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Abstract. In this paper, a notion of cyclotomic (or level k) walled Brauer algebras
Bk,r,t is introduced for arbitrary positive integer k. It is proven that Bk,r,t is free over

a commutative ring with rank kr+t(r + t)! if and only if it is admissible. Using super
Schur–Weyl duality between general linear Lie superalgebras glm|n and B2,r,t, we give

a classification of highest weight vectors of glm|n-modules Mrt
pq , the tensor products of

Kac-modules with mixed tensor products of the natural module and its dual. This en-
ables us to establish an explicit relationship between glm|n-Kac-modules and right cell
(or standard) B2,r,t-modules over C. Further, we find an explicit relationship between
indecomposable tilting glm|n-modules appearing in Mrt

pq , and principal indecomposable
right B2,r,t-modules via the notion of Kleshchev bipartitions. As an application, decom-
position numbers of B2,r,t arising from super Schur–Weyl duality are determined.

Introduction

Motivated by Brundan–Stroppel’s work on higher super Schur–Weyl duality in
[6], we introduced affine walled Brauer algebras Baff

r,t in [23] so as to establish
higher super Schur–Weyl duality on the tensor product M rt

pq of a Kac-module with
a mixed tensor product of the natural module and its dual for general linear Lie
superalgebra glm|n over C under the assumption r + t ≤ min{m,n} (after we
finished [23], Professor Stroppel informed us that Sartori defined affine walled al-
gebras via affine walled Brauer category, independently in [24]). One of purposes of
this paper is to generalize super Schur–Weyl duality to the case r+ t > min{m,n}.
For this aim, we need to establish a bijective map from a level two walled Brauer
algebra B2,r,t appearing in [23] to a level two degenerate Hecke algebra H2,r+t.
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This can be done by showing that the dimension of B2,r,t is 2r+t(r + t)! over C.
We consider this problem in a general setting by introducing a cyclotomic (or level
k) walled Brauer algebra Bk,r,t for arbitrary k ∈ Z>0. By employing a totally
new method, which is independent of seminormal forms of Bk,r,t, we prove that
Bk,r,t is free over a commutative ring R with rank kr+t(r + t)! if and only if it
is admissible in the sense of Definition 2. It is expected that Bk,r,t can be used
to study the problem on a classification of finite dimensional simple Baff

r,t -modules
over an algebraically closed field. Details will be given elsewhere.

The establishment of the higher super Schur–Weyl duality [23] enables us to
use the representation theory of B2,r,t to classify highest weight vectors of M rt

pq

(at this point, we would like to mention that purely on the Lie superalgebra side,
it seems to be hard to construct highest weight vectors of a given module, which
is an interesting problem in its own right). On the other hand, a classification
of highest weight vectors of M rt

pq also enables us to relate the category of finite
dimensional glm|n-modules with that of B2,r,t, which in turn gives us an efficient
way to calculate decomposition numbers of B2,r,t (cf. [22] for quantum walled
Brauer algebras). This is the main motivation of this paper. We explain some
details below.

It is proven in [23] that EndU(glm|n)
(Mrt

pq)
op ∼= B2,r,t if r + t ≤ min{m,n}.

Since there is a bijection between the dominant weights of M rt
pq and the poset

Λ2,r,t in (33), and since B2,r,t is a weakly cellular algebra over Λ2,r,t in the sense
of [12], it is very natural to ask the following problem: whether a C-space of glm|n-

highest weight vectors of M rt
pq with a fixed highest weight is isomorphic to a cell

(or standard) module of B2,r,t.

We give an affirmative answer to the problem. In sharp contrast to the Lie
algebra case, due to the existence of the parity of glm|n (see, e.g., [4], [25]), the
known weakly cellular basis of B2,r,t in [23] cannot be directly used to establish
a relationship between glm|n-highest weight vectors of M

rt
pq and right cell modules

of B2,r,t. One has to find new cellular bases of level two Hecke algebra H2,r

which are different from those in [3]. These new cellular bases of H2,r, which
relate both trivial and signed representations of symmetric groups, are used to
construct a new weakly cellular basis of B2,r,t. Motivated by explicit descriptions
of bases of right cell modules for B2,r,t, we construct and classify glm|n-highest

weight vectors of M rt
pq . This leads to a B2,r,t-module isomorphism between each

C-space of glm|n-highest weight vectors of M rt
pq with a fixed highest weight and

the corresponding cell module of B2,r,t. Based on the above, we are able to
construct a suitable exact functor sending glm|n-Kac-modules to right cell modules
of B2,r,t. This functor also sends an indecomposable tilting module appearing in
Mrt

pq to a principal indecomposable right B2,r,t-module indexed by a pair of so-
called Kleshchev bipartitions in the sense of (36). It gives us an efficient way to
calculate decomposition numbers of B2,r,t via Brundan–Stroppel’s result [6] on
the multiplicity of a Kac-module in an indecomposable tilting module appearing
in Mrt

pq.

Finally, we would like to say that our method can be used to deal with level k
walled Brauer algebras with k > 2. In this case, if we consider parabolic subalge-
bras ⊕k

i=1glmi
of gln with

∑k
i=1 mi = n and k > 2 (for k = 2, see [24]), the level
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k-walled Brauer algebras with some special parameters will appear. This gives rise
to certain relationships between the category of modules for level k-walled Brauer
algebras and the parabolic category O(gln). We will use the representation theory
of level k-walled Brauer algebras (see Remark 2) to classify highest weight vectors
of certain tensor modules and hence to use the value at q = 1 of certain parabolic
inverse Kazhdan–Lusztig polynomials, namely, the multiplicities of simple modules
in parabolic Verma modules, to compute the decomposition matrices of such level
k walled Brauer algebras. Details will appear in the sequel.

We organize the paper as follows. In section 1, after recalling the definition of
Baff

r,t over a commutative ring R, we introduce cyclotomic walled Brauer algebras

Bk,r,t := Baff
r,t/I for arbitrary k ∈ Z>0, where I is the two-sided ideal of Baff

r,t

generated by two cyclotomic polynomials f (x1) and g(x1) of degree k, which satisfy
(6)–(8). When Baff

r,t is admissible in the sense of Definition 2, we describe explicitly
an R-basis of I . This enables us to prove that Bk,r,t is free over R with rank
kr+t(r+t)! if and only if it is admissible. In section 2, we construct cellular bases of
H2,r and use them to construct a weakly cellular basis of B2,r,t. In section 3, higher
super Schur–Weyl dualities in [23] are generalized to the case r+t > min{m,n}. In
sections 4–5, we classify highest weight vectors of M r0

pq and Mrt
pq. Based on this, we

establish an explicit relationship between indecomposable tilting (respectively Kac)
modules for glm|n and principal indecomposable (respectively cell) right B2,r,t-
modules via a suitable exact functor. This gives us an efficient way to calculate
decomposition numbers of B2,r,t arising from the super Schur–Weyl duality in [23].

1. Affine walled Brauer algebras and their cyclotomic quotients

Throughout, we assume that R is a commutative ring containing Ω = {ωa | a ∈ N}
and identity 1. In this section, we introduce a level k walled Brauer algebra Bk,r,t

and prove that Bk,r,t is free over R with rank kr+t(r + t)! if and only if Bk,r,t

is admissible in the sense of Definition 2. First, we briefly recall the definition of
walled Brauer algebras.

Fix r, t ∈ Z>0. A walled (r, t)-Brauer diagram (or simply, a walled Brauer

diagram) is a diagram with (r+t) vertices on top and bottom rows, and vertices
on both rows are labeled from left to right by r, . . . , 2, 1, 1, 2, . . . , t, such that every
i∈{r, . . . , 2, 1} (respectively, i∈ {1, 2, . . . , t}) on each row is connected to a unique
j (respectively, j) on the same row or a unique j (respectively, j) on the other row.
Thus there are four types of pairs [i, j], [i, j], [i, j] and [i, j]. The pairs [i, j] and
[i, j] are vertical edges, and [i, j] and [i, j] are horizontal edges.

The product of two walled Brauer diagrams D1 and D2 can be defined via
concatenation. Putting D1 above D2 and connecting each vertex on the bottom
row of D1 to the corresponding vertex on the top row of D2 yields a diagram
D1 ◦D2, called the concatenation of D1 and D2. Removing all circles of D1 ◦D2

yields a unique walled Brauer diagram, denoted D3. Let n be the number of circles
appearing in D1◦D2. Then the product D1D2 is defined to be ωn

0D3, where ω0 is a
fixed element in R. The walled Brauer algebra [19], [28], [21] Br,t := Br,t(ω0) with
defining parameter ω0 is the associative R-algebra spanned by all walled Brauer
diagrams with product defined in this way.

Let Sr (respectively St) be the symmetric group in r (respectively t) letters
r, . . . , 2, 1 (respectively 1, 2, . . . , t). It is known that Br,t contains two subalgebras
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which are isomorphic to the group algebras of Sr and St, respectively. More
explicitly, the walled Brauer diagram si whose edges are of forms [k, k] and [k, k]
except two vertical edges [i, i + 1] and [i + 1, i] can be identified with the basic
transposition (i, i+1) ∈ Sr, which switches i and i+1 and fixes others. Similarly,
there is a walled Brauer diagram sj corresponding to (j, j + 1) ∈ St. Let e1 be
the walled Brauer diagram whose edges are of forms [k, k] and [k, k] except two
horizontal edges [1, 1] on the top and bottom rows. Then Br,t is the R-algebra
[21] generated by e1, si, sj for 1 ≤ i ≤ r − 1, 1 ≤ j ≤ t− 1 such that si’s, sj ’s are
distinguished generators of Sr ×St and

e21 = ω0e1, e1s1e1 = e1 = e1s1e1, sie1 = e1si, sje1 = e1sj (i, j 6= 1),

e1s1s1e1s1 = e1s1s1e1s1, s1e1s1s1e1 = s1e1s1s1e1.
(1)

Let H aff
n be the degenerate affine Hecke algebra [11]. As a free R-module, it

is the tensor product R[y1, y2, . . . , yn] ⊗ RSn of a polynomial algebra with the
group algebra of Sn. The multiplication is defined so that R[y1, y2, . . . , yn] ≡
R[y1, y2, . . . , yn] ⊗ 1 and RSn ≡ 1 ⊗ RSn are subalgebras and siyj = yjsi if
j 6= i, i+ 1 and siyi = yi+1si − 1, 1 ≤ i ≤ n− 1.

Recall that R contains 1 and Ω = {ωa ∈ R | a ∈ N}. The affine walled

Brauer algebra Baff
r,t (Ω) (which is B̂r,t in [23, §4]) with respect to the defining

parameters ωa’s have been defined via generators and 26 defining relations [23,
Def. 2.7]. It follows from [23, Thm. 4.15] that Baff

r,t (Ω) can be also defined in a
simpler way as follows: it is an associative R-algebra generated by e1, x1, x1, si, sj
for 1 ≤ i ≤ r− 1, 1 ≤ j ≤ t− 1, such that e1, si’s, sj ’s are generators of Br,t with
defining parameter ω0, and as a free R-module,

B
aff
r,t (Ω) = R[xr]⊗ Br,t ⊗R[xt], (2)

the tensor product of the walled Brauer algebra Br,t with two polynomial algebras

R[xr] := R[x1, x2, . . . , xr], and R[xt] := R[x1, x2, . . . , xt].

The multiplication of Baff
r,t (Ω) is defined such that R[xr] ⊗ 1 ⊗ 1, 1 ⊗ 1 ⊗ R[xr],

1 ⊗ Br,t ⊗ 1, R[xr] ⊗ RSr ⊗ 1 and 1 ⊗ RSt ⊗ R[xr] are subalgebras isomorphic
to R[xr], R[xr], Br,t, H aff

r , and H aff
t respectively, and (for simplicity, without

confusion we identify elements xi⊗1⊗1, 1⊗ si⊗1, 1⊗ ei⊗1, 1⊗ si⊗1, 1⊗1⊗xi
in (2) with xi, si, ei, si, xi respectively)

e1(x1 + x1)=(x1 + x1)e1=0, s1e1s1x1=x1s1e1s1, s1e1s1x1=x1s1e1s1, (3)

six1 = x1si, six1 = x1si, x1(e1 + x1) = (e1 + x1)x1, (4)

e1x
k
1e1 = ωke1, e1x

k
1e1 = ωke1 ∀k ∈ Z

≥0, (5)

where ωa’s are determined by [23, Cor. 4.3]. If ωa’s do not satisfy [23, Cor. 4.3],
and if R is a field, then e1 = 0 and Baff

r,t (Ω) turns out to be H aff
r ⊗ H aff

t .

We remark that the isomorphism R[xr]⊗RSr ⊗ 1 ∼= H aff
r sends 1 ⊗ si ⊗ 1

(respectively x1 ⊗ 1⊗ 1) to si (respectively −y1), and the isomorphism 1⊗RSt ⊗
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R[xr] ∼= H aff
t sends 1⊗ sj ⊗ 1 (respectively 1⊗ 1⊗ x1) to sj (respectively −y1).

So, xi+1 = sixisi − si and xj+1 = sjxjsj − sj and yi+1 = siyisi + si if all of them
make sense.

For the simplification of notation, we denote Baff
r,t (Ω) by Baff

r,t . Fix u1, u2, . . . ,

uk ∈ R for some k ∈ Z>0. Let f (x1) ∈ Baff
r,t be such that

f (x1) =
k∏

i=1

(x1 − ui). (6)

By [23, Lem. 4.2] (or using (3)–(4)), there is a monic polynomial g(x1) ∈ R[x1]
with degree k such that

e1f (x1) = (−1)ke1g(x1). (7)

If R is an algebraically closed field, then there are u1, u2, . . . , uk ∈ R such that

g(x1) =
k∏

i=1

(x1 − ui). (8)

Definition 1. Let R be a commutative ring containing 1, Ω = {ωa ∈ R | a ∈ N},
and ui, ui, 1 ≤ i ≤ k. The cyclotomic (or level k) walled Brauer algebra Bk,r,t is
the quotient algebra Baff

r,t/I , where I is the two-sided ideal of Baff
r,t generated by

f (x1) and g(x1) satisfying (6)–(8).

If k = 1, then Bk,r,t is Br,t with defining parameter ω0. For some special
ui, ui, i = 1, 2, B2,r,t is the level two walled Brauer algebras arising from super
Schur–Weyl duality in [23].

Lemma 1. Let f(x1) be given in (6). Write f(x1) = xk
1 +

∑k
i=1 aix

k−i
1 . Then e1

is an R-torsion element of Bk,r,t unless

ω` = −(a1ω`−1 + · · · akω`−k) for all ` ≥ k. (9)

Proof. Let b` = ω` + a1ω`−1 + · · ·+ akω`−k ∈ R. By (5), b`e1 = e1f (x1)x
`−k
1 e1 in

Baff
r,t and b`e1 = 0 in Bk,r,t. Thus, e1 is an R-torsion element if b` 6= 0 for some

` ≥ k. �

Definition 2. The algebras Baff
r,t and Bk,r,t are called admissible if (9) holds.

Lemma 2. Assume f(x1), g(x1) ∈ Baff
r,t satisfying (6)–(8) . If Baff

r,t is admissible,

then

(i) e1f(x1)x
a
1e1 = 0 for all a ∈ N;

(ii) e1g(x1)x
a
1e1 = 0 for all a ∈ N.

Proof. (i) is trivial since Baff
r,t is admissible. It is proven in [23] that there is an

R-linear anti-involution σ on Baff
r,t , which fixes all generators of Baff

r,t . Applying σ
on [23, Lem. 4.2] yields

xk
1e1 =

k∑
i=0

ak,ix
i
1e1, for some ak,i ∈ R.

So, (ii) follows from (7) and (i), immediately. �
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Denote si,j = sisi+1 · · · sj−1 if i < j, and 1 if i = j, and si−1si−2 · · · sj if i > j.
Denote si,j ∈ St similarly. Let ei,j be the walled Brauer diagram such that each
vertical edge of ei,j is of form [k, k] or [k, k] and the horizontal edges on the top
and bottom rows of ei,j are [i, j]. Then

ei,j = sj,1si,1e1s1,is1,j for i, j with 1 ≤ i ≤ r and 1 ≤ j ≤ t. (10)

For each nonnegative integer f ≤ min{r, t}, let

ef = e1e2 · · · ef for f > 0 and e0 = 1, where ei = ei,i. (11)

Set
D

f
r,t = {sf,if sf,jf · · · s1,i1s1,j1 | 1≤ i1< · · · <if ≤ r, k≤ jk}. (12)

Definition 3. For α = (α1, . . . , αr) ∈ Nr and β = (β1, . . . , βt) ∈ Nt, let xα =∏r
i=1 x

αi

i , xβ =
∏t

j=1 x
βj

j . Let M be a subset of Baff
r,t given by

M=
min{m,n}⋃

f=0

{xαc−1efwdxβ |(α, β)∈N
r × N

t, c, d∈D
f
r,t, w∈Sr−f ×St−f}. (13)

Elements of M are called regular monomials of Baff
r,t .

Theorem 3 ([23, Thm. 4.15]). The affine walled Brauer algebra Baff
r,t is free over

R with M as its R-basis.

We consider Baff
r,t as a filtrated R-algebra as follows. Let

degsi = degsj = dege1 = 0 and degxk = degx` = 1

for all possible i, j, k, `’s. Let (Baff
r,t)

(k) be the R-submodule spanned by regular

monomials with degrees less than or equal to k for k ∈ Z
≥0. Then we have the

following filtration

B
aff
r,t ⊃ · · · ⊃ (Baff

r,t)
(1) ⊃ (Baff

r,t)
(0) ⊃ (Baff

r,t)
(−1) = 0. (14)

Let gr(Baff
r,t) =

⊕
i≥0(B

aff
r,t)

[i], where (Baff
r,t)

[i]=(Baff
r,t)

(i)/(Baff
r,t)

(i−1). Then gr(Baff
r,t)

is an associated Z-graded algebra. We will use the same symbols to denote elements
in gr(Baff

r,t).

Lemma 4. Let x′
i = si−1x

′
i−1si−1, and x′

j = sj−1xj−1sj−1 for i, j ∈ Z≥2 with

i ≤ r and j ≤ t, where x′
1 = x1, and x′

1 = x1.

(i) xi = x′
i −Li, where Li =

∑
1≤j<i(j, i) and (j, i) is the transposition in Sr

which switches j, i and fixes others.

(ii) xi = x′
i −Li, where Li =

∑
1≤j<i(j, i) and (j, i) is the transposition in St

which switches j, i and fixes others.

(iii) Any symmetric polynomial of L1, L2, . . . , Lr (respectively L1, L2, . . . , Lt )
is a central element of RSr (respectively RSt ).
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Proof. (i)–(ii) are trivial and (iii) is a well-known result. �

The elements Li’s (respectively Lj ’s) are known as Jucys–Murphy elements of
RSr (respectively RSt). Note that xixj = xjxi and xixj = xjxi for all possible
i, j. However, x′

i and x′
j (respectively x′

i and x′
j) do not commute each other.

Suppose 0 < f ≤ min{m,n}. Denote

~i = (i1, . . . , if ), ~j = (j1, . . . , jf ), e~i,~j = ei1,j1ei2,j2 · · · eif ,jf , (15)

where i1, i2, . . . , if are distinct numbers in {1, 2, . . . , r}, and j1, j2, . . . , jf are dis-
tinct numbers in {1, 2, . . . , t}. Then eik ,jk ’s commute each other. If f = 0, we set
~i = ~j = ∅ and e~i,~j = 1.

We always assume that Sr (respectively St) acts on the right of {r, . . . , 2, 1}
(respectively {1, 2, . . . , t}).

Lemma 5. Suppose a ∈ Z>0, 1 ≤ i, ` ≤ r and 1 ≤ j ≤ t.

(i) If w ∈ Sr, then wf(x′
i)w

−1 = f(x′
(i)w−1).

(ii) If w ∈ St, then wg(x′
j
)w−1 = g(x′

(j)w−1).

(iii) x′a
i f(x′

`) = f(x′
`)x

′a
i + v, where v ∈

∑
b<a

∑max{i,`}
h,h1=1 f(x′

h)x
′b
h1
RSr.

(iv) x′a
j f(x′

i) = f(x′
i)x

′a
j +v, where v ∈

∑
b1+b2<a, c1+c2≤1 εx

′b1
j ec1ij f(x

′
i)e

c2
ij x

′b2
j for

some non-negative integers b1, b2, c1, c2 and ε = ±1.

Proof. (i)–(ii) are trivial. Since x2 = x′
2 − s1 and x2x1 = x1x2,

x′
2f (x1) = f (x1)(x

′
2 − s1) + f (x′

2)s1. (16)

Applying the conjugate of si,2 on (16) yields (iii) for a = 1 and ` = 1. If ` > 1,
then x′

if (x
′
`) = x′

is`−1f (x
′
`−1)s`−1 = s`−1x

′
(i)s`−1

f (x′
`−1)s`−1. Thus, (iii) follows

from inductive assumption on `− 1 and (i) under the assumption a = 1. The case
a > 1 follows by using the previous result on a = 1, repeatedly. Finally, (iv) can
be checked similarly by induction. We leave the details to the readers. �

Proposition 6. Let JL =
∑t

i=1 Baff
r,t g(x

′
j) and JR =

∑r
i=1 f(x

′
i)B

aff
r,t . We have

(i) JL is a right RSr ⊗ H aff
t -module;

(ii) JR is a left H aff
r ⊗RSt-module;

(iii) I = JL + JR if Baff
r,t is admissible, where I is the two-sided ideal of Baff

r,t

generated by f(x1) and g(x1) satisfying (6)–(8).

Proof. Obviously, both JL and JR are Sr × St-bimodules. By Lemma 5 (iii),
x1JR ⊆ JR. Similarly, JLx1 ⊆ JL. This proves (i)–(ii). In order to prove (iii), it suf-
fices to verify that JL+JR is a two-sided ideal of Baff

r,t . If so, since {f (x1), g (x1)} ⊂
JL + JR, I = JL + JR, proving the result.

We claim that e1(JL + JR) ⊆ JL + JR and (JL + JR)e1 ⊆ JL + JR. If so, by
(4), (x1 + e1)f (x1) = f (x1)(x1 + e1) and hence x1f (x1) ∈ JL + JR. By (i)–(ii),
x1f (x

′
i) = si,1x1f (x1)s1,i ∈ JL+JR, and hence x1(JL+JR) ⊆ JL+JR. Similarly,

(JL + JR)x1 ⊆ JL + JR. Thus the claim implies that JL + JR is a two-sided ideal
of Baff

r,t .
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By symmetry, it remains to prove e1(JL+JR) ⊆ JL+JR. Obviously, it suffices
to verify

e1JR ⊂ JL + JR. (17)

By (3), e1f (x
′
i) = f (x′

i)e1 for i ≥ 2. Let m be a regular monomial of Baff
r,t defined

in (13). Then m = xαe~i,~jwx
β for some w ∈ Sr ×St, (α, β) ∈ Nr × Nt and some

~i,~j. Using induction on |α|, we want to prove

e1f (x1)m ∈ JL + JR. (18)

If so, then e1f (x1)B
aff
r,t ⊂ JL + JR and hence (17) follows.

Case 1 : |α| = 0.
If f = 0, then (18) follows from (i) and (7). Suppose 1 ≤ f ≤ min{r, t}. Since

Baff
r,t is admissible, e1f (x1)m = 0 if ei is a factor of e~i,~j . Assume that e1 is not a

factor of e~i,~j . If there is an l such that il = p 6= 1 and jl = 1, by (ii),

e1f (x1)ep,1 = sp,2e1f (x1)s1e1s1,p = sp,2e1s1f (x
′
2)e1s1,p = sp,2f (x

′
2)e1s1,p ∈ JR.

Suppose jl 6= 1 for all possible l. If there is an l such that eil,jl = e1,p for some
p 6= 1, then we assume i1 = 1 and j1 = p without loss of any generality. In this
case,

e1f (x1)e1,p = (−1)ksp,2e1g(x1)s1e1s1,p

= (−1)ksp,2e1g(x
′
2)s1,p = (−1)ksp,2e1s1,pg(x1).

Since jl 6= 1 for 1 ≤ l ≤ f , by [23, Lem. 4.7 (2)], x1eil,jl = eil,jlx1 and hence

g(x1)
f∏

l=2

eil,jl =
f∏

l=2

eil,jlg(x1) ∈ JL. (19)

Now, (18) follows from (i). Finally, if {il, jl}∩{1} = ∅ for all possible l, then (18)
follows from (i) and the following fact

e1f (x1)
f∏

l=1

eif ,jf =
f∏

l=1

eif ,jf e1f (x1) = (−1)k
f∏

l=1

eif ,jf e1g(x1) ∈ JL.

Case 2 : |α| > 0.

If αi 6= 0 for some 2 ≤ i ≤ r, then e1xi = x′
ie1 − e1

∑i
j=1(j, i) and xif (x1) =

f (x1)xi. Let m
′ be obtained from m by removing xi. Then

e1(1, i)f (x1)m
′ = e1f (x

′
i)(1, i)m

′ = f (x′
i)e1(1, i)m

′ ∈ JR.

Now, (18) follows from inductive assumption on |α|. If αi = 0, 2 ≤ i ≤ r, then
xα = xα1

1 with α1 > 0. Let v = e1f (x1)m. If j` 6= 1, 1 ≤ ` ≤ f , then by (19),
Lemma 5 and inductive assumption,

v = e1f (x1)x
α1
1 e~i,~jwx

β = (−1)ke1g(x1)x
α1
1 e~i,~jwx

β ≡ (−1)ke1x
α1
1 g(x1)e~i,~jwx

β

= (−1)ke1x
α1
1 e~i,~j g(x1)wx

β ∈ JLwx
β ⊂ JL + JR,
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where the “≡ ” is modulo JL+JR. Finally, if j` = 1 for some `, without loss of any
generality, we assume j1 = 1. If i1 = 1, by Lemma 2, v = e1f (x1)x

α1
1 e1e~i′,~j′wx

β =

0, where ~i′ = (i2, . . . , if ) and ~j′ = (j2, . . . , jf ). Now, we assume i1 6= 1. Then

v = e1f (x1)x
α1
1 ei1,1e~i′,~j′wx

β = e1ei1,1f (x1)x
α1
1 e~i′,~j′wx

β

= e1(1, i1)f (x1)x
α1
1 e~i′,~j′wx

β = e1f (x
′
i)(1, i)x

α1
1 e~i′,~j′wx

β,

= f (x′
i)e1(1, i)x

α1
1 e~i′,~j′wx

β ∈ JR.

This completes the proof of (18). �

For (α, β) ∈ Nr × Nt, denote f (x′)α = f (x1)
α1 · · · f (x′

r)
αr and g(x′)β =

g(x1)
β1 · · · g(x′

t)
βt . Let Nr

k = {α ∈ Nr | αi ≤ k − 1, 1 ≤ i ≤ r} and Nt
k =

{α ∈ Nt | αi ≤ k − 1, 1 ≤ i ≤ r}.

Lemma 7. The affine walled Brauer algebra Baff
r,t is a free R-module with N as

its R-basis, where

N =
min{m,n}⋃

f=0

{
f(x′)αxγc−1efwdxδg(x′)β | (α, β) ∈ N

r × N
t,

(γ, δ) ∈ N
r
k × N

t
k, c, d ∈ D

f
r,t, w ∈ Sr−f ×St−f

}
.

(20)

Proof. The result follows from Theorem 3 since the transition matrix between N
and M in (13) is invertible. �

Lemma 8. Let I be the two-sided ideal of Baff
r,t generated by f(x1) and g(x1) sat-

isfying (6)–(8). If Baff
r,t is admissible, then S is an R-basis of I, where

S = {f(x′)αxγc−1efwdxδg(x′)β ∈ N | αi + βj 6= 0 for some i, j}. (21)

Proof. Let M = spanRS. By Lemma 7, f (x1)B
aff
r,t ⊆ M . For any positive integer

l with 1 ≤ l < i, by Lemma 5 (ii),

f (x′
i)f (x

′
l) ∈

i−1∑
j=1

f (x′
j)B

aff
r,t + f (x′

i)D,

such that D ∈ Baff
r,t and the degree of D is strictly less then k. Thus, f (x′

i)B
aff
r,t ⊆

M which follows from inductive assumption on j with 1 ≤ j ≤ i− 1 and inductive
assumption on degrees. This proves JR ⊆ M . One can check JL ⊆ M similarly.
By Proposition 6 (iii), I = M . �

By abuse of notations, a regular monomial m in Definition 3 is also called a
regular monomial of Bk,r,t if 0 ≤ αi, βj ≤ k − 1 for all i, j with 1 ≤ i ≤ r and
1 ≤ j ≤ t. Obviously, the number of all such regular monomials is kr+t(r + t)!.

Theorem 9. The cyclotomic walled Brauer algebra Bk,r,t is free over R with rank

kr+t(r + t)! if and only if Bk,r,t is admissible.
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Proof. Let M be the R-submodule of Bk,r,t spanned by all regular monomials of
Bk,r,t. By induction on degrees, it is routine to check that M is a left Bk,r,t-
module (cf. [23, Prop. 4.12] for Baff

r,t ). Since 1 ∈ M , we have M = Bk,r,t. If Bk,r,t

is not admissible, by Lemma 1, e1 is an R-torsion element. Since e1 ∈ M , either
Bk,r,t is not free or the rank of Bk,r,t is strictly less than kr+t(r + t)!. If Bk,r,t is
admissible, by Lemmas 7–8, the set of all regular monomials of Bk,r,t is R-linear
independent. Thus, Bk,r,t is free over R with rank kr+t(r + t)!. �

2. A weakly cellular basis of B2,r,t

The aim of this section is to construct a weakly cellular basis of B2,r,t in the sense
of [12]. This basis will be used to set up a relationship between glm|n-Kac-modules
and right cell modules of B2,r,t in section 5.

Recall that a composition of r is a sequence of non–negative integers τ =
(τ1, τ2, . . . ) such that |τ | :=

∑
i τi = r. If τi ≥ τi+1 for all possible i’s, then τ is

called a partition. Similarly, a k-partition of r, or simply a multipartition of r, is an
ordered k-tuple λ = (λ(1), λ(2), . . . , λ(k)) of partitions with |λ| :=

∑k
i=1 |λ

(i)| = r.
Let Λ+

k (r) be the set of all k-partitions of r. Let � be the dominant order defined
on Λ+

k (n) in the sense that λ� µ if and only if

`−1∑
h=1

|λ(h)|+
i∑

j=1

λ
(`)
j ≤

`−1∑
k=1

|µ(h)|+
i∑

j=1

µ
(`)
j for ` ≤ k and all possible i, (22)

where |λ(0)| = 0. Then Λ+
k (r) is a poset with � as a partial order on it. In this

paper, we always assume k ∈ {1, 2}.
For each λ ∈ Λ+

1 (r), the Young diagram [λ] is a collection of boxes arranged in
left-justified rows with λi boxes in the ith row of [λ]. A λ-tableau s is obtained by
inserting elements i, 1 ≤ i ≤ r into [λ] without repetition. A λ-tableau s is said to
be standard if the entries in s increase both from left to right in each row and from
top to bottom in each column. Let T s(λ) be the set of all standard λ-tableaux.
Let tλ ∈ T s(λ) be obtained from [λ] by adding 1, 2, . . . , r from left to right along
the rows of [λ]. Let tλ ∈ T s(λ) be obtained from [λ] by adding 1, 2, . . . , r from top
to bottom along the columns of [λ]. For example, if λ = (3, 2), then

tλ = 1 2 3
4 5

, and tλ = 1 3 5
2 4

. (23)

If λ ∈ Λ+
2 (r), then the corresponding Young diagram [λ] is ([λ(1)], [λ(2)]). In this

case, a λ-tableau s = (s1, s2) is obtained by inserting elements i, 1 ≤ i ≤ r into
[λ] without repetition. A λ-tableau s is said to be standard if the entries in si,
1 ≤ i ≤ 2 increase both from left to right in each row and from top to bottom
in each column. Let T s(λ) be the set of all standard λ-tableaux. Let tλ ∈ T s(λ)
be obtained from [λ] by adding 1, 2, . . . , r from left to right along the rows of
[λ(1)] and then [λ(2)]. Let tλ ∈ T s(λ) be obtained from [λ] by adding 1, 2, . . . , r
from top to bottom along the columns of [λ(2)] and then [λ(1)]. For example, if
λ = ((3, 2), (3, 1)) ∈ Λ+

2 (9), then

tλ =

(
1 2 3
4 5

, 6 7 8
9

)
and tλ =

(
5 7 9
6 8

, 1 3 4
2

)
. (24)
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Recall that Sr acts on the right of the set {1, 2, . . . , r} (i.e., the right action).
Then Sr acts on the right of a λ-tableau s by permuting its entries. For example,
if λ = ((3, 2), (3, 1)) ∈ Λ+

2 (9), and w = s1s2, then

tλw =

(
3 1 2
4 5

, 6 7 8
9

)
. (25)

Write d(s) = w for w ∈ Sr if tλw = s. Then d(s) is uniquely determined by s.
Let wλ = d(tλ). The row stabilizer Sλ of tλ for λ ∈ Λ+

k (r) is known as the Young
subgroup of Sr with respect to λ. It is the same as the Young subgroup Sλcomp

with respect to the composition λcomp, which is obtained from λ by concatenation.
For example, if λ = ((3, 2), (3, 1)) then λcomp = (3, 2, 3, 1) with

tλcomp =

1 2 3
4 5
6 7 8
9

.

In this case, it is easy to see that the row stabilizer Sλcomp of tλcomp is the subgroup
of S9 generated by {s1, s2, s4, s6, s7}.

The level two degenerate Hecke H2,r with defining parameters u1 and u2 is
H aff

r /I , where I is the two-sided ideal of H aff
r generated by (y1 − u1)(y1 − u2),

u1, u2 ∈ R. By definition, H2,r is an R-algebra generated by si, 1 ≤ i ≤ r− 1 and
yj , 1 ≤ j ≤ r such that

(i) sisj = sjsi, 1 < |i− j|,
(ii) yiy` = y`yi, 1 ≤ i, ` ≤ r,
(iii) siyi − yi+1si = −1, yisi − siyi+1 = −1, 1 ≤ i ≤ r − 1,
(iv) sjsj+1sj = sj+1sjsj+1, 1 ≤ j ≤ r − 2,
(v) s2i = 1, 1 ≤ i ≤ r − 1,
(vi) (y1 − u1)(y1 − u2) = 0.

Following [3], we define πλ = πa(u2) and π̃λ = πa(u1) for λ ∈ Λ+
2 (r) with |λ(1)| = a,

where for any u ∈ R, π0(u) = 1 and πa(u) =
∏a

i=1(yi − u) if a > 0. Let

wa =
( 1 2 · · · a a+1 a+2 · · · r
r−a+1 r−a+3 · · · r 1 2 · · · r−a

)
. (26)

It is well known that

wasj = s(j)w−1
a

wa if j 6= r − a. (27)

Let Sa,r−a be the Young subgroup with respect to the composition (a, r − a).
Then

RSa,r−awa = waRSr−a,a. (28)

For each composition λ of r, we denote

xλ =
∑

w∈Sλ

w, yλ =
∑

w∈Sλ

(−1)`(w)w, (29)

where `(·) is the length function on Sr. Assume λ ∈ Λ+
2 (r) with |λ(1)| = a. If we

denote µ(i) = (λ(i))′, the conjugate of λ(i) for i = 1, 2, then

waxµ(2)yµ(1) = yµ(1)xµ(2)wa. (30)
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Remark 1. When we write xµ(2)yµ(1) , then xµ(2) (respectively, yµ(1) ) is defined
via symmetric group on r − a letters {1, 2, . . . , r − a} (respectively, on a letters
{r − a + 1, . . . , r}). Similarly, when we write yµ(1)xµ(2) , then yµ(1) (respectively,
xµ(2) ) is defined via symmetric group on a letters {1, 2, . . . , a} (respectively, on
r − a letters {a+ 1, a+ 2, . . . , r}).

Definition 4. For any s, t ∈ T s(λ) with λ ∈ Λ+
2 (r), define

(i) xst = d(s)−1xλd(t), where xλ = πλxλ(1)yλ(2) ,

(ii) yst = d(s)−1yλd(t), where yλ = π̃λxλ(1)yλ(2) ,

(iii) xst = d(s)−1xλd(t), where xλ = πλyλ(1)xλ(2) ,

(iv) yst = d(s)−1yλd(t), where yλ = π̃λyλ(1)xλ(2) .

It is proven in [3] that H2,r is a cellular algebra over R in the sense of [13]. In
this paper, we need the following cellular basis of H2,r so as to construct a new
weakly cellular basis of B2,r,t.

Lemma 10. The set Si, i ∈ {1, 2, 3, 4}, are cellular bases of H2,r in the sense of

[13], where

(i) S1 = {xst | λ ∈ Λ+
2 (r), s, t ∈ T s(λ)},

(ii) S2 = {yst | λ ∈ Λ+
2 (r), s, t ∈ T s(λ)},

(iii) S3 = {xst | λ ∈ Λ+
2 (r), s, t ∈ T s(λ)},

(iv) S4 = {yst | λ ∈ Λ+
2 (r), s, t ∈ T s(λ)}.

Proof. Let S = {xst | s, t ∈ T s(λ), λ ∈ Λ+
2 (r)} and xst = d(s)−1πλxλ(1)xλ(2)d(t).

It is proven in [3] that S is a cellular basis of H2,r. If we use yλ(2) instead of xλ(2)

in xst, we will get xst. However, for any s = (s1, s2) ∈ T s(λ), d(s) can be written
uniquely as d(s1)d(s2)d such that d is a distinguished right coset representative of
Sa × Sr−a in Sr and si ∈ T s(λ(i)), where a = |λ(1)|. So, the transition matrix
between S1 and S is determined by the transition matrix between the cellular basis

{d(s2)
−1xλ(2)d(t2) | λ

(2) ∈ Λ+(r − a), s2, t2 ∈ T s(λ(2))} and

{d(s2)−1yλ(2)d(t2) | λ(2) ∈ Λ+(r − a), s2, t2 ∈ T s(λ(2))}

of RSr−a. Thus, S1 is a basis of H2,r. One can check that S1 is a cellular basis of
H2,r in the sense of [13] by mimicking Dipper–James–Murphy’s arguments in the
proof of Murphy basis for Hecke algebras of type B in [9]. We leave the details to
the readers. Finally, (ii)–(iv) can be verified similarly. �

By Graham–Lehrer’s results on the representation theory of cellular algebras
in [13], one can define right cell modules of H2,r via the cellular bases Si, i ∈
{1, 2, 3, 4} in Lemma 10. The corresponding right cell modules of H2,r with respect

to S2 and S4 are denoted by ∆̃(λ), and ∆(λ).

For the simplification of discussion, we assume H2,r is defined over C in Lem-
ma 11.
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Lemma 11. Suppose a, b ∈ N. Then

(i) πa(u2)H2,rπb(u1) = 0 whenever a+ b > r and a, b ∈ Z>0.

(ii) πa(u2)H2,rπr−a(u1) = πa(u2)waπr−a(u1)CSr−a,a, where Sr−a,a is as in

(28).
(iii) xλH2,ryµ′ = 0 if λ, µ ∈ Λ+

2 (r) with λ� µ.
(iv) xλH2,ryλ′ = SpanC{xλwλyλ′} if λ ∈ Λ+

2 (r).

(v) ∆̃(λ′) ∼= xλwλyλ′H2,r.

Proof. (i), (ii) and (iv) can be proven by arguments similar to those for Hecke
algebras of type B in [8]. We only give details for (iii) and (v).

If λ � µ, then |λ(1)| ≥ |µ(1)|. If |λ(1)| > |µ(1)|, then |µ(1)| 6= r and the result
follows from (i). When |λ(1)| = |µ(1)|, by (ii) together with corresponding results
for the group algebras of symmetric groups, we have λ(i) � µ(i) for i = 1, 2 if
xλH2,ryµ′ 6= 0. This proves (iii).

There is a surjective H2,r-homomorphism from φ : yλ′H2,r → xλwλyλ′H2,r.

Let H
�λ′

2,r be the C-submodule spanned by {yst | s, t ∈ T s(µ), µ � λ′}. It follows

from standard results on cellular algebras that H
�λ′

2,r is a two-sided ideal of H2,r.

So, yλ′H2,r+H
�λ′

2,r /H �λ′

2,r is isomorphic to a submodule of ∆̃(λ′). If yst ∈ H
�λ′

2,r ,

we have µ� λ′ which is equivalent to λ � µ′. By (iii), xλwλyst = 0 and H
�λ′

2,r ⊂

kerφ. So, there is an epimorphism from yλ′H2,r + H
�λ′

2,r /H �λ′

2,r to xλwλyλ′H2,r.
Mimicking arguments on classical Specht modules for Hecke algebra of type B in
[8], we know that xλwλyλ′H2,r has a basis {xλwλyλ′d(t) | t ∈ T s(λ′)}. So,

dimC ∆̃(λ′) = dimC xλwλyλ′H2,r = #T s(λ′),

forcing yλ′H2,r + H
�λ′

2,r /H �λ′

2,r
∼= xλwλyλ′H2,r

∼= ∆̃(λ′). �

Now, we use cellular bases Si of H2,r in Lemma 10 to construct a weakly cellular
basis of B2,r,t over an arbitrary field in the sense of [12]. We remark that when
we use results on level two degenerate Hecke algebra for B2,r,t, we should keep in
mind that B2,r,t contains two subalgebras generated by {x1, s1, s2, . . . , sr−1} and
{x1, s1, s2, . . . , st−1}, respectively. The first subalgebra is isomorphic to H2,r with
x1 being sent to −y1 and the second is isomorphic to H2,t with x1 being sent to
−y1. Therefore, we have to use −ui and −ui instead of ui and ui, respectively.

Fix r, t, f ∈ Z>0 with f ≤ min{r, t}. In contrast to (12), we define

Df
r,t={sr−f+1,ir−f+1

st−f+1,jt−f+1
· · ·sr,irst,jt |r≥ ir>···>ir−f+1, jk≥k+f−t}. (31)

For each c ∈ Df
r,t as in (31), let κc be the r-tuple

κc=(k1, . . . , kr)∈{0, 1}r such that ki=0 unless i= ir, ir−1, . . . , ir−f+1. (32)

Note that κc may have more than one choice for a fixed c, and it may be equal
to κd although c 6= d for c, d ∈ Df

r,t. Let Nf = {κc | c∈Df
r,t}. If κc ∈ Nf , define

xκc =
∏r

i=1 x
ki

i . In [23], we consider poset (Λ2,r,t,�), where

Λ2,r,t =
{
(f, λ, µ) | (λ, µ) ∈ Λ+

2 (r−f)× Λ+
2 (t−f), 0≤f≤min{r, t}

}
, (33)
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such that (f, λ, µ) � (`, α, β) for (f, λ, µ), (`, α, β) ∈ Λ2,r,t if either f > ` or f = `
and λ �1 α, and µ �2 β, and in case f = `, the orders �1 and �2 are dominant
orders on Λ+

2 (r−f) and Λ+
2 (t−f) respectively. For each (f, µ, ν) ∈ Λ2,r,t, let

δ(f, µ, ν)={(t, c, κc) | t=(t(1), t(2))∈T s(µ) × T s(ν), c∈Df
r,t and κc∈Nf}. (34)

Definition 5. For any (s, d, κd), (t, c, κc) ∈ δ(f, µ, ν) with (f, µ, ν) ∈ Λ2,r,t, define

C(s,d,κd)(t,c,κc) = xκdd−1efnstcx
κc , (35)

where, in contrast to notation ef in (11), we define ef =er,ter−1,t−1· · ·er−f+1,t−f+1

if f ≥ 1 and e0 = 1, and nst = ys(1)t(1)ys(2)t(2) if s = (s(1), s(2)) and t = (t(1), t(2))
are in T s(µ)× T s(ν).

Note that nst in Definition 5 are defined via cellular basis elements of H2,r−f

and H2,t−f in Lemma 10 (ii) (iv). Since xi and xj do not commute each other, a
cellular basis element of H2,r−f is always put on the left. Further, we need to use
xi, −u1,−u2 (respectively xi, −u1,−u2) instead of −yi, u1, u2 in Lemma 10.

Theorem 12. If B2,r,t is admissible, then the set

C = {C(s,κc,c)(t,κd,d) | (s, κc, c), (t, κd, d) ∈ δ(f, λ), ∀(f, λ) ∈ Λ2,r,t}

is a weakly cellular basis B2,r,t over R in the sense of [12].

Proof. Let S be the cellular basis of H2,r−f (respectively H2,t−f ) for 0 ≤ f ≤
min{r, t} defined in the proof of Lemma 10. If we use S instead of the cellular basis
S2 of H2,r−f and S4 of H2,t−f in Lemma 10, we will obtain the weakly cellular
basis of B2,r,t over R in [23, Thm. 6.12] provided that R = C and u1 = −p,
u2 = m − q, u1 = q and u2 = p − n with r + t ≤ min{m,n}. Since B2,r,t is
admissible, by Theorem 9, the rank of B2,r,t is 2

r+t(k+ t)!. As pointed out in [23,
Remark 6.13], [23, Thm. 6.12] holds over R with arbitrary parameters u1, u2, u1, u2

if the rank of B2,r,t is 2
r+t(r + t)!. Thus, C is an R-basis of B2,r,t. Further, the

weakly cellularity of B2,r,t depends only on cellular bases of H2,r−f and H2,t−f

and does not depend on the explicit descriptions of cellular bases of H2,r−f and
H2,t−f . (cf. the proof of [23, Thm. 6.12]). So, all arguments for the proof of [23,
Thm. 6.12] can be used smoothly to prove that C is a weakly cellular basis B2,r,t

over R. �

Suppose B2,r,t is defined over a field F . By Theorem 12, one can define right
cell modules C(f, µ, ν) with respect to (f, µ, ν) ∈ Λ2,r,t for B2,r,t. Let φf,µ,ν be the
corresponding invariant form on C(f, µ, ν) and let Df,µ,ν = C(f, µ, ν)/Radφf,µ,ν ,
where Radφf,µ,ν is the radical of φf,µ,ν . By Graham–Lehrer’s results in [13] (a
weakly cellular algebra has similar representation theory of a cellular algebra in
[13]), Df,µ,ν is either 0 or irreducible and all non-zero Df,µ,ν consist of a complete

set of pair-wise non-isomorphic irreducible B2,r,t-modules. Let ∆̃(µ) (respectively
∆(ν)) be the cell module of H2,r−f (respectively H2,t−f ) defined via S2 and S4

in Lemma 10. Similarly, one has the notations Dµ and D
ν
, respectively.
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Proposition 13. Suppose that B2,r,t is admissible over F . For any (f, µ, ν) ∈
Λ2,r,t, D

f,µ,ν 6= 0 if and only if

(i) Dµ 6= 0 and D
ν
6= 0,

(ii) f 6= r provided r = t and ω0 = ω1 = 0.

Proof. The result can be proven by arguments similar to those for Lemmas 7.3–7.4
in [23]. �

Remark 2. By arguments similar to those for Theorem 12, one can lift cellular
bases of Hk,r and Hk,t in [3] to obtain a weakly cellular basis of Bk,r,t over
R, provided that Bk,r,t is admissible. Further, it is not difficult to prove the
result, which is similar to Proposition 13 for Bk,r,t over an arbitrary field F with
characteristic charF either zero or positive. Let u = (u1, . . . , uk) ∈ F k such that
ui = di · 1F and 0 ≤ di < charF for 1 ≤ i ≤ k. Kleshchev [18] has shown
that the simple Hk,n(u)-modules are labeled by a set of multipartitions which
gives the same Kashiwara crystal as the set of u-Kleshchev multipartitions of n in
[1, 2]. Thus, the simple Bk,r,t-modules are labeled by the set {(f, µ, ν)}, where (i)
0 ≤ f ≤ min{r, t}, (ii) µ’s are Kleshchev multipartitions of r−f with respect to u,
(iii) ν’s are Kleshchev multipartitions of t−f with respect to u := (u1, u2, . . . , uk),
(iv) f 6= r if r = t and ωi = 0 for 0 ≤ i ≤ k − 1. By Proposition 13 and [10,
Thm. 1.1] or [1, Thm. 1.3], when Bk,r,t is admissible, the simple Bk,r,t-modules are
always labeled by the (f, µ, ν) ∈ Λk,r,t with 0 ≤ f ≤ min{r, t} and µ (respectively
ν) are Kleshchev multipartitons with respect to u (respectively u) and f 6= r if
r = t and ωi = 0 for 1 ≤ i ≤ r. However, we are not claiming that Df,µ,ν 6= 0 for
the multipartitions µ, ν which Kleshchev [18] uses to label the simple Hk,r−f (u)-
modules (respectively Hk,r−f (u)-modules).

We recall the definition of Kleshchev bipartitions over C as follows (see, e.g.,
[32]), which will be used in sections 4–5. Fix u1, u2 ∈ C with u1−u2 ∈ N. Then
λ=(λ(1), λ(2))∈Λ+

2 (r) is called a Kleshchev bipartition [32] with respect to u1, u2 if

λ
(1)
u1−u2+i ≤ λ

(2)
i for all possible i. (36)

If u1−u2 6∈ Z, all bipartitions of r are Kleshchev bipartitions. A pair of bipartitions
(µ, ν) is Kleshchev if both µ and ν are Kleshchev bipartitions in the sense of (36)
with respect to the parameters u1, u2 and u1, u2. The following result will be used
in section 5.

Proposition 14. Suppose B2,r,t is admissible over C. For each (f, µ, ν) ∈ Λ2,r,t,

let

C̃(f, µ, ν) := ef xµ′xν′wµ′wν′yµyνB2,r,t (mod B
f+1
2,r,t),

where B
f+1
2,r,t is the two-sided ideal of B2,r,t generated by ef+1. Then C(f, µ, ν) ∼=

C̃(f, µ, ν).

Proof. Let Mf be the left B2,r−f,t−f -module generated by

V f
r,t = {efdxκd | (d, κd) ∈ Df

r,t ×Nf}. (37)

By [23, Prop. 6.10], Mf = efB2,r,t. By [23, Lem. 6.9], one can use H2,r−f⊗H2,t−f

instead of B2,r−f,t−f in xµ′xν′wµ′wν′yµyνMf (mod B
f+1
2,r,t). Now, the required iso-

morphism follows from Lemma 11 (v). �
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3. Super Schur–Weyl duality

The aim of this section is to generalize super Schur–Weyl duality between general
linear Lie superalgebra glm|n and B2,r,t to the case r+t > min{m,n}. Throughout,
let I0 = {1, . . . ,m}, I1 = {m+ 1, . . . ,m+ n} and I = I0 ∪ I1.

For any pairs (i, j) ∈ I×I , let Eij be the matrix unit with parity [Eij ] = [i]+[j],
where [i] = a if i ∈ Ia, a = 0, 1. The general linear Lie superalgebra glm|n over C,
denoted by g, is g−1 ⊕ g0 ⊕ g1, where

g−1 = spanC{Ei,j | i ∈ I1, j ∈ I0}, g1 = spanC{Ei,j | i ∈ I0, j ∈ I1},

g0 = spanC{Ei,j | i, j ∈ I0 or i, j ∈ I1}. (38)

The Cartan subalgebra h of g is the C-space with basis {Eii | i ∈ I}. Let h∗ be
the dual space of h with dual basis {εi | i ∈ I}. Then any ξ ∈ h∗, called a weight

of g, can be written as

ξ =
∑
i∈I0

ξLi εi +
∑
i∈I1

ξRi−mεi with ξLi , ξ
R
j ∈ C. (39)

Denote ξ by (ξL1 , . . . , ξ
L
m | ξR1 , . . . , ξ

R
n ). If both ξLi − ξLi+1 ∈ N and ξRj − ξRj+1 ∈N for

all possible i, j, then ξ is called integral dominant. Let P+ be the set of integral
dominant weights. For any ξ ∈ P+, let

ξρ := ξ + ρ = (ξL,ρ
1 , . . . , ξL,ρ

m | ξR,ρ
1 , . . . , ξR,ρ

n ), (40)

where ρ = (0,−1, . . . , 1−m |m−1,m−2, . . . ,m−n). Following [29], [30] (cf. [15],
[17]), let

` = #{(i, j) | ξL,ρ
i +ξR,ρ

j =0, 1 ≤ i ≤ m, 1 ≤ j ≤ n}.

Then ξ is called an `-fold atypical weight if ` > 0. Otherwise, ξ is called a typical

weight.

Example 1. For any p, q ∈ C, let λpq = (p, . . . , p | − q, . . . ,−q). Then λpq is a
typical weight if and only if

p− q /∈ Z or p− q ≤ −m or p− q ≥ n. (41)

The current q should be regarded as q +m in [6, IV]. In the remaining part of
this paper, λpq is always a typical weight in the sense of (41).

Let V = Cm|n be the natural g-module with natural basis {vi | i ∈ I} such
that vi has parity [vi] = [i]. Then the dual space V ∗, which has the dual basis
{vi | i ∈ I}, is a left g-module such that

Eabvi = −(−1)[a]([a]+[b])δiavb for any (a, b) ∈ I × I. (42)

In particular, the weight of vi is−εi. For the simplicity of notation, we setW = V ∗.
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Definition 6. Fix r, t∈Z>0. Let V rt=V ⊗r⊗W⊗t and Mrt
pq=V ⊗r⊗Kλpq

⊗W⊗t,
where Kλpq

is the Kac-module [16] with respect to the highest weight λpq in Ex-
ample 1.

Let π : Mrt
pq → V rt be the projection such that, for any v ∈ M rt

pq , π(v) is the
vector obtained from v by deleting the tensor factor in Kλpq

. Let vpq be the highest
weight vector of Kλpq

with highest weight λpq . Then vpq is unique up to a scalar.
It is well known (see [16]) that Kλpq

is 2mn-dimensional with a basis

B =
{
bσ :=

n∏
i=1

m∏
j=1

E
σij

m+i,jvpq

∣∣∣σ = (σij )
n,m
i,j=1 ∈ {0, 1}n×m

}
, (43)

where the products are taken in any fixed order. Define

I(m|n, r) = {i | i = (ir, ir−1, · · · , i1), ij ∈ I, 1 ≤ j ≤ r},

I(m|n, t) = {j | j = (j1, j2, · · · , jt), ji ∈ I, 1 ≤ i ≤ t}.
(44)

If (i, b, j) ∈ I(m|n, r) ×B × I(m|n, t), we define

vi,b,j = vir ⊗ vir−1 ⊗ · · · ⊗ vi1 ⊗ b⊗ vj1 ⊗ vj2 ⊗ · · · ⊗ vjt ∈ Mrt
pq. (45)

Lemma 15. Let BM = {vi ⊗ b⊗ vj | (i, b, j) ∈ I(m|n, r) × B × I(m|n, t)}. Then

BM is a basis of M rt
pq.

Denote by U(g) the universal enveloping algebra of g. Then M rt
pq is a left U(g)-

module. Let J = J1 ∪{0}∪J2 with J1 = {r, . . . , 2, 1} and J2 = {1, 2, . . . , t}. Then
(J,≺) is a total ordered set with

r ≺ r − 1 ≺ · · · ≺ 1 ≺ 0 ≺ 1 ≺ · · · ≺ t.

For any a, b ∈ J with a ≺ b, define πab : U(g)⊗2 → U(g)⊗(r+t+1) by

πab(x⊗y) = 1⊗ · · · ⊗1⊗
ath
x ⊗1⊗ · · · ⊗1⊗

bth
y ⊗1⊗ · · · ⊗1. (46)

Let Ω be a Casimir element in g⊗2 given by

Ω =
∑

i,j∈I

(−1)[j]Eij⊗Eji. (47)

In [23], we define operators si, sj , x1, x1 and e1 acting on the right of M rt
pq via the

following formulae:

si = πi+1,i(Ω)|Mrt
pq

(1 ≤ i < r), sj = πj,j+1(Ω)|Mrt
pq

(1 ≤ j < t),

x1 = −π10(Ω)|Mrt
pq
, x1 = −π01(Ω)|Mrt

pq
, e1 = −π11(Ω)|Mrt

pq
. (48)

Then there is an algebra homomorphism φ : B2,r,t → EndU(g)(M
rt
pq)

op sending the
generators si, sj , x1, x1 and e1 to the operators si, sj , x1, x1 and e1 as above [23].
In this case, we need to use −p,m− q, and q, p − n instead of u1, u2, u1 and u2,
respectively in Definition 1 for k = 2. Further, ω0 = m − n, ω1 = nq − mp and
ωa = (m − p− q)ωa−1 − p(q −m)ωa−2 for a ≥ 2 and ωa’s are determined by [23,
Cor. 4.3]. Thus, B2,r,t is admissible in the sense of Definition 2. By Theorem 9,
dimC B2,r,t = 2r+t(r+t)!. We will always consider B2,r,t as above in the remaining
part of this paper.

1123



HEBING RUI, YUCAI SU

Theorem 16 ([23, Thm. 5.16]). Fix r, t ∈ Z>0 with r + t ≤ min{m,n}. Then

Endg(M
rt
pq)

op ∼= B2,r,t.

Theorem 17 ([6, IV, Thm. 3.13]). If 0 < r ≤ min{m,n}, then EndU(g)(M
r0
pq )

op

∼= H2,r, the level two Hecke algebra with defining parameters u1 = −p and u2 =
m− q.

Theorem 18 (Super Schur–Weyl duality). Keep the condition (41). The algebra

homomorphism φ1 : B2,r,t � Endg(M
rt
pq)

op is surjective. It is injective if and only

if r + t ≤ min{m,n}.

Proof. By Theorem 16, it suffices to prove that φ1 is surjective, and is not injective
if r + t > min{m,n}. Note that in diagram (49), θ1, θ2 are canonical vector space
isomorphisms. Thus as in [7, (7.16)], we can define the map

flipr,t := θ−1
2 ψθ1,

such that the following diagram commutes

EndC(V
⊗r⊗Kλpq

⊗(V ∗)⊗t)
flipr,t

−− · · · · · · → EndC(V
⊗r⊗Kλpq

⊗V ⊗t)

θ1
?

θ2
?

EndC(V
⊗r⊗Kλpq

)⊗EndC((V
∗)⊗t)

ψ: f⊗g∗ 7→f⊗g
−−−−−−−−−→ EndC(V

⊗r⊗Kλpq
)⊗EndC(V

⊗t).

(49)

It is proven in [7, Lem. 7.6] that flipr,t is in fact a g-module isomorphism. Note
that H2,r+t (denoted as Hp,q

r+t in [6, IV]) is a subspace of EndC(V
⊗r⊗Kλpq

⊗V ⊗t),
thus (49) induces the following commutative diagram

B2,r,t

flipr,t

−−−−−−→ H2,r+t

φ1
? ?

π1

EndC(V
⊗r⊗Kλpq

⊗(V ∗)⊗t)
flipr,t

−−−−−−→ EndC(V
⊗r⊗Kλpq

⊗V ⊗t).

(50)

By Theorem 9 for k = 2, dimC B2,r,t = 2r+t(r + t)!. This implies that the top
map is a bijection, and the bottom map is a g-module isomorphism, which in-
duces an isomorphism between two subspaces Endg(V

⊗r⊗Kλpq
⊗(V ∗)⊗t)op and

Endg(V
⊗r⊗Kλpq

⊗V ⊗t)op. Since, by [6, IV, Thm. 3.21], π1 is surjectively mapped
to Endg(V

⊗r⊗Kλpq
⊗V ⊗t)op, we see that φ1 : B2,r,t � Endg(M

rt
pq)

op is surjective.
Finally, the second assertion follows from the corresponding result for t = 0 in [6,
IV, Thm. 3.21]. �

4. Highest weight vectors in V
⊗r ⊗ Kλpq

The aim of this section is to give a classification of highest weight vectors of
Mr0

pq := V ⊗r ⊗Kλpq
when r ≤ min{m,n}, where V is the natural representation

of g := glm|n and Kλpq
is the Kac-module with a highest weight vector vλpq

of
weight λpq in Example 1. This will be done in a few steps. First, by noting that g-
highest weight vectors of M r0

pq is in one-to-one correspondence with the g0-highest
weight vectors of V ⊗r (see Remark 3), we are able to reduce the problem to the
Lie algebra case. Secondly, since g0 = glm ⊕ gln, and V ⊗r can be decomposed as
a direct sum of tensor products of natural representations of glm and gln, we are
able to further simplify the problem to the glm case.
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Remark 3. Any g-highest weight vector vµ ∈ Mr0
pq with weight µ corresponds to

a unique g0-highest weight vector v′η ∈ V ⊗r of weight η = µ − λpq such that
vµ − v′η ⊗ vλpq

∈ V ⊗r ⊗K+, where K+ is the subspace of Kλpq
spanned by basis

elements bσ ’s in (43) with σ 6= 0 (cf. [26, Lems. 5.1–5.2]).

To begin with, we briefly recall the results on a classification of glm-highest
weight vectors of V ⊗r, where V temporarily denotes the natural representation of
glm over C. Let {vi | 1 ≤ i ≤ m} be a basis of V . Obviously, V ⊗r has a basis
{vi | i ∈ I(m|0, r)}, where

vi = vir ⊗ vir−1 ⊗ · · · ⊗ vi1 .

We consider a Cashmir element Ω in gl⊗2
m with

Ω =
∑

1≤i,j≤m

Eij⊗Eji ∈ gl⊗2
m , (51)

which is a special case of (47). Define si = πi,i+1(Ω), 1 ≤ i ≤ r − 1. Then
(i, i+ 1) ∈ Sr acts on V ⊗r via si. Thus, V

⊗r is a (glm,CSr)-bimodule such that

viw = vi(r)w−1 ⊗ vi
(r−1)w

−1 ⊗ · · · ⊗ vi
(1)w

−1 for any w ∈ Sr. (52)

For example, vi3 ⊗ vi2 ⊗ vi1s1s2 = vi1 ⊗ vi3 ⊗ vi2 . If r ≤ m, it is well known that

EndU(glm)(V
⊗r)op ∼= CSr.

Definition 7. If λ ∈ Λ+(r,m), the set of partitions of r with at most m parts,
we define vλ = viλ ∈ V ⊗r, where iλ = (1λ1 , 2λ2 , . . . ,mλm) and kλk denotes the
sequence k, k, . . . , k with multiplicity λk.

The following result is well known, and Lemma 20 follows from Lemma 19.

Lemma 19. Suppose λ and µ are two compositions of r and µ′ is the conjugate

of µ, and xλ, yµ′ are defined in (29). Then xλCSryµ′ = 0 unless λ� µ.

Lemma 20. There is a bijection between the set of dominant weights of V ⊗r and

Λ+(r,m), the set of partitions of r with at most m parts. Further, the C-space

of glm-highest weight vectors with highest weight λ has a basis {vλwλyλ′d(t) | t ∈
T s(λ′)}.

Now, we turn to construct g-highest weight vectors ofM r0
pq . Since r≤min{m,n},

there is a bijection between the set of dominant weights ofM r0
pq and Λ+

2 (r). Further,

if λ = (λ(1), λ(2)) ∈ Λ+
2 (r), the corresponding dominant weight of M r0

pq is

λ := λpq + λ̃, (53)

where
λ̃ = (λ

(1)
1 , . . . , λ(1)

m | λ
(2)
1 , . . . , λ(2)

n ). (54)

For instance, if λ = ((3, 1), (2, 1)), then λ̃ = (3, 1, 0, . . . , 0 | 2, 1, 0, . . . , 0). Recall
that Ω is a Casimir element in g⊗2 given in (47). Define operators si, x1 acting
on the right of M r0

pq via the following formulae: si = πi+1,i(Ω), 1 ≤ i ≤ r − 1 and
x1 = −π10(Ω). In this case, u1 = −p and u2 = m − q. We recall that Brundan–
Stroppel [6] defined x1 via π10(Ω). So, the current x1 is −x1 in [6]. Recall that
vi⊗vpq = vir ⊗· · ·⊗vi2 ⊗vi1 ⊗vpq for any i ∈ I(m|n, r) (cf. (44)), and x′

k = xk+Lk

with Lk =
∑k−1

i=1 (i, k) (see Lemma 4).
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Lemma 21 ([6, Lem. 3.1]). Suppose i ∈ I(m|n, r), and 1 ≤ k ≤ r.

(i) vi ⊗ vpqx
′
k = −pvi ⊗ vpq if 1 ≤ ik ≤ m.

(ii) vi ⊗ vpqx
′
k = −qvi ⊗ vpq +

∑m
j=1(−1)

∑k−1
l=1 [il]vj ⊗ (Eik ,jvpq) if m+1 ≤ ik ≤

m + n, where j ∈ I(m|n, r) which is obtained from i by using j instead of

ik in i. In particular, the weight of vj is strictly bigger than that of vi.

Definition 8. For λ= (λ(1), λ(2)) ∈ Λ+
2 (r), define v

λ̃
= vi with i= (iλ(1) , iλ(2)) ∈

I(m|n, r).

For instance, v
λ̃
= vi if λ = ((3, 1), (2, 1)), where i = (13, 2, (m+ 1)2,m+ 2).

Definition 9. For any t ∈ T s(λ′), we define vt = v
λ̃
⊗ vpqwλyλ′d(t), where yλ′ is

given in Definition 4 (ii).

Theorem 22. Suppose r ≤ min{m,n}. There is a bijection between the set of

dominant weights of M r0
pq and Λ+

2 (r). Further, the C-space Vλ of g-highest weight

vectors of M r0
pq with highest weight λ has a basis {vt | t ∈ T s(λ′)}.

Proof. The required bijection between Λ+
2 (r) and the set of dominant weights of

Mr0
pq is the map sending λ to λ defined in (53). We claim that each vt is killed

by Em,m+1 and Ei,j with i < j and either i, j ∈ I0 or i, j ∈ I1. Since Mr0
pq is

(g,H2,r)-bimodule, we need only consider the case d(t) = 1. In this case, t = tλ
′

.
Denote |λ(1)| = a. Recall that wλ(1) ∈ Sa and wλ(2) ∈ Sr−a such that

tλ
(i)

wλ(i) = tλ(i) for i = 1, 2. Then

wλ = wλ(1)wλ(2)wa = wawλ(2)wλ(1) . (55)

By (27) and (55),

vt = v
λ̃
⊗ vpqwλ(1)wλ(2)yµ(1)xµ(2)waπr−a(−p),

where µ(i) is the conjugate of λ(i) for i = 1, 2. By Lemmas 19–20, vt is killed
by Ei,j with i < j and either i, j ∈ I0 or i, j ∈ I1. Since Em,m+1 acts on M r0

pq

via
∑r+1

i=1 1⊗i−1 ⊗ Em,m+1 ⊗ 1⊗r+1−i, we have Em,m+1vλ̃ ⊗ vpq = 0 if vm+1 does

not occur in v
λ̃
. Otherwise, λ(2) 6= ∅ and r − a 6= 0. In this case, up to a sign,

Em,m+1vλ̃ ⊗ vpq is equal to

vj ⊗ vpq(1− sa+1 + sa+1,a+3 + · · ·+ (−1)b−asa+1,b+1),

where b = a+ λ
(2)
1 − 1 and vj is obtained from v

λ̃
by replacing vm+1 by vm at the

(a+ 1)th position. Thus, ja+1 = m. Let

h = (1− sa+1 + sa+1,a+3 + · · ·+ (−1)b−asa+1,b+1)wλ(1)wλ(2)yµ(1)xµ(2) .

Then h ∈ CSa⊗CSr−a. By (27), hwa = wah1 for some h1 ∈ CSr−a⊗CSa. Since
h1πr−a(−p) = πr−a(−p)h1, it is enough to prove vj ⊗ vpqwaπr−a(−p) = 0. Up to
a sign, vj ⊗ vpqwa = vk ⊗ vpq for some k such that vk1 = vm ∈ V0. Since r− a 6= 0,
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x1 + p is a factor of πr−a(−p). By Lemma 21 (i), vj ⊗ vpqwaπr−a(−p) = 0. Thus,
vt is a highest weight vector of M r0

pq if vt 6= 0.
Note that any vector of M r0

pq can be written as v =
∑

b∈B vb⊗b, where B is a ba-
sis of Kλpq

defined in (43) and vb ∈ V ⊗r. Following [6], vb is called the b-component

of v. By Lemma 21 (ii) (or the arguments in the proof of [7, Cor. 3.3]), the vpq-

component of v
λ̃
⊗ vpqwaπr−a(−p) is v

λ̃
wa

∏r−a
i=1 (p − q − Li). By Lemma 4 (iii),∏r−a

i=1 (p− q −Li) is a central element in CSr−a, which acts on v
λ̃
⊗ vpqwλ(2)xµ(2)

as scalar
∏r−a

i=1 (p− q− res
tµ

(2) (i)), where µ = λ′ and res
tµ

(2) (i) is j− l if i is in the

lth row and jth column of tµ
(2)

. Since λpq is typical (cf. (41)), and r ≤ min{m,n},∏r−a
i=1 (p− q − res

tµ
(2) (i)) 6= 0. So, up to a non-zero scalar,

the vpq-component of vt = v
λ̃
wawλ(2)xµ(2)wλ(1)yµ(1)d(t). (56)

By Lemma 20, it is a g0-highest vector of V ⊗r with highest weight λ̃ (cf. (54)),
forcing vt 6= 0.

Now, we prove that {vt | t ∈ T s(λ′)} is C-linear independent. First, consider
V = V0 ⊕ V1 as a module for g0 = glm ⊕ gln. Then V ⊗r can be decomposed as a
direct sum of Vi1 ⊗Vi2⊗· · ·⊗Vir , where ij ∈ {0, 1}. As g0-modules, Vi1 ⊗Vi2⊗· · ·⊗
Vir

∼= V ⊗r−a
1 ⊗ V a

0 for some non-negative integer a ≤ r with a = #{ij | ij = 0}.
The corresponding isomorphism is given by acting a unique element w on the right-
hand side of V ⊗r−a

1 ⊗V a
0 , where w is a distinguished right coset representative of

Sa×Sr−a in Sr. By Lemma 20, all g0-highest weight vectors of Vi1⊗Vi2⊗· · ·⊗Vir

with highest weight λ̃ are v
λ̃
wλ(1)yµ(1)wλ(2)xµ(2)d(t1)d(t2)w for all t1 ∈ T s(µ(1)) and

t2 ∈ T s(µ(2)). Therefore, the C-space V
λ̃
of all g0-highest weight vectors of V ⊗r

with highest weight λ̃ has a basis {v
λ̃
wλ(2)xµ(2)wλ(1)yµ(1)d(t) | t ∈ T s(λ′)}, where

µ = λ′. By (56), {vt | t ∈ T s(λ′)} is C-linear independent. Finally, since there is a
one-to-one correspondence between g-highest weight vectors of M r0

pq and g0-highest
weight vectors of V ⊗r (cf. [26, Lems. 5.1–5.2]), and dimV

λ̃
= #{vt | t ∈ T s(λ′)},

one obtains that {vt | t ∈ T s(λ′)} is a basis of Vλ. �

In the remaining part of this section, we want to establish the relationship
between Vλ with a special cell module of H2,r with respect to λ ∈ Λ+

2 (r). This
result will be needed in section 5. We go on using −x1 instead of x1 in [6]. In this
case, the current −p and m− q are the same as p and q in [6].

Proposition 23. For any λ ∈ Λ+
2 (r), Vλ

∼= xλwλyλ′H2,r as right H2,r-modules,

where Vλ is defined in Theorem 22.

Proof. By Lemma 11 (ii), Sλ := xλwλyλ′H2,r has a basis M = {xλwλyλ′d(t) | t ∈
T s(λ′)}. It follows from Theorem 22 that there is a linear isomorphism φ : Vλ → Sλ

sending vt to xλwλyλ′d(t). Obviously, φ is a right Sr-homomorphism. In order to
show that φ is a right H2,r-homomorphism, it suffices to prove that

φ(vtxk) = φ(vt)xk , for 1 ≤ k ≤ r. (57)

Denote a = |λ(1)|. If 1 ≤ k ≤ r − a, then

π̃λ′xk = πr−a(m− q)xk = πr−a(m− q)(−p− Lk).
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Since φ is a right Sr-homomorphism, (57) holds for 1 ≤ k ≤ r − a. If r − a+ 1 ≤

k ≤ r, then xk = sk,r−a+1xr−a+1sr−a+1,k −
∑k−1

j=r−a+1(j, k). By Lemma 11 (i),

πλwaπ̃λ′xk = πλwaπ̃λ′

(
− p−

k−1∑
j=r−a+1

(j, k)
)
. (58)

On the other hand, π̃λ′xk = xkπ̃λ′ and v
λ̃
⊗ vpqwλ(1)wλ(2)yµ(1)xµ(2)wa is a linear

combination of elements vi ⊗ vpq , for some i ∈ I(m|n, r) such that vij ∈ V0 for all
r − a+ 1 ≤ j ≤ r. By Lemma 21 (i), xk acts on vi ⊗ vpq as −p− Lk. In order to
verify (57) for k ≥ r − a+ 1, by (58), it remains to show that

vi ⊗ vpq(i, k)π̃λ′ = 0 for all i, 1 ≤ i ≤ r − a. (59)

Write vi ⊗ vpq(i, k) = vj up to a sign. Then vji ∈ V0 and vj(1, i)π̃λ′ = 0 by
Lemma 21 (i). Since (1, i)π̃λ′ = π̃λ′(1, i), and (1, i) is invertible, vjπ̃λ′ = 0, proving
(59). �

Corollary 24. Suppose λ ∈ Λ+
2 (r). As right H2,r-modules,

HomU(g)(Kλ,M
r0
pq )

∼= ∆̃(λ′) (60)

where ∆̃(λ′) is the right cell module defined via the cellular basis of H2,r in

Lemma 10(ii).

Proof. For any g-highest weight vector v of M r0
pq with highest weight λ, there is a

unique U(g)-homomorphism fv : Kλ → U(g)v ⊂ M r0
pq sending vλ to v, where vλ is

the highest weight vector of Kλ. Further, fv can be considered as a homomorphism
in HomU(g)(Kλ,M

r0
pq ) by composing the embedding homomorphism.

For any 0 6= f ∈ HomU(g)(Kλ,M
r0
pq ), f(vλ) is a highest weight vector of M r0

pq .
By Theorem 22, f(vλ) is a linear combination of vt’s, for t ∈ T s(λ′). So, f
can be written as a linear combination of fvt ’s. Thus, {fvt | t ∈ T s(λ′)} is a
basis of HomU(g)(Kλ,M

r0
pq ). Let Vλ be defined in Theorem 22. Then the linear

isomorphism φ : HomU(g)(Kλ,M
r0
pq ) → Vλ sending fvt to vt for any t ∈ T s(λ′) is

a right H2,r-homomorphism. By Lemma 11 (v) and Proposition 23, Vλ
∼= ∆̃(λ′),

proving (60). �

In the remaining part of this section, we always assume p− q ≤ −m. If p− q ≥
n, one can switch roles between p and q (or consider the dual module of M r0

pq ).
Without loss of any generality, we assume p, q ∈ Z.

Let λ ∈ Λ+
2 (r) with r ≤ min{m,n}. Then λ corresponds to a dominant weight

λ defined in (53). In particular, ∅ = λpq . Following [6, 14, 20, 27], we are going
to represent a dominant weight λ in a unique way by a weight diagram Dλ. First
we write (cf. (40))

λ
ρ
=λ+ρ=(λ

L,ρ

1 , . . . , λ
L,ρ

m |λ
R,ρ

1 , . . . , λ
R,ρ

n ). (61)

Denote

S(λ)L = {λ
L,ρ

i | i = 1, . . . ,m}, S(λ)R = {−λ
R,ρ

j | j = 1, . . . , n},

S(λ) = S(λ)L ∪ S(λ)R, S(λ)B = S(λ)L ∩ S(λ)R.
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Definition 10. The weight diagram Dλ associated with the dominant weight λ
is a line with vertices indexed by Z such that each vertex i is associated with a
symbol D i

λ = ∅, <,> or × according to whether i /∈ S(λ), i ∈ S(λ)R \ S(λ)B,
i ∈ S(λ)L \ S(λ)B or i ∈ S(λ)B.

For example, if p, q ∈ Z with p ≤ q−m, then the weight diagramD∅ of ∅ = λpq

is given by

. . . >
◦

p−m+1

>
◦ . . . >

◦
p

◦ ◦ . . . <
◦

q−m+1

<
◦ . . . <

◦
<
◦

q−m+n

◦ . . . , (62)

where, for simplicity, we have associated vertex i with nothing if Di
λ = ∅. Note

that ]S(∅)B = 0, i.e., λpq is typical.

Definition 11. Let λ be as in (53), where λ ∈ Λ+
2 (r).

(i) Let λ
top

be the unique dominant weight such that Lλ is the simple submodule

of the Kac-module K
λ
top . Then λ

top
is obtained from λ via the unique longest

right path (cf. [27, Def. 5.2], [31, Conjecture 4.4]) or via a raising operator (cf. [5]).
For example, if Dλ is given by

. . .
0

×
1

×
2 3

×
4

>
5 6

×
7

<
8 9

<
10 11

. . . , (63)

then the weight diagram Dλtop of λ
top

is given by

. . . 0 1 2
×
3

?

4
>
5

×
6

?

7
<
8

×
9

?

<
10

×
11

?

. . . , (64)

where the ×’s at vertices 9, 6, 3, 11 in (64) are respectively obtained from the ×’s
at vertices 7, 4, 2, 1 in (63) (thus every symbol “× ” is always moved to the unique
empty place at its right side which is closest to it, under the rule that the rightmost
“× ” should be moved first, as indicated in (64)). Alternatively, λ is obtained from

λ
top

via the unique longest left path.

(ii) Write λ
top

= λpq+λ̃top (cf. (54) and (53)) with λ̃top = (λ(top,1) |λ(top,2)) and
denote λtop = (λ(top,1), λ(top,2)), where λ(top,1) = (λtop

1 , . . . , λtop
m ),

λ(top,2) = (λtop
m+1, . . . , λ

top
m+n) for some λtop

i ∈ Z. Then obviously
∑

i λ
top
i = r.

Thus λtop ∈ Λ+
2 (r) if and only if λtop

i ∈ Z≥0 for all possible i.

Write p = q − m − k for some k ∈ N. If µ = ((µL
1 , . . . , µ

L
m), (µR

1 , . . . , µ
R
n )) ∈

Λ+
2 (r), then µ′ is Kleshchev with respect to u1 = −p, u2 = m− q (cf. (36)) if and

only if
µL
i ≥ µR

i − k for all possible i. (65)

Following [6, IV], we denote I+pq = {p−m+1, p−m+2, . . . , q−m+ n}. For any

λ ∈ Λ+
2 (r) and any j ∈ I+pq , set

I∅≥j(λ) = Z
≥j ∩ (I+pq \ S(λ) ∩ I+pq), (66)

I∅≤j(λ) = Z
≤j ∩ (I+pq \ S(λ) ∩ I+pq), (67)

I×≥j(λ) = Z
≥j ∩ (I+pq ∩ S(λ)B, (68)

I×≤j(λ) = Z
≤j ∩ (I+pq ∩ S(λ)B. (69)
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In terms of the above notations, Brundan and Stroppel [6, IV, Lemma 2.6] have
proved that the indecomposable tilting module Tλ is a direct summand of M r0

pq if

S(λ) ⊂ I+pq and #I∅≥j(λ) ≥ #I×≥j(λ) for all j ∈ I+pq . (70)

These two conditions on bipartition λ (or weight λ) are equivalent to the following
conditions on λtop (which can be seen from (63)–(64) in case I+pq = {1, 2, . . . , 11}):

S(λtop) ⊂ I+pq and #I∅≤j(λ
top) ≥ #I×≤j(λ

top) for all j ∈ I+pq . (71)

Lemma 25. Let µ ∈ Λ+
2 (r) such that µ′ is Kleshchev with respect to u1 = −p, u2 =

m− q, where p = q −m− k with k ∈ N. Then

S(µ) ⊂ I+pq and #I∅≤j(µ) ≥ #I×≤j(µ) for all j ∈ I+pq . (72)

Proof. We have (cf. (40))

λpq + ρ = (q −m− k, . . . , q − 2m− k + 1 | − q +m− 1, . . . ,−q +m− n). (73)

Thus for i = 1, . . . ,m, we have (cf. (61)) µL,ρ
i = µi + q −m− k ≥ q − 2m− k + 1

and µL,ρ
i ≤ q + n−m (as µi ≤ r ≤ n), i.e., µL,ρ

i ∈ I+pq . Similarly, −µR,ρ
j ∈ I+pq for

j = 1, . . . , n. Hence, S(µ) ⊂ I+pq .
To prove the other assertion of (72), note that the weight diagram Dµ of µ

is obtained from D∅ (cf. (62)) by moving the “> ” at vertex p − i for all i with
0 ≤ i ≤ m − 1 to its right side to vertex p − i + µL

i+1, and moving the “< ” at
vertex q −m+ j for all j with 1 ≤ j ≤ n to its left side to vertex q −m+ j − µR

j

(if “< ” meets “> ” at the destination vertex, then two symbols “< ” and “> ”
are combined to become the symbol “× ”). Since µ′ is Kleshchev, condition (65)
shows that in order to produce a “× ” at some vertex i of Dµ, a “> ” at some
vertex j with j < i must be moved to vertex i, i.e., an “∅ ” must appear in some
vertex j′ with j′ ≤ j < i, i.e., (71) holds. �

Corollary 26. Suppose λ∈Λ+
2 (r) such that λtop∈Λ+

2 (r) and (λtop)′ is Kleshchev,

where (λtop)′ is the conjugate of λtop ∈ Λ+
2 (r). Then Tλ is a direct summand of

Mr0
pq . Further, any indecomposable direct summand of M r0

pq is of form Tλ for some

λ ∈ Λ+
2 (r) such that λtop ∈ Λ+

2 (r) and (λtop)′ is Kleshchev.

Proof. The first assertion follows from [6, IV, Lem. 2.6] and Lemma 25. To prove
the last assertion, since r ≤ min{m,n}, by Theorem 17, EndU(glm|n)

(Mr0
pq )

op ∼=
H2,r. So, the number of non-isomorphic indecomposable direct summands of
glm|n-module Mr0

pq is equal to that of non-isomorphic irreducible H2,r-modules,

which is equal to the number of Kleshchev bipartitions in Λ+
2 (r). Now, everything

is
clear. �

Corollary 27. Suppose λ∈Λ+
2 (r) such that λtop∈Λ+

2 (r) and (λtop)′ is Kleshchev.

As right H2,r-modules,

HomU(g)(Tλ,M
r0
pq )

∼= P (λtop)′ , (74)

whereP (λtop)′is the projective cover ofD(λtop)′which is the simple head of∆̃((λtop)′).
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Proof. Since r ≤ min{m,n}, λtop ∈ Λ+
2 (r) and (λtop)′ is Kleshchev, by Corol-

lary 26, Tλ is a direct summand of M r0
pq , forcing 0 6= HomU(g)(Tλ,M

r0
pq ) to be

a direct summand of H2,r. We claim that HomU(g)(Tλ,M
r0
pq ) is indecomposable.

If not, then the number of indecomposable direct summands of the right H2,r-

module H2,r is strictly bigger than
∑

λ `λ if we write M r0
pq as Mr0

pq =
⊕

λ T
⊕`λ

λ
with `λ 6= 0.

On the other hand, since M r0
pq is a right H2,r-module, we can consider the right

exact functor F := M r0
pq⊗H2,r? from the category of left H2,r-modules to the cat-

egory of left U(g)-modules. We have an epimorphism from F(P µ) to F(∆̃(µ)),

where P µ is any principal indecomposable left H2,r-module and ∆̃(µ) tempo-
rally denotes the left cell module of H2,r defined via the cellular basis of H2,r

in Lemma 10 (i) with the simple head Dµ. By Lemma 11 (v) and Theorem 17,

F(∆̃(µ)) 6= 0, forcing F(P µ) 6= 0. So, F(P µ) is a direct sum of indecompos-
able direct summand of U(g)-module M r0

pq . In particular,
∑

λ `λ is no less than
the number of indecomposable direct summands of left H2,r-module H2,r. This
is a contradiction since the number of indecomposable direct summands of left
H2,r-module H2,r is equal to that of indecomposable direct summands of right
H2,r-module H2,r. So, F(Tλ) is a principal indecomposable right H2,r-module.
Since Kλtop ↪→ Tλ, HomU(g)(Tλ,M

r0
pq ) � HomU(g)(Kλ

top ,Mr0
pq ). By Corollary 24,

HomU(g)(Kλ
top ,Mr0

pq )
∼= ∆̃((λtop)′). Since HomU(g)(Tλ,M

r0
pq ) is a principal inde-

composable right H2,r-module, it implies that ∆̃((λtop)′) has the unique simple

head, denoted by D(λtop)′ . Thus, Homg(Tλ,M
r0
pq )

∼= P (λtop)′ . �

Brundan–Stroppel have already proved that decomposition numbers of H2,r

arising from super Schur–Weyl duality in [6] can be determined by the multiplicity
of Kac-modules in indecomposable tilting modules appearing in M r0

pq . This result
can also be seen via the exact functor HomU(g)(?,M

r0
pq ).

5. Highest weight vectors in M
rt
pq

In this section, we classify g-highest weight vectors of glm|n-module Mrt
pq over C.

As an application, we set up an explicit relationship between Kac (respectively
indecomposable tilting) modules of g and cell (respectively principal indecompos-
able) modules of B2,r,t. This gives us an efficient way to calculate decomposition
numbers of B2,r,t. Throughout, assume r, t ∈ Z>0 such that r + t ≤ min{m,n}.
The case t = 0 has been dealt with in section 4. By symmetry, one can also classify
highest weight vectors of M 0t

pq via those in section 4. The following result, which
is the counterpart of Lemma 21, can be verified directly.

Lemma 28. Suppose i ∈ I(m|n, r), j ∈ I(m|n, t) (cf. (44)) and 1 ≤ k ≤ t.

(i) vi ⊗ vpq ⊗ vjx
′
k = qvi ⊗ vpq ⊗ vj if 1 +m ≤ jk ≤ m+ n.

(ii) vi ⊗ vpq ⊗ vjx
′
k = pvi ⊗ vpq ⊗ vj +

∑m+n
j=m+1(−1)

∑k−1
l=1 [jl]vi ⊗ (Ejjk vpq)⊗ v`

if 1 ≤ jk ≤ m, where ` ∈ I(m|n, t) which is obtained from j by using j
instead of jk in j. In particular, the weight of v` is strictly bigger than that

of vj.

For any integral weight ξ of g written as

ξ = (ξ1, . . . , ξm | ξm+1, . . . , ξm+n), (75)
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let

ξL = (ξL1 , . . . , ξ
L
m) = (ξ1, . . . , ξm), and ξR = (ξR1 , . . . , ξ

R
m) = ( ξm+1, . . . , ξm+n).

We define two bicompositions µ, ν such that all µ
(1)
i , µ

(2)
j , ν

(1)
i , ν

(2)
j are zero except

that

(i) for 1 ≤ i ≤ m, µ
(1)
i = ξLi if ξLi > 0 or ν

(1)
m−i+1 = −ξLi if ξLi < 0.

(ii) for 1 ≤ j ≤ n, µ
(2)
j = ξRj if ξRj > 0 or ν

(2)
n−j+1 = −ξRj if ξRj < 0.

Then both µ and ν correspond to integral weights of g. In particular, ξ = µ − ν̂
with

ν̂ = (ν(1)m , . . . , ν
(1)
1 | ν(2)n , . . . , ν

(2)
1 ) ∈ h∗. (76)

Conversely, if µ and ν are two bicompositions, then ξ = µ− ν̂ is a integral weight
of g. For instance, if ξ = (r−4, 1, 0, . . . , 0,−1,−(t−5) | 2, 1, 0, . . . , 0,−1,−3), then
µ = ((r − 4, 1), (2, 1)) and ν = ((t− 5, 1), (3, 1)) such that ξ = µ− ν̂.

Definition 12. For any λ = (f, µ, ν) ∈ Λ2,r,t with µ, ν written as in (75), let

λ := λpq+µ− ν̂ and λ̃ := µ− ν̂. Since r+ t ≤ min{m,n}, both µ and ν correspond
to integral weights of g as above such that

µiνm+1−i = 0 for 1 ≤ i ≤ m and µm+jνm+n+1−j = 0 for 1 ≤ j ≤ n , (77)

Lemma 29. For any g-highest weight Λ of M rt
pq, there is a unique triple λ =

(f, µ, ν) ∈ Λ2,r,t such that Λ = λ.

Proof. By [23, Lem. 5.20], Λ = λpq + η − ζ for some bicompositions (or weights)
η and ζ (written as in (75)) of sizes r and t, respectively. For i ∈ I , let ξi =
min{ηi, ζi} and f =

∑
i∈I ξi. Then we obtain a weight ξ, and two bicompositions

µ := η − ξ and γ := ζ − ξ such that |µ| = r − f , |γ| = t− f and Λ = λpq + µ− γ.
Set ν = γ̂, then Λ = λ and (77) is satisfied by definition of ξ. Since Λ is dominant,
µ, ν must be bipartitions. Thus Λ corresponds to λ = (f, µ, ν) ∈ Λ2,r,t. Such a λ is
unique. �

Definition 13. For each λ = (f, µ, ν) ∈ Λ2,r,t, denote vλ = vi ⊗ vpq ⊗ vj, where

i = (iµ(1) , iµ(2) , 1, . . . , 1︸ ︷︷ ︸
f

) ∈ I(m|n, r), and j = (jν(2) , jν(1) , 1, . . . , 1︸ ︷︷ ︸
f

) ∈ I(m|n, t),

such that

(i) jν(2) is obtained from iν(2) by using m+n− i+1 instead of i for 1 ≤ i ≤ n,
(ii) jν(1) is obtained from iν(1) by using m− i+ 1 instead of i for 1 ≤ i ≤ m.

For instance, if λ=(1, µ, ν)∈Λ2,8,10 with µ=((3, 1), (2, 1)) and ν=((4, 1), (3, 1)),
then i = (13, 2, (m+1)2, (m+2), 1) and j = ((m+n)3, (m+n−1),m4, (m−1), 1).
Thus,

vλ = v1 ⊗ vm+2 ⊗ v⊗2
m+1 ⊗ v2 ⊗ v⊗3

1 ⊗ vpq ⊗ v⊗3
m+n ⊗ vm+n−1 ⊗ v⊗4

m ⊗ vm−1 ⊗ v1.
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Definition 14. For any (f, µ, ν) ∈ Λ2,r,t, define

(i) wµ,ν = wµwνo , with νo = (ν(2), ν(1)), wµ = d(tµ) ∈ Sr−f and wνo =
d(tνo) ∈ St−f ,

(ii) vλ,t,d,κd
= vλe

fwµ,νyµ′y(νo)′d(t)dx
κd , t ∈ T s(µ′) × T s((νo)′), d ∈ Df

r,t and
κd ∈ Nf .

Theorem 30. Suppose r + t ≤ min{m,n}.

(i) There is a bijection between the set of dominant weights of M rt
pq and Λ2,r,t.

(ii) If λ = (f, µ, ν) ∈ Λ2,r,t, then Vλ, the C-space of all g-highest weight vectors

of Mrt
pq with highest weight λ, has a basis

S := {vλ,t,d,κd
| t ∈ T s(µ′)× T s((νo)′), d ∈ Df

r,t, κd ∈ Nf}.

Proof. Obviously, (i) follows from Lemma 12. To obtain (ii), we prove that for
each λ = (f, µ, ν) ∈ Λ2,r,t, Vλ has the required basis in the case either f = 0 or
f > 0.

Case 1 : f = 0.
By Definition 14, vλ,t,d,κd

= vi⊗ vpq ⊗ vjwµyµ′d(t1)wνoy(νo)′d(t2), where i, j are
defined in Definition 13. By Theorem 22, vi ⊗ vpq ⊗ vjwµyµ′d(t1) can be regarded
as a g-highest weight vector of M r0

pq . Similarly, vi ⊗ vpq ⊗ vjwνoy(νo)′d(t2) can

be regarded as a g-highest weight vector of M 0t
pq . Thus, vλ,t,d,κd

is a g-highest
weight vector of M rt

pq . The last assertion follows from arguments on counting the
dimensions of Vλ and that of g0-highest weight vectors of V

rt := V ⊗r ⊗W⊗t with
highest weight µ− ν̂.

Case 2 : f > 0.
For any i ∈ I ,

vi ⊗ vie1 = (−1)[i]
∑
j∈I

vj ⊗ vj .

Thus vi ⊗ vie1 is unique up to a sign for different i’s. Since M rt
pq is a (g,B2,r,t)-

bimodule, we can switch vir−k
and vjt−k

in vλ with ir−k = jt−k to vo and vo for
any fixed o, 1 ≤ o ≤ m+ n simultaneously when we consider the action of Ej,` on
ir−kth (respectively jt−kth) tensor factor of vλ,t,d,κd

for 0 ≤ k ≤ f − 1. Let vt be

vir−f
⊗···⊗vi1⊗vpq⊗vj1⊗···⊗vjt−f

wµ,νxα(2)yα(1)yβ(1)xβ(2)πr−f−a(−p)πb(q)d(t), (78)

where α(i) (respectively β(i)) is the conjugate of µ(i) (respectively ν(i)), i = 1, 2.
Applying Theorem 22 to both V ⊗r−f ⊗Kλpq

and Kλpq
⊗W⊗t−f yields Ej,`vt = 0.

So, Ej,`vλ,t,d,κd
= 0 for any j < `.

We claim that S is linear independent, where S is given in (ii). If so, each
vλ,t,d,κd

6= 0, forcing vλ,t,d,κd
to be a g-highest weight vector of M rt

pq with highest

weight λ.
Suppose i ∈ I(m|n, r1 − 1) and j ∈ I(m|n, t1 − 1) with r1 ≤ r and t1 ≤ t such

that there are at least some k0 ∈ I0 and `0 ∈ I1 satisfying k0, `0 6∈ {il, jo} for all
possible i, o’s. We consider

∑
k∈I vk ⊗ vi ⊗ v ⊗ vj ⊗ vk ∈ Mr1,t1

pq , where v ∈ B is
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a basis element of Kλpq
in (43). Since x′

r1
= xr1 + Lr1 and x′

r1
acts on M r1,t1

pq as
−πr1,0(Ω), where Ω is given in (47), we have

∑
k∈I

vk ⊗ vi ⊗ v ⊗ vj ⊗ vk(xr1 + Lr1)

= −πr1,0(Ω)
∑
k∈I

vk ⊗ vi ⊗ v ⊗ vj ⊗ vk

= −
∑

k,i∈I

(−1)[k]+([k]+[i])([k]+[i])vi ⊗ vi ⊗Ek,iv ⊗ vj ⊗ vk,

where [i] =
∑r1−1

j=1 [ij ]. So, up to some scalar a,
∑m+n

k=1 vk ⊗ vi ⊗ v ⊗ vj ⊗ vkxr1

contains the unique term vk0 ⊗vi⊗v⊗vj⊗vk0 . In particular, if v 6= vpq ,
∑

k∈I vk⊗
vi⊗v⊗vj⊗vkxr1 does not contribute terms with form vk0⊗vi′⊗vpq⊗vj′⊗vk0 for all
possible i′ and j′. If v = vpq , by Lemma 21, the previous scalar is −p. Similarly, the
coefficient of v`0⊗vi⊗vpq⊗vj⊗v`0 in the expression of

∑
k∈I vk⊗vi⊗v⊗vj⊗vkxr1

is −q. Assume

c
∑
k∈I

vk ⊗ vi ⊗ vpq ⊗ vj ⊗ vkxr1 + d
∑
k∈I

vk ⊗ vi ⊗ vpq ⊗ vj ⊗ vk = 0 (79)

for some c, d ∈ C. Then d = cp = cq by considering the coefficients of vk ⊗ vi ⊗
vpq⊗vj⊗vk, k ∈ {k0, `0} in the expression of LHS of (79). If c 6= 0, then p−q = 0.
This is a contradiction since λpq is typical in the sense of (41). So, c = d = 0 and
hence

∑
k∈I vk ⊗ vi ⊗ vpq ⊗ vj ⊗ vkxr1 and

∑
k∈I vk ⊗ vi ⊗ vpq ⊗ vj ⊗ vk are linear

independent. Now, we assume

∑
t,d,κd

rt,d,κd
vλ,t,d,κd

= 0 for some rt,d,κd
∈ C. (80)

We claim that rt,d,κd
= 0 for all possible t, d, κd. If not, then we pick up a d ∈ Df

r,t

such that

(i) rt,d,κd
6= 0,

(ii) d = sr−f+1,ir−f+1
st−f+1,jt−f+1

· · ·sr,irst,jt and ir > ir−1 > · · · > ir−f+1,
(iii) (ir, . . . , ir−f+1) is maximal with respect to lexicographic order.

Since r + t ≤ min{m,n} and 0 < f ≤ min{r, t}, we can pick f pairs (ki, `i),
r − f + 1 ≤ i ≤ r such that

(i) ki ∈ I0, `i ∈ I1, ki > kj and `i > `j if i > j;
(ii) both vki

and v`i are not a tensor factor of viµ ;
(iii) both vki

and v`i are not a tensor factor of vj and j = (jv(2) , jν(1) ).

We consider the terms va ⊗ vpq ⊗ vb’s in the expressions of vλ,t,d,κd
’s in the left-

hand side of (80) with rt,d,κd
6= 0 such that either vaih

= vkh
and vbit−r+h

= vkh

or vaih
= v`h and vbit−r+h

= v`h for r − f + 1 ≤ h ≤ r. Such terms occur in

the expression of v⊗f
1 ⊗ ṽt ⊗ v⊗f

1 efdxκd , where ṽt is a linear combination of the
terms in vt’s (cf. (78)) with forms vi′ ⊗ vpq ⊗ vj′ . If vah

= vkh
and vbit−r+h

= vkh
,

by previous arguments, the coefficient of va ⊗ vpq ⊗ vb in v⊗f
1 ⊗ vt ⊗ v⊗f

1 efdxκd

1134



SINGULAR VECTORS OF (MIXED) TENSOR PRODUCTS

is
∏r−f+1

h=r (−p)εh , where εh = 1 if κh = 1 and 0 if κh = 0. If vah
= v`h and

vbit−r+h
= v`h , then the coefficient of va ⊗ vpq ⊗ vb in v⊗f

1 ⊗ ṽt ⊗ v⊗f
1 efdxκd is

∏r−f+1
h=r (−q)εh , where εh = 1 if κh = 1 and 0 if κh = 0. By (80),

∑
t rt,d,κd

ṽt = 0
for any fixed κd. Thus, we can assume that κd = (0, · · · , 0) ∈ Nf . If we identify
ṽt with its vpq-component, then ṽt can be considered as g0-highest weight vectors
of V ⊗r−f ⊗W⊗t−f (cf. arguments in the proof of Theorem 22) of the form

ṽt = vir−f
⊗ · · · vi1 ⊗ vj1 ⊗ · · · vjt−f

wµ,νxα(2)yα(1)yβ(1)xβ(2)d(t).

So, rt,d,κd
=0, a contradiction. This proves that S is C-linear independent. Fur-

ther, S is a basis of Vλ since the cardinality of S is 2f |Df
r,t| · |T

s(µ′)| · |T s(ν′)|,
which is the dimension of space consisting of g0-highest weight vectors of V

rt with
highest weight µ−ν̂. �

Definition 15. Let F = HomU(g)(?,M
rt
pq) be the functor from the category of

finite-dimensional left g-modules to the category of right B2,r,t-modules over C.

Lemma 31. The functor F is exact.

Proof. In the category of finite-dimensional glm|n-modules, a module is injective
if and only if it is tilting if and only if it is projective (e.g., [6, IV]). Since λpq is
typical, Kλpq

is injective, and hence M rt
pq is injective as a left g-module. So, F is

exact. �

Proposition 32. Suppose λ = (f, µ, ν) ∈ Λ2,r,t. Then F(Kλ)
∼= C(f, µ′, (νo)′),

where νo = (ν(2), ν(1)).

Proof. By Proposition 14, there is an explicit linear isomorphism between
C(f, µ′, (νo)′) and Vλ, where Vλ is given in Theorem 30. By Proposition 23 and [23,
Prop. 6.10], this linear isomorphism is a B2,r,t-homomorphism. Thus, C(f, µ′,(νo)′)
∼= Vλ as right B2,r,t-modules. Using the universal property of Kac-modules yields
HomU(g)(Kλ,M

rt
pq)

∼= Vλ as B2,r,t–modules (cf. the proof of Corollary 24). Now,
everything is clear. �

In the remaining part of this section, we calculate decomposition matrices of
B2,r,t. We always assume that p ∈ Z. Otherwise, one can use x1+p1 instead of x1

for any p1 ∈ C with p−p1 ∈ Z. Since λ is typical, we have p−q 6∈ Z or p−q ≤ −m
or p− q ≥ n. In the first case, by [23, Thm. 5.21], B2,r,t is semisimple and hence
its decomposition matrix is the identity matrix. We assume that p − q ≤ −m. If
p − q ≥ n, one can switch the roles between p and q (or by considering the dual
module of Mrt

pq) in the following arguments. Since M rt
pq is a tilting module, it can

be decomposed into the direct sum of indecomposable tilting modules

Mrt
pq =

⊕
ξ∈P+

T
⊕`ξ
µ for some `ξ ∈ N. (81)

In the remaining part of this paper, we denote T to be the following finite subset
of P+:

T := {ξ ∈ P+ | `ξ 6= 0}. (82)
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Suppose λ = (f, µ, ν) ∈ Λ2,r,t. Let λ = λpq + λ̃ = λpq +µ− ν̂ be as in Definition
12. Denote by Tλ the indecomposable tilting module, which is the projective cover

of Lλ, where Lλ is the simple g-module with highest weight λ. It is known that Tλ

has filtrations of Kac-modules. Let K
λ
top be the unique bottom of Tλ. Then Lλ

is the simple g-module of K
λ
top . Further, λ

top
is the dominant weight defined in

Definition 11 (i). Note that any dominant weight especially λ
top

can be uniquely
written as (cf. (76) for notation τ̂ )

λ
top

=λpq+ε−τ̂ , where ε=(ε1, ..., εk1 , 0, ..., 0 |εm+1, ..., εm+`1 , 0, ..., 0)∈P+,

τ=(τ1, ..., τk2 , 0, ..., 0 | τm+1, ..., τm+`2 , 0, ..., 0)∈P+,
(83)

for some εi, τj ∈ Z
>0 and k1, k2, `1, `2 ∈ Z

≥0 with k1 + k2 ≤ m, `1 + `2 ≤ n.
Denote |ε| :=

∑
i εi, |τ | :=

∑
i τi. Obviously r+ t = |ε|+ |τ |. Denote g = r− |ε| =

t − |τ |, and set λtop = (g, ε, τ). Thus λtop ∈ Λ2,r,t if and only if g ≥ 0. For any
λ = (f, µ, ν) ∈ Λ2,r,t, we define λ′ = (f, µ′, (νo)′) ∈ Λ2,r,t, where νo is defined as
in Definition 14 (i) and µ′, (νo)′ are conjugates of µ, νo, respectively.

Now parallel to Corollary 26, we have the following.

Lemma 33. Let λ = (f, µ, ν) ∈ Λ2,r,t such that λtop ∈ Λ2,r,t and (λtop)′ is

Kleshchev (cf. statements after (36)). Then Tλ is a direct summand of M rt
pq.

Proof. First we clarify some notations: by Definition 12, any λ = (f, µ, ν) ∈
Λ2,r,t corresponds to a unique dominant weight λ, thus corresponds to a unique
dominant weight λtop by Definition 11 (i). We claim that Tλ is a direct summand
in Mr−f,t−f

pq . If so, then

vf1 ⊗ Tλ ⊗ vf1 e
f

is obviously a tilting submodule in M rt
pq which is isomorphic to Tλ. Thus the claim

implies the result. Therefore, it suffices to consider the case f = 0.
Denote ν = λpq − ν̂. Since we assume p ≤ q − m, the weight diagram Dν

(cf. Definition 10) of ν is obtained from that of λpq in (62) by moving the “> ”

at vertex p − i + 1 to its left side at vertex p − i + 1 − ν
(1)
m−i+1 for each i with

1 ≤ i ≤ m, and moving the “< ” at vertex q − m + j to its right side at vertex

q − m + j + ν
(2)
n−j+1 for each j with 1 ≤ j ≤ n (cf. (76)). Thus no “× ” can

be produced, i.e., ν is typical. Hence Kν is a direct summand in M0t
pq . Thus, it

suffices to prove that Tλ is a direct summand in V ⊗r ⊗Kν nMrt
pq, where n means

direct summand of M rt
pq. For this, we can apply [6, IV, Lems. 2.4 and 2.6]. Note

from [6, IV, Lem. 2.4] that the action of the functor Fi on Kν defined in [6, IV]
only depends on symbols at vertices i and i + 1 of the weight diagram Dν of ν
(we remark that symbols ◦,∧,∨,× in [6, IV] are respectively symbols <,×,∅, >
in this paper). Due to condition (77), for any i ∈ Ipq := I+pq \ {q −m + n} such
that i is involved in a path in the crystal graph in [6, IV, Lemma 2.6], the symbols
at vertex i and i+ 1 in the weight diagram Dν of ν are the same as those in the
weight diagram D∅ of λpq . This shows that Tλ is a direct summand in V ⊗r ⊗Kν

if and only if Tλpq+µ̃ is a direct summand in V ⊗r ⊗Kλpq
; more precisely, [6, IV,

Lem. 2.6] implies

Fir · · ·Fi1Kν
∼= T⊗2`

λ
⇐⇒ Fir · · ·Fi1Kλpq

∼= T⊗2`

λpq+µ̃,
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where ` is the number of edges in the given path of the form ∅× → <>. Thus
the result follows from Corollary 26. �

We remark that there is a bijection between T defined in (82) and the set of
pair-wise non-isomorphic simple B2,r,t-modules. See [23, Thm. 7.5]. For any ξ ∈ T

as above, parallel to Definition 11, we define ξtop to be the unique dominant weight
such that Lξ is the simple submodule of Kξtop . To avoid confusion of notations,
we emphasis that ξ ∈ T is not an element in Λ2,r,t, but a dominant weight in P+

(thus in fact, ξ = λ for some λ ∈ Λ2,r,t by Lemma 29).

Proposition 34. For any ξ ∈ T, there is a unique λ = (f, µ, ν) ∈ Λ2,r,t such

that ξtop = λpq + µ − ν̂ (i.e., ξtop = λ by Definition 12). Further, F(Tξ) is

isomorphic to the projective cover of Df,µ′,(νo)′ , where Df,µ′,(νo)′ is the simple

head of C(f, µ′, (νo)′).

Proof. If ξ ∈ T, then Tξ is an indecomposable tilting module with `ξ > 0. By The-
orem 16, F(Tξ) is a direct sum of certain principle indecomposable right B2,r,t-
modules. We claim that F(Tξ) is indecomposable for any ξ ∈ T. Otherwise,∑

ξ∈T
`ξ is strictly less than the number of principal indecomposable direct sum-

mands of right B2,r,t-module B2,r,t. However, for each principal indecomposable
direct summand P of left B2,r,t-module B2,r,t, P has to be a projective cover
of irreducible left B2,r,t-module, say D, which is the simple head of a left cell
module, say ∆(`, α, β) for some (`, α, β) ∈ Λ2,r,t, where ∆(`, α, β) is defined via a
weakly cellular basis of B2,r,t. So, there is an epimorphism from P to ∆(`, α, β).
Since G := M rt

pq⊗B2,r,t? is right exact, there is an epimorphism from G(P ) to
G(∆(`, α, β)). If G(∆(`, α, β)) 6= 0, then G(P ) is a non-zero direct summand
of Mrt

pq. This implies that the number of indecomposable direct summands of
left B2,r,t-module B2,r,t is strictly less than

∑
ξ∈T

`ξ. This is a contradiction
since the number of principal indecomposable direct summands of left B2,r,t-
module B2,r,t is equal to that of right B2,r,t-module B2,r,t. So, F(Tξ) is inde-
composable. Since Kξtop ↪→ Tξ, we have F(Tξ) � F(Kξtop). By Proposition 32,
F(Kξtop) ∼= C(f, µ′, (νo)′). Thus, C(f, µ′, (νo)′) has the simple head, denoted by

Df,µ′,(νo)′ , and hence F(Tξ) = P f,µ′,(νo)′ . Since ξ ∈ T, by Lemma 33, both µ′ and
(νo)′ are Kleshchev in the sense of (36) with respect to −p,m− q and q, p− n.

It remains to prove G(∆(`, α, βo)) 6= 0 for any δ := (`, α, β) ∈ Λ2,r,t. By Theo-
rem 30, Vδ contains a non-zero vector v := v⊗`

1 ⊗vi⊗vpq⊗vj⊗v⊗`
1 efwα,βyα′y(βo)′ ,

where i and j are defined as in Definition 13. So, it is enough to show v ∈
G(∆(`, α, βo)), where ∆(`, α, βo) is defined via a suitable weakly cellular basis of
B2,r,t. We use cellular bases of H2,r−f and H2,t−f in Lemma 10 (i) (iii) to con-
struct a weakly cellular basis of B2,r,t, which is similar to that in Theorem 12. Let
∆(`, α, βo) be the corresponding left cell module with respect to (`, α, βo) ∈ Λ2,r,t.
By arguments similar to those for the proof of Proposition 14, one can verify

∆(`, α, βo) ∼= B2,r,te
f xαxβowα,βyα′y(βo)′ (mod B

`+1
2,r,t).

Let M = ṽB2,r,t be the cyclic B2,r,t-module generated by ṽ := v⊗`
1 ⊗vi⊗vpq⊗vj⊗

v⊗`
1 . Then M ⊗B2,r,t ∆(`, α, βo) is a subspace of G(∆(`, α, βo)). Since B

`+1
2,r,t acts

on M trivially, there is a C-linear map φ : M ⊗B2,r,t ∆(`, α, βo) → M such that
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φ(m ⊗ h) = mh for any h ∈ B2,r,te
f xαxβowα,βyα′y(βo)′ (mod B

`+1
2,r,t). Since λpq is

typical and the ground filed is C, up to a non-zero scalar, we have v = φ(ṽ ⊗ h) ,
where h ≡ efwα,βyα′y(βo)′ (mod B

`+1
2,r,t). Thus, G(∆(`, α, βo)) 6= 0. �

Remark 4. Proposition 34 implies that C(f, µ, ν) has the simple head if µ and ν
are Kleshchev bipartitions with respect to −p,m − q and q, p − n in the sense of
(36). Further, all non-isomorphic simple B2,r,t-modules can be realized in this
way.

Proposition 35. Suppose ξ ∈ P+. Then F(Lξ) = 0 if ξ 6∈ T (cf. (82)) and

F(Lξ) ∼= Df,µ′,(νo)′ if ξ ∈ T, where ξtop = λpq + µ− ν̂ with (f, µ, ν) ∈ Λ2,r,t.

Proof. By (81), F(Lξ)=
⊕

ζ∈T
Homg(Lξ, T

⊗`ζ
ζ ). Suppose 0 6=f ∈HomU(g)(Lξ , T

⊕`ζ
ζ ).

Then Lξ
∼= f(Lξ) is a simple submodule of T

⊕`ζ
ζ . Since Tζ has the unique simple

submodule Lζ , F(Lξ) = 0 if ξ /∈ T. If ξ ∈ T, then

F(Lξ) = HomU(g)(Lξ, T
⊕`ξ
ξ ), (84)

which is obviously `ξ-dimensional. Let v1ξ , . . . , v
`ξ
ξ ∈ T

⊕`ξ
ξ be the generators of the

tilting module T
⊕`ξ
ξ (then v1ξ , . . . , v

`ξ
ξ span the generating space, denoted V , of

T
⊕`ξ
ξ ), and v′1ξ , . . . , v

′`ξ
ξ ∈ L

⊕`ξ
ξ , the corresponding generators of the submodule

L
⊕`ξ
ξ of T

⊕`ξ
ξ . Thus, there exists a unique u ∈ U(g) such that

v′iξ = uviξ for i = 1, . . . , `ξ. (85)

Let ṽξ ∈ Lξ be the generator of the simple module Lξ. As in the proof of Corollary

27, we can define f i : Lξ → T
⊕`ξ
ξ to be the U(g)-homomorphism sending ṽξ to v′iξ

for i = 1, . . . , `ξ. Then (f1, . . . , f `ξ) is obviously a basis of F(Lξ) (cf. (84)).
For any A ∈ M`ξ (the algebra of `ξ × `ξ complex matrices), we can define an

element φA ∈ EndU(g)(M
rt
pq)

op = B2,r,t as follows: φA|
T

⊕`ζ

ζ

= 0 if ζ 6= ξ and

φA

∣∣
T

⊕`ξ

ξ

: (v1ξ , . . . , v
`ξ
ξ ) 7→ (v1ξ , . . . , v

`ξ
ξ )A, (86)

where the right-hand side is regarded as vector-matrix multiplication, i.e., the

transition matrix of the action of φA|
T

⊕`ξ

ξ

on the generating spaceV of T
⊕`ξ
ξ under

the basis (v1ξ , . . . , v
`ξ
ξ ) is A. By the universal property of projective modules, this

uniquely defines an element φA ∈ B2,r,t. Thus we have the embedding φ : M`ξ →

B2,r,t sending A to φA. Write A as A = (aij)
`ξ
i,j=1. Then by (86) and definition of

the right action of B2,r,t on Mrt
pq, we have

f i(ṽξ)φA = v′iξ φA = (uviξ)φA = u(viξφA)

= u
`ξ∑
j=1

ajiv
j
ξ =

`ξ∑
j=1

ajiv
′j
ξ =

( `ξ∑
j=1

ajif
j
)
(ṽξ),

(87)

i.e., the transition matrix of the action of φA on F(Lξ) under the basis (f
1, . . . , f `ξ)

is A. Thus φ(M`ξ) acts transitively on the `ξ-dimensional space F(Lξ) and hence
F(Lξ) is a simple B2,r,t-module. Finally, since Lξ ↪→ Kξtop , we have F(Kξtop) �

F(Lξ). Note that Df,µ′,(νo)′ is the simple head of F(Kξtop). Thus, F(Lξ) ∼=

Df,µ′,(νo)′ . �
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Theorem 36. Suppose (f, α, β) ∈ Λ2,r,t such that there is a λ ∈ T (cf. (82))

satisfying λtop = λpq + α − β̂. If µ := (`, γ, δ) ∈ Λ2,r,t, then [C(`, γ′, (δo)′) :

Df,α′,(βo)′ ] = (Tλ : Kµ).

Proof. The result follows from Lemma 31, Propositions 32 and 35, together with
the BGG reciprocity formula for g. �
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