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Abstract. Let Qd
n be the vector space of forms of degree d ≥ 3 on C

n, with n ≥ 2. The
object of our study is the map Φ, introduced in earlier articles by M. Eastwood and the
first two authors, that assigns every nondegenerate form in Qd

n the so-called associated

form, which is an element of Q
n(d−2)∗
n . We focus on two cases: those of binary quartics

(n = 2, d = 4) and ternary cubics (n = 3, d = 3). In these situations the map Φ
induces a rational equivariant involution on the projective space P(Qd

n), which is in fact
the only nontrivial rational equivariant involution on P(Qd

n). In particular, there exists
an equivariant involution on the space of elliptic curves with nonvanishing j-invariant. In
the present paper, we give a simple interpretation of this involution in terms of projective
duality. Furthermore, we express it via classical contravariants.

Introduction

In this paper we continue to explore new ideas in classical invariant theory that
were proposed in the recent article [EI] and further developed in [AI1], [AI2]. Let
Qd

n := Symd(Cn∗) be the vector space of forms of degree d on Cn, where n ≥ 2,
d ≥ 3. Assuming that the discriminant of f ∈ Qd

n does not vanish, define Mf :=
C[z1, . . . , zn]/(fz

1
, . . . , fzn ) to be the Milnor algebra of the isolated hypersurface

singularity at the origin of the zero set of f . Since fz
1
, . . . , fzn have no common

DOI: 10.1007/S00031
∗Supported by the Australian Research Council.
∗∗Supported by the Australian Research Council.
∗∗∗Supported by RFBR grants 14-01-00709-a and 13-01-1247-ofi-m.

Received November 16, 2014. Accepted July 17, 2015.

Corresponding Author: A. V. Isaev, e-mail: alexander.isaev@anu.edu.au.

-015-934 -3 8

Vol. 2 , No. 201 , pp.,1 6 –3 593 618

c©Springer Science+Business Media New York (2015)

Published online 2015.September 26,



J. ALPER, A. V. ISAEV, N. G. KRUZHILIN

zeros away from the origin, the Nullstellensatz implies that the algebraMf is local
(and in fact isomorphic to C[[z1, . . . , zn]]/(fz

1
, . . . , fzn )). Let m be the maximal

ideal of Mf . One can then introduce a form defined on the n-dimensional quotient
m/m2 with values in the one-dimensional socle Soc(Mf ) of Mf as follows:

m/m2 → Soc(Mf ), x 7→ y n(d−2),

where y is any element of m that projects to x ∈ m/m2. There is a canonical
isomorphism m/m2 ∼= Cn∗ and, since the Hessian of f generates the socle, there is
also a canonical isomorphism Soc(Mf ) ∼= C. Hence, one obtains a form f of degree

n(d − 2) on Cn∗ (i.e., an element of Symn(d−2)(Cn) ' Qn(d−2)∗
n ), which is called

the associated form of f (see Section 1 for more details on this definition).
The principal object of our study is the morphism

Φ : Xd
n → Qn(d−2)∗

n , f 7→ f

of affine algebraic varieties, where Xd
n is the variety of forms in Qd

n with nonzero
discriminant. This map has a GLn-equivariance property, and one of the reasons
for our interest in Φ is the following intriguing conjecture proposed in [AI1] (see
also [EI]):

Conjecture 0.1. For every regular GLn-invariant function S on Xd
n there exists

a rational GLn-invariant function R on Qn(d−2)∗
n defined at all points of the set

Φ(Xd
n) ⊂ Qn(d−2)∗

n such that R ◦ Φ = S.

If confirmed, the conjecture would imply that the invariant theory of forms in

Qd
n can be extracted, by way of the morphism Φ, from that of forms in Qn(d−2)∗

n

at least at the level of rational invariant functions, or absolute invariants. In [EI],
Conjecture 0.1 was shown to hold for binary forms (i.e., for n = 2) of degrees
3 ≤ d ≤ 6, and in [AI1] its weaker variant was established for arbitrary n and
d. Furthermore, in [AI2] the conjecture was confirmed for binary forms of any de-
gree. While Conjecture 0.1 is rather interesting from the purely invariant-theoretic
viewpoint, it has an important implication for singularity theory. Namely, as ex-
plained in detail in [AI1], [AI2], if this conjecture is established, it will provide a
solution, in the homogeneous case, to the so-called reconstruction problem, which
is the question of finding a constructive proof of the well-known Mather–Yau the-
orem (see [MY], [Sh]). Settling Conjecture 0.1 is part of our program to solve the
reconstruction problem for quasihomogeneous isolated hypersurface singularities.
This amounts to showing that a certain system of invariants introduced in [EI] is
complete, and Conjecture 0.1 implies completeness in the homogeneous case.

The morphism Φ is rather natural and deserves attention regardless of Con-
jecture 0.1. In fact, this map is interesting even for small values of n and d. In
the present paper, we study Φ in two situations: those of binary quartics (n = 2,
d = 4) and ternary cubics (n = 3, d = 3). These are the only choices of n, d for
which Φ preserves the form’s degree. Curiously, as we will see in Section 2, in each
of the two cases the projectivization Φ of Φ induces an equivariant involution on
the image X

d
n of Xd

n in the projective space P(Qd
n), with one SLn-orbit removed.
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Furthermore, as we show in Theorem 2.1, a nontrivial rational equivariant involu-
tion on P(Q4

2) and P(Q3
3) is unique. In particular, Φ yields a unique equivariant

involution on the space of elliptic curves with nonvanishing j-invariant, which ap-
pears to have never been mentioned in the extensive literature on elliptic curves.
Early observations in this direction go back to article [Ea] published some 10 years
ago, but so far the involution has not been understood in more explicit terms.

The main goals of the present paper are twofold. Firstly, for binary quartics
and ternary cubics we describe the equivariant involution via projective duality.
Namely, in Section 2 we prove that for f ∈ Xd

n the element Φ(f) ∈ P(Qd∗
n ) =

P(Qd
n)

∗ is identified with the tangent space of the GLn-orbit of f̂ at f̂ , where f̂
is any lift of f to Xd

n (see Theorem 2.2). Secondly, in Section 3 we consider the
contravariant defined by Φ and relate it to classical contravariants due to Cayley
and Sylvester, which gives yet another interpretation of the equivariant involution
induced by Φ. This section is written in the spirit of mid-19th century invariant
theory with focus on explicit formulas and identities.

Acknowledgements. We are grateful to the referees for their thorough reading
of the paper and suggestions that helped improve the manuscript. This work was
initiated during the third author’s visit to the Australian National University, and
significant progress was made during the second author’s stay at the Max Planck
Institute for Mathematics in Bonn in 2014.

1. Preliminaries

Let Qd
n be the vector space of forms of degree d on Cn where n ≥ 2. Its

dimension is given by the well-known formula

dimC Qd
n =

(
d+ n− 1

d

)
. (1)

The standard action of GLn = GLn(C) on Cn induces an action on Qd
n as follows:

(Cf)(z) := f
(
z · C−T

)

for C ∈ GLn, f ∈ Qd
n and z = (z1, . . . , zn) ∈ Cn. Two forms that lie in the same

GLn-orbit are called linearly equivalent. Below we will be mostly concerned with
the induced action of SLn = SLn(C).

To every nonzero f ∈ Qd
n we associate the hypersurface

Vf := {z ∈ C
n | f(z) = 0}

and consider it as a complex space with the structure sheaf induced by f . The
singular set of Vf is then the critical set of f . In particular, if d ≥ 2 the hypersurface
Vf has a singularity at the origin. We are interested in the situation when this
singularity is isolated, or, equivalently, when Vf is smooth away from 0. This occurs
if and only if f is nondegenerate, i.e., ∆(f) 6= 0, where ∆ is the discriminant (see
Chapter 13 in [GKZ]).
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For d ≥ 3 define
Xd

n := {f ∈ Qd
n | ∆(f) 6= 0}.

Observe that GLn acts on the affine variety Xd
n and note that every f ∈ Xd

n is
stable with respect to this action, i.e., the orbit of f is closed in Xd

n and has
dimension n2 (see, e.g., Corollary 5.24 in [Muk]). Note that, as shown in Lemma
5.40 in [Muk], this definition of stability is equivalent to that with respect to the
induced SLn-action on Qd

n as discussed in Section 2 below.
Fix f ∈ Xd

n and consider the Milnor algebra of the singularity of Vf , which is
the complex local algebra

Mf := C[[z1, . . . , zn]]/(f1, . . . , fn),

where C[[z1, . . . , zn]] is the algebra of formal power series in z1, . . . , zn with com-
plex coefficients and fj := ∂f/∂zj, j = 1, . . . , n. Since the singularity of Vf
is isolated, the algebra Mf is Artinian, i.e., dimCMf < ∞ (see Proposition
1.70 in [GLS]). Therefore, f1, . . . , fn is a system of parameters in C[[z1, . . . , zn]].
Since C[[z1, . . . , zn]] is a regular local ring, f1, . . . , fn is a regular sequence in
C[[z1, . . . , zn]]. This yields that Mf is a complete intersection.

It is convenient to utilize another realization of the Milnor algebra. Namely, by
the Nullstellensatz, the algebra C[z1, . . . , zn]/(f1, . . . , fn) is local, and it is easy to
see that it is isomorphic to Mf . Thus, we can write

Mf = C[z1, . . . , zn]/(f1, . . . , fn).

Letm denote the maximal ideal ofMf , which consists of all elements represented by
polynomials in C[z1, . . . , zn] vanishing at the origin. The maximal ideal is nilpotent
and we let ν := max{η ∈ N | mη 6= 0} be the socle degree of Mf .

Since Mf is a complete intersection, by [B] it is a Gorenstein algebra. This
means that the socle of Mf , defined as

Soc(Mf ) := {x ∈ m | xm = 0},

is a one-dimensional vector space over C (see, e.g., Theorem 5.3 in [Hu]). We then
have Soc(Mf ) = mν . Furthermore, Soc(Mf ) is spanned by the element of Mf

represented by the Hessian H(f) of f (see, e.g., Lemma 3.3 in [Sa]). Since H(f) is

a form in Qn(d−2)
n , it follows that ν = n(d− 2) (see [AI1], [AI2] for details). Thus,

the subspace

Wf := Qn(d−2)−(d−1)
n f1 + · · ·+Qn(d−2)−(d−1)

n fn ⊂ Qn(d−2)
n (2)

has codimension 1, with the line spanned by H(f) being complementary to it.
Let e∗1 = z1, . . . , e

∗

n = zn be the basis in Cn∗ dual to the standard basis e1, . . . , en
in Cn and z∗1 , . . . , z

∗

n the coordinates of a vector z∗ ∈ Cn∗ (we slightly abuse no-
tation by writing z∗ = (z∗1 , . . . , z

∗

n)). Denote by ω : Soc(Mf ) → C the linear
isomorphism given by the condition ω(H(f)) = 1 (with H(f) viewed as an el-
ement of Mf ). Define a form f of degree n(d − 2) on Cn∗ (i.e., an element of

Symn(d−2)(Cn)) by the formula

f(z∗) := ω
(
(z∗1z1 + · · ·+ z∗nzn)

n(d−2)
)
,
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where zj is the element of the algebra Mf represented by the coordinate function
zj ∈ C[z1, . . . , zn]. We call f the associated form of f .

The associated form arises from the following map:

m/m2 → Soc(Mf ), x 7→ yn(d−2), (3)

with y ∈ m being any element that projects to x ∈ m/m2. Indeed, f is derived
from this map by identifying the target with C via ω and the source with Cn∗ by
mapping the image of zj in m/m2 to e∗j , j = 1, . . . , n.

To obtain an expanded expression for f , notice that if i1, . . . , in are nonnegative
integers such that i1 + · · ·+ in = n(d− 2), the product zi11 · · · zinn lies in Soc(Mf ),
hence we have

zi11 · · · zinn = µi1,...,in(f)H(f) (4)

for some µi1,...,in(f) ∈ C. In terms of the coefficients µi1,...,in(f) the form f is
written as

f(z∗) =
∑

i1+···+in=n(d−2)

(n(d− 2))!

i1! · · · in!
µi1,...,in(f)z

∗i1
1 · · · z∗inn . (5)

It is not hard to show that each µi1,...,in is a regular function on Xd
n (see, e.g., the

proof of Proposition 3.1 below), therefore

µi1,...,in =
Pi1,...,in

∆pi1,...,in
(6)

for some Pi1,...,in ∈ C[Qd
n] and nonnegative integer pi1,...,in (here and below for

any affine variety X over C we denote by C[X ] its coordinate ring, which coincides
with the ring OX (X) of all regular functions on X). To obtain representation (6),
recall that for any irreducible affine variety X and a regular non-zero function h on
X , any regular function on the affine open subset {x ∈ X | h(x) 6= 0} is the ratio
of a regular function on X and a non-negative power of h (see, e.g., Proposition
1.40 in [GW]).

Next, recall that for any k ≥ 1 the polar pairing between Symk(Cn) and
Symk(Cn∗) is given as follows. Let, as before, e1, . . . , en be the standard basis
in Cn and e∗1 = z1, . . . , e

∗

n = zn the dual basis in Cn∗. Then any p ∈ Symk(Cn)
is a form of degree k in e1, . . . , en, and any q ∈ Symk(Cn∗) is a form of degree
k in e∗1, . . . , e

∗

n, i.e., a form of degree k in the variables z1, . . . , zn. Then the polar
pairing between Symk(Cn) and Symk(Cn∗) is defined by

Symk(Cn)× Symk(Cn∗) → C,

(p(e1, . . . , en), q(z1, . . . , zn)) 7→ p (∂/∂z1, . . . , ∂/∂zn) (q).
(7)

This pairing is nondegenerate and therefore yields a canonical identification be-
tween the spaces Symk(Cn) and (Symk(Cn∗))∗ = Qk∗

n (see, e.g., Section 1.1.1 in
[D] for details).
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Using this identification, we can regard the associated form as an element of

Qn(d−2)∗
n and consider the morphism

Φ: Xd
n → Qn(d−2)∗

n , f 7→ f

of affine varieties. This map is rather natural; in particular, Proposition 2.1 in
[AI1] implies an equivariance property for Φ. Namely, introducing an action of

GLn on the dual space Qn(d−2)∗
n in the usual way as

(Cg)(h) := g(C−1h), g ∈ Qn(d−2)∗
n , h ∈ Qn(d−2)

n , C ∈ GLn,

we have:

Proposition 1.1. For every f ∈ Xd
n and C ∈ GLn the following holds:

Φ(Cf) = (detC)2
(
CΦ(f)

)
.

In particular, the morphism Φ is SLn-equivariant.

Remark 1.1. In [Ea], [AI1], [AI2] the associated form was defined as the element

of Qn(d−2)
n = Symn(d−2)(Cn∗) obtained from map (3) by identifying the quotient

m/m2 with Cn rather than Cn∗. Accordingly, the morphism Φ was introduced as a

map from Xd
n to Qn(d−2)

n . The morphism so defined has the following equivariance
property:

Φ(Cf) = (detC)2
(
C−TΦ(f)

)
, f ∈ Xd

n, C ∈ GLn . (8)

Below it will be sometimes convenient to view associated forms and the morphism
Φ in this way.

The present paper mainly concerns two situations: the case of binary quartics
and that of ternary cubics. In the next section, we will give a geometric description
of the morphism Φ in terms of projective duality and in Section 3 an algebraic
interpretation of Φ in terms of classical contravariants.

2. Duality for binary quartics and ternary cubics

We first recall the definition and certain properties of a good (GIT) quotient.
Given a complex algebraic variety X and a complex algebraic group G acting on
X , a good quotient of X by G is defined to be a pair (Y, π), where Y is a complex
variety and π : X → Y a morphism, satisfying the following conditions:

• π is surjective,
• π is G-invariant,
• π is affine, i.e., the inverse image of an open affine set is an open affine set,
• if W ⊂ X is G-invariant and closed, then π(W ) is closed,
• if W1,W2 are two disjoint G-invariant closed subsets of X , then π(W1) ∩
π(W2) = ∅,

• given an open subset U ⊂ Y , the induced map π∗ : OY (U) → OX(π−1(U))G

is an isomorphism.
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If a good quotient exists, it is unique up to isomorphism, and we write X//G
instead of Y . For x, x′ ∈ X one has π(x) = π(x′) if and only if Gx ∩ Gx′ 6= ∅

(where Gx is the G-orbit of x), and every fiber of π contains exactly one closed
G-orbit (the unique orbit of minimal dimension). If every fiber of π consists of a
single (closed) orbit, the quotient X//G is said to be geometric. Further, if X ′ is a
complex algebraic variety and ϕ : X → X ′ a G-invariant morphism, then there is a
unique morphism τϕ : X//G→ X ′ such that ϕ = τϕ ◦π. Good quotients are known
to exist, in particular, for actions of complex reductive groups on affine varieties
(see Chapter 1, §2 in [Mum]).

Further, let G be a complex reductive group with a linear representation G →
GL(V ) on a complex vector space V and X ⊂ V a G-invariant affine algebraic
variety with the algebraic action of G induced from that on V . A point x ∈ X
is called semistable if the closure of the orbit Gx does not contain 0, polystable
if x 6= 0 and Gx is closed, and stable if x is polystable and dimGx = dimG (or,
equivalently, the stabilizer of x is zero-dimensional). The three loci are denoted
by Xss, Xps, and Xs, respectively. Clearly, X s ⊂ Xps ⊂ Xss.

Next, let Z ⊂ P(V ) be a G-invariant projective algebraic variety with the alge-
braic action of G induced from that on P(V ). Then the semistability, polystability
and stability of a point z ∈ Z are understood as the corresponding concepts for
any point ẑ lying over z in the affine cone Ẑ ⊂ V over Z. We denote the three loci
by Zss, Zps, and Zs, respectively. One has Zs ⊂ Zps ⊂ Zss. The loci Zs and Zss

are open subsets of Z, and the following holds:

Zps = {z ∈ Zss | Gz is closed in Zss},
Zs = {z ∈ Zss | Gz is closed in Zss and dimGz = dimG}.

By Theorem 1.10 in [Mum], the locus Zss admits a good projective quotient
π : Zss → Zss//G, whereas the good quotient of Zs is quasiprojective and is
obtained simply by restricting π to Zs. The restricted quotient is geometric.
More generally, if U is an open subset of Zss, which is π-saturated (that is,
π−1(π(U)) = U), then π(U) is open in Zss//G and π|U : U → π(U) is the good
quotient of U . For elementary introductions to GIT quotients, as well as various
notions of stability, we refer the reader to [Muk] and Chapter 9 in [LR]. In this
paper, we consider good quotients with respect to G = SLn acting on spaces of
forms on Cn, their duals and the corresponding projectivizations.

We will now projectivize the setup of Section 1 and replace the action of GLn

with that of SLn. Consider the projective space P(Qd
n). In what follows we often

write elements of P(Qd
n) as forms, meaning that they are considered up to scale.

The action of SLn on Qd
n induces an SLn-action on P(Qd

n), and for f ∈ P(Qd
n) we

denote its orbit SLn f by O(f). Further, define Xd
n ⊂ P(Qd

n) to be the image of
Xd

n under the quotient morphism Qd
n \ {0} → P(Qd

n). As we noted in Section 1,
Xd
n lies in the stable locus P(Qd

n)
s, hence for f ∈ Xd

n the orbit O(f) is closed in

Xd
n and has dimension n2 − 1. Similarly, we projectivize the space Qn(d−2)∗

n and

consider the induced action of SLn on P(Qn(d−2)∗
n ).

The map Φ descends to a morphism

Φ : X
d
n → P(Qn(d−2)∗

n ).
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By Proposition 1.1, the morphism Φ is equivariant:

Φ(Cf) = CΦ(f), f ∈ X
d
n, C ∈ SLn .

Hence, in the case when Φ maps the variety Xd
n into P(Qn(d−2)∗

n )ss, the semistable

locus of P(Qn(d−2)∗
n ), it gives rise to a morphism φ of good GIT quotients for which

the following diagram commutes:

Xd
n

Φ
//

��

P(Qn(d−2)∗
n )ss

��

X
d
n// SLn

φ
// P(Qn(d−2)∗

n )ss// SLn .

In the diagram, the quotient on the left is affine and geometric, and the one on the
right is projective. Furthermore, since Xd

n is an SLn-invariant Zariski open subset
of the stable locus P(Qd

n)
s, the affine quotient Xd

n → Xd
n// SLn is in fact a restriction

of the projective quotient P(Qd
n)

ss → P(Qd
n)

ss// SLn. Observe that the situation
n = 2, d = 3 is trivial and can be excluded from consideration. Indeed, since
all nondegenerate binary cubics are pairwise linearly equivalent, X3

2 = P(Q3
2)

ss =
P(Q3

2)
s is a single orbit and X3

2// SL2 is a point.
We focus on the morphism Φ in two cases. Indeed, notice that for all pairs

n, d (excluding the trivial situation n = 2, d = 3) one has n(d − 2) ≥ d, and the
equality holds precisely for the following two pairs: n = 2, d = 4 and n = 3, d = 3.
We will explain below that in each of these two cases Φ maps Xd

n into P(Qd∗
n )ss

and induces an equivariant involution on the variety Xd
n with one orbit removed.

Furthermore, we will see that such an involution is unique. For these purposes, in
Subsections 2.1–2.3 it will be convenient to regard associated forms as elements of
Qd

n and Φ as a map from Xd
n to P(Qd

n) (see Remark 1.1 for details).
Let us now describe the maps Φ and φ in each of the two cases. Some of the

facts that follow can be extracted from the articles [Ea], [EI].

2.1. Binary quartics

Let n = 2, d = 4. It is a classical result that every nondegenerate binary quartic
is linearly equivalent to a quartic of the form

qt(z1, z2) := z41 + tz21z
2
2 + z42 , t 6= ±2 (9)

(see pp. 277–279 in [El]). A straightforward calculation yields that the associated
form of qt is

qt(z1, z2) :=
1

72(t2 − 4)
(tz41 − 12z21z

2
2 + tz42). (10)

For t 6= 0,±6 the quartic qt is nondegenerate, and in this case the associated form
of qt is proportional to qt, hence Φ2(qt) = qt. As explained below, the exceptional
quartics q0, q6, q−6, are pairwise linearly equivalent.

It is easy to show that P(Q4
2)

ss is the union of X4
2 (which coincides with P(Q4

2)
s)

and two orbits that consist of strictly semistable forms: O1 := O(z21z
2
2), O2 :=
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O(z21(z
2
1 + z22)), of dimensions 2 and 3, respectively. Notice that O1 is closed in

P(Q4
2)

ss and is contained in the closure of O2. We then observe that Φ maps X4
2

onto P(Q4
2)

ss \ (O2 ∪ O3), where O3 := O(q0) (as we will see shortly, O3 contains
the other exceptional quartics q6, q−6 as well). Also, notice that Φ maps the 3-
dimensional orbit O3 onto the 2-dimensional orbit O1 (thus the stabilizer of q0
is finite while that of Φ(q0) is one-dimensional). In particular, Φ restricts to an
equivariant involutive automorphism of X4

2 \ O3, which for t 6= 0,±6 establishes
a duality between the quartics Cqt and C

−T q−12/t with C ∈ SL2, hence between
the orbits O(qt) and O(q−12/t) (see (8)).

In order to understand the induced map φ of GIT quotients, we note that the
algebra of invariants C[Q4

2]
SL2 is generated by a pair of elements I2, I3 (the latter

invariant is called the catalecticant), where the subscripts indicate their degrees
(see, e.g., pp. 41, 101–102 in [El]). One has

∆ = I32 − 27 I23 , (11)

and for a binary quartic of the form

f(z1, z2) = az41 + 6bz21z
2
2 + cz42

the values of I2 and I3 are computed as

I2(f) = ac+ 3b2, I3(f) = abc− b3. (12)

It then follows that the algebra C[X4
2 ]

GL2 ' C[X4
2]

SL2 is generated by the invariant

J :=
I32
∆
. (13)

Therefore, the quotientX4
2//GL2'X4

2// SL2 is the affine space C, and P(Q4
2)

ss// SL2

can be identified with P1, where both O1 and O2 project to the point at infinity
in P1.

Next, from formulas (9), (11), (12), (13) we calculate

J(qt) =
(t2 + 12)3

108(t2 − 4)2
for all t 6= ±2. (14)

Clearly, (14) yields

J(q0) = J(q6) = J(q−6) = 1, (15)

which implies that q0, q6, q−6 are indeed pairwise linearly equivalent as claimed
above and that the orbit O3 is described by the condition J = 1.

Using (10), (14) one obtains

J(qt) =
J(qt)

J(qt)− 1
for all t 6= 0,±6. (16)

ASSOCIATED FORMS OF BINARY QUARTICS AND TERNARY CUBICS 601



J. ALPER, A. V. ISAEV, N. G. KRUZHILIN

Furthermore, the calculations leading to (16) also yield the following identities for
any f ∈ X4

2 :

I2(f) =
I2(f)

2833∆(f)
, I3(f) = − 1

21236∆(f)
, ∆(f) =

I3(f)
2

22436∆(f)3
. (17)

Hence, we observe: I3(f) 6= 0 (that is, the catalecticant of the associated form
does not vanish), I2(f) = 0 if and only if I2(f) = 0, and ∆(f) = 0 if and only if
I3(f) = 0.

Formula (16) shows that the map φ extends to the automorphism φ̃ of P1 given
by

ζ 7→ ζ

ζ − 1
.

Clearly, one has φ̃ 2 = id, that is, φ̃ is an involution. It preserves P1\{1,∞}, which
corresponds to the duality between the orbits O(qt) and O(q−12/t) for t 6= 0,±6

noted above. Further, φ̃(1) = ∞, which agrees with (15) and the fact that O3 is
mapped onto O1. We also have φ̃(∞) = 1, but this identity has no interpretation
at the level of orbits. Indeed, Φ cannot be equivariantly extended to an involution
P(Q4

2)
ss → P(Q4

2)
ss, as the fiber of the quotient P(Q4

2)
ss// SL2 over the point at

infinity contains O1, which cannot be mapped onto O3 since dimO1 < dimO3.

2.2. Ternary cubics

Let n = 3, d = 3. Every nondegenerate ternary cubic is linearly equivalent to a
cubic of the form

ct(z1, z2, z3) := z31 + z32 + z33 + tz1z2z3, t3 6= −27 (18)

(see, e.g., Theorem 1.3.2.16 in [Sc]). The associated form of ct is easily found to
be

ct(z1, z2, z3) := − 1

24(t3 + 27)
(tz31 + tz32 + tz33 − 18z1z2z3). (19)

For t 6= 0, t3 6= 216 the cubic ct is nondegenerate, and in this case the associated
form of ct is proportional to ct, hence Φ2(ct) = ct. Below we will see that the
exceptional cubics c0, c6τ , with τ

3 = 1, are pairwise linearly equivalent.
It is well known (see, e.g., Theorem 1.3.2.16 in [Sc]) that P(Q3

3)
ss is the union

of X3
3 (which coincides with P(Q3

3)
s) and the following three orbits that consist

of strictly semistable forms: O1 := O(z1z2z3), O2 := O(z1z2z3 + z33), O3 :=
O(z31 + z21z3 + z22z3) (the cubics lying in O3 are called nodal). The dimensions
of the orbits are 6, 7, and 8, respectively. Observe that O1 is closed in P(Q3

3)
ss

and is contained in the closures of each of O2, O3. We then see that Φ maps
X3
3 onto P(Q3

3)
ss \ (O2 ∪ O3 ∪ O4), where O4 := O(c0) (as explained below, O4

also contains the other exceptional cubics c6τ , with τ3 = 1). Further, note that
the 8-dimensional orbit O4 is mapped by Φ onto the 6-dimensional orbit O1 (thus
the morphism of the stabilizers of c0 and Φ(c0) is an inclusion of a finite group
into a two-dimensional group). Hence, Φ restricts to an equivariant involutive
automorphism of X

3
3 \O4, which for t 6= 0, t3 6= 216 establishes a duality between
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the cubics Cct and C−T c−18/t with C ∈ SL3, therefore between the orbits O(ct)
and O(c−18/t) (see (8)).

To determine the induced map φ of GIT quotients, we recall that the algebra
of invariants C[Q3

3]
SL3 is generated by the two Aronhold invariants I4, I6, where,

as before, the subscripts indicate the degrees. The explicit formulas for these
invariants are quite long, and we refer the reader to pp. 381–389 in [El] for details.
One has

∆ = I26 + 64 I34, (20)

and for a ternary cubic of the form

f(z1, z2, z3) = az31 + bz32 + cz33 + 6dz1z2z3 (21)

the values of I4 and I6 are calculated as

I4(f) = abcd− d4, I6(f) = a2b2c2 − 20abcd3 − 8d6. (22)

It then follows that the algebra C[X3
3 ]

GL3 ' C[X3
3]

SL3 is generated by the invariant

J :=
64 I34
∆

. (23)

Hence, the quotient X3
3//GL3 ' X3

3// SL3 is the affine space C, and P(Q3
3)

ss// SL3

is identified with P1, where O1, O2, O3 project to the point at infinity in P1.
Further, from formulas (18), (20), (22), (23) we find

J(ct) = − t3(t3 − 216)3

2633(t3 + 27)3
for all t with t3 6= −27. (24)

From identity (24) one obtains

J(c0) = J(c6τ ) = 0 for τ3 = 1, (25)

which implies that the orbit O4 is given by the condition J = 0 and that the four
cubics c0, c6τ are indeed pairwise linearly equivalent.

Using (19), (24) we see

J(ct) =
1

J(ct)
for all t 6= 0 with t3 6= 216. (26)

Furthermore, the calculations leading to (26) also yield the following identities for
any f ∈ X3

3 :

I4(f) = − 1

212312∆(f)
, I6(f) = − I6(f)

215318∆(f)2
,

∆(f) = − I4(f)
3

224336∆(f)4
.

(27)

Hence, we obtain: I4(f) 6= 0 (that is, the degree 4 Aronhold invariant of the
associated form does not vanish), I6(f) = 0 if and only if I6(f) = 0, and ∆(f) = 0
if and only if I4(f) = 0.
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Formula (26) shows that the map φ extends to the involutive automorphism φ̃
of P1 given by

ζ 7→ 1

ζ
.

This involution preserves P1 \ {0,∞}, which agrees with the duality between the
orbits O(ct) and O(c−18/t) for t 6= 0, t3 6= 216 established above. Next, φ̃(0) =
∞, which corresponds to (25) and the facts that O4 is mapped onto O1, and
that I4(f) = 0 implies ∆(f) = 0. Also, one has φ̃(∞) = 0, but this identity
cannot be illustrated by a correspondence between orbits. Indeed, Φ cannot be
equivariantly extended to an involution P(Q3

3)
ss → P(Q3

3)
ss as the fiber of the

quotient P(Q3
3)

ss// SL2 over the point at infinity contains O1, which cannot be
mapped onto O4 since dimO1 < dimO4.

Remark 2.1. We note that a cubic proportional to (19) previously appeared in
[Em] (see p. 405 therein) as a Macaulay inverse system for the Milnor algebra
Mc

t
, but it has never been studied systematically. In fact, we now know (see

Corollary 3.3 in [AI1]) that the associated form f of any f ∈ Xd
n is an inverse

system for Mf when regarded as an element of Qn(d−2)
n . This means that the

ideal (f1, . . . , fn) in C[z1, . . . , zn] coincides with Ann(f), where for any polynomial
h ∈ C[z1, . . . , zn] the annihilator Ann(h) of h is defined as

Ann(h) := {p ∈ C[z1, . . . , zn] | p (∂/∂z1, . . . , ∂/∂zn) (h) = 0} .
This result has been instrumental in our recent work on the morphism Φ including
the progress on Conjecture 0.1, and it will be also utilized in the proof of Theorem
2.2 below (see Lemma 2.4). For details on inverse systems we refer the reader to
[Ma], [Em], [I] (the brief survey given in [ER] is also helpful). We also note that,
although the Hessian H(f) is utilized in the definition of the associated form f of f ,
it is in fact very different from f . Indeed, as shown in [DBP], for binary quartics
and ternary cubics, H(f) does not coincide with f up to projective equivalence
except in a few cases (see Propositions 4.1 and 5.1 therein). We will elaborate on
this difference in Subsection 3.3.

If we regard X3
3 as the space of elliptic curves, the invariant J of ternary cubics

translates into the j-invariant, and one obtains an equivariant involution on the
locus of elliptic curves with nonvanishing j-invariant. It is well known that every
elliptic curve can be realized as a double cover of P1 branched over four points
(see, e.g., Exercise 22.37 and Proposition 22.38 in [Ha]). Therefore, it is not sur-
prising that the cases of binary quartics and ternary cubics considered above have
many similarities. What is perhaps surprising though is that the map Φ for binary
quartics and ternary cubics yields different involutions on P

1. It is natural to ask
whether there exist any other involutions of P1 that arise from rational equivari-
ant involutions on P(Q4

2) and P(Q3
3) as above. The result of the next subsection

provides a complete answer to this question.

2.3. Uniqueness of rational equivariant involutions

In this subsection we classify rational SLn-invariant involutions

ι : P(Qd
n) 99K P(Qd

n)
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for n = 2, d = 4 and n = 3, d = 3. Here the equivariance is understood either as

ι(Cf) = Cι(f), (28)

or as
ι(Cf) = C−T ι(f), (29)

where C ∈ SLn and f lies in the domain of ι. The identity morphism and the
map Φ are respective examples of such involutions (recall that in this subsection
we regard Φ as a map from Xd

n to P(Qd
n) – see Remark 1.1).

The result below asserts that there are no other possibilities.

Theorem 2.1. For each pair n = 2, d = 4 and n = 3, d = 3 the following holds:

(i) the identity morphism is the unique rational involution of P(Qd
n) satisfying

(28);
(ii) the morphism Φ is the unique rational involution of P(Qd

n) satisfying (29).

Proof. Let n = 2, d = 4. Recall from Subsection 2.1 that every generic binary
quartic is linearly equivalent to some quartic qt = z41 + tz21z

2
2 + z42 , with t ∈ C, t 6=

±2, and that Φ(qt) = q−12/t if t 6= 0. Therefore, in order to establish the theorem,
it suffices to prove that in (i) (resp. (ii)) one has ι(qt) = qt (resp. ι(qt) = q−12/t)
for a generic t.

We first obtain part (i). For a generic t one can write

ι(qt) = α4,0z
4
1 + 4α3,1z

3
1z2 + 6α2,2z

2
1z

2
2 + 4α1,3z1z

3
2 + α0,4z

4
2 ,

where αi,j ∈ C[t]. Consider C =

(
0 i
i 0

)
. Since Cqt = qt for all t and ι is

equivariant, it follows that α4,0 = α0,4. Similarly, by considering C =

(
−i 0
0 i

)
,

we see α3,1 = α1,3 = 0. Observe now that α4,0 does not vanish identically since
otherwise ι would be a constant map. Therefore, one can write

ι(qt) = z41 + αz21z
2
2 + z42 ,

with α := 6α2,2/α4,0 ∈ C(t).
As ι is birational, the assignment t 7→ α(t) extends to an automorphism of P1,

i.e., we have

α(t) =
at+ b

ct+ d
(30)

for some

(
a b
c d

)
∈ GL2. Consider C =

(√
i 0

0 −i
√
i

)
. By observing that Cqt =

q−t for all t and using the equivariance of ι, we obtain α(−t) = −α(t). This in
turn implies that either b = c = 0 or a = d = 0. If b = c = 0, the fact that ι is an
involution leads to a = ±d. Suppose that a = −d hence ι(qt) = q−t. For

C =
1√
2

(
1 1

−1 1

)
(31)
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one computes
Cqt = q(−2t+12)/(t+2). (32)

The equivariance of ι then leads to a contradiction. If a = d = 0, then utilizing
matrix (31) with relation (32) once again, we conclude b/c = −12.

Thus, we have obtained:

either ι(qt) = qt or ι(qt) = q−12/t for a generic t ∈ C. (33)

Since the second relation in (33) contradicts the equivariance property (28), it
follows that ι is the identity morphism, and part (i) is established.

Notice that an argument analogous to that for part (i) yields relations (33) for
part (ii) as well. Since the first relation in (33) contradicts equivariance property
(29), we obtain ι = Φ. This concludes the proof for n = 2, d = 4.

Suppose now that n = 3, d = 3. As stated in Subsection 2.2, every generic
ternary cubic is linearly equivalent to some cubic ct = z31 + z32 + z33 + tz1z2z3, with
t ∈ C, t3 6= −27, and one has Φ(ct) = c−18/t if t 6= 0. Thus, to prove the theorem,
it suffices to show that in (i) (resp. (ii)) one has ι(ct) = ct (resp. ι(ct) = c−18/t)
for a generic t.

We first obtain part (i). For a generic t one can write

ι(ct) = α3,0,0z
3
1 + 3α2,1,0z

2
1z2 + 3α1,2,0z1z

2
2 + α0,3,0z

3
2+

3α2,0,1z
2
1z3 + 6α1,1,1z1z2z3 + 3α0,2,1z

2
2z3+

3α1,0,2z1z
2
3 + 3α0,1,2z2z

2
3+

α0,0,3z
3
3 ,

where αi,j,k ∈ C[t]. Consider

C =




0 −1 0
−1 0 0
0 0 −1


 .

Since Cct = ct for all t and ι is equivariant, we immediately see α3,0,0 = α0,3,0. A
similar choice of C yields α0,3,0 = α0,0,3, thus we have α3,0,0 = α0,3,0 = α0,0,3.

Next, let τ 6= 1 satisfy τ3 = 1 and consider

C =




τ 0 0
0 τ2 0
0 0 1


 .

Then again Cct = ct for all t, and the equivariance of ι implies

α2,1,0 = α1,2,0 = α2,0,1 = α0,2,1 = α1,0,2 = α0,1,2 = 0.

It now follows that α3,0,0 does not vanish identically, thus one can write

ι(ct) = z31 + z32 + z33 + αz1z2z3, (34)
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with α := 6α1,1,1/α3,0,0 ∈ C(t) having the form (30).
Further, setting

C =




τ1/3 0 0

0 τ1/3 0
0 0 1/τ2/3


 (35)

and observing that Cct = cτt for all t, we obtain using the equivariance of ι that
α(τt) = τα(t). This implies b = c = 0, hence a = ±d, with the case a = d yielding
that ι is the identity. Assume that a = −d, thus ι(ct) = c−t. If

C =
1

(3(τ2 − τ))1/3




1 1 1
τ τ2 1
τ2 τ 1


 , (36)

then
Cct = c(−3t+18)/(t+3), (37)

and the equivariance of ι leads to a contradiction. This concludes the proof for
part (i).

We will now obtain part (ii). The same method leads to formula (34) with α
as in (30). Using matrix (35) and the equivariance of ι, we see that in this case
α(τt) = τ2α(t), which yields a = d = 0. Utilizing matrix (36) and appealing to
relation (37), we conclude b/c = −18. Therefore, ι(qt) = q−18/t for a generic t ∈ C.
Hence ι = Φ, which completes the proof of the theorem. �

2.4. Projective duality

In this subsection we will see that for n = 2, d = 4 and n = 3, d = 3 the map
Φ, and therefore the orbit duality induced by Φ, can be understood via projective
duality. We will now briefly recall this classical construction. For details the reader
is referred to the comprehensive survey [T].

Let W be a complex vector space and P(W ) its projectivization. The dual
projective space P(W )∗ is the algebraic variety of all hyperplanes in W , which is
canonically isomorphic to P(W ∗). Let X be an irreducible subvariety of P(W )
and Xreg the set of its regular points. Consider the affine cone X̂ ⊂ W over X .

For every x ∈ Xreg choose a point x̂ ∈ X̂ lying over x. The cone X̂ is regular at

x̂, and we consider the tangent space Tx̂(X̂) to X̂ at x̂. Identifying Tx̂(X̂) with
a subspace of W , we now let Hx be the collection of all hyperplanes in W that
contain Tx̂(X̂) (clearly, this collection is independent of the choice of x̂ over x).
Regarding every hyperplane in Hx as a point in P(W )∗, we obtain the subset

H :=
⋃

x∈Xreg

Hx ⊂ P(W )∗.

The Zariski closure X∗ of H in P(W )∗ is then called the variety dual to X . Canon-
ically identifying P(W )∗∗ with P(W ), one has the reflexivity property X∗∗ = X .
Furthermore, if X is a hypersurface, there exists a natural map from Xreg to X∗,
as follows:

ϕ : Xreg → X∗, x 7→ Tx̂(X̂) ⊂W,
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where x̂ ∈ X̂ is related to x ∈ Xreg as above.
Observe now that in each of the two cases n = 2, d = 4 and n = 3, d = 3, for

f ∈ Xd
n the orbit O(f) is a smooth irreducible hypersurface in Xd

n, thus its closure
O(f) in P(Qd

n) is an irreducible (possibly singular) hypersurface. Therefore, one
can consider the map

ϕf : O(f)reg → P(Qd
n)

∗ (38)

constructed as above. Also, recall from the beginning of Section 2 that for n = 2,
d = 4 or n = 3, d = 3, the morphism Φ descends to the morphism

Φ : X
d
n → P(Qd∗

n ).

We are now ready to state the main result of the paper, which relates these two
maps.

Theorem 2.2. Let n = 2, d = 4 or n = 3, d = 3. For every f ∈ Xd
n the

restrictions Φ
∣∣
O(f)

and ϕf

∣∣
O(f)

coincide upon the canonical identification P(Qd∗
n ) =

P(Qd
n)

∗.

This theorem provides a clear explanation of the duality for orbits of binary
quartics and ternary cubics that we observed earlier in this section. Indeed, let

first n = 2, d = 4. Then the theorem yields that for t 6= 0,±6 one has O(qt)
∗ '

O(q−12/t) and O
∗

3 ' O1. By reflexivity it then follows that O
∗

1 ' O3. However,

since O1 is not a hypersurface, there is no natural map from O1 to its dual. This
fact corresponds to the impossibility of extending Φ equivariantly to O1.

Analogously, for n = 3, d = 3, the theorem implies that for t 6= 0 and t3 6= 216

we have O(ct)
∗ ' O(c−18/t) and O

∗

4 ' O1. By reflexivity one then has O
∗

1 ' O4.

Again, since O1 is not a hypersurface, there is no natural map from O1 to its dual.
This agrees with the nonexistence of an equivariant extension of Φ to O1.

2.5. Proof of Theorem 2.2

First, let n ≥ 2 and d ≥ 3 be arbitrary. For a complex vector space W , let
Gr(k,W ) denote the Grassmannian of k-dimensional subspaces of W . Notice that
Gr(dimCW − 1,W ) coincides with P(W )∗. It follows, for instance, from Corollary
3.3 in [St] (see also the proof of Lemma 2.3 below), that for any f ∈ Xd

n the
dimension of the subspace of Qd

n spanned by the forms zifj , with i, j = 1, . . . , n,
is equal to n2.

We then define two maps from X
d
n to Gr(n2,Qd

n) as

ψ1 : f 7→ Q1
nf1 + · · ·+Q1

nfn ⊂ Qd
n (39)

and
ψ2 : f 7→ Tf (GLn f), (40)

where in the right-hand sides the element f of Xd
n is regarded as a form in Xd

n and
Tf (GLn f) as a subspace of Qd

n. We will now show that these two maps are in fact
equal.

Lemma 2.3. One has ψ1 = ψ2.

608



Proof. For f ∈ Xd
n, let σf : GLn → Qd

n be the morphism defined by σf (C) = Cf .
Then the tangent space Tf (GLn f) is the image of the differential dσf (e) of σf at
the identity element e ∈ GLn.

Let {Eij} be the standard basis in the Lie algebra gln of GLn, where Eij is
the matrix whose (i, j)th element is 1 and all other elements are zero. Then, if we
regard dσf (e) as a linear transformation from gln to Qd

n, it is easy to compute that
it maps Eij to −zjfi. This shows that ψ1 and ψ2 indeed coincide as required. �

Next, consider the map

Ψ : X
d
n → P(Qn(d−2)

n )∗, f 7→Wf , (41)

where Wf is the hyperplane in Qn(d−2)
n defined in (2). We will now relate the

morphism Φ to this map.

Lemma 2.4. The morphisms

Φ : X
d
n → P(Qn(d−2)∗

n ) and Ψ : X
d
n → P(Qn(d−2)

n )∗

coincide upon the canonical identification P(Qn(d−2)∗
n ) = P(Qn(d−2)

n )∗.

Proof. By Corollary 3.3 of [AI1], considering f ∈ Xd
n as a form in Xd

n up to scale

and Φ(f) as an element of Qn(d−2)
n (see Remark 1.1), we have that Φ(f) is a

Macaulay inverse system for the Milnor algebra Mf (see Remark 2.1). Therefore,

Wf = Ann(Φ(f)) ∩ Qn(d−2)
n . Hence, utilizing the definition of the polar pairing

(see (7)), we obtain

Ψ(f) =Wf =
{
p ∈ Qn(d−2)

n | p (∂/∂z1, . . . , ∂/∂zn) (Φ(f)) = 0
}

=
{
p ∈ Qn(d−2)

n | Φ(f) (∂/∂z1, . . . , ∂/∂zn) (p) = 0
}
= Φ(f),

which shows Φ = Ψ. �

Proof of Theorem 2.2. In the cases n = 2, d = 4 and n = 3, d = 3 we have
Gr(n2,Qd

n) = P(Qd
n)

∗, and Lemma 2.3 shows that the two morphisms ψ1, ψ2 :
Xd
n → P(Qd

n)
∗ defined in (39) and (40) are equal. Further, ψ1 = Ψ by (39) and

(41), hence Lemma 2.4 implies ψ1 = Φ, which yields ψ2 = Φ. Moreover, for every
f ∈ Xd

n the map ϕf

∣∣
O(f)

from (38) is identical to ψ2

∣∣
O(f)

. It then follows that

Φ
∣∣
O(f)

and ϕf

∣∣
O(f)

coincide for all f ∈ Xd
n, which establishes the theorem. �

3. The contravariants defined by Φ

In this section, we give an algebraic description of the map Φ for binary quartics
and ternary cubics, which utilizes classical covariants and contravariants. Such
descriptions can be produced in other situations as well, and, in order to further
illustrate our method, we also discuss the case of binary quintics.
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3.1. Covariants and contravariants

Recall that a polynomial Γ ∈ C[Qd
n × Cn] is said to be a covariant of forms in Qd

n

if for all f ∈ Qd
n, z ∈ Cn and C ∈ GLn the following holds:

Γ(f, z) = (detC)k Γ(Cf, z · CT ),

where k is an integer called the weight of Γ. Every homogeneous component of
Γ with respect to z is automatically homogeneous with respect to f and is also a
covariant. Such covariants are called homogeneous and their degrees with respect
to f and z are called the degree and order, respectively.

We may consider a homogenous covariant Γ of degree K and order D as the
SLn-equivariant morphism

Qd
n → QD

n , f 7→ (z 7→ Γ(f, z))

of degreeK with respect to f , which maps a form f ∈ Qd
n to the form in QD

n whose
evaluation at z is Γ(f, z). We will abuse notation by using the same symbol to
denote both an element in C[Qd

n×Cn] and the corresponding morphism Qd
n → QD

n .
Also, we write Γ(f) for the form z 7→ Γ(f, z).

Covariants independent of z (i.e., of order 0) are called relative invariants. For
example, the pairs of functions I2, I3 and I4, I6 introduced in Section 2 are relative
invariants of binary quartics and ternary cubics, respectively. Also, note that the
discriminant ∆ is a relative invariant of forms in Qd

n of weight d(d − 1)n−1 (see
Chapter 13 in [GKZ]).

Analogously, a polynomial Λ ∈ C[Qd
n × Cn∗] is said to be a contravariant of

forms in Qd
n if for all f ∈ Qd

n, z
∗ = (z∗1 , . . . , z

∗

n) ∈ Cn∗ and C ∈ GLn one has

Λ(f, z∗) = (detC)k Λ(Cf, z∗ · C−1),

where k is a (nonnegative) integer called the weight of Λ. Again, every contravari-
ant splits into a sum of homogeneous ones, and for a homogeneous contravariant
its degrees with respect to f and z∗ are called the degree and class, respectively.

We may consider a homogenous contravariant Λ of degree K and class D as the
SLn-equivariant morphism

Qd
n → SymD(Cn), f 7→ (z∗ 7→ Λ(f, z∗))

of degree K with respect to f . Upon the standard identification SymD(Cn) =
(SymD(Cn∗))∗ = QD∗

n induced by the polar pairing, this morphism can be regarded
as a map from Qd

n to QD∗

n . As above, we will abuse notation by using the same
symbol to denote both an element in C[Qd

n×Cn∗] and the corresponding morphisms
Qd

n → SymD(Cn), Qd
n → QD∗

n . Also, we write Λ(f) for both the element of
SymD(Cn) and the element of QD∗

n arising from f and Λ.
If n = 2, every homogeneous contravariant Λ yields a homogenous covariant Λ̂

via the formula

Λ̂(f)(z1, z2) := Λ(f)(−z2, z1), (z1, z2) ∈ C
2, (42)
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where (−z2, z1) is viewed as a point in C2∗. Analogously, every homogeneous
covariant Γ gives rise to a homogenous contravariant Γ̃ via the formula

Γ̃(f)(z∗1 , z
∗

2) := Γ(f)(z∗2 ,−z∗1), (z∗2 ,−z∗1) ∈ C
2∗, (43)

where (z∗2 ,−z∗1) is regarded as a point in C2. Under these correspondences the
degree and order of a covariant translate into the degree and class of the corre-
sponding contravariant and vice versa.

3.2. The contravariant arising from Φ

Recall that the morphism Φ is a map

Φ: Xd
n → Qn(d−2)∗

n

defined on the locus Xd
n of nondegenerate forms. The coefficients µi1,...,in that

determine Φ (see (4), (5)) are elements of the coordinate ring C[Xd
n] = C[Qd

n]∆.
Let pi1,...,in be the minimal integer such that ∆pi1,...,in ·µi1 ,...,in is a regular function
on Qd

n (see formula (6)) and

p = max{pi1,...,in | i1 + · · ·+ in = n(d− 2)}.

Then the product ∆pΦ defines the following morphism

∆pΦ: Qd
n → Qn(d−2)∗

n , f 7→ ∆(f)pΦ(f),

which is a contravariant of weight pd(d− 1)n−1 − 2 by Proposition 1.1. Since the
class of ∆pΦ is n(d − 2), it follows that its degree is equal to np(d − 1)n−1 − n.
Notice that this last formula implies p > 0 as the degree of a contravariant is
always nonnegative.

In this subsection, we show that for binary and ternary forms one has p = 1. It

then follows that for n = 2, 3 the product ∆Φ: Qd
n → Qn(d−2)∗

n is a contravariant
of degree n(d − 1)n−1 − n. In Subsections 3.3–3.5, we study this contravariant
explicitly for binary quartics, binary quintics and ternary cubics in terms of well-
known classical contravariants.

Proposition 3.1. If n = 2, 3 and d ≥ 3, then p = 1.

Proof. First, let n be arbitrary. Recall that for f ∈ Xd
n the subspaceWf introduced

in (2) has codimension 1, and the line spanned by the Hessian H(f) is comple-

mentary to it in the vector space Qn(d−2)
n . Let K := dimC Qn(d−2)−(d−1)

n and

m1, . . . , mK be the standard monomial basis in Qn(d−2)−(d−1)
n . Then Wf is spanned

by the products fi mj , i = 1, . . . , n, j = 1, . . . ,K. Choose a basis ek(f) := fi
k
mj

k

in Wf , with k = 1, . . . , N −1, where N := dimC Qn(d−2)
n . We note that the indices

ik, jk can be assumed to be independent of the form f if it varies in some Zariski
open subset U of Xd

n, and from now on we assume that this is the case. Then for

every g ∈ Qn(d−2)
n there are αk(f, g) ∈ C, with k = 1, . . . , N − 1, and γ(f, g) ∈ C

such that

α1(f, g)e1(f) + · · ·+ αN−1(f, g)eN−1(f) + γ(f, g)H(f) = g. (44)
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Notice that γ(f, zi11 . . . zinn ) = µi1,...,in(f) (see (4)).
We now expand both sides of (44) with respect to the standard monomial basis

of Qn(d−2)
n . As a result, we obtain a linear system of N equations with the N

unknowns αk(f, g), γ(f, g), k = 1, . . . , N − 1. Let A(f) be the matrix of this
system and D(f) := detA(f). Clearly, the entries of the first N−1 columns of the
matrix are linear functions of the coefficients of the form f , whereas the entries
of the Nth column are homogeneous polynomials of degree n of these coefficients.
Therefore, D is a homogeneous polynomial of degree δ1 := N + n − 1 on Qd

n.
Furthermore, since for every f and g the system has a solution, D does not vanish
on U , and the solution can be found by applying Cramer’s rule. It then follows
that the degree of the minimal denominator of µi1,...,in does not exceed δ1.

At the same time, ∆pi1,...,in · µi1,...,in is a regular function on Qd
n (recall that

pi1,...,in is the minimal integer with this property). It is well known that ∆ is
an irreducible homogeneous polynomial of degree δ2 := n(d − 1)n−1 on Qd

n (the
irreducibility of ∆ can be observed by considering an incidence variety as on p. 169
in [Muk]). Therefore, the degree of the minimal denominator of µi1,...,in is pi1,...,in ·
δ2.

We will now show that for n = 2 and n = 3 one has

δ1 < 2δ2. (45)

Indeed, using (1), we obtain

δ1 =
(n(d− 1)− 1)!

(n− 1)!(n(d− 2))!
+ n− 1,

which yields

δ1 =





2d− 2, if n = 2,

9d2 − 27d+ 24

2
, if n = 3.

Then for n = 2 we see δ1 = δ2, and after some calculations it follows that for n = 3
inequality (45) holds. This implies pi1,...,in ≤ 1, and the proof is complete. �

Remark 3.1. For n = 2 in the above proof one has 2K = N − 1, hence D(f) does
not vanish for all f ∈ Xd

2 . In other words,

{f ∈ Qd
2 | D(f) = 0} ⊂ {f ∈ Qd

2 | ∆(f) = 0}.

Furthermore, in this case δ1 = δ2 = 2d− 2. It then follows that D and ∆ coincide
up to a scalar factor. Thus, an interesting byproduct of the proof of Proposition
3.1 is the fact that for any binary form f the discriminant of f can be computed
as the determinant of A(f) up to scale.

Remark 3.2. It is not hard to see that inequality (45) also holds for n = 4 and
d ≤ 6, with n = 4, d = 7 being the first case when it fails. In fact, arguing as in
the proof of Proposition 3.1, one can derive a certain estimate in terms of n and d
on the power of ∆ that can occur in the minimal denominator of µi1,...,in .
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3.3. Binary quartics

Let n = 2, d = 4. In this case ∆Φ is a contravariant of weight 10, degree 4, and
class 4. We have the following identity of covariants of weight 6 (see (42)):

∆̂Φ =
1

2733
I2H − 1

24
I3id, (46)

where H is the Hessian, I2, I3 the invariants of degrees 2, 3, respectively, defined in
Subsection 2.1, and id : f 7→ f the identity covariant. To verify (46), it is sufficient
to check it for the quartics qt introduced in (9). For these quartics the validity of
(46) is a consequence of formulas (10)–(12).

Observe that formula (46) is not a result of mere guesswork; it follows naturally
from Proposition 3.1 and an explicit description of the algebra of covariants of
binary quartics. Indeed, this algebra is generated by I2, I3, the Hessian H (which
has degree 2 and order 4), the identity covariant id (which has degree 1 and order
4), and one more covariant of degree 3 and order 6 (see pp. 180–181 in [El]).

Therefore ∆̂Φ, being a covariant of degree 4 and order 4 by Proposition 3.1, is
necessarily a linear combination of I2H and I3id. The coefficients in the linear
combination can be determined by computing ∆Φ, I2H , and I3id for particular
nondegenerate quartics of simple form.

Formula (46) yields an expression for the morphism Φ, hence Φ, via I2, I3, and
H . Namely, for f ∈ X4

2 we obtain

Φ(f) =
1

2733
I2(f)H(f)(−z∗2 , z∗1)−

1

24
I3(f)f(−z∗2 , z∗1), (47)

where the right-hand side is viewed as an element of P(Q4∗
2 ). One might hope that

formula (47) provides an extension of Φ beyond X4
2. However, for f = z21z

2
2 the

right-hand side of (47) vanishes, which agrees with the fact, explained in Subsection
2.1, that Φ does not have a natural continuation to the orbit O1 = O(z21z

2
2).

In the remainder of this subsection we think of Φ as a map from X4
2 to Q4

2,
hence of ∆Φ as a self-map of Q4

2 (see Remark 1.1). From formulas (17) we then
see

I2 ◦ (∆Φ) =
∆I2
2833

, I3 ◦ (∆Φ) = − ∆2

21236
. (48)

Furthermore, one can analogously compute

(∆Φ) ◦ (∆Φ) = − I3∆
2

22036
id, (49)

which verifies the fact, observed in Subsection 2.1, that the rational map Φ is an
involution.

We will now derive explicit formulas for the Hessian of the associated form of
a binary quartic f and for the associated form of the Hessian of f . In effect, we
calculate the compositions H ◦ (∆Φ) and (∆Φ)◦H . These formulas are interesting
in their own right as they provide a better understanding of associated forms and
their relation to classical covariants. In particular, they emphasize the difference
between H(f) and the associated form of f noted in Remark 2.1.
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By substituting (46) into (49) while appealing to formulas (48), we obtain the
identity

I2H ◦ (∆Φ) = −∆

[
I3 ĩd

32
+

∆Φ

2

]
,

where the operation ˜ is defined as in (43). Applying (46) again, we establish the
relation

H ◦ (∆Φ) = −∆H̃

2833
, (50)

which for every f ∈ X4
2 leads to the following expression for the Hessian of the

associated form f of f :

H(f)(z) = −H(f)(−z2, z1)
2833∆(f)

.

Further, by composing each side of formula (46) with H and using the identities

I2 ◦H = 2633I22 , I3 ◦H = 21036I23 − 2933I32 ,

H ◦H = 21036I3id− 2633I2H,

we obtain the relation

(∆Φ) ◦H = 2936I22 I3 ĩd− 2636I23 H̃, (51)

which for f ∈ Q4
2 with H(f) ∈ X4

2 yields an expression of the associated form of
H(f) via classical covariants.

Above we calculated the compositions H ◦ (∆Φ) and (∆Φ) ◦ H in (50), (51)
from formulas (46), (48), (49). On the other hand, identities (50), (51) can be also
derived analogously to the relations in (17), and one can then obtain (49) from
(46), (48), (50).

3.4. Binary quintics

Descriptions of the map Φ in terms of standard covariants can be also obtained
for binary forms of certain degrees higher than 4, but the computations are more
involved. Here we briefly sketch our calculations for the case of binary quintics,
i.e., for n = 2, d = 5. By Proposition 3.1, in this situation ∆Φ is a contravariant
of weight 18, degree 6, and class 6.

A generic binary quintic f ∈ Q5
2 is linearly equivalent to a quintic given in the

Sylvester canonical form

f = aX5 + bY 5 + cZ5, (52)

where X , Y , Z are linear forms satisfying X+Y +Z = 0 (see, e.g., p. 272 in [El]).
The algebra of invariants of binary quintics is generated by invariants of degrees
4, 8, 12, 18 with a relation in degree 36, and the algebra of covariants is generated
by 23 fundamental covariants (see [Sy]), which we will write as Ci,j where i is the
degree and j is the order.

614



For f ∈ Q5
2 given in the form (52) the covariants relevant to our calculations

are computed as follows:

C4,0(f) = a2b2 + b2c2 + a2c2 − 2abc(a+ b+ c),

C8,0(f) = a2b2c2(ab+ ac+ bc),

C5,1(f) = abc(bcX + acY + abZ),

C2,2(f) = abXY + acXZ + bcY Z,

C3,3(f) = abcXY Z,

C4,4(f) = abc(aX4 + bY 4 + cZ4),

C1,5(f) = f = aX5 + bY 5 + cZ5,

C2,6(f) =
H(f)

400
= abX3Y 3 + bcY 3Z3 + acX3Z3.

For instance, the discriminant can be written as

∆ = C2
4,0 − 128C8,0.

The vector space of covariants of degree 6 and order 6 has dimension 4 and is
generated by the products

C4,0C2,6, C1,5C5,1, C
2
3,3, C

3
2,2, C2,2C4,4

satisfying the relation

C4,0C2,6 − C1,5C5,1 + 9C2
3,3 − C3

2,2 + 2C2,2C4,4 = 0.

One can then explicitly compute

∆̂Φ =
1

20
C4,0C2,6 −

3

50
C1,5C5,1 +

27

10
C2

3,3 −
1

10
C3

2,2.

3.5. Ternary cubics

Let n = 3, d = 3. By Proposition 3.1, in this case ∆Φ is a contravariant of weight
10, degree 9, and class 3. Recall that the algebra of invariants of ternary cubics
is freely generated by the invariants I4, I6 defined in Subsection 2.2, and the ring
of contravariants is generated over the algebra of invariants by the Pippian P of
degree 3 and class 3, the Quippian Q of degree 5 and class 3, the Clebsch transfer
of the discriminant of degree 4 and class 6, and the Hermite contravariant of degree
12 and class 9 (see [C], [MT]). For a ternary cubic of the form (21), the Pippian
and Quippian are calculated as follows:

P(f)(z∗) = −d(bcz∗31 + acz∗32 + abz∗33 )− (abc− 4d3)z∗1z
∗

2z
∗

3 ,

Q(f)(z∗) = (abc− 10d3)(bcz∗31 + acz∗32 + abz∗33 )− 6d2(5abc+ 4d3)z∗1z
∗

2z
∗

3 .

Since any contravariant of degree 9 and class 3 is a linear combination of I6P and
I4Q, it is easy to compute

∆Φ = − 1

36
I6P− 1

27
I4Q. (53)
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The above expression can be verified directly by applying it to the cubics ct defined
in (18) and using formulas (19), (20), (22).

Identity (53) provides an expression for Φ, therefore Φ, in terms of I4, I6, P,
and Q. Namely, on X3

3 we have

Φ = − 1

36
I6P− 1

27
I4Q, (54)

where the right-hand side is regarded as a morphism X3
3 → P(Q3∗

3 ). One might
think that formula (54) yields a continuation of Φ beyond X3

3. However, for f =
z1z2z3 the right-hand side of (54) is zero, which illustrates the obstruction to
extending the morphism Φ to the orbit O1 = O(z1z2z3) discussed in Subsection
2.2.

Thinking of Φ as a map from X3
3 to Q3

3, hence of ∆Φ as a self-map of Q3
3,

analogously to formula (49) for binary quartics we obtain

(∆Φ) ◦ (∆Φ) = − I24∆
6

221330
id, (55)

which agrees with the fact, established in Subsection 2.2, that the rational map Φ

is an involution. Formula (55) can be verified either analogously to the relations
in (27) or by using (53) together with the expressions

I4 ◦ (∆Φ) = − ∆3

212312
, I6 ◦ (∆Φ) = − I6∆

4

215318
,

P ◦ (∆Φ) =
H∆2

210312
, Q ◦ (∆Φ) = −H I6∆

3

215317
− I24∆

3id

29315
.

(56)

The first two equations in (56) follow from (27), and the remaining two can be
derived in a similar way.
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