(X)) is an affine variety with
a natural vector space structure. The ideal B cuts out a closed subvariety Z ⊂ V
whose complement X̃ we call the characteristic space of X.

Since S is the Cartier dual of Cl(X), the Cl(X)-grading on Cox(X) corresponds

to generically-free actions of S on V and on X̃ (obtained via restrictions of the

action of the torus T̃ ). We may recover X as the categorical quotient of X̃ by S;
over C this is Theorem 2.1 of [Cox95], but the proof works in general with minor
modifications. In the case that X is smooth, S is a torus and, thus, the action of
S on X̃ is free and the quotient

ψ : X̃ → X

is an S-torsor (in fact, a universal torsor in the sense of [CTS87]).

772



TWISTED FORMS OF TORIC VARIETIES

4.2. Automorphisms

The automorphism group scheme of a smooth proper split toric variety was de-
termined in [Dem70]. Our exposition is heavily inspired by [Cox95] where the
automorphism group of a split proper simplicial toric variety over C is determined
indirectly via the Cox ring (see also [Cox14]). The simplicial hypothesis is re-
moved in [Büh96]. The automorphism group of a projective split toric variety is
determined in [BG99] over an arbitrary field.

Recall that we assume that Aut(X) is a linear algebraic group. The author
knows no counterexample to this assumption for an arbitrary proper toric variety
and it holds many cases of interest:

Lemma 4.2. Let X be a proper split toric variety and suppose that either

(1) X is smooth, or
(2) k has characteristic 0 and X is projective.

Then the functor Aut(X) of automorphisms of X is a linear algebraic group.

Proof. Note that since X is proper, Aut(X) is a group scheme of locally finite
type over k (see Theorem 3.7 of [MO67]). When X is smooth, Aut(X) is a linear
algebraic group by Proposition 11 of [Dem70]. In characteristic 0, the neutral
component Aut(X)◦ must be smooth. From [BG99], we have a description of
Aut(X)(K) for any field K when X is projective. From this description we see
that Aut(X) has finitely many connected components and thus Aut(X) is a linear
algebraic group. �

Let W be the group of toric automorphisms of X (the subgroup of GL(N) ≃
GLn(Z) which takes cones to cones). Note thatW has induced actions on T̃ and T .

Let Vλ be the weight subspace of V corresponding to λ in Cl(X) and let nλ
be its dimension. Let Λ be the subset of Cl(X) corresponding to the non-trivial
weight subspaces Vλ of V .

Definition 4.3. The Cox endomorphism algebra of X is the split separable k-
algebra

A :=
∏
λ∈Λ

End(Vλ).

We define W ◦ =W ∩GL1(A) and note that

W ◦ ≃
∏
λ∈Λ

Snλ

where each Snλ
is the symmetric group on nλ letters. The group W ◦ is isomorphic

to the Weyl group of GL1(A).

Definition 4.4. The group of class group automorphisms of X, denoted J , is the
image of the map Aut(X) → Aut(S) (recall that we obtain an induced action of
Aut(X) on S since it is the dual of the class group Cl(X)). The group J is a finite
constant group which will be of fundamental importance for the remainder of the
paper.

Let Ãut(X) be the normalizer of S in the automorphism group functor of X̃.

We will see that, in fact, Ãut(X) is a linear algebraic group.
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Theorem 4.5. Let X be a projective split toric variety with Aut(X) smooth. Di-
agram (1.3):

1 / / S / / T̃ oW / /

� �

T oW / /

� �

1

1 / / S / / Ãut(X) / / Aut(X) / / 1

commutes and has exact rows. Moreover, T oW (resp. T̃ oW ) is the normalizer

of a maximal torus in Aut(X) (resp. Ãut(X)). There is a unipotent subgroup U
such that

Ãut(X) ≃ U oGL1(A)o J,

and an isomorphism
W ≃W ◦ o J

where the splitting is unique up to conjugacy.

Proof. When k = C and X is simplicial, the commutative diagram (1.3) is es-
sentially the main theorem of §4 of [Cox95]. From [BG99], one can obtain the
commutativity and exactness of the diagram on the level of k-points where k is
an arbitrary field. The group Ãut(X) can be explicitly constructed as a closed
subgroup of a general linear group acting on a subspace of k[V ] (the exposition in
[Cox14] is especially clear). Using this description, one checks that its Lie algebra
has the appropriate dimension and thus it is a linear algebraic group.

Since Aut(X) is also a linear algebraic group, we may establish the remaining
statements by first assuming k is algebraically closed and then showing that all
of the structural maps are actually defined over the original field k. We need
to establish the splittings of Ãut(X) and W . By the references above, the group

Ãut(X)∩GL(V ) is isomorphic to the product GL1(A)W . Moreover, there is a sur-

jective homomorphism Ãut(X) → GL1(A)W with kernel a unipotent subgroup U .
Note that V is the vector space dual to the subspace spanned by the generators

x1, . . . , xr of Cox(X) and thus is spanned by the dual basis x∗1, . . . , x
∗
r which may be

identified with rays of Σ. The group W permutes these basis vectors. The group
W ◦ consists of all permutations of x∗1, . . . , x

∗
r which preserve the decomposition

into weight subspaces Vλ.
Since GL1(A) is connected and J is a constant finite group, we obtain an exact

sequence
1 →W ◦ →W → J → 1

which we want to show is split. The group J acts faithfully on the set Λ. Note
that if W splits as W ◦ o J , then GL1(A)W splits as GL1(A)o J .

Choose orderings for x∗1, . . . , x
∗
r within each subspace Vλ. Pick a set-theoretic

section s : J → W . For each j ∈ J , we have s(j)(Vλ) = Vj(λ). By comparing the
ordered bases of Vλ and Vj(λ), the element j gives rise to an element wλ ∈ Snλ

.
Taking the product of the wλ’s for each λ ∈ Λ, we obtain an element wj ∈ W ◦

such that w−1
j ◦ s(j) : Vλ → Vj(λ) is an isomorphism of vector spaces with ordered
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bases. Since such isomorphisms are unique, the set-theoretic section s̃ : J → W
given by s̃(j) = w−1

j ◦ s(j) is a group homomorphism as desired.
Note that the section constructed only depends on the choice of orderings for

the bases within each Vλ. These are permuted by W ◦, so the section is unique up
to conjugacy.

We have established the theorem when k is algebraically closed. However, U ,
T̃ , T , GL1(A), W , W ◦, J and the splittings can be all be defined over a general
field k. All the remaining statements follow since they are true over an algebraic
closure. �
Remark 4.6. As remarked above, it is unclear if Aut(X) is ever not a smooth group

scheme. Regardless, there is a group scheme homomorphism Ãut(X)/S → Aut(X)

defined via the universal property of the categorical quotient X̃ → X, which is
an isomorphism on the level of K-points for any field K. The theorem still holds
without the smoothness assumption if we replace Aut(X) with Ãut(X)/S.

Remark 4.7. Note that in [Cox95], it is erroneously stated that all graded endo-
morphisms of Cox(X) form a (not necessarily separable) algebra B. This would

lead to a description Ãut(X) ≃ GL1(B)o J above. This error was first addressed
in [Cox14]. In fact, the graded endomorphisms form an algebra if and only if the
unipotent radical U is trivial. Indeed, if U is trivial then B = A. However, if
U is non-trivial then there exists an element g ∈ B which acts as g(x∗i ) = x∗i for
all i ̸= j and g(x∗j ) = x∗j +M where j is an integer in 1, . . . , r, and M is some
monomial in x∗1, . . . , x

∗
r of degree ≥ 2. If B were an algebra then g would commute

with scalar multiplication, but this fails since deg(M) ≠ 1.

Remark 4.8. Let V be a vector space of dimension n. If X is P(V ), the set of
1-dimensional subspaces of V , then the Cox endomorphism algebra A is simply
End(V ). As a special case of the Severi–Brauer construction, we may recover X
as the variety of right ideals of A (see [Sal99] or [KMRT98]).

5. Twists of the split toric variety

Throughout this section, we assume that X is a split projective toric T -variety
with a fixed torus embedding T ↪→ X as in the previous section. The projectivity
assumption is to ensure that descent is effective. This assumption can be often be
weakened (see [Hur11] for a complete description of when descent is effective for
toric T -varieties.) Moreover, we also assume Hypothesis 4.1 holds.

Note that the Galois cohomology set H1(k,G) is functorial in the group G.
Thus, we may apply the functor H1(k,−) to the commutative diagram (1.3). The
following theorem investigates the result of this operation:

Theorem 5.1. The commutative square

H1(k, T̃ oW ) //

� �

H1(k, T oW )

� �
H1(k, Ãut(X)) / / H1(k,Aut(X))

(5.1)
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obtained from the commutative diagram (1.3) is canonically isomorphic to the
square

H1(k,W ) �
� / /

� ���

H1(k, T oW )

� ���

t t VZ_dh

H1(k, J)
� � //

Z Z

�

�
2

H1(k,Aut(X))
t t VZ_dh

(5.2)

where the downward maps are surjective and the rightward maps are injective.
Moreover, the rightward maps have canonical retracts and the left downward map
has a canonical section.

Before proving the theorem, we make some remarks. Recalling the categories
from Section 3 we find:

AutR(X) = Aut(X), AutN (X) = T oW, AutW(X) =W.

Thus, three of the coefficient groups appearing in (5.2) are simply the automor-
phism groups of toric varieties within these categories. The Galois cohomology
sets represent the forms of X within each category. As W contains only neutral
toric varieties, we recover the interpretation from (1.4).

From this diagram, we recover the well-known fact that there is a unique iso-
morphism class of a split toric variety (resp. split toric T -variety) among all the
possible k-forms. For a given toric variety X we call the unique split variety the
associated split toric variety and denote it by Xsplit.

From the canonical retracts, we see that every toric variety X has an associated
neutral toric variety, or neutralization, which we denote by Xneut. We call the set
of forms which have a common neutralization a neutralization class and remark
that these partition the isomorphism classes of forms of X.

The canonical section provides every neutral toric variety with a canonical iso-
morphism class of torus among the many which may act on the variety. When the
toric variety is split, the canonical section recovers the split torus.

Remark 5.2. An investigation of the top row of Theorem 4.5 using Galois coho-
mology was also carried out in [ELFST14].

Remark 5.3. In [VK84] and [MP97], the neutralization is defined when T is fixed
and is called the “associated toric T -model.” The theorem above shows that one
can define the neutralization independently of the particular torus action chosen.

We now prove Theorem 5.1. We begin with some technical lemmas:

Lemma 5.4. Let A and C be algebraic groups where C acts on A. The map
H1(k,Ao C) → H1(k, C) is surjective and the map H1(k, C) → H1(k,Ao C) is
injective.

Proof. Apply the functor H1(k,−) to the composition C → Ao C → C. �
Lemma 5.5. Let A and C be algebraic groups where C acts on A. Let ξ be a set
of cocycle representatives for the set H1(k, C). There is a canonical bijection

H1(k,Ao C) ≃
⨿
c∈ξ

H1(k, cA)/H
0(k, cC),
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functorial in A, where each component of the disjoint union is a fibre of the canon-
ical map to H1(k, C). In particular, H1(k, cA) is trivial for every c ∈ ξ if and only
if the map H1(k,Ao C) → H1(k, C) is a bijection.

Proof. The last statement follows from the previous statements since the indexing
set ξ is bijective with H1(k, C).

By Lemma 5.4, there is a canonical choice of preimage in H1(k,A o C) for
elements in H1(k,C). By Corollary 2 of §5.5 of [Ser02] we obtain the desired
bijection. More precisely, for c ∈ ξ, we obtain a map H1(k, cA) → H1(k, c(AoC))
whose image is H1(k, cA)/H

0(k, cC); then we use the bijection τc : H
1(k,AoC) →

H1(k, c(A o C)) as in §5.4 of [Ser02]. (Note that this bijection is canonical up to
the choice of cocycle representatives ξ.)

To prove functoriality, consider another algebraic group B with an action of C
and a C-equivariant homomorphism A→ B. The morphism foC : AoC → BoC
gives rise to a commutative diagram

H1(k,Ao C) / /

� �

H1(k,B o C)

� �
H1(k, C) H1(k, C)

.

Thus, the map takes fibres to fibres. Note that twisting by c ∈ ξ is a functorial
operation, so we can twist f by c to obtain cf : cA→ cB. The map⨿

c∈ξ

H1(k, cA)/H
0(k, cC) →

⨿
c∈ξ

H1(k, cB)/H0(k, cC)

is obtained by taking a disjoint union of quotients by H0(k, cC). This process
preserves compositions and the identity. �
Lemma 5.6. Let A be a separable k-algebra with center Z(A). Let S be a closed
subgroup of GL1(Z(A)) and suppose J is an algebraic subgroup of Aut(A) which
stabilizes S. Then the induced morphism of Galois cohomology sets

H1(k,GL1(A)o J) → H1(k,GL1(A)/S o J)

is canonically isomorphic to the injection

H1(k, J) ↪→ H1(k,GL1(A)/S o J)

and has a canonical retract.

Proof. Since J acts on the algebra A by automorphisms, for any cocycle c ∈
Z1(k, J) we have cGL1(A) = GL1(cA) by Proposition 2.3. Thus, by Hilbert 90,
we see that H1(k, cGL(A)) is trivial for any cocycle c ∈ Z1(k, J).

By Lemma 5.5, we conclude that

H1(k,GL1(A)o J) ≃ H1(k, J).

We obtain injectivity and the canonical retract from Lemma 5.4. �
We now observe that, from the perspective of Galois cohomology, the unipotent

radical is irrelevant:
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Proposition 5.7. There are canonical bijections

H1(k, Ãut(X)) ≃ H1(k,GL1(A)o J)

and
H1(k,Aut(X)) ≃ H1(k, (GL1(A)/S)o J).

Proof. Since X is split, X can be defined over the prime field k0 of k; in other
words, X = Yk for a split toric variety Y over k0. All prime fields are perfect,
thus the unipotent radicals of Ãut(Y ) and Aut(Y ) are k0-split. As a consequence,

the unipotent radicals of Ãut(X) and Aut(X) are k-split and, thus, we may apply
Lemma 7.20 of [GMB13]. �
Proof of Theorem 5.1. First we consider the top row. Recall that T̃ is a split torus
and thus is GL1(E) for a split étale k-algebra E. The group W permutes a basis
for V and thus acts on E by algebra automorphisms. From Lemma 5.6, we obtain
injectivity with a canonical retract.

By Proposition 5.7, we may assume the bottom row in (5.1) is

H1(k,GL1(A)o J) → H1(k, (GL1(A)/S)o J).

Again, Lemma 5.6 provides injectivity with a canonical retract.
Now, we show that the vertical maps are surjections. For any cocycle

c ∈ Z1(k, J) the map

c(T̃ oW ◦) → cGL1(A)

is the inclusion of the normalizer of a maximal torus into a connected algebraic
group and thus the induced map

H1(k, c(T̃ oW ◦)) → H1(k, cGL1(A))

is surjective by Corollary 5.3 of [CGR08] (Lemma III.4.3.6 of [Ser02] when k is per-
fect). Via Lemma 5.5, we conclude that the left vertical map in (5.1) is surjective.
Similarly, we conclude the right vertical map is surjective.

Since J andW are finite constant groups, the elements of H1(k, J) andH1(k,W )
are simply homomorphisms from Γk to J or W up to conjugacy. By Theorem 4.5,
there exists a section of the map W → J which is unique up to conjugacy. Thus,
the induced map H1(k, J) → H1(k,W ) is independent of the choice of section
J →W and, thus, is canonical. �
Example 5.8 (P1

R × P1
R). Consider X = P1 × P1 over the real numbers R. There

is precisely one other R-form C of P1 over R corresponding to the subvariety

x2 + y2 + z2 = 0

cut out of P2. There are only two isomorphism classes of 1-dimensional tori over
R which we denote by R× and S1.

Here W ≃ D8, and T ≃ G2
m. The group J ≃ C2 can be thought of as the group

which interchanges the two fibrations X → P1. In this case, one can compute all
the cohomology groups in Theorem 5.1 explicitly. We summarize the conclusions
of this computation.

There are two neutralization classes. The first contains:
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(a) P1 × P1 with possible tori R× × R×, R× × S1 and S1 × S1,
(b) P1 × C with possible tori R× × S1 and S1 × S1,
(c) C × C with torus S1 × S1.

And the second class contains:

(d) RC/R P1
C with torus RC/R C×.

We point out the role of J in these computations using Lemma 5.4. First, the
action of H0(k, cJ) is necessary to establish that P1×C and C×P1 are isomorphic.
Second, the necessity of non-trivial cocycles c ∈ Z1(k, J) is witnessed by the exis-
tence of RC/R P1

C.

6. Properties of twisted forms

Throughout this section, X is a projective toric variety which is not necessarily
split. However, we assume the split form Xsplit of X satisfies Hypothesis 4.1 (which
then also holds for X).

Clearly, one may define the automorphism group Aut(X) and its unipotent
radical U . As before, we define the algebraic group S as the dual of the Γk-module
Cl(X). We define the group of class group automorphisms J as the image of the
morphism Aut(X) → Aut(S) as before. The group J is a finite algebraic group,
but may not be constant. If we do specify a torus T , then we defineW as the Weyl
group of T in Aut(X); in other words W := NAut(X)(T )/T . All of these objects
agree with the corresponding objects of the split form over a separable closure.

The theory of Cox rings is more complex for non-split toric varieties. Depending
on one’s definitions, they may not exist or they may not be polynomials rings (see
[DP14]). Despite this, one may still define a Cox endomorphism algebra for a
general toric variety.

Proposition 6.1. There exists an algebra A and a morphism GL1(A) → Aut(X)
which coincides with the split case over the separable closure. The isomorphism
class of the center Z(A) of A is determined only by the neutralization class of X.

We call the algebra A in the proposition above the Cox endomorphism algebra
of X, generalizing Definition 4.3.

Proof. We use the fact that X is a k-form of Xsplit.
Recall that the algebra Asplit associated toXsplit comes with a map GL1(Asplit)→

Aut(Xsplit). From Theorem 4.5, we have a morphism

Aut(Xsplit) → Aut(Asplit)

since Ssplit is a subgroup of the group GL1(Z(Asplit)). Thus the morphism
GL1(Asplit) → Aut(Xsplit) is Aut(Xsplit)-equivariant, and we obtain the desired
algebra A and map by twisting.

By composition, there is also a map Aut(Xsplit) → Aut(Z(Asplit)) which factors
through Jsplit since GL1(Asplit) centralizes Z(Asplit). Thus, the induced morphism

H1(k,Aut(Xsplit)) → H1(k,Aut(Z(Asplit)))

then factors through H1(k, Jsplit). Thus, the isomorphism class of Z(A) depends
only on the neutralization class of X. �
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Example 6.2 (Severi–Brauer varieties). Given a central simple algebra A, one
can construct the Severi–Brauer variety X associated to A. Proposition 6.1 simply
reverses this process. In the case of Severi–Brauer varieties, the isomorphism class
of the toric variety X is completely detemined by the isomorphism class of its Cox
algebra A.

Example 6.3 (del Pezzo of degree 6). Let X be the split del Pezzo surface of
degree 6. As a toric variety, its effective T -invariant divisors are spanned by 6
elements which correspond to the blow-ups of three points on P2 and the strict
transforms of the lines between them.

There is a common convention for the coordinates of the rays of this surface.
Using this convention, the map Ñ → N is given by(

1 0 −1 −1 0 1
0 1 −1 0 −1 1

)
.

By duality we obtain a map M̃ → Pic(X) given by
0 0 0 1 1 1
1 0 0 0 −1 −1
0 1 0 −1 0 −1
0 0 1 −1 −1 0


where we denote the ordered basis of Cl(X) ≃ Pic(X) by H, E1, E2, E3.

Note that as all 6 rays have different images in Cl(X), all the spaces Vλ are
1-dimensional. Thus, the Cox endomorphism algebra A is an étale algebra and
thus equal to its center. By Proposition 6.1, the algebras associated to the k-forms
of X are determined only by the neutralization class.

However, not all forms of X are neutral. Thus, the Cox endomorphism algebras
A do not suffice to distinguish k-forms of X in this case. However, in [Blu10],
a different pair of separable algebras is associated to each k-form of X which do
distinguish all isomorphism classes of X. We investigate this pheonomenon in
Section 10 below; in particular, see Example 10.2.

Remark 6.4. (Maximal étale algebras) For Severi–Brauer varieties, there is a bijec-
tive correspondence between maximal étale subalgebras of A and maximal tori of
Aut(X). This holds for toric varieties when the unipotent radical U is trivial.
Conditions for when the hypothesis U = 0 holds are investigated in [Nil06].

In Cox’s original paper, the Cox ring was only defined for split toric varieties
(over C). Cox rings can be extended to more general varieties as a ring structure
on the direct sum of the vector spaces H0(X,OX(D)) for all D ∈ Cl(X). This
definition makes sense when the base field is not algebraically closed, but we lose
the connection with universal torsors. An alternate definition was proposed in
[DP14], which is better suited to applications over non-closed fields. However, like
universal torsors, these Cox rings do not always exist, nor are they necessarily
unique. The following is in the spirit of the latter definition.

Recall that in the split case, the characteristic space of a toric varietyX is the S-
invariant open subset X̃ of V along with the categorical quotient map ψ : X̃ → X.
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We define a characteristic space of a (not necessarily split) toric variety X as a

subvariety X̃ of an affine space V along with a map ψ : X̃ → X which coincides
with the characteristic space of the split toric variety over the separable closure.
When X̃ does exist, we define Ãut(X) to be normalizer of S in Aut(X̃) as before.

Proposition 6.5. There exists a characteristic space ψ : X̃ → X if and only if
X is neutral. When X̃ exists, we have a decomposition

Ãut(X) ≃ U oGL1(A)o J

as in the split case.

Proof. Assume a characteristic space exists. Then we have a dominant rational
map V → X where V is an affine space. Thus X has a Zariski-dense set of k-
points. We conclude that X is neutral since any open T -orbit for any T -action
must contain a k-point.

Now, assume that X is neutral. By Theorem 5.1, we may choose a cocycle c in
Z1(K,Jsplit) such that X ≃ c(Xsplit). Since Jsplit maps to Ãut(Xsplit) and leaves
Ssplit stable, we may define an affine space V := c(Vsplit) containing a characteristic

space X̃ := c(X̃split) both with S-actions. We define the map ψ : X̃ → X as the
twist c(ψsplit).

The splitting Jsplit → Ãut(Xsplit) is Jsplit-equivariant and thus, when we twist

by c, the morphism Ãut(X) → J splits and we have the desired decomposition.
�
Remark 6.6. Note that the map ψ : X̃ → X is not unique as an S-scheme over X
— even up to isomorphism. Indeed, when X is smooth, ψ is a universal torsor of
X; their isomorphism classes are in bijection with H1(k, S) (see §2 of [CTS87]).

Remark 6.7. (Canonical torus) When X is neutral, we can define T̃ with an ac-

tion on X̃ as in the split case. In this case, there is a canonical choice for the
isomorphism class of the torus T̃ (and thus T ). This follows from the fact that the
morphism H1(k,Wsplit) → H1(k, Jsplit) has a canonical section. Specifically, as A
is a neutral separable k-algebra, it is a product of matrix algebras

A =Mn1(F1)× · · · ×Mnr (Fr)

where F1, . . . , Fr are separable field extensions of k and n1, . . . , nr are positive
integers. There is a maximal étale subalgebra of A of the form

E = (F1)
n1 × · · · × (Fr)

nr .

The canonical torus T̃ is then GL1(E).

Remark 6.8. (Restricted automorphism groups) Let X be a neutral toric variety.
Given a finite algebraic subgroup I of J , the I-restricted automorphism group of
X, denoted AutI(X), is the preimage of I in Aut(X). Note that, in particular,
Aut1(X) = Aut(X)◦. The Galois cohomology set H1(k,Aut1(X)) can be inter-
preted as the set of isomorphism classes of toric varieties Y isomorphic to X along
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with a fixed isomorphism Pic(Y ) ≃ Pic(X). Note that if we drop the explicit
isomorphism, we obtain the set

H1(k,Aut1(X))/H1(k, J)

which is the set of isomorphism classes of toric varieties Y with a neutralization
isomorphic to X.

Example 6.9 (Products of projective spaces). LetXsplit = (Pq−1)n be a product
of projective spaces given two integers q, n > 1. Here Pic(Xsplit) ≃ Zn, S ≃ Gn

m

and J ≃ Sn. In this case, (1.3) is as follows:

1 / / Gn
m

/ / (Gq
m)n o (Sq ≀ Sn) / /

� �

(Gq
m/Gm)n o (Sq ≀ Sn) / /

� �

1

1 / / Gn
m

/ / GLm ≀Sn
/ / PGLm ≀Sn

/ / 1

where G ≀ Sn is the wreath product Gn o Sn for a group G.
Here the algebra Asplit is simply Mq(k)

n and thus the automorphism group
Aut(Xsplit) ≃ PGLq ≀Sn of the variety is isomorphic to Aut(Asplit). Thus, forms
X of Xsplit correspond to forms A of Asplit. The neutral forms X correspond to
neutral forms A, which, in turn, correspond to étale k-algebras of degree n.

More geometrically, k-forms X are products of Weil restrictions

RF1/kX1 × · · · × RFr/kXr

where each Xi is a Severi–Brauer variety of dimension q−1 over the field Fi. When
X is neutral, each Xi is a projective space.

7. Non-abelian H2

In this section, we extend the long exact sequences in Galois cohomology from
Theorem 4.5 to H2. Unlike the situation for Severi–Brauer varieties, the original
sequences do not correspond to central extensions, so we cannot use the ordinary
abelian cohomology group H2(k, S).

In [Spr66] and §IV.4.2 of [Gir71], the ordinary sequence from Galois cohomology
is extended to a non-abelian version of H2 (see also more recent work in [Bor93],
[FSS98] and [Flo04]). Our applications are less ambitious, so we have the luxury of
a simpler exposition. Rather than consider the abelian group H2(k, S), we consider
H2(k, S → J) which has the structure of a set with a distinguished subset. Here
the notation for the “coefficients” is meant to suggest a crossed module as in, for
example, [Bre10].

Let S be a smooth split k-group of multiplicative type and let J be a finite
subgroup of Aut(S). Note that J is a constant group.

We have a natural action of J on each cocycle c ∈ Z1(k, J) via j(c)σ := jcσj
−1

for all σ ∈ Γk. Two cycles are cohomologous if and only if they are in the same
orbit under this action (essentially by definition).
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Given a cocycle c ∈ Z1(k, J) and an element j ∈ J we have an isomorphism

j∗ : H
2(k, cS) → H2(k, j(c)S)

which is defined on cocycles s ∈ Z2(k, cS) via

j∗(s)σ,τ := j(sσ,τ ) for all σ, τ ∈ Γk.

One checks that the image cocycle sits in Z2(k, j(c)S) as expected and that coho-
mology classes are preserved.

We now define the main object of study in this section:

Definition 7.1. We define the following set:

H2(k, S → J) :=

( ⨿
c∈Z1(k,J)

H2(k, cS)

)/
J.

We define the set of neutral elements as the subset of H2(k, S → J) containing the
trivial elements in each component H2(k, cS). This endows the set H2(k, S → J)
with the structure of a set with a distinguished subset. The image of the trivial
element from H2(k, S) will be referred to as the trivial element of H2(k, S → J).

Now we define the connecting homomorphism. Suppose G̃ and G are algebraic
groups sitting in an exact sequence

1 → S → G̃→ G→ 1 (7.1)

such that the conjugation action of G on S induces a surjection π : G→ J .
Let a be a cocycle in Z1(k,G). Let ã : Γk → G̃(ks) be a continuous function

lifting a (which always exists since Γk is profinite andG(ks), G̃(ks) have the discrete

topology). Define a function ∆ã : Γk × Γk → G̃(ks) via

(∆ã)σ,τ := ãσ(
σãτ )(ãστ )

−1

for all σ, τ ∈ Γk. We will see that ∆ã is a cocycle in Z2(k, π(a)S), and that this
gives rise to a well-defined map

δ : H1(k,G) → H2(k, S → J)

which we call the connecting map.

Lemma 7.2. The connecting map

δ : H1(k,G) → H2(k, S → J)

is well defined and canonically isomorphic as sets with distinguised subsets to the
map

δ1 : H1(k, G̃, S) → H2(k, S rel G̃)

from 1.20 of [Spr66].
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Proof. We will prove the isomorphism with Springer’s map; the fact that our
construction is well defined then follows for free.

Let a be a cocycle in Z1(k,G) and let ã : Γk → G̃(ks) be a continuous function

lifting a. In Springer’s notation, the set Z1(k, G̃, S) is simply the set of continuous

functions b : Γk → G̃(ks) lifting cocycles in Z1(k,G). We may simply assume

ã = b. To each cocycle b there is an associated 2-cocycle (f, g) for H2(k, S rel G̃)
where

fσ(s) = bσ(
σs)(bσ)

−1,

gσ,τ = bσ(
σbτ )(bστ )

−1

for s ∈ S(ks) and σ, τ ∈ Γk. Comparing this to Definition 7.1, we will see that f
corresponds to the choice of cocycle c and g corresponds to a cocycle in Z2(k, cS).

This cocycle (f, g) sits naturally inside Z2(k, S, λa) where λa is the Γk-kernel
induced by the automorphisms fσ of S. Since S is abelian, the kernels λa are
honest continuous maps Γk → Aut(S(ks)) (where Aut(S(ks)) has the discrete
topology). Thus, the kernel λa coincides with the cocycle c = π∗(a) in Z1(k, J).
The cocycle g is equal to ∆b as functions and they are then 2-cocycles in Z2(k, cS).

The normalizer N of S in G̃ is G̃ itself. Given an element n ∈ N we have
the image j = π(n) ∈ J . The induced action of n on the set of Γk-kernels of S
coincides with the induced action of j on Z1(k, J) defined above, and the induced
action of n on the pairs (f, g) coincides with the action of j on 2-cocycles in the
sets Z2(k, cS). Thus the constructions agree. �

Now, suppose that G̃ = Ro J where R is an algebraic group containing S as a
J-stable central closed subgroup. We have a J-equivariant exact sequence

1 → S → R→ R/S → 1

corresponding to a central extension.

Lemma 7.3. Let ξ be a set of cocycle representatives for H1(k, J). The connecting
map

δ : H1(k,G) → H2(k, S → J)

is canonically isomorphic to the map

⨿
c∈ξ

(
H1(k, c(R/S))

H0(k, cJ)

)
→

⨿
c∈ξ

(
H2(k, cS)

H0(k, cJ)

)

induced from the usual connecting maps H1(k, c(R/S)) → H2(k, cS).

Proof. We have the decomposition of H1(k,G) from Lemma 5.5.
The orbits of J in Z1(k, J) are precisely the cohomology classes. Thus, the

images of the maps H2(k, cS) → H2(k, S → J) over all cocycles c ∈ ξ are
mutually disjoint and jointly surjective. For a particular cocycle c ∈ ξ, an ele-
ment j ∈ J fixes c if and only if j is in H0(k, cJ). Thus, the image of the map
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H2(k, cS) → H2(k, S → J) is simply the quotient by H0(k, cJ). This establishes
the decomposition of H2(k, S → J).

It remains to prove that the connecting maps agree. Fix a cocycle c ∈ ξ. Let
u be a cocycle in Z1(k, c(R/S)) and let aσ = uσcσ be a corresponding cocycle
in Z1(k,G). The cocycles u and a map to the same element of H1(k,G) in the
decomposition from Lemma 5.5. Select a lift v : Γk → cR(ks) of u and note that

bσ = vσcσ : Γk → G̃(ks) is a lift of aσ.

The cocycle ∆v in Z2(k, cS) is constructed via

(∆v)σ,τ := (vσ)(
σ′
vτ )(vστ )

−1

using the twisted action σ′
s = (cσ)(

σs)(cσ)
−1 for s ∈ S(ks) and σ ∈ Γk. The

computation

(∆v)σ,τ = (vσ)[(cσ)(
σvτ )(cσ)

−1](vστ )
−1

= (vσ)(cσ)(
σvτ )[(

σcτ )(cστ )
−1](vστ )

−1

= (bσ)(
σbτ )(bστ )

−1 = (∆b)σ,τ

shows that this has the desired image in H2(k, S → J). �

The above shows that there is a surjective map H2(k, S → J) → H1(k, J) with a
unique neutral element in each fiber. Given an element α in the set H2(k, S → J),
we define its neutral class as the fiber of this map and we define the neutralization
of α as the unique neutral element therein.

Let A, B, C respectively be sets with distinguished subsets A′, B′, C ′ respec-
tively. We say that the composition g ◦ f of functions f : A → B, g : B → C is
exact if im(f) = g−1(C ′). We can now state the main theorem of this section.

Theorem 7.4. Let X be a split projective toric variety satisfying Hypothesis 4.1.
Applying Galois cohomology to the sequence (1.3), we extend (5.2) to the commu-
tative diagram

H1(k,W )
� � / /

� ���

H1(k, T oW ) / /

� ���

H2(k, S → J)

H1(k, J) �
� / / H1(k,Aut(X)) �

� / / H2(k, S → J)

(7.2)

where the rows are exact sequences of sets with a distinguished subset and the
bottom right horizontal map is injective.

Note that exact sequences for sets with distinguished subsets behave differ-
ently from exact sequences of abelian groups. Thus it is perfectly reasonable to
have an exact sequence consisting of two injections. In the bottom row of the
above diagram, the exactness and injectivity imply that the distinguished subset
of H2(k, S → J) is in bijection with H1(k, J).
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Proof. The top row is the case where R = T̃oW ◦; the bottom, where R = GL1(A).
The exactness follows from Proposition 1.28 of [Spr66]. This can also be checked
directly using Lemmas 5.5 and 7.3. The only statement that remains to be proved
is the injectivity of the map H1(k,Aut(X)) → H2(k, S → J).

Let c be a cocycle representative of an element in H1(k, J). Consider the central
extension

1 → cS → cGL1(A) → c(GL1(A)/S) → 1.

Since this is a central extension, we obtain an exact sequence of pointed sets

H1(k, cGL1(A)) → H1(k, c(GL1(A)/S)) → H2(k, cS).

Note that c(GL1(A)/S) acts on cGL1(A) ≃ GL1(cA) by algebra automorphisms
of cA. Thus, for any cocycle d in Z1(k, c(GL1(A)/S)), we see that

H1(k, d(cGL1(A))) ≃ H1(k,GL1(d(cA)))

is trivial by Hilbert 90. By the Corollary in §5.7 of [Ser02], we conclude the map
H1(k, c(GL1(A)/S)) → H2(k, cS) is injective. Injectivity is preserved after taking
quotients by H0(k, cJ), and the result follows from Lemma 7.3. �
Remark 7.5. Suppose X and X ′ are toric varieties with fixed torus actions. The-
orem 7.4 allows one to determine whether the underlying varieties are isomorphic
by considering the map H1(k, ToW ) → H2(k, S → J) instead of H1(k, ToW ) →
H1(k,Aut(X)). The former involves only the cohomology of abelian and finite con-
stant groups, which may be easier to use in some applications. This generalizes the
common trick where one distinguishes Severi–Brauer varieties (or central simple
algebras) by their Brauer classes rather than by their classes in H1(k,PGLn).

Remark 7.6. (Torsors) Note that Lemma 7.3 allows us to easily describe the set
H2(k, S → J) using torsors instead of 1-cocycles. Indeed, if ξ is a collection of
torsors representing elements of H1(k, J) then we have

H2(k, S → J) ≃
⨿
T∈ξ

(
H2(k, TS)

H0(k, TJ)

)
.

Note that this agrees with Proposition 4.2.5(ii) of [Gir71].

Remark 7.7. (Restriction) One can define a restriction map

ResKk : H2(k, S → J) → H2(K,SK → JK)

for any field extension K/k. For each J-torsor T , we have a restriction map

H2(k, TS) → H2(K, TKSK)

which is equivariant with respect to the homomorphism

H0(k, TJ) → H0(K, TKJK).

Noting that T 7→ TK is the restriction morphism

H1(k, J) → H1(K,J)

of the indexing sets, we obtain a restriction map via Remark 7.6. One checks that
the restriction maps are compatible and we may think of H2(−, S → J) as being
a functor from the category of field extensions K/k to the category of sets with a
distinguished subset.
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Remark 7.8. (Period) The set H2(k, S → J) is not a group in general. However, we
may still consider powers of elements. Indeed, any element α ∈ H2(k, S → J) is
represented by an element β in some groupH2(k, cS) for some cocycle c ∈ Z1(k, J).
For any integer n, we define αn as the image of βn. Since J acts on each component
of the disjoint union by group automorphisms, this is well defined. In particular,
the notion of “period” still makes sense: the period of α ∈ H2(k, S → J) is the
minimal positive integer n such that αn is neutral.

Remark 7.9. (Index) There are at least two natural notions of the “index” of an
element α ∈ H2(k, S → J). We define the neutralizing index (resp. splitting index )
of α as the greatest common divisor of the degrees of all finite extensions L/k such
that the restriction ResLk (α) is neutral (resp. trivial).

Example 7.10. Let k be the real numbers R. Consider X = P1 × P1 where
S = G2

m and J = C2. By Lemma 7.3 we find that

H2(R, S → J) ≃
(
Br(R)2/C2

)
⊔ Br(C)

and see that every Brauer class corresponds to a form of X from Example 5.8.
In contrast, consider X = P1 × P3 where S = G2

m and J is trivial. Here

H2(R, S → J) ≃ Br(R)2

and the k-forms are
P1 × P3, C × P3,P1 × C ′, C × C ′

where C and C ′, respectively, are the non-split forms of P1 and P3, respectively.
Note that in both these examples S is the same. However, the finite group J is

different in each case.

Example 7.11 (Permutation lattices). Let P̂ be an Sn-lattice with a basis {p1, . . .
. . . , pn} permuted by Sn. Let P be the dual torus D(P̂ ). We would like to
understand the set H2(k, P → Sn).

Recall that elements of H1(k, Sn) are in bijection with Γ-actions on {pi} and
with étale k-algebras of degree n. Thus, for any cocycle c ∈ Z1(k, Sn), the twisted
torus cP is simply a Weil restriction RE/k Gm,E where E is the corresponding étale
k-algebra.

Writing E = F1 × · · · × Fr as a decomposition of field extensions of k we have

H2(k, cP ) ≃ H2(k,RE/k Gm) ≃
r∏

i=1

H2(k,RFi/k Gm)

≃
r∏

i=1

H2(Fi,Gm) ≃
r∏

i=1

Br(Fi)

for each cocycle c ∈ Z1(k, Sn). Note that the action of H0(k, cSn) permutes
isomorphic field extensions in the decomposition of E.

By the decomposition in Lemma 7.3, we conclude that H2(k, P → Sn) consists
of all sets

{(α1, F1), . . . , (αr, Fr)}
of pairs, where each Fi is a separable field extension of k and each αi is an element
of Br(Fi), satisfying the condition

∑r
i=1[Fi : k] = n.
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Remark 7.12. (Elementary obstruction) The elements in H2(k, S → J) are closely
related to the “elementary obstructions” from [CTS87]. Indeed, given a k-form
of split smooth projective toric variety, its class in H2(k, S → J) is neutral if
and only if the elementary obstruction is trivial. In Proposition 1.3 of [Sko09],
A. Skorobogatov shows that the images of the elementary obstruction and the
classes defined above actually coincide in the set H2(k, S → Aut(S)) where one
must extend the definition above to consider the infinite group Aut(S) (in this
reference, the type of a universal torsor is only well-defined up to an isomorphism
of the Picard group).

8. Comparison to ordinary Brauer groups

There is a natural bijection between the isomorphism classes of Severi–Brauer
varieties and their associated central simple algebras. This is a stronger statement
than merely identifying the classes of these algebras in H2(k,Gm). In [Blu10],
M. Blunk constructs a pair of separable algebras B and Q and exhibits a bijection
with the k-forms of a del Pezzo surface of degree 6 and a subset of the k-forms of
the algebra B ×Q.

Both of these constructions are well-behaved under extension of the base field.
In both cases we have a toric variety X and a separable k-algebra B along with
an injection {

isomorphism classes
of k-forms of X

}
↪−→

{
isomorphism classes
of k-forms of B

}
(8.1)

which is natural in the field k. The remainder of the paper focuses on a partial
answer to this question.

Recall that the automorphism group Aut(B) of a separable algebra B is a
linear algebraic group with connected component Aut(B)◦. Given a finite closed
subgroup J of the quotient Aut(B)/Aut(B)◦, the J-restricted automorphism group
of B, denoted AutJ (B), is the preimage of J in Aut(B).

For a finite group J , a finitely generated J-module is permutation if it is free
as a Z-module with basis permuted by J ; a J-module is invertible if it is a direct
summand of a permutation J-module. Note that, for an algebraic group G over a
field k, one can view H1(−, G) as a functor from the category of field extensions
K/k to the category of sets.

The following theorem is our main goal for the rest of the paper and will be
proved in Section 10.

Theorem 8.1. Let X be a smooth projective split toric variety over a field k.
Let J be the image of the homomorphism Aut(X) → Aut(Pic(X)). Suppose that
Pic(X) is an invertible J-lattice. There exists a canonical separable algebra B over
k, and a natural transformation

H1(−,Aut(X)) → H1(−,AutJ (B)), (8.2)

which is injective for every field K/k.
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Note that Pic(X) is an invertible Γ-lattice for all smooth projective toric surfaces
by [Vos67]. Thus, the conclusion of Theorem 8.1 holds for all smooth projective
split toric surfaces.

When AutJ(B) = Aut(B), as is the case for the central simple algebras associ-
ated to Severi–Brauer varieties and Blunk’s algebra B, the set H1(k,AutJ(B)) can
be interpreted directly as isomorphism classes of k-forms of B. When J is trivial,
the set H1(k,Aut1(B)) is simply the set of isomorphism classes of k-forms of B
which preserve a fixed labelling of each central simple algebra in the product. In
the intermediate cases, AutJ (B) preserves this labelling up to certain symmetries.
Thus, Theorem 8.1 can be interpreted as a variant of our desired injection (8.1)
for a mildly weaker notion of isomorphism.

In [MP97], A. Merkurjev and I. Panin construct a “motivic category” which
contains both toric varieties and separable algebras. In that paper, which was a
starting point for Blunk’s work, they also associate forms of separable algebras
to forms of toric varieties. In Theorem 9.1, we show that their method is, up to
Brauer equivalence, essentially the same as our own.

8.1. Morphisms of non-abelian H2

Throughout this section, X will be a split smooth projective toric variety. Recall
that this implies that Cl(X) ≃ Pic(X) is a lattice and thus that S is a torus. Note
that Pic(X) has a trivial Γk-action, but a non-trivial J-action; it will be convenient

to view Ŝ = Pic(X) as a J-lattice.
In this section we make precise to what degree the information contained in

H2(k, S → J) can be captured by “ordinary Brauer groups.” To make this precise,
we need to define a notion of morphisms between non-abelian H2 sets. Unfortu-
nately, defining “functoriality” for non-abelian H2 is a rather delicate problem
(see, e.g., [AN09]). However, in our restricted context there is a natural induced
morphism which is well-behaved enough for our applications.

Definition 8.2. Let S and P be split groups of multiplicative type with actions
of finite groups J and I respectively. Suppose (m, g) is a pair of group homomor-
phisms m : S → P and g : J → I such that m is J-equivariant where the J-action
on P is given via g. Define the induced map

m∗ : H
2(k, S → J) → H2(k, P → I)

via the decomposition from Lemma 7.3 and the induced maps

H2(k, cS) → H2(k, g∗(c)P )

for every cocycle c representing a cohomology class in H1(k, J). One checks that
m∗ is compatible with restriction, and thus may be viewed as a natural transfor-
mation

m∗ : H
2(−, S → J) → H2(−, P → I)

of functors from field extensions K/k to the category of sets with distinguished
subsets.

A G-lattice M is invertible if M is a direct summand of a permutation G-
module. Recall that a k-variety Y is retract rational if there exists an affine space
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V , a dominant rational map ψ : V 99K X and a rational map η : X 99K V such
that the composition ψ ◦ η is defined and equivalent to the identity as a rational
map.

Theorem 8.3. Let X be a smooth projective split toric variety. The following are
equivalent:

(a) There exists a morphism m̂ : P̂ → Ŝ of J-lattices, where P̂ is permutation,
such that the morphism of functors

m∗ : H2(−, S → J) → H2(−, P → J)

is injective,
(b) Ŝ is an invertible J-lattice,
(c) for every field extension K/k, every neutral K-form of XK is retract ratio-

nal.

Remark 8.4. Note that retract rationality is a birational invariant; thus, the retract
rationality of a toric variety can be determined by consideration of only the open
orbit. Retract rational tori have been completely classified in small dimensions.
See [Vos67], [Kun87], and [HY12]. In fact, all 2-dimensional tori are rational; thus
all toric surfaces satisfy the equivalent conditions of Theorem 8.3.

We may interpret Theorem 8.3 as a statement about ordinary Brauer groups
in the following way. Fix a choice of basis ω for P̂ . Then twisting by a cocycle
c ∈ Z1(k, J) gives a Γk-set cω as basis for ĉP . Each Γk-set corresponds to an étale
algebra cL. Thus H

2(k, cP ) ≃ H2(cL,Gm) ≃ Br(cL).
By the injection of Theorem 7.4, we have a composite map

H1(k,Aut(X)) → H2(k, S → J) → H2(k, P → J)

which is injective if and only if the map m∗ is injective. Given a fixed cocycle
c ∈ H1(k, J), we have a morphism

H1(k,Aut1(cX)) → Br(cL)

for each neutralization class (recall the definitiion of Aut1(cX) from Remark 6.8).
We recall some preliminaries on flasque and coflasque tori from, for example,

[CTS77]. Let G be a finite group. A G-lattice M is flasque (resp. coflasque) if the

Tate cohomology group Ĥ−1(H,M) (resp. Ĥ1(H,M)) is trivial for every subgroup
H ⊂ G. Every G-lattice M has a coflasque resolution, which is an exact sequence

1 → A→ B →M → 1

where A is a coflasque G-lattice and B is a permutation G-lattice.
For any torus T defined over a field k, the action of Γk on the character lattice

M factors through a finite group G. A torus T is defined to be flasque, coflasque,
or invertible if the corresponding property is true of the G-module M .
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Lemma 8.5. Consider an exact sequence of J-lattices

1 → Q̂
m̂−−→ Ŝ → 1

where Q̂ is coflasque, P̂ is permutation, and Ŝ is flasque. Let Q, P , and S be
the corresponding dual tori and let m : S → P the dual morphism obtained from
m̂. Let m∗ : H2(−, S → J) → H2(−, P → J) be the natural transformation
induced from m as in Definition 8.2. Let m′

∗ : H2(−, S) → H2(−, P ) be the usual
induced map on abelian Galois cohomology obtained from m. Then the following
are equivalent:

(a) m∗ : H2(−, S → J) → H2(−, P → J) is injective,
(b) c(m

′
∗) : H

2(K, cS) → H2(K, cP ) is injective for every field extension K/k
and every cocycle c ∈ Z1(K,J),

(c) H1(K, cQ) is trivial for every field extension K/k and every cocycle c ∈
Z1(K,J),

(d) Q̂ is invertible,

(e) Ŝ is invertible.

Proof. First, we prove the equivalence of (a) and (b). By the decomposition from
Lemma 7.3, it suffices to check whether each constituent map

H2(K, cS)/H
0(K, cJ) → H2(k, cP )/H

0(K, cJ)

is injective for each c ∈ Z1(K,J). If each c(m
′
∗) is injective, then so must be

each constituent map. Conversely, since each c(m
′
∗) is a morphism of groups and

H0(K, cJ) acts by group automorphisms, if the preimage of the trivial element is
trivial then c(m

′
∗) is injective.

The equivalence of (b) and (c) follow from the triviality of H1(K, cP ) for all

cocycles c ∈ Z1(K,J) since P̂ is a permutation J-lattice.

The implication (d)=⇒ (c) follows since there is a factorization Q̂ → M̂ → Q̂
of the identity morphism for some permutation lattice M . This means that the
identity morphism on H1(K, cQ) factors through the trivial group H1(K, cM) for
every cocycle c.

The implication (c) =⇒ (d) follows from Theorem 3.2 of [Mer10]. Indeed, we
know that, in particular, the generic cQ-torsor is trivial. The theorem tells us that
the class of the extension corresponding to a flasque resolution of Q̂ is trivial. We
conclude that Q̂ is a direct summand of a permutation module as desired.

Finally, the equivalence of (d) and (e) follows from Lemma 6 of [CTS77]. Indeed,

Ŝ is obtained via a flasque resolution of Q̂ and, conversely, Q̂ is obtained via a
coflasque resolution of Ŝ. �
Proposition 8.6 (Versality). Suppose Q̂ is coflasque. Let R be a torus with a

J-action such that the dual R̂ is a permutation J-lattice, and let q : S → R be a
J-equivariant morphism of tori. Then

q∗ : H
2(k, S → J) → H2(k,R → J)

factors through
m∗ : H

2(k, S → J) → H2(k, P → J).
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Proof. Fix a cocycle c ∈ Z1(k, J) and note that it may be viewed as a morphism
c : Γk → J since J is a constant group. The action of Γk on the character lattices of

cS, cR, cP , and cQ then factor through J . We may conclude that cR is quasi-split
and

1 → cS → cP → cQ→ 1

is a coflasque resolution of tori. Thus, the morphism cq : cS → cR factors through

cm : cS → cP by Lemma 4 of [CTS77]. We conclude that q∗ factors through m∗
via Definition 8.2. �

We point out the following fact which is essentially due to Colliot-Thélène and
Sansuc.

Proposition 8.7. The J-lattice Ŝ is flasque.

Proof. We may assume that k is of characteristic 0 since the statement only de-
pends on data associated to the fan. Furthermore, by possibly taking a base
extension of k, we may assume that there exists a surjection c : Γk → J . The
twisted torus cS has decomposition group J . Proposition 6 of [CTS77], shows
that the Picard group Pic(X) of a smooth compactification of a torus is flasque as
a Γk-module. We conclude that cS is flasque as a Γk-module and thus Pic(X) is
flasque as a J-module. �

Proof of Theorem 8.3. There exists a coflasque resolution

1 → Q̂→ P̂ → Ŝ → 1

of Ŝ. By Lemma 8.6, any morphism as in (a) factors through the one obtained
from this resolution. Therefore, it suffices to consider only this morphism. Since
S is flasque by Proposition 8.7, we are in the situation of Lemma 8.5. Thus (a)
and (b) are equivalent.

By Theorem 3.14 of [Sal84], a neutral toric variety X is retract rational if and
only if Pic(X) is invertible as a Γk lattice. Thus (b) and (c) are equivalent. �

9. Comparison to a construction of Merkurjev–Panin

In §7 of [MP97], A. Merkurjev and I. Panin describe a construction which
assigns a separable algebra to each toric variety. Up to Brauer equivalence, their
construction is essentially equivalent to ours. In this section, we make this precise.

In their construction, they fix a smooth projective toric variety Y and an action
of a specific torus T on Y . Their notion of isomorphism amounts to T -equivariant
isomorphisms of toric varieties. The set of isomorphism classes is thus in bijection
with H1(k, T ) and corresponds to the class of the open orbit Y0 viewed as a T -
torsor. All the forms of Y belong to the same neutralization class since T acts
trivially on Pic(Y ). The neutralization X of Y corresponds to the trivial element
of H1(k, T ) and there is an injection H1(k, T ) → H1(k,Aut1(X)) where Aut1(X)
is the group of restricted automorphisms as in Remark 6.8.

First, we review the construction of Section 8 in a manner which is more directly
comparable. Note that Ŝ = Pic(X) is a Γk-lattice. Choose a morphism m̂ : P̂ → Ŝ
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of Γk-lattices where P̂ is permutation with basis ω. Our choice of ω gives rise to
a quasitrivial torus P and an étale algebra L and we obtain a homomorphism

αω : H
1(k, T ) → H1(k,Aut1(X)) → Br(L)

which takes the isomorphism class [Y0] to a Brauer class in Br(L).
Now we review the construction of Merkurjev–Panin. For the moment, assume

that ω is a single Γk-orbit and thus that L is a field extension of k. The choice of
ω gives us a morphism

S → P ≃ RL/k(Gm,L)

which is equivalent to a morphism SL → Gm,L, which, by duality, gives a morphism
Z → S∗

L. This last morphism can be viewed as an element Ω of Pic(XL).
Fix a Galois splitting field K/k for T which contains L. We obtain an element

[Y0] ∈ H1(ΓK/k, T (K)). From the exact sequence

1 → T ∗ → T̃ ∗ → S∗ → 1

and the isomorphism Pic(XL) ≃ H0(ΓK/L, S
∗), we obtain an element ∂[Ω] ∈

H1(ΓK/L, T
∗) via the connecting homomorphism. We may take the cup product

[(Y0)L]∪∂[Ω] in H2(ΓK/L,K
×) via the standard pairing T (K)⊗T ∗ → K×. Thus,

we obtain a map
βω : H

1(k, T ) → Br(L)

as desired. When ω is not a single Γk-orbit, we simply take products and again
obtain an element Ω in Pic(XL) and a morphism βω.

Theorem 9.1. For any element [Y0] ∈ H1(k, T ), our construction αω and the
Merkurjev–Panin construction βω satisfy the relation

αω([Y0]) = −βω([Y0])

in the group Br(L).

Proof. It suffices to prove the theorem for ω a single Γk-orbit. First, we claim that
the following diagram commutes

H2(k, S)
m∗ / /

� �

H2(k, P )

≃
� �

H2(L, SL)
Ω∗

/ / H2(L,Gm)

where P = RL/k(Gm). Note that the morphisms

m : S → RL/k(Gm) and D(Ω): SL → Gm

arise from the adjunction of the functors (−)L and RL/k(−). Thus the morphism
m factors as RL/k(D(Ω)) ◦ η(S) where η(S) : S → RL/k(SL) is the unit of ad-
junction. The morphism H2(k, S) → H2(L, SL) factors through H2(k, S) →
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H2(k,RL/k(SL)) by the functorial construction of the restriction map (see §2.5
of [Ser02]). Thus, the diagram above is the same as

H2(k, S) / / H2(k,RL/k(SL)) / /

≃
� �

H2(k,RL/k(Gm))

≃
� �

H2(L, SL) / / H2(L,Gm)

which commutes since RL/k(−)(k) → (−)(L) is a natural transformation of func-
tors from algebraic groups over k to abstract groups.

Recall that αω([Y0]) = m∗(∂[Y0]); thus, by the above, we may instead write
αω([Y0]) = Ω∗((∂[Y0])L) = ∂[(Y0)L] ∪ Ω. Note that βω([Y0]) = [(Y0)L] ∪ ∂Ω.
Choosing a Galois splitting field K for L with Galois group G, we need to compare
two different methods of evaluating the map

H1(G,T (K))⊗H0(G,S∗) → H2(G,K×).

The theorem follows from Lemma 9.2 below. �
Lemma 9.2. Let G be a finite group. Let A,B,C be G-lattices and I be a G-
module. Suppose there is an exact sequence

1 → A→ B → C → 1.

Up to the sign (−1)i, the following square commutes

Hi(G,Hom(A, I))⊗Hj(G,C)
∂⊗id / /

id⊗∂

� �

Hi+1(G,Hom(C, I))⊗Hj(G,C)

∪
� �

Hi(G,Hom(A, I))⊗Hj+1(G,A)
∪ / / Hi+j+1(G, I)

for any integers i ≥ 0, j ≥ 0.

Proof. First, we show that, for any G-lattice M , the cup product and evaluation
morphism

a : Hi(G,Hom(M, I))⊗Hj(G,M) → Hi+j(G, I)

is isomorphic to the composition morphism

b : ExtiG(M, I)⊗ ExtjG(Z,M) → Exti+j
G (Z, I).

The isomorphisms between Ext groups and cohomology groups follow from Propo-
sition III.2.2 of [Bro82] since M is a free Z-module. Picking a free resolution F• of
the G-module Z, the maps a and b can be represented by maps of chain complexes

HomG(F•,Hom(M, I))⊗HomG(F•, F• ⊗M) → HomG(F•, I)
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as in V.4.2 of [Bro82]. The map a takes elements u ⊗ v to eval∗((u ⊗ idM ) ◦ v).
The map b is defined as ψ(u) ◦ v where

ψ : HomG(F•,Hom(M, I)) ≃ HomG(F• ⊗M, I)

is the canonical isomorphism. If v(f) =
∑

i fi⊗mi for some f ∈ Fj then we obtain

eval∗((u⊗ idM ) ◦ v)(f) = eval∗(
∑
i

u(fi)⊗mi) =
∑
i

u(fi)(mi) = (ψ(u) ◦ v)(f)

for all u ∈ Hom(F•,Hom(M, I)) and v ∈ Hom(F•, F• ⊗M) as desired.
Consider arbitrary elements α ∈ ExtiG(A, I) and γ ∈ ExtjG(Z, C). In view of

the above, the statement of the lemma is equivalent to showing that (∂α) ◦ γ =
(−1)iα ◦ (∂γ) as elements of Exti+j+1

G (Z, I). The exact sequence is an extension
of C by A and thus it may be considered as an element β of Ext1G(C,A). From
Theorem III.9.1 of [ML63] we find that ∂(α) = (−1)iα ◦β and ∂(γ) = β ◦γ. Thus,
the equality follows from the associativity of the composition (α◦β)◦γ = α◦(β◦γ)
as in Theorem III.5.4 of [ML63]. �
Remark 9.3. As an immmediate corollary of Theorem 9.1 we see that the
Merkurjev–Panin construction is independent of the choice of torus T . Addi-
tionally, their construction can be extended to arbitrary forms of X rather than
a fixed neutralization class by properly accounting for the group of class group
automorphisms J .

Remark 9.4. The construction of Merkurjev–Panin as stated in [MP97] actually
produces algebras rather than simply elements of the Brauer group. However,
these algebras ultimately depend on a specific choice of torus T and a choice of
splitting field. We discuss a more intrinsic method of producing algebras in the
next section.

Remark 9.5. Note that Ω ∈ Pic(XL) is denoted by “Q” in [MP97]. One cannot
in general recover ω from Ω, as a corresponding set ω would only be Γk-invariant
rather than J-invariant. However, this is not a serious shortcoming as one can
always simply expand ω to be J-stable. Indeed, this is necessary if one wants to
extend the Merkurjev–Panin construction to all forms of X rather than a single
fixed neutralization class.

10. Associated separable algebras

In this section, we sharpen the results of Section 8 and prove Theorem 8.1. As
discussed in Example 6.9, products of projective spaces are in bijective correspon-
dence with their Cox endomorphism algebras. Thus, studying the isomorphism
classes of separable algebras is equivalent to studying products of projective spaces.

Theorem 10.1. Let X be a split smooth projective toric variety. Let J be the
group of class group automorphisms of X. There exists a morphism

f : X → Y :=

N∏
i=1

Pni
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where n1, . . . , nN are positive integers, and a morphism of functors

f∗ : H1(−,Aut(X)) → H1(−,AutJ(Y ))

such that, if X ′ is a form of X and Y ′ is a form of Y representing the class
f∗([X

′]), then there is a map

f ′ : X ′ → Y ′

which coincides with f over some field extension.

Proof. Given a morphism

f : X → Y :=

N∏
i=1

Pni

as above, we obtain an induced map Pic(Y ) → Pic(X). Thus, such morphisms

give rise to a permutation basis ω of a permutation J-lattice P̂ := Pic(Y ) as
in Section 8. Conversely, if every element of ω corresponds to a sheaf which is
generated by global sections then we obtain such a morphism.

Since X is projective, the ample cone spans Pic(X)⊗R. In addition, the fixed
locus of J must be a proper closed subset of Pic(X) ⊗ R. Thus, we may assume
that there exists a subset ω of Pic(X) whose corresponding sheaves are generated
by their global sections and such that J acts faithfully on ω. This provides the
space Y and the desired map f : X → Y .

The space Y is also a smooth split projective toric variety. We write Ỹ as its
characteristic space sitting inside a vector space W and note that m̂ : P̂ → Pic(X)
is just the morphism Pic(Y ) → Pic(X) induced by f .

Labeling the basis of P̂ as {E1, . . . , Er} and labeling ω = {D1, . . . , Dr}, we have
m̂(Ei) = Di for every i = 1, . . . , r. By duality, we obtain a morphism m : S → P
of tori.

The construction of f is equivalent to an isomorphism

W∨ =
r⊕

i=1

H0(k,OY (Ei)) →
r⊕

i=1

H0(k,OX(Di))

which gives rise to a ring homomorphism F ∗ : Cox(Y ) → Cox(X) sinceW contains
all the generators of Cox(Y ). The ring homomorphism F ∗ is equivalent to a
morphism F : V → W . Since each line bundle OX(Di) is generated by global

sections, the image of X̃ is contained in Ỹ so we have a restricted morphism
f̃ : X̃ → Ỹ . This descends to the morphism f : X → Y since the map f̃ is
S-equivariant via m : S → P .

Let B be the Cox endomorphism algebra of Y . We have the isomorphism

GL1(B) ≃
r∏

i=1

GL(H0(k,O(Ei))).
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Note that Ãut(Y ) ≃ GL1(B) o I where I is a finite group containing all possible
permutations of the subgroups in the product. The group GL1(B) o J is the
preimage of the restricted automorphism group AutJ (Y ).

The group GL1(A) embeds in GL1(B) since it has a linear action on each
component of Cox(X)Di . The group J embeds in GL1(B) o J by permuting
monomials in the generators of Cox(Y ) since ω is J-stable. We obtain an S-
equivariant homomorphism GL1(A)o J → GL1(B)o J .

This descends to a morphism GL1(A)/S o J → AutJ(Y ) after taking the quo-
tient by S. We conclude that the morphism f is GL1(A)/SoJ-equivariant. Using
Proposition 5.7, we obtain f ′ : X ′ → Y ′ by descent. �
Example 10.2 (Blunk’s algebras). Let X be a split del Pezzo surface of degree
6. In the notation of Example 6.3, consider the elements

a1 = H, a2 = 2H − E1 − E2 − E3,

b1 = H − E1, b2 = H − E2, b3 = H − E3

in Pic(X). The elements a1, a2 correspond to morphisms X → P2 while b1, b2, b3
correspond to morphisms X → P1. Here, J is isomorphic to S3 × S2 and the
J-orbits are ω1 = {a1, a2} and ω2 = {b1, b2, b3}.

Let ω = ω1 ∪ ω2. In this special case, AutJ (Y ) = Aut(Y ). Thus Theorem 10.1
produces a natural transformation

f∗ : H1(−,Aut(X)) → H1(−,Aut(Y )).

Taking B to be the Cox endomorphism algebra of Y , we see that ω1 produces
an Azumaya algebra B1 of rank 32 over an étale k-algebra of degree 2; ω2, pro-
duces an Azumaya algebra B2 of rank 22 over an étale k-algebra of degree 3.
Theorem 3.4 of [Blu10] shows f∗ is injective in this case.

(Note that Blunk also specifies embeddings of an étale subalgebra into the al-
gebras B1 and B2. This is necessary to characterize the image of f∗, but we are
only concerned with whether the map is injective. Blunk’s Theorem 3.4 uses a
stronger notion of isomorphism on the algebras B1, B2 which respects the subal-
gebra embeddings. However, we show that the stronger notion of isomorphism is
equivalent to the usual one; one can also see this directly.)

As our goal is to show that the natural transformation f∗ is injective under
suitable conditions, the following example demonstrates why we want to consider
AutJ (Y ) rather than Aut(Y ) in general.

Example 10.3. Continuing Example 7.10, consider X = P1 × P3 over R and let

f : X → P3 × P3

be the product of an inclusion P1 → P3 as a linear subspace and the isomorphism
P3 → P3. The induced functor

H1(−,Aut(X)) → H1(−,Aut(Y ))
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is not injective since the classes of C × P3 and P1 × C ′ map to the same element.
However, if we consider the functor

H1(−,Aut(X)) → H1(−,AutJ(Y ))

then we do have injectivity. In this case injectivity can be fixed by a different
choice of ω, but more generally the group J will not be a product of symmetric
groups and such a fix will not exist.

Theorem 10.4. Suppose we are in the situation of Theorem 10.1. If Pic(X) is
invertible as a J-lattice there is a canonical choice of maps such that f∗ is injective.

Proof. The construction of ω is as follows. Let Nef(X) be the Nef cone of X. By
Theorem 3.1 of [Mus02], we see that the divisors in the Nef cone of X are precisely
those generated by their global sections; moreover, Nef(X) can be extracted from
the fan so it suffices to assume we are working over C. We may identify Nef(X) with
a strongly convex rational polyhedral cone of full dimension in Pic(X)⊗R = S∗⊗R
(see Theorems 6.3.20 and 6.3.22 of [CLS11]). The intersection Nef(X) ∩ S∗ is
precisely the set of line bundles which are generated by their global sections.

For every subgroup G of J , consider the intersection MG = Pic(X)G ∩Nef(X).
Since the intersection of a rational polyhedral cone and a subspace cut out by
rational linear equations is again a rational polyhedral cone, the monoid MG is
finitely generated. Indeed, since the cones are strongly convex, each monoid MG

has a canonical minimal generating set CG. Take ω to be the union of the CG for
each G ⊂ J . Note that ω is J-stable since j(CG) = Cj(G) for each j ∈ J .

We claim that CG spans Pic(X)G for every G ⊂ J . Indeed, we may find a field
K and a cocycle c ∈ Z1(K,G) such that Pic(cX) = Pic(X)G. Since projectivity is
a geometric property, the ample cone (and thus the Nef cone) is of full dimension
in Pic(cX). Thus, MG is of full dimension in Pic(X)G. Thus CG spans Pic(X)G

as desired.
As in Lemma 3 of [CTS77], since we have chosen ω such that P̂G → Pic(X)G is

surjective for all subgroups G ⊂ J , we conclude that the kernel Q̂ is coflasque. In
particular, the action of J is faithful. Furthermore, every element of ω corresponds
to a sheaf which is generated by global sections. The result now follows from
Lemma 8.5, Theorem 10.1, and Lemma 10.5 below. �
Lemma 10.5. In the situation of Theorem 10.1 we have the following commuta-
tive diagram

H1(k,Aut(X)) �
� δ / /

f∗

� �

H2(k, S → J)

m∗

� �
H1(k,AutJ(Y ))

� � δ / / H2(k, P → J)

where the horizontal maps are as in Theorem 7.4.

Proof. From the proof of Theorem 10.1, there is a morphism

s : GL1(A)o J → GL1(B)o J
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which descends to the group homomorphism

r : GL1(A)/S o J → AutJ(Y )

making f equivariant.
Let a be a cocycle in H1(k,GL1(A) o J) ≃ H1(k,Aut(X)). To map a to

H2(k, S → J), we lift to a continuous function b : Γk → (GL1(A) o J)(ks) and
form the 2-cocycle ∆b in Z2(k, cS) for an appropriate cocycle c ∈ Z1(k, J). To
map this to H2(k, P → J), we simply take the 2-cocycle s(∆b) in Z2(k, cP ).

Going the other way, map a toH1(k,AutJ(Y )) by the morphism r. To map r(a)
to H2(k, P → J), we may take the function s(b) as a lift and then take ∆(s(b));
again, this cocycle sits in Z2(k, cP ).

Since s(∆b) = ∆(s(b)), the diagram commutes. �
Remark 10.6. Note that the construction used in the proof of Theorem 10.4 has
the advantage of being canonical. However, it may not be very economical: in Ex-
ample 10.2, ω is simply the minimal generating set for Nef(X) while our canonical
construction produces a larger set.

Finally, we are in position to prove Theorem 8.1.

Proof of Theorem 8.1. By Theorem 10.1 we may construct a product of projective
spaces Y =

∏
Pni along with a natural transformation

H1(−,Aut(X)) → H1(−,AutJ (Y )).

Moreover, since Pic(X) is an invertible J-lattice, we may select Y such that the
natural transformation is injective by Theorem 10.4. Following Example 6.9 there
is a canonical identification between the forms of Y and the forms of its Cox
endomorphism algebra B. Thus we have a canonical separable algebra B with an
injective natural transformation

H1(−,Aut(X)) → H1(−,AutJ(B))

as desired. �
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