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Abstract. Let G = GL(V ) for a 2n-dimensional vector space V , and θ an involutive
automorphism of G such that H = Gθ ' Sp(V ). Let Gιθuni be the set of unipotent
elements g ∈ G such that θ(g) = g−1. For any integer r ≥ 2, we consider the variety
Gιθuni × V r−1, on which H acts diagonally. Let Wn,r = Sn n (Z/rZ)n be a complex
reflection group. In this paper, generalizing the known result for r = 2, we show that
there exists a natural bijective correspondence (Springer correspondence) between the set
of irreducible representations of Wn,r and a certain set of H-equivariant simple perverse

sheaves on Gιθuni × V r−1. We also consider a similar problem for G× V r−1, on which G
acts diagonally, where G = GL(V ) for a finite-dimensional vector space V .

Introduction

Let V be a 2n-dimensional vector space over k, where k is an algebraically closed
field with char k 6= 2. Let G = GL(V ) and θ : G→ G an involutive automorphism
such that Gθ ' Sp(V ). Let ι : G → G be the anti-automorphism g 7→ g−1, and
put Gιθ = {g ∈ G | θ(g) = g−1}. We consider the variety X = Gιθ × V , on which
H = Gθ acts diagonally. Let Gιθuni be the set of unipotent elements in Gιθ, and
define a closed subvariety Xuni of X by Xuni = Gιθuni × V . Xuni is nothing but the
exotic nilpotent cone introduced by Kato [K]. It is known that Xuni is H-stable,
and the set of H-orbits in Xuni is in bijection with the set Pn,2 of double partitions
of n ([K]). Let B be a θ-stable Borel subgroup of G, U the unipotent radical of B,
and (Mi)1≤i≤n be an isotropic flag in V whose stabilizer in H is Bθ. We define a

variety X̃uni by

X̃uni = {(x, v, gB
θ) ∈ Gιθuni × V ×H/B

θ | g−1xg ∈ U ιθ, g−1v ∈Mn},

and define a map π1 : X̃uni → Xuni by the projection on the first two factors. In
[K], [SS1], the Springer correspondence between the set of H-orbits in Xuni and the
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set of irreducible representations of the Weyl group Wn,2 of type Cn was studied.
More precisely, it is stated as follows; (π1)!Q̄l[dimXuni] is a semisimple perverse
sheaf on Xuni, equipped with Wn,2-action and is decomposed as

(π1)!Q̄l[dimXuni] '
⊕

λ∈Pn,2

V (λ)⊗ IC(Oλ, Q̄l)[dimOλ], (1)

where V (λ) is the irreducible representation ofWn,2 and Oλ is the H-orbit in Xuni

corresponding to λ ∈ Pn,2.
In this paper, we consider the variety Gιθ × V r−1 for a positive integer r ≥ 2,

with the diagonal action of H . We call it the exotic symmetric space of level
r. Let Wn,r = Sn n (Z/rZ)n be the complex reflection group G(r, 1, n), where
Sn is the symmetric group of degree n. We will generalize the previous result
to the correspondence between the set of irreducible representations of Wn,r and
a certain set of simple perverse sheaves on Gιθuni × V r−1. Let Qn,r be the set
of m = (m1, . . . ,mr) ∈ Zr≥0 such that

∑
mi = n, and Q0

n,r the subset of Qn,r
consisting of m such that mr = 0. For each m ∈ Qn,r, we define varieties

X̃m,uni = {(x,v, gB
θ) ∈ Gιθuni × V

r−1 ×H/Bθ | g−1xg ∈ U ιθ, g−1v ∈
r−1∏

i=1

Mpi},

Xm,uni =
⋃

g∈H

g(U ιθ ×
r−1∏

i=1

Mpi),

where pi = m1 + · · · + mi for each i. We define a map π
(m)
1 : X̃m uni → Xm,uni

by the projection on the first two factors. In the case where m = (n, 0, . . . , 0), we

write X̃m,uni,Xm,uni and π
(m)
1 simply by X̃uni,Xuni and π1. Note that even in this

case, the map X̃uni → Gιθuni×V
r−1 is not surjective if r ≥ 3. For each m ∈ Qn,r we

consider a map πm,1 : π−1
1 (Xm,uni) → Xm,uni. Note that X̃m,uni ⊂ π−1

1 (Xm,uni) ⊂

X̃uni. Let Pn,r be the set of r-tuples of partitions λ = (λ(1), . . . , λ(r)) such that∑
i |λ

(i)| = n. For m ∈ Q0
n,r, let P̃(m) be the set of all λ = (λ(1), . . . , λ(r)) ∈ Pn,r

such that |λ(i)| = mi for i = 1, . . . , r−2 (hence |λ(r−1)| = k for 0 ≤ k ≤ mr−1). As
a generalization of (1), we prove the following result (see Theorem 8.7 (iii)), which
is regarded as the Springer correspondence for Wn,r. Assume that m ∈ Q0

n,r.

Then the complex (πm,1)!Q̄l[dimXm,uni] is a semisimple perverse sheaf on Xm,uni,
equipped with a Wn,r-action, and is decomposed as

(πm,1)!Q̄l[dimXm,uni] '
⊕

λ∈P̃(m)

V (λ)⊗ IC(Xλ, Q̄l)[dimXλ], (2)

where V (λ) is an irreducible representation of Wn,r, and Xλ is a certain smooth

irreducible subvariety of Xm,uni parametrized by λ ∈ P̃(m). Any irreducible
representation of Wn,r is realized in this way uniquely for a suitable choice of
m ∈ Q0

n,r. We can determine the varieties Xλ explicitly. Note that in the case

r ≥ 3, Gιθuni×V
r−1 has infinitely many H-orbits. So the description of Xλ becomes

more complicated compared to the case where r = 2.
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EXOTIC SYMMETRIC SPACES

In the course of the proof, we show a weaker version of the Springer correspon-
dence. For each m ∈ Q0

n,r, we define a subgroup W\
m of Wn,2 by

W\
m = Sm1 × · · · × Smr−2 ×Wmr−1,2.

For λ ∈ P̃(m), one can associate an irreducible representation ρλ of W\
m in a

canonical way. We show that the complex (π
(m)
1 )!Q̄l[dimXm,uni] is a semisimple

perverse sheaf on Xm uni, equipped with W\
m-action, and is decomposed as

(π
(m)
1 )!Q̄l[dimXm,uni] '

⊕

λ∈P̃(m)

ρλ ⊗ IC(Xλ, Q̄l)[dimXλ] (3)

(see Theorem 8.7 (ii)). Note that the group Wn,r is not directly related to the
geometry of H/Bθ, while W\

m behaves well since it is a subgroup of Wn,2. So first
we show (3), and then prove (2) by making use of (3).

We also consider the variety X = G × V , where V is an n-dimensional vector
space over k (of any characteristic), and G = GL(V ). G acts diagonally on X .
Put Xuni = Guni × V , where Guni is the set of unipotent elements in G. The
variety Xuni is isomorphic to the enhanced nilpotent cone introduced by Achar–
Henderson [AH]. It is known by [AH], [T] that Xuni is G-stable, and the set of
G-orbits is in bijection with Pn,2. For each m = (m1,m2) ∈ Qn,2, one can define

a similar map π
(m)
1 : X̃m,uni → Xm,uni as in the exotic case. Achar–Henderson

[AH] and Finkelberg–Ginzburg–Travkin [FGT] proved the Springer correspondence
between the set of irreducible representaions of Sm1 × Sm2 and the set of simple
perverse sheaves associated to the G-orbits in Xm,uni, which are direct summands

of (π
(m)
1 )!Q̄l[dimXm,uni]. In this paper, we consider the variety X = G×V r−1 with

diagonal G-action, which we call the enhanced variety of level r. The arguments
used to prove the Springer correspondence (3) in the exotic case can be applied
also to the enhanced case, step by step, by a suitable modification. Actually, the
argument becomes drastically simple. We show that the Springer correspondence
holds for W\

m = Sm1 × · · · × Smr
for any m ∈ Qn,r. (This result was announced

by the author in 2009, but was not published.) In [Li], Li established the Springer
correspondence for such W\

m in connection with certain perverse sheaves arising
from the framed Jordan quiver. Considering the framed Jordan quiver is essentially
the same as considering the enhanced variety. So in this case our result is regarded
as an alternate approach for his result.

The author is grateful to the referees for valuable comments.
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1. Intersection cohomology on Gιθ
reg

× V r−1 (exotic case)

1.1. Let k be an algebraically closed field. In this paper, we consider the
following two cases.

(I) The exotic case
Let V be a 2n-dimensional vector space over k (with char k 6= 2), with basis

{e1, . . . en, f1, . . . fn}. Let G = GL2n. Consider an involutive automorphism θ :
G→ G given by

θ(g) = J−1(tg−1)J with J =

(
0 1n
−1n 0

)
,

where 1n is the identity matrix of degree n, and put H = Gθ. Then H is the
symplectic group Sp2n with respect to the symplectic form 〈u, v〉= tuJv for u, v ∈
V under the identification V ' k2n via the basis {e1, . . . , en, f1, . . . fn}, which
gives rise to a symplectic basis.

Let ι : G → G be the anti-automorphism g → g−1. We consider the set
Gιθ = {g ∈ G | θ(g) = g−1}. It is known that Gιθ = {gθ(g)−1 | g ∈ G}, and so
Gιθ ' G/H . Let T ⊂ B be a pair of a θ-stable maximal torus and a θ-stable Borel
subgroup of G. Let M1 ⊂ · · · ⊂ Mn be an isotropic flag in V whose stabilizer in
H coincides with Bθ. We assume that Mi = 〈e1, . . . , ei〉 for i = 1, . . . n, and that
ei, fj are weight vectors for T .

(II) The enhanced case

Let Ṽ = V ⊕ V , where V is an n-dimensional vector space over k, and G =
G0 ×G0 a subgroup of GL(Ṽ ) with G0 = GL(V ). Let θ : G→ G be an involution
defined by θ(g1, g2) = (g2, g1). Put H = Gθ ' G0. Then H acts naturally on V .
Let Gιθ be a subset of G defined similarly to the case (I). Then Gιθ ' G0 (as a
set) and H ' G0 acts on Gιθ by conjugation. Let T ⊂ B be a pair of a θ-stable
maximal torus and a θ-stable Borel subgroup of G. We can write T = T0×T0 and
B = B0 × B0 so that Bθ ' B0, T

θ ' T0. Let M1 ⊂ · · · ⊂ Mn = V be a complete
flag in V whose stabilizer in H coincides with Bθ. We fix a basis {e1, . . . , en} of V
such that Mi = 〈e1, . . . , ei〉 for i = 1, . . . n, and that ei are weight vectors for T θ.

Let {e1, . . . , en, f1, . . . , fn} be a basis of Ṽ , where fi = ei for each i, and define a

symplectic form 〈 , 〉 on Ṽ so that {ei, fj} gives a symplectic basis of Ṽ .

1.2. For an integer r ≥ 1, we consider the variety Gιθ × V r−1 on which H
acts diagonally. We call Gιθ × V r−1 the exotic symmetric space of level r in the
case (I), and the enhanced space of level r in the case (II). Let Qn,r = {m =
(m1, . . . ,mr) ∈ Zr≥0 |

∑
imi = n}. We define Q0

n,r = {m ∈ Qn,r | mr = 0}. For
each m ∈ Qn,r, we define p(m) = (p1, p2, . . . , pr) by pi = m1 + · · ·+mi for each
i. We define varieties

X̃m =
{
(x,v, gBθ) ∈ Gιθ × V r−1 ×H/Bθ

∣∣∣ g−1xg ∈ Bιθ, g−1v ∈
r−1∏

i=1

Mpi

}
,

Xm =
⋃

g∈H

g(Bιθ ×
r−1∏

i=1

Mpi).
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We define a map π(m) : X̃m → Gιθ × V r−1 by π(m)(x,v, gBθ) = (x,v). Clearly

Xm = Imπ(m). Since X̃m ' H×B
θ

(Bιθ×
∏
iMpi), X̃m is smooth and irreducible.

Since π(m) is proper, Xm is a closed irreducible subvariety of Gιθ × V r−1. In the
case where m = (n, 0, . . . , 0), namely, p(m) = (n, . . . , n), we write X̃m,Xm and

π(m) by X̃ ,X and π, respectively. Note that for any m ∈ Qn,r, Xm is contained

in X . The dimension of X̃m is computed as follows;

dim X̃m =

{
2n2 +

∑r
i=1(r − i)mi exotic case,

n2 +
∑r

i=1(r − i)mi enhanced case.
(1.2.1)

In fact, in the exotic case, by [SS1; (3.1.1)], we have

dim X̃m = dimH/Bθ + dimBιθ +

r−1∑

i=1

dimMpi

= 2n2 +
r−1∑

i=1

(m1 + · · ·+mi)

= 2n2 +

r∑

i=1

(r − i)mi.

The computation for the enhanced case is similar (in this case, dimBθ = dimBιθ).
Let T ιθreg be the set of regular semisimple elements in T ιθ, namely, the set of ele-

ments in T ιθ such that all the eigenspaces in V have dimension 2 (resp. dimension
1) in the exotic case (resp. in the enhanced case). We put Gιθreg =

⋃
g∈H gT

ιθ
regg

−1,

Bιθreg = Gιθreg ∩B. We define varieties Ỹm,Ym by

Ỹm =
{
(x,v, gBθ) ∈ Gιθreg × V

r−1 ×H/Bθ
∣∣∣ g−1xg ∈ Bιθreg, g

−1v ∈
r−1∏

i=1

Mpi

}

Ym =
⋃

g∈H

g(Bιθreg ×
r−1∏

i=1

Mpi),

and a map ψ(m) : Ỹm → Gιθ × V r−1 by ψ(m)(x,v, gBθ) = (x,v). Clearly

Imψ(m) = Ym. As in the case of X̃m, we write Ỹm,Ym and ψ(m) by Ỹ ,Y , ψ
in the case where m = (n, 0, . . . , 0). As in [SS1; (3.1.2)], Ỹm can be expressed as

Ỹm ' H ×
Bθ

(
Bιθreg ×

∏

i

Mpi

)

' H ×B
θ∩ZH (T ιθ)

(
T ιθreg ×

∏

i

Mpi

)
.

(1.2.2)

1.3. In the remainder of this section, we assume that X is of exotic type. As
in [SS1; 3.2], for each subset I ⊂ [1, n], put MI = {v ∈Mn | supp (v) = I}, where
for v =

∑n
i=1 aiei ∈ Mn, supp (v) is the set of j ∈ [1, n] such that aj 6= 0. MI is
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an open dense subset of the space spanned by {ei | i ∈ I}, which we denote by
M I . For each m ∈ Qn,r, we define I(m) as the set of I = (I1, . . . , Ir) such that
[1, n] =

∐r
i=1 Ii with |Ii| = mi. For I = (I1, . . . , Ir), put I<i = I1 ∪ I2 ∪ · · · ∪ Ii−1.

Hence |I<i| = pi−1. For each I ∈ I(m), we define a set MI ⊂ (Mn)
r−1 by

MI = {v = (v1, . . . vr−1) ∈ (Mn)
r−1 | vi ∈MIi +M I<i

}.

and define a variety ỸI by

ỸI = H ×B
θ∩ZH(T ιθ) (T ιθreg ×MI).

Note that ZH(T ιθ) ' SL2×· · ·×SL2 (n-times) and Bθ∩ZH(T ιθ) can be identified
with the subgroup B2 × · · · ×B2, where B2 is a Borel subgroup of SL2. Since the
action of Bθ ∩ ZH(T ιθ) on Mn is given by the action of the torus part T θ, ỸI
is well-defined. Let ψI : ỸI → Y be the map induced from the map given by
(g, (t,v)) 7→ (gtg−1, gv), H × (T ιθreg ×MI) → Y . Then ImψI is independent of
I ∈ I(m), which we denote by Y0

m. Hence, for I ∈ I(m),

Y0
m =

⋃

g∈H

g(T ιθreg ×MI). (1.3.1)

For I ∈ I(m), we define a parabolic subgroup ZH(T
ιθ)I of ZH(T

ιθ) by the con-
dition that the i-th factor is SL2 if i ∈ Ir and is B2 otherwise. Since ZH(T

ιθ)I
stabilizes MI, one can define

ŶI = H ×ZH(T ιθ)I (T ιθreg ×MI).

Then the map ψI factors through ŶI,

ψI : ỸI
ξI
−−→ ŶI

ηI
−−→ Y0

m, (1.3.2)

where ξI is the natural projection and ηI is the map induced from the map
(g, (t,v)) 7→ (gtg−1, gv). Then ξI is a locally trivial fibration with fibre isomorphic
to

ZH(T ιθ)I/(B
θ ∩ ZH(T

ιθ)) ' (SL2/B2)
Ir ' PIr1 ,

where (SL2/B2)
Ir denotes the direct product of SL2/B2 with respect to the factors

corrsponding to Ir, and similarly for PIr
1 . Thus PIr1 = (P1)

mr .
Let SI ' SI1 × · · · × SIr be the stabilizer of (I1, . . . , Ir) in Sn. Let W =

NH(T ιθ)/ZH(T ιθ) ' Sn, andWI the subgroup ofW corresponding to the subgroup
SI. Then W acts on ZH(T ιθ) ' SL2 × · · · × SL2 as the permutation of factors,

and WI stabilizes the group ZH(T ιθ)I. Since WI stabilizes MI, WI acts on ỸI and

on ŶI. Now the map ηI : ŶI → Y0
m turns out to be a finite Galois covering with

group WI.
We define I(m) = (I◦1 , . . . , I

◦
r ) ∈ I(m) by I◦i = [pi−1 + 1, pi] for i = 1, . . . , r.

For I = I(m), put ỸI = Ỹ
0
m andWI =Wm. Note that Ỹ0

m is an open dense subset

of Ỹm, hence irreducible. Put ψ−1(Y0
m) = Ỹ+

m. W acts naturally on Ỹ and the
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map ψ is W-equivariant with respect to the trivial action of W on Y . Hence it
preserves the subset Ỹ+

m, and the stabilizer of Ỹ0
m in W coincides with Wm. One

can check that

Ỹ+
m =

∐

I∈I(m)

ỸI =
∐

w∈W/Wm

w(Ỹ0
m), (1.3.3)

where ỸI is an irreducible component of Ỹ+
m.

We define a partial order on Qn,r by m′ ≤ m if p′i ≤ pi for each i, where
p(m) = (p1, . . . , pr) and p(m′) = (p′1, . . . , p

′
r), respectively. Then Ym′ ⊆ Ym and

Xm′ ⊆ Xm if m′ ≤m. Assume that m′ ≤m. Then Xm′ is a closed subset of Xm,
and since Ym = Y ∩Xm, Ym′ is a closed subset of Ym. Note that the partial order
≤ is generated by m′ <m, where m = (m1, . . . ,mr) and m′ = (m′

1, . . . ,m
′
r) with

m′
i−1 = mi−1 − 1, m′

i = mi + 1 for some i. Then one can check that

Y0
m = Ym\

⋃

m′<m

Ym′ . (1.3.4)

Thus Y0
m is an open dense subset of Ym, and we have a partition Ym=

∐
m′≤m Y

0
m′ .

It follows that Ym′ ⊆ Ym if and only if m′ ≤ m. Also we have a partition
Y =

∐
m∈Qn,r

Y0
m. We have the following lemma (cf. [SS1, Lem. 3.3]).

Lemma 1.4. Assume that r ≥ 2.

(i) Ym is open dense in Xm, and Ỹm is open dense in X̃m.

(ii) dim X̃m = dim Ỹm = 2n2 +
∑r

i=1(r − i)mi.

(iii) dimXm = dimYm = 2n2 +
∑r

i=1(r − i)mi −mr.

(iv) Y =
∐

m∈Qn,r
Y0
m gives a stratification of Y by smooth strata Y0

m, and the

map ψ : Ỹ → Y is semismall with respect to this stratification.

Proof. Since Bιθreg ×
∏
iMpi is open dense in Bιθ ×

∏
iMpi , Ỹm is open dense in

X̃m. Since π(m) is a closed map and (π(m))−1(Ym) = Ỹm, Ym is open dense in
Xm. So (i) holds. (ii) follows from (1.2.1). By using the decomposition ψI = ηI ◦ξI
for I = I(m), we see that dim Ỹm = dimYm +mr. Hence (iii) holds. By (1.3.1)
and (1.3.2), dimψ−1(x,v) = mr for (x,v) ∈ Y0

m. Since

dimY − dimY0
m = (2n2 + (r − 1)n)−

(
2n2 +

r∑

i=1

(r − i)mi −mr

)

=

r∑

i=1

(r − 1)mi −
r∑

i=1

(r − i)mi +mr

=

r∑

i=1

(i− 1)mi +mr

≥ 2mr.

Hence dimψ−1(x,v)≤(dimY − dimY0
m)/2 for (x,v)∈Y0

m , and so ψ is semismall.
�
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1.5. Let ψm : Ỹ+
m → Y

0
m be the restriction of ψ on Ỹ+

m. Then ψm is W-

equivariant with respect to the natural action of W on Ỹ+
m and the trivial action

on Y0
m. We consider the diagram

T ιθ
α0←−− Ỹ

ψ
−−→ Y , (1.5.1)

where α0 is given by α0(x,v, gB
θ) = pT (g

−1xg) (pT : Bιθ → T ιθ is the natural
projection). For each I ∈ I(m), we have a similar diagram as (1.5.1) by replacing

Ỹ ,Y , ψ, α0 by ỸI,Y0
m, ψI, αI, where αI is the restriction of α0 on ỸI. Let E be a

tame local system on T ιθ. By (1.3.2), we have

(ψm)!α
∗
0E|Ỹ+

m

'
⊕

I∈I(m)

(ψI)!α
∗
IE . (1.5.2)

We define a map βI : ŶI → T ιθreg as the map induced from the projection

H × (T ιθreg ×MI) → T ιθreg. Then αI = βI ◦ ξI. Let EI = β∗
I E be a local system

on ŶI. We have ξ∗I EI = α∗
IE . Let WEI

be the stabilizer of EI in WI. In the case
where I = I(m), we put WEI

= Wm,E . In the case where m = (n, 0, . . . , 0), we
put Wm,E = WE , which is the stabilizer of E in W . WE acts on (ψm)!α

∗
0E|Ỹ+

m

as automorphisms of complexes, and permutes each direct summand (ψI)!α
∗
IE

according to the permutation action of Sn on I(m). Since ηI is a finite Galois
covering with group WI, (ηI)!EI is a semisimple local system. As in [SS1, 3.4] the
endomorphism algebra End((ηI)!EI) is canonically isomorphic to the group algebra
Q̄l[WEI

], and (ηI)!EI is decomposed as

(ηI)!EI '
⊕

ρ∈W∧
EI

ρ⊗Lρ, (1.5.3)

where Lρ = Hom(ρ, (ηI)!EI) is a simple local system on Y0
m.

1.6. Since ψm is proper and ỸI is closed in Ỹ+
m, ψI is proper. Hence ξI is also

proper. We note that

(1.6.1) Ri(ξI)!Q̄l is a constant sheaf for each i.

In fact, we have a commutative diagram

ỸI

��

ξI // ŶI

��
H/Bθ ∩ ZH(T ιθ)

ξ′
I // H/ZH(T ιθ)I,

where vertical maps are natural projections (see 1.3), and the map ξ ′I is the map
induced from the inclusion Bθ ∩ ZH(T ιθ) ↪→ ZH(T ιθ)I. Since this diagram is
cartesian, (1.6.1) is equivalent to the statement that

(1.6.2) Ri(ξ′I)!Q̄l is a constant sheaf for each i.
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We show (1.6.2). Since ξ′I is a locally trivial fibration, R
i(ξ′I)!Q̄l is a locally constant

sheaf on H/ZH(T ιθ)I. Since ξ′I is H-equivariant, Ri(ξ′I)!Q̄l is an H-equivariant
local system onH/ZH(T ιθ)I, hence it is a constant sheaf, as ZH(T

ιθ)I is connected.
Thus (1.6.2), and so (1.6.1) holds.

Since ξI is a PIr1 -bundle, we see that

(ξI)!α
∗
IE ' H

•(PIr1 )⊗ EI, (1.6.3)

whereH•(PIr1 ) denotes
⊕

i≥0H
2i(PIr1 , Q̄l), which we regard as a complex of vector

spaces (Ki) with Kodd = 0. It follows that

(ψI)!α
∗
IE ' (ηI)!(ξI)!α

∗
IE ' H

•(PIr1 )⊗ (ηI)!EI. (1.6.4)

Let Wn,r = Sn n (Z/rZ)n be the complex reflection group G(r, 1, n). We put

W̃ = W n (Z/rZ)n. We define a subgroup W̃E (resp. W̃m,E) of W̃ by W̃E =

WE n (Z/rZ)n (resp. W̃m,E = Wm,E n (Z/rZ)n). Let ζ be a primitive r-th root
of unity in Q̄l, and define a linear character τi : Z/rZ → Q̄∗

l by τi(a) = ζi−1 for
i = 1, . . . , r, where a is a generator of Z/rZ. Let ρ be an irreducible representation
of Wm,E . Since Wm,E is decomposed as Wm,E = W1 × · · · × Wr with subgroups

Wi ⊂ Smi
, ρ can be written as ρ = ρ1 � · · · � ρr with ρi ∈ W∧

i . Here W̃m,E is

decomposed as W̃m,E = W̃1 × · · · × W̃r with W̃i =Wi n (Z/rZ)mi . We define an

irreducible W̃m,E -module ρ̃ (resp. ρ̃′) by defining the action of (Z/rZ)mi on ρi via
τ⊗mi

i for i = 1, . . . , r (resp. via τ⊗mi

i for i = 1, . . . , r− 1, and via the trivial action

for i = r). Put Ṽρ = IndW̃E

W̃m,E

ρ̃. Then Ṽρ is an irreducible W̃E -module.

We regard H•(Pmr

1 ) ' H•(P1)
⊗mr as a complex of Wm,E -modules by the

permutation of factors H•(P1) = H2(P1) ⊕ H0(P1) ' Q̄l ⊕ Q̄l. This makes
H•(Pmr

1 )⊗ ρ a complex of Wm,E -modules. In view of (1.5.2), (1.5.3) and (1.6.4),
one can write

(ψm)!α
∗
0E|Ỹ+

m

'
⊕

ρ∈W∧
m,E

IndWE

Wm,E

(
H•(Pmr

1 )⊗ ρ
)
⊗Lρ. (1.6.5)

We define an action of Z/rZ on H•(P1) = H2(P1)⊕H0(P1) by τr⊕τ1, and define
an action of (Z/rZ)mr on H•(Pmr

1 ) ' H•(P1)
⊗mr by (τr ⊕ τ1) � · · · � (τr ⊕ τ1)

(mr-factors). Thus we can consider an extension H•(Pmr

1 ) ⊗ ρ̃′ of H•(Pmr

1 ) ⊗ ρ,

as a complex of W̃m,E -modules. It follows from (1.6.5) that

(ψm)!α
∗
0E|Ỹ+

m

'
⊕

ρ∈W∧
m,E

IndW̃E

W̃m,E

(
H•(Pmr

1 )⊗ ρ̃′
)
⊗Lρ. (1.6.6)

Note that by our construction, (1.6.6) can be rewritten as

(ψm)!α
∗
0E|Ỹ+

m

'

( ⊕

ρ∈W∧
m,E

Ṽρ ⊗Lρ

)
[−2mr] +Nm, (1.6.7)
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where Nm is a sum of various Lρ[−2i] for ρ ∈ W∧
m,E with 0 ≤ i < mr.

For each m ∈ Qn,r, let ψm be the restriction of ψ on ψ−1(Ym). In what follows,
we denote α∗

0E|ψ−1(Ym) by α∗
0E for short. Put dm = dimYm. For 1 ≤ j < r − 1,

0 ≤ k ≤ mj , we define a subset Q(m; j, k) of Qn,r by

Q(m; j, k) = {m′ ∈ Qn,r |m
′ ≤m, pi = p′i (1 ≤ i ≤ j − 1), p′j = pj−1 + k},

where p(m) = (p1, . . . , pr) and p(m′) = (p′1, . . . , p
′
r). We also define m(j, k) ∈

Qn,r by m(j, k) = (m′
1, . . . ,m

′
r), where m

′
j = k,m′

j+1 = mj+1 + (mj − k) and
m′
i = mi for i 6= j, j + 1. In the case where j = r − 1, we write m(j, k) simply as

m(k). Hence if m ∈ Q0
n,r, m(k) = (m1, · · · ,mr−2, k, k

′) with k + k′ = mr−1. We
have the following proposition.

Proposition 1.7. For each m ∈ Q0
n,r, (ψm)!α

∗
0E [dm] is a semisimple perverse

sheaf on Ym, equipped with W̃E -action, and is decomposed as

(ψm)!α
∗
0E [dm] '

⊕

0≤k≤mr−1

⊕

ρ∈W
∧

m(k),E

Ṽρ ⊗ IC(Ym(k),Lρ)[dm(k)].

Proof. ψm is proper, and a similar argument as in the proof of Lemma 1.4 (iv)
shows that ψm is semismall with respect to the stratification Ym =

∐
m′≤m Y

0
m′

(note that mr = 0). It follows that (ψm)!α
∗
0E [dm] is a semisimple perverse sheaf

on Ym.
For a given m ∈ Qn,r (not necessarily in Q0

n,r) we define, for each integer
1 ≤ j ≤ r − 1, and 0 ≤ k ≤ mj ,

M (j,k) =

j−1∏

i=1

(M[pi−1+1,pi] +Mpi−1)× (M[pj−1+1,pj−1+k] +Mpj−1)×
r−1∏

i=j+1

Mpi ,

Y0
j,k =

⋃

g∈H

g(T ιθreg ×M
(j,k)),

Ỹ+
j,k = ψ−1(Y0

j,k),

and let ψj,k : Ỹ+
j,k → Y

0
j,k be the restriciton of ψ on Ỹ+

j,k. (As a convention, we also

consider the case where j = 0, k = 0, in which case M (0,0) =
∏r−1
i=1 Mpi .) Then

ψj,k is a proper map. Y0
j,k coincides with Y0

m in the case where j = r−1, k = mr−1,
and coincides with Ym in the case where j = 0 and k = 0. We also consider the
varieties

M
(j,k)

=

j−1∏

i=1

(M[pi−1+1,pi] +Mpi−1)×Mpj−1+k ×
r−1∏

i=j+1

Mpi ,

Yj,k =
⋃

g∈H

g(T ιθreg ×M
(j,k)

),

Ỹ+
j,k = ψ−1(Yj,k),
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and let ψj,k : Ỹ+
j,k → Yj,k be the restriction of ψ on Ỹ+

j,k. Then Y
0
j,k is open dense

in Yj,k. We have

(1.7.1) Yj,k\Yj,k−1 = Y0
j,k if k ≥ 1, and Yj,0(m) = Yj+1,mj+mj+1(m(j, 0)). More-

over, Y0
j,k(m) coincides with Yj+1,mj+mj+1−k(m(j, k)). (Here we use the notation

Yj,k(m), etc., to indicate the dependence on m.)

For m′ ∈ Q(m; j, k), Y0
m′ is contained in Yj,k. Hence one can define an intersec-

tion cohomology IC(Y ′
m′ ,Lρ) associated to the local system Lρ on Y0

m′ (here Y ′
m′

denotes the closure of Y0
m′ in Yj,k). Returning to the setting in the proposition, we

consider m ∈ Q0
n,r. We show the following formulas. First assume that j = r − 1

and 0 ≤ k ≤ mr−1. Then we have

(ψr−1,k)!α
∗
0E

'
⊕

0≤k′≤k

⊕

ρ∈W∧
m(k′),E

Ṽρ ⊗ IC(Yr−1,k′ ,Lρ)[−2(mr−1 − k
′)] +Nr−1,k, (1.7.2)

where Nr−1,k is a sum of various IC(Yr−1,k′ ,Lρ)[−2i] for 0 ≤ k′ ≤ k and ρ ∈
W∧

m(k′),E with 0 ≤ i < mr−1 − k′. Next assume that 0 ≤ j < r − 1 and that
0 ≤ k ≤ mj . Then we have

(ψj,k)!α
∗
0E

'
⊕

0≤k′≤mr−1

⊕

ρ∈W∧
m(k′),E

Ṽρ ⊗ IC(Y ′
m(k′),Lρ)[−2(mr−1 − k

′)] +Nj,k, (1.7.3)

whereNj,k is a sum of various IC(Y ′
m′ ,Lρ)[−2i] for m′ ∈ Q(m; j, k) and ρ ∈ W∧

m′,E

with i such that 0 ≤ 2i < dm − dm′ .
Note that (1.7.3) will imply the proposition. In fact, in the case where j = 0, k =

0, ψj,k coincides with ψm, and Y ′
m(k′) coincides with Ym(k′). Take IC(Ym′ ,Lρ)[−2i]

∈ N0,0. Since dm − dm′ > 2i, IC(Ym′ ,Lρ)[dm − 2i] is not a perverse sheaf. Since
(ψm)∗α

∗
0E [dm] is a semisimple perverse sheaf, we conclude that N0,0 = 0. By

Lemma 1.4, (iii), we have dm − dm(k′) = 2(mr−1 − k′). Thus the proposition
follows from (1.7.3).

First we show (1.7.2) by induction on k. Put j = r−1. In the case where k = 0,
Yj,0 coincides with Y0

m(j,0). Thus (1.7.2) follows from (1.6.7). We assume that

(1.7.2) holds for any k′ < k. By (1.7.1), Yj,k\Yj,k−1 = Y0
j,k = Y0

m(k), and Y
0
m(k)

is an open dense subset of Yj,k. Since ψj,k is proper, (ψj,k)!α
∗
0E is a semisimple

complex on Yj,k. Here we note that (ψj,k)!α
∗
0E has a natural structure of W̃E -

complex. In fact, (ψm(k))!α
∗
0E has a W̃E -action by (1.6.6). It induces a W̃E -

action on (ι0 ◦ ψm(k))!α
∗
0E , where ι0 is an open immersion Y0

m(k) ↪→ Yj,k, and

hence on its perverse cohomology pH i((ι0 ◦ ψm(k))!α
∗
0E). On the other hand, by

induction, (ψj,k−1)!α
∗
0E has a natural W̃E -action, which induces a W̃E -action on

pH i((ψj,k−1)!α
∗
0E). Thus, by using the perverse cohomology exact sequence, one
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can define an action of W̃E on pH i((ψj,k)!α
∗
0E). Since (ψj,k)!α

∗
0E is a semisimple

complex, in this way the action of W̃E on (ψj,k)!α
∗
0E can be defined.

Now, since (ψj,k)!α
∗
0E is a semisimple complex, it is a direct sum of the form

A[s] for a simple perverse sheaf A. Suppose that supp A is not contained in
Yj,k−1. Then supp A ∩ Y0

m(k) 6= ∅ and the restriction of A on Y0
m(k) is a simple

perverse sheaf on Y0
m(k). The restriction of (ψj,k)!α

∗
0E on Y0

m(k) is isomorphic to

(ψm(k))!α
∗
0E . Hence its decomposition is given by the formula in (1.6.6). It follows

that A|Y0
m(k)

= Lρ[dj,k] for some ρ (here dj,k = dimYm(k)). This implies that

A = IC(Yj,k,Lρ)[dj,k] and that the direct sum of A[s] appearing in (ψj,k)!α
∗
0E

such that supp A ∩ Y0
m(k) 6= ∅ is given, in view of (1.6.7), by

K1 =
⊕

ρ∈W∧
m(k),E

Ṽρ ⊗ IC(Yj,k ,Lρ)[−2(mr−1 − k)] +N
′
m(k), (1.7.4)

where N ′
m(k) is a sum of various IC(Yj,k ,Lρ)[−2i] with 0 ≤ i < mr−1 − k.

If supp A is contained in Yj,k−1, then A[s] appears as a direct summand of
(ψj,k−1)!α

∗
0E , which is decomposed as in (1.7.2) by the induction hypothesis. Thus

if we remove the contribution from the restriction of K1, such A[s] is determined
from (ψj,k−1)!α

∗
0E . So, we consider the restriction ofK1 on Yj,k−1. The summands

IC(Yj,k ,Lρ)[−2i] in N ′
m(k) are already contained in Nr−1,k if 0 ≤ i < mr−1−k. So

it is enough to consider A = IC(Yj,k,Lρ)[−2(mr−1−k)]. Note that the multiplicity

space of A in K1 is Ṽρ. Hence the multiplicity space of a simple perverse sheaf

A′ appearing in the decomposition of A|Yj,k−1
,up to shift, has a structure of W̃E -

module which is a sum of Ṽρ. But by (1.7.2) applied for k − 1, the multiplicity
space of a simple perverse sheaf B appearing in the first term of (ψj,k−1)!α

∗
0E is a

sum of Ṽρ′ with ρ
′ ∈ W∧

m(k′),E for k′ < k. Thus A|Yj,k−1
gives no contribution on

those first terms. This proves (1.7.2) for k. Hence (1.7.2) holds.
We now prove (1.7.3) by backwards induction on j and induction on k. So

assume that j < r − 1. By (1.7.1), Yj,0(m) = Yj+1,mj+mj+1(m(j, 0)). Hence
by induction on j, we may assume that (1.7.3) holds for Yj,0. Take k ≥ 1,
and assume that (1.7.3) holds for k − 1. We have Yj,k\Yj,k−1 = Y0

j,k, and

Y0
j,k(m) = Yj+1,mj+mj+1−k(m(j, k)) by (1.7.1). Thus by induction on j, (ψj,k)!α

∗
0E

can be described by the formula in (1.7.3). In particular, (ψj,k)!α
∗
0E is a semisimple

complex consisting of IC(Y ′
m′ ,Lρ), up to shift, for various m′ ∈ Q(m; j, k). Simi-

larly, by induction on k, (ψj,k−1)!α
∗
0E is described by (1.7.3), and it is a semisimple

complex consisting of IC(Y ′
m′ ,Lρ), up to shift, for various m′ ∈ Q(m; j, k − 1).

Let K1 be a semisimple complex on Yj,k obtained from (ψj,k)!α
∗
0E as in (1.7.4).

It is described by the formula (1.7.3) by replacing m by m′′ = m(j, k). Here we
note the following:

(1.7.5) Assume that A is a direct summand of K1. Then A is contained in Nj,k
unless A = IC(Ym(k′),Lρ)[−2(mr−1 − k

′)].

Assume that A is a direct summand in the former part of K1. Then
A = IC(Ym′′(k′),Lρ)[−2(m

′′
r−1 − k

′)] for 0 ≤ k′ ≤ m′′
r−1, where we write m′′ =
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(m′′
1 , . . . ,m

′′
r ). Thus p(m′′(k′)) = (p′1, . . . , p

′
r), where pi = p′i for i 6= j, r − 1, and

p′j ≤ pj , p
′
r−1 ≤ pr−1. Then by Lemma 1.4 (iii), we have

dm − dm′′(k′) = (pj − p
′
j) + (pr−1 − p

′
r−1) +m′

r

≥ (pj − p
′
j) + 2m′

r,

for m′′(k′) = (m′
1, . . . ,m

′
r). (Note that m′′

r−1 − k
′ = m′

r.) Hence dm − dm′′(k′) =
2(m′′

r−1 − k
′) if and only if pj = p′j , i.e., m

′′(k′) = m(k′). In that case m′′
r−1 =

mr−1. In all other cases, A is contained in Nj,k. Next assume that A is a direct
summand of the latter part of K1. Thus A is written as A = IC(Y ′

m′ ,Lρ)[−2i] for
m′ ≤ m′′ with dm′′ − dm′ > 2i. But since m′′ = m(j, k), we have m′′ ≤ m and
dm ≥ dm′′ . Hence m′ ≤m and dm − dm′ ≥ dm′′ − dm′ > 2i. This implies that A
is contained in Nj,k. (1.7.5) is proved.

Now (1.7.5) shows that the former part of K1 coincides with the former part of
(ψj,k−1)!α

∗
0E . Hence by a similar argument as in the proof of (1.7.2), we obtain

(1.7.3) for (j, k). This proves (1.7.3), and so the proposition follows. �

Remark 1.8. In Proposition 1.7, the condition m ∈ Q0
n,r is crucial. Since

dimψ−1(z) = mr for z ∈ Y0
m, the map ψm is not semismall if mr 6= 0.

2. Intersection cohomology on Gιθ
× V r−1 (exotic case)

2.1. In this section we assume that X ,Y are of exotic type. We keep the
notation in Section 1. For each m ∈ Q0

n,r, we consider the complex (ψm)!α
∗
0E [dm]

as in Proposition 1.7. Under the notation there, Y0
m(k) is an open dense subset of

Xm(k). Hence one can consider the complex

Km,T,E =
⊕

0≤k≤mr−1

⊕

ρ∈W∧
m(k),E

Ṽρ ⊗ IC(Xm(k),Lρ)[dm(k)]. (2.1.1)

We consider the diagram

T ιθ
α
←−− X̃

π
−−→ X ,

where α : X̃ → T ιθ is defined by α(x,v, gBθ) = pT (g
−1xg). Let πm : π−1(Xm)→

Xm be the restriction of π on π−1(Xm). We consider the complex (πm)!α
∗E [dm],

where α∗E is regarded as a local system on π−1(Xm) by restriction. The following
result is a generalization of [SS1, Thm. 4.2].

Theorem 2.2. For each m ∈ Q0
n,r, (πm)!α

∗E [dm] ' Km,T,E as perverse sheaves

on Xm.

2.3. The remainder of this section is devoted to the proof of the theorem.
As in the case of Y0

m, consider X 0
m = Xm \

⋃
m′<m Xm′ for each m ∈ Qn,r.

We shall describe the set X 0
m explicitly. Put Xuni = X ∩ (Gιθuni × V

r−1) and we
define Xm,uni,X

0
m,uni, etc., as the intersection of Xm,X

0
m, etc., with Xuni. For
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(x, v) ∈ Gιθuni×V , we denote by k[x]v the subspace of V spanned by v, xv, x2v, . . . .
First we note the following.

(2.3.1) For each (x,v) ∈ Xuni with v = (v1, . . . , vr−1), define a sequence W1 ⊂
W2 ⊂ · · · ⊂Wr−1 of subspaces of V byWi = k[x]v1+· · ·+k[x]vi for i = 1, . . . , r−1.
Then (x,v) ∈ X 0

m,uni if and only if dimWi = pi for each i.

In fact, if (x,v) ∈ Xm,uni, there exists an x-stable isotropic flag (Vi)1≤i≤n such
that vi ∈ Vpi . Hence we have dimWi ≤ pi for each i. This implies that (x,v)
satisfying the condition on (Wi) is contained in X 0

m,uni. Conversely, assume that

(x,v) ∈ X 0
m,uni. Take an x-stable isotropic flag (Vi) such that vi ∈ Vpi . Suppose

there exists k such that dimWi = pi for i < k and that dimWk < pk. Then
Wi = Vpi for i = 1, . . . , k − 1, and k[x]vk + Vpk−1

is an x-stable proper subspace
of Vpk . One can find an x-stable flag Vpk−1

⊂ V ′
pk−1+1 ⊂ · · · ⊂ V ′

pk−1 ⊂ Vpk ,
and vk ∈ V ′

j ( Vpk for some j. This implies that (x,v) ∈ Xm′ for m′ < m, a
contradiction. Hence (2.3.1) holds.

More generally, we consider (x,v) ∈ Xm. Let x = su = us be the Jordan
decomposition of x ∈ Gιθ, where s ∈ Gιθ is semisimple, u ∈ Gιθ is unipotent.
We consider the decomposition V = V1 ⊕ · · · ⊕ Vt into eigenspaces of s. Then
ZG(s) ' GL2n1 × · · · × GL2nt

with dimVj = 2nj . Put Gj = GL2nj
for each j.

Then ZG(s) is θ-stable, and θ stabilizes each factor so that ZH(s) ' Gθ1×· · ·×G
θ
t

with Gθj ' Sp2nj
. Take v = (v1, . . . , vr−1) ∈ V r−1. For j = 1, . . . , t, we define

vj = (v1,j , . . . vr−1,j) ∈ V r−1
j , where vij is the projection of vi ∈ V on Vj . Let

uj be the restriction of u on Vj . Then (uj ,vj) ∈ (Gj)
ιθ
uni × V

r−1
j . We denote by

(XGj )0mj ,uni
the subvariety of (Gj)

ιθ
uni × V

r−1
j defined in a similar way as X 0

m,uni.
The following property is checked easily.

(2.3.2) Assume that (x,v) is contained in X 0
m. Then there exist uniquem1, . . . ,mt

such that (uj ,vj) ∈ (XGj )0mj ,uni
, wheremj = (m1,j , . . .mr,j) with

∑t
j=1mij = mi

for 1 ≤ i ≤ r. Conversely, if (uj ,vj) ∈ (XGj )0mj ,uni
for each j, then (x,v) ∈ X 0

m

for m determined from m1, . . . ,mt.

For each (x,v) ∈ X , let (uj ,vj) be defined as above. For j = 1, . . . , t, we
define a flag W1,j ⊂ · · · ⊂ Wr−1,j of Vj with respect to (uj ,vj) as in (2.3.1).
Put Wi = Wi,1 ⊕ · · · ⊕ Wi,t for i = 1, . . . , r − 1; then we obtain a sequence
W1 ⊂ · · · ⊂ Wr−1 of subspaces in V . We put Wi(x,v) = Wi for each i. Then
(2.3.2) can be rewritten as

X 0
m = {(x,v) ∈ X | dimWi(x,v) = pi (1 ≤ i ≤ r − 1)}. (2.3.3)

Recall the map π : X̃ → X . For each m ∈ Qn,r, we define X̃
+
m = π−1(X 0

m), and

let πm : X̃+
m → X

0
m be the restriction of π on X̃+

m. Since Y0
m is open in X 0

m, Ỹ+
m is an

open subset of X̃+
m. For (x,v, gBθ) ∈ X̃+

m, we shall associate I ∈ I(m) as follows;
assume that (x,v) ∈ Bιθ ×Mr−1

n , and that x = su is the Jordan decomposition
of x. Then Mn is s-stable, and is decomposed as Mn =Mn,1 ⊕ · · · ⊕Mn,t, where
Mn,j =Mn∩Vj is a maximal isotropic subspace of Vj . HereMn =〈e1, . . . en〉. Since
s ∈ Bιθ, Mn,j determines a set {ek1 , . . . , eknj

} with k1 < k2 < · · · < knj
, where

nj = dimMn,j (if s1 ∈ T ιθ is the projection of s, {ek1 , . . . , eknj
} are eigenvectors
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of s1 on Mn,j). Let (uj ,vj) be as before. We define I = (I1, . . . , Ir) ∈ I(m)
as follows; let (Wi(uj ,vj)) be as in (2.3.1) and put pij = dimWi(uj ,vj). Then

Wi(uj ,vj) is a subspace ofMn,j . We define a subset Ĩi,j of {k1, . . . , knj
} as the first

pi,j numbers in {k1, . . . , knj
}, and define Ii,j by Ii,j = Ĩi,j\Ĩi−1,j . Thus |Ii,j | = mi,j

for mj = (m1,j , . . .mr,j). Put Ii = Ii,1
∐
· · ·

∐
Ii,t, and I = (I1, . . . , Ir). Then

I ∈ I(m). Note that the attachment (x,v) 7→ I depends only on the Bθ-conjugacy
class of (x,v). Thus we have a well-defined map (x,v, gBθ) 7→ I. We define a

subvariety X̃I of X̃+
m by

X̃I = {(x,v, gB
θ) ∈ X̃+

m | (x,v, gB
θ) 7→ I}.

We show the following lemma (cf. [SS1, Lem. 4.4]).

Lemma 2.4. X̃+
m is decomposed as

X̃+
m =

∐

I∈I(m)

X̃I,

where X̃I is an irreducible component of X̃+
m for each I.

Proof. It is clear from the definition that X̃+
m is a disjoint union of various X̃I, and

that X̃I contains ỸI as an open dense subset. Since Ỹ+
m =

∐
I ỸI, Ỹ

+
m is open dense

in X̃+
m. Hence X̃m =

⋃
I ỸI gives a decomposition into irreducible components,

where ỸI is the closure of ỸI in X̃+
m. Thus in order to show the lemma, it is

enough to see that X̃I is closed in X̃+
m for each I. But the closure ZI of X̃I in X is

contained in the set X̃I ∪
⋃

m′<m X̃
+
m′ . Hence X̃I = ZI ∩ X̃+

m is closed in X̃+
m. �

2.5. We fix m ∈ Qn,r. Let us consider the spaces V0 =Mm1 and V 0 = V ⊥
0 /V0.

We put G1 = GL(V0) and G2 = GL(V 0). Then V 0 has a natural symplectic
structure, and G2 is identified with a θ-stable subgroup of G. We consider the

variety X ′ ⊂ Gιθ2 × V
r−2

0 as in the case of Gιθ × V r−1. Put m′ = (m2, . . . ,mr).
Thus m′ ∈ Qn′,r−1, where n

′ = dimV 0/2. The subvariety X ′
m′ of X ′ with respect

to m′ is defined similarly to Xm. Let G0
1 be the set of regular elements in G1

(namely, the set of x ∈ G1 such that u is regular unipotent in ZG1(s) for the
Jordan decomposition x = su). For each z = (x,v) ∈ X 0

m, put Wz = W1(x,v).
Note that Wz is an x-stable subspace of V with dimWz = m1, and that x|Wz

is
a regular element in GL(Wz). Moreover, Wz is the unique x-stable subspace of V
containing v1 with dimension m1.

We define a variety

Km = {(z, φ1, φ2) | z = (x,v) ∈ X 0
m

φ1 :Wz ∼−→V0, φ2 :W⊥
z /Wz ∼−→V 0 (symplectic isom.) },

(2.5.1)

and morphisms

q :Km → X
0
m, (x,v, φ1, φ2) 7→ (x,v),

σ :Km → G0
1 ×X

′0
m′ , (x,v, φ1, φ2) 7→ (φ1(x|Wz

)φ−1
1 , φ2(x|W⊥

z /Wz
)φ−1

2 , φ2(v)),
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where v = (v2, . . . , vr−1) ∈ (W⊥
z /Wz)

r−2, and vi is the image of vi ∈ W⊥
z to

W⊥
z /Wz. Put H0 = G1 ×Gθ2. Then H ×H0 acts on Km by

(g, (h1, h2)) : (x,v, φ1, φ2) 7→ (gxg−1, gv, h1φ1g
−1, h2φ2g

−1)

for g ∈ H, (h1, h2) ∈ H0. Moreover, σ is H ×H0-equivariant with respect to the
natural action of H0 and the trivial action of H on G0

1 ×X
′0
m′ . We have

(2.5.2) The map q is a principal bundle with fibre isomorphic to H0.

(2.5.3) The map σ is a locally trivial fibration with smooth fibre of dimension
dimH + (r − 2)m1.

In fact, (2.5.2) is clear. We show (2.5.3). For a fixd z = (x′, (x′′,v′)) ∈ G0
1×X

′0
m′

with v′ = (v′2, . . . , v
′
r−1), the fibre σ

−1(z) is determined by the following procedure.

(i) Choose an isotropic subspace W1 of V with dimW1 = m1.
(ii) For such W1, choose an isomorphism φ1 : W1 → V0 and a symplectic

isomorphism φ2 :W⊥
1 /W1 → V 0.

(iii) Choose x ∈ Gιθ such that x stabilizes W1 and that φ1(x|W1 )φ
−1
1 = x′,

φ2(x|W⊥
1 /W1

)φ−1
2 = x′′.

(iv) Choose v1 ∈W1 and vi ∈W⊥
1 such that k[x]v1 =W1 and that φ2(vi) = v′i

for i = 2, . . . , r − 1.

Let P be the stabilizer of the flag (V0 ⊂ V ⊥
0 ) in G. Then P is θ-stable, and is

decomposed as P = LUP , where L is a θ-stable Levi subgroup of P containing T
and UP is the unipotent radical of P . For (i), suchW1 are parametrized by H/P θ.
For (ii), they are parametrized by G1 × G

θ
2. For (iii), x should be contained in

P ιθ, but x′, x′′ determines the part corresponding to Lιθ. Hence the choice of x is
parametrized by U ιθP . Finally, v1 form an open dense subset ofW1, and v2, . . . , vr−1

are determined uniquely by v′2, . . . , v
′
r−1 modulo W1. One can check that the thus

obtained (x,v) is contained in X 0
m. It follows that each fibre σ−1(z) is smooth

with dimension dimH + (r − 2)m1. Hence (2.5.3) holds.
Let B1 be a Borel subgroup of G1 which is the stabilizer of the flag (Mk)0≤k≤m1

in G1, and B2 a θ-stable Borel subgroup of G2 which is the stabilizer of the flag
(Mm1+1/Mm1 ⊂ · · · ⊂Mn/Mm1) in G2. Put

G̃1 = {(x, gB1) ∈ G1 ×G1/B1 | g
−1xg ∈ B1},

and define the map π1 : G̃1 → G1 by (x, gB1) 7→ x. Put G̃0
1 = (π1)−1(G0

1), and

let ϕ1 : G̃0
1 → G0

1 be the restriction of π1. We define X̃ ′ as the subvariety of

Gιθ2 × V
r−2

0 ×Gθ2/B
θ
2 as in the case of X ′, and let π2 : X̃ ′ → X ′ be the projection

(x,v′, gBθ2) 7→ (x,v′). We put X̃ ′+
m′ = (π2)−1(X ′0

m′), and let π2
m′ be the restriction

of π2 on X̃ ′+
m′ . We define a variety

Z̃+
m = {(x,v,gBθ, φ1, φ2) | (x,v, gB

θ) ∈ X̃+
m,

φ1 :Wz ∼−→V0, φ2 :W⊥
z /Wz ∼−→V 0 for z = (x,v)},
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and define a map q̃ : Z̃+
m → X̃

+
m by the natural projection. We define a map

σ̃ : Z̃+
m → G̃0

1 × X̃
′+
m′ as follows; take (x,v, gBθ , φ1, φ2) ∈ Z̃+

m. Since z = (x,v) ∈
X 0

m, Wz coincides with g(Mm1). Let g1B1 be the element corresponding to the
flag φ1(g(Mi))0≤i≤m1 , and g2B

θ
2 be the element corresponding to the isotropic flag

φ2(g(Mi)/g(Mm1))i≥m1 . Then

σ̃ : (x,v, gBθ, φ1, φ2) 7→
(
(φ1(x|Wz

)φ−1
1 , g1B1), (φ2(x|W⊥

z /Wz
)φ−1

2 , φ2(v), g2B
θ
2)
)
.

We also define a map π̃m : Z̃+
m → Km by (x,v, gBθ, φ1, φ2) 7→ (x,v, φ1, φ2). Then

we have the following commutative diagram:

T1 × T ιθ2 T ιθ
foo id // T ιθ

G̃0
1 × X̃

′+
m′

α1×α′

OO

ϕ1×π
m′

��

Z̃+
m

σ̃oo q̃ //

π̃m

��

α̃

OO

X̃+
m

α

OO

πm

��
G0

1 ×X
′0
m′ Km

σoo q // X 0
m,

where the map α̃ is defined naturally. Note that T ιθ can be written as T ιθ '
T1×T ιθ2 , where T1 is a maximal torus of G1, and T2 is a θ-stable maximal torus of

G2. We fix an isomorphism f : T ιθ → T1 × T ιθ2 . The map α1 : G̃1 → T1 is defined
as in 2.1, by ignoring v. The maps α′, πm′ are defined similarly to α, πm.

2.6. Let E be a tame local system on T ιθ. Under the isomorphism f : T ιθ →
T1 × T ιθ2 , E can be written as E ' E1 � E2, where E1 (resp. E2) is a tame local
system on T1 (resp. T ιθ2 ). Then we have Wm,E ' W1 ×W ′

m′,E2
, where W1 is the

stabilizer of E1 in Sm1 ' NG1(T1)/T1, and W
′
m′,E2

is defined similarly to Wm,E

with respect to W ′ = NGθ
2
(T ιθ2 )/ZGθ

2
(T ιθ2 ). As in 1.6, Wm,E is decomposed as

Wm,E ' W1×· · ·×Wr with subgroupsWi ⊂ Smi
. ThenW ′

m′,E2
' W2×· · ·×Wr.

For each ρ ∈ W∧
m,E , we construct a simple perverse sheaf Aρ on X 0

m as follows:

The decomposition of the complex π1
! (α

1)∗E1[dimG1] into simple summands is
well known. Let G1,reg be the set of regular semisimple elements in G1. Since G

0
1

is an open dense subset of G1 containing G1,reg, the decompostion of ϕ1
! (α

1)∗E1 is
described similarly. Namely, we have

ϕ1
! (α

1)∗E1 '
⊕

ρ1∈W∧
1

ρ1 ⊗ IC(G0
1,Lρ1), (2.6.1)

where Lρ1 is a simple local system on G1,reg. Write ρ as ρ = ρ1 � · · · � ρr with
ρi ∈ W∧

i . Then ρ
′ = ρ2 � · · ·� ρr ∈ W∧

m′,E2
. Suppose that a simple perverse sheaf

Aρ′ on X ′0
m′ was constructed. Put A1 = IC(G0

1,Lρ1)[dimG1]. Then A1 �Aρ′ is an
H0-equivariant simple perverse sheaf onG0

1×X
′0
m′ , and so σ∗(A1�Aρ′)[β1] is anH0-

equivariant simple perverse sheaf on Km by (2.5.3), where β1 = dimH+(r−2)m1.
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Since q is a principal bundle with group H0 by (2.5.2), there exists a unique simple
perverse sheaf Aρ on X 0

m such that

q∗Aρ[β2] ' σ
∗(A1 �Aρ′ )[β1],

where β2 = dimH0. Note that in the case where r = 2, Aρ coincides with the
simple perverse sheaf A0

ρ constructed in [SS1, 4.6] (G0m in [loc. cit.] corresponds to
our X 0

m with m = (m,n−m)).
Let Lρ be a simple local system on Y0

m as appeared in (1.5.3). Since Y0
m is an

open dense smooth subset of X 0
m, one can consider the intersection cohomology

IC(X 0
m,Lρ) on X

0
m. We have the following lemma.

Lemma 2.7. Aρ ' IC(X 0
m,Lρ)[dm].

Proof. We prove the lemma by induction on r. The case where r = 2 comes from
[SS1, Lemma 4.7]. In order to prove the lemma, it is enough to see that

H−dmAρ|Y0
m
' Lρ. (2.7.1)

We consider the following commutative diagram:

T1 × T ιθ2 T ιθ
foo id // T ιθ

G̃1,reg × Ỹ ′0
m′

α1
0×α

′
0

OO

ξ1×ξ′0
��

Z̃0
m

σ̃0oo q̃0 //

α̃0

OO

ξ̃0
��

Ỹ0
m

α0

OO

ξ0

��
(G1/T1 × T1,reg)× Ŷ

′0
m′

η1×η′0

��

Ẑ0
m

σ̂0oo q̂0 //

η̃0

��

Ŷ0
m

η0

��
G1,reg × Y ′

m′ Km,reg
σ0oo q0 // Y0

m,

(2.7.2)

where Ỹ0
m = ỸI, Ŷ0

m = ŶI for I = I(m) (see 1.3), and Ỹ ′0
m′ = Ỹ ′

I′ , Ŷ
′0
m′ = Ŷ ′

I′ are

defined similarly with respect to Gιθ2 × V
r−2

0 with I′ = I(m′). Moreover,

G̃1,reg = (π1)−1(G1,reg),

Km,reg = q−1(Y0
m),

Z̃0
m = q̃−1(Ỹ0

m),

and Ẑ0
m is defined as the quotient of Z̃0

m under the natural action of the group
ZH(T ιθ)I/(B

θ ∩ZH(T ιθ)). The maps q̃0, q0, σ̃0, σ0 are defined as the restriction of

the corresponding maps q̃, q, σ̃, σ. The map ξ0 is ξI for I = I(m). The maps ξ̃0, η̃0
are defined according to ξ0, η0. ξ

′
0, η

′
0 are defined similarly to ξ0, η0 with respect to
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Gιθ2 × V
r−2

0 . ξ1, η1 are standard maps in the groups case (ξ1 is an isomorphism).
The map σ̂0 is naturally induced from σ̃0.

It follows from the diagram (2.7.2) that

σ̃∗
0((α

1
0)

∗E1 � (α2
0)

∗E2) ' q̃
∗
0α

∗
0E . (2.7.3)

It is easy to check that the squares in the middle row and in the bottom row are
all cartesian squares. Here ψ1 = η1 ◦ ξ1 : G̃1,reg → G1,reg is a finite Galois covering
with group Sm1 , and ψ

1
! (α

1
0)

∗E1 is decomposed as

ψ1
! (α

1
0)

∗E1 '
⊕

ρ1∈W∧
1

ρ1 ⊗Lρ1 . (2.7.4)

On the other hand, by (1.5.3) and (1.6.3), we have

(η′0 ◦ ξ
′
0)!(α

2
0)

∗E2 '
⊕

ρ′∈(W′
m′,E2

)∧

H•(Pmr

1 )⊗ ρ′ ⊗Lρ′ . (2.7.5)

Similarly, the map η0 ◦ ξ0 coincides with ψI : ỸI = Ỹ0
m → Y

0
m. Hence we have

(η0 ◦ ξ0)!α
∗
0E '

⊕

ρ∈W∧
m,E

H•(Pmr

1 )⊗ ρ⊗Lρ. (2.7.6)

Since the Galois covering is compatible with σ0 and q0 thanks to the diagram (2.7.2)
(it corresponds to the squares in the bottom row), we have σ∗

0(Lρ1 � Lρ′ ) ' q
∗
0Lρ

under the identification ρ = ρ1 � ρ′ for Wm,E = W1 ×W ′
m′,E2

. This implies, by
applying the induction hypothesis for Aρ′ , that Aρ|Y0

m
' Lρ[dm]. Hence (2.7.1)

holds and the lemma follows. �

By using Lemma 2.7, we show the following:

Proposition 2.8. Under the notation in Lemma 2.7, (πm)!α
∗E is decomposed as

(πm)!α
∗E ' H•(Pmr

1 )⊗
⊕

ρ∈W∧
m,E

Ṽρ ⊗ IC(X 0
m,Lρ),

where Ṽρ is regarded as a vector space, ignoring the W̃E -action.

Proof. We prove the proposition by induction on r. In the case where r = 2,
the proposition holds by Proposition 4.8 in [SS1]. We assume that the proposition
holds for r′ < r. We fix I = (I1, . . . , Ir) ∈ I(m), and put I′ = (I2, . . . , Ir) ∈ I(m

′).

Put Z̃I = q̃−1(X̃I). We have the following commutative diagram

G̃0
1 × X̃

′
I′

ϕ1×π
I′

��

Z̃I
oo //

��

X̃I

πI

��
G0

1 ×X
′0
m′ Km

σoo q // X 0
m,

(2.8.1)
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where πI is the restriction of πm on X̃I, and similarly for πI′ . Other maps are
determined correspondingly. We note that both squares are cartesian squares.

We show the following.

(2.8.2) Any simple summand (up to shift) of the semisimple complex (πI)!α
∗E is

contained in the set {Aρ | ρ ∈ W∧
m,E}.

Put K1 = ϕ1
! (α

1)∗E1, and K2 = (πm′ )!(α
′)∗E2. By (2.6.1) and the induction

hypothesis, we have

K1 '
⊕

ρ1∈W∧
1

ρ1 ⊗ IC(G0
1,Lρ1)

K2 ' H
•(Pmr

1 )⊗
⊕

ρ′∈W∧
m′,E2

Ṽρ′ ⊗ IC(X ′0
m′ ,Lρ′).

Put KI′ = (πI′)!(α
′)∗E . Since X̃ ′

I′ is a connected component of X̃ ′+
m′ , any simple

summand of KI′ is contained in K2, up to shift, thus it is of the form IC(X ′0
m′ ,Lρ′ ).

A simple perverse sheaf on X 0
m obtained from IC(G0

1,Lρ1) and IC(X ′0
m′ ,Lρ′ ) by the

procedure in 2.6 actually coincides with Aρ. On the other hand, since the squares
in the diagram (2.8.1) are both cartesian, we have σ∗

1(K1 �KI′) ' q∗1((πI)!α
∗E).

(2.8.2) follows from this.
By Lemma 2.4 and Lemma 2.7, (2.8.2) implies that

(2.8.3) Any simple summand (up to shift) of the semisimple complex (πm)!α
∗E is

contained in the set {IC(X 0
m,Lρ) | ρ ∈ W

∧
m,E}.

(2.8.3) implies, in particular, that any simple summand of K = (πm)!α
∗E has

its support X 0
m. Since the restriction of K on Y0

m coincides with K0 = (ψm)!α
∗
0E ,

the decompostion of K into simple summands is determined by the decomposition
of K0. Hence the proposition follows from (1.6.6). �

Remark 2.9. Proposition 2.8 is a generalization of Proposition 4.8 in [SS1]. But
the argument here is much simpler than that of [SS1].

2.10. For m ∈ Qn,r, and for each j, k, we consider M (j,k) and M
(j,k)

as in the
proof of Proposition 1.7. Put

X 0
j,k =

⋃

g∈H

g(Bιθ ×M (j,k)),

X̃+
j,k = π−1(X 0

j,k),

and let πj,k : X̃+
j,k → X

0
j,k be the restriction of π on X̃+

j,k. Then πj,k is a proper

map, and Y0
j,k is open dense in X 0

j,k. Moreover, X 0
j,k coincides with X 0

m in the case
where j = r − 1, k = mr−1, and coincides with Xm in the case where j = 0 and
k = 0. Also put

Xj,k =
⋃

g∈H

g(Bιθ ×M
(j,k)

),

X̃+
j,k = π−1(Xj,k),
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and let πj,k : X̃+
j,k → Xj,k be the restriction of π on X̃+

j,k. Then X
0
j,k is open dense

in Xj,k. As in (1.7.1), we have

(2.10.1) Xj,k\Xj,k−1 = X 0
j,k if k ≥ 1, and Xj,0(m) = Xj+1,mj+mj+1(m(j, 0)).

Moreover, X 0
j,k(m) coincides with Xj+1,mj+mj+1−k(m(j, k)).

For m′ ∈ Q(m; j, k), Y0
m′ is containd in Yj,k , hence in Xj,k. One can define

an intersection cohomology IC(X ′
m′ ,Lρ) associated to the local system Lρ on Y0

m′

(here X ′
m′ denotes the closure of Y0

m′ in Xj,k). We show the following formulas.
First assume that j = r − 1 and 0 ≤ k ≤ mr−1.

(πr−1,k)!α
∗E

'
⊕

0≤k′≤k

⊕

ρ∈W∧
m(k′),E

Ṽρ ⊗ IC(Xr−1,k′ ,Lρ)[−2(mr−1 − k
′)] +Mr−1,k, (2.10.2)

where Mr−1,k is a sum of various IC(Xr−1,k′ ,Lρ)[−2i] for 0 ≤ k′ ≤ k and ρ ∈
W∧

m(k′),E with 0 ≤ i < mr−1 − k′. Next assume that 0 ≤ j < r − 1 and that
0 ≤ k ≤ mj . Then we have

(πj,k)!α
∗E

'
⊕

0≤k′≤mr−1

⊕

ρ∈W∧
m(k′),E

Ṽρ ⊗ IC(X ′
m(k′),Lρ)[−2(mr−1 − k

′)] +Mj,k, (2.10.3)

where Mj,k is a sum of various IC(X ′
m′ ,Lρ)[−2i] for m′ ∈ Q(m; j, k) and ρ ∈

W∧
m′,E with i such that 0 ≤ 2i < dm − dm′ .

As in the proof of Proposition 1.7, one can define an action of W̃E on (πj,k)!α
∗E .

Then (2.10.2) and (2.10.3) can be proved by a similar argument as in the proof of
Proposition 1.7.

Now apply (2.10.3) to the case where j = 0, k = 0. In this case, πj,k co-
incides with πm. (2.10.3) shows that any simple perverse sheaf A[s] appearing
in the semisimple complex (πm)!α

∗E has the property that supp A ∩ Ym 6= ∅.
Ym is open dense in Xm, and the restriction of (πm)!α

∗E on Ym coincides with
(ψm)!α

∗
0E . Thus the theorem follows from Proposition 1.7. This complets the

proof of Theorem 2.2.

3. A variant of Theorem 2.2

3.1. In this section, we assume that X is of exotic type. We keep the notation
in Section 1 and Section 2. For m = (m1, . . . ,mr−1, 0) ∈ Q0

n,r, put W\
m =

Sm1×· · ·×Smr−2×Wmr−1 , whereWn is the Weyl group of type Cn, and letW\
m,E

be the stabilizer of E in W\
m. (Note that W\

m is not a subgroup of Wn,r if r ≥ 3.)
Recall that m(k) = (m1, . . . ,mr−2, k, k

′) with k+k′ = mr−1 for m ∈ Q0
n,r. Hence

Wm(k) ' Sm1 × · · · × Smr−2 × Sk × Sk′ . For ρ = ρ1 � · · · � ρr ∈ W
∧
m(k),E , we
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define an irreducibleW\
m,E -module V \ρ by V \ρ = ρ1� · · ·� ρr−2� ρ̃r−1, where ρ̃r−1

is an irreducible Wmr−1 -module obtained from ρr−1 � ρr ∈ (Sk × Sk′ )
∧ (apply

1.6 for the case r = 2). Recall the map π(m) : X̃m → Xm as in 1.2 and consider

α|X̃m

: X̃m → T ιθ, which we denote by the same symbol α. The following result is
a variant of Theorem 2.2.

Theorem 3.2. For each m ∈ Q0
n,r, π

(m)
! α∗E [dm] is a semisimple perverse sheaf

on Xm equipped with W\
m,E -action, and is decomposed as

π
(m)
! α∗E [dm] '

⊕

0≤k≤mr−1

⊕

ρ∈W∧
m(k),E

V \ρ ⊗ IC(Xm(k),Lρ)[dm(k)].

3.3. The theorem can be proved in a similar way as in the proof of Theorem
2.2. We will give an outline of the proof below. We follow the notation in 1.3. We
fix m ∈ Q0

n,r. We also consider the map ψ(m) : Ỹm → Ym. For each m′ ≤ m

(m′ ∈ Qn,r), put Ỹ
†
m′ = (ψ(m))−1(Y0

m′ ). For each I ∈ I(m′), the variety ỸI ⊂ Ỹ
†
m′

is defined as in 1.3. Put I(m) = (I◦1 , . . . , I
◦
r ) ∈ I(m) with I◦i = [pi−1 + 1, pi]. In

particular, I◦r = ∅. Put W(m) = Sm1 × · · · × Smr−1(= Wm), and we denote by

W
(m)
m′ the subgroup of W(m) which is the stabilizer of I(m′). Put

I(m)(m′) = {I ∈ I(m′) | I≤i ⊂ I
◦
≤i (1 ≤ i ≤ r)},

where I≤i is defined similarly to I<i in 1.3. Then as in (1.3.2),W(m) acts naturally

on Ỹ†
m′ , and

Ỹ†
m′ =

∐

I∈I(m)(m′)

ỸI =
∐

w∈W(m)/W
(m)

m′

w(Ỹ0
m′ ), (3.3.1)

where Y0
m′ = YI(m′) is as in 1.3. For a tame local system E on T ιθ, we denote by

W
(m)
E (resp. W

(m)
m′,E) the stabilizer of E in W(m) (resp. in W

(m)
m′ ). Put W̃(m) =

W(m) n (Z/2Z)mr−1 , which coincides with W\
m. We define a subgroup W̃

(m)
E of

W̃(m) by W̃
(m)
E = W

(m)
E n (Z/2Z)mr−1 . Thus W̃

(m)
E = W\

m,E in the notation of

3.1. Let ψ
(m)
m′ be the restriction of ψ(m) on Ỹ†

m′ . As an analogue of (1.5.2), we
have

(ψ
(m)
m′ )!α

∗
0E|Ỹ†

m′
'

⊕

I∈I(m)(m′)

(ψI)!α
∗
0E|ỸI

. (3.3.2)

Put m′ = (m′
1, . . . ,m

′
r). The action of (Z/2Z)m

′
r on H•(P

m′
r

1 ) is defined as in 1.6
by considering the case where r = 2. By a similar argument as in 1.5 and 1.6, we

see that (ψ
(m)
m′ )!α

∗
0E is equipped with (Z/2Z)m

′
r×W

(m)
E -action, and is decomposed

as

(ψ
(m)
m′ )!α

∗
0E|Ỹ†

m′
' H•(P

m′
r

1 )⊗
⊕

ρ∈(W
(m)

m′,E
)∧

Ind
W

(m)
E

W
(m)

m′,E

ρ⊗Lρ, (3.3.3)

where Lρ is a simple local system on Y0
m′ obtained from the Galois covering

ŶI(m′) → Y
0
m′ as in (1.5.3).
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As in (1.6.7), (3.3.3) can be rewritten in the following form:

(ψ
(m)
m′ )!α

∗
0E|Ỹ†

m′
'

( ⊕

ρ∈W∧
m(k),E

V \ρ ⊗Lρ

)
[−2m′

r] +Nm′ (3.3.4)

if m′ = m(k) for some k, and (ψ
(m)
m′ )!α

∗E|Ỹ†

m′
' Nm′ otherwise, where Nm′ is a

sum of various Lρ[−2i] for ρ ∈ (W
(m)
m′ ,E)

∧ with 2i < dm − dm′ .
In fact, put p(m′) = (p′1, . . . , p

′
r). Since m ≥ m′, pi ≥ p′i for each i. Moreover,

pr−1 − p
′
r−1 = m′

r since pr−1 = n. Then by Lemma 1.4 we have

dm − dm′ =

r−1∑

i=1

(pi − p
′
i) +m′

r

=

r−2∑

i=1

(pi − p
′
i) + 2m′

r

≥ 2m′
r,

and the equality holds only when pi = p′i for i = 1, . . . , r − 2, namely when

m′ = m(k) for some k. By (3.3.3), K = (ψ
(m)
m′ )!α

∗
0E is a semisimple complex

and each direct summand is of the form Lρ[−2i] with i ≤ m′
r. Hence K ' Nm′

if m′ is not of the form m(k). Now assume that m′ = m(k). In this case,

W
(m)
m′,E =Wm(k),E , and it follows from (3.3.3) that

K '
⊕

ρ∈W∧
m(k),E

Ind
W̃

(m)
E

W̃
(m)

m(k),E

(H•(P
m′

r

1 )⊗ ρ)⊗Lρ, (3.3.5)

where W̃
(m)
m(k),E = W

(m)
m(k),E n (Z/2Z)mr−1 , and H•(P

m′
r

1 ) ⊗ ρ is regarded as an

W̃
(m)
m(k),E -module by the trivial action of (Z/2Z)k , and by the action of (Z/2Z)m

′
r

through H•(P
m′

r

1 ) (here k + m′
r = mr−1). The direct summand Lρ[−2i] of K

satisfies the relation dm − dm′ = 2i only when i = m′
r−1. Hence the first assertion

of (3.3.4) follows from (3.3.5).

3.4. For 1 ≤ j ≤ r − 1 and 0 ≤ k ≤ mj , M
(j,k),M

(j,k)
,Y0

j,k ,Yj,k are

defined as in the proof of Proposition 1.7. Put Ỹ†
j,k = (ψ(m))−1(Y0

j,k) and Ỹ
†
j,k =

(ψ(m))−1(Yj,k). Let ψ
(m)
j,k : Ỹ†

j,k → Y
0
j,k be the restriction of ψ(m) on Ỹ†

j,k, and

ψ
(m)

j,k : Ỹ†
j,k → Yj,k the restriction of ψ(m) on Ỹ†

j,k. By using a similar argument
as in the proof of (1.7.2) and (1.7.3), we can show the following formulas. First
assume that j = r − 1 and 0 ≤ k ≤ mr−1.

(ψ
(m)

r−1,k)!α
∗
0E

'
⊕

0≤k′≤k

⊕

ρ∈W∧
m(k′),E

V \ρ ⊗ IC(Yr−1,k′ ,Lρ)[−2(mr−1 − k
′)] +Nr−1,k, (3.4.1)

219



TOSHIAKI SHOJI

where Nr−1,k is a sum of various IC(Yr−1,k′ ,Lρ)[−2i] for 0 ≤ k′ ≤ k and ρ ∈
W∧

m(k′),E with i < mr−1−k′. Next assume that 0 ≤ j < r−1 and that 0 ≤ k ≤ mj .
Then we have

(ψ
(m)

j,k )∗α
∗
0E

'
⊕

0≤k′≤mr−1

⊕

ρ∈W∧
m(k′),E

V \ρ ⊗ IC(Y ′
m(k′),Lρ)[−2(mr−1 − k

′)] +Nj,k, (3.4.2)

where Nj,k is a sum of various IC(Y ′
m′ ,Lρ)[−2i] for m′ ∈ Q(m; j, k) and ρ ∈

(W
(m)
m′,E)

∧ with i such that 2i < dm − dm′ .

Note that in the proof of (3.4.1), the role of the irreducible W̃E -module Ṽρ is

replaced by the irreducible W\
m,E -module V \ρ .

By a similar argument as in the proof of Lemma 1.4 (iv), one can show that
ψ(m) is semismall for m ∈ Q0

n,r. Then, as in the proof of Proposition 1.7 (see the
paragraph after (1.7.3)), we obtain the following proposition from (3.4.2).

Proposition 3.5. For each m ∈ Q0
n,r, ψ

(m)
! α∗

0E [dm] is a semisimple perverse

sheaf on Ym equipped with W\
m,E -action, and is decomposed as

ψ
(m)
! α∗

0E [dm] '
⊕

0≤k≤mr−1

⊕

ρ∈W∧
m(k),E

V \ρ ⊗ IC(Ym(k),Lρ)[dm(k)].

3.6. We follow the notation in 2.3. For m′ ∈ Qn,r such that m′ ≤ m,

put X̃ †
m′ = (π(m))−1(X 0

m′). Then Ỹ†
m′ is an open dense subset of X̃ †

m′ . For each

I ∈ I(m′), the subvariety X̃I of X̃+
m′ is defined as in 2.3. Then, as in Lemma 2.4,

we have
X̃ †

m′ =
∐

I∈I(m)(m′)

X̃I,

where X̃I is an irreducible component of X̃ †
m′ .

Let π
(m)
m′ : X̃ †

m′ → X 0
m′ be the restriction of π(m) on X̃ †

m′ . The following result
is an analogue of Proposition 2.8, and is proved in a similar way.

Proposition 3.7. Assume that m′ ≤m. Then (π
(m)
m′ )!α

∗E is decomposed as

(π
(m)
m′ )!α

∗E ' H•(P
m′

r

1 )⊗
⊕

ρ∈W
(m)∧

m′,E

Ind
W

(m)
E

W
(m)

m′,E

ρ⊗ IC(X 0
m′ ,Lρ),

where Ind
W

(m)
E

W
(m)

m′,E

ρ is regarded as a vector space ignoring theW
(m)
E -module structure.

3.8. By making use of Proposition 3.5 and 3.7, the theorem can be proved in
a similar way as in 2.9, 2.10.
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4. Intersection cohomology on Gιθ
× V r−1 (enhanced case)

4.1. In this section we assume that X is of enhanced type. We fix m ∈ Qn,r
(note that we do not assume m ∈ Q0

n,r), and consider the map π(m) : X̃m → Xm.
Here, in order to emphasize a similarlty with the exotic case, we follow the notation
in Section 1. But of course a simpler expression is possible for the enhanced case.
For example, if we write G = G0 ×G0 and B = B0 ×B0 for a Borel subgroup B0

of G0, X̃m,Xm are given by

X̃m =
{
(x,v, gB0) ∈ G0 × V

r−1 ×G0/B0

∣∣∣ g−1xg ∈ B0, g
−1v ∈

r−1∏

i=1

Mpi

}

Xm =
⋃

g∈G0

g(B0 ×
r−1∏

i=1

Mpi).

The map ψ(m) : Ỹm → Ym is defined as in 1.2. The subset Y0
m′ is defined for

each m′ ∈ Qn,r as in 1.3. For each m′ ≤ m, put Ỹ†
m′ = (ψ(m))−1(Y0

m′ ). For each

I ∈ I(m′), the subvariety ỸI of Ỹ†
m′ and the map ψI are defined as in 1.3. Note

that in the enhanced case, if we write T = T0×T0, then ZH(T ιθ) = ZG0(T0) = T0.
Hence Bθ ∩ ZH(T ιθ) = T0, and T

ιθ
reg is the set of regular semisimple elements in

T0. Hence ỸI is written as

ỸI ' G0 ×
T0 ((T0)reg ×MI),

where MI is defined as in 1.3. As in 3.3, we define W (m) = Sm1 × · · · × Smr

(= Wm), and its subgroup W
(m)
m′ . For each m′ ≤ m, we define I(m)(m′) as in

3.3. Then a similar formula as (3.3.1) holds for Ỹ†
m′ . Let E be a tame local system

on T ιθ, and we denote by W
(m)
E (resp. W

(m)
m′,E) the stabilizer of E in W(m) (resp.

in W
(m)
m′ ). As in (1.5.2), we have a similar formula as (3.3.2). Note that in the

enhanced case, one can check that ψI is a finite Galois covering with group W
(m)
I

(the stabilizer of I in W(m)). It follows from (3.3.1) and (3.3.2) (corresponding
formulas for the enhanced case) that we have

(ψ
(m)
m′ )!α

∗
0E|Ỹ†

m′
'

⊕

ρ∈(W
(m)

m′,E
)∧

(
Ind

W
(m)
E

W
(m)

m′,E

ρ
)
⊗Lρ. (4.1.1)

Here we note that

Lemma 4.2.

(i) Ym is open dense in Xm and Ỹm is open dense in X̃m.

(ii) dimXm = dim X̃m = n2 +
∑r

i=1(r − i)mi.

(iii) For any (x,v) ∈ Ym, (ψ(m))−1(x,v) is a finite set.
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Proof. Ỹm is an open dense subset of X̃m. Since Ỹm = (π(m))−1(Ym) and π(m) is

proper, Ym is an open dense subset of Xm. Hence (i) holds. Ỹ†
m is an open dense

subset of Ỹm, and Y0
m is an open dense subset of Ym. Since ψI is a finite Galois

covering for I ∈ I(m), we have dim Ỹ†
m = dimY0

m. Hence dim Ỹm = dimYm and
(ii) follows from (1.2.1). (iii) is clear since ψI is a finite Galois covering for any
I ∈ I(m)(m′). �

Next we show the following proposition.

Proposition 4.3. For each m ∈ Qn,r, ψ
(m)
! α∗

0E [dm] is a semisimple perverse

sheaf on Ym equipped with Wm,E -action, and is decomposed as

ψ
(m)
! α∗

0E [dm] '
⊕

ρ∈W∧
m,E

ρ⊗ IC(Ym,Lρ)[dm].

Proof. ψ(m) : Ỹ(m) → Ym is proper. By Lemma 4.2 (iii), ψ(m) is semismall. Hence

ψ
(m)
! α∗

0E [dm] is a semisimple perverse sheaf. The definitions of Y0
j,k, Yj,k, ψ

(m)
j,k ,

ψ
(m)

j,k , etc., in 3.4 make sense also in the enhanced case. As in (3.4.1) and (3.4.2),
the following formulas hold; first assume that j = r − 1, 0 ≤ k < mr−1. Then we
have

(ψ
(m)

j,k )!α
∗
0E ' Nr−1,k. (4.3.1)

Next assume that j = r − 1, k = mr−1 or 0 ≤ j < r − 1, 0 ≤ k ≤ mj . Then we
have

(ψ
(m)

j,k )!α
∗
0E '

⊕

ρ∈W∧
m,E

ρ⊗ IC(Y ′
m,Lρ) +Nj,k, (4.3.2)

where Nj,k is a sum of various IC(Y ′
m′ ,Lρ) for m′ ∈ Q(m; j, k) and ρ ∈ (W

(m)
m′,E)

∧

such that m′ <m. (Recall that Y ′
m′ denotes the closure of Y0

m′ ⊂ Yj,k in Yj,k for
any m′ ≤m.)

We show (4.3.1) by induction on k. By (1.7.1) (or directly from the definition
of M (r−1,k)), Yr−1,0(m) coincides with Y0

m(0). Hence by (4.1.1) for m′ = m(0),

(4.3.1) holds for k = 0. A similar argument as in the proof of (1.7.2) shows,
thanks to (1.7.1) and (4.1.1), that (4.3.1) holds for k < mr−1. Next consider the
case where j = r−1, k = mr−1. By (1.7.1), Yj,k\Yj,k−1 = Y0

j,k , and Y
0
j,k coinicides

with Y0
m. Thus (4.1.1) implies that

(ψ
(m)
j,k )!α

∗
0E '

⊕

ρ∈W∧
m,E

ρ⊗Lρ.

Hence (4.3.2) holds in this case. Now (4.3.2) can be proved by induction on k
and by backwards induction on j, starting from j = r − 2, k = 0, which case
corresponds to the case where j = r − 1, k = mr−1 by (1.7.1). Note that in the
enhanced case, we do not need a discussion such as in (1.7.5).

Applying (4.3.2) to the case where j = 0, k = 0, we obtain the proposition. In
fact, in that case, N0,0 is a sum of A = IC(Ym′ ,Lρ) such that m′ <m. But then

A[dm] is not a perverse sheaf. Since ψ
(m)
! α∗

0E [dm] is a semisimple perverse sheaf,
this implies that N0,0 = 0, and the proposition follows. �
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4.4. As a special case of (4.1.1) for m′ = m, we have

(ψ(m)
m )!α

∗
0E '

⊕

ρ∈W∧
m,E

ρ⊗Lρ.

Since Y0
m is a smooth open dense subset of Xm, one can define a semisimple

perverse sheaf Km,T,E on Xm as

Km,T,E =
⊕

ρ∈W∧
m,E

ρ⊗ IC(Xm,Lρ)[dm]. (4.4.1)

We consider a diagram

T ιθ
α
←−− X̃m

π(m)

−−−→ Xm,

where α is as in 2.1, and a complex π
(m)
! α∗E [dm] on Xm. We shall prove the

following theorem.

Theorem 4.5. For each m ∈ Qn,r, π
(m)
! α∗E [dm] ' Km,T,E as perverse sheaves

on Xm.

4.6. For each m′ ≤m, the set X 0
m′ is defined as in 2.3. We define a subvariety

X †
m′ of X̃m by X̃ †

m′ = (π(m))−1(X 0
m′ ). Then Ỹ†

m′ is an open dense subset of

X̃ †
m′ . The discussion in 2.3 makes sense also for the enhanced case, and X 0

m′ is

characterized by a similar formula as (2.3.3). For each I ∈ I(m′), the set X̃I is
defined as in 2.3,

X̃I = {(x,v, gB
θ) ∈ X̃ †

m′ | (x,v, gBθ) 7→ I}.

Let I(m)(m′) be as in 3.3. Then as in Lemma 2.4 (see also 3.6), we have

X̃ †
m′ =

∐

I∈I(m)(m′)

X̃I,

where X̃I is an irreducible component of X̃ †
m′ . Let π

(m)
m′ : X̃ †

m′ → X 0
m′ be the

restriction of π(m) on X̃ †
m′ . The following result is an analogue of Proposition 2.8

(see also Proposition 3.7) and can be proved in a similar way.

Proposition 4.7. Assume that m′ ≤m. Then (π
(m)
m′ )!α

∗
0E is decomposed as

(π
(m)
m′ )!α

∗
0E|X̃ †

m′
'

⊕

ρ∈(W
(m)

m′,E
)∧

(
Ind

W
(m)
E

W
(m)

m′,E

ρ
)
⊗ IC(X 0

m′ ,Lρ).

4.8. By making use of Proposition 4.3 and Proposition 4.7, the theorem is
proved by a similar argument as in 2.8 and 2.10.
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5. Unipotent variety of enhanced type

In this section, we study the “unipotent part” of the enhanced space, which we
call the unipotent variety of enhanced type. First we prepare some combinatorial
notation.

5.1. A composition is a sequence of integers λ = (λ1, λ2, . . . ) with finitely
many nonzero terms. A composition λ satisfying the property that λ1 ≥ λ2 ≥ · · ·
is called a partition. For a composition λ, we denote by |λ| =

∑
i λi the size of λ.

For a positive integer r, an r-tuple of partitions λ = (λ(1), . . . , λ(r)) is called an
r-partition. We denote by |λ| =

∑
i |λ

(i)| the size of λ. We express an r-partition

by λ = (λ
(i)
j ) with partitions λ(i) = (λ

(i)
1 , . . . , λ

(i)
m ) by choosing sufficiently large

m so that λ
(i)
j = 0 for j > m and for any i. The set of r-partitions of size n is

denoted by Pn,r. In the case where r = 1, the set Pn,1 of partitions of n is simply
denoted by Pn. For a given m ∈ Qn,r, we denote by P(m) the set of λ ∈ Pn,r
such that |λ(i)| = mi for each i.

Let λ = (λ
(i)
j ) be an r-partition of n. We define a composition c(λ) of n

associated to λ by

c(λ) = (λ
(1)
1 , λ

(2)
1 , . . . , λ

(r)
1 , λ

(1)
2 , λ

(2)
2 , . . . , λ

(r)
2 , . . . , λ(1)m , λ(2)m , . . . , λ(r)m ).

For example, if λ = (320; 211; 411) ∈ P15,3, we have c(λ) = (324211011).
For a composition λ = (λ1, λ2, . . . , ), µ = (µ1, µ2, . . . , ), we denote by λ ≤ µ if

λ1 + · · ·+ λk ≤ µ1 + · · ·+ µk

for k = 1, 2, · · · . We define a dominance order ≤ on Pn,r by the condition that
λ ≤ µ if c(λ) ≤ c(µ). In the case where r = 1, this is the standard dominance
order on the set Pn. In the case where r = 2, this is the partial order given in
[SS1, 1.7].

For a partition λ = (λ1, λ2, . . . ), we put n(λ) =
∑

i≥1(i − 1)λi. We define a

function n : Pn,r → Z by n(λ) =
∑r
i=1 n(λ

(i)).

5.2. We consider the enhanced space of higher level introduced in 1.2. However
in this section, we redefine them directly, without using the symmetric space setting
in 1.2. For an integer r ≥ 1, we consider a variety Xuni = Guni × V r−1, where V
is an n-dimensional vector space over k, G = GL(V ) and Guni is the unipotent
variety of G. We fix a basis {e1, . . . , en} of V , and define Mi as the subspace of V
spanned by e1, . . . , ei. Let B be a Borel subgroup of G which is the stabilizer of the
total flag (Mi). Let T be a maximal torus of B such that {ei} are weight vectors
for T . Then B = TU , where U is the unipotent radical of B. For m ∈ Qn,r, let
p(m) = (p1, . . . , pr) be as in 1.2. We define

X̃m,uni =
{
(x,v, gB) ∈ Guni × V

r−1 ×G/B
∣∣∣ g−1xg ∈ U, g−1v ∈

r−1∏

i=1

Mpi

}
,

Xm,uni =
⋃

g∈G

g
(
U ×

r−1∏

i=1

Mpi

)
.
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We define a map π
(m)
1 : X̃m,uni → Xuni by (x,v, gB) 7→ (x,v). Clearly Xm,uni =

Imπ
(m)
1 , and Xm,uni coincides with Xuni in the case where m = (n, 0, . . . , 0). Since

X̃m,uni ' G ×B (U ×
∏
iMpi), X̃m,uni is smooth and irreducible. Since π

(m)
1 is

proper, Xm,uni is a closed irreducible subvariety of Xuni.

5.3. We shall define a partition of Xuni into pieces Xλ indexed by λ ∈ Pn,r,

Xuni =
∐

λ∈Pn,r

Xλ (5.3.1)

satisfying the property such that Xλ is G-stable, and that if (x,v) ∈ Xλ, then the
Jordan type of x is λ(1) + · · ·+ λ(r). It is known by [AH] and [T] that the set of
G-orbits in Guni× V is finite, and they are parametrized by Pn,2. The labelling is
given as follows; take (x, v) ∈ Guni × V . Let Ex = {y ∈ End(V ) | xy = yx}. Ex

is a subalgebra of End(V ) stable by the multiplication of x. If we put W = Exv,
W is an x-stable subspace of V . We denote by λ(1) the Jordan type of x|W , and
by λ(2) the Jordan type of x|V/W . Then the Jordan type of x is λ(1) + λ(2) and

λ = (λ(1), λ(2)) ∈ Pn,2. We denote by Oλ the G-orbit containing (x, v). This gives
the required labelling of G-orbits in Guni × V .

If r ≥ 3, the number of G-orbits in Xuni is infinite. So Xλ should be a union of
possibly infinitely manyG-orbits. In general, we defineXλ by induction on r. Take
(x,v) ∈ Xuni with v = (v1, . . . , vr−1). PutW = Exv1, V = V/W and G = GL(V ).

We consider the variety X ′
uni = G × V

r−2
. Assume that (x, v1) ∈ Guni × V is of

type (λ(1), ν′), where ν = λ(1) + ν′ is the type of x. Let x be the restriction of x
on V . Then the type of x ∈ GL(V ) is ν ′. Put v = (v2, . . . vr−1), where vi is the
image of vi on V . Thus (x,v) ∈ X ′

uni. By induction, we have a partition X ′
uni =∐

µ∈Pn′,r−1
X ′

µ, where dimV = n′. Thus there exists a unique X ′
λ′ containing

(x,v). If we write λ′ = (λ(2), . . . , λ(r)), we have λ(2) + · · · + λ(r) = ν′. It follows
that λ = (λ(1), . . . λ(r)) ∈ Pn,r. We define the type of (x,v) by λ, and define a
subset Xλ of Xuni as the set of all (x,v) with type λ. Then Xλ is a G-stable
subset of Xuni, and we obtain the required partition (5.3.1).

We show the following proposition.

Proposition 5.4. Let λ = (λ(1), . . . , λ(r)) ∈ Pn,r. Then Xλ is a smooth irre-

ducible variety with

dimXλ = (n2 − n− 2n(λ)) +

r−1∑

i=1

(r − i)|λ(i)|. (5.4.1)

Proof. Wemay assume that r ≥ 2. Put ν = λ(1)+· · ·+λ(r) and ν′ = λ(2)+· · ·+λ(r).
Let O = O(λ(1),ν′) be the G-orbit in Guni × V corresponding to (λ(1), ν′) ∈ Pn,2,
and Oν be the G-orbit in Guni corresponding to ν ∈ Pn. We have surjective maps
fλ : Xλ → O, (x,v) 7→ (x, v1), and hλ : Xλ → Oν , (x,v) 7→ x. For each x ∈ Oν ,
put h−1

λ (x) = Xλ,x. The proposition certainly holds if r = 2 by [AH, Prop. 2.8].
We show the proposition, together with the statement (5.4.2), by induction on r.
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(5.4.2) Xλ,x is a smooth and irreducible variety with

dimXλ,x =

r−1∑

i=1

(r − i)|λ(i)|.

We assume that (5.4.2) holds for Xuni with smaller r. For a fixed (x, v1) ∈ O,
we consider the variety X ′

uni as in 5.3. Let λ′ = (λ(2), . . . , λ(r)). Then by the
discussion in 5.3, we see that f−1

λ (x, v1) ' X
′
λ′,x ×W

r−2. ZG(x, v1) stabilizes the

subspace W and so acts on X ′
λ′,x. We have

Xλ ' G×
ZG(x,v1) (X ′

λ′,x ×W
r−2). (5.4.3)

By induction, X ′
λ′,x is smooth and irreducible. Hence Xλ is smooth and irre-

ducible. Since
Xλ,x ' ZG(x)×

ZG(x,v1) (X ′
λ′,x ×W

r−2), (5.4.4)

and ZG(x) is connected, Xλ,x is also smooth and irreducible. This proves the first
statement of (5.4.1) and (5.4.2). We shall compute dimXλ and dimXλ,x. By
(5.4.3), we have

dimXλ = dimO(λ(1) ,ν′) + dimX ′
λ′,x + (r − 2)|λ(1)|. (5.4.5)

Here dimO(λ(1) ,ν′) = n2−n−2n(ν)+ |λ(1)| by [AH, Prop. 2.8]. By applying (5.4.2)
to X ′

λ′,x, we have

dimX ′
λ′,x =

r−1∑

i=2

(r − i)|λ(i)|.

By substituting those formulas to (5.4.5), we obtain (5.4.1) (note that n(ν) =
n(λ)).

By comparing (5.4.3) and (5.4.4), we have

dimXλ,x = dimXλ − (dimG− dimZG(x))

= dimXλ − dimOν .

Since dimOν = n2 − n − 2n(ν), (5.4.2) follows from (5.4.1). This proves the
proposition. �

5.5. Let λ = (λ(1), . . . , λ(r)) ∈ P(m). We write the dual partition (λ(i))∗ of

λ(i) as (µ
(i)
1 ≤ µ

(i)
2 ≤ · · · ≤ µ

(i)
`i
), in the increasing order, where `i = λ

(i)
1 . For each

1 ≤ i ≤ r, 1 ≤ j < `i, we define an integer n(i, j) by

n(i, j) = (|λ(1)|+ · · ·+ |λ(i−1)|) + µ
(i)
1 + · · ·+ µ

(i)
j .

Let P = Pλ be the stabilizer of a partial flag (Mn(i,j)) in G, and UP the unipotent
radical of P . In particular, P stabilizes the subspaces Mpi . Let us define a variety

X̃λ by

X̃λ =
{
(x,v, gP ) ∈ Guni × V

r−1 ×G/P
∣∣∣ g−1xg ∈ UP , g

−1v ∈
r−1∏

i=1

Mpi

}
.

We define a map πλ : X̃λ → Xuni by (x,v, gP ) 7→ (x,v). Then πλ is a proper

map. Since X̃λ ' G×P (UP ×
∏
iMpi), X̃λ is smooth and irreducible.

We have the following lemma.
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Lemma 5.6. Let λ = (λ(1), . . . , λ(r)) ∈ Pn,r.

(i) dim X̃λ = dimXλ.

(ii) Imπλ = Xλ, where Xλ is the closure of Xλ in Xuni.

Proof. We have

dim X̃λ = dimG/P + dimUP + dim

r−1∏

i=1

Mpi

= 2dimUP +

r−1∑

i=1

(r − i)|λ(i)|.

Here dimUP = (dimG− dimL)/2, where L is a Levi subgroup of P , and

dimL =
∑

i,j

(µ
(i)
j )2 = n+ 2n(λ).

The second equality follows from the formula n(λ∗) =
∑

i λi(λi − 1)/2 for a parti-
tion λ = (λ1, λ2, . . . ) and its dual λ∗. By comparing this with Proposition 5.4, we
obtain (i).

We show (ii). Take (x,v) ∈ Xλ. By the construction of Xλ in 5.3, one can
find a sequence of x-stable subspaces Vp1 ⊂ Vp2 ⊂ · · · ⊂ Vpr = V of V such
that vi ∈ Vpi and that the restriction of x on Vpi/Vpi−1 has type λ(i). It is well
known that there exists an x-stable flag (Vn(i,j)) which is a refinement of (Vpi )
such that Vn(i,j) = gMn(i,j) for some g ∈ G and that g−1xg ∈ UP (see [AH, Prop.

3.3 (4)]). It follows that (x,v, gP ) ∈ X̃λ, and we see that (x,v) ∈ Imπλ. This
proves that Xλ ⊂ Imπλ. Since πλ is proper, Imπλ is a closed subset of Xuni and
we have Xλ ⊂ Imπλ. Since Xλ and Imπλ are both irreducible, (i) implies that
Imπλ = Xλ. Hence (ii) holds. The lemma is proved. �

Remark 5.7. In the case where r = 2, Achar-Henderson proved in [AH, Prop. 3.3]

that the map πλ : X̃λ → Xλ is a resolution of singularities for Xλ. By a similar
argument, by using Lemma 5.6 (ii), one can prove that πλ gives a resolution of
singularities for Xλ for any r ≥ 2.

5.8. Recall the map π
(m)
1 : X̃m,uni → Xm,uni in 5.2 for m = (m1, . . . ,mr) ∈

Qn,r. Let us define λ(m) = (λ(1), . . . , λ(r)) by the condition that λ(i) = (mi) for

each i. We consider the varieties X̃λ in 5.5 for λ = λ(m). In this case, P = B.

X̃λ is isomorphic to X̃m,uni, and πλ is identified with π
(m)
1 . We have the following

result.

Proposition 5.9. For m ∈ Qn,r, we have

(i) Xm,uni = Xλ(m).

(ii) dimXm,uni = n2 − n+
∑r−1
i=1 (r − i)mi.

(iii) For µ ∈ P(m), Xµ ⊂ Xm,uni.
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Proof. (i) is a direct consequence of Lemma 5.6 (ii) in view of 5.8. (ii) follows
from (i) and Proposition 5.4. We show (iii). Take (x,v) ∈ Xµ. As in the proof
of Lemma 5.6, there exists an x-stable partial flag (Vn(i,j)) with respect to µ.
By our assumption, vi ∈ Vpi for each i. Then one can find an x-stable total
flag (Vi) as a refinement of this (Vn(i,j)). This shows that (x,v) is contained in

Imπ
(m)
1 = Xm,uni. Hence Xµ ⊂ Xm,uni as asserted. �

5.10. In the case where r = 2, there exists a normal basis for (x, v) ∈ Guni×V
(cf. [AH, 2.2], [T]). If r ≥ 3, one cannot expect such a basis since Xuni has infinitely
many G-orbits. However, one can find typical elements in Xλ as follows: Put
ν = (ν1, . . . , ν`) ∈ Pn for ν = λ(1) + · · · + λ(r). Take x ∈ Guni of Jordan type ν,
and let {uj,k | 1 ≤ j ≤ `, 1 ≤ k ≤ νj} be a Jordan basis of x in V having the
property (x− 1)uj,k = uj,k−1 with the convention that uj,0 = 0. We define vi ∈ V
for i = 1, . . . , r − 1 by the condition that

vi =
∑

1≤j≤`

u
j,λ

(1)
j +···+λ

(i)
j

(5.10.1)

and put v = (v1, . . . , vr−1). Let Wi be the subspace of V spanned by the basis

{
uj,k | 1 ≤ j ≤ `, 1 ≤ k ≤ λ

(1)
j + · · ·+ λ

(i)
j

}
.

Then W1 ⊂W2 ⊂ · · · ⊂Wr−1 ⊂ V , and Wi is an x-stable subspace of V such that
vi ∈ Wi. Let x be the restriction of x on V = V/Wi−1, and vi be the image of vi
on V . Put Ḡ = GL(V ). Then Ex̄vi coincides with Wi/Wi−1, and the restriction
of x on Wi/Wi−1 has type λ(i). It follows that (x,v) ∈ Xλ. Such an element
(x,v) ∈ Xλ is called a standard element. More generally, we consider an element
w = (w1, . . . , wr−1) of the form

wi =
∑̀

j=1

λ
(1)
j +···+λ

(i)
j∑

k=1

aij,kuj,k (5.10.2)

with aij,k ∈ k such that ai
j,λ

(1)
j +···+λ

(i)
j

6= 0. Then wi ∈Wi, and E
x̄wi coincides with

Wi/Wi−1. Hence (x,w) ∈ Xλ. Here (x,wi) is conjugate to an element (x, vi) as
above under the group ZG(x) for each i. We call (x,w) a semi-standard element.
We define a set X0

λ as the set of all G-conjugates of (x,w). Hence X0
λ is a G-stable

subset of Xλ. We note that

(5.10.3) X0
λ is a G-stable open dense subset of Xλ.

In fact, take (x,v) ∈ X0
λ. Under the notation in the proof of Proposition 5.4,

put X0
λ,x = X0

λ ∩Xλ,x. We show simultaneously that X0
λ,x is open dense in Xλ,x.

Under the isomorphism in (5.4.4), we have

X0
λ,x ' ZG(x) ×

ZG(x,v1) (X ′0
λ′,x̄ × (W 0)r−2),
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where X ′0
λ′,x̄ is a similar variety as X0

λ,x defined for X ′
λ′ , and W 0 is an open dense

subset of W . Hence by induction on r, X0
λ,x is an open dense subset of Xλ,x.

Since, under the isomorphism in (5.4.3), X0
λ can be written as

X0
λ ' G×

ZG(x,v1) (X ′0
λ′,x̄ × (W 0)r−2),

X0
λ is open dense in Xλ. Hence (5.10.3) holds.
Concerning the closure Xλ, we have the following result.

Proposition 5.11. For each λ ∈ Pn,r, we have

Xλ ⊂
⋃

µ≤λ

Xµ.

For the proof of the proposition, we need a lemma.

Lemma 5.12. Assume that (x,v) ∈ Xλ is a semi-standard element with v =
(v1, . . . , vr−1). Let Ui be the k[x]-submodule of V generated by vi. Then dimUi =

λ
(1)
1 + · · ·+λ

(i)
1 . The Jordan type of the restriction of x on V/Ui is ξ = (ξ1, . . . , ξ`),

where

ξj = λ
(i+1)
j + · · ·+ λ

(r)
j + λ

(1)
j+1 + · · ·+ λ

(i)
j+1 for j = 1, . . . , `.

Proof. In the case where r = 2, this result was proved in Lemma 2.5 in [AH]. The
general case is reduced to the case where r = 2, by considering the double partition
(µ;µ′) with µ = λ(1) + · · ·+ λ(i), µ′ = λ(i+1) + · · ·+ λ(r). �

5.13. We prove the proposition following the strategy in the proof of (a part
of) [AH, Thm. 3.9]. We show that µ ≤ λ if (x′,v′) ∈ Xλ is of type µ. For this, it
is enough to show that

k∑

i=1

(µ
(1)
i + · · ·+ µ

(r)
i ) + (µ

(1)
k+1 + · · ·µ

(a)
k+1)

≤
k∑

i=1

(λ
(1)
i + · · ·+ λ

(r)
i ) + (λ

(1)
k+1 + · · ·+ λ

(a)
k+1)

(5.13.1)

for k = 0, . . . , ` and a = 0, . . . , r − 1 (we put λ
(0)
j = µ

(0)
j = 0 by convention). Put

ν = λ(1) + · · ·+ λ(r) and ν′ = µ(1) + · · ·+ µ(r). Then the Jordan type of x′ is ν′.
Let Oν be the G-orbit in Guni corresponding to ν ∈ Pn. Since Xλ ⊂ Oν × V r−1,
we have Xλ ⊆ Oν × V r−1. Since (x′,v′) ∈ Xλ, we have x′ ∈ Oν and so ν′ ≤ ν.
This proves (5.13.1) in the case where a = 0. By a similar argument as in the
proof of [AH, Thm. 3.9], it follows from Lemma 5.12 that

k∑

i=1

(λ
(1)
i + · · ·+ λ

(r)
i ) + (λ

(1)
k+1 + · · ·+ λ

(a)
k+1) (5.13.2)
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is the maximal possible dimension of the x-stable subspace k[x]〈va, u1, . . . , uk〉of V ,
a k[x]-module generated by va, u1, . . . , uk, where (x,v) is a semi-standard element
in Xλ with v = (v1, . . . , vr−1), and u1, . . . , uk run over the elements in V . We note
that the condition

dim k[x]〈va, u1, . . . , uk〉≤ Na, (u1, . . . , uk ∈ V, 1 ≤ a ≤ r − 1) (5.13.3)

for given {Na | 1 ≤ a ≤ r − 1} is a closed condition on (x,v) ∈ Xuni (i.e., the
set of (x,v) satisfying the above condition is a closed subset of Xuni) since the

condition for a fixed a is a closed condition on Xuni by [loc. cit.]. Since X
0

λ = Xλ

by (5.10.3), for any element (x′,v′) ∈ Xλ, the dimension of k[x′]〈v′a, u1, . . . , uk〉
is dominated by the number in (5.13.2). The assertion (5.13.1) then follows from
this. Hence Proposition 5.11 holds.

Combining with the previous results, we have the following.

Proposition 5.14. Xλ is open dense in Xλ. Hence Xλ is a G-stable locally

closed, smooth, irreducible subvariety of Xuni.

Proof. Since Xλ = Xλ\
⋃

µ<λXµ by Proposition 5.11, Xλ is open in Xλ. Xλ is
smooth and irreducible by Proposition 5.4. �

5.15. We give here some examples on the closure relation of Xλ. First assume
that n = 1 and r is arbitrary. Then G = GL1 ' k∗, the multiplicative group of
k. We have Guni = {1}, and Xuni ' kr−1. P1,r consists of {λ1, . . . ,λr}, where
λi = (λ(1), . . . , λ(r)) with λ(r+1−i) = (1) and λ(j) = ∅ for j 6= r + 1− i. Thus the
dominance order in P1,r is given as λ1 < λ2 < · · · < λr. Under the identification
Xuni ' kr−1, we have

Xλi
= {(v1, . . . , vr−1) ∈ kr−1 | v1 = · · · = vr−i = 0, vr−i+1 ∈ k∗}

'

{
ki−2 × k∗ if i ≥ 2,

{0} if i = 1.

Thus Xλi
is a locally closed, smooth irreducible subvariety of kr−1. Since G ' k∗,

Xλ1
= {0} andXλ2

' k∗ are singleG-orbits, but otherXλi
are a union of infinitely

many G-orbits. Moreover Xλi
' ki−1, and the closure relation is given as

Xλi
=

⋃

j≤i

Xλj
. (5.15.1)

This is an analogue of the result in the case where r = 2, which asserts that Xλ

is a union of Xµ for µ ≤ λ ([AH, Thm. 3.9]).
However, such a relation does not hold in general for r ≥ 3. In fact, there exists

µ < λ such that Xµ∩Xλ 6= ∅ and that Xµ 6⊂ Xλ, as the following example shows.
We consider the case where n = 2, r = 3, hence dimV = 2. Take λ = (1;−; 1) and
µ = (12;−;−). Then we have µ < λ. It is easy to check that

Xλ = {(x, (v1, v2)) ∈ Guni × V
2 | x 6= 1, v1 ∈ Ker(x− 1) \{0}, v2 ∈ Ker(x− 1)},

Xµ = {(x, (v1, v2)) ∈ Guni × V
2 | x = 1, v1 ∈ V \{0}, v2 ∈ V }.
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Then for any element (x,v) ∈ Xλ, we have v2 ∈ kv1. It follows that v2 ∈ kv1 for
(x,v) ∈ Xλ whenever v1 6= 0, and we have Xµ ∩ Xλ = {(x, v1, v2) | x = 1, v1 6=
0, v2 ∈ kv1}. In particular, Xµ ∩Xλ 6= ∅ and Xµ 6⊂ Xλ.

The following result is an analogue of [AH, Cor. 3.4].

Proposition 5.16. Let (x,v) ∈ Xuni, and λ ∈ P(m) for some m. Then (x,v) ∈
Xλ if and only if there exist ξ ∈ P(m) and a flag (Wi)1≤i≤r in V such that

dimWi = pi satisfying the following conditions:

(i) (Wi) is x-stable,
(ii) x|Wi/Wi−1

has type ξ(i) with ξ(i) ≤ λ(i) for 1 ≤ i ≤ r,
(iii) vi ∈ Wi for 1 ≤ i ≤ r − 1.

Proof. Let U be the set of (x,v) satisfying the condition in the proposition. We
show that U = Xλ. Take (x,v) ∈ U . In order to show that (x,v) ∈ Xλ, by

Lemma 5.6, it is enough to construct (x,v, gPλ) ∈ X̃λ. Under the notation in
5.5, put Vn(i,0) = Wi for i = 1, . . . , r − 1. By assumption, the restriction of x on

Wi/Wi−1 has type ξ(i). Since ξ(i) ≤ λ(i), there exists an x-stable flag

Wi−1 = Vn(i−1,0) ⊂ Vn(i−1,1) ⊂ · · · ⊂ Vn(i,0) =Wi.

such that (x − 1)Vn(i,j) ⊂ Vn(i,j−1). In fact this is an application of Lemma 5.6
for r = 1, which is a well-known result for GLn. There exists g ∈ G such that
g(Mn(i,j)) = (Vn(i,j)), and (x,v, gPλ) ∈ X̃λ. Hence (x,v) ∈ Xλ, and we have

U ⊂ Xλ.
Let P be a parabolic subgroup of G which is the stabilizer of a partial flag

(Mpi)1≤i≤r, and L the Levi subgroup of P containing T . Thus L '
∏
iGLmi

.

Let O′
λ be the L-orbit in Luni corresponding to λ = (λ(1), . . . , λ(r)), and O

′

λ the
closure of O′

λ in Luni. Let p : P → L be the natural projection. We consider a
variety

P̃O′
λ
=

{
(x,v, gP ) ∈ Guni × V

r−1 ×G/P | g−1xg ∈ p−1(O
′

λ), g
−1vi ∈Mpi

}
,

and let f : P̃O′
λ
→ Guni × V r−1 be the projection on the first two factors. Then

Im f = U . Since f is proper, U is a closed subvariety of Guni × V r−1. The
construction of Xλ implies that Xλ ⊂ U . It follows that Xλ ⊂ U , and so U = Xλ.
The proposition is proved. �

5.17. Take m ∈ Qn,r. For each z = (x,v) ∈ Xm,uni, put

B(m)
z =

{
gB ∈ G/B

∣∣∣ g−1xg ∈ U, g−1v ∈
r−1∏

i=1

Mpi

}
.

B
(m)
z is a closed subvariety of B = G/B, which is isomorphic to the fibre (π

(m)
1 )−1(z)

and is called the Springer fibre of z. In the case where r = 2, B
(m)
z is isomorphic

to each other for any z ∈ Xλ since Xλ is a single G-orbit. However, this property
does not hold in general for r ≥ 3 as the next examples show. First assume that
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r = 3 and n = 3. Let m = (2, 0, 1) and λ = ((13),−,−). Let v1, v2 be linearly
independent vectors in V , and take z = (x, (v1, v2)), z

′ = (x, (v1, 0)) with x = 1.
Then z, z′ ∈ Xλ. Let F(V ) be the set of total flags (Vi) in V . We have

B(m)
z ' {(Vi) ∈ F(V ) | V2 =〈v1, v2〉},

B
(m)
z′ ' {(Vi) ∈ F(V ) | v1 ∈ V2}.

Hence dimB
(m)
z = 1, dimB

(m)
z′ = 2, and in particular, z, z′ ∈ Xλ ∩ Xm,uni. We

have dimB
(m)
z 6= dimB

(m)
z′ .

Next assume that r = 3 and n = 4. Let m = (2, 0, 2) and λ = ((12),−, (12)).
We have Xλ ⊂ Xm,uni. Let x be an element in Guni of type (22), and {ui,j | 1 ≤
i ≤ 2, 1 ≤ j ≤ 2} be a Jordan basis of x in V . Put v1 = u1,1, v2 = u2,1 so that
v1, v2 is a basis of W = Ker(x − 1). Put z = (x, (v1, v2)) and z′ = (x, (v1, 0)).
Then z, z′ ∈ Xλ. We have

B(m)
z ' {(Vi) ∈ Fx(V ) | V2 =W},

B
(m)
z′ ' {(Vi) ∈ Fx(V ) | v1 ∈ V2},

where Fx(V ) is the set of x-stable flags in V . Since x|W = 1, xV/W = 1, we see that

B
(m)
z ' F(W ) × F(V/W ). Thus B

(m)
z is irreducible with dimB

(m)
z = 2. On the

other hand, if (Vi) ∈ B
(m)
z′ , either V2 =W or V2 is of the formWα =〈u1,2+αv2, v1〉

for α ∈ k. Since x|Wα
and x|V/Wα

have both type (2), Wα determines a unique

(Vi) ∈ B
(m)
z′ . It follows that B

(m)
z′ = B

(m)
z

∐
Y with Y = {(Vi) | V2 =Wα(α ∈ k)},

where Y is irreducible with dimY = 1. Hence in this case, dimB
(m)
z = dimB

(m)
z′ ,

but B
(m)
z 6' B

(m)
z′ .

6. Unipotent variety of exotic type

The “unipotent part” of the exotic space is called the unipotent variety of exotic
type. In this section, first we study the unipotent variety of exotic type in 6.1–6.13.
While in 6.14–6.19, we discuss the case of enhanced type. After 6.20, we discuss
both cases simultaneously.

6.1. We follow the notation in 1.2. Assume that X is of exotic type. As in
the enhanced case we define varieties, for each m ∈ Qn,r,

X̃m,uni =
{
(x,v, gBθ) ∈ Gιθuni × V

r−1 ×H/Bθ
∣∣∣ g−1xg ∈ U ιθ, g−1v ∈

r−1∏

i=1

Mpi

}
,

Xm,uni =
⋃

g∈H

g
(
U ιθ ×

r−1∏

i=1

Mpi

)
,

where B, T are as in 1.2, and U is the unipotent radical of B. We define a map

π
(m)
1 : X̃m,uni → Gιθuni × V r−1 by π

(m)
1 (x,v, gBθ) = (x,v). Clearly Xm,uni =
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Imπ
(m)
1 . As in 1.2, in the case where m = (n, 0, . . . , 0), we write X̃m,uni, Xm,uni,

π
(m)
1 , etc., by X̃uni,Xuni, π1, etc. Note that Xm,uni ⊂ Xuni for any m, but in

contrast to the enhanced case, Xuni does not coincide with Gιθuni × V
r−1 if r ≥ 3.

In fact, Xuni is described as a subset of Gιθuni × V
r−1 as follows.

Xuni =
{
(x,v) ∈ Gιθuni × V

r−1 | 〈xsvi, vj〉= 0 for all s, i, j
}
. (6.1.1)

We show (6.1.1). By definition, Xuni coincides with the subset of Gιθuni × V
r−1

consisting of (x,v) such that v1, . . . , vr−1 is contained in an x-stable maximal
isotropic subspace of V . It is clear that Xuni is contained in the right-hand side of
(6.1.1). Conversely, assume that (x,v) is contained in the right-hand side of (6.1.1).
Then W0 = k[x]v1 + · · ·+ k[x]vr−1 turns out to be an x-stable isotropic subspace
of V . One can find an x-stable maximal isotropic subspace of V containing W0.
Hence (x,v) ∈ Xuni. This proves (6.1.1). The variety Xuni is called a unipotent
variety of exotic type.

Since X̃m,uni ' H×B
θ

(U ιθ×
∏
iMpi), X̃m,uni is smooth and irreducible. More-

over, we have

dim X̃m,uni = dimH/Bθ +
(
dimU ιθ + dim

r−1∏

i=1

Mpi

)

= dimUθ + dimU ιθ +
r−1∑

i=1

pi

= 2n2 − n+

r−1∑

i=1

(r − i)mi

(6.1.2)

since dimUθ+dimU ιθ = dimU . Since π
(m)
1 is proper, Xm,uni is a closed irreducible

subvariety of Gιθuni × V
r−1.

6.2. Assume that r ≥ 2, and take m ∈ Qn,r. Let P be the θ-stable parabolic
subgroup of G such that P θ is the stabilizer of the isotropic flag (Mpi)1≤i≤r−2 in
V . Let L be the θ-stable Levi subgroup of P containing T and UP the unipotent
radical of P . Put V ′

L = Mpr−2 , and VL = V/V ′
L. Then P θ acts naturally on VL,

and we consider the map πP : P ιθuni × V → Lιθuni × VL, (x, v) 7→ (x′, v′), where
x′ = p(x) for the natural projection p : P ιθ → Lιθ, and v 7→ v′ is the projection
V → VL = V/V ′

L. The map πP is P θ-equivariant with respect to the diagonal
action of P θ on both varieties.

Let O′ be an Lθ-orbit in Lιθuni × VL. We assume that O′ is P θ-stable. Since
π−1
P (O′) =

⋃
g∈P θ g · π

−1
P (z′) for z′ ∈ O′, π−1

P (O′) is irreducible (note that π−1
P (z′)

is irreducible). Let O be an H-orbit in Gιθuni × V such that O ∩ π−1
P (O′) is open

dense in π−1
P (O′). Put

U = {(z, gP ) ∈ (Gιθuni × V )×H/P θ | g−1z ∈ π−1
P (O′)}.

Then U ' H×P
θ

π−1
P (O′) and so U is an irreducible variety. Let f : U → Gιθuni×V

be the first projection, and put UO = f−1(O). Then UO ' H ×P
θ

(O ∩ π−1
P (O′)),

and so UO is irreducible.
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Take z ∈ O, and consider a variety

Pz,O′ = {gP θ ∈ H/P θ | g−1z ∈ π−1
P (O′)}.

Note that Pz,O′ 6= ∅. We show the following proposition.

Proposition 6.3. Under the setting in 6.2, the following hold.

(i) Pz,O′ consists of one point.

(ii) dimZH(z) = dimZLθ(z′) for z′ ∈ O′.

(iii) Let z1 ∈ π
−1
P (O′) be such that dimZH(z1) = dimZH(z). Then z1 ∈ O.

(iv) Take z ∈ O ∩ π−1
P (O′) and put z′ = πP (z). Let Q = ZP (z

′) be a θ-stable
subgroup of P . Then dimZQθ (z) = dimZH(z). In particular,

ZH(z) = ZP θ (z) = ZQθ (z).

(v) H acts transitively on UO.
(vi) P θ acts transitively on O∩π−1

P (O′), and Qθ acts transitively on O∩π−1
P (z′)

under the setting in (iv).

Proof. First we show that
dimPz,O′ = 0. (6.3.1)

Replacing z and Pz,O′ by H-conjugate, if necessary, we may assume that z ∈
O ∩ π−1

P (O′). Put z′ = (x′, v′) = πP (z). Since π−1
P (z′) = (x′UP )

ιθ × (v′ + V ′
L) '

U ιθP × V
′
L, we have

dimπ−1
P (z′) = dimU ιθP + dimV ′

L = dimUθP . (6.3.2)

Put c = dimO and c′ = dimO′. Then by [SS1, Prop. 5.7 (i)] (for a correction, see
[SS2, Appendix]), we have dim(O ∩ π−1

P (z′)) ≤ (c − c′)/2. Since O ∩ π−1
P (O′) is

open dense in π−1
P (O′), O ∩ π−1

P (z′) is open dense in π−1
P (z′). It follows that

dimUθP ≤ (c− c′)/2.

On the other hand, by [SS1, Prop. 5.7(ii)] together with [SS2, Appendix], we have

dimPz,O′ ≤ (νH − c/2)− (νLθ − c′/2)

= dimUθ − dimUθL − (c− c′)/2

= dimUθP − (c− c′)/2,

(6.3.3)

where νH = dimUθ, and similarly for νLθ . Hence dimPz,O′ ≤ 0. As Pz,O′ 6= ∅,
we obtain (6.3.1).

Substituting this into (6.3.3), we have c − c′ = 2dimUθP . This implies that
dimZH(z) = dimZLθ(z′). Hence (ii) holds.

Under the setting in (iv), Qθ stabilizes π−1
P (z′), and so OQ ⊂ O ∩ π

−1
P (z′),

where OQ is the Qθ-orbit of z. Since O′ is an P θ-orbit, we have dimZP θ (z′) =
dimZLθ(z′) + dimUθP . Hence by (6.3.2) we have

dimUθP ≥ dimOQ = dimZLθ(z′) + dimUθP − dimZQθ (z). (6.3.4)
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It follows that dimZQθ (z) ≥ dimZLθ (z′). Since dimZQθ(z) ≤ dimZH(z), we have
dimZQθ (z) = dimZH(z) by (6.3.4). Since ZH(z) is connected, this implies that
ZH(z) = ZQθ (z). Hence ZH(z) = ZP θ(z). Thus (iv) holds.

For any z ∈ O, dim f−1(z) = 0 by (6.3.1). Thus dimUO = dimO. We show
that H acts transitively on UO. Take ξ ∈ UO, and consider the H-orbit Hξ of
ξ. Since f is H-equivariant, f maps Hξ onto O. Hence Hξ is irreducible with
dimHξ = dimUO. In particular, Hξ is open dense in UO. If we take another
ξ′ ∈ UO, Hξ′ is also open dense in UO. Hence Hξ ∩Hξ′ 6= ∅. Thus UO = Hξ and
(v) holds.

Take z, z1 ∈ O∩π
−1
P (O′). Since (z, P θ), (z1, P

θ) are both contained in UO, they
are in the same H-orbit by (v). Hence there exists g ∈ P θ such that gz = z1.
This proves the first statement of (vi). Then for z1, z2 ∈ O ∩ π

−1
P (z′), there exists

p ∈ P θ such that pz1 = z2. But since πP is P θ-equivariant, p ∈ ZP θ (z′) = Qθ.
This proves the second statement of (vi).

We show (i). We may assume that z ∈ O∩π−1
P (O′). Then P θ ∈ Pz,O′ . Assume

that gP θ ∈ Pz,O′ . Then (z, P θ), (z, gP θ) are both contained in UO. By (v) they are
conjugate under H . It follows that there exists h ∈ ZH(z) such that gP θ = hP θ.
But by (iv), we have h ∈ P θ, and so gP θ = P θ. This proves (i).

Finally we show (iii). Let O1 be the H-orbit of z1. Then dimO1 = c. By
a similar argument as in the proof of (6.3.1), we have dimPz1,O′ = 0. Then a
similar argument as in the proof of (iv) implies that ZH(z1) = ZQθ (z1). Hence

dimZQθ (z) = dimZQθ (z1). This shows that the Q
θ-orbit of z1 in π−1

P (z′) has the

same dimension as the Qθ-orbit of z. Since both orbits are open dense in π−1
P (z′),

they have an intersection, and so O = O1. This proves (iii). The proposition is
proved. �

6.4. Recall that in the enhanced case, the set of G-orbits in Guni × V is
parametrized by Pn,2 if dimV = n. In the exotic case, it is also known by [K],
[AH] that the set of H-orbits in Gιθuni × V is parametrized by Pn,2. By [AH, Th.
6.1], it is described as follows; we consider the embedding Gιθuni × V ↪→ Guni × V .
The set of G-orbits in Guni × V is parametrized by P2n,2. We denote by Oξ the
G-orbit in G× V corresponding to ξ ∈ P2n,2. Then Oξ ∩ (Gιθuni×V ) 6= ∅ only if ξ
is of the form ξ = (λ′ ∪ λ′, λ′′ ∪ λ′′) for some λ = (λ′, λ′′) ∈ Pn,2, and in that case
O(λ′∪λ′,λ′′∪λ′′) ∩ (Gιθuni × V ) turns out to be a single H-orbit, which we denote by
Oλ. This gives the required parametrization.

Let P be as in 6.2. For λ ∈ P(m), we define a subsetMλ of P ιθuni×(
∏r−2
i=1 Mpi×

M⊥
pr−2

) as the set of (x,v) satisfying the following properties. Take (x,v) such

that x ∈ P ιθuni and that vi ∈ Mpi for i = 1, . . . , r − 2, vr−1 ∈ M
⊥
pr−2

. Put Mpi =

Mpi/Mpi−1 , and let vi ∈ Mpi be the image of vi ∈ Mpi for i = 1, . . . , r − 2

(here we use the convention that Mp0 = 0). We also put M
′

pr−1
= M⊥

pr−2
/Mpr−2 .

Thus M
′

pr−1
has a structure of a symplectic vector space, and one can consider an

exotic symmetric space GL(M
′

pr−1
)ιθ ×M

′

pr−1
. We also consider enhanced spaces

GL(Mpi)×Mpi for i = 1, . . . , r− 2. Let vr−1 be the image of vr−1 on M
′

pr−1
. We

assume that the GL(Mpi)-orbit of (x|Mpi
, vi) has type (λ

(i),∅) for i = 1, . . . , r−2,
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and that the GL(M
′

pr−1
)θ-orbit of (x|M ′

pr−1

, vr−1) has type (λ(r−1), λ(r)). Let O

be the H-orbit of z = (x, vr−1) ∈ Gιθuni × V and O′ the Lθ-orbit of z′ = πP (z).
Note that O′ is P θ-stable. We further assume that

(6.4.1) O ∩ π−1
P (O′) is open dense in π−1

P (O′).

We define Xλ by Xλ =
⋃
g∈H gMλ. Note that in the case where r = 2, Xλ

coincides with the H-orbit Oλ in [SS1].
It follows from the construction thatMλ is a P θ-stable subset of P ιθ × V r−1.

The closureMλ ofMλ in P ιθ × V r−1 is also P θ-stable. We define a variety F̃λ

by F̃λ = H ×P
θ

Mλ. Let πλ : F̃λ → Xuni be the map induced from the map
H ×Mλ → Xuni, (g, z) 7→ g · z. Then πλ is a proper map. We define a subset F̃0

λ

of F̃λ by F̃0
λ = H ×P

θ

Mλ, and let π0
λ be the restriction of πλ on F̃0

λ. It is clear
that π0

λ is a surjective map onto Xλ.

6.5. Take xi ∈ GL(Mpi)uni with Jordan type λ(i) for 1 ≤ i ≤ r − 2. Then the
set of vi ∈ Mpi such that (xi, vi) is of type (λ(i),∅) is open dense in Mpi . Take

(xr−1, vr−1) ∈ GL(M
′

pr−1
)ιθuni×M

′

pr−1
with type (λ(r−1), λ(r)). Now (x1, . . . , xr−1)

determines a unique element in Lιθuni which we denote by x′. Put z′ = (x′, vr−1).
The set of (x, vr−1) ∈ Gιθuni × V such that (x, vr−1) ∈ π−1

P (z′), satisfying the
condition (6.4.1) is open dense in π−1

P (z′). In fact, it coincides with O ∩ π−1
P (z′)

for an H-orbit O. Put v′ = (v1, . . . , vr−1). For a fixed (x′,v′), letM(x′,v′) be the

set of (x,v) with v = (v1, . . . , vr−1) such that (x, vr−1) ∈ O∩π
−1
P (z′) as in (6.4.1)

and that the image of vi on Mpi coincides with vi. AsM(x′,v′) is an open dense

subset of
∏r−3
i=1 Mpi × π

−1
P (z′), we have

dimM(x′,v′) =

r−3∑

i=1

dimMpi + dimπ−1
P (z′).

It follows thatM(x′,v′) is smooth irreducible, and

dimM(x′,v′) =

r−3∑

i=1

(r − i− 2)mi + dimUθP . (6.5.1)

(Note dimπ−1
P (z′) = dimUθP by (6.3.2).) Since

Mλ =
⋃

g∈Lθ

gM(x′,v′) ' L
θ ×ZLθ (x

′,v′)M(x′,v′),

Mλ is smooth, irreducible, and open dense inMλ. Moreover,

dimMλ = dimO(x′,v′) + dimM(x′,v′), (6.5.2)

where O(x′,v′) is the Lθ-orbit of (x′,v′) ∈ Lιθuni × (
∏r−2
i=1 Mpi ×M

′

pr−1
). We have

dimO(x′,v′) =
∑r−1

i=1 dimO′
i, where O′

i is the GL(Mpi)-orbit of (xi, vi) for i =
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1, . . . , r − 2, and O′
r−1 is the GL(M

′

pr−1
)θ-orbit of (xr−1, vr−1). Hence by [AH,

Prop. 2.8] and [SS1, Lem. 2.3],

dimO′
i =

{
m2
i − 2n(λ(i)) for 1 ≤ i ≤ r − 2,

2m′2
r−1 − 2m′

r−1 − 4n(λ(r−1) + λ(r)) + 2|λ(r−1)| for i = r − 1,

where m′
r−1 = mr−1 +mr. This implies that

dimO(x′,v′) =

r−2∑

i=1

m2
i + 2m′2

r−1 − 2m′
r−1

− 2n(λ)− 2n(λ(r−1) + λ(r)) + 2|λ(r−1)|.

(6.5.3)

We have the following lemma.

Lemma 6.6. F̃λ is an irreducible variety with

dim F̃λ = 2n2 − 2n− 2n(λ)− 2n(λ(r−1) + λ(r)) +

r−1∑

i=1

(r − i+ 1)|λ(i)|.

F̃0
λ is a smooth and open dense subvareity of F̃λ.

Proof. Since F̃λ = H ×P
θ

Mλ, and Mλ is irreducible, F̃λ is irreducible. Since

F̃0
λ = H ×P

θ

Mλ, andMλ is smooth and open dense in Mλ, F̃0
λ is smooth and

open dense in F̃λ. We have dim F̃λ = dimH/P θ +dimMλ = dimUθP + dimMλ.
Here

2 dimUθP = dimH − dimLθ

= (2n2 + n)−

( r−2∑

i=1

m2
i + 2m′2

r−1 +m′
r−1

)
.

Then by (6.5.1)–(6.5.3), we see that

dim F̃λ = 2n2 + n− 3m′
r−1−2n(λ)− 2n(λ(r−1) + λ(r))

+

r−3∑

i=1

(r − i− 2)mi + 2|λ(r−1)|.

The lemma follows from this if we note that mi = |λ(i)| for i = 1, . . . , r and
m′
r−1 = mr−1 +mr. �

Proposition 6.7. Assume that λ ∈ Pn,r. Let Xλ be the closure of Xλ in Xuni.

(i) Imπλ = Xλ.

(ii) π0
λ : F̃0

λ → Xλ gives an isomorphism F̃0
λ
∼−→Xλ.

(iii) Xλ is smooth, irreducible, and

dimXλ = 2n2 − 2n− 2n(λ)− 2n(λ(r−1) + λ(r)) +
r−1∑

i=1

(r − i+ 1)|λ(i)|.

(iv) Xλ is a locally closed subvariety of Xuni.
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Proof. π0
λ : F̃0

λ → Xλ is H-equivariant, and surjective. Take (x,v) ∈Mλ and put
z = (x, vr−1), z

′ = πP (z). Let O′ be the Lθ-orbit of z′. Then

(π0
λ)

−1(x,v) ' {gP θ ∈ H/P θ | g−1(x,v) ∈Mλ} ⊂ Pz,O′ ,

where Pz,O′ is as in 6.2. By Proposition 6.3 (i), Pz,O′ = {P θ}. By the definition

of F̃λ, (π0
λ)

−1(x,v) contains P θ. Hence we see that (π0
λ)

−1(x,v) = {P θ}. It
follows that π0

λ is a bijective morphism. The correspondence g(x,v) 7→ gP θ gives
a well-defined morphism from the H-orbit of (x,v) ∈Mλ to H/P θ. This induces

a morphism from Xλ to F̃0
λ. It is easy to check that this gives an inverse of π0

λ.

Hence F̃0
λ ' Xλ and (ii) holds. (iii) is immediate from (ii) and Lemma 6.6. By

(ii) Imπλ contains Xλ. Since πλ is proper, Imπλ is closed, hence Imπλ contains

Xλ. We have dim F̃λ = dimXλ by (iii), and Imπλ, Xλ are irreducible. Thus (i)

holds. Here F̃λ\F̃0
λ is a closed subset of F̃λ, and its image by πλ coincides with

Xλ\Xλ. Hence Xλ\Xλ is closed. This implies that Xλ is open dense in Xλ, and
so (iv) holds. The proposition is proved. �

6.8 Assume that m ∈ Q0
n,r. We define a set P̃(m) by

P̃(m) =
∐

0≤k≤mr−1

P(m(k)) (6.8.1)

(see 1.6 for the definition of m(k)). For m ∈ Qn,r, let λ(m) ∈ Pn,r as in 5.8. As
an analogue of Proposition 5.9, we prove the following.

Proposition 6.9. Assume that m ∈ Q0
n,r.

(i) dim X̃m,uni = dimXm,uni.

(ii) Xm,uni = Xλ(m).

(iii) Assume that µ ∈ P̃(m). Then Xµ ⊂ Xm,uni.

Proof. We consider the surjective map π
(m)
1 : X̃m,uni → Xm,uni. Take z = (x,v) ∈

Mµ for µ ∈ P(m(k)). Then it follows from the construction ofMµ, by replacing

z by its H-conjugate if necessary, that (z,Bθ) ∈ X̃m,uni. Hence z ∈ Xm,uni. Since
Xm,uni is H-stable, we see that Xµ ⊂ Xm,uni. This proves (iii). Put µ = λ(m).
By (iii) we have Xµ ⊂ Xm,uni. By (6.1.2),

dim X̃m uni = 2n2 − n+

r−1∑

i=1

(r − i)mi.

On the other hand, by Proposition 6.7, we have

dimXµ = 2n2 − 2n+
r−1∑

i=1

(r − i+ 1)mi

= 2n2 − n+
r−1∑

i=1

(r − i)mi.
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(Note that
∑r−1
i=1 mi = n since mr = 0.) Since Xµ is a closed, irreducible subset

of Xm uni with dimXλ = dim X̃m uni, we conclude that dim X̃m uni = dimXm,uni

and Xµ = Xm,uni. This proves (i) and (ii). �

6.10. For a fixed m ∈ Qn,r, let P be as in 6.2. For λ ∈ P(m), we consider the
Lθ-orbit O′ and H-orbit O as in 6.4. Since O′ is determined by λ, we denote it
by O′ = O′

λ. We shall determine the type of O. For a partition ν = (a, . . . , a︸ ︷︷ ︸
k-times

) =

(ak) ∈ Pak of rectangular type, we define a double partition [ν] ∈ Pak,2 by [ν] =

(ak
′

, ak
′′

), where k′ = [k + 1/2], k′′ = k − k′. In general, a partition ν can be
decomposed uniquely as a sum of partitions of rectangular type

ν = (a1)
k1 + (a2)

k2 + · · ·+ (a`)
k` , (6.10.1)

where we write the dual partition ν∗ as ν∗ = ((k1)
a1 , (k2)

a2 , . . . , (k`)
a`) for k1 >

k2 > · · · > k` > 0. We define [ν] ∈ P|ν|,2 by

[ν] = [(a1)
k1 ] + [(a2)

k2 ] + · · ·+ [(a`)
k` ]. (6.10.2)

For a given λ ∈ Pn,r, we define [λ] ∈ Pn,2 by

[λ] = [λ(1)] + [λ(2)] + · · ·+ [λ(r−2)] + (λ(r−1), λ(r)).

We have the following lemma.

Lemma 6.11. Let O be a unique H-orbit in Gιθ × V such that O ∩ π−1
P (O′

λ) is

open dense in π−1
P (O′

λ). Then O = O[λ].

Proof. We show that O[λ] satisfies the required condition. Take z ∈ O[λ], and
z′ ∈ O′

λ. First we show that

dimZH(z) = dimZLθ(z′). (6.11.1)

In fact, dimO′
λ =

∑r−2
i=1 dimO′

λ(i)+dimO′
0, whereO

′
λ(i) (resp. O

′
0) is the GL(Mpi)-

orbit of type λ(i) (resp. GL(M
′

pr−1
)θ-orbit of type (λ(r−1), λ(r))) corresponding to

O′
λ. We have

dimO′
λ(i) = m2

i −mi − 2n(λ(i)) for 1 ≤ i ≤ r − 2,

dimO′
0 = 2m′2

r−1 − 2m′
r−1 − 4n(λ(r−1) + λ(r)) + 2|λ(r−1)|.

(The first formula is well known; see, e.g., [AH, Prop. 2.8 (4)]. The second one is
by [SS1, Lem. 2.3].) Hence

dimZLθ(z′) =

r−2∑

i=1

(mi+2n(λ(i)))+3m′
r−1+4n(λ(r−1)+λ(r))−2|λ(r−1)|. (6.11.2)
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On the other hand, if we write [λ] = (ν ′, ν′′), dimO[λ] is given by a similar formula
as that for dimO′

0. Hence we have

dimZH(z) = 3n+ 4n([λ])− 2n(ν ′). (6.11.3)

Here, for i = 1, . . . , r − 2, we show the formula

mi + 2n(λ(i)) = 3mi + 4n([λ(i)])− 2|ν(i)
′|, (6.11.4)

where we write [λ(i)] as (ν(i)
′, ν(i)

′′). By the additivity of the n-function together

with (6.10.1) and (6.10.2), it is enough to verify (6.11.4) in the case where λ(i) is of
rectangular type. Assume that λ(i) = (a2k−1). In this case, mi = a(2k−1), |ν′(i)| =

ak, n(λ(i)) = a(k − 1)(2k − 1) and n([λ(i)]) = a(k − 1)2. Thus (6.11.4) holds. The
case where λ(i) = (a2k) is dealt with similarly. Now by substituting (6.11.4) into
the formula in (6.11.2), and by comparing it with (6.11.3), we obtain (6.11.1).

In order to show the lemma, it is enough to see that O[λ] ∩ π
−1
P (O′

λ) 6= ∅ by
Proposition 6.3 (iii). First we show:

(6.11.5) Assume that r = 2 and m1 = n,m2 = 0. Then O[λ] ∩ π
−1
P (O′

λ) 6= ∅.

In this case λ = (λ(1),∅), [λ] = [λ(1)]. We consider the variety Guni × V , and we
denote by Oξ the G-orbit in Guni × V corresponding to ξ ∈ P2n,2. The map πP
is naturally extended to a map π̃P : Puni × V → Luni × VL. As explained in 6.4,
Oξ ∩ (Gιθuni×V ) 6= ∅ only when ξ is of the form ξ = (ξ′, ξ′′) with ξ′ = ν′ ∪ ν′, ξ′′ =
ν′′ ∪ ν′′, and in that case Oξ ∩ (Gιθuni × V ) = O(ν′,ν′′). Write [λ] = (ν′, ν′′), and
consider ξ = (ν′ ∪ ν′, ν′′ ∪ ν′′). In order to show (6.11.5), it is enough to see
that Oξ ∩ π̃

−1
P (O′

λ) 6= ∅. For simplicity, we assume that λ(1) = (a2k−1), i.e., a
rectangular type. In that case, ν ′ = (ak), ν′′ = (ak−1). We shall take (x, v) ∈
Guni×V as follows. We fix a Jordan basis {ui,j | 1 ≤ i ≤ 2k, 1 ≤ j ≤ ξ′i+ ξ′′i } of V
with respect to x, where x acts as (x−1)ui,j = ui,j−1 with the convention ui,0 = 0.
We take v = u1,a + u2k−1,a. Then (x, v) has type ξ = ((a2k), (a2k−2)). We choose
a subspace W of V spanned by {ui,j | 1 ≤ i ≤ 2k − 1, 1 ≤ j ≤ a}. Then W is an
x-stable subspace of V containing v such that x|W has type (a2k−1), and x|V/W
has type (a2k−1). This implies, after rewriting {ui,j} by a suitable symplectic basis
of V so that W is a maximal isotropic subspace, that (x, v) ∈ Oξ ∩ π̃

−1
P (O′

λ). In
the case where λ(1) = (a2k), we have ξ = ((a2k, (a2k)), and this case is dealt with
similarly (simpler). The general case is also discussed in a similar way, just by a
combination of those two cases. Thus (6.11.5) holds.

Next we consider the general case. Let V = V1⊕· · ·⊕Vr−1 be the decomposition
of V into subspaces, where Vi is the symplectic subspace spanned by {ei, fi |
pi−1 + 1 ≤ i ≤ pi} for i = 1, . . . , r − 2, and Vr−1 is the symplectic subspace

spanned by {ei, fi | pr−2 + 1 ≤ i ≤ n}. We consider the θ-stable subgroup L̃

of G containing L such that L̃ ' G1 × · · · × Gr−1 with Gi = GL(Vi). Hence

L̃θ ' Gθ1 × · · · ×G
θ
r−1 with Gθi = Sp(Vi). For i = 1, . . . , r − 2, let Pi be a θ-stable

parabolic subgroup of Gi such that its θ-stable Levi subgroup Li is isomorphic to
GLmi

×GLmi
. Let O′

λ(i) be the GLmi
-orbit in (GLmi

)uni as before. We regard it

as an Lθi -orbit in (Gi)
ιθ
uni. Let O[λ(i) ] be the G

θ
i -orbit in (Gi)

ιθ
uni×Vi corresponding
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to [λ(i)]. Then by (6.11.5), one can find zi ∈ O[λ(i)] ∩ π
−1
Pi

(O′
λ(i) ). Let O′

0 be the

Gθr−1-orbit in (Gr−1)
ιθ
uni corresponding to (λ(r−1), λ(r)). We choose zr−1 ∈ O′

0.

Since
∏r−2
i=1 π

−1
Pi

(O′
λ(i) )×O

′
r−1 is regarded as a closed subvariety of π−1

P (O′
λ), z =

(z1, . . . , zr−1) gives an element in π−1
P (O′

λ). z is contained in L̃ιθ×V , and actually
z ∈ O[λ]. Thus O[λ] ∩ π

−1
P (O′

λ) 6= ∅. The lemma is proved. �

Corollary 6.12. For each λ ∈ Pn,r, the map (x,v) 7→ ((x, vr−1), (v1, . . . , vr−2))
gives an embedding Xλ ⊂ O[λ] × V

r−2.

Remark 6.13. Proposition 6.9 shows that
⋃

λ∈Pn,r
Xλ covers a dense subset

of Xuni. However, it does not coincide with Xuni in general. Also Xλ’s are not
mutually disjoint in general, as the following example shows. Assume that n = 3
and r = 4. Take λ = (12; 1;−;−) and µ = (1; 12;−;−). By definition and by
Lemma 6.11,

Xλ = {(x, v1, v2, v3) ∈ G
ιθ
uni × V

3 | v1 ∈ W1, v2 ∈W2, v3 ∈ W
⊥
2 ,

(x|W1 , v1) : type (12;−), (xW2/W1
, v2) : type (1;−),

(xW⊥
2 /W2

, v3) : type (−;−), (x, v3) : type (2;1)

for some x-stable isotropic subspaces W1 ⊂W2 of V },

where v2 is the image of v2 ∈ W2 on W2/W1, and v3 is the image of v3 ∈ W2 on
W⊥

2 /W2. Here W2 is a maximal isotropic subspace, hence W⊥
2 =W2. Similarly,

Xµ = {(x, v1, v2, v3) ∈ G
ιθ
uni × V

3 | v1 ∈W
′
1, v2 ∈ W

′
2, v3 ∈W

′⊥
2 ,

(x|W ′
1
, v1) : type (1;−), (xW ′

2/W
′
1
, v2) : type (12;−),

(x|W ′⊥
2 /W ′

2
, v3) : type (−;−), (x, v3) : type (2; 1)

for some x-stable isotropic subspaces W ′
1 ⊂W

′
2 of V }.

Here again W ′
2 is a maximal isotropic subspace, and so W ′⊥

2 = W ′
2. We fix a

symplectic basis {e1, e2, e3, f1, f2, f3} of V and define an action of x on V by
(x − 1)ei = ei−1, (x − 1)fi = fi+1 for each i, under the convention e0 = f4 = 0.
Then x ∈ Gιθuni and W = 〈e1, e2, f3〉 is an x-stable maximal isotropic subspace of
V such that x|W is of type (21). Take v1 = e1, v2 = e2, v3 = e2. Then (x, v2) is of
type (2; 1). Put W1 =〈e1, f3〉 and W2 =W . Then W1 ⊂W2 are x-stable isotropic
subspaces such that x|W1 is of type (12), and x|W2/W1

is of type (1). Moreover,

v1 ∈ W1, v2 ∈ W2, v3 ∈ W⊥
2 = W2. One sees that (x, v1, v2, v3) ∈ Xλ. On the

other hand, put W ′
1 = 〈e1〉, and W ′

2 = W . Then W ′
1 ⊂ W ′

2 are x-stable isotropic
subspaces such that x|W ′

1
is of type (1), and xW ′

2/W
′
1
is of type (12). Moreover,

v1 ∈ W ′
1, v2 ∈ W

′
2, v3 ∈ W

′⊥
2 = W ′

2. Also we have (x, v1, v2, v3) ∈ Xµ. It follows
that Xλ ∩Xµ 6= ∅.

6.14. The unipotent variety of enhanced type considered in Section 5 can
be interpreted as a closed subvariety of the variety defined in 1.2. So we follow
the setting in 1.2, and consider the varieties X̃m,Xm as in Section 4. Then the
varieties X̃m,uni,Xm,uni defined in 5.2 can be identified with closed subvarieties of
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X̃m,Xm, defined by similar formulas as in 6.1. We shall reformulate Xλ defined
in Section 5 so that it fits with the discussion in the exotic case.

First we consider an analogue of Propostion 6.3 in the enhanced case. Assume
that r ≥ 2, and take m ∈ Qn,r. Let P be a θ-stable parabolic subgroup of G such
that P θ is the stabilizer of the flag (Mpi)1≤i≤r in V . Let L be the θ-stable Levi
subgroup of P containing T . In contrast to 6.2, we put VL = V . We consider the
map πP : P ιθuni × V → Lιθuni × VL, (x, v) 7→ (x′, v), where x′ = p(x) for the natural
projection p : P ιθuni → Lιθuni. We define O,O′ and Pz,O′ as in 6.2. The following
result can be proved word by word following the proof of Proposition 6.3. Note
that in the enhanced case, dimU θP = dimU ιθP .

Proposition 6.15. Assume that Xuni = Gιθuni × V is of enhanced type. Then

similar statements (i)–(vi) as in Proposition 6.3 hold for Xuni.

6.16. Let P be as in 6.14. For λ ∈ P(m), by imitating the definition ofMλ

in 6.4, we define a subset Mλ of P ιθuni ×
∏r−1
i=1 Mpi as the set of (x,v) satisfying

the following properties. Take (x,v) such that x ∈ P ιθuni and that vi ∈ Mpi for
i = 1, . . . , r − 1. Put Mpi = Mpi/Mpi−1 , and let vi ∈ Mpi be the image of vi for

each i. We assume that the GL(Mpi)-orbit of (x|Mpi
, vi) in GL(Mpi) ×Mpi has

type (λ(i),∅) for each i. We further assume that

(6.16.1) O ∩ π−1
P (O′) is open dense in π−1

P (O′), where O is the H-orbit of (x, v)
in Gιθuni × V and O′ is the Lθ-orbit of (p(x), vr−1) ∈ Lιθuni × V .

We define X ′
λ by X ′

λ =
⋃
g∈H gMλ. Mλ is a P θ-stable subset of P ιθ × V r−1.

In the following lemma, X0
λ is as defined in 5.10.

Lemma 6.17. For each λ ∈ Pn,r, we have X0
λ ⊂ X

′
λ, hence Xλ = X

′

λ.

Proof. Take (x,v) ∈ Xλ. By definition in 5.3 together with induction on r, one
can find an isotropic flag (Wi) such that Wi is x-stable and that vi ∈ Wi. By
replacing (x,v) by an H-conjugate if necessary, we may assume that Wi = Mpi

for each i. Then (x|Mpi
, vi) has type (λ(i),∅) for i = 1, . . . , r − 1. If we further

assume that (x,v) ∈ X0
λ, then (x, vr−1) has type (λ

(1) + · · ·+λ(r−1), λ(r)), and we
see that the condition (6.16.1) is satisfied. Thus (x,v) ∈ X ′

λ, and we have X0
λ ⊂

X ′
λ. Since X0

λ is open dense in Xλ by (5.10.3), we have Xλ ⊂ X
′

λ. Conversely,
assume that (x,v) ∈ X ′

λ. Then there exists an isotropic flag (Wi) satisfying
the following properties: Wi is x-stable, vi ∈ Wi, and x|Wi/Wi−1

has type λ(i) for

i = 1, . . . , r−1. Moreover, since Oλ∩π
−1
P (O′

λ) is open dense in π−1
P (O′

λ), (x, vr−1)
has type (λ(1)+ · · ·+λ(r−1), λ(r)). In particular, x|V/Wr−1

has type λ(r). It follows

from Proposition 5.16 that (x,v) ∈ Xλ. Hence X ′
λ ⊂ Xλ, and so X

′

λ ⊂ Xλ. We

have Xλ = X
′

λ as asserted. �

Remark 6.18. In general, X ′
λ’s are not mutually disjoint, hence X ′

λ does not
coincide with Xλ. In fact, assume that n = 3, r = 3, and put λ = (12; 1;−),µ =
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(1; 12;−) ∈ P3,3. We have:

X ′
λ = {(x, v1, v2) ∈ Guni × V

2 | v1 ∈W1, v2 ∈ V, (x, v2) : type (21;−),

(x|W1 , v1) : type (12;−), (x|V/W1
, v2) : type (1;−),

for some x-stable subspace W1 of V },

X ′
µ = {(x, v1, v2) ∈ Guni × V

2 | v1 ∈W
′
1, v2 ∈ V, (x, v2) : type (21;−),

(x|W ′
1
, v1) : type (1;−), (x|V/W ′

1
, v2) : type (12;−),

for some x-stable subspace W ′
1 of V }.

Then by a similar argument as in Remark 6.13, we see that X ′
λ ∩X

′
µ 6= ∅.

6.19. As in the exotic case, we defnie a variety F̃λ = H ×P
θ

Mλ, whereMλ

is the closure ofMλ in P ιθ × V r−1. Then the map π′
λ : F̃λ → X

′

λ is defined as in

6.4. (Here we use the notation π′
λ to distinguish it from the map πλ : X̃λ → Xλ

in 5.5.) We also define a subset F̃0
λ of F̃λ by F̃0

λ = H ×P
θ

Mλ, and let π′0
λ be the

restriction of π′
λ on F̃0

λ. The following result can be proved by a similar way as
with Proposition 6.7.

Proposition 6.20. Assume that X is of enhanced type. For each λ ∈ Pn,r,

(i) Imπ′
λ = X

′

λ = Xλ.

(ii) π′0
λ : F̃0

λ → X ′
λ gives an isomorphism F̃0

λ
∼−→X ′

λ.

6.21. In the remainder of this section, we assume that X is of exotic type or
of enhanced type. We follow the formulation in Section 1. Put B = H/Bθ. For
each z = (x,v) ∈ Xm,uni, put

Bz = {gB
θ ∈ B | g−1xg ∈ U ιθ, g−1v ∈Mr−1

n },

B(m)
z =

{
gBθ ∈ B

∣∣∣ g−1xg ∈ U ιθ, g−1v ∈
r−1∏

i=1

Mpi

}
.

In the exotic case, Bz is a closed subvariety of B, which is isomorphic to the

fibre π−1
1 (z), and is called the Springer fibre of z. B

(m)
z is a closed subvariety of Bz

isomorphic to (π
(m)
1 )−1(z), which we call the small Springer fibre. In the enhanced

case, we only consider the Springer fibre B
(m)
z as already defined in 5.18.

We fix m ∈ Qn,r. For an integer d ≥ 0, we define a subset X(d) of Xm,uni by

X(d) = {z ∈ Xm,uni | dimB
(m)
z = d}. (6.21.1)

Then X(d) is a locally closed subvariety of Xm,uni, and Xm,uni =
∐
d≥0X(d). We

consider the Steinberg varieties Z (m) and Z
(m)
1 as follows:

Z(m) = {(z, gBθ, g′Bθ) ∈ X × B × B | (z, gBθ) ∈ X̃m, (z, g
′Bθ) ∈ X̃m},

Z
(m)
1 = {(z, gBθ, g′Bθ) ∈ Xuni × B × B | (z, gB

θ) ∈ X̃m,uni, (z, g
′Bθ) ∈ X̃m,uni}.
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Recall that W = NH(T θ)/T θ is the Weyl group Wn of type Cn (respectively
Sn) in the exotic case (respectively in the enhanced case). In the exotic case,
we assume that m ∈ Q0

n,r, while in the enhanced case, we consider an arbitrary

m ∈ Qn,r. We define a subgroup W\
m of NH(T

θ)/T θ by

W\
m =

{
Sm1 × · · · × Smr−2 ×Wmr−1 (exotic case),

Sm1 × · · · × Smr
(enhanced case).

(6.21.2)

We show the following lemma.

Lemma 6.22. Under the notation of 6.21,

(i) dimZ
(m)
1 = dimXm,uni. The set of irreducible components of Z

(m)
1 with

maximal dimension is parametrized by w ∈ W \
m.

(ii) dimZ(m) = dimZ
(m)
1 +n. The set of irreducible components of Z (m) with

maximal dimension is parametrized by w ∈ W \
m.

(iii) Assume that X(d) 6= ∅. For any z ∈ X(d) we have

dimB(m)
z ≤ 1

2 (dimXm,uni − dimX(d)).

In particular, π(m) is semismall with respect to the stratification Xm,uni =∐
dX(d).

Proof. Let p1 : Z
(m)
1 → B × B be the projection on the second and third factors.

For each w ∈W , let Ow be the H-orbit of (Bθ, wBθ) in B ×B. We have B ×B =∐
w∈W Ow. Put Zw = p−1

1 (Ow). Then Zw is a vector bundle over Ow ' H/(Bθ ∩

wBθw−1) with fibre isomorphic to

(U ιθ ∩ wU ιθw−1)×
r−1∏

i=1

(Mpi ∩ w(Mpi)).

First we consider the exotic case. We identify W with a subgroup of S2n which is
the stabilizer of the element (1, n+1)(2, n+2) · · · (n, 2n). Let bw be the number of i
such that w−1(ei) ∈Mn, i.e., w

−1(i) ∈ [1, n]. Then we have dim(U ιθ∩wU ιθw−1) =
dim(Uθ∩wUθw−1)−bw. Also we have dim(Mn∩w(Mn)) = bw. By our assumption
Mpr−1 =Mn, we have

dimZw = dimH − dim T θ +

r−2∑

i=1

dim(Mpi ∩ w(Mpi)).

Here dim(Mpi ∩ w(Mpi)) = ]{j ∈ [1, pi] | w−1(j) ∈ [1, pi]} ≤ pi, and the equality
holds if and only if w leaves the set [1, pi] invariant. It follows that dimZw takes

the maximal value 2n2 +
∑r−2
i=1 pi if and only if w ∈ W\

m. Since

r−2∑

i=1

pi = −n+

r−1∑

i=1

(r − i)mi
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(note that mr = 0), in that case dimZw = dimXm,uni by Proposition 6.9 together

with (6.1.1). Since {Zw | w ∈ W\
m} gives the set of irreducible components of Z

(m)
1

with maximal dimension, (i) follows. In the enhanced case, a similar computation
shows that

dimZw = dimH − dimT θ +

r−1∑

i=1

dim(Mpi ∩ w(Mpi))

for w ∈ Sn (note that in this case dim(U ιθ ∩ wU ιθw−1) = dim(Uθ ∩ wUθw−1)),

and dimZw takes the maximal value n2 − n +
∑r−1

i=1 pi if and only if w ∈ W\
m.

Since
∑r−1

i=1 pi =
∑r−1
i=1 (r− i)mi, in this case dimZw = dimXm,uni by Proposition

5.9 (ii). Hence (i) holds also in the enhanced case.

For (ii), we consider Z̃w = p−1(Ow), where p : Z(m) → B ×B is the projection

on the second and third factors. Then Z̃w is a locally trivial fibration over Ow
with fibre isomorphic to

T ιθ × (U ιθ ∩ wU ιθw−1)×
r−1∏

i=1

(Mpi ∩ w(Mpi )). (6.22.1)

Hence (ii) is proved by a similar argument as (i).

We show (iii). Let q1 : Z
(m)
1 → Xm,uni be the projection on the first factor. For

each z ∈ Xm,uni, q
−1
1 (z) ' B

(m)
z × B

(m)
z . By (6.21.1), we have

dim q−1
1 (X(d)) = dimX(d) + 2d.

Since dim q−1
1 (X(d)) ≤ dimZ

(m)
1 = dimXm,uni, we see that 2d ≤ dimXm,uni −

dimX(d). This proves (iii). The lemma is proved. �

7. Springer correspondence

7.1. In this section, we assume that X is of exotic type or of enhanced type.
We shall prove the Springer correspondence for Xuni. However, the method used
in [SS1], which is based on an evaluation of the number of irreducible components
of Springer fibres (see [SS1, Lem. 2.5]), does not work well for the case where
r ≥ 3. Instead, we apply the method used by Lusztig [Lu] to prove the generalized
Springer correspondence for reductive groups, which makes use of the Steinberg
map. We follow the notation in Section 1. In the exotic case, let ω′ : G→ T/S2n

be the Steinberg map with respect to G. Then we have Ξ = T ιθ/Sn ↪→ T/S2n,
where Sn is embedded in S2n as a subgroup of the centralizer of (1, n+ 1)(2, n+
2) · · · (n, 2n). In the enhanced case, let ω′ : G→ T/(Sn×Sn) be the Steinberg map
and consider Ξ = T ιθ/Sn ↪→ T/(Sn×Sn). In either case, we denote by ω the map

Gιθ → Ξ induced from ω′. Take m ∈ Qn,r, and consider the map π(m) : X̃m → Xm

as in 1.1. Let Z(m) be the Steinberg variety with respect to π(m) defined in 6.21.

245



TOSHIAKI SHOJI

We denote by ϕ the natural map Z (m) → Xm. We define a map α̃ : Z(m) → T ιθ

by (x,v, gBθ , g′Bθ) 7→ pT (g
−1xg). Then we have a commutative diagram

Z(m) α̃ //

ϕ

��

T ιθ

ωT

��
Xm

ω̃ // Ξ,

where ω̃ is the composite of the projection Xm → Gιθ with ω, and ωT is the
restriction of ω on T ιθ. Note that ωT is a finite morphism.

As in 6.21, we assume that m ∈ Q0
n,r in the exotic case, while we consider

arbitrary m ∈ Qn,r in the enhanced case. Recall that d′m = dimXm,uni, and put
σ = ωT ◦ α̃. We define a constructible sheaf T on Ξ by

T = H2d′
m(σ!Q̄l) = R2d′

mσ!Q̄l. (7.1.1)

Recall the definition of perfect sheaves in [Lu, 5.4]. A constructible sheaf E on
an irreducible variety X is said to be perfect if E coincides with an intersection
cohomology complex (reduced to a single sheaf on degeree zero) on X , and the
support of any nonzero constructible subsheaf of E is X .

The following gives examples of perfect sheaves.

(7.1.2) If π : Y → X is a finite morphism with Y smooth and if E ′ is a locally
constant sheaf on Y , then E = π∗E ′ is a perfect sheaf on X .

(7.1.3) If 0→ E1 → E2 → E3 → 0 is an exact sequence of constructible sheaves on
X , with E1, E3 perfect, then E2 is perfect.

As in Section 6, let W = NH(T θ)/T θ) be the Weyl group of H . We show the
following lemma.

Lemma 7.2. The sheaf T is a perfect sheaf on Ξ.

Proof. Under the notation in the proof of Lemma 6.22, we consider Z̃w = p−1(Ow)

for each w ∈W . Let σw be the restriction of σ on Z̃w, and put Tw=H2d′
m((σw)!Q̄l).

We also put αw as the restriction of α̃ on Z̃w. LetW\
m be the subgroup ofW given

in (6.21.2). We show that

Tw '

{
(ωT )!Q̄l if w ∈ W\

m,

0 otherwise.
(7.2.1)

In fact, since Z̃w → Ow is a locally trivial fibration with fibre isomorphic to
(6.22.1), we see that αw is a locally trivial fibration with fibre isomorphic to

H ×(Bθ∩wBθw−1)

(
(U ιθ ∩ wU ιθw−1)×

r−1∏

i=1

(Mpi ∩ w(Mpi))

)
. (7.2.2)
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By the computation in the proof of Lemma 6.22, we see that dimα−1
w (s) ≤ d′m for

any s ∈ T ιθ, and that the equality holds if and only if w ∈ W \
m. Moreover, in that

case, each fibre is an irreducible variety. It follows that

R2d′
m(αw)!Q̄l '

{
Q̄l if w ∈ W\

m,

0 otherwise.
(7.2.3)

Since ωT is a finite morphism, we have R2d′
m(σw)!Q̄l ' R0(ωT )!R

2d′
m(αw)!Q̄l.

Thus (7.2.1) follows from (7.2.3).
Since ωT is a finite morphism, (7.2.1) and (7.1.2) imply that Tw is a perfect

sheaf if w ∈ W\
m. By (7.2.2), each fibre α−1

w (s) is a vector bundle over Ow. In
turn, Ow is a vector bundle over H/Bθ with fibre isomorphic to U θ ∩wUθw−1. It
follows that H i

c(α
−1
w (s), Q̄l) = 0 for odd i. This implies that R2d′

m
−1(σw)!Q̄l = 0

for w ∈ W\
m. Now W\

m is a parabolic subgroup of W , and the closure relations for
Ow(w ∈ W

\
m) are described by the Bruhat order on W \

m. It follows, by a similar
argument as in [Lu, 5.4] by using the property (7.1.3), we see that T is a perfect
sheaf on Ξ. The lemma is proved. �

Proposition 7.3. T '
⊕

w∈W\
m

Tw as sheaves on Ξ.

Proof. Put Ξreg = ωT (T
ιθ
reg). Then Ξreg is an open dense subset of Ξ. Since T and⊕

w Tw are perfect sheaves on Ξ, it is enough to show that their restrictions on

Ξreg are isomorphic. Put Z
(m)
0 = σ−1(Ξreg). Then Z

(m)
0 ' Ỹm×Ym

Ỹm. Let σ0 be

the restriction of σ on Z
(m)
0 , which is a composite of the natural map Z

(m)
0 → Ym

with the map Ym → Ξ. The restriction of T on Ξreg is isomorphic to R2d′
m(σ0)!Q̄l.

Put

M[ =

r−1∏

i=1

(M[pi−1+1,pi] +Mpi−1).

Then M[ coincides with MI◦ for I◦ = (I◦1 , . . . , I
◦
r ) in 1.3, where I◦i = [pi−1+1, pi].

Put Ỹ[ = ỸI◦ in the notation in 1.3 (see also 4.1). Under the isomorphism (1.2.2),

Ỹ[ is regarded as an open dense subset of Ỹm. Put Z[ = Ỹ[ ×Y0
m
Ỹ[ and let

σ[ be the restriction of σ0 on Z[. For each w ∈ Wn, let σ
w
[ be the restriction

of σ[ on Z[(w) = Z[ ∩ Z̃w. Note that Z[(w) = ∅ unless w ∈ W\
m. Now Z[ is

an open subset of Z
(m)
0 and the inclusion map Z[ ↪→ Z

(m)
0 induces a morphism

Ri(σ[)!Q̄l → Ri(σ0)!Q̄l for each i. Similarly, we have a morphism Ri(σw[ )!Q̄l →
Ri(σw0 )!Q̄l for each w. We have

R2d′
m(σ[)!Q̄l ∼−→R2d′

m(σ0)!Q̄l, (7.3.1)

R2d′
m(σw[ )!Q̄l ∼−→R2d′

m(σw0 )!Q̄l for w ∈ W\
m.

We show (7.3.1). Let α̃0 : Z
(m)
0 → T ιθ be the restriction of α̃ on Z̃

(m)
0 , and αw0

the restriction of α̃0 on Z̃w. We also denote by α[ (resp. α
w
[ ) the restriction of α̃0 on

Z[ (resp. on Z[(w)). From the computation in the proof of Lemma 7.2, we know
that the map R2d′

m(αw[ )!Q̄l → R2d′
m(αw0 )!Q̄l is surjective. For any I ⊂ I(m′) with
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m′ ≤ m, we consider ψI : ỸI → Y0
m′ as in 1.3. For each I,J ∈ I(m′), put ZI,J =

ỸI ×Ym
ỸJ under the inclusion Y0

m′ ↪→ Ym. Note that ZI,J = ∅ unless J = w(I)

for some w ∈ W\
m. We have a partition Z

(m)
0 =

∐
I,J ZI,J by locally closed subsets

ZI,J, and Z[ coincides with ZI◦,I◦ . Let Z1 be the complement of Z[ in Z
(m)
0 , and

put Z1(w) = Z1∩ Z̃w. Hence Z1 =
∐
w Z1(w). Again, by a similar computation as

in the proof of Lemma 7.2, we see that dimα−1
w (s) ∩Z1(w) < d′m for any s ∈ T ιθ.

This implies that R2d′
m(αw[ )!Q̄l ' R2d′

m(αw0 )!Q̄l. By applying R0(ωT )! on both

sides, we have R2d′
m(σw[ )!Q̄l ' R2d′

m(σw0 )!Q̄l for any w ∈ W\
m. This proves the

second statement of (7.3.1). By considering the long exact sequence arising from

the stratification Z
(m)
0 =

∐
w(Z

(m)
0 ∩ Z̃w), we obtain the first statement. Thus

(7.3.1) holds.
By (7.3.1), the proof of the proposition is reduced to showing

R2d′
m(σ[)!Q̄l '

⊕

w∈W\
m

R2d′
m(σw[ )!Q̄l. (7.3.2)

Note that in this case the natural projection ϕ[ : Z[ → Y0
m is a finite Galois

covering. (This is clear in the enhanced case. In the exotic case, since mr = 0,

we have I◦r = ∅. Hence Ỹ[ → Y
0
m is a finite Galois covering.) Also note that

Z[(w) = ∅ unless w ∈ W\
m. In that case, Z[(w) is an open and closed subset of Z[

since ϕ[ is a finite Galois covering. We have a decomposition Z [ =
∐
w∈W\

m

Z[(w)
into open and closed subsets. This implies that

(σ[)!Q̄l '
⊕

w∈W\
m

(σw[ )!Q̄l. (7.3.3)

Hence (7.3.2) holds. The proposition is proved. �

7.4. By the Künneth formula, ϕ!Q̄l ' π
(m)
! Q̄l⊗π

(m)
! Q̄l. By Theorem 3.2 and

Theorem 4.5, π
(m)
! Q̄l has a natural structure of W\

m-module. Hence ϕ!Q̄l has a

structure ofW\
m×W

\
m-module. It follows that T = H2d′

m(σ!Q̄l) ' H2d′
m(ω̃!(ϕ!Q̄l))

has a natural action of W\
m ×W

\
m. Under the decomposition of T in Proposition

7.3, the action of W\
m ×W

\
m has the following property. For each w1, w2 ∈ W\

m,

(w1, w2) · Tw = Tw1ww
−1
2
. (7.4.1)

In fact, since T is a perfect sheaf by Lemma 7.2, it is enough to check (7.4.1) for the
restriction of T on Ξreg. Here (ϕ[)!Q̄l has already a structure ofW\

m×W
\
m-module.

Hence by (7.3.1), it is enough to check a similar property for the corresponding
decomposition of (ϕ[)!Q̄l in (7.3.3) (note that σ[ = ω̃◦ϕ[). But this can be verified
directly from the discussion in 7.3. Hence (7.4.1) holds.

Let a0 be the element in Ξ corresponding to the Sn-orbit of 1 ∈ T ιθ, and Ta0
be the stalk of T at a0 ∈ Ξ. By Proposition 7.3, we have a decomposition

Ta0 =
⊕

w∈W\
m

(Tw)a0 ,

where (Tw)a0 is the stalk of Tw at a0. W\
m×W

\
m acts on Ta0 following (7.4.1). By

(7.2.1), Tw ' (ωT )!Q̄l. Since ω−1
T (a0) = {1} ⊂ T ιθ, (Tw)a0 ' H0

c (ω
−1
T (a0), Q̄l) '

Q̄l. Thus we have proved
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Proposition 7.5. Ta0 has a structure of W\
m×W

\
m-module, which coincides with

the two-sided regular representation of W \
m.

The following lemma is a variant of [Lu, Lem. 6.7].

Lemma 7.6. Let A,A′ be simple perverse sheaves on Xm,uni. Then we have

dimH0
c(Xm,uni, A⊗A

′) =

{
1 if A′ ' D(A),

0 otherwise,

where D(A) is the Verdier dual of A.

Proof. Assume that A = IC(X, E)[dimX ] and A′ = IC(X
′
, E ′)[dimX ′], where

X,X ′ are smooth irreducible subvarieties of Xm,uni and E (respectively E ′) is a
simple local system on X (respectively on X ′). We have H0

c(Xm,uni, A ⊗ A
′) '

H0
c(X ∩X

′
, A⊗A′). First assume that X 6= X

′
, and put Y = X ∩X

′
. We show

H0
c(Y,A⊗A

′) = 0. (7.6.1)

For this, by using the hypercohomology spectral sequence, it is enough to show
the following.

(7.6.2) If H i
c(Y,H

jA⊗Hj
′

A′) 6= 0, then i+ j + j′ < 0.

We show (7.6.2). Suppose that H i
c(Y,H

jA⊗Hj
′

A′) 6= 0. Put

Yj,j′ = supp HjA ∩ supp Hj
′

A′ ⊂ Y.

We have H i
c(Yj,j′ ,H

jA ⊗ Hj
′

A′) ' H i
c(Y,H

jA ⊗ Hj
′

A′) 6= 0. It follows that
i ≤ 2 dimYj,j′ . By using the property of intersection cohomology, we have

dimYj,j′ ≤ dim supp HjA ≤ −j,

dimYj,j′ ≤ dim supp Hj
′

A′ ≤ −j′

and so
j ≤ − dimYj,j′ , j′ ≤ − dimYj,j′ . (7.6.3)

Since X 6= X
′
, we have dimY < dimX or dim Y < dimX ′, and one of the

inequalities in (7.6.3) is a strict inequality. It follows that i + j + j ′ < 0. Hence
(7.6.2) holds and (7.6.1) follows.

Next assume that X = X
′
. We may assume that X,X ′ are open dense in X.

By replacing X,X ′ by X ∩ X ′, if necessary, we may assume that X = X ′. Put
Y = X\X . We show that

H0
c(Y,A⊗A

′) = 0 and H−1
c (Y,A⊗A′) = 0. (7.6.4)

As in the previous case, we consider the hypercohomology spectral sequence.
Suppose that H i

c(Y,H
jA ⊗ Hj

′

A′) 6= 0. We may replace Y by Yj,j′ , where

Yj,j′ = Y ∩ supp HjA ∩ supp Hj
′

A′. Then we have i ≤ 2 dimYj,j′ , and we obtain
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a similar formula as (7.6.3), but in this case, both of them are strict inequalities
since dimY < dimX . It follows that i + j + j ′ < −1. This proves (7.6.4). By
using the cohomology long exact sequence with respect to Y = X\X , we see that

H0
c(X,A⊗A

′) ' H0
c(X,A⊗A

′) ' H2 dimX
c (X, E ⊗ E ′).

The last space is isomorphic to Q̄l if E ′ ' E∨, the dual local system, and is equal
to zero otherwise. Since D(A) = IC(X, E∨)[dimX ], the lemma is proved. �

7.7. We consider the map π
(m)
1 : X̃m,uni → Xm,uni. PutKm,1 = (π

(m)
1 )!Q̄l[d

′
m].

By Lemma 6.22 (iii), the map π
(m)
1 is semi-small. Hence Km,1 is a semisimple per-

verse sheaf on Xm,uni and is decomposed as

Km,1 '
⊕

A∈Cm

VA ⊗A, (7.7.1)

where Cm is the set of (isomorphism classes of) simple perverse sheaves appearing
in the decomposition of Km,1, and VA = Hom(Km,1, A) is the multiplicity space
for A. We have the following.

Proposition 7.8. Under the notation as above, put mA = dim VA for each A ∈
Cm. Then we have ∑

A∈Cm

m2
A = |W\

m|.

Proof. By the computation in 7.4, we have

Ta0 'H
2d′

m

c (Xm,uni, (π
(m)
1 )!Q̄l ⊗ (π

(m)
1 )!Q̄l)

'H0
c(Xm,uni,Km,1 ⊗Km,1).

Hence by (7.7.1), we have

dim Ta0 =
∑

A,A′∈Cm

(mAmA′) dimH0
c(Xm,uni, A⊗A

′).

By Lemma 7.6, H0
c(Xm,uni, A ⊗ A′) 6= 0 only when D(A) = A′, in which case,

dimH0
c(Xm,uni, A⊗A′) = 1. But since Km,1 is self dual, mA = mD(A) for each A.

It follows that dim Ta0 =
∑

A∈Cm
m2
A. On the other hand, by Proposition 7.5, we

have dim Ta0 = |W\
m|. This proves the proposition. �

7.9. Since π
(m)
! Q̄l is equipped with the W\

m-action, for each z = (x,v) ∈ Xm,
H i((π(m))−1(z), Q̄l) turns out to be a W\

m-module. In the case where z0 = (1,0),
(π(m))−1(z0) ' H/Bθ and so H i(H/Bθ, Q̄l) has a structure of W\

m-module. Note
that W\

m is a subgroup of Wn (respectively of Sn) in the exotic case (respectively
the enhanced case). It is well known that the Weyl groupWn (respectively Sn) acts
naturally on H i(H/Bθ, Q̄l), which we call the classical action of Wn (respectively
Sn) on it. We have the following lemma.
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Lemma 7.10. The action of W\
m on H i(H/Bθ, Q̄l) coincides with the restriction

of the classical action of Wn (respectively Sn) on it in the exotic case (respectively
the enhanced case).

Proof. First assume that Xm is of exotic type. Put m′ = (0, . . . , 0, n, 0) ∈ Q0
n,r.

Then Ym′ ⊂ Ym, and Xm′ ⊂ Xm (in fact, Ym′ = {(x,v) ∈ Ym | v1 = · · · = vr−2 =

0} and similarly for Xm′). We have W\
m′ = Wn. In this case, ψ

(m)
! Q̄l|Y

m′ '

ψ
(m′)
! Q̄l, and π

(m)
! Q̄l|X

m′ ' π
(m′)
! Q̄l. It follows from the construction that the

action ofW\
m on ψ

(m)
! Q̄l|Y

m′ coincides with the restriction of the action ofW \
m′ '

Wn on ψ
(m′)
! Q̄l. Hence a similar fact holds also for π

(m)
! Q̄l. In particular, the

W\
m-action on Hiz0(π

(m)
! Q̄l) coincides with the restriction of the W \

m′ -action on

Hiz0(π
(m′)
! Q̄l). Here Xm′ ' Gιθ × V , and π

(m′)
! Q̄l is isomorphic to π!Q̄l, where

π : X̃ → X = Gιθ × V is the map defined in 1.2 for the case r = 2. The complex

π!Q̄l was studied in [SS1], and one sees that the action of W \
m′ on π

(m′)
! Q̄l is

nothing but the Wn-action on π!Q̄l constructed in [SS1]. It induces a Wn-action
on H i(H/Bθ, Q̄l), which is called the exotic action of Wn. Hence in order to prove
the lemma, it is enough to see that the exotic action and the classical action ofWn

on H i(H/Bθ, Q̄l) coincide with each other. But this is proved in [SS1, Lem. 5.2].
Hence the lemma is proved in the exotic case.

Next assume that Xm is of enhanced type. In this case, we consider Ym′ ⊂ Ym
and Xm′ ⊂ Xm for m′ = (0, . . . , 0, n) ∈ Qn,r. Then Xm′ ' Gιθ × V , and as in
the exotic case, the proof is reduced to the case where r = 2. So we consider
X = G × V for G = GL(V ) and let π : X̃ → X be the corresponding map. We
have an action of Sn on H i(G/B, Q̄l), called the enhanced action of Sn, obtained
from the Sn-action on π!Q̄l. One can prove that the enhanced action coincides
with the classical action, by a similar (but simpler) argument as in the proof of
Lemma 5.2 in [SS1]. Hence the lemma holds for the enhanced case. �

7.11. We keep the assumption as before. By applying Theorem 3.2 and
Theorem 4.5 to the case where E = Q̄l, one can write

π
(m)
! Q̄l[dm] '

⊕

ρ∈(W\
m)∧

ρ⊗Kρ, (7.11.1)

where dm = dimXm, Kρ is a simple perverse sheaf on Xm as given in Theo-
rem 3.2 and Theorem 4.5. More precisely, if Xm is of exotic type then Kρ =
IC(Xm(k),Lρ1)[dm(k)] for ρ ' V \ρ1 with ρ1 ∈ W∧

m(k), and if Xm is of enhanced

type then Kρ = IC(Xm,Lρ)[dm]. We consider the complex (π
(m)
1 )!Q̄l[d

′
m], where

dm′ = dimXm,uni. The following result gives the Springer correspondence with
respect to the action of W\

m. In the exotic case, this result is regarded as a weak
version of the Springer correspondence.

Theorem 7.12 (Springer correspondence for W \
m). Let Xm be of exotic type or

of enhanced type for m ∈ Qn,r. In the exotic case, assume further that m ∈ Q0
n,r.

251



TOSHIAKI SHOJI

Then (π
(m)
1 )!Q̄l[d

′
m] is a semisimple perverse sheaf on Xm,uni equipped with W\

m-

action, and is decomposed as

(π
(m)
1 )!Q̄l[d

′
m] '

⊕

ρ∈(W\
m)∧

ρ⊗ Lρ, (7.12.1)

where Lρ is a simple perverse sheaf on Xm,uni such that

Kρ|Xm,uni ' Lρ[dm − d
′
m]. (7.12.2)

Proof. As discussed in 7.7, Km,1 = (π
(m)
1 )!Q̄l[d

′
m] is a semisimple perverse sheaf.

Since Km,1 is the restriction of (π(m))!Q̄l on Xm,uni, Km,1 has a structure of
W\

m-module. Thus we can define an algebra homomorphism

Q̄l[W
\
m]

α
−→ EndKm,1

β
−→ EndH•(H/Bθ, Q̄l).

In order to show (7.12.1), it is enough to see that α gives an isomorphism

α : Q̄l[W
\
m] ∼−→ EndKm,1. (7.12.3)

We show (7.12.3). We assume that Xm is of exotic type. The proof for the
enhanced case is similar. β ◦α is a homomorphism induced from the action ofW \

m

on H•(H/Bθ, Q̄l). By Lemma 7.10, this action is the restriction of the classical
action of Wn on H•(H/Bθ, Q̄l). Since H•(H/Bθ, Q̄l) ' Q̄l[Wn] as Wn-module,
with respect to the classical action, Q̄l[Wn] → H•(H/Bθ, Q̄l) is injective. Hence
β ◦ α is injective. It follows that α is injective. On the other hand, Proposition
7.8 implies that dimEndKm,1 = |W\

m|. This shows that α is surjective, and so
(7.12.3) holds.

(7.12.2) now follows easily by comparing (7.11.1) and (7.12.1). The theorem is
proved. �

7.13. We now return to the setting in 1.6, and consider the complex reflection
group Wn,r. For each m ∈ Q0

n,r, we denote by (W∧
n,r)m the set of irreducible

representations Ṽρ (up to isomorphism) of Wn,r obtained from ρ ∈ W∧
m(k) for

various 0 ≤ k ≤ mr−1 as in 1.6. Then we have

W∧
n,r =

∐

m∈Q0
n,r

(W∧
n,r)m. (7.13.1)

It follows from the construction of Ṽρ and of V \ρ , there exists a natual bijection

between (W∧
n,r)m and (W\

m)∧. We denote by V (ρ) the irreducible representation

of Wn,r belonging to (W∧
n,r)m corresponding to ρ ∈ (W\

m)∧. Now assume that Xm

is of exotic type. We consider the map πm : π−1(Xm) → Xm, and the complex
(πm)!Q̄l[dm] as in 2.1. Then by Theorem 2.2, (πm)!Q̄l[dm] is a semisimple perverse
sheaf equipped with Wn,r-action, and is decomposed as

(πm)!Q̄l[dm] '
⊕

ρ∈(W\
m)∧

V (ρ)⊗Kρ, (7.13.2)

whereKρ is a simple perverse sheaf on Xm given in (7.11.1). Let πm,1: π
−1(Xm,uni)

→ Xm,uni be the restriction of πm on Xm,uni. Since πm,1 is proper, πm,1Q̄l[d
′
m]

is a semisimple complex on Xm,uni. By applying (7.12.2), we see that πm,1Q̄l[d
′
m]

is a semisimple perverse sheaf. As a corollary to Theorem 7.12, we obtain the
Springer correspondence for Wn,r.
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Corollary 7.14 (Springer correspondence for Wn,r). Assume that Xm is of ex-

otic type with m ∈ Q0
n,r. Then πm,1Q̄l[d

′
m] is a semisimple perverse sheaf on

Xm,uni with Wn,r-action, and is decomposed as

(πm,1)!Q̄l[d
′
m] '

⊕

ρ∈(W\
m)∧

V (ρ)⊗ Lρ,

where Lρ is a simple perverse sheaf on Xm,uni as in Theorem 7.12, and V (ρ) is an
irreducible representation of Wn,r as defined in 7.13.

8. Determination of the Springer correspondence

8.1. Assume that r ≥ 2. In this section we shall determine Lρ appearing in
the Springer correspondence explicitly. For a fixed m ∈ Qn,r, we consider Xm of
exotic type or of enhanced type. In the exotic case, we assume that m ∈ Q0

n,r.
First we consider the case where Xm is of exotic type. We define a variety Gm by

Gm = {(x,v, (Wi)1≤i≤r−2) | (x,v) ∈ X , (Wi) : isotropic flag in V,

dimWi = pi, x(Wi) =Wi, vi ∈ Wi (1 ≤ i ≤ r − 2), vr−1 ∈ W
⊥
r−2}.

Let ζ : Gm → X be the projection to the first two factors. We consider the map
π(m) : X̃m → Xm. Then π(m) is decomposed as

π(m) : X̃m
ϕ
−−→ Gm

ζ
−→ Xm,

where ϕ is defined by (x,v, gBθ) 7→ (x,v, (gMpi)1≤i≤r−2). The map ϕ is surjective
since m ∈ Q0

n,r. It follows that ζ(Gm) coincides with Xm. Since m ∈ Q0
n,r, we

have dim X̃m = dimXm. This implies that dimGm = dimXm. Note that in the
case where r = 2, we have m = (n, 0), and Gm = Gιθ × V = Xm. By modifying
the definition of Km in 2.5, we define a variety Hm by

Hm = {(x,v,(Wi), φ1, φ2) | (x,v, (Wi)) ∈ Gm

φ1 :W1 ∼−→V0, φ2 :W⊥
1 /W1 ∼−→V 0 (symplectic isom.)},

where V0 =Mp1 and V 0 =M⊥
p1/Mp1 . We also define a variety Z̃m by

Z̃m = {(x,v,gBθ, φ1, φ2) | (x,v, gB
θ) ∈ X̃m,

φ1 : g(Mp1) ∼−→V0, φ2 : g(Mp1)
⊥/g(Mp1) ∼−→V 0}.

Assume that r ≥ 3, and let m′ = (m2, . . . ,mr) for m = (m1, . . . ,mr), and G1, G̃1,

X ′
m′ , G2, etc., be as in 2.5. X̃ ′

m′ is defined for X ′
m′ in a similar way as X̃m is defined
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for Xm. (Hence in the case where r = 3, X ′
m′ = G′m′ = Gιθ2 × V 0.) We have the

following commutative diagram

G̃1 × X̃
′
m′

π1×ϕ′

��

Z̃m
σ̃oo q̃ //

ϕ̃

��

X̃m

ϕ

��
G1 × G′m′

id×ζ′

��

Hm
σoo q // Gm

ζ

��
G1 ×X ′

m′ Xm,

(8.1.1)

where q, σ are defined in a similar way as in 2.5, and

q̃ : (x,v, gBθ , φ1, φ2) 7→ (x,v, gBθ),

ϕ̃ : (x,v, gBθ , φ1, φ2) 7→ (x,v, (gMpi )1≤i≤r−2, φ1, φ2).

The map σ̃ is defined as follows. Let Fθ(V ) be the set of complete isotropic flags

in V , and F̃θm the set of ((x,v), (Vi)) ∈ Xm×Fθ(V ) such that (Vi) is x-stable and

that vi ∈ Vpi for i = 1, . . . , r − 1. Then F̃θm is isomorphic to X̃m, and

Z̃m ' {(x,v, (Vi), φ1, φ2) | (x,v, (Vi)) ∈ F̃
θ
m, φ1 : Vp1 ∼−→V0, φ2 : V ⊥

p1 /Vp1
∼−→V 0}.

We define σ̃ : Z̃m → G̃1 × X̃ ′
m′ by (x,v, (Vi), φ1, φ2) 7→ (ξ1, ξ2) with

ξ1 = (φ1(x
′)φ−1

1 , (φ1(Vi))i≤p1 ) ∈ G̃1,

ξ2 = (φ2(x
′′)φ−1

2 , φ2(v), (φ2(Vi/Vp1))i≥p1) ∈ X̃
′
m′ ,

where x′ (respectively x′′) is the restriction of x on Vp1 (respectively V ⊥
p1 /Vp1),

v = (v2, . . . , vr−1) with vi the image of vi on V ⊥
p1 /Vp1 for v = (v1, . . . , vr−1).

One can check that the squares in the diagram are both cartesian squares. Put
H0 = G1 ×Gθ2. Then as in (2.5.2) and (2.5.3), we have:

(8.1.2) q is a principal bundle with fibre isomorphic to H0, and σ is a locally
trivial fibration with smooth fibre of dimension dimH + (r − 2)m1.

8.2 For a fixed k, we consider the variety Ỹ†
m(k) = (ψ(m))−1(Y0

m(k)) as in 3.3.

Let Gm(k),reg = ζ−1(Y0
m(k)) be a locally closed subvariety of Gm (not of Gm(k); note

that Gm(k) is not defined since m(k) /∈ Q0
m,r). We define m′(k) = m′(r − 2, k)

similarly to m(k), by replacing m by m′. Then the varieties Y ′0
m′(k), Ỹ

′†
m′(k) and

G′
m′(k),reg are defined similarly with respect to X ′

m′ . The commutative diagram
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(8.1.1) induces a commutative diagram

G̃1,reg × Ỹ
′†
m′(k)

��

Z̃†
m(k)

��

oo // Ỹ†
m(k)

ϕ0

��
G1,reg × G′m′(k),reg

��

Hm(k),reg
oo // Gm(k),reg

ζ0

��
G1,reg × Y ′0

m′(k) Y0
m(k),

(8.2.1)

where Hm(k),reg = q−1(Gm(k),reg), Z̃
†
m(k) = q̃−1(Ỹ†

m(k)), and ϕ0, ζ0 are restrictions

of ϕ, ζ, respectively. Again, the squares in the diagrams are both cartesian.
By (3.3.1) we have a decomposition

Ỹ†
m(k) =

∐

I∈I(m)(m(k))

ỸI, (8.2.2)

into irreducible components, where

I(m)(m(k)) = {I ∈ I(m(k)) | Ii = I◦i (1 ≤ i ≤ r − 2), Ir−1, Ir ⊂ I
◦
r−1}.

Let ψI be the restriction of the map Ỹ†
m(k) → Y

0
m(k) on ỸI for each I ∈ I(m)(m(k))

as in 1.3. Under the notation in 1.3, the map ψI factors through ŶI as ψI = ηI ◦ ξI
(see (1.3.1)). We define a map η

(m)
I : ŶI → Gm(k),reg as the quotient of the map

(g, (t,v)) 7→ (gtg−1, gv, (gM Ii)1≤i≤r−2). Thus ηI : ŶI → Y0
m(k) factors through

Gm(k),reg as ηI = ζ0 ◦ η
(m)
I .

The variety Ỹ ′†
m′(k) is also decomposed into irreducible components as in (8.2.2),

by using the parameter set I(m
′)(m′(k)). For I′ ∈ I(m

′)(m′(k)), the varieties Ŷ ′
I′

are defined with respect to X ′
m′ . Note that the set I(m

′)(m′(k)) is in bijection
with the set I(m)(m(k)) under the correspondence I′ ↔ I = (I◦1 , I

′). Now the
commutative diagram (8.2.1) implies the following commutative diagram for each
I ∈ I(m)(m(k)):

G̃1,reg × Ŷ ′
I′

ψ1
0×η

′(m′)

I′

��

ẐI
oo

��

// ŶI

η
(m)
I

��
G1,reg × G

′
m′(k),reg Hm(k),reg

oo // Gm(k),reg,

(8.2.3)

where ẐI is the fibre product of Hm(k),reg and ŶI over Gm(k),reg. Both squares in

the diagram are cartesian squares. By 1.3, we know that ηI : ŶI → Y0
m(k) is a

finite Galois covering with group WI. Here we note that
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(8.2.4) η
(m)
I : ŶI → Gm(k),reg is a finite Galois covering with group WI. In

particular, the restriction of ζ0 gives an isomorphism Gm(k),reg
∼−→Y

0
m(k).

In fact, this is clear in the case where r = 2, since Gm(k),reg = Y0
m(k). Assume

that r ≥ 3, and that (8.2.4) holds for r− 1. By induction, η
′(m′)
I′ : Ŷ ′

I′ → Ĝ
′
m′(k),reg

is a finite Galois covering with group W ′
I′ . Then ψ1

0 × η
′(m′)
I′ is a finite Galois

covering with group Sm1 ×W
′
I′ = WI. Since both squares in the diagram (8.2.3)

are cartesians, η
(m)
I is a finite Galois covering with group WI. Since ηI is also a

finite Galois covering with group WI, we conclude that Gm(k),reg ' Y
0
m(k). This

proves (8.2.4).
Since ηI is a finite Galois covering with group WI ' Wm(k), by (1.5.3) we have

(ηI)!Q̄l '
⊕

ρ0∈W∧
m(k)

ρ0 ⊗Lρ0 ,

where Lρ0 is a simple local system on Y0
m(k). We regard Lρ0 as a simple local

system on Gm(k),reg under the isomorphism Gm(k),reg ' Y
0
m(k).

Now take ρ ∈ (W\
m)∧. There exist a unique integer k and ρ0 ∈ W

∧
m(k)

such that ρ = V \ρ0 . Then we have Kρ = IC(Xm(k),Lρ0 )[dm(k)]. Put Aρ =

IC(Gm(k),Lρ0)[dm(k)]. Aρ is an H-equivariant simple perverse sheaf on Gm(k),
and we regard it as a perverse sheaf on Gm by extension by zero.

We show the following fact.

Proposition 8.3. Assume that Xm is of exotic type.

(i) ϕ!Q̄l[dm] is a semisimple perverse sheaf on Gm equipped with W\
m-action,

and is decomposed as

ϕ!Q̄l[dm] '
⊕

ρ∈(W\
m)∧

ρ⊗ Aρ.

(ii) ζ!Aρ ' Kρ.

Proof. We prove the proposition by induction on r. In the case where r = 2,
m = (m1,m2) = (n, 0) since m ∈ Q0

n,r. Thus Gm = Xm = X and ϕ = π : X̃ → X .

Moreover, ζ is the identity map, and W \
m = Wn. Hence the proposition follows

from [SS1, Thm. 4.2]. Assume that r ≥ 3, and that the proposition holds for r−1.
We know, under the notation of 2.6, that

π1
! Q̄l[dimG1] '

⊕

ρ1∈S∧
m1

ρ1 ⊗ IC(G1,Lρ1)[dimG1]. (8.3.1)

On the other hand, by applying the induction hypothesis to X ′
m′ , we have

ϕ′
!Q̄l[dm′ ] '

⊕

ρ′∈(W\

m′ )
∧

ρ′ ⊗Aρ′ , (8.3.2)
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where Aρ′ is a simple perverse sheaf on G ′m′ defined similarly to Aρ. By applying

the argument in 2.6, one can find a unique H-equivariant simple perverse sheaf Ãρ
on Gm such that

q∗Ãρ[β2] ' σ
∗(Kρ1 �Aρ′ )[β1], (8.3.3)

where β1 = dimH + (r − 2)m1, β2 = dimH0, and Kρ1 = IC(G1,Lρ1)[dimG1].

It follows from the discussion in 8.2 that Ãρ actually coincides with Aρ. Put
K = ϕ!Q̄l[dm],K ′ = ϕ′

!Q̄l[dm′ ] and K ′′ = (π1)!Q̄l[dimG1]. Since both squares in
(8.1.1) are cartesian, we have

q∗K[β2] ' σ
∗(K ′′

�K ′)[β1].

Combining (8.3.1), (8.3.2), and (8.3.3), we obtain

K '
⊕

ρ∈(W\
m)∧

ρ⊗Aρ.

By this decomposition, K = ϕ!Q̄l[dm] is regarded as a complex with W\
m-action.

This proves (i).
Next we show (ii). Since ζ is proper, ζ!Aρ is a semisimple complex on Xm. By

(i), K = ϕ!Q̄l[dm] is a semisimple perverse sheaf. Since ζ!K ' (π(m))!Q̄l[dm] is
a semisimple perverse sheaf, it follows that ζ!Aρ is a semisimple perverse sheaf.
By (8.2.4) we have ζ!Aρ|Y0

m(k)
' Kρ|Y0

m(k)
. Hence ζ!Aρ contains Kρ as a direct

summand. By applying ζ! to the formula in (i), we have

(π(m))!Q̄l[dm] '
⊕

ρ∈(W\
m)∧

ρ⊗ ζ!Aρ.

By Theorem 3.2, we have

(π(m))!Q̄l[dm] '
⊕

ρ∈(W\
m)∧

ρ⊗Kρ.

By comparing these two formulas, we obtain (ii). The proposition is proved. �

8.4. For each m ∈ Q0
n,r, put Gm uni = ζ−1(Xm,uni). Then the map π

(m)
1 is

decomposed as

π
(m)
1 : X̃m,uni

ϕ1
−→ Gm,uni

ζ1
−→ Xm,uni,

where ϕ1, ζ1 are restrictions of ϕ, ζ, respectively. Note that ϕ1 is surjective. Put
Hm uni = q−1(Gm,uni). The inclusion map Gm,uni ↪→ Gm is compatible with the
diagram (8.1.1); namely, we have a commutative diagram

G1 × G′m′ Hm
σoo q // Gm

G1,uni × G′m′,uni

OO

Hm,uni

OO

σ1oo q1 // Gm,uni,

OO

(8.4.1)
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where σ1, q1 are restrictions of σ, q respectively, and vertical maps are natural
inclusions. A similar property as (8.1.2) still holds for q1, σ1, and both squares are
cartesian squares.

For each λ ∈ P(m(k)), we define a subset Gλ of Gm uni inductively as follows;
Write λ = (λ(1),λ′) with λ′ ∈ Pn−m1,r−1. Assume that the Gθ2-stable subset G

′
λ′ of

G′m′,uni was defined. Let Oλ(1) be the G1-orbit in (G1)uni corresponding to λ
(1), and

put Z = Oλ(1)×G′λ′ . Then σ−1
1 (Z) is anH0-stable subset ofHm,uni, and q1◦σ

−1
1 (Z)

coincides with the quotient of σ−1
1 (Z) by H0. We define Gλ by Gλ = q1 ◦ σ

−1
1 (Z).

In the case where r = 3, m = (m1,m2, 0) and m(k) = (m1, k, k
′) with k+k′ = m2.

m′ = (m2, 0) and G′m′,uni = X
′
uni, where X

′ is the exotic symmetric space for r = 2

associated to G2. In this case, λ′ = (λ(2), λ(3)) ∈ Pm2,2, and we take G′λ′ as the
Gθ2-orbit in X

′
uni corresponding to λ′. Thus Gλ is well defined, and Gλ turns out

to be a smooth irreducible H-stable subvariety of Gm,uni. By induction on r, we
show the following formulas:

dimGλ = 2n2 − 2n− 2n(λ)− 2n(λ(r−1) + λ(r)) +

r−1∑

i=1

(r − i+ 1)|λ(i)|. (8.4.2)

In fact, by (8.1.2), we have

dim Gλ = dimOλ(1) + dimG′λ′ + (dimH + (r − 2)m1)− dimH0. (8.4.3)

By applying the induction hypothesis for λ′, (with n′ = n−m1), we have

dim G′λ′ = 2n′2 − 2n′ − 2n(λ′)− 2n(λ(r−1) + λ(r)) +

r−1∑

i=2

(r − i+ 1)|λ(i)|,

and dimOλ(1) = m2
1 − m1 − 2n(λ(1)). Moreover, dimH = 2n2 + n, dimH0 =

m2
1 + 2n′2 + n′. Substituting these formulas into (8.4.3), we obtain (8.4.2).

Let Gλ be the closure of Gλ in Gm,uni. Recall F̃λ, F̃
0
λ in 6.4. It follows from the

construction, F̃λ is a closed subset of Gm,uni. We have the following lemma.

Lemma 8.5. Assume that Xm is of exotic type.

(i) Gλ coincides with F̃λ. In particular, F̃0
λ is an open dense subset of Gλ.

(ii) ζ1(Gλ) = Xλ, and ζ
−1
1 (Xλ) = F̃0

λ. Hence the restriction of ζ1 on ζ−1
1 (Xλ)

gives an isomorphism ζ−1
1 (Xλ) ∼−→Xλ.

Proof. By induction on r, one can verify that F̃0
λ ⊂ Gλ. Hence F̃λ ⊂ Gλ. By

Lemma 6.6 and by (8.4.2), dim F̃λ = dimGλ. Since both are irreducible closed

subsets of Gm,uni, we have F̃λ = Gλ. This proves (i). Then the restriction of ζ1
on Gλ coincides with the map πλ : F̃λ → Xλ. Hence (ii) follows from Proposition
6.7. �

8.6 Recall the set P̃(m) in (6.8.1) for each m ∈ Q0
n,r. It is well known that

(W\
m)∧ is naturally parametrized by the set P̃(m). We denote by ρλ the irreducible

representation of W\
m corresponding to λ ∈ P̃(m).
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For each λ ∈ P̃(m), let V (λ) be the irreducible representation ofWn,r obtained
from ρλ as in 7.13. Then we have

W∧
n,r '

∐

m∈Q0
n,r

P̃(m). (8.6.1)

We have the following refinements of Theorem 7.12 and Corollary 7.14.

Theorem 8.7. Assume that Xm,uni is of exotic type with m ∈ Q0
n,r.

(i) Let Lρ be as in Theorem 7.12. Assume that ρ = ρλ ∈ (W\
m)∧ for λ ∈

P̃(m). Then we have

Lρ ' IC(Xλ, Q̄l)[dimXλ].

(ii) (Springer correspondence for W \
m)

(π
(m)
1 )!Q̄l[d

′
m] '

⊕

λ∈P̃(m)

ρλ ⊗ IC(Xλ, Q̄l)[dimXλ].

(iii) (Springer correspondence for Wn,r)

(πm,1)!Q̄l[d
′
m] '

⊕

λ∈P̃(m)

V (λ)⊗ IC(Xλ, Q̄l)[dimXλ].

Proof. By Proposition 8.3, we know that ζ!Aρ = Kρ. Hence, by the base change
theorem, (ζ1)!(Aρ|Gm,uni) ' Kρ|Xm,uni . For λ ∈ P(m(k)), we define a simple
perverse sheaf Bλ on Gm,uni inductively as follows: in the case where r = 2, put
Bλ = IC(Oλ, Q̄l)[dimOλ], where Oλ is the H-orbit in Gιθuni × V corresponding to
λ. In general for λ ∈ P(m(k)), put λ = (λ(1),λ′) with |λ(1)| = m1, λ

′ ∈ P(m′(k)).
We assume that a simple perverse sheaf Bλ′ on G′m′,uni is already defined. By a

similar construction as Ãρ in the proof of Proposition 8.3, there exists a unique
simple perverse sheaf Bλ on Gm,uni satisfying the relation

q∗1Bλ[β2] ' σ
∗
1(Kλ(1) �Bλ′)[β1],

where Kλ(1) = IC(Oλ(1) , Q̄l)[dimOλ(1) ] for the GLm1 -orbit Oλ(1) in (GLm1)uni cor-
responding to λ(1), and β1, β2 are as in (8.3.3). Assume that ρ = ρλ. By comparing

the construction of Ãρ and of Bλ, and by using the induction hypothesis, we see
that the restriction of Aρ on Gm,uni coincides with Bλ, up to shift. Moreover, by
induction, one can show that the restriction of Bλ on Gλ is a constant sheaf Q̄l. In
particular, supp Bλ = Gλ. Then by Lemma 8.5, the support of (ζ1)!Bλ coincides
with Xλ. By (7.12.2), we know that the restriction of Kρ on Xm,uni is a simple
perverse sheaf Lρ, up to shift. We show that

Lρ ' IC(Xλ, Q̄l)[dimXλ]. (8.7.1)

For this it is enough to see that Lρ|Xλ
is a constant sheaf Q̄l. But by Lemma 8.5

(ii), ζ−1
1 (Xλ) = F̃0

λ ⊂ Gλ, and the restriction of Bλ on Gλ is the constant sheaf
Q̄l, up to shift. Since ζ−1

1 (Xλ) ∼−→Xλ by Lemma 8.5 (ii), we see that (ζ1)!Bλ|Xλ

coincides with Q̄l up to shift. Thus (8.7.1) holds, and (i) follows. (ii) and (iii)
then follow from Theorem 7.12 and Corollary 7.14. The theorem is proved. �
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8.8. We now assume that X is of enhanced type with m ∈ Qn,r. We define a
variety Gm by

Gm = {(x,v,(Wi)1≤i≤r−1) | (x,v) ∈ X , (Wi) : partial flag in V,

dimWi = pi, x(Wi) =Wi, vi ∈Wi (1 ≤ i ≤ r − 1)}.

Let ζ : Gm → X be the projection to the first and second factors. Then the
map π(m) : X̃m → Xm is decomposed as π(m) = ζ ◦ ϕ, where ϕ : X̃m → Gm, ζ :
Gm → Xm are defined similarly to the exotic case. Here ϕ and ζ are surjective
maps. Since dim X̃m = dimXm by Lemma 4.2, we have dimGm = dimXm. Put
V0 =Mp1 , V 0 = V/Mp1 . We define a variety Hm by

Hm = {(x,v,(Wi), φ1, φ2) | (x,v, (Wi)) ∈ Gm,

φ1 :W1 ∼−→V0, φ2 : V/W1 ∼−→V 0}.

We also define a variety Z̃m by

Z̃m = {(x,v,gBθ, φ1, φ2) | (x,v, gB
θ) ∈ X̃m,

φ1 : g(Mp1) ∼−→V0, φ2 : V/g(Mp1) ∼−→V 0}.

Assume that r ≥ 3, and let m′ = (m2, . . . ,mr) for m = (m1, . . . ,mr). Let G1 =
GL(V0) and G2 = GL(V 0) × GL(V 0) with the permutation action θ : G2 → G2.

Then G̃1, X̃ ′
m′ ,X ′

m′ , etc., are defined similarly to the exotic case. Note that X ′
m′ is

a closed subvareity of Gιθ2 ×V
r−2

0 ' GL(V 0)×V
r−2

0 . Then a similar commutative
diagram to (8.1.1) holds also for the enhanced case. We use the same notation as
in (8.1.1). One can check that the maps q, σ satisfy similar properties as in (8.1.2);
namely, we have:

(8.8.1) q is a principal bundle with fibre isomorphic to H0, and σ is a locally
trivial fibration with smooth fibre of dimension dimH + (r − 1)m1. (It should be
noticed that the dimension of the fibre is different from the exotic case. Also note
in this case, H0 ' GL(V0)×GL(V 0), and H ' GL(V ).)

8.9. For m ∈ Qn,r, put Ỹ
†
m = (ψ(m))−1(Y0

m). Then under the notation in

4.1, Ỹ†
m coincides with ỸI for I = I• in 3.3. In particular, ψI : ỸI → Y

0
m is a

finite Galois covering with group WI = W\
m. Ỹ†

m is an open dense subset of Ỹm.

Put Gm,reg = ζ−1(Y0
m). Gm,reg is an open subset of Gm. The varieties Y ′0

m′ , Ỹ
′†
m′

and G′m′,reg are defined similarly. As in the exotic case, we have the following
commutative diagram:

G̃1,reg × Ỹ
′†
m′

��

Z̃†
m

��

oo // Ỹ†
m

ϕ0

��
G1,reg × G′m′,reg

����

Hm,reg
oo // Gm,reg

ζ0

��
G1,reg × Y ′0

m′ Y0
m.

(8.9.1)
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By using (8.9.1) and by induction on r, one can show that ϕ0 : Ỹ†
m → Gm,reg is

a finite Galois covering with group W \
m. It follows that:

(8.9.2) ζ0 gives an isomorphism Gm,reg ∼−→Y
0
m.

For each ρ ∈ W\
m, we consider Kρ = IC(Xm,Lρ)[dm], where Lρ is a simple local

system on Y0
m obtained from the Galois coveringW \

m. We regard Lρ as a local sys-
tem on Gm,reg under the isomorphism Gm,reg ' Y0

m. Put Aρ = IC(Gm,reg,Lρ)[dm].
The following result can be proved in a similar way as Proposition 8.3, by

making use of Theorem 4.5, instead of Theorem 3.2.

Proposition 8.10. Assume that Xm is of enhanced type.

(i) ϕ!Q̄l[dm] is a semisimple perverse sheaf on Gm equipped with W\
m-action,

and is decomposed as

ϕ!Q̄l[dm] '
⊕

ρ∈(W\
m)∧

ρ⊗Aρ.

(ii) ζ!Aρ ' Kρ.

8.11. For each m ∈ Qn,r, put Gm,uni = ζ−1(Xm,uni). Then the map π
(m)
1 is

decomposed as π
(m)
1 = ζ1 ◦ϕ1 as in the exotic case (see 8.4), where ϕ1 : X̃m,uni →

Gm,uni and ζ1 : Gm,uni → Xm,uni are restrictions of ϕ, ζ. Note that ϕ1 is surjective.
Put Hm uni = q−1(Gm,uni). Then we have a similar commutative diagram as
(8.4.1).

For λ ∈ P(m), we define a subset Gλ of Gm,uni inductively, by applying the
discussion in 8.4 for the exotic case. Note that in the case where r = 2, m =
(m1,m2) and m′ = (m2). Gm′ = X ′

uni. In this case, we take G ′λ′ as the Gθ2-orbit in

X ′
uni corresponding to λ

′ = λ(2). Thus Gλ is defined, and Gλ is a smooth irreducible
H-stable subvariety of Gm,uni.

As in the exotic case (see (8.4.2)), one can compute the dimension of Gλ by
making use of (8.8.1). We have

dim Gλ = n2 − n− 2n(λ) +

r−1∑

i=1

(r − i)|λ(i)|. (8.11.1)

Recall the definition of F̃λ and F̃0
λ (in the enhanced case) in 6.18. The following

lemma can be proved in a similar way as Lemma 8.5. Note that dim F̃λ = dimGλ
by Proposition 5.4 and Proposition 6.20, together with (8.11.1). We use Proposi-
tion 6.20 instead of Proposition 6.7.

Lemma 8.12. Assume that Gλ is of enhanced type. A similar statement as in

Lemma 8.5 holds also for Gλ, by replacing Xλ by X ′
λ.

We can now obtain a refinement of Theorem 7.12 in the enhanced case. The
proof is similar to the proof of Theorem 8.7. Note that Thorem 8.13 (ii) is obtained
by Li [Li, Thm. 3.2.6] by a different method.

Theorem 8.13. Assume that Xm,uni is of enhanced type.
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(i) Let Lρ be as in Theorem 7.12. Assume that ρ = ρλ ∈ (W\
m)∧ for λ ∈ P(m).

Then we have

Lρ ' IC(Xλ, Q̄l)[dimXλ].

(ii) (Springer correspondence for W \
m)

(π
(m)
1 )!Q̄l[d

′
m] '

⊕

λ∈P(m)

ρλ ⊗ IC(Xλ, Q̄l)[dimXλ].

8.14. Assume that Xm is of exotic type or of enhanced type, under the

setting in 8.1. For each z ∈ Xm, we consider the (small) Springer fibre B
(m)
z =

(π(m))−1(z). In the exotic case, we also consider the Springer fibre Bz = π−1(z)

(see 6.21). We have B
(m)
z ⊂ Bz. The cohomology group H i(B

(m)
z , Q̄l) has a

structure of W\
m-module. In turn, H i(Bz, Q̄l) has a structure of Wn,r-module.

Put dλ = (dimXm,uni − dimXλ)/2 for λ ∈ P̃(m) in the exotic case, and for
λ ∈ P(m) in the enhanced case. Explicitly, we have

dλ=

{
(mr−1 − k)+n(λ)+n(λ(r−1)+λ(r)) : exotic case, λ∈P(m(k)),

n(λ) : enhanced case, λ∈P(m).
(8.14.1)

As shown in the example in 5.17, dimB
(m)
z is not constant for z ∈ Xλ. We

show the following lemma.

Lemma 8.15. Assume that Xm is of exotic type or of enhanced type.

(i) For any z ∈ Xλ, dimB
(m)
z ≥ dλ. The set z ∈ Xλ such that dimB

(m)
z = dλ

forms an open dense subset of Xλ.

(ii) For any z ∈ Xλ, H
2dλ(B

(m)
z , Q̄l) contains an irreducible W\

m-module ρλ.

Proof. First we show (ii). Assume that Xm is of exotic type. For any z ∈ Xm,uni,
Theorem 8.7(ii) implies that

H i(B(m)
z , Q̄l) '

⊕

µ∈P̃(m)

ρµ ⊗H
i−d′

m
+dimXµ

z (IC(Xµ, Q̄l)) (8.15.1)

as W\
m-modules. Assume that z ∈ Xλ, and put i = 2dλ. Since H0

z(IC(Xλ, Q̄l)) =

Q̄l, H
2dλ(B

(m)
z , Q̄l) contains ρλ. This proves (ii). The enhanced case is proved in

a similar way by using Theorem 8.13 (ii).

(ii) implies, in particular, dimB
(m)
z ≥ dλ. Put d = dim(π(m))−1(Xλ)−dimXλ.

Let X(d) be as in 6.21. Then X(d) ∩Xλ is open dense in Xλ. Hence dimXλ ≤
dimX(d). By Lemma 6.22 (iii), we have

dimB(m)
z ≤ 1

2 (dimXm,uni − dimX(d)) ≤ 1
2 (dimXm,uni − dimXλ) = dλ

for any z ∈ Xλ ∩X(d). Hence dimB
(m)
z = dλ and d = dλ. This proves (i). �

We show the following result. In the enhanced case, a similar result was proved
in [Li, Cor. 3.2.9] for the Borel–Moore homology.
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Proposition 8.16. Assume that Xm is of exotic type or of enhanced type. Take

z ∈ Xλ such that dimB
(m)
z = dλ.

(i) H2dλ(B
(m)
z , Q̄l) ' ρλ as W\

m-modules.

(ii) Assume that Xm is of exotic type. Then dimBz = dλ, and H
2dλ(Bz, Q̄l) '

V (λ) as Wn,r-modules.

Proof. We prove (i) by induction on r. Assume that r = 2. In the exotic case, (i)
holds by [SS1, Rems. 5.5 (ii)]. A similar method also works for the enhanced case,
since the number ofH-orbits in Xuni is finite. Assume that r ≥ 3, and that (i) holds
for r−1. We consider the diagram as in (8.1.1) restricted to the unipotent varieties
as discussed in 8.4. Put λ = (λ(1),λ′) as in 8.4. By (8.14.1), we have dλ = dλ′ +
dλ(1) , where dλ′ is defined similarly to dλ, and dλ(1) = (dimG1,uni − dimOλ(1) )/2.

Take z ∈ Xλ such that dimB
(m)
z = dλ. By Lemma 8.5 and Lemma 8.12, ζ1 gives an

isomorphism ζ−1
1 (Xλ)→ Xλ. Hence there exists a unique z∗ ∈ ζ

−1
1 (Xλ) such that

ζ1(z∗) = z. Then by using the diagram (8.1.1), one can find (x1, z
′) ∈ Oλ(1) ×X ′

λ′

and z′∗ = (ζ ′1)
−1(z′) such that σ−1

1 (x1, z
′
∗) = q−1

1 (z∗). Here z′ ∈ X ′
λ′ satisfies the

condition that dimB
(m′)
z′ = dλ′ . By using the isomorphism (ζ ′1)

−1(X ′
λ′) ∼−→X ′

λ′ , we
have

H2dλ′ (B
(m′)
z′ , Q̄l) ' (R2dλ′ (π′

1)!Q̄l)z′ ' (R2dλ′ (ϕ′
1)!Q̄l)z′∗ ,

where ϕ′
1 is the restriction of ϕ′. Similarly we have the isomorphismH2dλ(B

(m)
z , Q̄l)

' (R2dλ(ϕ1)!Q̄l)z∗ by using ζ−1(Xλ) ∼−→Xλ. Let ξ be an element contained in
σ−1
1 (x1, z

′
∗) = q−1

1 (z∗). By (8.1.1), we have

(R2d
λ(1) (π1

1)!Q̄l)x1 ⊗ (R2dλ′ (ϕ′
1)!Q̄l)z′∗ ' (R2dλ(ϕ̃1)!Q̄l)ξ ' (R2dλ(ϕ1)!Q̄l)z∗ ,

where π1
1 , ϕ̃1 are restrictions of π1, ϕ̃, respectively. By induction, we know that

dimH2dλ′ (B
(m′)
z′ , Q̄l) = dim ρλ′ . It is well known that dimH2d

λ(1) (Bx1 , Q̄l) =

dim ρλ(1) . Hence dimH2dλ(B
(m)
z , Q̄l) = dim ρλ(1)+dim ρλ′ = dim ρλ. On the other

hand, by Lemma 8.15, H2dλ(B
(m)
z , Q̄l) contains ρλ. Thus H2dλ(B

(m)
z , Q̄l) ' ρλ.

(i) is proved.
Next we show (ii). Assume that Xm is of exotic type and z ∈ Xλ such that

dimB
(m)
z = dλ. We consider the decomposition (8.15.1) in the case where z ∈ Xλ.

By Theorem 8.7 (iii), we have a similar decomposition:

H i(Bz , Q̄l) '
⊕

µ∈P̃(m)

V (µ)⊗H
i−d′

m
+dimXµ

z (IC(Xµ, Q̄l)). (8.16.1)

(8.15.1) shows that H
i−d′

m
+dimXµ

z (IC(Xµ, Q̄l)) = 0 for any choice of i > 2dλ and

of µ ∈ P̃(m). This implies, by (8.16.1), that H i(Bz, Q̄l) = 0 for any i > 2dλ.

Since B
(m)
z ⊂ Bz, we conclude that dimBz = dimB

(m)
z = dλ. Now assume that

i = 2dλ. By (i) and (8.15.1), we see that H
2dλ−d

′
m
+dimXµ

z (IC(Xµ, Q̄l)) = 0 for
any µ 6= λ. Hence by (8.16.1), H2dλ(Bz, Q̄l) ' V (λ). The proposition is proved.
�
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