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Abstract. Let G = GL(V) for a 2n-dimensional vector space V, and 6 an involutive
automorphism of G such that H = G? ~ Sp(V). Let Gfleni be the set of unipotent
elements g € G such that 0(g) = gil. For any integer r > 2, we consider the variety
G x V"1 on which H acts diagonally. Let Wy, = Sy x (Z/rZ)" be a complex
reflection group. In this paper, generalizing the known result for » = 2, we show that
there exists a natural bijective correspondence (Springer correspondence) between the set
of irreducible representations of Wy » and a certain set of H-equivariant simple perverse
sheaves on Gfﬁli x V=1, We also consider a similar problem for G x V"~ on which G
acts diagonally, where G = GL(V) for a finite-dimensional vector space V.

Introduction

Let V' be a 2n-dimensional vector space over k, where k is an algebraically closed
field with char k # 2. Let G = GL(V) and 6 : G — G an involutive automorphism
such that G? ~ Sp(V). Let + : G — G be the anti-automorphism g — ¢~', and
put G = {g € G | 0(g) = g~'}. We consider the variety X = G*’ x V, on which
H = GY acts diagonally. Let G'?. be the set of unipotent elements in G*?, and

define a closed subvariety X,n; of X by Xyni = Gfleni X V. Xyni is nothing but the
exotic nilpotent cone introduced by Kato [K]. It is known that X, is H-stable,
and the set of H-orbits in X, is in bijection with the set P, » of double partitions
of n ([K]). Let B be a 6-stable Borel subgroup of G, U the unipotent radical of B,
and (M;)1<i<n be an isotropic flag in V' whose stabilizer in H is B?. We define a

variety Xun; by

Xami = {(z,0,gB%) € G x V x H/B? | g~ 'ag € U*, g~ v € M,},
and define a map 7 : é’?uni — Xuni by the projection on the first two factors. In
[K], [SS1], the Springer correspondence between the set of H-orbits in Xyy; and the
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set of irreducible representations of the Weyl group W, 2 of type C), was studied.
More precisely, it is stated as follows; (m1)1Q;[dim Xypi] is a semisimple perverse
sheaf on X,ni, equipped with W, »-action and is decomposed as

(m1)1Qu[dim Xywi] ~ @) V(A) @ IC(Ox, Q))[dim 04, (1)
AEPn 2

where V() is the irreducible representation of W, o and Oy is the H-orbit in Xypui
corresponding to A € P, 2.

In this paper, we consider the variety G x V"~ for a positive integer r > 2,
with the diagonal action of H. We call it the exotic symmetric space of level
r. Let Wy, , = S, X (Z/rZ)"™ be the complex reflection group G(r,1,n), where
Sy, is the symmetric group of degree n. We will generalize the previous result
to the correspondence between the set of irreducible representations of W, , and
a certain set of simple perverse sheaves on G2, x V"= Let Q,, be the set
of m = (my,...,m,) € ZL %o such that > m; = n, and Q7 the subset of Q, ,
consisting of m such that m, = 0. For each m € Qn,T, we deﬁne varieties

r—1
Xnouni = {(2,v,gB?) € GO x V"' x H/B? | g 'ag e U, g7 v € H M,
1 i=1
Xm,uni = U g(ULa X HM 1‘,);
geH 1=1
where p; = my + -+ + m; for each i. We define a map W;m) : é’?m uni — Xm,uni
by the prOJectlon on the first two factors. In the case where m = (n,0,...,0), we

write Xm,um, Xm ,uni and ﬂ m) simply by Xum, Xuni and ;. Note that even in this

case, the map Xum — Gfﬁu x V=1 is not surjective if » > 3. For each m € Qn,r We
consider a map mm,1 : T 1(/'\,’m,uni) — X uni- Note that /’Fm,uni - Wfl(Xm,uni) C
é’?um Let P, » be the set of r-tuples of partitions A = (/\(1), ce )\(T)) such that
> A =n. Form € QY ., let P(m) be the set of all A = (AD ... Ay e P, .
such that [N®| =m; fori=1,...,7—2 (hence A"~V | =k for 0 < k < m,_;). As
a generalization of (1), we prove the following result (see Theorem 8.7 (iii)), which
is regarded as the Springer correspondence for W, .. Assume that m € QJ ..
Then the complex (7 1)1Q;[dim X uni] is a semisimple perverse sheaf on X uni,
equipped with a W, ,-action, and is decomposed as

(T, )1 Qu[dim X il >~ €D V(A) @ IC(Xx, Qi) [dim X], (2)
AeP(m)

where V() is an irreducible representation of W, ,, and Xy is a certain smooth
irreducible subvariety of X, uni parametrized by A € ’ﬁ(m) Any irreducible
representation of W, , is realized in this way uniquely for a suitable choice of
m € QO We can determine the varieties X explicitly. Note that in the case
r >3, fom V7~ has infinitely many H-orbits. So the description of X becomes

more complicated compared to the case where r = 2.
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In the course of the proof, we show a weaker version of the Springer correspon-
dence. For each m € QY | we define a subgroup W2, of W2 by

n,rs
Wi =Sy X X Sy X Wi 2.

For A € P(m), one can associate an irreducible representation px of W, in a

canonical way. We show that the complex (W%m))le[dim Xm,uni] 18 a semisimple
perverse sheaf on Xy, uni, equipped with thn—actiom and is decomposed as

(m™ ) Qu[dim Xmuni] = @D pa @ IC(X a, Q)[dim X (3)
AEP(m)
(see Theorem 8.7 (ii)). Note that the group W, , is not directly related to the
geometry of H/BY, while W2, behaves well since it is a subgroup of Wi, 2. So first
we show (3), and then prove (2) by making use of (3).

We also consider the variety X = G x V, where V is an n-dimensional vector
space over k (of any characteristic), and G = GL(V). G acts diagonally on X.
Put Xyni = Guni X V, where Gyun; is the set of unipotent elements in G. The
variety Xun; is isomorphic to the enhanced nilpotent cone introduced by Achar—
Henderson [AH]. It is known by [AH], [T] that Xy, is G-stable, and the set of
G-orbits is in bijection with P, 2. For each m = (mq, mz2) € Q,, 2, one can define

a similar map ﬂ%m) : Xmuni = Xmuni as in the exotic case. Achar-Henderson
[AH] and Finkelberg-Ginzburg—Travkin [FGT] proved the Springer correspondence
between the set of irreducible representaions of Sy,, x S,,, and the set of simple
perverse sheaves associated to the G-orbits in X'y, uni, which are direct summands
of (ﬂ%m))ng [dim Xy uni]- In this paper, we consider the variety X = Gx V"~ with
diagonal G-action, which we call the enhanced variety of level r. The arguments
used to prove the Springer correspondence (3) in the exotic case can be applied
also to the enhanced case, step by step, by a suitable modification. Actually, the
argument becomes drastically simple. We show that the Springer correspondence
holds for WA, = S, X --- X Sy, for any m € Q,, . (This result was announced
by the author in 2009, but was not published.) In [Li], Li established the Springer
correspondence for such VVPm in connection with certain perverse sheaves arising
from the framed Jordan quiver. Considering the framed Jordan quiver is essentially
the same as considering the enhanced variety. So in this case our result is regarded
as an alternate approach for his result.
The author is grateful to the referees for valuable comments.
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1. Intersection cohomology on G*Y_ x V"~ (exotic case)

reg
1.1. Let k be an algebraically closed field. In this paper, we consider the
following two cases.

(I) The exotic case

Let V' be a 2n-dimensional vector space over k (with char k # 2), with basis
{e1,...€en, f1,... fn}. Let G = GLa,. Consider an involutive automorphism 6 :
G — G given by

0(g)=J (g™ HJ with J = (2 15) ,

where 1,, is the identity matrix of degree n, and put H = G?. Then H is the
symplectic group Sp,,, with respect to the symplectic form (u, v) = fuJv for u,v €
V under the identification V ~ k2" via the basis {e1,...,en, f1,... fn}, which
gives rise to a symplectic basis.

Let ¢+ : G = G be the anti-automorphism ¢ — g~'. We consider the set
GY ={geG|0(g) =g '} Itis known that G = {gf(g9)~' | g € G}, and so
GY ~ G/H. Let T C B be a pair of a §-stable maximal torus and a 6-stable Borel
subgroup of G. Let M; C --- C M, be an isotropic flag in V whose stabilizer in
H coincides with B?. We assume that M; = (e, ...,e;) for i = 1,...n, and that
e;, f; are weight vectors for 7.

(II) The enhanced case

Let V=V & V', where V' is an n-dimensional vector space over k, and G =
Go x Gy a subgroup of GL(V) with Gy = GL(V). Let 6 : G — G be an involution
defined by 0(g1,92) = (92,91). Put H = G ~ Gy. Then H acts naturally on V.
Let G*Y be a subset of G defined similarly to the case (I). Then G*Y ~ Gy (as a
set) and H ~ Gy acts on G*Y by conjugation. Let T C B be a pair of a #-stable
maximal torus and a -stable Borel subgroup of G. We can write T' = T x T and
B = By x By so that B? ~ By, T? ~ Ty. Let M1 C ---C M, =V be a complete
flag in V whose stabilizer in H coincides with BY. We fix a basis {ey,...,e,} of V
such that M; = {ej,...,e;)for i = 1,...n, and that e; are weight vectors for T?.
Let {e1,...,en, f1,-.., fn} be a basis of \7, where f; = e; for each i, and define a
symplectic form (, ) on V so that {ei, f;} gives a symplectic basis of V.

1.2. For an integer r > 1, we consider the variety G x V"~! on which H
acts diagonally. We call G** x V"1 the exotic symmetric space of level r in the
case (I), and the enhanced space of level r in the case (II). Let Q,, = {m =
(mi,...,my) € Z5 | 32, mi = n}. We define Q) . = {m € Q,,, | m, = 0}. For
each m € 9, ,, we define p(m) = (p1,p2,...,pr) by p; = m1 + -+ +m; for each
1. We define varieties

r—1
Ko = {(:z:,v, gB’) € G x V' x H/B® | g 'ag € B, g7 v e [[ M, }

i=1
r—1

X = | 9(BY x [] My)).
geH

=1
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We define a map 7™ : X — G’Lo x V=1 by ﬂ(m)(l’ v,gB%) = (x,v). Clearly
X = Im 7™, Since Xp, ~ H xB (B“g x[1; Myp,), Xy is smooth and irreducible.
Since 7(™) is proper, X is a closed irreducible subvariety of G*¥ x V:_l. In the
case where m = (n,0,...,0), namely, p(m) = (n,...,n), we write Xm, Xm and
7(m) by X X and T, respectlvely Note that for any m € Q,, ,, X, is contained

in X. The dimension of Xm is computed as follows;
dim T — {27212 + ;::1(7“ —.i)mi exotic case, (12.1)

ne 4+ (r—im; enhanced case.

In fact, in the exotic case, by [SS1; (3.1.1)], we have

r—1
dim X = dim H/B? + dim B + " dim M,
=1
r—1

=2n? + Z(T —i)m
i=1

The computation for the enhanced case is similar (in this case, dim B? = dim B*?).

Let Trifg be the set of regular semisimple elements in 7*¢, namely, the set of ele-

ments in 7% such that all the eigenspaces in V have dimension 2 (resp. dimension
1) in the exotic case (resp. in the enhanced case). We put Greg Ugen g7l 9!

Bﬁgg GY¥ N B. We define varieties fm, Ym by

reg

r—1

Vo = {(w.v.gB") € Gy x VI x H/B? | g7 ag € Bl g™ € [[ My}

=1
Ym = | 9(BiE, x HM

geEH

and a map ™ : Y — G¥ x V=1 py gp(m (9: v,gB%) = (x,v). Clearly
Imy™ = Y. As in the case of Xm, we write ym,ym and (™) by 3/ V.
in the case where m = (n,0,...,0). As in [SS1; (3.1.2)], Ym can be expressed as

Vm ~ H xB (BﬁgngMi)
[ iLe (1.2.2)
~ H x (TrengMi).

1.3. In the remainder of this section, we assume that X is of exotic type. As
in [SS1; 3.2], for each subset I C [1,n], put M; = {v € M, | supp (v) = I}, where
for v =31 | ae; € M, supp (v) is the set of j € [1,n] such that a; # 0. M is
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an open dense subset of the space spanned by {e; | ¢ € I'}, which we denote by
M. For each m € Q,, ,, we define Z(m) as the set of I = (I3,...,I;) such that
[1,77,] = H::l Ii with |Il| = m;. ForI= (Il, .. .,IT), put I<i = Il UIQ U---u Ii—1~
Hence |I;| = pi—1. For each I € Z(m), we define a set My C (M,,)"~! by

M; = {V = (Ul,...vrfl) € (MH)T71 | v; € M]l. +M]<i}.

and define a variety 371 by

Vo= H xP"020T) (T4f 5 My).

Note that Zz (T*%) =~ SLy x - - - x SLy (n-times) and B N Zy(T*?) can be identified
with the subgroup Bz x -+ X Ba, where Bs is a Borel subgroup of SLz. Since the
action of B N Zy(T*%) on M, is given by the action of the torus part 7%, Jx
is well-defined. Let ¢ : 371 — Y be the map induced from the map given by
(g,(t,v)) + (gtg~t,gv), H x (Tr‘eeg x M) — Y. Then Imvy is independent of
I € Z(m), which we denote by )2 . Hence, for I € Z(m),

Yo = | 98, < My). (1.3.1)
geH

For I € Z(m), we define a parabolic subgroup Zg(T"%); of Zy(T*?) by the con-
dition that the i-th factor is SLy if i € I and is By otherwise. Since Zy(T*%);
stabilizes M1, one can define

Vo= H xZ8T (10 5 h).

reg

Then the map 1 factors through JAJI,

Y1 jl §—I> 57\1 LN yﬂl, (1.3.2)

where &1 is the natural projection and 7p is the map induced from the map
(g, (t,v)) = (gtg~t,gv). Then & is a locally trivial fibration with fibre isomorphic
to

Zp(T9)1/(B® N Zy(T'?)) ~ (SLy/By)!" ~ Pir,

where (SLa/Bs)!" denotes the direct product of SLo/Bs with respect to the factors
corrsponding to I, and similarly for P{T. Thus P{“ = (Pq)™.

Let St ~ Sy, x --- x Sy, be the stabilizer of (I,...,I.) in S,. Let W =
Ny (T%9)/Zy (T) ~ S,,, and Wi the subgroup of W corresponding to the subgroup
Si. Then W acts on Zg(T*) ~ SLy x --- x SLy as the permutation of factors,
and Wi stabilizes the group Zg (T*%)1. Since Wi stabilizes My, Wi acts on )71 and
on )A)I. Now the map 7y : 371 — ygl turns out to be a finite Galois covering with
group Wi.

We define I(m) = (I7,...,I7) € Z(m) by I? = [pi—1 + 1,p;] for i = 1,...,r.
For I =I(m), put 371 = ﬁ,‘}] and Wi = Wm. Note that ﬁ,‘}] is an open dense subset
of JNJm, hence irreducible. Put wfl(yg]) = JNJ,J{I W acts naturally on j and the
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map 7 is W-equivariant with respect to the trivial action of W on Y. Hence it
preserves the subset Y, and the stabilizer of )}31 in W coincides with Wy,. One

can check that N N N
Vh= 1 =[] wm. (1.3.3)

I€Z(m) WEW /W

where Y is an irreducible component of )2;2

We define a partial order on Q,,, by m’ < m if p; < p; for each 4, where
p(m) = (p1,...,pr) and p(m’) = (p},...,pl), respectively. Then YV, C Vi and
X € X if m’ < m. Assume that m’ < m. Then X,y is a closed subset of Xy,
and since Vi = YN Xm, Y is a closed subset of Vi,. Note that the partial order
< is generated by m’ < m, where m = (mq,...,m,) and m’ = (mf,...,m}) with
m;_y, =m;—1 — 1, m; = m; + 1 for some 7. Then one can check that

m’<m

Thus Y2, is an open dense subset of Vi, and we have a partition Ym =11, < Yo -
It follows that Vu C Y if and only if m’ < m. Also we have a partition
Y =1lmeo, , Y- We have the following lemma (cf. [SS1, Lem. 3.3]).

Lemma 1.4. Assume thatr > 2.

(1) Ym is open dense in X, and )7m s open dense in )?m.
(if) dim X, = dim Y = 202 + 37, (r — i)m;.
(iil) dim Xy = dimYm =202+ 30, (r —i)m; — m,.
(iv) Y= Hmegn,r VY gives a stratification of Y by smooth strata Y2,, and the

m’

map ¥ : Y — Y is semismall with respect to this stratification.

Ym is open dense in

reg i)

Proof. Since B, x [[, M, is open dense in B*Y x [], M,
é’?m. Since 7(™) is a closed map and (7r<m>)*1(ym) = jm, Vm is open dense in
Xm. So (i) holds. (ii) follows from (1.2.1). By using the decomposition ¢1 = nro&;
for I = I(m), we see that dim Ve = dim Yy + m,.. Hence (iii) holds. By (1.3.1)

and (1.3.2), dim¢~1(x,v) = m,. for (x,v) € Y9,. Since

dimY — dim Y, = (202 + (r — 1)n) — (2n2 + 30 —iym, — m,.)
=1

= (r=Dmi— Y _(r—i)mi +m,

i=1 i=1
-
= Z(z —1)m; + m,
=1
> 2m,

Hence dim ¢~ (x,v) < (dim Y — dim Y9,)/2 for (x,v) €YY, and so 9 is semismall.
O
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1.5. Let ¢m : sz] — V% be the restriction of 1 on )7;2 Then 9y, is W-
equivariant with respect to the natural action of W on Y[ and the trivial action
on YO.. We consider the diagram

T 0y Ly, (1.5.1)

where aq is given by ag(z,v,gB%) = pr(g~'zg) (pr : BYY — T is the natural
projection). For each I € Z(m), we have a similar diagram as (1.5.1) by replacing
y Y, 1, a0 by yI, m, 1, a1, where ap is the restriction of ag on yI Let € be a
tame local system on 7%, By (1.3.2), we have

Pmhaglys ~ @D @ate, (1.5.2)
I€Z(m)

We define a map [y : 371 TY as the map induced from the projection

reg

H x (Trﬁfg X Myp) — Tr‘fg Then ar = pfro . Let & = Bf€ be a local system
on yI. We have £&1 = af €. Let We, be the stabilizer of & in Wy. In the case
where I = I(m), we put Wg; = W e. In the case where m = (n,0,...,0), we
put Wm e = We, which is the stabilizer of £ in W. Wg acts on (wm)gagé’b;;
as automorphisms of complexes, and permutes each direct summand (¢1)i05E
according to the permutation action of S, on Z(m). Since 7y is a finite Galois
covering with group Wi, (n1):& is a semisimple local system. As in [SS1, 3.4] the
endomorphism algebra End((n1)1€1) is canonically isomorphic to the group algebra
Qi[We,], and (m1):&1 is decomposed as

(mhér~ P r® Ly, (1.5.3)
PEWgI
where £, = Hom(p, (n1):€1) is a simple local system on 0.

1.6. Since 9y, is proper and 371 is closed in )7;2, i1 is proper. Hence &g is also
proper. We note that

(1.6.1) R'(&1)1Qy is a constant sheaf for each 1.

In fact, we have a commutative diagram

~ 51 ~

M > W

\ , \
H/B N Zy(TY) G H/Zy (T,

where vertical maps are natural projections (see 1.3), and the map &1 is the map
induced from the inclusion B? N ZH(T‘Q) — ZH(T“Q)I. Since this diagram is
cartesian, (1.6.1) is equivalent to the statement that

(1.6.2) R'(&):Qy is a constant sheaf for each 1.
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We show (1.6.2). Since &j is a locally trivial fibration, RZ(§I) Q, is a locally constant
sheaf on H/Zy(T"%)1. Since & is H-equivariant, R(£)Q; is an H-equivariant
local system on H/Z g (T*?)1, hence it is a constant sheaf, as Zg (T*%)1 is connected.
Thus (1.6.2), and so (1.6.1) holds.

Since &1 is a P{T—bundle7 we see that

(bi0f€ ~ H*(PT) ® &1, (1.6.3)

where H*(P{") denotes @, , H*(P{", Q;), which we regard as a complex of vector
spaces (K;) with K,qq = 0. It follows that

(Yr)105€ ~ (m)1(&)10G€ ~ H*(PT) ® ()€1 (1.6.4)

Let Wy, , = Sy, X (Z/rZ)™ be the complex reflection group G(r,1,n). We put
W = W x (Z/rZ)". We define a subgroup Ws (resp. Wm,g) of W by We =
We X (Z/rZ)™ (resp. VNmeg = Wm,e X (Z/rZ)"). Let ¢ be a primitive r-th root
of unity in Q;, and define a linear character 7; : Z/rZ — Q} by 7;(a) = ('~ for
i=1,...,r, where a is a generator of Z/rZ. Let p be an irreducible representation
of Wm.,e. Since Wi, ¢ is decomposed as Wi e = Wi X -+ x W, with subgroups
Wi C Spm,, p can be written as p = p1 X+ ¥ p, with p; € W', Here ng is

decomposed as Wm,g = W1 - X W with W W; X (Z/rZ)™i. We define an
irreducible Wi, g-module p (resp. 7') by deﬁnmg the action of (Z/rZ)™: on p; via
T?m’i fori=1,...,r (resp via T®m7’ fori=1,. — 1, and via the trivial action

for i =r). Put ‘7,) = Indwg p Then V is an 1rreduc1ble We-module.

We regard H®*(P"") ~ H'(P1)®mr as a complex of Wy, ¢-modules by the
permutation of factors H*(P1) = H?(P1) ® H°(P1) ~ Q; ® Q;. This makes
H*(P]"") ® p a complex of Wi, ¢-modules. In view of (1.5.2), (1.5.3) and (1.6.4),

one can write

Wm)hai€lye =~ @@ Wdps  (H(PT")®p) @ L, (1.6.5)
PEWL £

We define an action of Z/rZ on H*(P1) = H?(P1)® H°(P;) by 7, @71, and define
an action of (Z/rZ)™ on H*(P{"") ~ H*(P1)®™ by (. ® 1) K-+ K (1. D7)
(my-factors). Thus we can consider an extension H*(P7"") ® p’ of H*(PT"") @ p,
as a complex of ng—modules. It follows from (1.6.5) that

(Ym)i0p€l5e ~ P md>s (H*(P{") /) ®L,. (1.6.6)

\ m,E
PEWL &

Note that by our construction, (1.6.6) can be rewritten as

(Ym)10g€ 54 2( @ v, ®£) —2my| + Nm, (1.6.7)

pGW &
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where Ny, is a sum of various £,[—2i] for p € W/, ¢ with 0 <i <m,.

For each m € Q,, ., let 1,,, be the restriction of 1) on ¥~ (Vm). In what follows,
we denote a35|w71(ym) by of€ for short. Put dm = dimYm. For 1 < j <r —1,
0 < k < mj, we define a subset Q(m;j,k) of Q,, , b

Q(m;jvk):{mleQn,r|ml§mapi:p (1<Z<]_1)p _p_] 1+k}

where p(m) = (p1,...,p,) and p(m’) = (p),...,p)). We also define m(j,k) €
Qnﬂ. by m(j,k) = (m},...,m;), where m; = k,m’ , = mji1 + (m; — k) and
m} =m; for i # j,j + 1. In the case where j = r — 1, we write m(j, k) simply as

(k) Hence if m € Q) ., m(k) = (my,--- ,m,_o, k, k') with k + k" = m,_,. We
have the following proposition.

Proposition 1.7. For each m € QY ., (¢, )104E[dm] is a semisimple perverse

sheaf on Ym, equipped with Wg—actzon, and is decomposed as

(CmhapEldm] ~ P BV, @ICVmry £0)[dmw))-
0<k<m,_1 pewm(k) .
Proof. 1, is proper, and a similar argument as in the proof of Lemma 1.4 (iv)
shows that 1, is semismall with respect to the stratification Ym = [0 Yo
(note that m, = 0). It follows that (¢, )1a$E[dm] is a semisimple perverse sheaf
on Vm.
For a given m € Q,, (not necessarily in Q%)T) we define, for each integer
1<j<r—1,and 0 <k <my,

-1
M(Lk) = H(M[pi71+17pi] + MPL 1) (M[pj71+1,pjf1+k] + M, pj— 1 H Pi»
i=1 =741
W= 9@l x MG»),
geH

jJ'Ik = l[}il(ygo,k)a

and let ¥, : V' — y]  be the restriciton of 1 on y+ (As a convention, we also
consider the case where j = 0,k = 0, in which case MO0 — [1/=) M,,.) Then
; k is a proper map. 7, coincides with )y, in the case where j = r—1,k = m,_1,
and coincides with Yy, in the case where j = 0 and k£ = 0. We also consider the
varieties

Jj—1 r—1

(4,k)
M7 = [T My 1y + Mpy) X My, [T My,
i=1 =it
— L6 (4,k)
yjak - U (Treg x M )
geH

y] k — ¢71(yj1k)7



EXOTIC SYMMETRIC SPACES 207

and let 1/1] E k — Yj 1 be the restriction of 1) on Ji . Then y & is open dense
in YV; . We have

(171) yj’k\yj’k,1 = y_?,k lf ]C Z 17 and yjyo(m) = yj+17mj+mj+1 (m(], O)) MOI‘G—
over, Y9 (m) coincides with Yji1,m;4m,,,—k(m(j, k)). (Here we use the notation
Y;.x(m), etc., to indicate the dependence on m.)

For m’ € Q(m; j, k), Y9, is contained in Y} 5. Hence one can define an intersec-
tion cohomology IC(Y),,, L,) associated to the local system £, on VO, (here Y/,
denotes the closure of 9, in Y; x). Returning to the setting in the proposition, we
consider m € Q%W We show the following formulas. First assume that j =r —1
and 0 < k <m,_1. Then we have

(¢r717k)!035
~ P P Ve RICWrrw, L) -20mey — K]+ Ny, (17:2)

0<K' <k pEW, 1) ¢
where N,_1 is a sum of various IC(YVr_1 x,L,)[—2i] for 0 < k' < k and p €
Wh e With 0 <4 < m,_1 — k’. Next assume that 0 < j < r — 1 and that

m(k’)

0<k § m;. Then we have

(¢j,k)!a85
= @ @ ‘7/’ ® Ic(y:m(k/)a ‘cp)[*2(mr71 — ]{}/)] +~/\/j,k7 (173)

’
<K' Smy—1 PEW), 0

where N i, is a sum of various IC(V),,,, £,)[—2i] for m’ € Q(m; j, k) and p € W), ¢

with 7 such that 0 < 2i < dy — dp -

Note that (1.7.3) will imply the proposition. In fact, in the case where j = 0,k =
0, ¥; , coincides with ¢, and Yy, .,y coincides with Yim ). Take IC( YV, £,)[—21]
€ Noyo. Since dm — dmy > 20, IC(Vmv, £,)[dm — 24] is not a perverse sheaf. Since
(Ym)+@6Edm] is a semisimple perverse sheaf, we conclude that Nyo = 0. By
Lemma 1.4, (iii), we have dm — dm@) = 2(m,—1 — k’). Thus the proposition
follows from (1.7.3).

First we show (1.7.2) by induction on k. Put j = r—1. In the case where k = 0,
Yj o coincides with y&(j.o). Thus (1.7.2) follows from (1.6.7). We assume that

(1.7.2) holds for any k' < k. By (1.7.1), Y; x\Vj k-1 = y;{k = y&(k), and yfn(k)
is an open dense subset of V. Since ¢, is proper, (¢, g€ is a semisimple
complex on Y; ;. Here we note that (1/) g€ has a natural structure of Wg—

complex. In fact, (¢Ym))iapE has a Wg—actlon by (1.6.6). It induces a Wg—
action on (1o © Yk )1p€, where 1o is an open immersion yfn(k) — Vjx, and
hence on its perverse cohomology pH’((LO © Ym(k) 1pE). On the other hand, by
induction, (¢; ;1)1 has a natural We-action, which induces a We-action on
pH"((wj,k_l);aSE). Thus, by using the perverse cohomology exact sequence, one
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can define an action of W on PH (¢ xh1o5E). Since (¥ 1ap€ is a semisimple
complex, in this way the action of Wg on (¢, 1ag€ can be defined.

Now, since (¢; ,)105€ is a semisimple complex, it is a direct sum of the form
Als] for a simple perverse sheaf A. Suppose that supp A is not contained in
Yjk—1. Then supp AN y&(k) # @ and the restriction of A on y&(k) is a simple
perverse sheaf on y&(k). The restriction of (¢; ; 1agE on y&(k) is isomorphic to

(Ym(r) 1€ Hence its decomposition is given by the formula in (1.6.6). It follows
that Alyo P L,ld;x] for some p (here djx = dim Ypyx)). This implies that

A = IC(Yjk, Ly)[dj ] and that the direct sum of Als] appearing in (¢, )iag€
such that supp AN y&(k) # @ is given, in view of (1.6.7), by

Ki= @ V,®IC0k Lo)[-2(mr—1 — k)] + Ny, (1.7.4)
pEWx/x\q(k),S
where N,y is a sum of various IC(Yjk, £,)[—24] with 0 < ¢ <m,—1 — k.

If supp A is contained in Y p—1, then A[s] appears as a direct summand of
(¥ k—1)125E, which is decomposed as in (1.7.2) by the induction hypothesis. Thus
if we remove the contribution from the restriction of K7, such A[s] is determined
from (z/Jj’kfl);aBE. So, we consider the restriction of K7 on V; ;—1. The summands
IC(Y) i, Lp)[—2i] in ern(k) are already contained in N;_q ; if 0 < i < m,_1—k. So
it is enough to consider A = IC(Y; x, L,)[—2(m,—1 —k)]. Note that the multiplicity
space of A in K is ‘7,). Hence the multiplicity space of a simple perverse sheaf
A’ appearing in the decomposition of Aly,,_,,up to shift, has a structure of Wg—

module which is a sum of ‘7,). But by (1.7.2) applied for & — 1, the multiplicity
space of a simple perverse sheaf B appearing in the first term of (Q/Jj,kq)laég is a
sum of 17p/ with p' € WI{I\I(k/),E for k" < k. Thus Aly,,_, gives no contribution on
those first terms. This proves (1.7.2) for k. Hence (1.7.2) holds.

We now prove (1.7.3) by backwards induction on j and induction on k. So
assume that j < r — 1. By (1.7.1), Yjo(m) = Yji1,m,4+m,,, (m(j,0)). Hence
by induction on j, we may assume that (1.7.3) holds for Y;o. Take k > 1,
and assume that (1.7.3) holds for £k — 1. We have YV, \Vjr-1 = y;.{k, and
V9 (m) = Vi1 m;4m; .~k (m(j, k) by (1.7.1). Thus by induction on j, (1,1 )15 E
can be described by the formula in (1.7.3). In particular, (¢; x)1og€ is a semisimple
complex consisting of IC(Y),, £,), up to shift, for various m’ € Q(m; j, k). Simi-
larly, by induction on &, (0, ,_1)1a$€ is described by (1.7.3), and it is a semisimple
complex consisting of IC(Y,,, L,), up to shift, for various m’ € Q(m;j,k — 1).
Let K7 be a semisimple complex on Y;; obtained from (¢ x)iaf€ as in (1.7.4).
It is described by the formula (1.7.3) by replacing m by m” = m(j, k). Here we
note the following;:

(1.7.5) Assume that A is a direct summand of K. Then A is contained in Nj
unless A = IC(Vmr), Lo)[—2(mp—1 — K')].

Assume that A is a direct summand in the former part of K;. Then
A = IC(Vmr iy, Lp)[—2(m;'_y — )] for 0 < &' < m;’_;, where we write m" =
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(mf,...,m!). Thus p(m” (k")) = (p},...,p..), where p; = p} for i # j,r — 1, and
P <pj,Pp—1 < pr—1. Then by Lemma 1.4 (iii), we have

dm — dmr gy = (pj = P) + Pr—1 = P—y) +m
> (pj — pj) +2my,
for m” (k') = (m},...,m!). (Note that m!!_; — k' = m!..) Hence dp, — dmn(k/) =
2(my_y — k') if and only if p; = p}, i.e., m” (k") = m(k’). In that case m;_; =
my_1. In all other cases, A is contained in N ;. Next assume that A is a direct
summand of the latter part of K. Thus A is wrltten as A=1C(V,,,, L,)[—21] for
m’ < m” with dpy — dyy > 2i. But since m” = m(j, k), we have m” < m and
dm > dm. Hence m’ < m and dy, — dmy > dmr — dyr > 27, This implies that A
is contained in Nj . (1.7.5) is proved.
Now (1.7.5) shows that the former part of K; coincides with the former part of
(¥ k—1 )15, Hence by a similar argument as in the proof of (1.7.2), we obtain
(1.7.3) for (j,k). This proves (1.7.3), and so the proposition follows. [

Remark 1.8. In Proposition 1.7, the condition m € QY . is crucial. Since

dimy~1(z) = m, for z € Y9, the map 1, is not semismall if m,. # 0.

2. Intersection cohomology on G*® x V"~! (exotic case)

2.1. In this section we assume that X)) are of exotic type. We keep the
notation in Section 1. For each m € QY ., we consider the complex (¢, )104E [dm]
as in Proposition 1.7. Under the notation there, y&(k) is an open dense subset of
Xm(r)- Hence one can consider the complex

Km’T’g = @ @ V ®IC( k),ﬁ )[ (k)]- (2.1.1)

0<k<m,_1 pEWm(k) e

We consider the diagram

T & X Ty x,
where a : X — T is defined by a(z, v, gB%) = pr(g~tzg). Let mm : 71 (Xm) —
Xm be the restriction of 7 on 771 (X, ). We consider the complex (7 )10*E[dm],

where a*€ is regarded as a local system on 77! (X) by restriction. The following
result is a generalization of [SS1, Thm. 4.2].

Theorem 2.2. For each m € Q°
on Xm.

(Tm)10*E[dm] =~ Km 1.c as perverse sheaves

n,r’

2.3. The remainder of this section is devoted to the proof of the theorem.
As in the case of Y, consider X = Xm \ U 'em Xm for each m € Q,, .
We shall describe the set X2 explicitly. Put Xyn = X' N (GY, x V"~1) and we

uni
define Xmmni,X&,uni, etc., as the intersection of X, Xm, etc., with Xy,;. For
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(x,v) € G, xV, we denote by k[x]v the subspace of V' spanned by v, zv, z2v, . ...

uni

First we note the following.

(2.3.1) For each (z,v) € Xyni with v = (v1,...,v,-1), define a sequence Wy C
Wy C -+ C W,_1 of subspaces of V by W; = k[z]v1+- - -+k[z]v; fori =1,... r—1.
Then (x,v) € X0 if and only if dim W; = p; for each i.

m,uni

In fact, if (z,v) € Xm,uni, there exists an z-stable isotropic flag (V;)1<i<n such
that v; € V,,. Hence we have dim W; < p; for each i. This implies that (x,v)
satisfying the condition on (W;) is contained in Xghuni. Conversely, assume that
(2,v) € X, uni- Take an z-stable isotropic flag (V;) such that v; € V,,,. Suppose
there exists k such that dimW; = p; for ¢ < k and that dim W) < pr. Then
W; =V, fori=1,...,k—1, and k[z]vg + V},_, is an a-stable proper subspace
of V. One can find an x-stable flag V,,, , C V) 4 C - C V) _; CVp,
and vy € V/ C V), for some j. This implies that (z,v) € X for m’ < m, a
contradiction. Hence (2.3.1) holds.

More generally, we consider (z,v) € Xy. Let © = su = us be the Jordan
decomposition of z € G, where s € G*Y is semisimple, u € G*? is unipotent.
We consider the decomposition V= Vi @ --- @ V; into eigenspaces of s. Then
Za(s) ~ GLay, X -+ x GLg,, with dimV; = 2n,. Put G, = GL2,, for each j.
Then Zg(s) is f-stable, and @ stabilizes each factor so that Zg(s) ~ G§ x --- x GY
with G’f- ~ Spyy,,. Take v = (vi,...,v—1) € Vr=l For j = 1,...,t, we define
v = (v1,j,...0r—1;) € VjT_l, where v;; is the projection of v; € V on V;. Let
u; be the restriction of u on V;. Then (uj,v;) € (G4)%; x er*l. We denote by

(XG)0 the subvariety of (G;)%0; x erfl defined in a similar way as X2

m; ,uni uni m,uni*
The following property is checked easily.
(2.3.2) Assume that (z,v) is contained in X2,. Then there exist unique my, ..., m;
. . t
such that (uj,v;) € (X% )Enjyuni, where mj; = (m1,j,...m;;) with 325 mi; =m;
for 1 < <. Conversely, if (uj,v;) € (X9)5, . for each j, then (z,v) € Xy,
for m determined from my, ..., m;.

For each (z,v) € X, let (u;,v;) be defined as above. For j = 1,...,t, we
define a flag Wy ; C --- C W,_1; of V; with respect to (u;,v;) as in (2.3.1).
Paut W, = W;1 ®---@ W, for ¢ = 1,...,r — 1; then we obtain a sequence
Wy C -+ C W,_1 of subspaces in V. We put W;(x,v) = W, for each i. Then
(2.3.2) can be rewritten as

X2 = {(z,v) € X | dimW;(z,v) =p; (1 <i<r—1)}. (2.3.3)

Recall the map 7 : X — X. For each m € Qn.r, we define X+t =7"1(x0), and
let 7 : X — X2, be the restriction of 7 on X%, Since Y9, is open in X2, Vi is an
open subset of X5, For (z,v,gB%) € X, we shall associate I € Z(m) as follows;
assume that (z,v) € B x M7—! and that z = su is the Jordan decomposition
of . Then M, is s-stable, and is decomposed as M,, = M, 1 ® --- ® M, ;, where
M, ; = M,NVj is a maximal isotropic subspace of V;. Here M,, =(eq,...e,). Since
s € BY M, ; determines a set {e,,.. .,eknj} with ky < ko < --- < ky,, where

n; = dim M, ; (if s; € T is the projection of s, {eg,, ... ,eknj} are eigenvectors
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of s1 on M, ;). Let (u;,v;) be as before. We define I = (I1,...,I,) € Z(m)
as follows; let (W;(u;,v;)) be as in (2.3.1) and put p;; = dim W;(u;,v;). Then
Wi(uj,v;) is a subspace of M,, ;. We define a subset I; ; of {k1,. .., kn, } as the first
pi,j numbers in {ky, ..., ky, }, and define I; ; by I; ; = E7j\fi_17j. Thus |; ;| = m;
for m; = (m1j,...my ). Put I = L1 ]]-- 11 L, and I = ([4,...,I;). Then
I € Z(m). Note that the attachment (z,v) — I depends only on the B?-conjugacy
class of (z,v). Thus we have a well-defined map (z,v,gB?) — 1. We define a
subvariety X7 of X by

X = {(z,v,9B") € XL | (w,v,gB") > T}
We show the following lemma (cf. [SS1, Lem. 4.4]).

Lemma 2.4. /\?; is decomposed as

H XIa

I€Z(m)

where Xy is an irreducible component of ./'?"‘ for each 1.

Proof It is clear from the definition that A Yt isa disjoint union of various Xj, and
that XI contains yI as an open dense subset. Since J}+ = ]_[I yI, Ji is open dense

in Xn“;. Hence Xm = Us yI gives a decomposition into irreducible components,

where )71 is the closure of 371 in é’? . Thus in order to show the lemma, it is
enough to see that XI is closed in X Y+ for each I. But the closure Zr of XI in X is
contained in the set X; U Um/cm Xm/ Hence Xf = Zr N X+ is closed in é’(+ O

2.5. Wefixm € Q,, . Let us consider the spaces Vo = M,,, and Vo = V5-/V;.
We put G; = GL(Vp) and Gy = GL(Vy). Then V has a natural symplectic
structure, and Gs is identified with a #-stable subgroup of G. We consider the
variety X' C GY x VS_Q as in the case of G x V"=1. Put m’ = (ma,...,m,).
Thus m’ € Q,/ ,_1, where n’ = dim Vy/2. The subvariety X}, of X’ with respect
to m’ is defined similarly to Xp,. Let G(lJ be the set of regular elements in G
(namely, the set of x € G; such that u is regular unipotent in Zg, (s) for the
Jordan decomposition z = su). For each z = (z,v) € X2, put W, = Wi(x,v).
Note that T, is an z-stable subspace of V' with dim W, = m;, and that x|y, is
a regular element in GL(W,). Moreover, W, is the unique z-stable subspace of V/
containing v1 with dimension m;.

We define a variety

Km =A{(z,¢1,02) | z = (z,v) € Xp, (25.1)
o1 WX Vo, 2 : Wj/WZ ~ Vo (symplectic isom.) }, o

and morphisms

q :Km — Xr([]']’ ($7V7¢1,¢2) = ($7V)7
0 Km = GY X X, (2,v,¢1,02) = (o1(zw.)oy L, da(@lwr jw, )63 ' 2(v)),
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where v = (va,...,v,—1) € (W}E/W,) =2, and v; is the image of v; € W to
WL /W.,. Put Hy = Gy x GY. Then H x Hy acts on Ky, by

(9, (h1,h2)) : (z, v, ¢1,02) = (gzg™", gv, hidrg™", hagag™")

for g € H, (hy,ha) € Hy. Moreover, o is H x Hy-equivariant with respect to the
natural action of Hy and the trivial action of H on GY x X/%,. We have

(2.5.2) The map ¢ is a principal bundle with fibre isomorphic to Hy.

(2.5.3) The map o is a locally trivial fibration with smooth fibre of dimension
dim H + (r — 2)m;.

In fact, (2.5.2) is clear. We show (2.5.3). For a fixd z = (2/, (z”,v')) € GY x X9,

with v/ = (v}, ..., v._;), the fibre 07!(z) is determined by the following procedure.

(i) Choose an isotropic subspace W7 of V' with dim Wy = m;.

(ii) For such Wi, choose an isomorphism ¢; : W7 — V5 and a symplectic
isomorphism ¢y : Wi-/W; — V.

(iii) Choose z € G such that x stabilizes W, and that ¢q(z|w, )¢, = o/,
</>2(33|W1L/W1)¢2_1 =z

(iv) Choose v € Wy and v; € Wit such that k[z]v; = Wy and that ¢2(v;) = v!
fore=2,...,7— 1.

Let P be the stabilizer of the flag (Vo C V5') in G. Then P is 6-stable, and is
decomposed as P = LUp, where L is a #-stable Levi subgroup of P containing T'
and Up is the unipotent radical of P. For (i), such W, are parametrized by H/P?.
For (ii), they are parametrized by G; x GY. For (iii),  should be contained in
P but 2/, 2" determines the part corresponding to L*?. Hence the choice of x is

parametrized by U]%‘g. Finally, v; form an open dense subset of W1, and va, ..., v,._1
are determined uniquely by v5, ..., v._; modulo Wj. One can check that the thus

obtained (z,v) is contained in XJ,. It follows that each fibre 0~1(z) is smooth
with dimension dim H + (r — 2)my. Hence (2.5.3) holds.

Let B; be a Borel subgroup of G which is the stabilizer of the flag (My)o<r<m,
in G1, and By a 6-stable Borel subgroup of G which is the stabilizer of the flag
(Mm1+1/Mm1 c---C Mn/Mm1) in G5. Put

Gy = {(x,9B1) € Gy x G1/By | g 'zg € By},

and define the map 7! : Gy — Gy by (z,9B1) — z. Put GY = (71)"1(GY), and
let ¢! : é? — GY be the restriction of 7!. We define X' as the subvariety of
GY x VS_Q x GY/BY as in the case of X', and let 72 : X’ — X’ be the projection
(z,v',gBY) — (z,v'). We put X' = (72)~1(x"%,), and let 72,, be the restriction
of 72 on )?r’rt We define a variety

Zh = {(z.v,gB%. é1,¢2) | (x,v,9B’) € X,
b1 W Vo, ¢t WH/W, XV for 2 = (z,v)},
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and define a map § : Z& — X by the natural projection. We define a map
5 Zh - GY x 2’?1’;5 as follows; take (z,v,gB% ¢1,¢2) € Z. Since z = (z,v) €
X0, W, coincides with g(M,,,). Let g1B; be the element corresponding to the
flag ¢1(9(M;))o<i<m, , and g2 B§ be the element corresponding to the isotropic flag
¢2(9(Mi)/g(Mpm,))izm, - Then

G (2,v,9B% ¢1,02) = ((¢1(2lw.)d1 " 1 B1), (b2 (@lwr yw. )d3 ' d2(v), g2B3)).

We also define a map Ty, : 2;; — Km by (2,v,gB?, ¢1, ¢2) = (z,V, ¢1, ¢2). Then
we have the following commutative diagram:

f id
Ty % TQLG < T ¢
A A A
atxa a (e}
~ ~ ~ ~ a ~
G(l) X XIIJ < 7 ZIT] > XJI
gpl X/ Tm Tm
\ v q \
G x X0 < 7 Km = X0

where the map @ is defined naturally. Note that T“ can be written as T ~
Ty X TQLQ, where T} is a maximal torus of G1, and T5 is a #-stable maximal torus of
Ga. We fix an isomorphism f : 7% — T} x T4, The map a' : Gy — Ty is defined
as in 2.1, by ignoring v. The maps o/, Ty are defined similarly to o, Tp,.

2.6. Let & be a tame local system on T*°. Under the isomorphism f : 7" —
T, % Tz‘e, & can be written as £ ~ &£ K &, where &£ (resp. &) is a tame local
system on T (resp. TQLG). Then we have Wy e ~ Wy x W;n,ygz, where W, is the
stabilizer of & in Sy, ~ Ng,(T1)/T1, and Wy, ¢, is defined similarly to Wm e
with respect to W' = Ngg (TQLQ)/ZG;) (T59). As in 1.6, Wi ¢ is decomposed as
Wim.e = Wi X - - - x W, with subgroups W; C S,,,;. Then Wr’nl752 ~ Wy XX W,
For each p € W/

" ¢, we construct a simple perverse sheaf A, on X3, as follows:

The decomposition of the complex 7 (a!)*&[dim G1] into simple summands is
well known. Let G e be the set of regular semisimple elements in G'1. Since G’(f
is an open dense subset of G containing G reg, the decompostion of ¢} (a)*&; is
described similarly. Namely, we have

pl(a) &~ @ peICGY, L), (2.6.1)
pLEW]

where £, is a simple local system on G eg. Write p as p = p1 X --- X p, with
pi € Wi, Then p' = po®---Rp,. € W}, ¢,. Suppose that a simple perverse sheaf
A, on XY, was constructed. Put A; = IC(GY, £,,)[dim G1]. Then A; K A, is an
Hy-equivariant simple perverse sheaf on GY x X/,, and so 0*(A1XA4,/)[51] is an Hy-
equivariant simple perverse sheaf on Ky, by (2.5.3), where 81 = dim H + (r —2)m;.
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Since ¢ is a principal bundle with group Hy by (2.5.2), there exists a unique simple
perverse sheaf A, on Xy, such that

q"Ap[P2] = 0" (A1 WAy ) [B],

where 2 = dim Hy. Note that in the case where r = 2, A, coincides with the
simple perverse sheaf A) constructed in [SS1, 4.6] (G, in [loc. cit.] corresponds to
our X2 with m = (m,n —m)).

Let £, be a simple local system on )2, as appeared in (1.5.3). Since )9 is an
open dense smooth subset of X2, one can consider the intersection cohomology

IC(XY,, L£,) on X2,. We have the following lemma.
Lemma 2.7. A, ~IC(X2,L,)[dm]-

Proof. We prove the lemma by induction on r. The case where r = 2 comes from
[SS1, Lemma 4.7]. In order to prove the lemma, it is enough to see that

H b Ay lyo >~ L, (2.7.1)

We consider the following commutative diagram:

! id
T, x TQLG < T R L
A A A
apxay ao ag
~ ~ 5o ~ o ~
Gl,reg X yll—g/ < qu = ylgi
&t x&p & &o (2.7.2)
v 2 v
~ 5o ~ o N
(G1/T1 % Tireg) X Vi < Zm >V
n' xng o 0
v go v q0 !
Gl,reg X yll—n/ < K:m,reg = yg);

where 3731 =, JAJ& — Y forI = I(m) (see 1.3), and ﬁ;rol, = 371’,,37;(01, = 57\1', are
defined similarly with respect to GY x V872 with I’ = I(m’). Moreover,

Gireg = (M) 7 (Greg)s
Kmreg = ¢ (Vi)
Z0 =G (%),

and 20 is defined as the quotient of Z° under the natural action of the group
Zg(TY)1/ (BN Zy(T*)). The maps o, qo, 00, 00 are defined as the restriction of

the corresponding maps ¢, q, o, 0. The map & is & for I = I(m). The maps €0, 70
are defined according to &g, mo. &), 1} are defined similarly to &, no with respect to
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Gy x Vg 2, &Y nt are standard maps in the groups case (£
The map & is naturally induced from oy.
It follows from the diagram (2.7.2) that

1is an isomorphism).

55 ()" &1 W (0f)*E2) ~ GragE. (2.7.3)

It is easy to check that the squares in the middle row and in the bottom row are
all cartesian squares. Here /' = nl o€l : Gy yog — G reg is a finite Galois covering
with group Sy, and ¥} (a)*& is decomposed as

w. ao @ P1® Ly, (2.7.4)

prEW]

On the other hand, by (1.5.3) and (1.6.3), we have

hothh(ad) &~ @ HPIM e oL, (2.7.5)
P E(Wm/ gz)A
Similarly, the map 79 o & coincides with /r : yO — VY . Hence we have
(mo&hop€~ P H(PY)@p®L,. (2.7.6)
PEWL ¢

Since the Galois covering is compatible with o and gy thanks to the diagram (2.7.2)
(it corresponds to the squares in the bottom row), we have o§(L,, W L,) ~ ¢5L,
under the identification p = p1 K p’ for Wm,e = Wy % Wl’m,’ g,- This implies, by
applying the induction hypothesis for A, that A,|yo ~ L,[dm]. Hence (2.7.1)
holds and the lemma follows. [

By using Lemma 2.7, we show the following;:
Proposition 2.8. Under the notation in Lemma 2.7, (mm)1a*E is decomposed as

(Tm)i0"E ~ H PP @ P V, @IC(X, L,),
pEW €

where 17,) is regarded as a vector space, ignoring the Wg-action.

Proof. We prove the proposition by induction on r. In the case where r = 2,
the proposition holds by Proposition 4.8 in [SS1]. We assume that the proposition
holds for ' < r. We fix I = (I1,...,1,) € Z(m), and put I' = (Io,...,I,) € Z(m’').
Put Z; = ¢ '(X;). We have the following commutative diagram

é? X .5(:1// < 21 > .5(:1
ol xmy ™t (2.8.1)

\ v q \
g
GY x X9, < Km = X0
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where 7y is the restriction of my, on )?1, and similarly for 7y.. Other maps are
determined correspondingly. We note that both squares are cartesian squares.
We show the following.

(2.8.2) Any simple summand (up to shift) of the semisimple complex (71)!a*E is
contained in the set {4, | p € W), ¢}

Put K1 = ¢f (a!)*&1, and Ky = (T )1(¢/)*E2. By (2.6.1) and the induction

hypothesis, we have

Klﬁ @ p1 ®IC(G?,EP1)

prEW]
Ky~H'P{")o P Vy@ICXL, Ly).
p’EV\iﬁl,z2
Put Ky = (mp)i(a/)*E. Since )?I’, is a connected component of )?r’rt, any simple

summand of K is contained in Ko, up to shift, thus it is of the form IC(X/2,, £,/).
A simple perverse sheaf on X2, obtained from IC(GY, £,,) and IC(X/2,, L,/) by the
procedure in 2.6 actually coincides with A,. On the other hand, since the squares
in the diagram (2.8.1) are both cartesian, we have o (K1 X K1) ~ ¢ ((m1)1a*E).
(2.8.2) follows from this.

By Lemma 2.4 and Lemma 2.7, (2.8.2) implies that

(2.8.3) Any simple summand (up to shift) of the semisimple complex (7 )1a*E is
contained in the set {IC(Xp,,L,) | p € W) ¢}

(2.8.3) implies, in particular, that any simple summand of K = (7, )1a*E has
its support X2,. Since the restriction of K on Y9, coincides with Ko = (tm )1a3&,
the decompostion of K into simple summands is determined by the decomposition
of Ky. Hence the proposition follows from (1.6.6). O

Remark 2.9. Proposition 2.8 is a generalization of Proposition 4.8 in [SS1]. But
the argument here is much simpler than that of [SS1].

2.10. Form € 9, ,, and for each j, k, we consider MU*) and M(j’k) as in the
proof of Proposition 1.7. Put

Xﬁk = U g(BLG X M(jyk)%
geEH

v+ —1/90
X],k =T (X],k‘)7
and let 7 : ./'Fj'k — Xﬁk be the restriction of 7 on /’?fk Then 7;, is a proper
map, and y;{ i 1s open dense in X’ ﬁ - Moreover, X ]07 & coincides with X0 in the case
where j = r — 1,k = m,_1, and coincides with X}, in the case where j = 0 and
k= 0. Also put

. jk
Xj,k — U g(B 6 X M(] ))7
geEH
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and let 7 : X7, — X1 be the restriction of m on X+ Then Xok is open dense
in &jx. Asm 171 , we have

(210.1) Xj\Xjpoa = AP if k > 1, and Xjo(m) = Xji1m,4m,. (m(5,0)).
Moreover, X7, (m) coincides with Xj1,m;+m,,, & (m(j, k)).

For m’ € Q(m;j, k), VO, is containd in Y, hence in &} ;. One can define
an intersection cohomology IC(X/,, [Ip) associated to the local system £, on Y2,
(here X/, denotes the closure of Y2, in X; ). We show the following formulas.
First assume that j =r —1 and 0 < k < m,_;.

(Tr—1,6 10" E
~P PV, ICX i, L) -2(memy — K] + Moy, (2:10.2)

0K/ <k pEW), 0
where M, _1 i is a sum of various IC(X,_1 x, L,)[—2i] for 0 < k' < k and p €
Wm(k:’)f,‘ with 0 < 7 < m,_1; — k. Next assume that 0 < j < r — 1 and that
0 <k <mj. Then we have

(mjehaE
~ P PV, @ 1C(X iy Lo)[~2(mp—y — k)] + My, (2:10.3)

0<K' S PEW, 1)
where M, is a sum of various IC(X],, L,)[—2i] for m’ € Q(m;j, k) and p €
Wi e with i such that 0 < 2i < dm — dyn-

As in the proof of Proposition 1.7, one can define an action of We on (4 )ia*E.
Then (2.10.2) and (2.10.3) can be proved by a similar argument as in the proof of
Proposition 1.7.

Now apply (2.10.3) to the case where j = 0,k = 0. In this case, 7 co-
incides with mp,. (2.10.3) shows that any simple perverse sheaf A[s] appearing
in the semisimple complex (7mm)1a*E has the property that supp A N Ym # 2.
Ym is open dense in Xy, and the restriction of (mm)1a*E on Y coincides with
(YmhrapE. Thus the theorem follows from Proposition 1.7. This complets the
proof of Theorem 2.2.

3. A variant of Theorem 2.2

3.1. In this section, we assume that X is of exotic type. We keep the notation
in Section 1 and Section 2. For m = (my,...,m,_1,0) € Q) ., put Wi =
Sy XX Sm,_o X Wy, where W, is the Weyl group of type C,,, and let WEn,S
be the stabilizer of € in W¥,. (Note that W4, is not a subgroup of W,, . if r > 3.)
Recall that m(k) = (my,...,m,_o, k, k') with k+k" = m,_; form € QY . Hence
Wm(k) ~ Sm1 X - X Smr72 X Sp x Si. For p=pX---Kp, € Wr/t\m(k),é" we
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define an irreducible W g-module Vh by Vh =pm X -Kp,. o Kp._1, where p,_1
is an irreducible W, _, module obtamed frorn Pr-1 X pr € (Sk x Sp)" (apply

1.6 for the case r = 2). Recall the map (m) . Xm — Xm as in 1.2 and consider
o 7 Xm — T which we denote by the same symbol a. The following result is
a variant of Theorem 2.2.

Theorem 3.2. For each m € Q°
on Xy equipped with Wlhmyg—actwn, and is decomposed as

o ldml~ D P VERIC( Xty Lo)[dimi)-

0<k<m,_1 peWA

s m)a*E[dm] is a semisimple perverse sheaf

m(k),E

3.3. The theorem can be proved in a similar way as in the proof of Theorem
2.2. We will give an outline of the proof below. We follow the notation in 1.3. We
fix m € ng. We also consider the map w(m) *Ym — Ym. For each m’ <m
(m’ € Q,,,), put VI, = (™))=L ). For each I € Z(m’), the variety Yy c V!,
is defined as in 1.3. Put I(m) = (I7,...,I7) € Z(m) with I = [p,—1 + 1,p;]. In
particular, I° = @. Put W™ = G, x --- x S, (= Wm), and we denote by
Wr(nn,j) the subgroup of W) which is the stabilizer of I(m’). Put

IM™Mm') ={IeZ(m') |l C IS, (1<i<r)},

where I<; is defined similarly to I; in 1.3. Then as in (1.3.2), W) acts naturally
on Jijn,, and
V= I »n= I w5, (3.3.1)

IeZ(m)(m’) ’LUEW(m)/Wf:?)

where Y0, = = Vi m/ is as in 1.3. For a tame local system £ on T*, we denote by
Wém) (resp. W( ) the stabilizer of & in W™ (resp. in Wr(:,l)) Put W) =
W) (Z/2Z)m’“ 1, which coincides with W2 . We define a subgroup )//\V}m) of
W) by Wém) = Wém) X (Z/2Z)™ 1. Thus VNVém) = thn,s in the notation of

3.1. Let wr(:,l) be the restriction of (™) on ﬁjn, As an analogue of (1.5.2), we
have

(W i€l =~ P (Wn)agels,. (3.3.2)

IeZ(m)(m’)
Put m’ = (m/,...,m.). The action of (Z/2Z)™ on H'(PT;) is defined as in 1.6
by considering the case where » = 2. By a similar argument as in 1.5 and 1.6, we

see that (1/)1(:/]))!0405 is equipped with (Z/2Z)™r x Wg —action7 and is decomposed
as

m " . m/ W(m)
(0 ))'0‘05|37L/ ~H' P e P Ind) %0y P ® L, (3.3.3)
peWIPY ) e

where £, is a simple local system on yfn, obtained from the Galois covering
Vigmy = Vo as in (1.5.3).
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Asin (1.6.7), (3.3.3) can be rewritten in the following form:

(¢(m))1a35|3~,f = < @ Vph ® £p> [—2m] + N/ (3.3.4)

PEW (k) &

if m’ = m(k) for some k, and (wfnn,j))la*ﬂif ~ N otherwise, where My is a

sum of various £,[—2i] for p € (V\}r(nn?’)g)A with 2¢ < dm — dm-
In fact, put p(m’) = (p,...,p)). Since m > m’, p;, > p} for each i. Moreover,
Pr—1 — Ph_y; = m/. since p,_1 =n. Then by Lemma 1.4 we have

r—1
dm — dwy = Z(pz _p;) + m;
i=1
= Z )+ 2m..
> 2mr,

and the equality holds only when p; = p; for ¢ = 1,...,r — 2, namely when
m’ = m(k) for some k. By (3.3.3), K = (djfnn,l))gagé' is a semisimple complex
and each direct summand is of the form £,[—2¢] with ¢ < m/. Hence K ~ Ny
if m’ is not of the form m(k). Now assume that m’ = m(k). In this case,
WI(IT)g = Whm(k),e, and it follows from (3.3.3) that

A (m) m’
K~ @ mdr, (H'PMepeLl, (3.3.5)
pEWx/x\q(k),S e

where W! U)f) s = W (k) e X (Z/2Z)" 1, and H'(PT;) ® p is regarded as an
Wf:gk) g-module by the trivial action of (Z/2Z)*, and by the action of (Z/2Z)™"
through H'(PT;) (here k + m! = m,_;). The direct summand L,[—2i] of K

satisfies the relation dy, — dp = 2¢ only when ¢ = m/._;. Hence the first assertion
of (3.3.4) follows from (3.3.5).

34. For1<j<r—1land0 <k < my;, MGH MY, yfk,ym are

defined as in the proof of Proposition 1.7. Put )7T = ()= '(V))) and ))
(zp(m))—l(yj k). Let 1/1] . k — )7, be the restriction of 1/)("‘) on y e and

1/} ka — Yj i the restriction of ™) on JJT . By using a similar argument
a8 in the proof of (1.7.2) and (1.7.3), we can ShOW the following formulas. First
assume that j =r —1and 0 < k < m,_;.
(m) *
(djr 1 k)'o‘og
~ P D VIO iw L) 2me 1 — K]+ Ny, (4D

0K/ <k pEW), 1,
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where N;_1 1 is a sum of various IC(YVr_1 4, L,)[—2i] for 0 < k' < k and p €
Wﬁl(k,) e with i < m,_;—k’. Next assume that 0 < j < r—1 and that 0 < k& < m;.
Then we have

(m)
(%,k )xaoE

= @ @ Vph ® Ic(yll’n(k’)7£p)[_2(mT_1 — k’/)] +N‘,k;, (342)

0k Smp—1 pEW), s

where N, is a sum of various IC(Y},,,L,)[—2i] for m" € Q(m;j, k) and p €
(W) with @ such that 2i < du — du-

Note that in the proof of (3.4.1), the role of the irreducible We-module ‘7,) is
replaced by the irreducible VVh ¢-module Vh

By a similar argument as in the proof of Lemma 1.4 (iv), one can show that

™) is semismall for m € QY . Then, as in the proof of Proposition 1.7 (see the
paragraph after (1.7.3)), we obtaln the following proposition from (3.4.2).

Proposition 3.5. For each m € Q° ,(m)agé'[dm] is a semisimple perverse

n,r’

sheaf on Y equipped with an g-action, and is decomposed as

Waplldml > B D VI OIC V). Lo)ldmm).

0<k<m,—1 pEWS ) ¢

3.6. We follow the notation in 2.3. For m’ € Q,, such that m’ < m,
put X, = (x(™)=1(X2,). Then Y, is an open dense subset of X! ,. For each
I € Z(m'), the subvariety Xt of XF, is defined as in 2.3. Then, as in Lemma 2.4,

we have _
x= ]I A
I€Z(™) (m’)

where 2’?1 is an irreducible component of 2’?111/
Let 771(;(,1) : XIL, — X2, be the restriction of 7(™) on XIL,. The following result
is an analogue of Proposition 2.8, and is proved in a similar way.

Proposition 3.7. Assume that m’ <m. Then (7, (m ))ra*E is decomposed as
/ m)
(re e = H* Py ® @ Ind” (m) pRIC(XS,, L,),
pGW(m>A
G

where Indw(m) p is regarded as a vector space ignoring the W(m) module structure.
m/ &

3.8. By making use of Proposition 3.5 and 3.7, the theorem can be proved in
a similar way as in 2.9, 2.10.
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4. Intersection cohomology on G*® x V"~! (enhanced case)

4.1. In this section we assume that X is of enhanced type. We fix m € Q,, ,
(note that we do not assume m € ngr), and consider the map (™) : Xm — Xm.
Here, in order to emphasize a similarlty with the exotic case, we follow the notation
in Section 1. But of course a simpler expression is possible for the enhanced case.
For example, if we write G = Gog X Go and B = By x By for a Borel subgroup By
of Gy, Xm, Xm are given by

r—1
/'?m = {(x7v,gBO) Gy x VTt x Go/Bo g tzg € By,g v e H M 1}
i=1

r—1
X = | 9(Bo x [[ My,).
i=1

g€Go

The map ¢(m) : )7m — YVm 1s defined as in 1.2. The subset y&, is defined for
each m’ € Q,, , as in 1.3. For each m’ < m, put )7111, = (p™))=1(30,). For each
I € Z(m'), the subvariety Y1 of )7111, and the map 11 are defined as in 1.3. Note
that in the enhanced case, if we write T' = T x Ty, then Zy (T*%) = Zg,(Ty) = To.

Hence BY N Zy(TY) = Ty, and Tffg is the set of regular semisimple elements in

To. Hence )y is written as
Vi = Go x™ ((To)reg x M),

where M is defined as in 1.3. As in 3.3, we define W™ —= Smy X o0 X S,
(= Wm), and its subgroup Wl(mn,]). For each m’ < m, we define Z(™ (m’) as in
3.3. Then a similar formula as (3.3.1) holds for )7111, Let £ be a tame local system
on 7%, and we denote by Wém) (resp. Wl(nn,l)g) the stabilizer of £ in W™ (resp.
in Wr(:,l)). As in (1.5.2), we have a similar formula as (3.3.2). Note that in the

enhanced case, one can check that g is a finite Galois covering with group Wl(m)
(the stabilizer of T in W), Tt follows from (3.3.1) and (3.3.2) (corresponding
formulas for the enhanced case) that we have

W hoiElyr > @ (md%,, p) @ L, (4.1.1)
peEWI )N e

Here we note that

Lemma 4.2.
(i) Ym is open dense in Xm and Vo is open dense in X
(ii) dim X = dim Xy, =n? + >, (r —i)m,.
(iii) For any (x,v) € Ym, (™)~ (2,v) is a finite set.
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Proof. )7m is an open dense subset of )? Since )7m = (ﬂ(m))’ (Vm) and wm) ig
proper, Ym is an open dense subset of Xy,. Hence (i) holds. ))T is an open dense
subset of ym, and yO is an open dense subset of V. Since 1/)1 is a finite Galois
covering for I € Z(m), we have dim yT = dim YY,. Hence dim ym = dim Yy, and
(ii) follows from (1.2.1). (iii) is clear since vy is a finite Galois covering for any
IcZ™(m’). O

Next we show the following proposition.

Proposition 4.3. For each m € 9, ,, ¢(m) Eldm] is a semisimple perverse
sheaf on YVm equipped with W ¢-action, and is decomposed as
MaiEldm] = D pDIC(Ven, £y)[den].
PEWN gy

Proof. ™) : ym 5y s proper. By Lemma 4.2 (iii), 1™ is semismall. Hence

I(m)aéé’[d ] is a semisimple perverse sheaf. The definitions of Y9, Vjk, ¥, k),
1/}5-?,:), etc., in 3.4 make sense also in the enhanced case. As in (3.4.1) and (3.4.2),
the following formulas hold; first assume that j =7 — 1,0 < k < m,_;. Then we
have

w aBE = Ny (4.3.1)

Next assume that j =r — 1,k =m,_10or 0 <j <r—1,0 <k < m;. Then we
have ()
Wy hopE€~ D pOIC(Vin: Lp) + Nk, (4.3.2)

PEWL ¢

v Lp) for m’ € Q(m; 4, k) and p € (V\/l(mrr,l)g)A
such that m’ < m. (Recall that }’ , denotes the closure of Y2, C YV; x in Y} for
any m’ < m.)

We show (4.3.1) by induction on k. By (1.7.1) (or directly from the definition
of M =1k 3, | o(m) coincides with V(- Hence by (4.1.1) for m’ = m(0),
(4.3.1) holds for k¥ = 0. A similar argument as in the proof of (1.7.2) shows,
thanks to (1.7.1) and (4.1.1), that (4.3.1) holds for k¥ < m,_;. Next consider the
case where j = r—1,k = m,y_1. By (1.7.1), Y; x\Vj k-1 = ygk, and J}]({k coinicides
with V.. Thus (4.1.1) implies that

(wj(.f,;‘))!agg: @ pRL,.

pEWQLg

where N ;. is a sum of various IC(Y),

Hence (4.3.2) holds in this case. Now (4.3.2) can be proved by induction on k
and by backwards induction on j, starting from ;7 = r — 2,k = 0, which case
corresponds to the case where j = r — 1,k = m,_q by (1.7.1). Note that in the
enhanced case, we do not need a discussion such as in (1.7.5).

Applying (4.3.2) to the case where j = 0,k = 0, we obtain the proposition. In
fact, in that case, Ny is a sum of A =IC(Ym,L,) such that m’ < m. But then
Aldm] is not a perverse sheaf. Since w!(m)agé’ [dm] is a semisimple perverse sheaf,
this implies that Ny o = 0, and the proposition follows. O
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4.4. As a special case of (4.1.1) for m’ = m, we have

weeiE = @ poL,

PEWL &

Since )2 is a smooth open dense subset of Xp,, one can define a semisimple
perverse sheaf Ky 7¢ on Xy as

Emre= P »p@IC(Xm,L,)dm]- (4.4.1)
PEWL ¢
We consider a diagram

~  p(m)

TY & Xy =5 X,

where « is as in 2.1, and a complex wl(m)oz*é'[dm] on Xp,. We shall prove the
following theorem.

Theorem 4.5. For each m € Q, ., ﬂ!(m)a*é’[dm] ~ Km,1e as perverse sheaves

on Xm.

4.6. For each m’ < m, the set X2, is defined as in 2.3. We define a subvariety
XD, of X by &I, = (x™)=1(x9,). Then V!, is an open dense subset of
XL,. The discussion in 2.3 makes sense also for the enhanced case, and X2, is

characterized by a similar formula as (2.3.3). For each I € Z(m’), the set Aj is
defined as in 2.3,

‘;?I = {(I,V,gBa) € ‘;?111’ | (I,V7gB9) = I}
Let Z0™) (m’) be as in 3.3. Then as in Lemma 2.4 (see also 3.6), we have

X:L, = H XVI;
70 (m)

where ./'FI is an irreducible component of /ﬁn, Let 7T1(,:,1 ) : /'EL, — X&, be the

restriction of 7(™ on ./'EL, The following result is an analogue of Proposition 2.8
(see also Proposition 3.7) and can be proved in a similar way.

Proposition 4.7. Assume that m’ < m. Then (7TI(:,1))10(65 is decomposed as

(m)
(wgﬂl))!aéﬂfb ~ @ (Indxan) p) ® IC(Xronl,Ep).
pEWII A e

4.8. By making use of Proposition 4.3 and Proposition 4.7, the theorem is
proved by a similar argument as in 2.8 and 2.10.
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5. Unipotent variety of enhanced type

In this section, we study the “unipotent part” of the enhanced space, which we
call the unipotent variety of enhanced type. First we prepare some combinatorial
notation.

5.1. A composition is a sequence of integers A = (A1, Ag,...) with finitely
many nonzero terms. A composition A satisfying the property that Ay > Ay > - --
is called a partition. For a composition A, we denote by [A| =) . A; the size of A.
For a positive integer r, an r-tuple of partitions A = (A, ... A\(") is called an
r-partition. We denote by |A| = 37, [A(?)| the size of X. We express an r-partition
by A = ()\y)) with partitions (9 = (/\gl), e ,\$}3) by choosing sufficiently large
m so that )\;i) = 0 for j > m and for any i. The set of r-partitions of size n is
denoted by P, .. In the case where r = 1, the set P,, 1 of partitions of n is simply
denoted by P,. For a given m € Q, ,, we denote by P(m) the set of X € P,
such that |A(®)| = m; for each 1.

Let A = ()\gl)) be an r-partition of n. We define a composition ¢(A) of n
associated to A by

cA) = A AP A AP A A @A),
For example, if A = (320;211;411) € P15,3, we have c(A) = (324211011).
For a composition A = (A1, A, ..., ), = (i1, 2, .- ., ), we denote by A < p if

ALt A S+

for k =1,2,---. We define a dominance order < on P, , by the condition that
A < pif ¢(A) < e(p). In the case where » = 1, this is the standard dominance
order on the set P,. In the case where r = 2, this is the partial order given in
[SS1, 1.7].

For a partition A = (A1, A2,...), we put n(A) = > ,5,(i — 1)A\;. We define a
function n : P, — Z by n(A) = > n(AD).

5.2. We consider the enhanced space of higher level introduced in 1.2. However
in this section, we redefine them directly, without using the symmetric space setting
in 1.2. For an integer r > 1, we consider a variety Xun; = Guni X V"1, where V
is an n-dimensional vector space over k, G = GL(V) and G,y; is the unipotent
variety of G. We fix a basis {ej,...,e,} of V, and define M; as the subspace of V
spanned by eq,...,e;. Let B be a Borel subgroup of G which is the stabilizer of the
total flag (M;). Let T be a maximal torus of B such that {e;} are weight vectors
for T. Then B = TU, where U is the unipotent radical of B. For m € Q,, ., let
p(m) = (p1,...,pr) be as in 1.2. We define

r—1

Xenouni = {(z,v, gB) € Guni x V"' xG/B | g tag e Uyg v e HM i},

B 1=1
Xonani = | g(U x ﬁM )
1=1

geG
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We define a map ﬂ%m) : )?m,uni — Xuni by (z,v,9B) — (x,v). Clearly Xm uni =

Im 7T§m), and Xm uni coincides with Xyy; in the case where m = (n,0,...,0). Since

/'Emuni ~ G xB (U x [L M,,), Xm uni 1 smooth and irreducible. Since W;m) is
proper, Xm uni is a closed irreducible subvariety of Xp;.

5.3. We shall define a partition of X,,; into pieces X indexed by A € Py, .,

Xuni = H XA (531)

AEP’I’L e

satisfying the property such that X is G-stable, and that if (z,v) € X, then the
Jordan type of  is A 4 .- + A" Tt is known by [AH] and [T] that the set of
G-orbits in Gyni X V is finite, and they are parametrized by P, 2. The labelling is
given as follows; take (z,v) € Guni X V. Let E* = {y € End(V) | zy = ya}. E”
is a subalgebra of End(V') stable by the multiplication of x. If we put W = E*wv,
W is an z-stable subspace of V. We denote by A" the Jordan type of x|w, and
by A the Jordan type of x|y w. Then the Jordan type of x is AD 1 X2 and
A=A X)) P, 5. We denote by Oy the G-orbit containing (z,v). This gives
the required labelling of G-orbits in Gy X V.

If r > 3, the number of G-orbits in X,y; is infinite. So X should be a union of
possibly infinitely many G-orbits. In general, we define X x by induction on r. Take
(z,v) € Xyni with v = (Ul, ey Upo1). Put W = E%v, V =V/W and G = GL(V).
We consider the variety X ; = G X V' 77, Assume that (x,v1) € Guni X V is of
type ()\(1), V'), where v = )\(1) + v/ is the type of x. Let x be the restriction of x
on V. Then the type of x € GL(V) is v/. Put v = (va,...v,_1), where v; is the
image of v; on V. Thus (z,v) € X/ ;. By induction, we have a partition X/ , =

111'11 uni
HHEPn/ . X/ p» Where dimV' = n'. Thus there exists a unique X}, containing

(z,v). If we write X' = (A®) ... A" we have A®) 4+ ... + X(") = /. Tt follows
that A = (A, ... A(") € P, .. We define the type of (z,v) by A, and define a
subset X of Xum as the set of all (z,v) with type A. Then Xy is a G-stable
subset of Xyni, and we obtain the required partition (5.3.1).

We show the following proposition.

Proposition 5.4. Let A = (AW, ... \") ¢ Pnr. Then Xx is a smooth irre-
ducible variety with

dim X = (n% —n — 2n(X)) + z_:(r —)AD]. (5.4.1)

i=1

Proof. We may assume that r > 2. Put v = A0 4. . .4 XD and v/ = X& ...\,
Let O = O (), be the G-orbit in Gy X V' corresponding to D V) e Pn.2,
and O, be the G-orbit in Gyy; corresponding to v € P,,. We have surjective maps
a: Xa—= O, (z,v) = (z,v1), and hx : Xx = O,, (z,v) — z. For each z € O,,
put hy'(r) = Xx,. The proposition certainly holds if » = 2 by [AH, Prop. 2.8].
We show the proposition, together with the statement (5.4.2), by induction on 7.
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(5.4.2) X is a smooth and irreducible variety with
r—1
dim Xy, = > (r—i)AD].
i=1
We assume that (5.4.2) holds for X,n; with smaller r. For a fixed (z,v1) € O,
we consider the variety X’ . as in 5.3. Let A’ = (A ... A(")). Then by the
discussion in 5.3, we see that fy '(z,v1) ~ X}, , x W2, Zg(z,v1) stabilizes the
subspace W and so acts on X}, .. We have

X~ G xZo@m) (X4, x W2). (5.4.3)

By induction, X}, . is smooth and irreducible. Hence Xy is smooth and irre-
ducible. Since
Xae = Za(x) x76@) (X4, x WT2), (5.4.4)

and Zg(x) is connected, Xy , is also smooth and irreducible. This proves the first
statement of (5.4.1) and (5.4.2). We shall compute dim X and dim Xy ,. By
(5.4.3), we have

dim Xx = dim O\ ) +dim X3, , + (r — 2)[AW)]. (5.4.5)

Here dim O\ ) = n?—n—2n(v)+|AV| by [AH, Prop. 2.8]. By applying (5.4.2)
to X}/ ,, we have

r—1

dim X}, , = (r—i)[A1)].

i=2

By substituting those formulas to (5.4.5), we obtain (5.4.1) (note that n(v) =
By comparing (5.4.3) and (5.4.4), we have
dim X, = dim X — (dim G — dim Zg(z))
=dim Xy —dimO,.

Since dim 0, = n? —n — 2n(v), (5.4.2) follows from (5.4.1). This proves the
proposition. [

5.5. Let A= (A1 ... X)) € P(m). We write the dual partition (\())* of

)

A as (ugi) < Héi) <. < u?)), in the increasing order, where ¢; = )\gi . For each

1<i<nl1<yj<t;, we define an integer n(4,j) by

i, ) = (A4 PO 4 e,
Let P = Py be the stabilizer of a partial flag (M,,(; ;)) in G, and Up the unipotent
radical of P. In particular, P stabilizes the subspaces M,,,. Let us define a variety
)ZV)\ by

r—1
)~()\ = {(a:,v,gP) € Gumi X V1 x G/P g lzgeUp,glve H M, 1}
i=1
We define a map mx : Xa — Xuni by (2,v,gP) — (z,v). Then my is a proper
map. Since Xx ~ G xT (Up x [[; M,,), Xx is smooth and irreducible.
We have the following lemma.
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Lemma 5.6. Let A=\ ... A"y eP, .

(i) dim Xy = dim X.
(ii) Immx = X, where X is the closure of X in Xyni-

Proof. We have

r—1
dim X = dim G/P + dim Up + dim [ [ M,,

1
r—1 !

=2dimUp + Y _(r—i)]AV].

i=1

Here dimUp = (dim G — dim L)/2, where L is a Levi subgroup of P, and

dimL =" (u{")? = n+2n(N).
1)

The second equality follows from the formula n(A\*) = 3. A;j(A; —1)/2 for a parti-
tion A = (A1, Mg, ...) and its dual A\*. By comparing this with Proposition 5.4, we
obtain (i).

We show (ii). Take (x,v) € Xx. By the construction of X in 5.3, one can
find a sequence of z-stable subspaces V,, C V,, C --- C V,. = V of V such
that v; € V,, and that the restriction of x on V,,/Vj, , has type A(¥). Tt is well
known that there exists an x-stable flag (V,(; ;) which is a refinement of (V},)
such that V,,(; jy = gM,,(; ;) for some g € G and that g txg € Up (see [AH, Prop.
3.3 (4)]). It follows that (z,v,gP) € Xx, and we sce that (z,v) € Immx. This
proves that X C Immy. Since 7y is proper, Immy is a closed subset of X,,; and
we have Xy C Immy. Since X and Im 7y are both irreducible, (i) implies that
Im7x = X . Hence (ii) holds. The lemma is proved. O

Remark 5.7. In the case where r = 2, Achar-Henderson proved in [AH, Prop. 3.3]
that the map my : )N(A — X is a resolution of singularities for X x. By a similar
argument, by using Lemma 5.6 (ii), one can prove that mx gives a resolution of
singularities for X 5 for any r > 2.

5.8. Recall the map ﬂ%m) : ?’?m,uni — Xm,uni in 5.2 for m = (my,...,m,) €

Qn.. Let us define A(m) = (A, ..., A\(")) by the condition that \*) = (m;) for

each i. We consider the varieties X in 5.5 for A = A(m). In this case, P = B.

X A is isomorphic to )?m,uni, and 7y is identified with W%m). We have the following
result.

Proposition 5.9. Form € Q,, ., we have
(1) Xm,uni = Xa(m)-
(i) dim Xpmuni = n? —n + Zz;ll(r —i)m;.
(iii) For p € P(m), X, C Xm,uni-
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Proof. (i) is a direct consequence of Lemma 5.6 (ii) in view of 5.8. (ii) follows
from (i) and Proposition 5.4. We show (iii). Take (x,v) € X,,. As in the proof
of Lemma 5.6, there exists an x-stable partial flag (V,,(; ;)) with respect to p.
By our assumption, v; € V,,, for each i. Then one can find an x-stable total
flag (V;) as a refinement of this (V,,; ;)). This shows that (z,v) is contained in

§m) = Xpn,uni- Hence X,, C X uni as asserted. O

Imm

5.10. In the case where r = 2, there exists a normal basis for (x,v) € Gyni XV
(cf. [AH, 2.2], [T]). If r > 3, one cannot expect such a basis since Xyy,; has infinitely
many G-orbits. However, one can find typical elements in X as follows: Put
v=i,...,v) € Py forv=AY ... £ \(") Take x € Gyupj of Jordan type v,
and let {u;x | 1 < j < {1 <k <v,} beaJordan basis of z in V having the
property (z —1)uj = ujr—1 with the convention that u;o = 0. We define v; € V
for:=1,...,7 — 1 by the condition that

v; = E Uj’)\gl)+_“+)\;i) (5.10.1)
1<5<e

and put v = (v1,...,v,.-1). Let W; be the subspace of V spanned by the basis
{ujn | 1< <1<k <A 4 A0

Then Wy C Wy C --- C W,_1 C V, and W, is an z-stable subspace of V such that
v; € W;. Let x be the restriction of z on V = V/W,_1, and v; be the image of v;
on V. Put G = GL(V). Then E®v; coincides with W;/W;_1, and the restriction
of x on W;/W,;_;1 has type A Tt follows that (z,v) € Xx. Such an element
(z,v) € Xy is called a standard element. More generally, we consider an element
w = (wi,...,w,—1) of the form

=

j=1 k=1

aj7kUj7k (().102)

with af ;. € k such that a;,,\§1>+..

W;/W;_1. Hence (z,w) € Xx. Here (z,w;) is conjugate to an element (z,v;) as
above under the group Zg(x) for each i. We call (x, w) a semi-standard element.
We define a set X§ as the set of all G-conjugates of (z, w). Hence X is a G-stable
subset of X . We note that

a® # 0. Then w; € W;, and E®w; coincides with
3

(5.10.3) X9 is a G-stable open dense subset of Xj.

In fact, take (z,v) € X9. Under the notation in the proof of Proposition 5.4,
put Xg’w = X{NXx . We show simultaneously that Xg’w is open dense in Xy ;.
Under the isomorphism in (5.4.4), we have

X3 o = Z(x) x 7o) (X5 5 x (W) 72,
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where XY, _ is a similar variety as X3 , defined for X},, and W9 is an open dense
subset of W. Hence by induction on r, Xg’m is an open dense subset of Xy ;.
Since, under the isomorphism in (5.4.3), X3 can be written as

XY = G Pl (X x (W) 2),

X3 is open dense in X. Hence (5.10.3) holds.
Concerning the closure X 5, we have the following result.

Proposition 5.11. For each XA € Py, ., we have

Xxc | Xp

759,

For the proof of the proposition, we need a lemma.

Lemma 5.12. Assume that (z,v) € Xx is a semi-standard element with v =
(v1,...,vr—1). Let U; be the k[z]-submodule of V generated by v;. Then dimU,; =
)\gl) +-- -+)\§Z). The Jordan type of the restriction of x on V/U,; is & = (&1,...,&),
where

é-] :)\§Z+1) +.+)\§r)+)\‘§21+.+)\§21 fo’[”j: 17.7£
Proof. In the case where r = 2, this result was proved in Lemma 2.5 in [AH]. The

general case is reduced to the case where r = 2, by considering the double partition

5.13. We prove the proposition following the strategy in the proof of (a part
of) [AH, Thm. 3.9]. We show that p < X if (2/,v') € X is of type p. For this, it
is enough to show that

k

1 T 1 a
ST+ )+ )y )
=1

k (5.13.1)
<SOW 4 A O A
=1

fork=0,...,and a=0,...,7 — 1 (we put )\§-0) = u§0) = 0 by convention). Put
v =20 4. A" and v/ = g™ 4+ ... 4 4. Then the Jordan type of 2’ is /.
Let O, be the G-orbit in Gy corresponding to v € P,,. Since X» C O, x V"1,
we have Xy C O, x V"7, Since (z/,v') € X, we have 2/ € O, and so v/ < v.
This proves (5.13.1) in the case where a = 0. By a similar argument as in the
proof of [AH, Thm. 3.9], it follows from Lemma 5.12 that

k
STOW A O A (5.13.2)

=1
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is the maximal possible dimension of the z-stable subspace k[x](vq, u1, ..., uryof V,
a k[z]-module generated by vg, u1, ..., ur, where (z,v) is a semi-standard element
in X with v.=(v1,...,0,—1), and uq, ..., uy run over the elements in V. We note
that the condition

dimk[z){vg, u1, ..., ug) < Ngy,  (u1,...,up € V,1<a<r-—1) (5.13.3)

for given {N, | 1 < a < r — 1} is a closed condition on (z,v) € Xyn; (i.e., the
set of (x,v) satisfying the above condition is a closed subset of X,n;) since the
condition for a fixed a is a closed condition on Xy, by [loc. cit.]. Since X(;‘ =X
by (5.10.3), for any element (z',v’') € X, the dimension of k[z']{v], u1, ..., ug)
is dominated by the number in (5.13.2). The assertion (5.13.1) then follows from
this. Hence Proposition 5.11 holds.

Combining with the previous results, we have the following.

Proposition 5.14. X is open dense in X . Hence X is a G-stable locally
closed, smooth, irreducible subvariety of Xuni.

Proof. Since X = X\ U”<)\ X by Proposition 5.11, Xy is open in Xx. Xy is
smooth and irreducible by Proposition 5.4. O

5.15. We give here some examples on the closure relation of X . First assume
that n = 1 and r is arbitrary. Then G = GL; ~ k*, the multiplicative group of
k. We have Gun; = {1}, and Xup; ~ k"1, Py, consists of {A1,..., A}, where
Xi = (AW A with A+H1=9 = (1) and AU) = & for j # r + 1 —i. Thus the
dominance order in P; , is given as A; < A2 < --- < A,. Under the identification
Xuni ~ k™71, we have

X)\l. = {(’Ul, Ce ,’U,-_1) € k™! | V1 =+ =VUp—j = 07U7v—i+1 S k*}
k72 x k* ifi > 2,
{0} if i = 1.

Thus Xy, is a locally closed, smooth irreducible subvariety of k"~!. Since G ~ k*,
X, = {0} and Xx, ~ k* are single G-orbits, but other Xy, are a union of infinitely
many G-orbits. Moreover X 5, ~ k‘~! and the closure relation is given as

Xa, = U X, (5.15.1)

j<i

This is an analogue of the result in the case where r = 2, which asserts that X x
is a union of X,, for p < A ([AH, Thm. 3.9]).

However, such a relation does not hold in general for > 3. In fact, there exists
p < Asuch that X,,NXy # @ and that X,, ¢ X, as the following example shows.
We consider the case where n = 2,r = 3, hence dim V' = 2. Take A = (1;—; 1) and
= (12; —; —). Then we have u < A. It is easy to check that

Xx = {(#, (01,12)) € Guni x V2 | £ 1,01 € Kex(z — 1)\ {0}, 02 € Ker(z — 1)},
Xp = {(z, (v1,v2)) € Guni X V2 |z =1,v1 € V\{0},v2 € V}.
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Then for any element (x,v) € Xy, we have vy € kvy. It follows that ve € kv; for
(x,v) € Xx whenever v # 0, and we have X, N X = {(z,v1,v2) | x = 1,01 #
0,v2 € kvi }. In particular, X, N X # @ and X,, ¢ Xa.

The following result is an analogue of [AH, Cor. 3.4].

Proposition 5.16. Let (z,v) € Xyni, and X € P(m) for some m. Then (z,v) €
X if and only if there exist € € P(m) and a flag (W;)1<i<r in V' such that
dim W; = p; satisfying the following conditions:

(i) (W;) is x-stable,

(ii) x|w,/w,_, has type €D with €0 < A0 for1 <i<r,

(ili) v; € W; for 1 <i<r—1.
Proof. Let U be the set of (z,v) satisfying the condition in the proposition. We
show that & = X . Take (z,v) € U. In order to show that (x,v) € Xy, by
Lemma 5.6, it is enough to construct (z,v,gPy) € Xx. Under the notation in
5.5, put Vi,(50) = Wi for i = 1,...,7 — 1. By assumption, the restriction of z on
W;/W;_1 has type €. Since £ < A9 there exists an z-stable flag

Wic1 = Vi—1,00 € Vagi—1,1) € - C Vo) = Wi

such that (z — 1)V,,.j) C Vi(i,j—1)- In fact this is an application of Lemma 5.6
for r = 1, which is a well-known result for GL,. There exists g € G such that
9(Myi5y) = (Vag,j)), and (x,v,gPx) € Xa. Hence (z,v) € X, and we have
Uc Xi.

Let P be a parabolic subgroup of G which is the stabilizer of a partial flag
(Mp,)i<i<r, and L the Levi subgroup of P containing 7. Thus L ~ [[, GL,,,.
Let O be the L-orbit in Lyy; corresponding to A = (AW, ..., A(M) and (’)/A the
closure of (’)’A in Lyn. Let p: P — L be the natural projection. We consider a
variety

Poy = {(2,v,gP) € Guni x V'™  x G/P | g ag € p~1(O}), 97 vi € My, },

and let f : 73(9/A — Guni X V™71 be the projection on the first two factors. Then
Imf = U. Since f is proper, U is a closed subvariety of Gun x V"', The
construction of X implies that Xy C . It follows that Xy C U, and soUf = X x.
The proposition is proved. [

5.17. Takem € Q,,,. For each z = (z,V) € Xm uni, Put

r—1
B — {gB €G/B ‘ g lazgeUyg've H M, }

i=1

B™ is a closed subvariety of B = G /B, which is isomorphic to the fibre (wgm))’l(z)
and is called the Springer fibre of z. In the case where r = 2, Bi"‘) is isomorphic
to each other for any z € X since X} is a single G-orbit. However, this property
does not hold in general for 7 > 3 as the next examples show. First assume that
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r=3and n = 3. Let m = (2,0,1) and XA = ((13),—, —). Let v1,v2 be linearly
independent vectors in V, and take z = (z, (v1,v2)), 2" = (x, (v1,0)) with z = 1.
Then z,z" € X. Let F(V) be the set of total flags (V;) in V. We have

B ~ {(V;) € F(V) | Va = (v1,v2)},
BUY ~ (Vi) € F(V) | w1 € Va).

Hence dim B™) = l,dimBSn) = 2, and in particular, z,2z" € Xx N Xmuni- We
have dim BI™ # dim BS™.

Next assume that r = 3 and n = 4. Let m = (2,0,2) and XA = ((12), —, (1?)).
We have X C Xmuni- Let = be an element in Gyni of type (22), and {u;; | 1 <
i < 2,1 <j <2} bea Jordan basis of z in V. Put v; = U1,1,V2 = U2,1 SO that
v1,v2 is a basis of W = Ker(z — 1). Put z = (z, (v1,v2)) and 2’ = (z, (v1,0)).
Then z,2’ € Xx. We have
B ~ {(V;) € Fa(V) | Va = W},

z

BIY ~ {(Vi) € Fu(V) | 01 € Va},

where F, (V) is the set of 2-stable flags in V.. Since z|w = 1,2y, = 1, we see that
BI™ ~ F(W) x F(V/W). Thus B™ is irreducible with dim B™ = 2. On the
other hand, if (V;) € Bgn), either Vo = W or V; is of the form W, = (u1 2+ v, v1)
for o € k. Since z|w, and x|y,w, have both type (2), W, determines a unique
(V;) € BU™. Tt follows that BT™ = BI™ [[Y with Y = {(V) | Vo = Wa(a € k)},
where Y is irreducible with dimY = 1. Hence in this case, dim Bi"‘) = dim Bil,m),
but BI™ o B,

6. Unipotent variety of exotic type

The “unipotent part” of the exotic space is called the unipotent variety of exotic
type. In this section, first we study the unipotent variety of exotic type in 6.1-6.13.
While in 6.14-6.19, we discuss the case of enhanced type. After 6.20, we discuss
both cases simultaneously.

6.1. We follow the notation in 1.2. Assume that X is of exotic type. As in
the enhanced case we define varieties, for each m € 9,, ,,

r—1
Xm,uni = {(I,V,gBa) € GLG' X VT_I X H/Be g_lgjg € U“gag_lv € HM '[,}’
i=1

uni

r—1
Xm,uni = U g(U‘e X H A]\fpi)7
i=1

geEH

where B,T are as in 1.2, and U is the unipotent radical of B. We define a map
ﬂm) ¢ Xpuni — G, x V'L by 7T§m)(a:,v, gB%) = (z,v). Clearly Xmuni =

uni
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Im ﬂ%m). As in 1.2, in the case where m = (n,0,...,0), we write ?’?m,uni, Xm, uni;

ﬂ“‘), etc., by /’Emi,Xuni,ﬂ'l, etc. Note that Xy uni C Xupi for any m, but in
contrast to the enhanced case, X,,; does not coincide with Gfﬁli x Vr=tif r > 3.

In fact, Xy is described as a subset of G x V1 ag follows.

uni

Kani = {(z,v) € G0, x V"1 | (z"v;,v;) = 0 for all s,i, j }. (6.1.1)

uni

We show (6.1.1). By definition, X,y coincides with the subset of G0, x V=1
consisting of (z,v) such that vy,...,v,_1 is contained in an z-stable maximal
isotropic subspace of V. It is clear that X\, is contained in the right-hand side of
(6.1.1). Conversely, assume that (z,v) is contained in the right-hand side of (6.1.1).
Then Wy = k[z]uy + - - - + k[z]v,_1 turns out to be an z-stable isotropic subspace
of V. One can find an z-stable maximal isotropic subspace of V' containing Wj.
Hence (z,v) € Xypi. This proves (6.1.1). The variety X,n; is called a unipotent
variety of exotic type.

Since X uni ~ H x B (UY x T, Myp,), Xom.uni is smooth and irreducible. More-
over, we have

r—1
dim X i = dim H/B? + (dim U + dim [ [ Mpi)
1=1
r—1
=dimU? + dim U + > " p; (6.1.2)
o i=1
=2n" —n+ ) (r—i)m;
i=1

since dim U?4+dim U = dim U. Since W;m) is proper, Xm uni is a closed irreducible
subvariety of G x V=1,

uni

6.2. Assume that r > 2, and take m € Q,,,. Let P be the #-stable parabolic
subgroup of G such that P? is the stabilizer of the isotropic flag (Mp,)1<i<r—2 in
V. Let L be the #-stable Levi subgroup of P containing 7" and Up the unipotent
radical of P. Put V] = M, _,, and V;, = V/V/. Then PY acts naturally on Vi,
and we consider the map 7p : P x V — LY. x Vi, (z,v) = (2/,v"), where
2’ = p(z) for the natural projection p : P*Y — L and v + v’ is the projection
V — Vi = V/V]. The map np is P-equivariant with respect to the diagonal
action of PY on both varieties.

Let O be an LP-orbit in Lffni x Vi.. We assume that @ is P?-stable. Since
R (O) = Ugepe 9 7t (2) for 2/ € O', 7' (O') is irreducible (note that 75" (2')
is irreducible). Let O be an H-orbit in G*?; x V such that O N 75 (O’) is open
dense in 75" (0O'). Put

U={(z,9P) € (G2, x V) x H/P | g7'z € 7" (O)}.

uni

Then U ~ H x’ 7' (O') and so U is an irreducible variety. Let f: U — G0, x V
be the first projection, and put Up = f~1(O). Then Up ~ H x P’ (O N7 (0),
and so Up is irreducible.
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Take z € O, and consider a variety
P.o ={gP’ c H/P? | g7'2 c 7,1 (O')}.

Note that P, o # @. We show the following proposition.

Proposition 6.3. Under the setting in 6.2, the following hold.
(i) P,,o consists of one point.
(ii) dim Zy(z) = dim Zpe(2') for 2/ € O'.
(iii) Let z; € mp'(O') be such that dim Zy (z1) = dim Zy(2). Then 2 € O.
(iv) Take z € ON7p" (O') and put 2’ = 7p(2). Let Q = Zp(2') be a O-stable
subgroup of P. Then dim Zge(2z) = dim Zg(z). In particular,

Zy(z) = Zpo(2) = Zgo(2).

(v) H acts transitively on Uo.
(vi) P9 acts transitively on ONm 5 (O0'), and Q° acts transitively on ONT ' (2')
under the setting in (iv).
Proof. First we show that
dim P, o = 0. (6.3.1)

Replacing z and P, o by H-conjugate, if necessary, we may assume that z €
ON7pl(0'). Put 2/ = (2/,v") = mp(2). Since 75 (') = (2'Up)* x (v/ +V}) ~
UY x V], we have

dim75!(2) = dim U + dim V/ = dim U%. (6.3.2)

Put ¢ = dim O and ¢’ = dim @’. Then by [SS1, Prop. 5.7 (i)] (for a correction, see
[SS2, Appendix]), we have dim(O N7p'(2") < (¢ — ¢/)/2. Since O N7 (O') is
open dense in 75" (0"), ON 7" (2') is open dense in w5'(2’). It follows that

dimU% < (¢ —¢)/2.
On the other hand, by [SS1, Prop. 5.7(ii)] together with [SS2, Appendix], we have

dimP, o < (vg —¢/2) — (vpe — '/2)
= dimU% — dimU? — (¢ — ¢)/2 (6.3.3)
=dimU% — (c—¢)/2,

where vy = dim U?, and similarly for v;s. Hence dimP, o < 0. As P, o # @,
we obtain (6.3.1).

Substituting this into (6.3.3), we have ¢ — ¢/ = 2dimU%. This implies that
dim Zp(z) = dim Z6(2’). Hence (ii) holds.

Under the setting in (iv), QY stabilizes 75'(2'), and so Og C O N7p' (%),
where O is the Q%-orbit of 2. Since O is an PP-orbit, we have dim Zps(2') =
dim Z 6 (2') + dim U%. Hence by (6.3.2) we have

dim U} > dim Og = dim Z;0(2') + dim Up — dim Zge (2). (6.3.4)
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It follows that dim Zge (2) > dim Z7,6(2’). Since dim Zge(2) < dim Zg(z), we have
dim Zge (2) = dim Zg(z) by (6.3.4). Since Zg(z) is connected, this implies that
Zy(2z) = Zgo(z). Hence Zy(2) = Zpo(z). Thus (iv) holds.

For any z € O, dim f~!(z) = 0 by (6.3.1). Thus dimUp = dim O. We show
that H acts transitively on Up. Take £ € Up, and consider the H-orbit HE of
&. Since f is H-equivariant, f maps HE onto O. Hence HE is irreducible with
dim H¢ = dimUp. In particular, H¢ is open dense in Up. If we take another
& € Up, HE is also open dense in Up. Hence HEN HE' # &. Thus Up = HE and
(v) holds.

Take 2,21 € ON7p' (O). Since (z, P?), (21, P?) are both contained in Up, they
are in the same H-orbit by (v). Hence there exists g € P? such that gz = z;.
This proves the first statement of (vi). Then for 21,20 € O N 7R (2’), there exists
p € P? such that pz; = 2. But since 7p is PP-equivariant, p € Zpo(2') = Q.
This proves the second statement of (vi).

We show (i). We may assume that z € ON7p'(0'). Then P? € P, o/. Assume
that gP? € P, 0. Then (z, P?), (2, gP?) are both contained in Up. By (v) they are
conjugate under H. It follows that there exists h € Zy(2) such that gP% = hP?.
But by (iv), we have h € P?, and so gP? = PY. This proves (i).

Finally we show (iii). Let O; be the H-orbit of z;. Then dimO; = ¢. By
a similar argument as in the proof of (6.3.1), we have dimP,, o = 0. Then a
similar argument as in the proof of (iv) implies that Zg(z1) = Zge(21). Hence
dim Zge (2) = dim Zge(21). This shows that the Q%-orbit of z1 in 75" (2’) has the
same dimension as the Q%-orbit of z. Since both orbits are open dense in 771_31 (),
they have an intersection, and so @ = O;. This proves (iii). The proposition is
proved. [

6.4. Recall that in the enhanced case, the set of G-orbits in Gy X V is
parametrized by P2 if dimV = n. In the exotic case, it is also known by [K],
[AH] that the set of H-orbits in G*?. x V is parametrized by P, 2. By [AH, Th.

uni

6.1], it is described as follows; we consider the embedding G*?, x V « Gupn; x V.

uni

The set of G-orbits in Gyni X V' is parametrized by Pay 2. We denote by Q¢ the
G-orbit in G x V corresponding to & € Py, 2. Then Qg N (G2, x V) # @ only if £
is of the form & = (A U XN, X" U \") for some XA = (X, \’) € P,, 2, and in that case
Ovua oy N (G, x V) turns out to be a single H-orbit, which we denote by

Ox. This gives the 11;21(1ui1red parametrization.

Let P be as in 6.2. For A € P(m), we define a subset M of P29, x (T]/={ M,, x
M- ) as the set of (z,v) satisfying the following properties. Take (z,v) such
that = € P9, and that v; € M, fori =1,...,7 — 2, v,_1 € Mpffz. Put M, =
M, /M, and let v; € M, be the image of v; € M,, for i = 1,...,7r —2
(here we use the convention that M,, = 0). We also put M;T_ =M, /M, _,.

!/ . .
Thus M, | has a structure of a symplectic vector space, and one can consider an

i—17

1

exotic symmetric space GL(M ;pl)w X M;Pl. We also consider enhanced spaces
GL(M,,) x M, fori=1,...,7—2. Let v,_1 be the image of v,_; on M;T_l. We
assume that the GL(Mp, )-orbit of (z[,, ,v;) has type A\ @) fori=1,...,r—2,



236 TOSHIAKI SHOJI

and that the GL(M,, _)%-orbit of (z|, ,v,_1) has type (AC=D,A("). Let O
Pr—1
be the H-orbit of z = (z,v,_1) € G, x V and O’ the L%-orbit of 2/ = 7p(2).

uni

Note that @ is P?-stable. We further assume that
(6.4.1) ON7p'(O') is open dense in 75 (O).

We define Xy by X = UQGH gM. Note that in the case where r = 2, Xy
coincides with the H-orbit Oy in [SS1].

It follows from the construction that My is a P?-stable subset of P x Vrll.
The closure My of My in P x V=1 is also P?-stable. We define a variety Fa
by ]?A = H xP’ M. Let my : ]?A — Xuni be the map induced from the map
H x Mx = Xuni, (9, 2) = g - 2. Then 7 is a proper map. We define a subset Fy
of Fx by ]?9\ = H xP’ Ma, and let 7 be the restriction of mx on .7?9\ It is clear
that 779\ is a surjective map onto Xy.

6.5. Take x; € GL(M,,)un; with Jordan type A® for 1 <4 < r — 2. Then the
set of v; € M, such that (x;,v;) is of type (A\(?), @) is open dense in M,,. Take
(Tr—1,vp-1) € GL(M;)T?I);‘QHi X M;)Til with type (A=Y, AM). Now (1, ..., 2,—1)

L0

determines a unique element in L. which we denote by 2’. Put 2’ = (z/,v,_1).
The set of (z,v,—1) € G, x V such that (z,v,_1) € mp'(2'), satisfying the
condition (6.4.1) is open dense in 75 (2"). In fact, it coincides with O N7y (2/)
for an H-orbit O. Put v/ = (v1,...,v,_1). For a fixed (2/,v'), let M, ) be the
set of (x,v) with v = (v1,...,v,_1) such that (z,v,_1) € ON7p' (') as in (6.4.1)
and that the image of v; on M, coincides with v;. As M, ) is an open dense

subset of [[/_ M, x np' (), we have
r—3
dim M, 1y = Zdim M,, + dim 75" (2').
i=1
It follows that M,/ sy is smooth irreducible, and
r—3
dim Mz vy = Y (r —i— 2)m; + dim Up. (6.5.1)
i=1
(Note dim 75" (2') = dim U% by (6.3.2).) Since
M)\ = U gM(:Elyv/) ~ La XZLG(I/’VI) M(z',v/);

geL?
M is smooth, irreducible, and open dense in M. Moreover,
dlm M)\ = dlm O(:E',v/) + dim/\/l(m/yv/), (652)

where O, v is the L-orbit of (2/,v') € LY, x (1.2 M, x M;Pl). We have

uni i=1

dim Oy vy = Sl dim O}, where O} is the GL(M,,)-orbit of (x;,v;) for i =
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1,...,7—2, and O, _, is the GL(M
Prop. 2.8] and [SS1, Lem. 2.3],

;Pl)o—orbit of (zy—1,vr—1). Hence by [AH,
dim o — {7~ 2 ) for 1 <i<r—2
mo/, =
' 2m2  —2ml_; — 4An(A0TD £ A 4 2 A1) fori=r—1,
where m/._; = m,_1 + m,. This implies that

r—2
dim Oy vy = Y _mi +2m/” | —2m)_,

=1

(6.5.3)
—2n(A\) — 20\ 4 X)) Lo\
We have the following lemma.

Lemma 6.6. ]T}\ 18 an irreducible variety with

r—1
dim Fx = 2n% — 2n — 2n(A) — 2n(AC~D £ X)) 4+ Z(T’ —i+1)AD].

i=1
‘7?9\ is a smooth and open dense subvareity of ‘7?)\

Proof. Slnce ]T}\ " M x, and My is irreducible, .7-')\ is irreducible. Since
F = MA, and ./\/l)‘ is smooth and open dense in My, }")\ is smooth and

open dense in .7-'>\. We have dlm}")‘ = d1mH/P9 + dim M = dim UP + dim M.
Here

2dimUY = dim H — dim L’
r—2
= (2n% +n) (Zm +2m2 4+ ml_ >
i=1
Then by (6.5.1)—(6.5.3), we see that

dim Fx = 2n% +n — 3m’._,—2n(A) — 2n(A0~D 4 A7)

r—3
+ 3 (=i —2)m; + 2\,
=1

The lemma follows from this if we note that m; = [A?| for i = 1,...,r and
m,_y =my_1+m,. O
Proposition 6.7. Assume that X\ € Py, .. Let X be the closure of Xx in Xyni.

(1) Im ™\ — X)\.

(ii) 7% : FY — Xx gives an isomorphism F3 3 Xx.

(iii) X is smooth, irreducible, and

r—1 .
dim Xx = 2n% = 2n — 2n(A) = 2n(AU7D + X)) 43 "(r — i+ 1) A1),

=1

(iv) X is a locally closed subvariety of Xyni.
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Proof. 7 : ]?9‘ — Xy is H-equivariant, and surjective. Take (x,v) € My and put
z = (z,v,_1), 2 = 7p(2). Let O" be the L’-orbit of z’. Then

(7))@, v) ~ {gP’ € H/P | g~ (a,v) € Mr} C P. o,

where P, o is as in 6.2. By Proposition 6.3 (i), P..or = {P?}. By the definition
of Fx, (1)~ (z,v) contains P?. Hence we see that (79)~!(z,v) = {P?}. It
follows that 73 is a bijective morphism. The correspondence g(x,v) + gP? gives
a well-defined morphism from the H-orbit of (z,v) € My to H/P?. This induces
a morphism from Xy to .7?9\ It is easy to check that this gives an inverse of 73.
Hence ]?9‘ ~ X and (ii) holds. (iii) is immediate from (ii) and Lemma 6.6. By
(ii) Im wx contains X . Since my is proper, Immy is closed, hence Im 7y contains
X . We have dim ]?A = dim X by (iii), and Im 7y, X are irreducible. Thus (i)
holds. Here F. A\]?R is a closed subset of ]?A, and its image by 7 coincides with
XA\ Xx. Hence X\ X2 is closed. This implies that X is open dense in X x, and
so (iv) holds. The proposition is proved. O

6.8 Assume that m € Q) .. We define a set P(m) by

Pm)= [ Pmk) (6.8.1)

0<k<m,_,

(see 1.6 for the definition of m(k)). For m € Q,, ,, let A(m) € P, , as in 5.8. As
an analogue of Proposition 5.9, we prove the following.
Proposition 6.9. Assume that m € QY .
(i) dim X, uni = dim X uni-

(11) Xm,uni - XA(m) _

(iii) Assume that p € P(m). Then X, C Xm uni-
Proof. We consider the surjective map ﬂgm) : ?’?m,uni — Xm,ui- Take z = (z,v) €
M, for p € P(m(k)). Then it follows from the construction of M,,, by replacing

z by its H-conjugate if necessary, that (z, B‘g) IS /’?m,uni. Hence z € X uni- Since
Xm,uni 1s H-stable, we see that X,, C Xmuni. This proves (iii). Put p = A(m).
By (iii) we have X,, C Xm uni- By (6.1.2),

r—1
dim /fmuni =20 —n+ Z(r —i)m;.
i=1

On the other hand, by Proposition 6.7, we have

r—1
dim X, = 2n% = 2n+ Y (r—i+1)m;
=1

r—1
=2n% —n+ Z(r —)m;.
i=1
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(Note that > — 1 m; = n since m;, = 0. ) Since X, is a closed, irreducible subset

of Xmuni With dim X = dim Xm uni, We conclude that dim Xm uni = dim X, uni
and X, = Xmuni. This proves (i) and (ii). O

6.10. For a fixed m € Q,, ,, let P be as in 6.2. For A € P(m), we consider the
L%-orbit O’ and H-orbit O as in 6.4. Since O’ is determined by X, we denote it
by O = O. We shall determine the type of O. For a partition v = (a,...,a) =

N~ ~ -~

k-times

(a*) € Pax of rectangular type, we define a double partition [v] € Par2 by [v] =
(a¥,a*"), where k' = [k +1/2],k"” = k — k’. In general, a partition v can be
decomposed uniquely as a sum of partitions of rectangular type

v =(a)™ + (a2)* + - + (a)*, (6.10.1)

where we write the dual partition v* as v* = ((k1)?, (k2)?2,..., (k¢)*) for k; >
ko > .-+ > ke > 0. We define [v] € P, 2 by

V] = [(a1)™] + [(a2)**] + - - + [(ar)™]. (6.10.2)
For a given A € P, ., we define [A] € P, 2 by
A] = [)\(1)] + [)\(2)] N [)\(T—Q)] + ()\(7'—1)’ )\(T)).

We have the following lemma.

Lemma 6.11. Let O be a unique H-orbit in G** x V such that O N 7' (O4) is
open dense in 5" (O4). Then O = Opy;.

Proof. We show that O[] satisfies the required condition. Take z € Oy}, and
z" € O). First we show that

dim Zy(2) = dim Z0(2). (6.11.1)

In fact, dim O} = >~ 12d1m (9/\( » +dim Op, where O ;) (vesp. Oy) is the GL(M,)-

orbit of type A (resp. GL(M pTil) -orbit of type (A=Y A(M)) corresponding to
O). We have

dim O}y = mf —m; — 2n(AD) for 1 <i<r—2,
dim O = 2m;2 ) = 2m;_y — dn(AT™D £ A1) 4 2 AT,

(The first formula is well known; see, e.g., [AH, Prop. 2.8 (4)]. The second one is
by [SS1, Lem. 2.3].) Hence

r—2
dim Zp0(2') =Y _(mi+2n(AXD))+3m;_; +4n(ATD + A 207V (6.11.2)

=1
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On the other hand, if we write [A] = (¢/,v"), dim Oy is given by a similar formula
as that for dim Of. Hence we have

dim Zg(2) = 3n + 4n([A]) — 2n(v/"). (6.11.3)
Here, for i = 1,...,7 — 2, we show the formula
m; + 2n(A?) = 3m; + 4n((AD]) = 2vw|, (6.11.4)

where we write [A(")] as (), ;)”). By the additivity of the n-function together
with (6.10.1) and (6.10.2), it is enough to verify (6.11.4) in the case where A\(*) is of
rectangular type. Assume that A\ = (a?*=1). In this case, m; = a(2k—1), V(] =
ak,n(A\?) = a(k — 1)(2k — 1) and n([]A\?]) = a(k — 1)2. Thus (6.11.4) holds. The
case where A} = (a?*) is dealt with similarly. Now by substituting (6.11.4) into
the formula in (6.11.2), and by comparing it with (6.11.3), we obtain (6.11.1).

In order to show the lemma, it is enough to see that Oy N ﬂ;l(ol)\) # & by
Proposition 6.3 (iii). First we show:

(6.11.5) Assume that r = 2 and m; = n,ms = 0. Then O N7p' (04) # 2.

In this case A = (A, @), [A] = [\(V]. We consider the variety Guni x V, and we
denote by Q¢ the G-orbit in Gun; X V' corresponding to § € Pa,,2. The map 7p
is naturally extended to a map 7p : Puni X V' — Ly X V. As explained in 6.4,
0N (G, x V) # @ only when € is of the form & = (¢/,¢") with ¢ = v/ UV, ¢ =
V" U, and in that case Q¢ N (GYL; x V) = O, ). Write [A] = (v, "), and
consider & = (v UV, v Uv"). In order to show (6.11.5), it is enough to see
that O¢g N 75" (04) # @. For simplicity, we assume that A() = (a?*71), ie., a
rectangular type. In that case, v/ = (a*),v” = (a¥~1). We shall take (z,v) €
Guni X V as follows. We fix a Jordan basis {u; ; | 1 <i <2k, 1<j<E+&'}of V
with respect to x, where z acts as (v —1)u; ; = u; j—1 with the convention u; o = 0.
We take v = u1 4 + U2k—1,4. Then (z,v) has type &€ = ((a®*), (a®*72)). We choose
a subspace W of V spanned by {u;; | 1 <i<2k—1,1<j<a}. Then W is an

z-stable subspace of V containing v such that x|y has type (a2¢71)
2%-1)

, and |V/W
has type (a . This implies, after rewriting {u; ; } by a suitable symplectic basis
of V so that W is a maximal isotropic subspace, that (z,v) € Qg N 75 (O4). In
the case where (V) = (a?*), we have & = ((a?*, (a?*)), and this case is dealt with
similarly (simpler). The general case is also discussed in a similar way, just by a
combination of those two cases. Thus (6.11.5) holds.

Next we consider the general case. Let V = V16 --®V,._; be the decomposition
of V into subspaces, where V; is the symplectic subspace spanned by {e;, f; |
pic1+1 < i <p;}fori=1...,7r—2 and V._; is the symplectic subspace
spanned by {e;, fi | pr—2 +1 < i < n}. We consider the #-stable subgroup L
of G containing L such that L ~ Gy X -+ X Gr—1 with G; = GL(V;). Hence
LO~GY x - xGP_ | with G =Sp(V;). Fori=1,...,r —2, let P; be a 6-stable
parabolic subgroup of G; such that its #-stable Levi subgroup L; is isomorphic to
GLp, X GL;,,. Let O, be the GL,,,-orbit in (GLyy, Juni as before. We regard it
as an LY-orbit in (G;)"0.. Let Oy be the GY-orbit in (G;); x V; corresponding

uni-* uni
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to [A®]. Then by (6.11.5), one can find z; € Opa N ﬂ;il(Of\m). Let O] be the
G?_,-orbit in (G,_1)"?, corresponding to (A"=D A(M). We choose 2,1 € O).
Since sz_f w;il(O’)\(i)) x O!_, is regarded as a closed subvarifzty of 75 (04), 2 =
(21, .., 2r—1) gives an element in 75" (04). z is contained in L'Y x V, and actually
z € Opy. Thus Oy N 7r131((9’)\) # . The lemma is proved. O

Corollary 6.12. For each A € Py, the map (z,v) — ((x,vr-1), (V1,...,0r_2))
gives an embedding Xx C Opx) X vr-2,

Remark 6.13.  Proposition 6.9 shows that UAEPn,T X covers a dense subset
of Xuni- However, it does not coincide with Xy,; in general. Also X)’s are not
mutually disjoint in general, as the following example shows. Assume that n = 3
and r = 4. Take A = (1%,1;—;—) and p = (1;1%;—; —). By definition and by
Lemma 6.11,

X = {(z,v1,02,v3) €GP x V3 | vy € Wi, 03 € Wa,vg € Wy,
(xlw,,v1) = type (1% =), (@w, ywy, v2) © type (15 -),
(Twyt jwysv3) © type (—5—), (z,v3) : type (2;1)
for some x-stable isotropic subspaces Wy C Wy of V'},

where vy is the image of va € Wa on Wy /Wi, and vs is the image of v3 € Wa on
W5t /Ws. Here Ws is a maximal isotropic subspace, hence Wit = Wy. Similarly,

X, = {(z,v1,v2,v3) € GO x V3 | vy € W], vy € Wy, vz € Wyt

(zlwr,v1) = type (1; =), (zwy wy,ve) © type (1% -),
(@lwgs ywy,vs) © type (= =), (z,v3) = type (2;1)

for some z-stable isotropic subspaces W] C W3 of V'}.

Here again W3 is a maximal isotropic subspace, and so Wit = Wi. We fix a
symplectic basis {e1, ez, es, f1, f2, f3} of V and define an action of z on V by
(x —1)e; = e;-1, (x — 1) fi = fiy1 for each i, under the convention eqg = f4 = 0.
Then # € G, and W = (e1, ea, f3) is an 2-stable maximal isotropic subspace of
V such that x|w is of type (21). Take vy = e1,v2 = ea,v3 = ea. Then (x,vy) is of
type (2;1). Put Wy ={eq, f3) and Wo = W. Then W; C W are a-stable isotropic
subspaces such that |w, is of type (1%), and z|w, w, is of type (1). Moreover,
v1 € Wi,v9 € Wo,v3 € W2l = Ws. One sees that (x,v1,v2,v3) € Xx. On the
other hand, put W{ = (e;), and Wj = W. Then W| C W} are z-stable isotropic
subspaces such that x|y, is of type (1), and zy; w; is of type (12). Moreover,
vy € Wi, va € Wi, v3 € Wit = WJ. Also we have (z,v1,vs,v3) € X,,. It follows
that Xx N X, # @.

6.14. The unipotent variety of enhanced type considered in Section 5 can
be interpreted as a closed subvariety of the variety defined in 1.2. So we follow
the setting in 1.2, and consider the varieties Xy, Xm as in Section 4. Then the
varieties Xm uni; Xm,uni defined in 5.2 can be identified with closed subvarieties of
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é’?m, X, defined by similar formulas as in 6.1. We shall reformulate X defined
in Section 5 so that it fits with the discussion in the exotic case.

First we consider an analogue of Propostion 6.3 in the enhanced case. Assume
that » > 2, and take m € Q,, .. Let P be a #-stable parabolic subgroup of G such
that P? is the stabilizer of the flag (M,,)1<i<, in V. Let L be the f-stable Levi
subgroup of P containing T'. In contrast to 6.2, we put Vi, = V. We consider the
map 7p : PO x V — LY. x Vi, (z,v) — (2/,v), where 2’ = p(x) for the natural

uni uni
projection p : P9 — L9, We define 0,0’ and P, o as in 6.2. The following

result can be proved word by word following the proof of Proposition 6.3. Note
that in the enhanced case, dim U2 = dim U¥.

Proposition 6.15. Assume that Xuni = G0, x V is of enhanced type. Then

similar statements (1)—(vi) as in Proposition 6.3 hold for Xyn;.

6.16. Let P be as in 6.14. For A € P(m), by imitating the definition of My
in 6.4, we define a subset My of P9, x H;:ll M, as the set of (x,V) satisfying
the following properties. Take (z,v) such that x € P, and that v; € M, for
i=1,...,r—1. Put M,, = M,,/M,, ., and let v; € M, be the image of v; for
each i. We assume that the GL(M,,)-orbit of (x\Mpi,vi) in GL(M,,) x M,, has

type (\), @) for each i. We further assume that

(6.16.1) ON7p'(O') is open dense in 75" (O'), where O is the H-orbit of (z,v)
in G, x V and O’ is the L%-orbit of (p(x),v,_1) € L' x V.

uni uni

We define X} by X} = UgeH gMx. My is a PP-stable subset of P*? x V71,
In the following lemma, X)O\ is as defined in 5.10.

Lemma 6.17. For each A € P, ., we have X)O\ C X;\, hence X y = X/)\.

Proof. Take (z,v) € Xx. By definition in 5.3 together with induction on r, one
can find an isotropic flag (W;) such that W; is a-stable and that v; € W;. By
replacing (x,v) by an H-conjugate if necessary, we may assume that W; = M,
for each i. Then ([, ,v;) has type (AD, @) for i = 1,...,7r — 1. If we further
assume that (z,v) € X3, then (z,v,_1) has type (A 4. 4 AT=D A and we
see that the condition (6.16.1) is satisfied. Thus (x,v) € X4, and we have X§ C
X4. Since X§ is open dense in X by (5.10.3), we have Xy C X/)\. Conversely,
assume that (z,v) € Xj5. Then there exists an isotropic flag (W;) satisfying
the following properties: Wj is a-stable, v; € Wy, and x|w, /w,_, has type A for
i=1,...,7—1. Moreover, since OxN7p" (0} ) is open dense in 75" (O4), (z,v,—1)
has type (A 4. £ AC=D A()) In particular, x|y w,_, has type A7) Tt follows
from Proposit/ion 5.16 that (z,v) € Xx. Hence X} C Xy, and so X/)\ C Xx. We
have Xy = X, as asserted. [

Remark 6.18.  In general, X}’s are not mutually disjoint, hence X} does not
coincide with X. In fact, assume that n = 3,7 = 3, and put XA = (1%;1;—), u =
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(1;1%—) € P3,3. We have:

X5 = {(x,v1,v2) € Guni x V* |01 € Wi, ve €V, (x,v2) : type (21;—),
(I|W1av1) : type (12; 7)3 (I|V/W171)2) : type (1; 7)7
for some z-stable subspace W; of V'},

X, = {(z,v1,v2) € Guni ¥ V2| v € Wi, v €V, (z,v2) : type (21;—),
(zlwy,v1) = type (1 =), (zvywy, v2) : type (1% -),

for some z-stable subspace W] of V}.

Then by a similar argument as in Remark 6.13, we see that X3 N X;, # 9.

6.19. As in the exotic case, we defnie a variety .7-')\ = H xFP /\/l)\, where My
is the closure of My in P*Y x V"1, Then the map 7} : Fa— X)\ is defined as in
6.4. (Here we use the notation 7} to distinguish it from the map 7 : XA — X
in 5.5.) We also define a subset .7?)0\ of Fa by ]?9\ =H x’ M, and let 7 be the
restriction of 74 on .7?9\ The following result can be proved by a similar way as
with Proposition 6.7.

Proposition 6.20. Assume that X is of enhanced type. For each A € Py, .,
(i) Im7y = Xy = Xa.
(ii) 7y : FY — X4 gives an isomorphism Fy ~5 X4
6.21. In the remainder of this section, we assume that X is of exotic type or

of enhanced type. We follow the formulation in Section 1. Put B = H/B?. For
each z = (2,V) € X uni, Put

B, = {gBe e B g legeU? g v e M;‘l},

r—1
Bgm) = {gBG eB ’ g legeU¥ g v e H M }
i=1

In the exotic case, B, is a closed subvariety of B, which is isomorphic to the

fibre 77 (), and is called the Springer fibre of z. B™ is a closed subvariety of B,

isomorphic to (7r£m))_1 (z), which we call the small Springer fibre. In the enhanced

case, we only consider the Springer fibre Bi"‘) as already defined in 5.18.
We fix m € Q,, . For an integer d > 0, we define a subset X (d) of X uni by

X(d) = {2 € Xmuni | dim BM™ = q}. (6.21.1)
Then X (d) is a locally closed subvariety of Xm uni, and Xm uni = Hdzo X(d). We
consider the Steinberg varieties Z(™) and Zl(m) as follows:
Zzm) — {(2,9B%, ¢B®Y c X x Bx B | (z,9B°) € Ko, (z,¢'BY) € /'?m},
Zl(m) ={(2z,9B%,¢'B?) € Xuni x Bx B| (z,¢9B%) € /’?m,uni, (z,g'B%) /'?m,uni}.
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Recall that W = Ng(T?)/T? is the Weyl group W, of type C, (respectively
Sp) in the exotic case (respectively in the enhanced case). In the exotic case,
we assume that m € QY . while in the enhanced case, we consider an arbitrary

n,r’

m € Q, .. We define a subgroup W2, of Ng(T?)/T? by
Wi = Sy X oo X Sy X Wi, (exotic case), (6.21.2)
Sy X oo X S (enhanced case).

We show the following lemma.

Lemma 6.22. Under the notation of 6.21,
(i) dim Zl(m) = dim X uni- The set of irreducible components of Zl(m) with
mazimal dimension is parametrized by w € WE .
(ii) dim Z2(™) = dim Zl(m) +mn. The set of irreducible components of Z™) with
mazimal dimension is parametrized by w € thn
(iii) Assume that X (d) # @. For any z € X(d) we have

dim BI™ < 1 (dim X, uni — dim X (d)).

In particular, 7™ is semismall with respect to the stratification Xn,uni =
[1, X (d).

Proof. Let p; : Zl(m) — B x B be the projection on the second and third factors.
For each w € W, let O,, be the H-orbit of (B?, wB?) in B x B. We have B x B =
Hycw Ow. Put Z,, = pl_l(Ow). Then Z,, is a vector bundle over O,, ~ H/(B% N

wB%w™!) with fibre isomorphic to

r—1
U NwUPw™) x ] (M, nw(My,)).

i=1

First we consider the exotic case. We identify W with a subgroup of S5,, which is
the stabilizer of the element (1,n+1)(2,n+2) - - (n,2n). Let b,, be the number of ¢
such that w™!(e;) € M, i.e., w™'(i) € [1,n]. Then we have dim(U* NnwU*w~1) =
dim(U? NwU%w=1)—b,,. Also we have dim (M, Nw(M,,)) = b,,. By our assumption
M, _, = My, we have

r—2
dim Z,, = dim H — dim 7% + > dim(M,, N w(M,,)).

i=1

Here dim(M,,, Nw(M,,)) = t{j € [1,pi] | w™'(j) € [1,pi]} < pi, and the equality
holds if and only if w leaves the set [1, p;| invariant. It follows that dim Z,, takes
the maximal value 2n2 4+ 72 p; if and only if w € W,. Since

r—2 r—1
S =t Sl
i=1 i=1
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(note that m, = 0), in that case dim Z,, = dim X uni by Proposition 6.9 together
with (6.1.1). Since {Z., | w € W, } gives the set of irreducible components of Zl(m)
with maximal dimension, (i) follows. In the enhanced case, a similar computation

shows that

r—1
dim Z,, = dim H — dim T + ) " dim(M,, Nw(M,,))

=1

for w € S, (note that in this case dim(U* N wUw™!) = dim(U? N wU%w™1)),
and dim Z,, takes the maximal value n? —n 4+ Y./—| p; if and only if w € WY,
Since Z;:ll P = Z:;ll (r —4)m;, in this case dim Z,, = dim X uni by Proposition
5.9 (ii). Hence (i) holds also in the enhanced case.

For (ii), we consider Zw = p~H(Oy), where p : Z™) — B x B is the projection
on the second and third factors. Then ZU is a locally trivial fibration over O,
with fibre isomorphic to

r—1
7 x (U nwU%w™") x [[ (M, nw(M,,)). (6.22.1)

i=1

Hence (ii) is proved by a similar argument as (i).
We show (iii). Let ¢ : Zl(m) — Xm,uni be the projection on the first factor. For
each z € X unis ¢; " (2) = Bi"‘) X Bgm). By (6.21.1), we have

dim ¢; 1 (X (d)) = dim X (d) + 2d.

Since dim ¢y (X (d)) < dim 2™ = dim X uni, we see that 2d < dim X uni —
dim X (d). This proves (iii). The lemma is proved. O

7. Springer correspondence

7.1. In this section, we assume that X is of exotic type or of enhanced type.
We shall prove the Springer correspondence for X,,;. However, the method used
in [SS1], which is based on an evaluation of the number of irreducible components
of Springer fibres (see [SS1, Lem. 2.5]), does not work well for the case where
r > 3. Instead, we apply the method used by Lusztig [Lu] to prove the generalized
Springer correspondence for reductive groups, which makes use of the Steinberg
map. We follow the notation in Section 1. In the exotic case, let w’ : G — T'/Sa,
be the Steinberg map with respect to G. Then we have Z = T*/S,, < T/Sa,,
where S, is embedded in Sa, as a subgroup of the centralizer of (1,n + 1)(2,n +
2)--+(n,2n). In the enhanced case, let w’ : G — T/(S,, X Sy,) be the Steinberg map
and consider = = T*/S,, < T/(S,, x S,). In either case, we denote by w the map
GY — Zinduced from w’. Take m € Qn.r, and consider the map (m) . /'?m — Xm
as in 1.1. Let Z(™) be the Steinberg variety with respect to 7™ defined in 6.21.
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We denote by ¢ the natural map Z(™) — X,,. We define a map & : Z(m) — 7
by (x,v,g9B?, ¢'B?) — pr(g~'2g). Then we have a commutative diagram

Z(m) a > T

® wr
v w
Xm >

[11 <

)

where @ is the composite of the projection Xy — G with w, and wy is the
restriction of w on T*?. Note that wr is a finite morphism.

As in 6.21, we assume that m € Q) . in the exotic case, while we consider
arbitrary m € Q,, , in the enhanced case. Recall that d,, = dim X uni, and put
o = wr o a. We define a constructible sheaf 7 on = by

T = H¥m(0,Q)) = R0\ Q;. (7.1.1)

Recall the definition of perfect sheaves in [Lu, 5.4]. A constructible sheaf £ on
an irreducible variety X is said to be perfect if £ coincides with an intersection
cohomology complex (reduced to a single sheaf on degeree zero) on X, and the
support of any nonzero constructible subsheaf of £ is X.

The following gives examples of perfect sheaves.

(7.1.2) If 7 : Y — X is a finite morphism with Y smooth and if £’ is a locally
constant sheaf on Y, then £ = w,.£’ is a perfect sheaf on X.

(7.1.3) f0 = & — & — & — 0 is an exact sequence of constructible sheaves on
X, with &1, &3 perfect, then & is perfect.

As in Section 6, let W = Ny (T%)/T?) be the Weyl group of H. We show the

following lemma.
Lemma 7.2. The sheaf T is a perfect sheaf on =.

Proof. Under the notation in the proof of Lemma 6.22, we consider Z,, = p~! (Oy)
for each w € W. Let o, be the restriction of o on Z,,, and put 7, = H2%m (0w )1Qu).

We also put o, as the restriction of & on Zw. Let WE. be the subgroup of W given
in (6.21.2). We show that

0 otherwise.

In fact, since Zw — Oy is a locally trivial fibration with fibre isomorphic to
(6.22.1), we see that a, is a locally trivial fibration with fibre isomorphic to

r—1
H x (B nwB’w™) <(UL9 meLowfl) « H(Mpi N w(MpJ)) (7.2.2)

=1
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By the computation in the proof of Lemma 6.22, we see that dim o' (s) < di, for
any s € T*%, and that the equality holds if and only if w € W4,. Moreover, in that
case, each fibre is an irreducible variety. It follows that

~ Ql ifwe WEnv

RQd;“(Ozw)!Ql ~ { (723)

0 otherwise.

Since wr is a finite morphism, we have R*m(5,)!Q; ~ R(wr)iR2%m (0,)1Qy.
Thus (7.2.1) follows from (7.2.3).

Since wy is a finite morphism, (7.2.1) and (7.1.2) imply that 7, is a perfect
sheaf if w € W4 . By (7.2.2), each fibre a;,!(s) is a vector bundle over O,,. In
turn, O, is a vector bundle over H/B? with fibre isomorphic to U? NwU%w='. Tt
follows that H(c'(s), Q) = 0 for odd i. This implies that R2m~1 (0, )1Q; = 0
for w € thn Now thn is a parabolic subgroup of W, and the closure relations for
Ow(w € WE)) are described by the Bruhat order on W4,. Tt follows, by a similar
argument as in [Lu, 5.4] by using the property (7.1.3), we see that T is a perfect
sheaf on Z. The lemma is proved. [

Proposition 7.3. T ~ @, .t Tw as sheaves on =.
m

Proof. Put Ereg = wr(T¢E,). Then Zyeq is an open dense subset of Z. Since 7 and
., Tw are perfect sheaves on Z, it is enough to show that their restrictions on
Ereg are isomorphic. Put Z(gm) = 0" !(Ejeg). Then Zém) ~ Vm Xy, Y. Let g be
the restriction of o on Zém), which is a composite of the natural map Zém) — Vm
with the map Ym — 2. The restriction of 7 on E,¢ is isomorphic to R%dm (00)1Qu.

Put

r—1

M’ = H(M[piflﬂypi] + M,, ).
i=1

Then M coincides with Myo for I° = (I?,... 1) in 1.3, where I? = [p;_1 + 1, p;].
Put jb = 3710 in the notation in 1.3 (see also 4.1). Under the isomorphism (1.2.2),
)’ is regarded as an open dense subset of V. Put 2’ = )P Xyo )’ and let
o, be the restriction of oy on Z°. For each w € W, let oy be the restriction
of o, on Z°(w) = Z° N Z,. Note that Z°(w) = @ unless w € W2,. Now Z” is
an open subset of Z(gr_n) and the inclusion map 2’ < Zém) induces a morphism
R'(0,)1Q; — R'(00)1Qy for each i. Similarly, we have a morphism R'(0}’)iQ; —
Ri(o¥)1Q, for each w. We have

R* % (0,),Q1 2 R (00)1Q, (7.3.1)
R2d;’"(0;0)!Ql SRQdQ(Jé“);Ql for w € WE .

We show (7.3.1). Let ayp : Zém) — T be the restriction of & on gém), and off
the restriction of ag on Z,,. We also denote by a, (resp. «}”) the restriction of o on

2" (resp. on Z”(w)). From the computation in the proof of Lemma 7.2, we know
that the map R?*m(a*)1Q; — R*m (af')Q is surjective. For any I C Z(m’) with
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m’ < m, . we consider tr : 371%))0/ as in 1.3. For each I,J € Z(m'), put 213 =
Vi Xy yJ under the inclusion 9, < V. Note that Zy 53 = @ unless J = w(I)
for some w € W4,. We have a partition Z(g = [ 5 21,3 by locally closed subsets

Z1,3, and Zb coincides with Zyo 10. Let Z; be the complement of Zbin Zém), and
put Z; (w) = 21N Z,. Hence Z; = [1, Z1(w). Again, by a similar computation as
in the proof of Lemma 7.2, we see that dim a'(s) N Z;(w) < di, for any s € T*.
This implies that R2%m () Q =~ R2m(a),Q;. By applying R%(wr); on both
sides, we have R2%m (c)Qr ~ R (0),Qy for any w € WE,. This proves the
second statement of (7.3.1). By considering the long exact sequence arising from
the stratification Zém) =11, (Zém) N Zy), we obtain the first statement. Thus
(7.3.1) holds.
By (7.3.1), the proof of the proposition is reduced to showing

R¥=(0,) Qi ~ P R (0i)Qu. (7.3.2)
wEW,”n

Note that in this case the natural projection ¢, : Z° — VY is a finite Galois
covering. (This is clear in the enhanced case. In the exotic case, since m, = 0,
we have I} = @. Hence J~Jb — y}; is a finite Galois covering.) Also note that
Z’(w) = @ unless w € WE,. In that case, Z°(w) is an open and closed subset of Z°
since ¢, is a finite Galois covering. We have a decomposition 2° = pews 2°(w)
into open and closed subsets. This implies that

(Ub)!Ql ~ @ (UEU)IQL (733)
wGWEn
Hence (7.3.2) holds. The proposition is proved. [

7.4. By the Kiinneth formula, ¢,Q; ~ ﬂ'!(m)Ql ®7T1(m)Ql. By Theorem 3.2 and
Theorem 4.5, W!(m)Ql has a natural structure of W4 -module. Hence ¢1Q; has a
structure of Wi x W2 ~module. It follows that 7~ = H2%m (0,Q;) ~ H2m (@ (01Q;))
has a natural action of W5, x WE,. Under the decomposition of 7~ in Proposition
7.3, the action of W2, x W, has the following property. For each wy,ws € WY,

(wy,ws) - Toy =T, . (7.4.1)

In fact, since T is a perfect sheaf by Lemma 7.2, it is enough to check (7.4.1) for the
restriction of 7 on Eyc,. Here (<Pb)IQl has already a structure of WEH X Wﬂ]—module.
Hence by (7.3.1), it is enough to check a similar property for the corresponding
decomposition of (i, )1Q; in (7.3.3) (note that o, = Woy,). But this can be verified
directly from the discussion in 7.3. Hence (7.4.1) holds.

Let ag be the element in = corresponding to the S,-orbit of 1 € T* and T,
be the stalk of T at ag € Z. By Proposition 7.3, we have a decomposition

7:10 = @ (720)&07
wEWh,
where (T )a, is the stalk of Ty, at ap. WE, x Wh, acts on Tg, followmg (7.4.1
(7.2.1), Tw ~ (wr)Qu. Since wy Yag) = {1} C TLa (Tow)ao =~ HO(wp' (ag),
Q;. Thus we have proved

1. B
Q)
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Proposition 7.5. T, has a structure of W5, x W -module, which coincides with
the two-sided regular representation of W3,.
The following lemma is a variant of [Lu, Lem. 6.7].
Lemma 7.6. Let A, A’ be simple perverse sheaves on Xm uni- Then we have
1 if A~ D(A),
0  otherwise,

dim HY (X,uni, A® A') = {

where D(A) is the Verdier dual of A.

Proof. Assume that A = IC(X,&)[dim X] and A’ = IC(X',&")[dim X'], where
X, X" are smooth irreducible subvarieties of Xmuni and £ (respectively &') is a
simple local system on X (respectively on X’). We have H? (X uni, A @ A') ~

HO(X N X', A® A"). First assume that X # X , and put ¥ = X N X . We show
HY(Y,A® A") = 0. (7.6.1)
For this, by using the hypercohomology spectral sequence, it is enough to show
the following.
(7.6.2) If H(Y,H/A® I A’) # 0, then i + j 4+ j' < 0.
We show (7.6.2). Suppose that H:(Y,H/ A ® H7 A’) # 0. Put

Y; j» = supp H? A N supp H'A CY.

We have Hi(Y; 1, HIA ® HI'A') ~ HI(Y,H/A ® HI'A') # 0. It follows that
i <2dimYj} ;.. By using the property of intersection cohomology, we have

dim Y ;» < dimsupp HIA< —j,
dimY; ; < dimsupp H’ A’ < —j

and so
j < —dimYjj, < —dimY; ;. (7.6.3)

Since X # X/, we have dimY < dimX or dimY < dimX’, and one of the
inequalities in (7.6.3) is a strict inequality. It follows that ¢ + j + j° < 0. Hence
(7.6.2) holds and (7.6.1) follows.

Next assume that X = X . We may assume that X, X’ are open dense in X.
By replacing X, X’ by X N X', if necessary, we may assume that X = X’. Put
Y = X\ X. We show that

H (Y, A2 A)=0and H; ' (Y,A® A') =0. (7.6.4)

As in the previous case, we consider the hypercohomology spectral sequence.
Suppose that H:(Y,H’A @ H7 A") # 0. We may replace Y by Y;;, where

Yj =Y Nsupp H? A Nsupp HI A’. Then we have i < 2dim Y} ;, and we obtain
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a similar formula as (7.6.3), but in this case, both of them are strict inequalities
since dimY < dim X. It follows that ¢ + j + 7' < —1. This proves (7.6.4). By
using the cohomology long exact sequence with respect to Y = X\ X, we see that

HYX, A A)~HYX,A® A') ~ H29mX(X £ &).

The last space is isomorphic to Q; if £ ~ £V, the dual local system, and is equal
to zero otherwise. Since D(A) = IC(X,&Y)[dim X], the lemma is proved. [

7.7. We consider the map w%m) : )?m uni = Xm,uni- Put K1 = (7r1 ) Qi[d.,].

By Lemma 6.22 (iii), the map W%m) is semi-small. Hence Ky, ; is a semisimple per-

verse sheaf on Xy uni and is decomposed as

Kmi~ P Va® A4, (7.7.1)
A€Cm

where Cp, is the set of (isomorphism classes of) simple perverse sheaves appearing
in the decomposition of Ky, 1, and V4 = Hom(Km 1, A) is the multiplicity space
for A. We have the following.

Proposition 7.8. Under the notation as above, put m4 = dim Vy for each A €
Cm. Then we have
5 i -

A€Cm

Proof. By the computation in 7.4, we have

Taw = Ho™ (X i, (10™),Q @ (7™, Qu)
=~ H(C)(Xm,unh Km,l ® Km,l)-

Hence by (7.7.1), we have

dim 7,, = Z (mAmA/)dlmH( Xonumi, A @ A).
AA E€CH

By Lemma 7.6, HY(Xm uni, A @ A’) # 0 only when D(A) = A’ in which case,
dim HY(Xm uni, A® A’) = 1. But since Ky 1 is self dual, ma = mp(a) for each A.
It follows that dim 7, = ZAeCm m?. On the other hand, by Proposition 7.5, we
have dim 7, = [W%,|. This proves the proposition. ]

7.9. Since w!(m)Ql is equipped with the V\/En—auction7 for each z = (z,v) € Xm,
Hi((™))=1(2),Q;) turns out to be a Wi -module. In the case where zo = (1,0),
(7)) =1(29) ~ H/B? and so H*(H/B?,Q;) has a structure of W2 -module. Note
that W, is a subgroup of W, (respectively of S,,) in the exotic case (respectively
the enhanced case). It is well known that the Weyl group W, (respectively S,,) acts
naturally on H*(H/B?,Q;), which we call the classical action of W,, (respectively
Sy) on it. We have the following lemma.
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Lemma 7.10. The action of W5, on H'(H/B% Q;) coincides with the restriction
of the classical action of Wy, (respectively Sy,) on it in the exotic case (respectively
the enhanced case).

Proof. First assume that Xy, is of exotic type. Put m’ = (0,...,0,n,0) € Q?«L,r.
Then Vm' C Vm, and Xy C X (in fact, Yy = {(2, V) €Y |1 =  =vp_0 =
0} and similarly for Xg). We have Wi, = W,,. In this case, z/)!(m)Ql|ym/ ~
z/;l(m/)Ql, and ﬂ!(m)Ql|Xm, ~ ﬂ!(m/)Ql. It follows from the construction that the
action of Wi, on z/;l(m)Ql| y,,, coincides with the restriction of the action of WEH, ~
W, on 1/J!(m/)Ql. Hence a similar fact holds also for ﬂ!(m)Ql. In particular, the
Wi -action on HZ_ (w!(m)Ql) coincides with the restriction of the thn,—action on

'Hio (w!(m/)Ql). Here Xy ~ G x V, and w!(m/)Ql is isomorphic to mQ;, where

m:X = X =GY x V is the map defined in 1.2 for the case r = 2. The complex

mQ; was studied in [SS1], and one sees that the action of thn, on W!(m/)Ql is
nothing but the W,-action on mQ; constructed in [SS1]. It induces a W,-action
on H'(H/B%, Q;), which is called the exotic action of W,,. Hence in order to prove
the lemma, it is enough to see that the exotic action and the classical action of W,
on H'(H/B? Q) coincide with each other. But this is proved in [SS1, Lem. 5.2].
Hence the lemma is proved in the exotic case.

Next assume that Xy, is of enhanced type. In this case, we consider Vm' C Vm
and Xpm/ C Xm for m’ = (0,...,0,n) € Q, . Then Xy =~ G* x V, and as in
the exotic case, the proof is reduced to the case where r = 2. So we consider
X =GxV for G=GL(V) and let 7 : X — X be the corresponding map. We
have an action of S,, on H(G/B,Q;), called the enhanced action of S,,, obtained
from the S,-action on mQ;. One can prove that the enhanced action coincides
with the classical action, by a similar (but simpler) argument as in the proof of
Lemma 5.2 in [SS1]. Hence the lemma holds for the enhanced case. [

7.11.  We keep the assumption as before. By applying Theorem 3.2 and
Theorem 4.5 to the case where £ = Qy, one can write

Qi ~ P po K, (7.11.1)
pEWENA

where dy = dim Xy, K, is a simple perverse sheaf on &y, as given in Theo-
rem 3.2 and Theorem 4.5. More precisely, if Xy, is of exotic type then K, =
IC(Xm(k), Lo, ) [dmwy] for p ~ Vi with py € Wir)» and if X is of enhanced
type then K, = IC(Xm, L,)[dm]. We consider the complex (ﬁ%m))ng[d;n], where
Ay = dim Xy uni- The following result gives the Springer correspondence with

respect to the action of W4,. In the exotic case, this result is regarded as a weak
version of the Springer correspondence.

Theorem 7.12 (Springer correspondence for thn) Let Xy, be of exotic type or
of enhanced type for m € Q,, .. In the exotic case, assume further that m € Q?l,r.
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Then (ﬂ%m))le[d{m] is a semisimple perverse sheaf on Xmuni equipped with WS, -
action, and is decomposed as

(™ Qild] =~ @ p@ Ly, (7.12.1)
PEWi)N
where L, is a simple perverse sheaf on Xm uni such that
Kp| X um = Lpldm — dp]. (7.12.2)

Proof. As discussed in 7.7, K1 = (7r1 ) Q[d.,] is a semisimple perverse sheaf.
Since Ky, is the restriction of (71'(“‘)) Q; on Xpm uni; Km,1 has a structure of
WE, ~module. Thus we can define an algebra homomorphism

QW] % End Ky 5 End H*(H/B’, Q).
In order to show (7.12.1), it is enough to see that « gives an isomorphism
a: QW] X End K 1. (7.12.3)

We show (7.12.3). We assume that X, is of exotic type. The proof for the
enhanced case is similar. foa is a homomorphism induced from the action of 4N
on H*(H/B%,Q;). By Lemn}a 7.10, this action is the restriction of the classical
action of W,, on H*(H/B? Q). Since H*(H/B’, Q;) ~ Qi[Wy] as Wy,-module,
with respect to the classical action, Q;[W,] — H®*(H/B? Q) is injective. Hence
B o « is injective. It follows that « is injective. On the other hand, Proposition
7.8 implies that dim End K, 1 = |W,|. This shows that « is surjective, and so
(7.12.3) holds.

(7.12.2) now follows easily by comparing (7.11.1) and (7.12.1). The theorem is
proved. [

7.13. We now return to the setting in 1.6, and consider the complex reflection
group Wy, .. For each m € QY ., we denote by (W,),)m the set of irreducible

representations Vp (up to isomorphism) of W,, , obtained from p € Wﬁl(k) for
various 0 < k < m,_1 as in 1.6. Then we have

Wi, = T W) )m. (7.13.1)

meQy .

It follows from the construction of 17,) and of Vph, there exists a natual bijection
between (W, )m and (WE,)". We denote by V(p) the irreducible representation
of W, - belonging to (W/\,)m corresponding to p € (W5,)". Now assume that X,
is of exotic type. We cons1der the map 7y : 7 1(Xm) — Xm, and the complex
(7m)1Qi[dm] as in 2.1. Then by Theorem 2.2, (7 )1Q;[dm] is a semisimple perverse
sheaf equipped with W), ,-action, and is decomposed as

() Qildm] ~ B V(o) @ K, (7.13.2)
pG(Wh "
where K, is a simple perverse sheaf on Xy, given in (7.11.1). Let 10 7 (Xm,uni)
— Xm,uni be the restriction of 7y on X uni- Since mm 1 is proper, ﬂm’lQl[d;ﬂ]
is a semisimple complex on X uni- By applying (7.12.2), we see that 7y 1Q;[dL,]
is a semisimple perverse sheaf. As a corollary to Theorem 7.12, we obtain the
Springer correspondence for W, ;.
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Corollary 7.14 (Springer correspondence for W, ;). Assume that Xm is of ex-
otic type with m € Q%,r- Then Tm,1Qul[di] s a semisimple perverse sheaf on
Xn,uni with W, -action, and is decomposed as

(7Tm 1) Ql @ V

pe(W“ )~

where L, is a simple perverse sheaf on Xm uni as in Theorem 7.12, and V(p) is an
irreducible representation of Wi, . as defined in 7.13.

8. Determination of the Springer correspondence

8.1. Assume that » > 2. In this section we shall determine L, appearing in
the Springer correspondence explicitly. For a fixed m € Q,, ,, we consider Xy, of
exotic type or of enhanced type. In the exotic case, we assume that m € ng
First we consider the case where Xy, is of exotic type. We define a variety G by

Gm = {(z,v, (W))1<i<r—2) | (x,v) € X, (W;) : isotropic flag in V,
dim W; = pi, x(W;) = Wi,v; € Wi (1 < i <7 —2),0,-1 € W)

Let ¢ : Gm — X be the projection to the first two factors. We consider the map
m(m) . X — Xm. Then 7™ is decomposed as

am) . /\?m LN Om i) Xm,

where ¢ is defined by (x,v, gB?) — (x,v, (¢M,,)1<i<r—2). The map ¢ is surjective
since m € QY . It follows that ((Gm) coincides with Xp,. Since m € QY ., we

have dim X, = dim X. This implies that dim Gm = dim Xm. Note that in the
case where 7 = 2, we have m = (n,0), and G = G x V = Xp. By modifying
the definition of Ky, in 2.5, we define a variety Hu, by

Hm = {(-T7V7(Wi);¢1,¢2) | (JT,V, (Wl)) €0m
b1 : Wi X Vo, o : Wit /Wy X Vg (symplectic isom.)},

where Vo = M, and V¢ = M]jl /M,,. We also define a variety Zm by

Zm = {(2,v,gB%, 61, 60) | (2,v,gB’) € X,
b1 g(Mp,) X Vo, ¢o 0 g(Myp, ) /g(My,) 2 Vo).

Assume that r > 3, and let m’ = (ma,...,m,) for m = (my,...,m,), and G1, G,
Ga, etc., be as in 2.5. X/, is defined for X}, in a similar way as Xy, is defined

m’7
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for Xpm. (Hence in the case where r = 3, X!, = G/, = GY x V.) We have the
following commutative diagram

C~v'1 X ./'E;l, < ° Zm > Xm
X! & ®
\ - \ q \
Gy x Gl < Hum > Gm (8.1.1)
id x¢’ ¢
v v
Gl X X7In’ Xma

where ¢, 0 are defined in a similar way as in 2.5, and

a: (x7v7gBo,¢1,q’)2) = ($7V79B0)a
@i (2,v,9B% 61, ¢2) = (2,v, (gMp, )1<i<r—2, b1, $2).

The map & is defined as follows. Let F?(V) be the set of complete isotropic flags
in V, and FY, the set of ((z,v), (V;)) € Xm x F?(V) such that (V;) is z-stable and
that v; €V}, fori=1,...,r — 1. Then F?f is isomorphic to Xy, and

Zm = {(I7V7 (‘/i)7¢17¢2) | (I’,V, (‘/Z)) € ffn,ébl : ‘/pl :)‘/OaQbQ : fo/‘/pl :>V0}
We define & : 2, — Gy X ./'E'm, by (z,v,(V;), d1, d2) — (&1, &2) with

& = (01(2)br Y, (61(Vi))i<p,) € G,
& = (62(2")d5 ", 62(V), (62(Vi/ Vi ))izpy) € X

where @' (respectively z”) is the restriction of  on V,, (respectively V;-/V,,),
v = (va,...,vy—1) with v; the image of v; on fo/‘/;n for v.= (v1,...,0.—1).
One can check that the squares in the diagram are both cartesian squares. Put
Hp = G1 x G§. Then as in (2.5.2) and (2.5.3), we have:

(8.1.2) ¢ is a principal bundle with fibre isomorphic to Hyp, and o is a locally
trivial fibration with smooth fibre of dimension dim H + (r — 2)m;.

8.2 For a fixed k, we consider the variety jll(k) = (¢<m>)*1(yg](k)) as in 3.3.
Let Gm(k),reg = g—l(yfn(k)) be a locally closed subvariety of Gm (not of Gy (x); note
that G (k) is not defined since m(k) ¢ Q) ). We define m'(k) = m'(r — 2, k)
similarly to m(k), by replacing m by m’. Then the varieties y;g,(k),j:],(k) and
g/

o/ (k) reg A€ defined similarly with respect to X},. The commutative diagram



EXOTIC SYMMETRIC SPACES 255

(8.1.1) induces a commutative diagram

=~ St Zt il
Gl,reg X ym’(k) = Zm(k) . m(k)
¥o

\ \ \

Gireg X Gpi(kyweg = Hmkyres > Gm(k)res (8.2.1)

Co

\ \
Gl,reg X y;g/(k) yﬁi(k)’

where Hp(k),reg = q_l(gm(k),reg)v Z~L(k) = (j_l(jiv:;(k)), and g, (o are restrictions
of ¢, (, respectively. Again, the squares in the diagrams are both cartesian.
By (3.3.1) we have a decomposition

1€Z(m) (m(k))
into irreducible components, where
I mk) ={IeZ(mk) | =12 A<i<r—2),I,_1,I, CI° }.

Let 91 be the restriction of the map 373;1(@ — ygl(k) on Y1 for each I € Z0™ (m(k))
as in 1.3. Under the notation in 1.3, the map 1 factors through Vi as Yr =mnroéy
(see (1.3.1)). We define a map n%m) ) — Gm(k),reg as the quotient of the map
(g,(t,v)) = (gtg~t,gv,(gM1r,)1<i<r—2). Thus 7 : Vi — ygl(k) factors through

gm(k),reg as nr = (o © n§m)

The variety y;jl,(k) is also decomposed into irreducible components as in (8.2.2),
by using the parameter set Z(™) (m/(k)). For I’ € Z™) (m’(k)), the varieties Y},
are defined with respect to X/,. Note that the set Z(™)(m’(k)) is in bijection
with the set Z(™ (m(k)) under the correspondence I’ «+ I = (I?,T'). Now the

commutative diagram (8.2.1) implies the following commutative diagram for each
IcZ0™ (m(k)):

Gl,reg X y{/ < Z1 > Wi
/ m
) ) (8.2.3)
\ \ \
/
G1reg X Gy (1) reg = Humn(k),reg > Gm(k) reg>

where 21 is the fibre product of Hp(x),reg and 371 over Gm(k),reg- Both squares in

the diagram are cartesian squares. By 1.3, we know that n1 : )i — yfn(k) is a
finite Galois covering with group Wi. Here we note that
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(8.2.4) 17§m) C YV — Gm(k),reg 18 a finite Galois covering with group Wi. In
particular, the restriction of (p gives an isomorphism G, (k) reg =% yfn(k).

In fact, this is clear in the case where r = 2, since Gy(1) reg = yfn(k). Assume
that » > 3, and that (8.2.4) holds for  — 1. By induction, nigm ). V1 = Gt (1) reg
is a finite Galois covering with group Wy,. Then 9} x nigm,) is a finite Galois
covering with group Sy, x W, = Wr. Since both squares in the diagram (8.2.3)
are cartesians, n%m) is a finite Galois covering with group Wy. Since 71 is also a
finite Galois covering with group Wi, we conclude that Gumk),reg = y&(k). This
proves (8.2.4).

Since 7y is a finite Galois covering with group Wi =~ Wiy, by (1.5.3) we have

()1 Qu =~ @ Po @ Ly,

pUEWQ](k)

where L,, is a simple local system on y&(k). We regard L,, as a simple local
system on G (k) reg Under the isomorphism G (i) reg ™ y&(k).

Now take p € (WE)". There exist a unique integer k and py € W&(k)
such that p = V2. Then we have K, = IC(Xmk), Lo)[dm]. Put A, =
IC(Gm(k)» Loo)ldm(k)]. A, is an H-equivariant simple perverse sheaf on G,
and we regard it as a perverse sheaf on G, by extension by zero.

We show the following fact.

Proposition 8.3. Assume that Xy, is of exotic type.

(i) ©1Qi[dm] is a semisimple perverse sheaf on Gm equipped with WY -action,
and is decomposed as

©1Qu[dm] ~ @ PR A,

PEWi)N

(i) GA, ~K,.

Proof. We prove the proposition by induction on r. In the case where r = 2,
m = (my,my) = (n,0) sincem € QY .. Thus G = A =X and p=7: X = X.
Moreover, ¢ is the identity map, and W5, = W,,. Hence the proposition follows
from [SS1, Thm. 4.2]. Assume that r > 3, and that the proposition holds for r — 1.
We know, under the notation of 2.6, that

M Qdim Gy~ P p1 @IC(Gy, L,,)[dim Gy]. (8.3.1)
p1 ESQL1
On the other hand, by applying the induction hypothesis to X} ,, we have
CQldw]~ @ P ®A,, (8.3.2)

pEWE )N
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where A, is a simple perverse sheaf on G, , defined similarly to A,. By applying

the argument in 2.6, one can find a unique H-equivariant simple perverse sheaf A,
on G,, such that

q"AylBe] = 0" (K, B Ay )[B1], (8.3.3)
where 1 = dim H + (r — 2)my, B2 = dim Hy, and K,, = IC(Gy, £,,)[dim G4].
It follows from the discussion in 8.2 that A, actually coincides with A,. Put
K = 0 Qi[dm], K’ = ¢|Qi[dm] and K" = (71),Q;[dim G4]. Since both squares in
(8.1.1) are cartesian, we have

q"K[Bo] ~ o™ (K" W K")[].

Combining (8.3.1), (8.3.2), and (8.3.3), we obtain

K~ @ pPRA,.
PE(Win)"
By this decomposition, K = @!Ql[dm] is regarded as a complex with Wlhm—action.
This proves (i).

Next we show (ii). Since ( is proper, (14, is a semisimple complex on X,,. By
(i), K = ¢1Qi[dm] is a semisimple perverse sheaf. Since (K ~ (7™),Q;[dpm] is
a semisimple perverse sheaf, it follows that (A, is a semisimple perverse sheaf.
By (8.2.4) we have CIAP'M‘;(M ~ K/)'yfi.(k)' Hence (1A, contains K, as a direct

summand. By applying ¢ to the formula in (i), we have
(™)), Qi [dm] =~ @ pRCGA,.
PEWin)"
By Theorem 3.2, we have
(Tr(m))!Ql[dm] ~ @ p@Kp.
PE(Wi)"
By comparing these two formulas, we obtain (ii). The proposition is proved. O

8.4. For each m S Q?L,'r? put gmuni = Cil(){m,uni)- Then the map W%m) is
decomposed as

m > ©1 C1
7T§ ) : Xm,uni — gm,uni — Xm,univ

where 1, (1 are restrictions of ¢, (, respectively. Note that ¢; is surjective. Put
Hmuni = ¢ (Gm.uni)- The inclusion map Gm uni <> Gm is compatible with the
diagram (8.1.1); namely, we have a commutative diagram

q

G x gllm/ < 7 Hm >Gm
A A A
(8.4.1)
g1 q1
Gl,uni X gllm’,uni < Hm,uni > gm,uni;
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where o1, ¢, are restrictions of o,q respectively, and vertical maps are natural
inclusions. A similar property as (8.1.2) still holds for ¢1, o1, and both squares are
cartesian squares.

For each A € P(m(k)), we define a subset Gx of G uni inductively as follows;
Write A = (AW, X)) with X' € Pr—my.r—1. Assume that the G§-stable subset G4 of
g{m,,uni was defined. Let Oya) be the G1-orbit in (G )uni corresponding to 2D and
put Z = Oya) xG4,. Then al_l(Z) is an Hy-stable subset of "y uni, and qlool_l(Z)
coincides with the quotient of oy (Z) by Hy. We define Gx by Ga = q1 0 07 *(2).
In the case where r = 3, m = (mq,mo,0) and m(k) = (mq, k, k') with k+ &’ = ma.
m’ = (m2,0) and G,/ ., = Ay, where X’ is the exotic symmetric space for r = 2
associated to Go. In this case, X = (A®) A®)) € P, 5, and we take Gy as the
GY-orbit in X’ ; corresponding to A’. Thus Gy is well defined, and Gx turns out

to be a smooth irreducible H-stable subvariety of Gm uni. By induction on r, we
show the following formulas:

r—1

dimGx = 2n” — 2n. — 2n(A) = 20\ 4 A 1Y " — i+ AP (8.4.2)

i=1
In fact, by (8.1.2), we have
dim Gy = dim Oya) + dim Gy, + (dim H + (r — 2)m;) — dim H. (8.4.3)
By applying the induction hypothesis for X', (with n’ = n — m;), we have
r—1
dim Gy, = 2n> — 20" — 2n(XN) — 20\ 4 AON) £ "(r — i+ 1) A,
i=2
and dim Oya) = m? — my — 2n(AW). Moreover, dim H = 2n? 4+ n, dim Hy =
m? + 2n'2 + n’. Substituting these formulas into (8.4.3), we obtain (8.4.2).
Let G be the closure of Gx in Gm uni. Recall Fy, ]-"9\ in 6.4. It follows from the
construction, Fy is a closed subset of Gm uni. We have the following lemma.

Lemma 8.5. Assume that Xy, is of exotic type.

(i) G coincides with ]?)‘. In particular, ‘7?9\ is an open dense subset of Gx.
(i) ¢1(Ga) = X, and (T H(Xa) = F3. Hence the restriction of (1 on ¢, *(Xx)
gives an isomorphism (7' (X) ~ X

Proof. By induction on 7, one can verify that ]T—}o\ C Gx. Hence Fx C Ga. By
Lemma 6.6 and by (8.4.2), dim Fx = dimGx. Since both are irreducible closed
subsets of G uni, we have Fx = Ga. This proves (i). Then the restriction of (3

on G coincides with the map mx : Fa — X . Hence (ii) follows from Proposition
6.7. O

8.6 Recall the set P(m) in (6.8.1) for each m € Q) .. It is well known that

(WE )" is naturally parametrized by the set P(m). We denote by px the irreducible
representation of W4, corresponding to A € P(m).
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For each A € P(m), let V/(A) be the irreducible representation of W, obtained
from px as in 7.13. Then we have

wh.~ ] Pm). (8.6.1)

meQy .
We have the following refinements of Theorem 7.12 and Corollary 7.14.

Theorem 8.7. Assume that Xm uni is of exotic type with m € Q%T

(i) Let L, be as in Theorem 7.12. Assume that p = px € (W3)" for X €
P(m). Then we have

Lp ~ IC(X)\, Ql)[dlm X)‘].

(ii) (Springer correspondence for W)
(M™)Qild] = P pa @ IC(Xa, Q))[dim Xa].

AeP(m)

(iii) (Springer correspondence for W, ,)

(ﬂ'ml Ql @ V(A ®IC X)\,Ql)[dlmX)\]
AEP(m)

Proof. By Proposition 8.3, we know that (1A, = K,. Hence, by the base change
theorem, (C1)1(Ap|gm i) =~ Kplxmun- For A € P(m(k)), we define a simple
perverse sheaf By on Gy uni inductively as follows: in the case where r = 2, put
Bx =1C(0x, Q;)[dim O,], where Oy is the H-orbit in G*?; x V corresponding to
. In general for A € P(m(k)), put A = (A, X) with |]AD| = mq, X € P(m’(k)).
We assume that a simple perverse sheaf Bys on G/ is already defined. By a

m’,uni
similar construction as Ap in the proof of Proposition 8.3, there exists a unique
simple perverse sheaf Bx on Gm uni satisfying the relation

q1 BA[B2] ~ 07 (K o) B Bx/)[B1],

where K1, = IC(Oya), Q;)[dim Oy )] for the GL,,,-orbit Oya) in (GL,y,, )uni cor-
responding to A1), and £, B are as in (8.3.3). Assume that p = px. By comparing
the construction of Zp and of By, and by using the induction hypothesis, we see
that the restriction of A, on Gm uni coincides with By, up to shift. Moreover, by
induction, one can show that the restriction of By on Gy is a constant sheaf Ql. In
particular, supp Bx = Gx. Then by Lemma 8.5, the support of (¢1)1Bx coincides
with X x. By (7.12.2), we know that the restriction of K, on Xy uni is a simple
perverse sheaf L,, up to shift. We show that

L, ~1C(Xx, Q;)[dim X]. (8.7.1)

For this it is enough to see that L,|x, is a constant sheaf Q;. But by Lemma 8.5
(i), ¢TH(Xa) = ]FQ\ C Ga, and the restriction of By on Gy is the constant sheaf
Q;, up to shift. Since ¢;*(X) ~ X by Lemma 8.5 (ii), we see that (¢1)1Bx|x,
coincides with Q; up to shift. Thus (8.7.1) holds, and (i) follows. (ii) and (iii)
then follow from Theorem 7.12 and Corollary 7.14. The theorem is proved. [
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8.8. We now assume that &' is of enhanced type with m € Q,, .. We define a
variety Gm by

Om = {(z,v,(W;)1<i<r—1) | (z,v) € X, (W;) : partial flag in V,
dim W, = pi,a:(Wi) =W;,v; e W; (1 <1 <r— 1)}
Let ¢ : Gm — & be the projection to the first and second factors. Then the
map 7™ : X, — X is decomposed as 7™) = ¢ o ¢, where ¢ : Xm — Gm, C :
Om — Xm are defined similarly to the exotic case. Here ¢ and ( are surjective
maps. Since dim Xy, = dim A}, by Lemma 4.2, we have dim Gy, = dim Xy,. Put
Vo = M,,, Vo =V/M,, . We define a variety Hm by

Hm = {($,V,(Wi),¢1,¢2) | ($’V7 (Wl)) € gm7
1 : Wi X Vo, 0 : V/W1 XV}

We also define a variety Zm by

Zm = {(2,v,gB’, 61, 02) | (x,v,gB’) € Xrm,
¢1 g(Mpl) :>‘/Oa¢2 : V/Q(Mpl)SVO}

Assume that r > 3, and let m’ = (ma,...,m,) for m = (mq,...,m,). Let G; =
GL(Vp) and Gy = GL(Vy) x GL(Vy) with the permutation action 6 : Gy — Gs.
Then G1, X, X}, etc., are defined similarly to the exotic case. Note that X7, is

a closed subvareity of G x VS_Q ~ GL(Vy) x VS_Q. Then a similar commutative
diagram to (8.1.1) holds also for the enhanced case. We use the same notation as
in (8.1.1). One can check that the maps ¢, o satisfy similar properties as in (8.1.2);
namely, we have:

(8.8.1) ¢ is a principal bundle with fibre isomorphic to Hyp, and o is a locally
trivial fibration with smooth fibre of dimension dim H + (r — 1)my. (It should be
noticed that the dimension of the fibre is different from the exotic case. Also note
in this case, Hy ~ GL(V)) x GL(Vy), and H ~ GL(V).)

8.9. Form € Q,,, put Vi, = (»™)~1(3%). Then under the notation in
4.1, JZL coincides with 371 for I = I*® in 3.3. In particular, g : 371 — ygl is a
finite Galois covering with group Wy = an )ZTH is an open dense subset of 37m.
Put Gmyreg = (TH(V2). Gmyreg is an open subset of Gp,. The varieties Y9, Al

m’

and Gy, . are defined similarly. As in the exotic case, we have the following

commutative diagram:

Gl,reg X yg,/ < ZI].Ln > yjn
Yo
\% % v
Gl,reg X gll‘n’,reg = Hm,reg > gmyreg (891)
Co
v v

Gl,reg X yll-g/ y&
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By using (8.9.1) and by induction on r, one can show that ¢ : jjn — Gm reg 15
a finite Galois covering with group W2,. It follows that:

(8.9.2) (p gives an isomorphism Gm reg ™% Vo

For each p € W4, we consider K, = IC(Xm, L,)[dm], where £, is a simple local
system on )9, obtained from the Galois covering WE,. We regard £, as a local sys-
tem on G reg under the isomorphism G reg ~ VO, Put A, = IC(Gm,regs £,)[dm]-

The following result can be proved in a similar way as Proposition 8.3, by
making use of Theorem 4.5, instead of Theorem 3.2.

Proposition 8.10. Assume that Xy, is of enhanced type.

(i) ©1Qi[dm] is a semisimple perverse sheaf on Gm equipped with W, -action,
and is decomposed as

01 Quld @ PR A,

pe<wh )"

()C’p*

8.11. For each m € Q. ,, put Gmuni = ¢~ (Xm,uni). Then the map 71_%m) is

decomposed as 7r§ m) _ (1 01 as in the exotic case (see 8.4), where ; : ./'Emuni —

Gm,uni and (1 : Gm uni — Xm,uni are restrictions of ¢, (. Note that ¢, is surjective.
Put Hmuni = qil(gmﬂmi). Then we have a similar commutative diagram as
(8.4.1).

For A € P(m), we define a subset Gx of G uni inductively, by applying the
discussion in 8.4 for the exotic case Note that in the case where r = 2, m =
(m1,m2) and m’ = (ma). Gm/ = In this case, we take G}, as the G% orblt in
X!, corresponding to A’ = A(?). Thus Gy is defined, and Gy is a smooth irreducible
H-stable subvariety of G uni.

As in the exotic case (see (8.4.2)), one can compute the dimension of Gy by
making use of (8.8.1). We have

un1

2

r—1
dimGx =n” —n —2n(A) + > _(r—i)]A7]. (8.11.1)

Recall the definition of Fx and .7-')0\ (in the enhanced case) in 6.18. The following

lemma can be proved in a similar way as Lemma 8.5. Note that dim F A =dim Gy
by Proposition 5.4 and Proposition 6.20, together with (8.11.1). We use Proposi-
tion 6.20 instead of Proposition 6.7.

Lemma 8.12. Assume that Gx is of enhanced type. A similar statement as in
Lemma 8.5 holds also for Gx, by replacing Xx by X}.

We can now obtain a refinement of Theorem 7.12 in the enhanced case. The
proof is similar to the proof of Theorem 8.7. Note that Thorem 8.13 (ii) is obtained
by Li [Li, Thm. 3.2.6] by a different method.

Theorem 8.13. Assume that Xm uni s of enhanced type.
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(i) Let L, be as in Theorem 7.12. Assume that p = px € (W2)" for X € P(m).
Then we have

Lp ~ IC()()\7 Ql)[dlm X)\].
(ii) (Springer correspondence for W¥,)

(7T§m))lQl[d;n] ~ @ P ® IC(X)U Ql)[dlm X)\]‘
AEP(m)

8.14. Assume that Xy, is of exotic type or of enhanced type, under the
setting in 8.1. For each z € Xy, we consider the (small) Springer fibre Bgm) =
(7(™))=1(2). In the exotic case, we also consider the Springer fibre B, = 7 (z)
(see 6.21). We have B™ B.. The cohomology group Hi(Bgm),Ql) has a
structure of W4 -module. In turn, H*(B.,Q;) has a structure of W, r-module.
Put dx = (dim X un — dim Xy)/2 for A € P(m) in the exotic case, and for
A € P(m) in the enhanced case. Explicitly, we have

(8.14.1)

s — (mp—1 — k) +nX)+nA=D LX) exotic case, A€ P(m(k)),
AT n(\) : enhanced case, A€ P(m).

As shown in the example in 5.17, dim Bgm) is not constant for z € X. We
show the following lemma.

Lemma 8.15. Assume that Xy, is of exotic type or of enhanced type.
(i) For any z € X, dimBgm) > dx. The set z € X such that dimBgm) = dx
forms an open dense subset of Xx.
(ii) For any z € Xx, H? (Bgm), Qi) contains an irreducible W2, -module px.

Proof. First we show (ii). Assume that Xy, is of exotic type. For any z € X uni,
Theorem 8.7(ii) implies that

HB™ Q)~ @ puoH =" 10(X,, Qi) (8.15.1)
WEP(m)

as W2 -modules. Assume that z € Xy, and put i = 2dx. Since HO(IC(Xx,Q;)) =
Q;, H?™ (Bﬁ“”, Q) contains px. This proves (ii). The enhanced case is proved in
a similar way by using Theorem 8.13 (ii).

(if) implies, in particular, dim B™ > dy. Put d = dim(r™)=1(X) — dim X.
Let X (d) be as in 6.21. Then X (d) N Xy is open dense in X. Hence dim X <
dim X (d). By Lemma 6.22 (iii), we have

dim B < 1(dim X, uni — dim X (d)) < L (dim X uni — dim Xy) = da

for any z € Xx N X (d). Hence dim BI™ = dy and d = dx. This proves (1. O

We show the following result. In the enhanced case, a similar result was proved
in [Li, Cor. 3.2.9] for the Borel-Moore homology.
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Proposition 8.16. Assume that Xy, is of exotic type or of enhanced type. Take
z € X such that dim Bgm) =dy.
(i) H?2» (Bgm), Qi) ~ px as WE,-modules.
(ii) Assume that Xm is of exotic type. Then dim B, = dx, and H*(B,,Q;) ~
V(A) as Wy, --modules.

Proof. We prove (i) by induction on r. Assume that r = 2. In the exotic case, (i)
holds by [SS1, Rems. 5.5 (ii)]. A similar method also works for the enhanced case,
since the number of H-orbits in X,y; is finite. Assume that r > 3, and that (i) holds
for r—1. We consider the diagram as in (8.1.1) restricted to the unipotent varieties
as discussed in 8.4. Put A = (A, \') as in 8.4. By (8.14.1), we have dy = dx' +
dyay, where dys is defined similarly to dx, and dya) = (dim Gq,uni — dim Oy )/2.
Take z € X such that dim Bgm) = dx. By Lemma 8.5 and Lemma 8.12, (; gives an
isomorphism ¢; ! (Xa) — Xx. Hence there exists a unique z, € ¢;'(Xx) such that
C1(2+) = z. Then by using the diagram (8.1.1), one can find (1, 2") € Oy x X},
and 2/ = ({{)7!(2) such that oy '(z1,2) = ¢, (2«). Here 2’ € X}, satisfies the
condition that dim B:(;n/) = dy. By using the isomorphism (¢})~(X},) 3 X}/, we
have

H (BS™ o 7Ql) (R (m)1Qu)» = (RN (0)1Qu) 2,

where () is the restriction of ¢’. Similarly we have the isomorphism H 2dx (B, B™) Qi)
(RQd*(gol) Ql)z* by using (7'(Xx) X Xa. Let £ be an element contained in
o7 (z1,2)) = q; *(2.). By (8.1.1), we have

(R*HO (1)1 Qu)ay © (B2 (011 Q)2 = (RPN (81)1Qu)e = (B2 (91)1Q0).
where 71, p1 are restrictions of 7!, $, respectively. By induction, we know that
dim B2 (B™), Q) = dimpy. It is well known that dim H*40 (B,,,Q,) =
dim py . Hence dim H?2% (Bi"‘), Q) = dim pya) +dim pyr = dim px. On the other
hand, by Lemma, 8.15, HQdA(Bgm),Ql) contains px. Thus H? (Bgm),Ql) ~ pa.
(i) is proved.

Next we show (ii). Assume that Xy, is of exotic type and z € X such that
dim B™ = d. We consider the decomposition (8.15.1) in the case where z € X.
By Theorem 8.7 (iii), we have a similar decomposition:

B.,Q)~ @ V(w)o#H =N ac(x,, Q). (8.16.1)
pEP(m)

(8.15.1) shows that H. o +dim Xy, “(IC(X 4, Q1)) = 0 for any choice of i > 2dy and

of u € P( ). This implies, by (8.16.1), that H'(B,,Q;) = 0 for any i > 2dx.
Since Bgm) C B., we conclude that dim B, = dim Bgm) = dx. Now assume that
i = 2dx. By (i) and (8.15.1), we see that H2™"%=F4mXu (10X, Q) = 0 for
any pu # X. Hence by (8.16.1), H?¥*(B,,Q;) ~ V(A). The proposition is proved.
O
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