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Abstract. A linear algebraic group G defined over a field k is called special if every
G-torsor over every field extension of k is trivial. In 1958 Grothendieck classified special
groups in the case where the base field is algebraically closed. In this paper we describe
the derived subgroup and the coradical of a special reductive group over an arbitrary
field k. We also classify special semisimple groups, special reductive groups of inner type,
and special quasisplit reductive groups over an arbitrary field k. Finally, we give an
application to a conjecture of Serre.

1. Introduction

Let k be a base field and G an algebraic group defined over k, that is, a smooth
k-group scheme of finite type (not necessarily connected). The group G is called
special if every G-torsor defined over a field extension of k is trivial. In other
words, if for every field extension K of k, the first fppf-cohomology set H1(K,G)
contains only one element. Examples of special linear groups include the additive
group Ga, the multiplicative group Gm, the general linear group GLn, and more
generally the group GL1(A), where A is a central simple algebra over k, and the
classical groups SLn and Sp2n. In contrast, the group SOn is not special for
n > 3. The special groups over an algebraically closed field were introduced by
Serre in [Se1], reprinted in [Se4]. In this paper, Serre gave the basic properties of
special groups; for example, he showed that they are linear and connected. The
study of special groups over an algebraically closed field was then completed by
Grothendieck in [Gr]. In the reductive case, his result can be stated as follows:

Theorem 1 (Grothendieck, 1958). Suppose that k is algebraically closed and G
is reductive— that is, its unipotent radical is trivial. Then G is special if and only
if its derived subgroup is isomorphic to a direct product

G1 ×G2 × · · · ×Gr

where, for each i, the group Gi is isomorphic to SLni
or Sp2ni

for some integer ni.
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The result of Grothendieck naturally raises the problem of classifying special
reductive groups over an arbitrary field k. The present paper is an attempt to solve
this problem. Our most general classification result is the following; see Section 4,
Theorem 9 below:

Theorem 2. Let G be a reductive algebraic group over k. Then G is special if
and only if the three following conditions hold:

(1) The derived subgroup of G is isomorphic to

RK1|k(G1)× RK2|k(G2)× · · · ×RKr|k(Gr)

where, for each index i, the extension Ki of k is finite and separable; RKi|k

denotes the Weil scalar restriction functor—see, for example, [KMRT,
Lem. 20.6]; and the group Gi is isomorphic over Ki to either SL1(Ai),
where Ai is a central simple algebra over Ki, or Sp2ni

for some integer ni.
(2) The coradical of G is a special torus.
(3) For every field extension K of k, the abelian group S(K,G) is trivial— see

Definition 1.

Condition (1) above is explicit, as well as condition (2), by the classification of
special tori due to Colliot-Thélène and recalled in Section 5 of the present paper.
In contrast, condition (3) is not easy to check in general. However, under some
additional assumptions on the groupG, namely that G is semisimple, an inner form
of a Chevalley group, or quasisplit, we are able to compute the groups S(K,G)
in condition (3), providing a full classification of special groups in these cases.
We hope that a more explicit version of condition (3) will emerge in the future,
unifying these cases and providing the classification of special reductive groups.

The paper is organized as follows. In Section 2 we gather some facts to be used
in the following sections. In Section 3 we determine which algebraic groups can
arise as derived subgroups of a special group and which can arise as coradicals,
respectively, in Propositions 5 and 7. In Section 4 we prove our main classification
result stated above and then derive from it the classification of special semisimple
groups, special reductive groups of inner type, and special quasisplit groups in
Proposition 10, 13, and 15, respectively. We recall in Section 5 the classification
of special tori due to Colliot-Thélène. Finally, in Section 6 we prove the following
theorem (see Section 6, Theorem 20) as an application of our main theorem. This
proves a special case of a conjecture of Serre [Se3, 2.4, Quest. 2], as we explain at
the end of Section 6.

Theorem 3. Let G be a reductive group over a field k, and let {kα}α∈I be a
nonempty finite family of finite field extensions of k such that gcdα∈I [kα : k] = 1.
Then the following conditions are equivalent:

(1) G is a special group.
(2) For every index α ∈ I, the group Gkα

is a special group.
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SPECIAL REDUCTIVE GROUPS OVER AN ARBITRARY FIELD

To finish this introduction, we say a word about special non-reductive groups.
First, by [Sa, Lem. 1.13], if an algebraic group G over a field k possesses a k-split
unipotent normal subgroup U , then G is special if and only if G/U is special. For
example, if the field k is perfect, then G is special if and only if its quotient by
the unipotent radical—which is a reductive group— is special, as every unipotent
group over k is k-split. On a different note, Nguyen classifies the special unipotent
groups over “reasonable fields” in [N]. It is a direct consequence of the fact that
the additive group Ga is special that every k-split unipotent group is special. In
[N], Nguyen proves conversely that a special unipotent group is k-split for certain
fields k, for example, when k is finitely generated over a perfect field.

Acknowledgment. I would like to warmly thank Zinovy Reichstein for pointing
out this problem to me, for very interesting discussions on this topic, and also for
remarks which helped improve the exposition of this paper. I would also like to
thank Eva Bayer for asking me the question that led to Theorem 20, and Roland
Lötscher for bringing reference [N] to my attention.

2. Preliminary results

Let k be a base field and G a connected reductive algebraic group defined over
k. Throughout the paper we denote by ZG the scheme-theoretic center of G, which
is a k-group scheme of multiplicative type, and by Gad the adjoint quotient G/ZG

of G. We denote by G′ the derived subgroup of G, which is a semisimple algebraic
group. The adjoint quotients of G and G′ are equal. Consequently, the inclusion
of G′ in G gives rise to a natural commutative diagram, where each row is exact
in the fppf topology:

1 // ZG′

��

// G′

��

// (G′)ad // 1

1 // ZG
// G // Gad

// 1

.

We refer the reader to [BFT, Appendix B] for the basics on the fppf cohomology
of affine algebraic group schemes.

We denote by CG the coradical of G, that is, the quotient of G by its derived
subgroup G′. The group CG is a torus. Using the natural isogeny ZG ×G′ → G
given by the multiplication, we see that there is an exact sequence of algebraic
group schemes in the fppf topology:

1 → ZG′ → ZG → CG → 1.

Let K be a field extension of k. The long exact sequences in fppf cohomology
derived from this exact sequence and the commutative diagram above fit into the
following diagram:
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CG(K)

γG,K

��
H1(K,ZG′) //

ι1G,K

��

H1(K,G′)

��

''OO
OO

OO
OO

H2(K,ZG′)

ι2G,K

��

Gad(K)

αG′,K
88pppppppp

αG,K &&NN
NN

NN
NN

H1(K,Gad)

βG′,K
7 7nnnnnnnn

βG,K ''PP
PP

PP
PP

H1(K,ZG) / /

��

H1(K,G)

77oooooooo
H2(K,ZG)

H1(K,CG)

��
H2(K,ZG′)

ι2G,K
��

H2(K,ZG)

where the long vertical sequence and the rows are exact. In the following, we will
refer to this diagram as the diagram (∗). Note that the map αG,K (resp. αG′,K)
is a group homomorphism, because ZG (resp. ZG′) is central in G (resp. G′).

Proposition 1. The group G is special if and only if, for every field extension K
of k, the map αG,K is surjective and the map βG,K has trivial kernel.

Proof. By the lower row in the diagram (∗), which is an exact sequence of pointed
sets, we see that H1(K,G) is trivial if and only if αG,K is surjective and βG,K has
trivial kernel, which is what we want. �

Proposition 2. Let K be a field extension of k. If G is special then the following
properties hold:

(1) The map

βG′,K : H1(K,Gad) → H2(K,ZG′)

has trivial kernel.

(2) The image of the map βG′,K intersects the kernel of the morphism

ι2G,K : H2(K,ZG′) → H2(K,ZG)

trivially.

(3) The morphism ι1G,K is surjective, hence there is an exact sequence of abelian
groups:

0 → H1(K,CG) → H2(K,ZG′) → H2(K,ZG).
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Proof. We will obtain these properties by looking at the diagram (∗). As G is
special, by Proposition 1, the map βG,K has trivial kernel. This readily implies
(1) and (2), because the triangle on the right of the diagram (∗) is commutative.
To prove (3) we look at the commutative triangle on the left of the diagram (∗).
As G is special, by Proposition 1 we see that αG,K is surjective, forcing the map
ι1G,K to be surjective as well. The last statement now follows from the fact that
the vertical sequence in the diagram (∗) is exact. �

Definition 1. LetK be a field extension of k. We denote byS(K,G) the following
abelian group:

S(K,G) = H1(K,ZG′)/〈ImαG′,K , Im γG,K〉.

Proposition 3. Suppose that the coradical CG of G is special. Then G is special
if and only if, for every field extension K of k, the following two conditions hold:

(1) S(K,G) is trivial.
(2) The map

βG′,K : H1(K,Gad) → H2(K,ZG′)

has trivial kernel.

Proof. As the coradical CG is special, the vertical exact sequence in the diagram
(∗) shows that the morphism ι1G,K is surjective. Moreover, the kernel of ι1G,K is
equal to the image of γG,K . By the commutative triangle on the left of the diagram
(∗) we see that αG,K is surjective if and only if

〈ImαG′,K ,Ker ι1G,K〉 = H1(K,ZG′),

that is, if and only if S(K,G) is trivial. Similarly, as the coradical CG is special, we
see that the morphism ι2G,K is injective. Therefore, by looking at the commutative
triangle on the right of the diagram (∗), we see that (2) is equivalent to the fact
that βG,K has a trivial kernel. �

3. The derived subgroup and the coradical of a special reductive group

In this section we will determine which algebraic groups can arise as derived sub-
groups of a special reductive group and which can arise as coradicals respectively
in Propositions 5 and 7 below.

3.1. A lemma on hermitian forms

In order to lighten the proof of Proposition 5, we start by proving Lemma 4 below
about hermitian forms. We refer the reader to [KMRT, §4] for the definition of
hermitian forms on a right module over an algebra D equipped with an involution.

Let D be a division algebra, k a subfield of its center and τ an involution of D.
Let n be an integer and t1, . . . , tn be algebraically independent variables over k.
We denote by K the field of rational functions k(t1, . . . , tn). We fix an integer m,
a collection of scalars λ1, . . . , λm in k∗, and, for every index i between 1 and m,
we fix an element ai = (ai,1, . . . , ai,n) of Z

n.
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Lemma 4. Suppose that the images of the ais in (Z/2Z)n are all different. Then,
the hermitian form:

h(x, y) =

m
∑

i=1

λit
ai,1

1 . . . tai,n
n τ(xi)yi

is anisotropic on (D ⊗k K)m.

Proof. The proof goes along the same line as [Pf, p.111]. Suppose that there exists
an isotropic vector x. By clearing the denominator we can further assume that all
the coordinates xi of x belong to D⊗k k[t1, . . . , tn]. Now, as a consequence of our
assumption, we see that the leading monomials of the Laurent polynomials

λit
ai,1

1 . . . tai,n
n τ(xi)xi

with respect to the lexicographic order are all different when i ranges from 1 to
m. Therefore they cannot cancel. �

3.2. The derived subgroup of a special reductive group

We will use [KMRT, §26] as a basic reference for the classification of algebraic
groups over non-algebraically closed fields. We will adopt the notations of [KMRT]
throughout.

Proposition 5. Let G be a special reductive algebraic group over k. The derived
subgroup of G is isomorphic to

RK1|k(G1)×RK2|k(G2)× · · · ×RKr|k(Gr)

where, for each i, the extension Ki of k is finite and separable and the group Gi

is isomorphic over Ki to either SL1(Ai), where Ai is a central simple algebra over
Ki, or Sp2ni

for some integer ni.

Proof. By Theorem 1, the group G′
k̄
, where k̄ is an algebraic closure of k, is

a semisimple simply connected group whose simple components are of types A

and C. Therefore, by [KMRT, Thm. 26.8], the group G′ is isomorphic to a direct
product

RK1|k(G1)×RK2|k2
(G2)× · · · ×RKr |k(Gr)

where, for each index i, the extension Ki of k is finite and separable and the group
Gi is an absolutely simple simply connected group over Ki of type A or C. For
each index i, Gi is a direct factor of the derived subgroup of the special reductive
group GKi

. By Proposition 2 we get that the map βG′
Ki

,K has trivial kernel for

every field extension K of Ki, which readily implies that the map βGi,K has trivial
kernel as well. This forces Gi to be of inner type A or split of type C, by Lemma
6 below, completing the proof of the proposition.

Lemma 6. Let G be an absolutely simple simply connected group of type A or C

over the field k. If, for every field extension K of k, the map βG,K has a trivial
kernel, then G is either of inner type A or split of type C.

Proof of Lemma 6. Suppose first that G is of outer type A. We will prove that
the kernel of βG,K contains at least two elements for some field extension K of
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k. Observe that to prove this property we can replace G by GM for some scalar
extension M of k. By [KMRT, §26], G is isomorphic to SU(A, σ), where A is
a central simple algebra of degree n—at least 3, otherwise SU(A, σ) is of inner
type—over a quadratic separable extension L of k equipped with an involution σ
of the second kind.

We will now reduce to the case where A is split over L. To this aim, we denote
by Y the Severi-Brauer variety of A, by X the Weil scalar restriction of Y from
L to k, and by K be the function field of X . As X is geometrically integral, the
field k is algebraically closed in K, and consequently K ⊗k L is a field. Moreover,
the set Y (K ⊗k L) is not empty, as it is equal to X(K). This implies that the
field extension K ⊗k L of L is a splitting field for A. Now, we observe that the
group GK is isomorphic to SU(K⊗kA, σK), where K⊗kA is a split central simple
algebra over K⊗kL equipped with an involution σK of the second kind. It is thus
of outer type A and satisfies moreover the property that for every field extension
M of K, the map βGK ,M has trivial kernel. Therefore, by replacing k by K and
G by GK , we are reduced to the case where the central simple algebra A is split
over L.

Then A is isomorphic to EndL(L
n) for some integer n greater than or equal to

three, and the involution σ is adjoint to a nonsingular hermitian form h on Ln, by
[KMRT, §4.2]. The group G is therefore isomorphic to SUL(n, h). Its center is the
group µn[L]; see [KMRT, §30B], the kernel of the norm map:

NL|k : RL|k(µn,L) → µn,k.

Let K be the field k(t1, . . . , tn−1) where the tis are algebraically independent vari-
ables over k.

We claim that the kernel of βG,K contains at least two elements. We have an
exact sequence of pointed sets:

H1(K,µn[L]) → H1(K,G) → H1(K,Gad)
βG,K

−−−→ H2(K,µn[L])

in the fppf-cohomology. As µn[L] is abelian and central in G, there is a natural
action of H1(K,µn[L]) onH1(K,G), and the set of orbits for this action is precisely
the kernel of βG,K . By [KMRT, Example 29.19], the set H1(K,G) is in natural
correspondence with the set of isometry classes of nonsingular hermitian forms on
the vector space (K ⊗k L)n with the same discriminant α as h. Moreover, by
[KMRT, Prop. 30.13], the group H1(K,µn[L]) is the quotient of

{(x, y) ∈ K∗ × (K ⊗k L)
∗ | xn = NK⊗kL|K(y)}

by the subgroup
{(NK⊗kL|K(z), zn) | z ∈ (K ⊗k L)

∗}.

Strictly speaking, the description above is given in [KMRT, Prop. 30.13] only when
n is not divisible by the characteristic of the base field k. This comes from the fact
that the cohomology considered there is the Galois cohomology. The same proof
leads to the description in the fppf-cohomology, with no restriction on the integer
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n. It is then easy to prove that the action of the class [(x, y)] on the isometry class
[h′] of the hermitian form h′ is given as follows:

[(x, y)] · [h′] = [xh′].

We will now prove that the set H1(K,G) contains the isometry class of an isotropic
form and an anisotropic form. As these two classes cannot be in the same orbit
under the action of H1(K,µn[L]), this proves the claim above.

First, as n is greater than 2, H1(K,G) contains the isometry class of an isotropic
hermitian form, namely the one with matrix

diag
(

[

0 1
1 0

]

, 1, · · · , 1,−α
)

.

Moreover, by Lemma 4 above, the hermitian form:

h′(x1, . . . , xn) = t1σ(x1)x1 + · · ·+ tn−1σ(xn−1)xn−1 + αt−1
1 · · · t−1

n−1σ(xn)xn

which has discriminant α, is anisotropic over the field K ⊗k L.
Suppose now that G is of type C and not split. Again here, we want to see

that the kernel of βG,K contains at least two elements for some field extension K
of k. By [KMRT, §26], G is isomorphic to Sp(A, σ), where A is a nonsplit central
simple algebra of degree 2n—at least 4, otherwise Sp(A, σ) is of type A—over k
equipped with an involution σ of symplectic type. The center of G is isomorphic
to µ2. Let K be a field extension of k. By [KMRT, 29.22] the kernel of βG,K is in
bijection with the conjugacy classes of involutions of symplectic type on AK .

If A is a division algebra, then by [L, Thm. 3.2], there is more than one conjugacy
class of involution of symplectic type on AK , for some field extension K of k. From
now on, we suppose that A is not a division algebra. Let D be the division algebra
Brauer equivalent to A. It is not k, as A is nonsplit. Therefore, D carries an
involution τ of symplectic type, by [KMRT, Thm. 3.1] and [KMRT, Cor. 2.8], and,
by Wedderburn’s theorem [KMRT, Thm. 1.1], A is isomorphic to Mn(D) for some
integer n greater than or equal to 2.

Let K be the field of rational functions k(t1, · · · , tn) on n indeterminates. The
algebraDK is a division algebra, and is therefore the division algebra Brauer equiv-
alent to AK . Let M be a simple right AK -module, isomorphic to Dn

K —thought
of as row vectors. We will make use of the correspondence between involutions of
symplectic type on AK and hermitian forms on M , as explained in [KMRT, Thm.
4.2]. We refer the reader to [KMRT, §4] for the notion of singular hermitian form
and alternating hermitian form in characteristic 2. We define two hermitian forms
h and h′ on M in the following way:

h(x, y) = −τ(x1)y1 +

n
∑

i=2

τ(xi)yi

and

h′(x, y) =

n
∑

i=1

tiτ(xi)yi.
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These forms are easily seen to be nonsingular. Furthermore, if the characteristic
of k is 2, then h and h′ are alternating. Indeed, by [KMRT, Prop. 2.6], as τ is an
involution of symplectic type onDK we know that K is contained in Symd(DK , τ),
which is enough to prove that for every x in M , the elements h(x, x) and h′(x, x)
both belong to Symd(DK , τ).

By [KMRT, Thm. 4.2], the hermitian forms h and h′ give rise to two involutions
τh and τh′ on AK which are both of symplectic type. If these two involutions
were conjugate, then there would exist an element u of GLn(DK) such that the
hermitian forms h′ and the hermitian form:

M ×M 7→ D, (x, y) 7→ h(u(x), u(y))

are proportional by a factor in K∗. But h is isotropic, for instance, (1, 1, 0, · · · , 0)
is an isotropic element, and h is not by Lemma 4. This provides a contradiction,
proving that the involutions τh and τh′ are not conjugate. �

Observe that every group admitting a direct factor decomposition as in Propo-
sition 5 occurs as the derived subgroup of a special reductive group. Indeed, a
semi-simple group

RK1|k(G1)×RK2|k(G2)× · · · ×RKr|k(Gr)

where, for each i, the extension Ki of k is finite and separable and the group Gi

is isomorphic over Ki to either SL1(Ai), where Ai is a central simple algebra over
Ki, or Sp2ni

for some integer ni, is the derived subgroup of the special reductive
group

RK1|k(H1)×RK2|k(H2)× · · · ×RKr|k(Hr)

where, for each index i, Hi is equal to GL1(Ai) if Gi is isomorphic to SL1(Ai), and
Hi is equal to Gi otherwise.

3.3. The coradical of a special reductive group

We prove now that the coradical, as defined in Section 2, CG of a special reductive
group G is a special torus. The classification of special tori, due to Colliot-Thélène,
will be recalled in Section 5 below.

Proposition 7. Let G be a special reductive algebraic group defined over k. The
coradical CG of G is a special torus.

Proof. We say that a reductive algebraic group G defined over a field—which is
not necessarily k—satisfies property (P ) if, for every field extension K of the
field of definition of G and every nontrivial element x in H2(K,ZG), there exists
a field extension L of K such that xL is not trivial in H2(L,ZG) and belongs
to the image of βG,L. We will prove as a consequence of Lemma 8 below that
the derived subgroup G′ of G—and more generally any group admitting a direct
factor decomposition as in Proposition 5—satisfies property (P ).

Before proving this fact let us show how it implies the proposition. Suppose
that CG is not special. There exists a field extension K of k and a nontrivial
element x in H1(K,CG). By Proposition 2, the image of x in H2(K,ZG′)— still
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denoted x—is nonzero, and is mapped to zero in H2(K,ZG). As the group G′

satisfies property (P ), we can even assume, after possibly extending scalars, that
there exists y in H1(K,Gad) such that x = βG′,K(y). We get that y is not trivial
and is in the kernel of βG,K , a contradiction to Proposition 1.

Now, the fact that any group admitting a direct factor decomposition as in
Proposition 5 satisfies property (P ) is a direct consequence of Lemma 8 below.

Lemma 8. The following properties hold:

(1) for every central simple algebra A over a field k, the group SL1(A) obeys
property (P );

(2) for every integer n and every field k, the group Sp2n obeys property (P );
(3) if G1 and G2, both defined over a field k, satisfy property (P ), then G1×G2

satisfies it as well;
(4) if G is defined over a finite separable field extension M of k and satisfies

property (P ), then the group RM |k(G) satisfies property (P ) as well.

Proof of Lemma 8. Let k be a field and A a central simple algebra over k. The
center of SL1(A) is µn, where n is the degree of A. Let K be a field extension
of k. Let x be a nontrivial element of H2(K,µn). By [BFT, Appendix B], the
element x can be seen as the Brauer class of a central simple algebra B over K
of period d dividing n, d being greater than 1. By the Schofield-Van den Bergh
index reduction formula [SVdB, Thm. 2.5], there exists a field extension L of K
such that BL is a central simple algebra over L of index d. This proves that the
class xL is not trivial in H2(L, µn) because d is not 1, and belongs to the image
of βSL1(A),L, this image being precisely the classes of index dividing n. We have
proved (1).

The proof of (2) is similar. Let k be a field and n an integer. The center of Sp2n

is µ2. Let K be a field extension of k and x a nontrivial element of H2(K,µ2).
The element x is the Brauer class of a central simple algebra B over K of period
2. Applying the index reduction formula once again, there exists a field extension
L of K such that BL is a central simple algebra over L of index 2. This proves
that the class xL is not trivial in H2(L, µ2), and belongs to the image of βSp2n,L

,
this image being precisely the classes of index dividing 2n.

Let k be a field. We will now prove that if G1 and G2 are reductive algebraic
groups both satisfying property (P ), then the direct product G1 × G2 satisfies
property (P ) as well. Let K be a field extension of k and x be a nontrivial element
of

H2(K,ZG1×G2
) = H2(K,ZG1

)×H2(K,ZG2
).

We write x = (x1, x2). As G1 satisfies property (P ), there exists a field extension
L1 of K such that (x1)L1

is not trivial and belongs to the image of βG1,L1
. If

(x2)L1
is trivial then we are done. Otherwise, as G2 satisfies property (P ), there

exists a field extension L2 of L1 such that (x2)L2
is not trivial and belongs to the

image of βG2,L2
. As (x1)L2

belongs to the image of βG1,L2
, we see that xL2

is not
trivial and belongs to the image of βG1×G2,L2

. This completes the proof of (3).
Let k be a field, M a finite separable field extension of k, and let G be a reductive

algebraic group over M which satisfies property (P ). We will now prove that the
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group RM |k(G) satisfies property (P ) as well. We denote by d the degree of the
field extension M of k. Let K be a field extension of k. We can write

K ⊗k M = K1 × · · · ×Ks

where the Kis are finite separable extensions of K and M . Let x be a nontrivial
element in

H2(K,ZRM|k(G)) = H2(K1, ZG)× · · · ×H1(Ks, ZG).

We write x = (x1, . . . , xs), and we define dx to be the sum of the degrees of the
Kis over k such that xi belongs to the image of βG,Ki

. The integer dx is obviously
less than or equal to d. We prove the desired conclusion by a decreasing induction
on dx, the case where dx is equal to d being obvious. Suppose that dx is strictly
less than d. After permuting the Kis, we can assume for example that x1 is not
in the image of βG,K1

. In particular, x1 is not trivial. As G satisfies property (P ),
there exists a field extension L1 of K1 such that (x1)L1

is not trivial and belongs
to the image of βG,L1

. One then easily proves that xL1
is not trivial and dxL1

is
strictly greater than dx. By the induction hypothesis there is a field extension L
of L1 such that xL is not trivial and belongs to the image of βG,L, completing the
proof of (4). �

Remark 1. The radical of a special reductive group does not need to be special.
Suppose that K is a separable quadratic extension of k. Recall that the torus
R1

K|k(Gm) is defined as the kernel of the norm map from RK|k(Gm) to Gm. We

denote by R the direct product R1
K|k(Gm) × Gm. There is an exact sequence of

groups of multiplicative type:

1 → µ2
ϕ
−→ R → RK|k(Gm) → 1

corresponding to the following exact sequence of Γ-modules, where Γ is the Galois
group of K over k:

0 → Z
2 (x,y) 7→(x−y,x+y)
−−−−−−−−−−−→ Z

2 (x,y)7→[x+y]
−−−−−−−−→ Z/2Z → 0.

Here the nontrivial element of Γ acts on Z
2 on the left by permuting the coordi-

nates, on Z2 in the center by multiplying the first coordinate by −1 and the second
by 1, and on Z/2Z as the identity. We define G to be the quotient:

(SL2 ×R)/µ2,

where µ2 is embedded diagonally in SL2 and in R by using the morphism ϕ above.
It is readily seen that the derived group of G is SL2 and its coradical is RK|k(Gm).
An easy argument then shows that G is special; see, for instance, Proposition 15
below. However, the radical of G is equal to R = R1

K|k(Gm)×Gm and is therefore
not special, as it can be seen directly or from the classification of special tori
recalled in Theorem 18 below.
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4. Classification results

We start by classifying special reductive groups over the field k in Theorem
9 below. This classification is obtained as a straightforward consequence of the
results from Sections 2 and 3. However, conditions (1) and (2) in Theorem 9 are
very explicit, unlike condition (3). Under the additional assumption that the group
G is semisimple, reductive of inner type, or quasisplit, we will make condition (3)
explicit as well, providing an explicit classification in these cases.

Theorem 9. Let G be a reductive algebraic group over k. Then G is special if
and only if the following three conditions hold:

(1) The derived subgroup of G is isomorphic to

RK1|k(G1)× RK2|k(G2)× · · · ×RKr|k(Gr)

where, for each i, the extension Ki of k is finite and separable and the group
Gi is isomorphic over Ki to either SL1(Ai), where Ai is a central simple
algebra over Ki, or Sp2ni

for some integer ni.
(2) The coradical CG of G is a special torus.
(3) For every field extension K of k, the group S(K,G) is trivial.

Proof. If G is special, then (1) is satisfied by Proposition 5, (2) by Proposition 7,
and (3) by Proposition 3. Suppose now that G satisfies the three conditions. By
(1), for every field extension K of k, the map βG′,K has trivial kernel. This can
be seen as follows. First of all, the property for an algebraic group H over k to
satisfy that βH,K has trivial kernel for every field extension K of k is preserved by
direct products and scalar restriction. Therefore it suffices to check this property
for H = SL1(A), where A is a central simple algebra over k, and for H = Sp2n. In
the first case the map βH,K is even injective, because two central simple algebras of
the same degree and Brauer class are isomorphic. In the second case, the map has
trivial kernel because there is only one symplectic involution on the split central
simple algebra of degree 2n, namely the split one. This proves our claim. Together
with (2) and (3), it implies that G is special, by Proposition 3. �

4.1. The classification of special semisimple groups

We provide now the classification of special semisimple groups over the field k.

Proposition 10. Let G be a semisimple algebraic group over k. Then G is special
if and only if it is isomorphic to

RK1|k(G1)×RK2|k2
(G2)× · · · ×RKr |k(Gr)

where, for each i, the extension Ki of k is finite and separable and the group Gi

is isomorphic over Ki to SLni
or Sp2ni

for some integer ni.

Proof. The “if part” of the proposition follows directly from Shapiro’s lemma and
the fact that the split groups SLn and Sp2n are special for every integer n. For the
“only if part”, we use Proposition 5. As G is its own derived subgroup, we find
that G is isomorphic to

RK1|k(G1)×RK2|k(G2)× · · · ×RKr|k(Gr)
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where, for each i, the extension Ki of k is finite and separable and the group Gi

is isomorphic over Ki to either SL1(Ai), where Ai is a central simple algebra over
Ki, or Sp2ni

for some integer ni. Now, for every index i, Gi is a direct factor of
GKi

, and, as such, is a special group. If Gi is isomorphic over Ki to SL1(Ai) then
Lemma 11 below shows that Ai is split, completing the proof of the proposition.

Lemma 11. Let A be a central simple algebra over the field k. If SL1(A) is a
special group, then A is split.

This result is part of the folklore; see, for example, [GS, Chapter 2, Exercise 6].
We sketch a proof for the convenience of the reader. Let k((t)) be the field of formal
Laurent series. By [KMRT, Cor. 29.4] we know that the set H1(k((t)), SL1(A)) is
naturally identified with the cokernel of the reduced norm:

Nrd : (k((t)) ⊗k A)
∗ → k((t))∗.

We claim that the class [t] of t in H1(k((t)), SL1(A)) is not trivial if A is not split,
proving that SL1(A) is not special in that case.

To see this, we will prove below that the image of the composite:

v ◦Nrd : (k((t)) ⊗k A)
∗ → k((t))∗ → Z

where v is the valuation given by t, is the ideal spanned by the index ind(A) of A.
Let us first show how it implies the result. If A is not split, then the index of A is
not 1, and we see that t, whose valuation is 1, is not in the image of Nrd, proving
that the class [t] in H1(k((t)), SL1(A)) is not trivial.

We now prove the result above. Let D be the division algebra over k which is
Brauer equivalent to A. Observe that the valuation v extends to k((t))⊗k D, the
valuation of

drt
r + dr+1t

r+1 + · · ·

being r if dr is not zero. This implies actually that the k((t))-algebra k((t))⊗kD is
a division algebra, and is thus the division algebra Brauer-equivalent to k((t))⊗kA.
By [GS, Cor. 2.8.10], the image in k((t))∗ of the reduced norms from (k((t))⊗kA)

∗

and (k((t))⊗k D)∗ are the same. Therefore, in order to prove the result above, we
can replace A by D. By extending the scalars to ks((t))—which is contained in
a separable closure of k((t))—where the reduced norm becomes the determinant,
we see that the valuation of the reduced norm of

drt
r + dr+1t

r+1 + · · ·

where dr is not zero, is r dimk D, which is equal to r ind(A). This completes the
proof of the result above. �

Proposition 10 can be found (without proof) in [CS2, 4.2], where its connection
to the rationality problem of Noether is explained. Namely, the authors notice the
following:
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Corollary 12 (Colliot-Thélène, Sansuc). Let G be a special semisimple group and
V a generically free linear representation of G. Then the field of invariants k(V )G

is stably pure.

Before giving the proof of this corollary, we recall a few definitions. A linear
representation V of an algebraic group G is called generically free if there exists
an open subscheme U of V such that the scheme-theoretic stabilizer of every point
of U is trivial. By [SGA3, Exp.V, Thm. 8.1], it is equivalent to the existence
of an open subscheme X and a G-torsor X → Y , where Y is a variety over k.
The field extension k(Y ) of k is then independent of the choice of X or Y up to
isomorphism, and is called the field of invariants k(V )G. A field extension K of
k is called stably pure if one can find algebraically independent variables t1, . . . , ts
over k such that the field extension K(t1, . . . , ts) is purely transcendental over k;
see [CS2, p. 3].

Proof of Corollary 12. Let X be an open subscheme of V such that there exists a
G-torsor π : X → Y , with Y a k-variety. The generic fiber of π is aG-torsor defined
over the field k(V )G. As G is a special group, this torsor is trivial. Consequently
there exists a rational section to the morphism π, proving that X is k-birational
to G × Y . Now X is an open subscheme of V , hence is k-rational, and G is also
a k-rational variety by Proposition 10 (a split group is a rational variety over the
ground field by the Bruhat decomposition, and a Weil restriction of a rational
variety is a rational variety). We have proved that Y is a stably k-rational variety
in the sense of [CS2], which is to say, that the field k(Y ) = k(V )G is stably pure.
�

We will prove an analog of Corollary 12 for special quasisplit reductive algebraic
groups in Corollary 16 below.

4.2. The classification of special reductive groups of inner type

The split form of a reductive algebraic group G defined over k is the unique Cheval-
ley group Gsplit over k which is isomorphic to G over the algebraic closure k̄ of
k. The existence and uniqueness of the split form is guaranteed by Chevalley’s
classification of split reductive groups (see, for instance, [Sp]) and the fact that
every reductive group is split over an algebraically closed field.

A reductive algebraic group G is called of inner type if it is an inner form of its
split form, that is, if it is obtained by twisting Gsplit by a cocycle with values in
the group of inner automorphisms of Gsplit; see for instance [KMRT, §31]. If G is
a reductive group of inner type, then:

ZG = ZGsplit
, ZG′ = Z(Gsplit)′ and RG = RGsplit

,

where RG is the radical of G, that is, the identity component of the center ZG.
Consequently, we see that ZG and ZG′ are split diagonalizable groups and RG is a
split torus. We provide now the classification of special reductive algebraic groups
which are of inner type.

Proposition 13. Let G be a reductive algebraic group over k of inner type. The
intersection R′

G of RG with ZG′ is a finite split diagonalizable group. We fix an
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isomorphism:
R′

G ' µm1
× · · · × µmq

for some integers mj . Then G is special if and only if the following two conditions
are satisfied:

(1) The derived subgroup G′ of G is isomorphic to a direct product:

G1 × · · · ×Gs × · · · ×Gr (∗∗)

where, for each index i from 1 to s, the group Gi is equal to SL1(Ai), with
Ai a nonsplit central simple algebra of degree ni and index di over k, and,
for i from s+ 1 to r, the group Gi is equal to either SLni

or Sp2ni
for some

integer ni.
(2) The projection onto the first s factors in the direct product decomposition

(∗∗) leads to a morphism:

R′
G ' µm1

× · · · × µmq
→ ZG1×···×Gs

= µn1
× · · · × µns

,

(x1, . . . , xq) 7→ (x
a1,1

1 · · ·xa1,q
q , . . . , x

as,1

1 · · ·xas,q
q )

for some integers ai,j . We set bi,j = ai,jni/mj . Then the rows of the follow-
ing matrix:









d1 0 . . . 0 b1,1 . . . b1,q
0 d2 . . . 0 b2,1 . . . b2,q
. . . . . . . . . . . . . . . . . . . . .
0 0 . . . ds bs,1 . . . bs,q









span a saturated sublattice of Zs+q (i.e., such that the quotient is torsion-
free).

Proof. First we prove that if G is special then it satisfies (1). As G is of inner type,
it is obtained by twisting the split form Gsplit of G by a cocycle whose class is in
H1(k, (Gsplit)ad). As the last set is equal to H1(k, (G′

split)ad), and the group G′
split

is a direct product of split absolutely simple simply connected groups—because it
is the derived subgroup of the special split reductive group Gsplit —we see that G′,
which is obtained from G′

split by the same twisting procedure, is a direct product
of absolutely simple simply connected groups of types A and C. By Proposition 5,
the factors are either of inner type A or split of type C, proving that G satisfies
(1).

We suppose now that G satisfies (1), and we claim that G is special if and only
if it satisfies (2). It is readily seen that G satisfies the first assertion of Theorem
9, and also the second, as the coradical of G is a split torus— it is the coradical of
the split form Gsplit of G. Therefore, to prove the claim, it suffices to show that
(2) is satisfied if and only if the third assertion of Theorem 9 is satisfied.

Let K be a field extension of k. First, we claim that the image of the map γG,K

in H1(K,ZG′) is equal to the image of the morphism:

ι : H1(K,R′
G) → H1(K,ZG′)
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induced by the inclusion. To see this, we look at the following two exact sequences:

1 // R′
G

��

// RG

��

// CG
// 1

1 // ZG′ // ZG
// CG

// 1

.

As the torus RG is split, by Hilbert’s theorem 90, we see that the map

δ : CG(K) → H1(K,R′
G)

induced by the top exact sequence in cohomology is surjective. As the following
diagram:

H1(K,R′
G)

ι

��

CG(K)

δ
66mmmmmmmm

γG,K ((QQ
QQ

QQ
QQ

H1(K,ZG′)

is commutative, we have proved the claim above.
Now, we have:

H1(K,ZG′) = H1(K,ZG1×···×Gs
)⊕

r
⊕

i=s+1

H1(K,ZGi
)

The map αG′,K is the direct product of the maps αGi,K , where i ranges from 1 to
r. As the group Gi is special for i between s + 1 and r we know by Proposition
1 that αGi,K is surjective. In other words, the group H1(K,ZGi

) is contained in
the image of αG′,K for every i from s + 1 to r. Therefore, we see that the group
S(K,G) is trivial if and only if:

H1(K,ZG1×···×Gs
) = 〈ImαG1×···×Gs

, Im(H1(K,R′
G) → H1(K,ZG1×···×Gs

))〉,

where the morphism

H1(K,R′
G) → H1(K,ZG1×···×Gs

)

is induced by the composite ϕ of the inclusion of R′
G in ZG′ followed by the

projection on ZG1×···×Gs
. The morphism ϕ has the following explicit description:

ϕ : µm1
× · · · × µmq

→ µn1
× · · · × µnr

,

(x1, . . . , xq) 7→ (x
a1,1

1 · · ·xa1,q
q , . . . , x

ar,1

1 · · ·xar,q
q ).

Its corresponding morphism in fppf cohomology is given by:

K∗/(K∗)(m1) × · · · ×K∗/(K∗)(mq) → K∗/(K∗)(n1) × · · · ×K∗/(K∗)(ns),

([x1], . . . , [xq ]) 7→ ([x
b1,1
1 · · ·xb1,q

q ], . . . , [x
bs,1
1 · · ·xbs,q

q ])

where bi,j = ai,jni/mj , and (K∗)(n) denotes the group of nth power of elements
of K∗. Furthermore, for each index i from 1 to s, the map αGi,K :

PSL1(Ai)(K) = (Ai)
∗
K/K∗ → H1(K,µni

) = K∗/(K∗)(ni)

maps the class of an element g of (Ai)
∗
K to the class of its reduced norm. Therefore,

Lemma 14 below completes the proof of the proposition.
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Lemma 14. Let s and q be two positive integers. For every i from 1 to s, let Ai

be a central simple algebra over k of indice di. For every i from 1 to s and j from
1 to q, let bi,j be an integer. The following conditions are equivalent:

(1) the rows of the following matrix:









d1 0 . . . 0 b1,1 . . . b1,q
0 d2 . . . 0 b2,1 . . . b2,q
. . . . . . . . . . . . . . . . . . . . .
0 0 . . . ds bs,1 . . . bs,q









span a saturated sublattice of Zs+q;
(2) for every field extension K of k, the map:

γK :
s
∏

i=1

Nrd((Ai)
∗
K)× (K∗)q → (K∗)s,

(y1, . . . , ys, x1, . . . , xq) 7→ (x
b1,1
1 · · ·xb1,q

q y1, . . . , x
br,1
1 · · ·xbr,q

q ys)

is surjective.

Proof of Lemma 14. Suppose that (1) holds. Let M be the matrix in (1). First,
as the rows of M are linearly independent, the morphism of algebraic tori:

G
q+s
m → G

s
m,

(y1, . . . , ys, x1, . . . , xq) 7→ (x
b1,1
1 · · ·xb1,q

q yd1

1 , . . . , x
bs,1
1 · · ·xbs,q

q yds
s )

is surjective. Its kernel is precisely the subgroup of multiplicative type Gs+q
m whose

character lattice is the quotient of Zs+q by the rows of M . By assumption, this
kernel is therefore a split torus. By Hilbert’s theorem 90, for every field extension
K of k, the map:

(K∗)s+q → (K∗)s,

(y1, . . . , ys, x1, . . . , xq) 7→ (x
b1,1
1 · · ·xb1,q

q yd1

1 , . . . , x
bs,1
1 · · ·xbs,q

q yds
s )

induced on the K-points is surjective. As for each index i between 1 and s the
subgroup Nrd((Ai)

∗
K) ofK∗ contains (K∗)(di), we see that the map γK is surjective.

Suppose now that (1) fails. There exists a primitive element (c1, . . . , cs) of Z
s

such that the element

s
∑

i=1

ci(0, . . . , di, . . . , 0, bi,1, . . . , bi,q)

is divisible, say by d, in Zs+q . Let K be the field of Laurent series k((t)) and v
the valuation defined by t. As the element (c1, . . . , cs) is primitive, the map

(K∗)s → K∗
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(z1, . . . , zs) 7→ zc11 . . . zcss

is surjective. We claim now that if (z1, . . . , zs) belongs to the image of γK then
the valuation of zc11 . . . zcss is divisible by d, proving that γK is not surjective.

To prove the claim, let:

(y1, . . . , ys, x1, . . . , xq) ∈
s
∏

i=1

Nrd((Ai)
∗
K)× (K∗)q ,

and
(z1, . . . , zs) = γK(y1, . . . , ys, x1, . . . , xq).

We have:
zc11 · · · zcss = yc11 · · · ycss x

∑
s
i=1 cibi,1

1 · · ·x
∑

s
i=1 cibi,q

q .

For every i from 1 to s the integer v(yi) is divisible by di, as yi is a reduced norm of
the central simple algebra (Ai)K overK and the index of Ai over k is di. Therefore
v(ycii ) is divisible by cidi , hence by d. Moreover, for every index j between 1 and
q, the sum

∑s
i=1 cibi,j is also divisible by d, completing the proof of the claim.

�

Here is an example of a situation where condition (2) in Proposition 13 is easy
to work out. Suppose that the group R′

G decomposes along the direct factor
decomposition (∗∗) in (1). That is,

R′
G ' µm1

× · · · × µmr

where, for each index i, µmi
is a subgroup of ZGi

. In this setting, condition (2) in
Proposition 13 is equivalent to the fact that for every i from 1 to s the integers di
and ni/mi are relatively prime.

4.3. The classification of special quasisplit groups

Recall that a reductive group G over a field k is called quasisplit if it possesses a
Borel subgroup defined over k (see for instance [Se2, III, 2.2]) or, in other words,
if the variety of Borel subgroups of G has a rational point. We show now that
a quasisplit group is special if and only if its derived subgroup and coradical are
special.

Proposition 15. Let G be a reductive algebraic group over k. Then G is quasisplit
and special if and only if there exists an exact sequence of algebraic groups:

1 → D → G → C → 1

where D is isomorphic to a direct product:

RK1|k(G1)×RK2|k(G2)× · · · ×RKr|k(Gr)

where, for every index i, Ki is a finite separable extension of k, Gi is equal to
either SLni

or Sp2ni
for some integer ni, and the group C is a special torus over

k. In that case, D is the derived subgroup of G and C is the coradical of G.
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Proof. If such an exact sequence exists, then, as D and C are special, it follows
readily from the derived exact sequence of pointed sets in fppf-cohomology that
G is special as well. Moreover, as C is commutative, the derived subgroup G′ is
contained in D. Now, as D is semisimple, it is equal to its own derived subgroup,
and is in particular contained in G′. Finally, we see that D is equal to G′, and
the fact that C is the coradical of G follows readily. Now, as G and G′ share the
same variety of Borel subgroups, and G′ is quasisplit, we see that G is quasisplit
as well.

Suppose now that G is quasisplit and special. By the same argument as above,
the derived subgroup G′ is quasisplit. Moreover, by Proposition 5, G′ is isomorphic
to

RK1|k(G1)×RK2|k(G2)× · · · ×RKr|k(Gr)

where, for each index i, the extension Ki of k is finite and separable and the group
Gi is isomorphic over Ki to either SL1(Ai), where Ai is a central simple algebra
over Ki, or Sp2ni

for some integer ni. For each index i such that Gi is isomorphic
to SL1(Ai), we see that SL1(Ai) is a direct factor of GKi

. As GKi
is quasisplit, this

forces SL1(Ai) to be quasisplit as well, implying that Ai is split. By Proposition 7,
the coradical of G is special. We thus have an exact sequence as in the proposition,
with D the derived subgroup G′ of G and C the coradical CG. �

We give now an application to the rationality problem of Noether, in the spirit
of Corollary 12.

Corollary 16. Let G be a special reductive quasisplit group. Then G is a stably
k-rational variety (in the sense of [CS2, p. 3]) if and only if the coradical CG is a
stably k-rational variety. In this case, for every generically free linear representa-
tion V of G, the field of invariants k(V )G is stably pure.

Note that there is an explicit description of the stably k-rational tori; see, for
example, [V, 4.7, Thm. 2]. Namely, if T is a torus defined over k, then T is a stably
k-rational variety if and only if there exist two tori S and R whose character lattices
are permutation Galois modules (i.e., having a basis that is permuted by the action
of the absolute Galois group of k) and a short exact sequence:

1 → R → S → T → 1.

Proof. By Proposition 15, the derived subgroup G′ of G is a special group. By
using the exact sequence:

1 → G′ → G → CG → 1

and an argument explained in the proof of Corollary 12, this implies that G is
k-birational to CG × G′. Still by Proposition 15, we see that G′ is a k-rational
variety. This implies that G is a stably k-rational variety if and only if CG is. The
assertion about the generically free representations of G is proved exactly as in
Corollary 12. �
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Let G be an arbitrary reductive group over the field k. There is a unique inner
form of G that is quasisplit, called the quasisplit form Gqsplit of G; see, for instance,
[Sp]. In the following proposition, we prove that the quasisplit form of G is special
if G is special. This is very reasonable, as we expect Gqsplit to be less “twisted”
than G.

Proposition 17. Let G be a special reductive group over k. The quasisplit form
of G is special as well.

Proof. The groups G and Gqsplit share the same coradical, and (Gqsplit)
′ is the

quasisplit form of G′. Therefore, by Propositions 5 and 7, the derived subgroup
and coradical of Gqsplit are special, proving that Gqsplit is special. �

5. Special tori

In this section we give the classification of special tori after Colliot-Thélène.
This classification is implicitely contained in [CS] and explicitely given in the first
version of [BR] on the arXiv, but not in the published version. For this reason we
thought that it would be a good idea to include it in the present paper. We actually
reproduce the proof from [BR]. The relevance of the classification of special tori
for our problem of classifying reductive groups is twofold: firstly, tori are reductive
groups and secondly, by Proposition 7, the coradical of a special reductive group
is a special torus.

Let k be a base field, ks a fixed separable closure and Γ the absolute Galois
group Gal(ks|k) of k. A continuous Γ-module is called a permutation Γ-module
if it is a free Z-module possessing a basis which is permuted by the action of Γ.
A continuous Γ-module is called invertible if it is a direct factor of a permutation
Γ-module.

Theorem 18 (Colliot-Thélène). Let T be a torus defined over a field k. The torus
T is special if and only if the character lattice of Tks

is invertible.

Proof. If the character lattice of Tks
is invertible, then T is a direct factor of a

finite product of tori of type RK|k(Gm,K), where K is a finite separable extension
of k and Gm,K is the multiplicative group over K. By Hilbert’s theorem 90 and
Shapiro’s lemma, it follows that T is special.

Conversely, assume that T is special. Let K be a finite separable field extension
of k. By Lemma 19 below,

H1(K((t)), T ) ' H1(K,T )⊕H1(K,N)

where N is the cocharacter lattice of Tks
and K((t)) is the field of formal Laurent

series over K. Since the torus T is special, we see that H1(K,N) is trivial. As
this property holds for every finite separable field extension K of k, it means that
the torus T is flasque. By [CS, Prop. 7.4] a flasque torus is special if and only if
the character lattice of Tks

is invertible, which completes the proof, modulo the
following lemma:

Lemma 19. For any torus over the field k, there is an isomorphism:

H1(k((t)), T ) ' H1(k, T )⊕H1(k,N)
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where N is the cocharacter lattice of Tks
.

Proof of Lemma 19. Set K = k((t)). Let L be the union of the fields k′((t)) for
all finite extensions of k inside ks. Then the Galois group Gal(L|K) is equal to Γ.
We have the inflation-restriction exact sequence; see, for example, [Se2, I.2.6(b)]:

1 → H1(Γ, T (L)) → H1(K,T ) → H1(L, T ) → 1.

The torus T is split over L, hence, by Hilbert’s theorem 90, we see that the sets
H1(Γ, T (L)) and H1(K,T ) are equal. By [CGP, Lem. 5.17(3)], we have

H1(Γ, T (L)) ' H1(Γ, T (ks[t, t
−1])).

Now, we write:

T (ks[t, t
−1]) = N ⊗Z ks[t, t

−1]∗ = N ⊗Z (k∗s ⊕ Z) = T (ks)⊕N

because T splits over ks and ks[t, t
−1]∗ is equal to k∗s ⊕ Z. Finally, we obtain:

H1(K,T ) ' H1(Γ, T (L)) ' H1(Γ, T (ks[t, t
−1]))

' H1(Γ, T (ks))⊕H1(Γ, N) ' H1(k, T )⊕H1(k,N). �

6. An application

This section is devoted to the proof of the following result. At the end of the
section, we explain how this result is connected to a conjecture of Serre in [Se3].

Theorem 20. Let G be a reductive group over a field k, and let {kα}α∈I be a
nonempty finite family of finite field extensions of k such that the degrees [kα : k]
are relatively prime. Then the following conditions are equivalent:

(1) G is a special group.
(2) For every index α ∈ I, the group Gkα

is a special group.

Proof. If G is special then for every index α ∈ I , the group Gkα
is special, as the

property of being special is preserved by scalar extension. In the following, we
will thus prove that (2) implies (1). To this aim, we prove that G satisfies the
conditions of Theorem 9.

As the group G satisfies (2), the group Gk̄ is special. As in the proof of Propo-
sition 5, we see that

G′ ' RK1|k(G1)× ...×RKr |k(Gr)

where for each i, Ki is a finite separable extension of k and Gi is an absolutely
simple simply connected group of type A or C. We want to prove that for each
index i, Gi is either of inner type A, or split of type C.

For each index i and α, the kα-algebra kα ⊗k Ki is étale, hence is a direct
product Kα,i,1 × ...×Kα,i,sα,i

, where the Kα,i,js are finite separable extensions of
Ki. We have the following equality:

G′
kα

= (Gkα
)′ '

r
∏

i=1

sα,i
∏

j=1

RKα,i,j |kα
(Gi ×Ki

Kα,i,j).
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As the group Gkα
is special, we know by Proposition 5 that each Gi ×Ki

Kα,i,j is
either of inner type A, or split of type C.

Suppose now that there exists an index i such that Gi is of outer type A. That
is, Gi = SU(Ai, σ) where Ai is a central simple algebra over a quadratic field
extension Li of Ki, and σ is an involution of the second kind on Ai. Let α ∈ I
such that [kα : k] is odd. Such an index α exists by assumption. As the dimension
of kα ⊗k Ki over Ki is equal to [kα : k], it is clear that there is an index j such
that [Kα,i,j : Ki] is odd. Consequently, Kα,i,j ⊗Ki

Li is a field, and the group
Gi ×Ki

Kα,i,j is of outer type A, a contradiction.

Suppose now that there exists an index i such that Gi of type C, that is,
Gi = Sp(Ai, σ), where Ai is a central simple algebra over Ki, and σ is a symplectic
involution on Ai. By the remark above, the field Kα,i,j splits Ai, where α runs
over I and j runs from 1 to sα,i. Observe now that the degrees [Kα,i,j : Ki] are
relatively prime, as a common divisor would divide [kα : k] for every α in I , hence
must be 1. By a restriction-corestriction argument, we claim that Ai is split over
Ki. Indeed, for every finite field extension K of Ki, there exists a norm morphism
H2(K,Gm) → H2(Ki,Gm) such that the composite

H2(Ki,Gm) → H2(K,Gm) → H2(Ki,Gm)

is the multplication by the degree [K : Ki], where the morphism on the left is
induced by extending the scalars from Ki to K. For the existence of the norm;
see [Gi, 0.4]. As the field Kα,i,j splits Ai, we then see that [Kα,i,j : Ki][Ai] = 0 in
H2(Ki,Gm). Now, using this equality for all j and α, and using a Bezout identity
among the degrees [Kα,i,j : Ki], we get that [Ai] = 0, that is, Ai is split.

We prove now thatH1(k, CG) is trivial. To this aim, let α be an element of I . By
Proposition 7 the torus CG×k kα is special, hence the group H1(kα, CG) is trivial.
By a restriction-corestriction argument, we get that H1(k, CG) is annihilated by
[kα : k]. As the degrees [kα : k] are relatively prime where α runs over I , we obtain
that H1(k, C) = 1.

By using a similar restriction-corestriction argument, we will prove now that
S(k,G) is trivial. To perform this argument, the only thing that needs to be
checked is that there exists a well-defined norm map

NL|k : S(L,G) → S(k,G)

for any finite field extension L of k, or, in other words, that the norm map

NL|k : H1(L,ZG′) → H1(k, ZG′)

maps ImαG′,L into ImαG′,k (as it maps automatically Im γG,L into Im γG,k). But
this fact follows from [Gi, Cor. II.3.3]: as G′

ad is a k-rational variety, the isogeny
G′ → Gad satisfies the norm principle [Gi, Def. I, p. 206] with respect to any finite
field extension L of k, which is exactly what we want.

To complete the proof of the theorem, we use:
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Lemma 21. Let K be a field extension of k. If G satisfies condition (2) then
there exist a finite set J and a family of finite field extensions {Kβ}β∈J of K such
that the degrees [Kβ : K] are relatively prime and for every index β ∈ J , the group
GKβ

is special.

Before proving the lemma, let us show how it implies the theorem. We have
already seen that G satisfies the first condition of Theorem 9. Now, let K be a
field extension of k. By Lemma 21, the group GK satisfies the second condition of
Theorem 20. Consequently, by the above, we have H1(K,CG) = 1 and S(K,G) =
1. That is, G satisfies the second and third conditions of Theorem 9. Hence G is
special.

Proof of Lemma 21. We take for the family {Kβ}β∈J the family of all composite
fields of K and the kαs. More precisely, let J be the following set:

{(α,m), α ∈ I and m is a maximal ideal of Aα},

where Aα denotes kα ⊗k K. For β = (α,m) in J , we set Kβ = Aα/m. It is a field
extension of K and of kα. Hence the group GKβ

is special. We claim that J is a
finite set, that for every β in J the field extension Kβ of K is finite, and that the
degrees [Kβ : K] are relatively prime.

Let β = (α,m) in J . We denote by Aα,m the localization of Aα with respect
to the maximal ideal m. Observe that Aα is a finite-dimensional vector space over
K. In particular, it is an artinian K-algebra, a fact that has many consequences.
First of all, the field extension Kβ is finite. We let d be a common divisor to
all the degrees [Kγ : K], where γ runs over J . Secondly, by [AM, Prop. 8.1, 8.3]
there are only finitely many prime ideals in Aα and each of them is maximal. This
forces J to be finite. In addition, by [AM, Prop. 8.4] the unique maximal ideal of
Aα,m, also denoted m, satisfies mN = 0 for some integer N . Now, in the following
filtration:

m
N = 0 ⊆ m

N−1 ⊆ . . . ⊆ m ⊆ Aα,m

each successive quotient is a finite dimensional Kβ-vector space. In particular, the
dimension of Aα,m over K is divisible by [Kβ : K], hence by d. The localization
map:

Aα →
∏

m∈Spec(Aα,K)

Aα,m

is an isomorphism by [AM, Prop. 8.7]. Therefore, we see that d divides the dimen-
sion of Aα over K, which is equal to [kα : k]. As the [kα : k] are relatively prime
when α runs over I , we see that d is equal to 1, proving the lemma. �

This completes the proof of Theorem 20. �

To finish this section, we explain the connection of Theorem 20 with a conjecture
of Serre. The following question is a special case of [Se3, 2.4, Quest. 2]:

Question 22. Let K be a field extension of k and X a G-torsor defined over K.
Let {Kα}α∈I be a nonempty finite family of finite field extensions of K such that
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the degrees [Kα : K] are relatively prime. Suppose that X(Kα) 6= ∅ for every
index α ∈ I. Is it true that X(K) 6= ∅?

In other words, if X possesses a 0-cycle of degree 1, does it have a rational
point? We refer the interested reader to the work of Bayer-Fluckiger and Lenstra
[BL] and Black [B], who proved that the question has a positive answer for many
classical groups. Note that the analogous question, due to Totaro [T], with X a
homogeneous space instead of a G-torsor, has a negative answer in general. Indeed,
examples of homogeneous spaces under connected linear groups having a 0-cycle
of degree 1 but no rational point were constructed by Florence in [F] and Parimala
in [Pa]. For X a G-torsor the question remains widely open. Our approach is
different from the one in [BL] or [B]. Namely, instead of considering a specific
group G, we consider any connected reductive group G, but restrict our attention
to a certain type of G-torsor.

Let V be a versal generically free G-variety (k-variety = geometrically integral
k-scheme, see [M, 3d] for the definition of versal and generically free) defined
over k: for example, a generically free representation of G defined over k, see [M,
Prop. 3.10]. By definition, there exists a G-invariant open k-subscheme U in V , a
k-scheme Y defined over k and a morphism π : U → Y that gives U the structure
of a G-torsor over Y . As π is faithfully flat, the fact that U is geometrically integral
implies that the scheme Y is geometrically integral as well. We denote by K the
function field of Y and by X → SpecK the generic fiber of π, called the generic
G-torsor of V . By [M, Cor. 3.12] and [M, Prop. 3.16], the group G is special if and
only if X is trivial, that is X(K) 6= ∅. Moreover, the same assertion holds after
a finite field extension l of k. More precisely, as Yl := Y ×k l is integral, the ring
L := l⊗k K is a field, namely the function field of Yl. As Vl is a versal generically
free Gl-variety defined over l with generic torsor XL → SpecL, we see, again by
[M, Cor. 3.12] and [M, Prop. 3.16] that Gl is special if and only if X(L) 6= ∅.

Now let {kα}α∈I be a family of finite field extensions of k as in the statement
of Theorem 20. We denote by Kα the field kα ⊗k K. We see that Theorem 20
gives a positive answer to Question 22 for the torsor X → SpecK and the family
{Kα}α∈I : indeed, if X(Kα) 6= ∅ for every index α, then the group Gkα

is special
for every index α, hence the group G is special by Theorem 20, and finally we see
that X(K) 6= ∅.
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