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Abstract. In this paper, a notion of cyclotomic (or level k) walled Brauer algebras
By, vt is introduced for arbitrary positive integer k. It is proven that %y, ., is free over
a commutative ring with rank k™! (r + ¢t)! if and only if it is admissible. Using super
Schur—Weyl duality between general linear Lie superalgebras g[m|n and %o ¢, we give
a classification of highest weight vectors of gl,;,|,,-modules M;;é, the tensor products of
Kac-modules with mixed tensor products of the natural module and its dual. This en-
ables us to establish an explicit relationship between g[m|n-Kac-modules and right cell
(or standard) %3 , ¢-modules over C. Further, we find an explicit relationship between
indecomposable tilting g[m‘n-modules appearing in M;é, and principal indecomposable
right %s ;. ;-modules via the notion of Kleshchev bipartitions. As an application, decom-
position numbers of %5 ;.; arising from super Schur-Weyl duality are determined.

Introduction

Motivated by Brundan—Stroppel’s work on higher super Schur—Weyl duality in
[6], we introduced affine walled Brauer algebras ,%?ftf in [23] so as to establish
higher super Schur-Weyl duality on the tensor product M ;é of a Kac-module with
a mixed tensor product of the natural module and its dual for general linear Lie
superalgebra gl,,,, over C under the assumption r +¢ < min{m,n} (after we
finished [23], Professor Stroppel informed us that Sartori defined affine walled al-
gebras via affine walled Brauer category, independently in [24]). One of purposes of
this paper is to generalize super Schur—Weyl duality to the case r+t > min{m,n}.
For this aim, we need to establish a bijective map from a level two walled Brauer
algebra s, appearing in [23] to a level two degenerate Hecke algebra .75 ;1.
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This can be done by showing that the dimension of s ., is 2" (r + t)! over C.
We consider this problem in a general setting by introducing a cyclotomic (or level
k) walled Brauer algebra %y ., for arbitrary k € Z>°. By employing a totally
new method, which is independent of seminormal forms of %, ..+, we prove that
By,.rt is free over a commutative ring R with rank " t(r + ¢)! if and only if it
is admissible in the sense of Definition 2. It is expected that %y ,; can be used
to study the problem on a classification of finite dimensional simple ,%’iftf—modules
over an algebraically closed field. Details will be given elsewhere.

The establishment of the higher super Schur-Weyl duality [23] enables us to
use the representation theory of %5 ,; to classify highest weight vectors of M;é
(at this point, we would like to mention that purely on the Lie superalgebra side,
it seems to be hard to construct highest weight vectors of a given module, which
is an interesting problem in its own right). On the other hand, a classification
of highest weight vectors of M;; also enables us to relate the category of finite
dimensional g[m‘n—modules with that of % .+, which in turn gives us an efficient
way to calculate decomposition numbers of %y, (cf. [22] for quantum walled
Brauer algebras). This is the main motivation of this paper. We explain some
details below.

It is proven in [23] that EndU(g[mm)(M;;)OP = Borye if v+t < min{m,n}.
Since there is a bijection between the dominant weights of M;é and the poset
Ao ¢ in (33), and since s, is a weakly cellular algebra over As ¢ in the sense
of [12], it is very natural to ask the following problem: whether a C-space of Ol -
highest weight vectors of M;; with a fixed highest weight is isomorphic to a cell
(or standard) module of %y ;.

We give an affirmative answer to the problem. In sharp contrast to the Lie
algebra case, due to the existence of the parity of gl,,,, (see, e.g., [4], [25]), the
known weakly cellular basis of %z, in [23] cannot be directly used to establish
a relationship between gl,,|,,-highest weight vectors of M;; and right cell modules
of %sr+. One has to find new cellular bases of level two Hecke algebra .75,
which are different from those in [3]. These new cellular bases of 4% ,, which
relate both trivial and signed representations of symmetric groups, are used to
construct a new weakly cellular basis of %5, ;. Motivated by explicit descriptions
of bases of right cell modules for %5 .+, we construct and classify gl,,,,-highest
weight vectors of M;;. This leads to a %, ;-module isomorphism between each
C-space of gl,,,,-highest weight vectors of M;; with a fixed highest weight and
the corresponding cell module of %, ;. Based on the above, we are able to
construct a suitable exact functor sending gl,,,,-Kac-modules to right cell modules
of %, . This functor also sends an indecomposable tilting module appearing in
M;; to a principal indecomposable right %5 ;. :-module indexed by a pair of so-
called Kleshchev bipartitions in the sense of (36). It gives us an efficient way to
calculate decomposition numbers of %s ,; via Brundan—Stroppel’s result [6] on
the multiplicity of a Kac-module in an indecomposable tilting module appearing
in M;é.

Finally, we would like to say that our method can be used to deal with level &
walled Brauer algebras with & > 2. In this case, if we consider parabolic subalge-
bras ®F_gl,,. of gl, with Zle m; =n and k > 2 (for k = 2, see [24]), the level



SINGULAR VECTORS OF (MIXED) TENSOR PRODUCTS 1109

k-walled Brauer algebras with some special parameters will appear. This gives rise
to certain relationships between the category of modules for level k-walled Brauer
algebras and the parabolic category O(gl,,). We will use the representation theory
of level k-walled Brauer algebras (see Remark 2) to classify highest weight vectors
of certain tensor modules and hence to use the value at ¢ = 1 of certain parabolic
inverse Kazhdan—Lusztig polynomials, namely, the multiplicities of simple modules
in parabolic Verma modules, to compute the decomposition matrices of such level
k walled Brauer algebras. Details will appear in the sequel.

We organize the paper as follows. In section 1, after recalling the definition of
%’fftf over a commutative ring R, we introduce cyclotomic walled Brauer algebras
Byt = L%’;'?ftf /I for arbitrary k € Z>°, where I is the two-sided ideal of c%’f}ftf
generated by two cyclotomic polynomials f (z1) and g(z1) of degree k, which satisty
(6)—(8). When #2 is admissible in the sense of Definition 2, we describe explicitly
an R-basis of I. This enables us to prove that %, is free over R with rank
k™t (r+¢)!if and only if it is admissible. In section 2, we construct cellular bases of
% » and use them to construct a weakly cellular basis of %5 ;. ;. In section 3, higher
super Schur—Weyl dualities in [23] are generalized to the case r+t > min{m,n}. In
sections 4-5, we classify highest weight vectors of M ;g and M;é' Based on this, we
establish an explicit relationship between indecomposable tilting (respectively Kac)
modules for gl,,,, and principal indecomposable (respectively cell) right %s ;.-
modules via a suitable exact functor. This gives us an efficient way to calculate
decomposition numbers of %s ., arising from the super Schur—Weyl duality in [23].

1. Affine walled Brauer algebras and their cyclotomic quotients

Throughout, we assume that R is a commutative ring containing = {w, | a € N}
and identity 1. In this section, we introduce a level k walled Brauer algebra %y, ,
and prove that %y, is free over R with rank k"t(r + ¢)! if and only if By .,
is admissible in the sense of Definition 2. First, we briefly recall the definition of
walled Brauer algebras.

Fix r,t € Z7° A walled (r,t)-Braver diagram (or simply, a walled Brauer
diagram) is a diagram with (r+t) vertices on top and bottom rows, and vertices
on both rows are labeled from left to right by r,...,2,1,1,2,...,t, such that every
ie{r,...,2,1} (respectively, i € {1,2,...,t}) on each row is connected to a unique
J (respectively, j) on the same row or a unique j (respectively, j) on the other row.
Thus there are four types of pairs [i,j], [¢, ], [¢,] and [i,j]. The pairs [¢, j] and
[i, 7] are vertical edges, and [i, j] and [¢, j] are horizontal edges.

The product of two walled Brauer diagrams D; and Ds can be defined via
concatenation. Putting D; above D5 and connecting each vertex on the bottom
row of D; to the corresponding vertex on the top row of Dy yields a diagram
Dy o Do, called the concatenation of Dy and Dy. Removing all circles of Dy o Dy
yields a unique walled Brauer diagram, denoted D3. Let n be the number of circles
appearing in DjoDy. Then the product D D5 is defined to be wg D3, where wy is a
fixed element in R. The walled Brauer algebra [19], [28], [21] Byt := PBr(wo) with
defining parameter wq is the associative R-algebra spanned by all walled Brauer
diagrams with product defined in this way.

Let &, (respectively &) be the symmetric group in r (respectively t) letters
r,...,2,1 (respectively 1,2,...,t). It is known that %, ; contains two subalgebras
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which are isomorphic to the group algebras of &, and &y, respectively. More
explicitly, the walled Brauer diagram s; whose edges are of forms [k, k] and [k, k|
except two vertical edges [i,i + 1] and [¢ + 1,4] can be identified with the basic
transposition (i,4+ 1) € &,., which switches ¢ and ¢+ 1 and fixes others. Similarly,
there is a walled Brauer diagram s; corresponding to (7,7 + 1) € &;. Let e; be
the walled Brauer diagram whose edges are of forms [k, k] and [k, k] except two
horizontal edges [1,1] on the top and bottom rows. Then %, is the R-algebra
[21] generated by ey, s;, s; for 1 <i¢<r—1,1<j <t—1such that s;’s, s;’s are
distinguished generators of &, x &; and

e? = wopel, e1sie1 = e1 = ejs1€1, Si€] = e18;, S;je1 = €15, (i,j # 1)7 (1)
€158181€181 — €1S5151€181, S1€15181€1 = S1€15181€1.

Let 2 be the degenerate affine Hecke algebra [11]. As a free R-module, it
is the tensor product Rlyi,y2,...,yn] ® RS, of a polynomial algebra with the
group algebra of &,,. The multiplication is defined so that R[yi,y2,...,yn] =
Rly1,92,...,yn) ® 1 and RS,, = 1 ® RG,, are subalgebras and s;y; = y;s; if
jF#i i+ 1and sy = yir18, — 1, 1 <i<n-—1.

Recall that R contains 1 and 2 = {w, € R | a € N}. The affine walled
Brauer algebra 225 (2) (which is @\M in [23, §4]) with respect to the defining
parameters w,’s have been defined via generators and 26 defining relations [23,
Def. 2.7]. It follows from [23, Thm. 4.15] that ,@?ftf(ﬂ) can be also defined in a
simpler way as follows: it is an associative R-algebra generated by e1, x1, 21, s, S;
for 1 <i<r—1,1<j<t—1,suchthat ey, s;’s, s;’s are generators of %, ; with
defining parameter wg, and as a free R-module,

B8 (Q) = Rlx,] © By, @ R[], (2)
the tensor product of the walled Brauer algebra 2, ; with two polynomial algebras
R[x,] := R[x1,22,...,2r], and R[xy] := R[x1,22,..., 2.

The multiplication of 2% (£2) is defined such that R[x,] ® 1 ® 1, 1 ® 1 ® R[x,],
1® %+ ®1, Rx,]® RS, ®1 and 1 ® RS; ® R[x,| are subalgebras isomorphic
to R[x,], R[x.], B, 7, and ! respectively, and (for simplicity, without
confusion we identify elements z; 1 ®1, 105,01, 106,01, 1®s;,®1, 11Qz;
in (2) with x;, s;, e;, $;, x; respectively)

er(z1 +x1)=(z1 +z1)e1=0, sie1s121=m151€181, $S1€181T1=x151€151, (3)

8;x1 = X158, Siw1 = 185, wi(er +x1) = (e1 + @)1, (4)

>
elx]fel = wyeq, elzz:]fel = wrer Vk e 220, (5)

where w,’s are determined by [23, Cor. 4.3]. If w,’s do not satisfy [23, Cor. 4.3],
and if R is a field, then e; = 0 and 227 () turns out to be T @ 7.

We remark that the isomorphism R[x,]® RS, ®1 = s sends 1 ® s; @ 1
(respectively 1 ® 1®1) to s; (respectively —y1), and the isomorphism 1 ® R&; ®
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R[x,] = " sends 1 ® s; @ 1 (respectively 1 ® 1 ® 1) to s; (respectively —yi).
SO7 Ti4+1 = 8T8 — S4 and Tj41 = S5L585 — S5 and Yi+1 = SiYiSi + 8; if all of them
make sense.

For the simplification of notation, we denote 22 (Q) by %%, Fix ui,us,.. .,
uj, € R for some k € Z>°. Let f(z1) € #2T be such that

£ = o1 = ), ©)

By [23, Lem. 4.2] (or using (3)—(4)), there is a monic polynomial g(x1) € R[z]
with degree k such that

erf(z1) = (—1)*erg(a1). (7)
If R is an algebraically closed field, then there are ui,us,...,ur € R such that

g(z1) = [ (21 — uy). (8)

e

i=1

Definition 1. Let R be a commutative ring containing 1, Q = {w, € R | a € N},
and u;, u;, 1 < i < k. The cyclotomic (or level k) walled Brauer algebra %y, , ¢ is
the quotient algebra %% /I, where I is the two-sided ideal of %fftf generated by

f(z1) and g(z1) satisfying (6)—(8).
If £ =1, then By, is B, with defining parameter wy. For some special

Ui, Wi, © = 1,2, HBory is the level two walled Brauer algebras arising from super
Schur—-Weyl duality in [23].

Lemma 1. Let flz1) be given in (6). Write flx1) = xF + 2?21 a;zh"". Then e;
is an R-torsion element of By, ,+ unless

we = —(a1we—1 + - - arwe—y) for all £ > k. 9)

Proof. Let by = wg 4+ ajwe—1 + -+ + agwe—i, € R. By (5), beer = elf(ajl)xf_kel in
,%’f‘ftf and bee; = 0 in By, +. Thus, e; is an R-torsion element if by # 0 for some
(>k 0O

Definition 2. The algebras #2% and %y, are called admissible if (9) holds.

Lemma 2. Assume f(x1), g(x1) € ﬂ?ftf satisfying (6)—(8) . If ,%?ftf is admissible,
then

(i) erflzr)zfer =0 for all a € N;

(ii) e1g(xz1)xfer =0 for all a € N.
Proof. (i) is trivial since 2 is admissible. It is proven in [23] that there is an

R-linear anti-involution o on %ﬁff, which fixes all generators of ,@f}ff Applying o
on [23, Lem. 4.2] yields

k )
:z:’fel = Y agziel1, for some ar,; € R.

=0

So, (ii) follows from (7) and (i), immediately. O
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Denote Si,j = SiSi+1 " Sj—1 if 1 < 7, and 1if 7 = 7, and $;_18;_9 - S; if ¢ > 7.
Denote s; ; € 6; similarly. Let e; ; be the walled Brauer diagram such that each
vertical edge of e; ; is of form [k, k] or [k, k] and the horizontal edges on the top
and bottom rows of e; ; are [i,j]. Then

€ij = S;15i,1€151,i51,; fori,j with1 <i<rand1<j<t. (10)
For each nonnegative integer f < min{r, ¢}, let
ef =ejex---ep for f >0 and e® = 1, where ¢; = e; ;. (11)

Set
‘@ﬂit = {Sf,ifsf,jf ©t 081,01 51,5; |1§11< <Zf <, kg]k} (12)
Definition 3. For a = (ay,...,0;) € N" and 8 = (81,...,0) € N, let % =

[T, a5, of = H;:1 a:fj Let M be a subset of 22T given by

min{m,n}
M= U {a*ctefwda®|(a,f)eN" x Nt e,de ], we&,_; x &,_;}. (13)
f=0

Elements of M are called regular monomials of ﬂﬁg.

Theorem 3 ([23, Thm. 4.15]). The affine walled Brauer algebra ,%’f}ftf is free over
R with M as its R-basis.

We consider @jf as a filtrated R-algebra as follows. Let
degs; = degs; = dege; =0 and degxy =degx, =1

for all possible i, j, k,0’s. Let (%ﬁg)(k) be the R-submodule spanned by regular

monomials with degrees less than or equal to k for k € ZZ°. Then we have the
following filtration

TS5 (DD 5 (O S (T 0. 14)

Let gr(#1]) = @;50(Be)1, where (7)1 = (2825)@ /(2825)0 Y. Then gr(#21)
is an associated Z-graded algebra. We will use the same symbols to denote elements
in gr(@fﬁ).

Lemma 4. Let z} = s;_12;_18,—1, and x; = sj_1%j—15j—1 for i,j € 722 with
i <r and j <t, where zy = x1, and a?'l =1x1.
(1) @i =} — Li, where Ly = 37, ;(4,7) and (j,i) is the transposition in &,
which switches j,i and fizes others.
i) @; =2, — L;, where L; = _(4,1) and (j,1) is the transposition in S,
i | — Li, where Ly = Y, ,(j.4) and (j, i) is the t ition in &
which switches j,1 and fixes others.
(iil) Any symmetric polynomial of Ly, Lo, ..., L, (respectively L1, La,..., L)
is a central element of RS, (respectively RSy ).
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Proof. (1)—(ii) are trivial and (iii) is a well-known result. O

The elements L;’s (respectively L;’s) are known as Jucys—Murphy elements of
RG, (respectively RSy). Note that z;z; = z;2; and x;x; = x;x; for all possible
i,j. However, z} and x’; (respectively z; and ;) do not commute each other.

Suppose 0 < f < min{m, n}. Denote

i:(ilv'-';if)v j:(jlv--';jf)a e{,jzeh,jleiz,jz"'eif,jfa (15)
where 41,142, ...,is are distinct numbers in {1,2,...,7}, and j1,j2,...,j5 are dis-
tinct numbers in {1,2,...,t}. Then e;, j,’s commute each other. If f =0, we set

Z:j’: & and €77 = 1.
We always assume that &, (respectively &;) acts on the right of {r,...,2,1}
(respectively {1,2,...,t}).
Lemma 5. Suppose a € Z7°, 1 < i, 0 <r and1<j<t.
(i) Ifw € &,;, then wf(x ,') = f(x/(i)w—l)'
(i) If w € &y, then wyg(z ) 1= g(x’(j)wfl).
a a max{i,{
(iii) zi*flzy) = floy)x® +v, wherev € >, > hl{ 1}f(ach)ach1 RG,..
) @

b /b
(lV Ia (aj;) = -f( ) +U where v e Zb1+b2<a c14ca<1 63? ! le( ) z] ] 2 fO’f’
some non-negatwe integers by, ba,c1,co and € = +1.

Proof. (i)—(ii) are trivial. Since xo = x5 — s1 and z2w1 = 7122,
2

zof (v1) = f(z1) (25 — s1) + f(25)s1. (16)

Applying the conjugate of s; 2 on (16) yields (iii) for a = 1 and ¢ = 1. If £ > 1,
then @if (z}) = aise—1f (¥y_1)se—1 = se—12(;y,, f(@p_1)se—1. Thus, (iii) follows
from inductive assumption on £ — 1 and (i) under the assumption a = 1. The case
a > 1 follows by using the previous result on a = 1, repeatedly. Finally, (iv) can
be checked similarly by induction. We leave the details to the readers. [J

Proposition 6. Let J, =Y, B g(z}) and Jr = Y;_, fla}) B, We have

(i) Jr is a right RS, @ A -module;
(i) Jg is a left 2" @ RS;-module;
(i) I =Jp+ Jg if 937}% is admissible, where I is the two-sided ideal of %’f}ftf
generated by f(x1) and g(x1) satisfying (6)—(8).

Proof. Obviously, both Jy and Jg are &, x &,-bimodules. By Lemma 5 (iii),
x1Jr C Jg. Similarly, Jpa1 C Jg. This proves (i)—(ii). In order to prove (iii), it suf-
fices to verify that Jp+Jg is a two-sided ideal of 22 If so, since {f (1), g(x1)} C
Jr + Jr, I = Jr + Jg, proving the result.

We claim that Gl(JL + JR) C Jr + Jg and (JL + JR)61 C Jp + Jgr. If so, by
(4), (z1 +e1)f(z1) = f(x1)(z1 + e1) and hence z1f(z1) € Jr + Jr. By (1)-(ii),
z1f(z}) = si1x1f (x1)s1,: € Jo + Jr, and hence z1(Jr + Jr) C Jp, + Jg. Similarly,
(Jr —i—HJR)a:l C Jr, + Jg. Thus the claim implies that Jj, + Jg is a two-sided ideal
of ;.
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By symmetry, it remains to prove eq(Jr + Jg) C Jr + Jr. Obviously, it suffices
to verify
e1iJr C Jp + Jg. (17)
By (3), exrf (}) = f(2})eq for i > 2. Let m be a regular monomial of 22T defined
in (13). Then m = xae;;wmﬁ for some w € &, x &4, (o, B) € N” x N and some
7,7. Using induction on ||, we want to prove
elf(xl)me JL+JR. (18)
If so, then e1f (1) %25 C Ji + Jr and hence (17) follows.
Case 1: |a] =0.
If f =0, then (18) follows from (i) and (7). Suppose 1 < f < min{r,¢}. Since
937}% is admissible, e1f(z1)m = 0 if e; is a factor of €75 Assume that e; is not a
factor of e; 7. If there is an I such that iy = p # 1 and j; = 1, by (ii),

€1f(l'1)€p,1 = 5p,261f(1’1)516181,p = 5p,26151f(13/2)6151,p = Sp,zf(l’lz)@lslm € Jr.

Suppose j; # 1 for all possible {. If there is an { such that e; ;, = e1, for some
p # 1, then we assume i; = 1 and j; = p without loss of any generality. In this
case,

erf(z1)er, = (*l)ksp,2€19(xl)516151,p
= (*l)kspzelg(xé)sl,p = (*l)ksp,26151,pg(xl)'
Since j; # 1 for 1 <1< f, by [23, Lem. 4.7 (2)], z1€e;, j, = €, j,#1 and hence

f f
9(371)11_[ €y = lH ei,;19(r1) € Jr. (19)
=2 =2

Now, (18) follows from (i). Finally, if {i;, i} N {1} = @ for all possible [, then (18)
follows from (i) and the following fact

f f f
erf (@) I] ei; 5, = 1 €ipj,eaf(x1) = (—1)% TTei; j,e19(w1) € Ji.
=1 =1 =1

Case 2 : |a| > 0. ‘
If a; # 0 for some 2 <4 < r, then e1z; = zje; — e1 Z;Zl(j,i) and z;f (z1) =
f(z1)z;. Let m’ be obtained from m by removing x;. Then

e1(L,i)f (z1)m’ = e1 f(25)(1,i)m" = f(2})e1(1,i)m’ € Jp.
Now, (18) follows from inductive assumption on |a|. If a; = 0, 2 < i < r, then

x® = 7" with ag > 0. Let v = e1f(z1)m. If jp # 1, 1 < £ < f, then by (19),
Lemma 5 and inductive assumption,

v= elf(rl)x?le;jwzﬁ = (fl)kelg(xl)x‘f‘lewwzﬁ = (*1)k61x?19($1)€{7;wzﬁ

= (71)]66113(1116;7]79(131)wzﬁ € Jywz? C Jp + Jg,
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where the “=" is modulo Jr, +Jg. Finally, if j, = 1 for some ¢, without loss of any
generality, we assume j; = 1. If iy = 1, by Lemma 2, v = e f(z1)2]" e1e; ]v/wxﬁ =

0, where 7/ = (t2,...,1f) and j = (42, .., Jr). Now, we assume ¢; # 1. Then
v=erf (212 eqy 65w’ = erei 1 f (21)a] € wa”
= e1(1,i1)f (21)25" e jwa’ = erf (27)(1, )27 e 7 wa”,

= .f(x;)el(l,i)x?leg,J,wxﬁ € Jg.

This completes the proof of (18). O

For (a,8) € N" x Nt denote f(z')* = f(x1)® ---f(z.)% and g(z')’ =
g(z1)?r---g(x})P. Let Nt = {a € N | oy < k—1,1<i<7}and N, =
{aeN |a;<k-1,1<i<r}

Lemma 7. The affine walled Brauer algebra %’f}ftf is a free R-module with N as
its R-basts, where

min{m,n}
N = U {f(x')o‘aﬂc_lefwdx‘sg(m')ﬁ | (o, B) € N" x N,

purt (20)
(7,0) €Ny xN§, e,de 2/, we &,y x& ;).

Proof. The result follows from Theorem 3 since the transition matrix between N
and M in (13) is invertible. [

Lemma 8. Let I be the two-sided ideal of 22 generated by f(z1) and g(x1) sat-
isfying (6)—(8). If @?g is admissible, then S is an R-basis of I, where

S = {f(m’)aoﬂc*lefwdx‘;g(xl)ﬁ eN|a;+ B #0 for some i,j}. (21)

Proof. Let M = spangpS. By Lemma 7, f(xl)%’f}ff C M. For any positive integer
I with 1 <! <4, by Lemma 5 (ii),

1—1
F@)f () € _Zlf(rp@::f{ + (@)D,
=

such that D € 227 and the degree of D is strictly less then k. Thus, f(z}) %2 C
M which follows from inductive assumption on j with 1 < j < ¢ —1 and inductive
assumption on degrees. This proves Jg C M. One can check J;, C M similarly.
By Proposition 6 (iii), I = M. O

By abuse of notations, a regular monomial m in Definition 3 is also called a
reqular monomial of By, if 0 < oy, 8; < k—1 for all 4,5 with 1 <4 < r and
1 < j < t. Obviously, the number of all such regular monomials is k" (r + ¢)!.

Theorem 9. The cyclotomic walled Brauer algebra B, .+ is free over R with rank
kK™t (r + t)! if and only if By r+ is admissible.
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Proof. Let M be the R-submodule of %y, ,; spanned by all regular monomials of
PBr.rt. By induction on degrees, it is routine to check that M is a left Ay , .-
module (cf. [23, Prop. 4.12] for %fftf) Since 1 € M, we have M = Py, 1. If By
is not admissible, by Lemma 1, e; is an R-torsion element. Since e; € M, either
Br,.rt is not free or the rank of By, ., is strictly less than k™ (r 4 ¢)I. If By ¢ is
admissible, by Lemmas 7-8, the set of all regular monomials of %y, ,; is R-linear
independent. Thus, %y, is free over R with rank k" *(r +¢)l. O

2. A weakly cellular basis of %3 ..

The aim of this section is to construct a weakly cellular basis of %3 ,; in the sense
of [12]. This basis will be used to set up a relationship between gl,,,|,,-Kac-modules
and right cell modules of %, ,; in section 5.

Recall that a composition of r is a sequence of non—negative integers 7 =
(71,72, ...) such that |7| := Y. 7 = r. If 7; > 74y for all possible i’s, then 7 is
called a partition. Similarly, a k-partition of r, or simply a multipartition of r, is an
ordered k-tuple A = (A X2 XR)) of partitions with |\| := Zle IAND| = 7.
Let A (r) be the set of all k-partitions of 7. Let < be the dominant order defined
on A{ (n) in the sense that A < y if and only if

m|n

=1 i =1 i
hzl AP + Zl )\y) < kzl MRIEE 2:1 uy) for £ < k and all possible i,  (22)

where [A\(O)| = 0. Then AJ(r) is a poset with < as a partial order on it. In this
paper, we always assume k € {1, 2}.

For each A € A (r), the Young diagram [)] is a collection of boxes arranged in
left-justified rows with \; boxes in the ith row of [A\]. A A-tableau s is obtained by
inserting elements i, 1 < ¢ < r into [A] without repetition. A A-tableau s is said to
be standard if the entries in s increase both from left to right in each row and from
top to bottom in each column. Let 7*(A) be the set of all standard A-tableaux.
Let t* € T%()\) be obtained from [\] by adding 1,2,...,r from left to right along
the rows of [A]. Let ty € T°(\) be obtained from [A] by adding 1,2,...,r from top
to bottom along the columns of [A]. For example, if A = (3,2), then

3

§ , and t) = 5.

’L/\_

1 13
4 2 4 (23)
If A € AJ(r), then the corresponding Young diagram [\] is ([A(V)], [A(®]). In this
case, a A-tableau 5 = (s1,%2) is obtained by inserting elements ¢, 1 < i < r into
[A] without repetition. A A-tableau s is said to be standard if the entries in s;,
1 < ¢ < 2 increase both from left to right in each row and from top to bottom
in each column. Let 7°(\) be the set of all standard A-tableaux. Let t* € T5()\)
be obtained from [A] by adding 1,2,...,r from left to right along the rows of
[AD] and then [A®)]. Let ty € T°(\) be obtained from [\] by adding 1,2,...,r
from top to bottom along the columns of [A(®] and then [A(M]. For example, if
A= ((3,2),(3,1)) € AF(9), then

9:(31;3,378) and U:(g;a;“). (24)
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Recall that &, acts on the right of the set {1,2,...,7} (i.e., the right action).
Then &, acts on the right of a A-tableau s by permuting its entries. For example,
if A =((3,2),(3,1)) € AT (9), and w = 5152, then

312 678
t)‘w(45 g > (25)

Write d(s) = w for w € &, if t"w = 5. Then d(s) is uniquely determined by s.
Let wy = d(ty). The row stabilizer & of t* for \ € AZ(T) is known as the Young
subgroup of &, with respect to A. It is the same as the Young subgroup &,
with respect to the composition Acomp, which is obtained from A by concatenation.
For example, if A = ((3,2),(3,1)) then Acomp = (3,2, 3,1) with

123

t>\compz45 .
6 78
9

In this case, it is easy to see that the row stabilizer &
of &g generated by {s1, $2, $4, S6, 57}

The level two degenerate Hecke .4, with defining parameters u; and wus is
A T where I is the two-sided ideal of 2% generated by (y1 — u1)(y1 — u2),
u1,u2 € R. By definition, 4, is an R-algebra generated by s;, 1 <7 <7 —1 and
y;, 1 < j < r such that

(1) 8i85 = S8;S8i, 1< |Z 7]‘7

(i) viye = yeyi, 1 < i, <,

(i) siyi — Yit18i = =1, ¥isi — siYit1 = —1, 1 <i<r—1,

(iV) 85854185 = Sj4+1555j+1, 1 S] g r— 2,

(v) s2=1,1<i<r-1,

(vi) (y1 —w)(y1 — u2) =0.

Following [3], we define 7y = 7, (u2) and 7y = 7, (u1) for A € AJ (r) with AP | = a,
where for any u € R, mo(u) = 1 and 7, (u) = [[;_; (y; — u) if a > 0. Let

of treemp is the subgroup

comp

111

_ ( 1 2 - a a+l a+2 -+ 7 ) (26)
Ya=\r—a+1 r—a+3 -+ r 1 2 - r—al)’
It is well known that
WaSj = S(j,-1Wa fj#r—a (27)

Let &4,r—q be the Young subgroup with respect to the composition (a,r — a).
Then
RGyr—qWo = W RG,_g q. (28)

For each composition A of r, we denote

= S w, ya= Y. (=1)Wy, (29)

wES ) weS

where £(-) is the length function on &,. Assume A € A (r) with |\(V| = a. If we
denote u = (AM)’  the conjugate of A(¥) for i = 1,2, then

Wa ) Yp 1) = Ypu ) Tpy(2) Wa- (30)
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Remark 1. When we write z,2y,q), then x,e (respectively, y,u)) is defined

via symmetric group on r — a letters {1,2,...,r — a} (respectively, on a letters
{r—a+1,...,7}). Similarly, when we write YT, then y,a) (respectively,
T, ) is defined via symmetric group on a letters {1,2,...,a} (respectively, on

r—a letters {a+1,a+2,...,7r}).

Definition 4. For any s,t € 7%()\) with A € AJ(r), define

Yot = d(5>_11)>\d(’£), where 9y = %,\.%‘)\(1)3/)\(2),
Lot = d(5) 7 1r,d(t), where 1y, = TAy Ty,
s = d(s)"1nyd(t), where hy = Ty ) Ty

It is proven in [3] that % , is a cellular algebra over R in the sense of [13]. In
this paper, we need the following cellular basis of % , so as to construct a new
weakly cellular basis of %s ;.

Lemma 10. The set S;, i € {1,2,3,4}, are cellular bases of 5, in the sense of
[13], where

(i) S1={rst | X €EAS(r),5,t € T*(N)},
(ii) So = {hsc | A€ AJ(r),5,t € T5(\)},
(iii) S3 = {re [ A € AF(r),8,t € T*(N)},
(iv) Sy = {ns | A€ AS(r),s,t € T*(\)}.

Proof. Let S = {xs¢ | 5,t € T*(A\),A € A (1)} and x4 = d(s)  mazy) Ty d(t).
It is proven in [3] that S is a cellular basis of 7% .. If we use y,2) instead of zy)
in ze, we will get rs(. However, for any s = (s1,52) € T°()\), d(s) can be written
uniquely as d(s1)d(s2)d such that d is a distinguished right coset representative of
Gy X 6,4 in &, and 5; € T*(A\D), where a = [A\(V]. So, the transition matrix
between S7 and S is determined by the transition matrix between the cellular basis

{d(sg)_lx,\@) d(tg) | A2 € A+(T — a),52,t2 € TS(A(Q))} and
{d(52)71y)\(2) d(tg) | A2 S A+(T — a),ﬁg, t € TS(/\(Q))}

of RS,_,. Thus, S; is a basis of 74 ,. One can check that S is a cellular basis of
6, in the sense of [13] by mimicking Dipper—James—Murphy’s arguments in the
proof of Murphy basis for Hecke algebras of type B in [9]. We leave the details to
the readers. Finally, (ii)—(iv) can be verified similarly. O

By Graham-Lehrer’s results on the representation theory of cellular algebras
in [13], one can define right cell modules of % , via the cellular bases S;, i €
{1,2,3,4} in Lemma 10. The corresponding right cell modules of .7 , with respect

to Sy and Sy are denoted by A(X), and A(N).
For the simplification of discussion, we assume % , is defined over C in Lem-
mall.
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Lemma 11. Suppose a,b € N. Then
(i) ma(u2)7% »mp(u1) = 0 whenever a+b > r and a,b € Z°.
(i) ma(u2) G ,mr_g(u1) = To(U2)WeTr—a(U1)CSy_q.q, where Sy_q o is as in
28).

(iii) i,\f%)’éﬂ.t)w =0if A\, € AJ (r) with A > p.

(iv) A or9n = Spanc{tawagn} if A € Az (r).

(v) AN) = pawan A, .

Proof. (i), (ii) and (iv) can be proven by arguments similar to those for Hecke
algebras of type B in [8]. We only give details for (iii) and (v).

If A p, then XD > [p@] IF ]AD| > |uM], then |pM] # r and the result
follows from (i). When |AV| = ||, by (ii) together with corresponding results
for the group algebras of symmetric groups, we have A < () for i = 1,2 if
I  # 0. This proves (iii).

There is a surjective % ,-homomorphism from ¢ : Y\ 9%, — r w5 .
Let %’éﬁj\/ be the C-submodule spanned by {ys¢ | 5,t € T°(u), u > N'}. Tt follows
from standard results on cellular algebras that z%%'?’\/ is a two-sided ideal of 7% ;..
So, Y H —&-%’DTX/%”Q'?TX is isomorphic to a submodule of A(X). If g € f%’éi)‘/,
we have p > ) which is equivalent to A > p/. By (iil), zxwxps¢ = 0 and %‘;’\/ C
ker ¢. So, there is an epimorphism from 1y 5%, + %'?T)‘,/f%”g'i.)‘, to WA N I 1.
Mimicking arguments on classical Specht modules for Hecke algebra of type B in
[8], we know that rywxpx 72, has a basis {rawayad(t) [ t€ T5(N)}. So,

dimc 5()\’) = dimc pawan A, = #T°(N),

forcing )x o, + A= | HEY = gy e, = AN). O

Now, we use cellular bases .S; of 7% ,. in Lemma 10 to construct a weakly cellular
basis of #s .+ over an arbitrary field in the sense of [12]. We remark that when
we use results on level two degenerate Hecke algebra for #s ;. +, we should keep in
mind that %, contains two subalgebras generated by {z1, $1,s2,...,s,—1} and
{z1,81,82,...,8i-1}, respectively. The first subalgebra is isomorphic to % , with
x1 being sent to —y; and the second is isomorphic to 4% ; with x; being sent to
—y1. Therefore, we have to use —u; and —u; instead of u; and w;, respectively.

Fix r,t, f € Z7% with f <min{r,t}. In contrast to (12), we define

Df o ={sr—f1i Sttt pir e SnigStg |72 > >, ji >kt f =t} (31)
For each c € D,f’t as in (31), let k. be the r-tuple
ke=(k1,...,kr)€{0,1}" such that k; =0 unless i =14,,%r—1,...,0r—f+1. (32)

Note that k. may have more than one choice for a fixed ¢, and it may be equal
to kq although ¢ # d for ¢,d € D,f’t. Let Ny= {mc|c€Df,t}. If k. € Ny, define
e = []I_, =¥ In [23], we consider poset (Aa .4, ), where

A277',t = {(fv)\a:u’) | ()‘MU’) € A;(T_f> X A;(t_f)7 OSmein{T,t}}, (33)
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such that (f, A, u) > (¢, a, B) for (f, A\, ), ({, 0, B) € Agry if either f > Cor f =14
and A >; a, and p >, B, and in case f = ¢, the orders >; and >3 are dominant
orders on AJ (r— f) and AJ (t— f) respectively. For each (f,u,v) € Aa .y, let

5 1) = {(b ¢, 50) [E=(tD), €2) €T() x T*(v), c€ DL, and Ny} (34)
Definition 5. For any (s,d, kaq), (t, ¢, kc) € 0(f, p,v) with (f, p,v) € Az 4, define
Closdra) (tewe) = 2™~ el ngen™™, (35)

where, in contrast to notation ef in (11), we define ¢/ =e, je, 14 1-- € fil t— f1
if f > 1 and 80 = 17 and Nst = Do) (1) Vg(2) ¢(2) if s = (5(1),5(2)) and t = (t(l),f@))
are in 7°(u) x T°(v).

Note that ng in Definition 5 are defined via cellular basis elements of J% ,_¢
and 4% _; in Lemma 10 (ii) (iv). Since x; and z; do not commute each other, a
cellular basis element of J% ,_¢ is always put on the left. Further, we need to use
x;, —u1, —ug (respectively x;, —uq, —usg) instead of —y;, u1,ug in Lemma 10.

Theorem 12. If By, is admissible, then the set

€ = {C(s,nc,c)(t,nd,d) | (57 Re, C)v (t, Rd, d) € 6(f7 )‘)av(fa )‘) S A2,r,t}

is a weakly cellular basis PBari over R in the sense of [12].

Proof. Let S be the cellular basis of % ,_y (respectively 4% ;_5) for 0 < f <
min{r, ¢t} defined in the proof of Lemma 10. If we use S instead of the cellular basis
Sy of 5, and Sy of I ¢ in Lemma 10, we will obtain the weakly cellular
basis of %3, over R in [23, Thm. 6.12] provided that R = C and u; = —p,
ug = m —¢q, ug = ¢q and ug = p —n with r +¢ < min{m,n}. Since HBs,. is
admissible, by Theorem 9, the rank of %y ., is 2" (k +1t)!. As pointed out in [23,
Remark 6.13], [23, Thm. 6.12] holds over R with arbitrary parameters uy, us, u1, o
if the rank of %y .+ is 2"t (r +t)!. Thus, € is an R-basis of By ;. Further, the
weakly cellularity of % .+ depends only on cellular bases of %5, and J% ;¢
and does not depend on the explicit descriptions of cellular bases of ¢ ,_y and
5. (cf. the proof of [23, Thm. 6.12]). So, all arguments for the proof of [23,
Thm. 6.12] can be used smoothly to prove that € is a weakly cellular basis % .,
over R. [

Suppose %> .+ is defined over a field F'. By Theorem 12, one can define right
cell modules C(f, p, v) with respect to (f, 4, v) € Ag s for B, i. Let ¢¢ ., be the
corresponding invariant form on C(f, y1,v) and let Df#*" = C(f, u,v)/Rad ¢, .,
where Rad ¢, ., is the radical of ¢, ,. By Graham-Lehrer’s results in [13] (a
weakly cellular algebra has similar representation theory of a cellular algebra in
[13]), DS+ is either 0 or irreducible and all non-zero D/*** consist of a complete
set of pair-wise non-isomorphic irreducible %5 ;. ;-modules. Let ﬁ(u) (respectively
A(v)) be the cell module of % ,_; (respectively % ,_;) defined via Sp and Sy

in Lemma 10. Similarly, one has the notations D* and DU, respectively.
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Proposition 13. Suppose that PBari is admissible over F. For any (f,u,v) €
Ao i, DOPV £ 0 if and only if

(i) D* #0 and D" #0,

(ii) f #r provided r =t and wy = w1 = 0.

Proof. The result can be proven by arguments similar to those for Lemmas 7.3-7.4
in [23]. O

Remark 2. By arguments similar to those for Theorem 12, one can lift cellular
bases of J#, , and J4,; in [3] to obtain a weakly cellular basis of %y, over
R, provided that %y, ,: is admissible. Further, it is not difficult to prove the
result, which is similar to Proposition 13 for %y, ,; over an arbitrary field F' with
characteristic char F' either zero or positive. Let u = (uy,...,ux) € F¥ such that
u; = d; - 1p and 0 < d; < charF for 1 < ¢ < k. Kleshchev [18] has shown
that the simple .5 »(u)-modules are labeled by a set of multipartitions which
gives the same Kashiwara crystal as the set of u-Kleshchev multipartitions of n in
[1, 2]. Thus, the simple %y, ,-modules are labeled by the set {(f, i, v)}, where (i)
0 < f < min{r, ¢}, (ii) p’s are Kleshchev multipartitions of r — f with respect to u,
(iii) v’s are Kleshchev multipartitions of ¢ — f with respect to u := (u1,us,. .., ug),
(iv) f#rifr =tand w; =0 for 0 < i < k — 1. By Proposition 13 and [10,
Thm. 1.1] or [1, Thm. 1.3], when % .+ is admissible, the simple %, , ;-modules are
always labeled by the (f, u,v) € Agr¢ with 0 < f <min{r, ¢} and p (respectively
v) are Kleshchev multipartitons with respect to u (respectively u) and f # r if
r=tand w; =0 for 1 <¢ < r. However, we are not claiming that Dfwv =% 0 for
the multipartitions u, v which Kleshchev [18] uses to label the simple 4 ,— ¢ (u)-
modules (respectively #; »— r(u)-modules).

We recall the definition of Kleshchev bipartitions over C as follows (see, e.g.,

32]), which will be used in sections 4-5. Fix w1, us € C with uy —us € N. Then
A=(\D X2 e A (r) is called a Kleshchev bipartition [32] with respect to uy, ug if

AW < )\52) for all possible i. (36)

Ul —uUs+1
If uy —us & 7Z, all bipartitions of r are Kleshchev bipartitions. A pair of bipartitions
(1, v) is Kleshchev if both p and v are Kleshchev bipartitions in the sense of (36)
with respect to the parameters w1, us and uy, us. The following result will be used
in section 5.

Proposition 14. Suppose B 1 is admissible over C. For each (f, u,v) € Mgy,
let
C(f,p,v) = efxu’?u/wu’wl/’nunu%%nt (mod ‘%)g,t,lt)a

where %’gti is the two-sided ideal of PBa ., generated by ¢/*1. Then C(f,pu,v) =
C(f,pv).
Proof. Let My be the left %5 ,_¢._ s-module generated by

V;J,ct = {efdxﬁd | (d,ka) € vaj,t x Ny} (37)
By [23, Prop. 6.10], My = ¢/ %, ,.,. By [23, Lem. 6.9], one can use 5% ,_ ;@

instead of Ao r—fi1—f in it Wwwy Ly, My (mod ,@gti) Now, the required iso-
morphism follows from Lemma 11 (v). O
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3. Super Schur—Weyl duality

The aim of this section is to generalize super Schur—Weyl duality between general
linear Lie superalgebra gl,,,,, and %2 .+ to the case r+t¢ > min{m,n}. Throughout,
let In={1,....m}, [ ={m+1,....m+n}tand I = [HU L.

For any pairs (¢, j) € I x 1, let E;; be the matrix unit with parity [E;;] = [i]+ 4],
where [i]| = aif i € I,, a =0,1. The general linear Lie superalgebra gl over C,
denoted by g, is g—1 & go @ g1, where

m|n

g-—1= spanC{EZ-,j |Z S Il, j € 10}7 g1 = spanC{EZ-,j |Z S Io, j € 11}7
go = spanc{E; ;|i,j € Iy or i,j€ 1} (38)

The Cartan subalgebra b of g is the C-space with basis {F;; |i € I}. Let h* be
the dual space of h with dual basis {e;|¢ € I}. Then any £ € h*, called a weight
of g, can be written as

E= 3 &eait L& e with &6 € C. (39)

i€lp 1€l

Denote & by (¢F,..., &5 [&ff, ..., ¢8). Ifboth ¢F —¢f ) e Nand ¢F —¢F | €N for
all possible i, 7, then £ is called integral dominant. Let PT be the set of integral
dominant weights. For any & € PV, let

Eri=E+p= (60, ... Ehr e, . gl (40)

where p = (0,—1,...,1=-m|m—1,m—2,...,m—n). Following [29], [30] (cf. [15],
[17]), let
C=#{(0,5) | € +E=0,1<i<m,1<j<n}.

Then £ is called an ¢-fold atypical weight if £ > 0. Otherwise, £ is called a typical
weight.

Example 1. For any p,q € C, let \py = (p,...,p| —q,...,—q). Then X\, is a
typical weight if and only if

p—q¢7Z or p—qg<—m or p—q2=>n. (41)

The current ¢ should be regarded as ¢ + m in [6, IV]. In the remaining part of
this paper, A,q is always a typical weight in the sense of (41).

Let V = C™" be the natural g-module with natural basis {v;|i € I} such
that v; has parity [v;] = [¢{]. Then the dual space V*, which has the dual basis
{v;|i € I}, is a left g-module such that

Euv; = —(—1)[a]([a]+[b])6mvb for any (a,b) € I x I. (42)

In particular, the weight of v; is —e¢;. For the simplicity of notation, we set W = V'*.
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Definition 6. Fix r,t€Z>°. Let V' =V® @ W®* and M” VTR Ky, W,
where K, is the Kac-module [16] with respect to the hlghest weight )\pq in Ex-
ample 1.

Let m: M}t — V" be the projection such that, for any v € M}, m(v) is the
vector obtained from v by deleting the tensor factor in K . Let vy, be the highest
weight vector of K, with highest weight Ap,. Then vy, is unique up to a scalar.

It is well known (see [16]) that K, is 2™"-dimensional with a basis

B= {17 := IT B g |o = ()il € 0.3} (43

=1 j=

where the products are taken in any fixed order. Define

Imin,r)y={i|i= (iy,ip_1, - ,01), 4, € I, 1 <j<r}, (44)
I(min,t) ={j|j= (J1.J2, - ,jt), ji € I, 1 <i <t}
If (i,0,j) € I(m|n,r) x B x I(m|n,t), we define
Vi = Vi, ®Vi,_, ® QU QbQ vy, ®vj, ® - @ vy, € ML (45)

Lemma 15. Let By = {v; @ b® vj | (1,b,j) € I(mn,r) x B x I(m|n,t)}. Then
By is a basis of M;é.

Denote by U(g) the universal enveloping algebra of g. Then M} is a left U(g)-
module. Let J = J;U{0}UJ; with J; = {r,...,2,1} and J5 = {1,2,...,t}. Then
(J,=<) is a total ordered set with

r<r—1<.---<1<0<1<---<t.
For any a,b € J with a < b, define 74y, : U(g)®2 — U(g)®r+t+1) by

ath bth
Tap(z®Y) =10 - @187 910 - 018 Y ®1® -+ ®1. (46)

Let Q be a Casimir element in g®? given by

Q=Y -)E;0E;. (47)
ijel
In (23], we define operators s;, s;, ¥1, 1 and e; acting on the right of M) via the
following formulae:

si=Tit1i(Q|age (L<i<r), sj=m; . (Q|mr (17 <),
z1 = —m0(Q)age, 21 = 7o (D, €1 = —my3 ()]s (48)

Then there is an algebra homomorphism ¢ : %5, ; — EndU(g)(M;é)Op sending the
generators s;, sj, 1, 1 and e; to the operators s;, s;, 1, 1 and e as above [23].
In this case, we need to use —p, m — ¢, and ¢,p — n instead of w1, us, u; and wus,
respectively in Definition 1 for k£ = 2. Further, wg = m — n, w; = ng — mp and
we =(m—p—q)wa—1 —p(qg — M)wg—2 for a > 2 and w,’s are determined by [23,
Cor. 4.3]. Thus, s, is admissible in the sense of Definition 2. By Theorem 9,
dimg Pa,rp = 2" (r+t)!. We will always consider Bs . ; as above in the remaining
part of this paper.
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Theorem 16 ([23, Thm. 5.16]). Fiz r,t € Z>° with r +t < min{m,n}. Then
Endg(M]Z;)Op = Bt

Theorem 17 ([6, IV, Thm. 3.13]). If 0 < r < min{m,n}, then Endyq) (M)
& I, the level two Hecke algebra with defining parameters uy = —p and ug =
m—q.

Theorem 18 (Super Schur—-Weyl duality). Keep the condition (41). The algebra
homomorphism ¢1 : PBar — Endg (M;;)Op is surjective. It is injective if and only
if r+ ¢t < min{m,n}.

Proof. By Theorem 16, it suffices to prove that ¢; is surjective, and is not injective
if r +¢ > min{m, n}. Note that in diagram (49), 61,6 are canonical vector space
isomorphisms. Thus as in [7, (7.16)], we can define the map

flip, , := 65 "6,

such that the following diagram commutes

Endc(VE" @K, ®(V*)®)  —...ho o Endc(VE" @K, @V®)
0 02 (49)
! P f®g"—f®Rg !
Ende(VE'®K)  )®Ende ((VF)?') ————— Endc(V¥'®K),, )@Endc (V).

It is proven in [7, Lem. 7.6] that flip, , is in fact a g-module isomorphism. Note
that 4 .4 (denoted as HY, in [6, IV]) is a subspace of Endc(VE" @ K, @ V&),

T
thus (49) induces the following commutative diagram

ﬂipr,t
Bt — Aot

1 1 (50)

v v
ﬂipr,t
End@(V®T®K>\pq®(V*)®t) e End@(V®T®K>\pq®V®t).

By Theorem 9 for k = 2, dim¢ P2t = 2" (r + ¢)!. This implies that the top
map is a bijection, and the bottom map is a g-module isomorphism, which in-
duces an isomorphism between two subspaces Endg(V®" @ Ky, @ (V*)®)°P and
Endy(VE"QKy, QV")°P. Since, by [6, IV, Thm. 3.21], m; is surjectively mapped
to Endg(VE @Ky, @V )P, we see that ¢1 : A rr — Endg(M)F)P is surjective.
Finally, the second assertion follows from the corresponding result for ¢ = 0 in [6,
IV, Thm. 3.21]. O

4. Highest weight vectors in V®" ® K,

The aim of this section is to give a classification of highest weight vectors of
M;g =Ver® Ky,, when r < min{m,n}, where V is the natural representation
of g := gl and K, is the Kac-module with a highest weight vector vy, of
weight A, in Example 1. This will be done in a few steps. First, by noting that g-
highest weight vectors of M;g is in one-to-one correspondence with the go-highest
weight vectors of V®" (see Remark 3), we are able to reduce the problem to the
Lie algebra case. Secondly, since go = gl,,, ® gl,,, and V" can be decomposed as
a direct sum of tensor products of natural representations of gl,, and gl,, we are
able to further simplify the problem to the gl,, case.
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Remark 3. Any g-highest weight vector v, € M;g with weight p corresponds to
a unique go-highest weight vector v; € V@ of weight 1 = pu — Apg such that
Uy — v; ® v, € V® @ K, where K, is the subspace of K, spanned by basis
elements b’s in (43) with o # 0 (cf. [26, Lems. 5.1-5.2]).

To begin with, we briefly recall the results on a classification of gl,,-highest
weight vectors of V®", where V temporarily denotes the natural representation of
gl,, over C. Let {v; | 1 <4 < m} be a basis of V. Obviously, V®" has a basis
{vi | i€ I(m|0,r)}, where

Vi =V, QUi Q- QU4
We consider a Cashmir element  in gI2? with
Q= Y BEy®E;eql), (51)
1<i,j<m
which is a special case of (47). Define s; = m;;41(2), 1 < i < r — 1. Then

(i,i+1) € &, acts on V®" via s;. Thus, V¥ is a (gl,,,, CS,)-bimodule such that

viw =0, ® vi, L ®® Vit for any w € &,.. (52)

r—1)w
For example, v;, ® vi, ® v;, 8152 = v, @ Vi, Q@ Vi,. If 7 <my, it is well known that
EndU(g[m)(V‘@")Op ~ C6,.

Definition 7. If A € AT (r,m), the set of partitions of 7 with at most m parts,

we define vy = vi, € V" where iy = (1*,2%2 ... m*) and k™ denotes the
sequence k, k, ...,k with multiplicity Ag.

The following result is well known, and Lemma 20 follows from Lemma 19.

Lemma 19. Suppose A and j are two compositions of r and u' is the conjugate
of 1, and xx,y, are defined in (29). Then x\C&,y,, =0 unless X < p.

Lemma 20. There is a bijection between the set of dominant weights of V" and
AT (r,m), the set of partitions of v with at most m parts. Further, the C-space
of gl -highest weight vectors with highest weight X has a basis {viwyynd(t) | t €
T5(N)}.

Now, we turn to construct g-highest weight vectors of M. Since 7 <min{m,n},
there is a bijection between the set of dominant weights of M;g and AJ (r). Further,
if A = (A1, A\®) e Af(r), the corresponding dominant weight of M2 is

A= Apg + A, (53)
where _
A=W AL AR A@)y, (54)

For instance, if A = ((3,1),(2,1)), then A= (3,1,0,...,0 | 2,1,0,...,0). Recall
that Q is a Casimir element in g®2 given in (47). Define operators s;, z1 acting
on the right of M;g via the following formulae: s; = m;41,(Q), 1 <i <r —1 and
x1 = —m10(Q). In this case, u1 = —p and ug = m — q. We recall that Brundan—
Stroppel [6] defined 1 via m10(€2). So, the current x; is —zp in [6]. Recall that
Vi QUpg = Vs, @ - -QU;, @V, ®Vpq for any i € I(m|n,r) (cf. (44)), and x}, = x+ Ly
with Ly = Zf:_ll (i,k) (see Lemma 4).
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Lemma 21 ([6, Lem. 3.1]). Suppose i € I(m|n,r), and 1 <k <r.
(i) vi ® vpq), = —pVi @ Vpg if 1 <iig < m.ki1 _
(i) vi @ vpg), = —qus @ vpg + Z;ﬂzl (—1) 2= Piloy @ (B3, jvpg) if m+1 < ig <
m + n, where j € I(m|n,r) which is obtained from i by using j instead of
iy i i. In particular, the weight of vj is strictly bigger than that of v;.
Definition 8. For A = (A, A?)) € AJ(r), define v5z =v; with i= (iy0),i\») €
I(m|n,r).

For instance, v; = v; if A = ((3,1),(2,1)), where i = (13,2, (m + 1), m + 2).
Definition 9. For any t € 7°(X), we define vy = v5 ® vpwayr d(t), where yy is
given in Definition 4 (ii).

Theorem 22. Suppose r < min{m,n}. There is a bijection between the set of

dominant weights of M;g and A; (r). Further, the C-space V, of g-highest weight

vectors of M) with highest weight \ has a basis {v¢ | t € T5(X)}.

Proof. The required bijection between AJ (r) and the set of dominant weights of
M9 is the map sending A to X defined in (53). We claim that each v¢ is killed
by Emmt1 and E;; with @ < j and either 4,5 € Iy or i,j € I . Since My is
(g, #4.,)-bimodule, we need only consider the case d(t) = 1. In this case, t = t*".

Denote \)\(1)| = a. Recall that wym € &, and wye= € &,_, such that
A wy o) =ty for i = 1,2. Then

WX = W) Wy2) Wqg = WaWy(2) WyQ) - (55)
By (27) and (55),
Vg = U5 ® UpgWa1) W@ Ypu() T2 WaTr—a(—D),

where () is the conjugate of A(® for i = 1,2. By Lemmas 19-20, v is killed
by E;; with i < j and either i,j € Iy or i,j € I. Since Ep my1 acts on M)
via 2211 1971 @ Epy g1 ® 1977171 we have Epy m4105 @ vpg = 0 if vpq1 does
not occur in vy. Otherwise, A?) = @ and r —a # 0. In this case, up to a sign,
Em m+1v5 @ vpq i equal to

05 @ Upg(1 = Sas1 + Satt,ats + -+ + (=1)""“sat1,041)s

where b = a + )\?) — 1 and vj is obtained from v5 by replacing vm41 by vy, at the
(a 4 1)th position. Thus, jz+1 = m. Let

b_
h=(1=S8at1+ Sat1,a43 + -+ (1) "Sat1,p41) WO WA Y, T2 -

Then h € C6,RC6,._,. By (27), hw, = wah for some hy € CS,_,CS,. Since
himtr—o(=p) = mr—o(—p)ha, it is enough to prove vj ® vpqwemr—q(—p) = 0. Up to
a sign, vj ® UpgW, = Vi ® Upq for some k such that vy, = vy, € Vp. Since r —a # 0,
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x1 + p is a factor of mr_q(—p). By Lemma 21 (i), vj ® vpqweTr—q(—p) = 0. Thus,
v is a highest weight vector of M9 if v # 0.

Note that any vector of MY can be written as v = > ben Vb ®b, where B is a ba-
sis of K, defined in (43) and v, € V®". Following [6], vj is called the b-component
of v. By Lemma 21 (ii) (or the arguments in the proof of [7, Cor. 3.3]), the vp,-
component of v5 ® VpgWaTr—qo(—p) is vywa [[;=1 (p — ¢ — Li). By Lemma 4 (iii),
[T:=1'(p — ¢ — L) is a central element in C&,_,, which acts on v5 ® vpqwy @ T,
as scalar [[;Z}'(p — ¢ —res, (7)), where p = N and res ) (i) is j — 1 if i is in the
Ith row and jth column of t4”. Since Apq is typical (cf. (41)), and r < min{m, n},
[T;='(p — g —res, (i) # 0. So, up to a non-zero scalar,

the vpg-component of vy = ViWawy@ T, Wy Y, d(t). (56)

By Lemma 20, it is a go-highest vector of V®" with highest weight A (cf. (54)),
forcing vy # 0.

Now, we prove that {vy | t € T°(\)} is C-linear independent. First, consider
V =V @& Vi as a module for gg = gl,,, ® gl,,. Then V& can be decomposed as a
direct sum of V;, ®V;, ®---®V;,, where i; € {0,1}. As go-modules, V;, ®V,,®---®
Vi, = V2% ® Vg for some non-negative integer a < r with a = #{i; | i; = 0}.
The corresponding isomorphism is given by acting a unique element w on the right-
hand side of V1®T7a ®Vy* , where w is a distinguished right coset representative of
6o X6,_4in 6,. By Lemma 20, all go-highest weight vectors of V;, ®V;, ®---@V;_
with highest weight X are VWA Ypu) Wr@ Ty d(tr)d(ta)w for all ty € T° () and
ty € T°(u®). Therefore, the C-space V5 of all go-highest weight vectors of V"
with highest weight X has a basis {rywr@ 0w 0 y,md(t) | te T2(N)}, where
pw=2X. By (56), {v¢ | t € T*(X)} is C-linear independent. Finally, since there is a
one-to-one correspondence between g-highest weight vectors of M;'qo and go-highest
weight vectors of V" (cf. [26, Lems. 5.1-5.2]), and dim V; = #{v | t € T*(XN)},
one obtains that {v¢ | te€ T°(\)} is a basisof V,. [

In the remaining part of this section, we want to establish the relationship
between V, with a special cell module of % , with respect to A € A (r). This
result will be needed in section 5. We go on using —z instead of z; in [6]. In this
case, the current —p and m — ¢ are the same as p and ¢ in [6].

Proposition 23. For any A\ € AJ (r), V\ = e xwayn 3, as right 3 .-modules,
where V, is defined in Theorem 22.

Proof. By Lemma 11 (ii), S* := rywapy 4, has a basis M = {rywapad(t) | t €
T*(XN)}. It follows from Theorem 22 that there is a linear isomorphism ¢ : V, — S*
sending vy to rywayy d(t). Obviously, ¢ is a right &,-homomorphism. In order to
show that ¢ is a right /% ,-homomorphism, it suffices to prove that

d(vxy) = d(v)xg, for 1 <k <r. (57)
Denote a = [AM|. If 1 <k < r — a, then

Tk = Tp—a(m — @)x = Tr_a(m — q)(—p — Ly).
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Since ¢ is a right &,-homomorphism, (57) holds for 1 <k <r—a. fr—a+1<

k <, then xy = Sk r—a+1Tr—a+1Sr—a+1,k — Z?;Tlfaﬂ(j, k). By Lemma 11 (i),

k-1
ﬁAwa%)\/Ik = ﬂAwa%)\/(fpf Z (], k)) (58)
j=r—a+1
On the other hand, Ty x, = zp7y and vy ® UpgW () Wx2) Yy, () Tpy2) Wq 18 & linear
combination of elements v; ® vyq, for some i € I(m|n, ) such that v;; € Vg for all
r—a+1<j<r. ByLemma 21 (i), x; acts on v; ® vpq as —p — Lg. In order to
verify (57) for k > r —a+ 1, by (58), it remains to show that

v; @ Vpg(i, k)T =0 foralli,1 <i<r—a. (59)

Write v; @ vpq(i, k) = v; up to a sign. Then v;, € Vp and v;(1,9)7x = 0 by
Lemma 21 (i). Since (1,4)my = 7 (1,1), and (1,14) is invertible, vj7 = 0, proving
(59). O

Corollary 24. Suppose A € A (r). As right 74 .-modules,
HOmU(g)(K)\,M;g) = A(/\/) (60)

where 5()\’) is the right cell module defined via the cellular basis of ., in
Lemma 10(ii).

Proof. For any g-highest weight vector v of M;g with highest weight A, there is a
unique U (g)-homomorphism f, : K, — U(g)v C M, sending v, to v, where v, is
the highest weight vector of K. Further, f, can be considered as a homomorphism
in Homy () (K, M;g) by composing the embedding homomorphism.

For any 0 # f € Homy g (K, M;g), f(v,) is a highest weight vector of MZ’)'qO.
By Theorem 22, f(v,) is a linear combination of v¢’s, for t € T*(\). So, f
can be written as a linear combination of f,’s. Thus, {f,, | t € T°(N)} is a
basis of Homy (g) (K, M})). Let V, be defined in Theorem 22. Then the linear
isomorphism ¢ : Homy ) (K, M;J) — V, sending f,, to v¢ for any t € T5(X) is
a right J% ,-homomorphism. By Lemma 11 (v) and Proposition 23, V, = E()\'),
proving (60). O

In the remaining part of this section, we always assume p—q¢ < —m. If p—¢q >
n, one can switch roles between p and ¢ (or consider the dual module of Mz’)'qo).
Without loss of any generality, we assume p, g € Z.

Let A € AJ(r) with r < min{m,n}. Then X corresponds to a dominant weight
A defined in (53). In particular, @ = \,q. Following [6, 14, 20, 27], we are going
to represent a dominant weight A in a unique way by a weight diagram D). First
we write (cf. (40))

N =Abp= (A0, S A, (61)

Denote
SOL={N"li=1,...om},  SOr={-\"li=1,...,n},
SO = SO\ U S\, S\ = SO N SWr.
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Definition 10. The weight diagram D) associated with the dominant weight A
is a line with vertices indexed by Z such that each vertex i is associated with a
symbol D} = @, <,> or x according to whether i ¢ S(A), i € S(A\)r \ S(\)g,
i€ SAL\SN)p orie S(\)p.

For example, if p, ¢ € Z with p < g—m, then the weight diagram Dg of @ = \p,
is given by

> > 02 . S <SS (e
p—m+1 P g—m+1 qg—m+n

where, for simplicity, we have associated vertex i with nothing if D{ = @. Note
that #5(@)B =0, i.e., Apq is typical.
Definition 11. Let A be as in (53), where A € AJ (7).

(i) Let AP be the unique dominant weight such that L, is the simple submodule

of the Kac-module K, twp. Then AP is obtained from A via the unique longest
right path (cf. [27, Def. 5.2], [31, Conjecture 4.4]) or via a raising operator (cf. [5]).
For example, if D, is given by

xX X X > X << <
O 1 2 3 4 5 6 7 8 9 10 11 - (63

then the weight diagram D ytop of AP s given by

v v v v
X > X < X < X
o 1 2 3 4 5 6 v & 9 10 11 (64)

where the x’s at vertices 9,6, 3,11 in (64) are respectively obtained from the x’s
at vertices 7,4, 2,1 in (63) (thus every symbol “ x 7 is always moved to the unique
empty place at its right side which is closest to it, under the rule that the rightmost
“x 7 should be moved first, as indicated in (64)). Alternatively, A is obtained from

AP via the unique longest left path.
(i) Write A" = Mg+ AP (cf. (54) and (53)) with AtP = (A(toP.1) | \(toP:2)) angd

denote Af°P = (AlterD A(toP2)) - where A(tePD) = (A[P| L AP,
ACoP,2) = (XWP AP ) for some A" € Z. Then obviously Y, A" = 7.

Thus AP € A (r) if and only if \\°" € Z=° for all possible 4.

Write p = ¢ —m — k for some k € N. If u = ((uf,...,p1k), (uft,... k) €
AF (r), then pi/ is Kleshchev with respect to u; = —p, us = m — g (cf. (36)) if and
only if

pl > uf —k for all possible . (65)

Following [6, IV], we denote I}, = {p—m+1,p—m+2,...,q—m+n}. For any
A€ AS(r) and any j € I, set

IZ2,(0) =27 N (L, \ S\ N 1Y), (66)
I2,(0) = Z5 N (L, \ S\ N 1Y), (67)
IZ,(0) = 229 N (L5, N S(\)s, (68)
IZ,(0) = Z¥9 N (L, N S(A)s. (69)
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In terms of the above notations, Brundan and Stroppel [6, IV, Lemma 2.6] have
proved that the indecomposable tilting module T', is a direct summand of M;g if

S(\) C Ii, and #IZ2,(\) > #IZ,(N) for all j € L. (70)

These two conditions on bipartition A (or weight A) are equivalent to the following
conditions on A*P (which can be seen from (63)—(64) in case I}, = {1,2,...,11}):

S(NP) € I and #IZ,(\°P) > #IX,(\°P) for all j € I}, (71)

Lemma 25. Let i € AJ (r) such that i’ is Kleshchev with respect tou; = —p, us =
m — q, where p=q—m —k with k € N. Then

S(u) C If, and #Igj(,u) > #12,(n) for all j € I (72)
Proof. We have (cf. (40))
Apg+p=(@—-m—Fk,...,.¢q—2m—k+1| —g+m—1,...,—g+m—n). (73)

Thus for ¢ = 1,...,m, we have (cf. (61)) uf’p:u¢+qufk2qf2mfk+1
and p? < q+n—m(as p; <7 <n),ie., pf e I},. Similarly, —,uf’p € If, for
j=1,...,n. Hence, S(u) C I,

To prove the other assertion of (72), note that the weight diagram D,, of u
is obtained from Dg (cf. (62)) by moving the “>7” at vertex p — ¢ for all i with
0 <t < m—1 to its right side to vertex p — i + ,uZ-LH, and moving the “<” at
vertex ¢ —m + j for all j with 1 < 5 < n to its left side to vertex g — m + j — ,uf
(if “<” meets “>7 at the destination vertex, then two symbols “<” and “>"
are combined to become the symbol “x 7). Since p’ is Kleshchev, condition (65)
shows that in order to produce a “x” at some vertex ¢ of D, a “>" at some
vertex j with j < ¢ must be moved to vertex ¢, i.e., an “@” must appear in some

vertex 7' with j' < j <4, i.e., (71) holds. O
Corollary 26. Suppose A€ AJ (1) such that A\*P € A (r) and (A\*°P) is Kleshchev,
where (A°P)’ is the conjugate of \*P € AJ (r). Then T, is a direct summand of

M;g. Further, any indecomposable direct summand of ]\4;(10 is of form T for some
A € AS(r) such that A\*°P € AS (r) and (A\*°P) is Kleshchev.

Proof. The first assertion follows from [6, IV, Lem. 2.6] and Lemma 25. To prove
the last assertion, since r < min{m,n}, by Theorem 17, EndU(g[mm)(Mgg)OP =
% . So, the number of non-isomorphic indecomposable direct summands of
gl |,-module M;g is equal to that of non-isomorphic irreducible .7 ,-modules,
which is equal to the number of Kleshchev bipartitions in A5 (r). Now, everything
is

clear. [

Corollary 27. Suppose A€ AJ (1) such that A\*°P € A (r) and (A\*°P) is Kleshchev.
As right 76 .-modules,

Homy () (Ty, M) = PO, (74)

where PV is the projective cover of D) which is the simple head ofﬁ((,\top)’).
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Proof. Since r < min{m,n}, A*®® € AJ(r) and (A*P)" is Kleshchev, by Corol-
lary 26, T is a direct summand of My, forcing 0 # Homy g (T, M;y) to be
a direct summand of % .. We claim that Homg g (T}, M;g) is indecomposable.
If not, then the number of indecomposable direct summands of the right J% ,-
module 73, is strictly bigger than Y, £, if we write M)Q as M0 = @, TjﬂA
with ¢, # 0.

On the other hand, since M;g is a right .74 ,-module, we can consider the right
exact functor § := M;((I)@%’T? from the category of left .74 ,-modules to the cat-
egory of left U(g)-modules. We have an epimorphism from §(P*) to F(A(x)),
where P! is any principal indecomposable left .75 ,-module and E(u) tempo-
rally denotes the left cell module of 7%, defined via the cellular basis of .75,
in Lemma 10 (i) with the simple head D#. By Lemma 11 (v) and Theorem 17,
F(A(n) # 0, forcing F(P*) # 0. So, F(P*) is a direct sum of indecompos-
able direct summand of U(g)-module M. In particular, Y7, £, is no less than
the number of indecomposable direct summands of left % ,-module 4% ,. This
is a contradiction since the number of indecomposable direct summands of left
6 -module J% , is equal to that of indecomposable direct summands of right
6 -module % ,.. So, §(T,) is a principal indecomposable right % ,-module.
Since Kywp < Ty, Homy (g)(Ty, M) — Homy (g) (K wer, M)). By Corollary 24,
HomU(g)(KAmp,M;qo) o~ E(()\t"p)’). Since HomU(g)(TA,M;qO) is a principal inde-
composable right % ,-module, it implies that E(()\“’p)’ ) has the unique simple
head, denoted by D). Thus, Homg (T, M) = PO O

Brundan—Stroppel have already proved that decomposition numbers of % ,
arising from super Schur—Weyl duality in [6] can be determined by the multiplicity
of Kac-modules in indecomposable tilting modules appearing in M;g . This result
can also be seen via the exact functor Homy g (7, M}7).

5. Highest weight vectors in M}?

In this section, we classify g-highest weight vectors of gl,,,-module M;; over C.
As an application, we set up an explicit relationship between Kac (respectively
indecomposable tilting) modules of g and cell (respectively principal indecompos-
able) modules of %, ;. This gives us an efficient way to calculate decomposition
numbers of %s ;. Throughout, assume 7,¢t € Z>° such that r + ¢ < min{m,n}.
The case t = 0 has been dealt with in section 4. By symmetry, one can also classify
highest weight vectors of M]S; via those in section 4. The following result, which
is the counterpart of Lemma 21, can be verified directly.
Lemma 28. Suppose i € I(m|n,r), j € I(m|n,t) (cf. (44)) and 1 < k <t.
(1) v ® Vpg @ Vjx), = qUi @ Vpg @5 if 1+ m < jr < m+n.
(il) vi ® vpg @ VjT), = PUi ® Vpg ® V5 + Z;ﬁ:lerl(_l)E;:ll iy @ (Ejji Vpq) ® Ve
if 1 < ji < m, where £ € I(m|n,t) which is obtained from j by using j
instead of ji in j. In particular, the weight of vy is strictly bigger than that
of vj.
For any integral weight £ of g written as

EZ(gl;---7§m|£m+1;---7§m+n); (75)
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let

= (&l 8 = (G, 6m), and €7 = (& ER) = (Emrts s Eman)-
: s ® @ 0 @
We define two bicompositions p, v such that all p; 7, u;™, v; 7, v;™" are zero except
that

(i) for 1 <i<m, ,u()*ﬁL1f§L>00r1/7(n)1+1:—§fif§f<0.

(i) for 1 <j<m, puP =R iff>00r 2, = —¢litef <.
Then both p and v correspond to integral weights of g. In particular, { = u— 7
with
v=(v (1),...,1/£1)|1/7(12),.. (2))617 (76)

Conversely, if p and v are two bicompositions, then £ = p — U is a integral weight
of g. For instance, if ¢ = (r—4,1,0,...,0,—-1,—(t-5) | 2,1,0,...,0,—1,—3), then
p=((r—4,1),(2,1)) and v = ((¢ — 5,1),(3,1)) such that £ = p — 7.

Definition 12. For any A = (f,u,v) € Ag,y with p,v written as in (75), let
A= Apg+pu—vand X := p—v. Since r+t < min{m,n}, both p and v correspond
to integral weights of g as above such that

UiVmt1—; =0 for 1 <i<m and pmtjVminti—j =0 for 1<j<n, (77)

Lemma 29. For any g-highest weight A of M;,é, there is a unique triple A =
(fp,v) € Aoy such that A = X.

Proof. By [23, Lem. 5.20], A = A\, + n — ¢ for some bicompositions (or weights)
n and ¢ (written as in (75)) of sizes r and ¢, respectively. For i € I, let & =
min{n;, ¢;} and f =, ;&. Then we obtain a weight £, and two bicompositions
pi=n—E§andy:=(—&suchthat [pu|=r—f, |y|=t—fand A= Xpg +p—1.
Set v =7, then A = X and (77) is satisfied by definition of £. Since A is dominant,
w, v must be bipartitions. Thus A corresponds to A = (f, u,v) € Ag 4. Sucha Ais
unique. [

Definition 13. For each A = (f, u,v) € Ag i, denote vy = v; ® vpq @ v5, where

i=@.0,ie L

l) € I(m|n,r), and j = (j,,J,0),

~
f

1,...,1) € I(m|n,t),
N~ ~ 4

!
such that

(i) j, is obtained from i, by using m+n—i+1 instead of i for 1 < i < n,
(ii) j,@ is obtained from i, by using m — i+ 1 instead of i for 1 <14 < m.

For instance, if A= (1, p, v) € Ag g10 with u=((3,1),(2,1)) and v= ((47 1), (3
then i= (13,2, (m+1)2,(m+2),1) and j = ((m+n)?, (m+n—1),m*, (m—1
Thus,

UA—U1®vm+2®vm+1®vz®v1 ®qu®vm+n®vm+n 1008 Y@ Um_1 @01
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Definition 14. For any (f, 4, v) € Ag ., define
(i) Wy = wywye, with v° = V@, v w, = d(t,) € &,_; and wye =
d(tVO) S Gt_f,
(i) vadwg = v Wy 0oy d(O)date, t € To(u') x T*((v°)), d € Df,t and
Kd € Nf.

Theorem 30. Suppose r +t < min{m,n}.

(i) There is a bijection between the set of dominant weights of M;é and Ay r ;.
(i) If A= (f,p,v) € Ag v, then V,, the C-space of all g-highest weight vectors
of M;é with highest weight X\, has a basis

S = {vntdma | tE T (W) x T*((°)'),d € DL, kq € Ny}

Proof. Obviously, (i) follows from Lemma 12. To obtain (ii), we prove that for
each A = (f,pu,v) € Ag ¢, V, has the required basis in the case either f = 0 or
f>0.

Case 1: f=0.

By Definition 14, vx t.d,xy = Vi ® Upg @ jwu ) d(t1)wyey 0y d(t2), where i, j are
defined in Definition 13. By Theorem 22, v; ® vpq @ vjw,,sd(t1) can be regarded
as a g-highest weight vector of M;?. Similarly, v; ® vy, ® Vjwyo) 0y d(t2) can
be regarded as a g-highest weight vector of Mz%' Thus, vy ¢4k, s a g-highest
weight vector of M;;. The last assertion follows from arguments on counting the
dimensions of V, and that of go-highest weight vectors of V' := V& @ W®" with
highest weight pu — v.

Case 2 : f > 0.
For any 7 € I,
V; QUer = (71)[11 Z’Uj X Vj.
jel

Thus v; ® v;ep is unique up to a sign for different i’s. Since M;'é is a (g, B2.rt)-
bimodule, we can switch v;_ _, and vj,_, in vy with 4,_p = ji_ to v, and v, for
any fixed 0,1 < 0 < m + n simultaneously when we consider the action of F;, on
ir—rth (respectively ji_rth) tensor factor of vy (4., for 0 <k < f —1. Let vy be

'Uir,f®‘“®Ui1®qu®vj1®”‘®vjt—fwu,l/xa(z) Yo Ypm aj[B@)Wr—f—a(_p)wb(q)d(t)7 (78)

where a(?) (respectively 3(?)) is the conjugate of u(?) (respectively v(?), i = 1,2.
Applying Theorem 22 to both V& ~/ @ K, and Ky,, ® W®'~/ yields E; v, = 0.
S0, Ej ¢vx t,d,r, =0 for any j < £.

We claim that S is linear independent, where S is given in (ii). If so, each
U td,rg 7 0, forcing vy ya.x, to be a g-highest weight vector of M} with highest
weight A.

Suppose i € I(m|n,r; — 1) and j € I(m|n,t; — 1) with ry < r and ¢; <t such
that there are at least some ko € Iy and ¢y € I satisfying ko, 4y & {i1,jo} for all
possible i,0’s. We consider Y, ., vr @ v; @ v ® v @ v, € My} """, where v € B is
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a basis element of Ky, in (43). Since x, = x,, + Ly, and z] acts on M]l"" as
—ry,0(€2), where © is given in (47), we have

Sk @ v ® v ® vy @ V(T + Ly,)

kel
_7TT170(Q) ka RV QU v ® Vg
kel
=3 (- )[k (R ED KD ), ®v; ® By v @ v ® vy,

kel

where [i] = Z;;l[z]] So, up to some scalar a, > vp @ v @ v @ vy @ VET,
contains the unique term vy, ®v; @V Qv vk, . In particular, if v # vpg, D e V& ®
Vi ®UVRV; @V Ty, does not contribute terms with form vi, @y ®Vpq @ vy @y, for all
possible i’ and j'. If v = v, by Lemma 21, the previous scalar is —p. Similarly, the
coefficient of vy, @ Vi ®vpg ®V; vy, in the expression of ZkeI V@V VRV QUL Ty

is —¢. Assume

YU R UV QUpg QU QUi +d D U QU QUpg QU QU =0 (79)
kel kel

for some ¢,d € C. Then d = ¢p = cq by considering the coefficients of v; ® v; ®
Upqg ®V; @k, k € {ko, o} in the expression of LHS of (79). If ¢ # 0, then p—¢ = 0.
This is a contradiction since A, is typical in the sense of (41). So, c=d =0 and
hence D, o, Uk ® v ® Upg ® V5 @ Uy, and Y, Uk @ V; @ Upg ® vj ® vy are linear
independent. Now, we assume

> ThdrgUntdrg = 0 for some 7y 4., € C. (80)
td,ka

We claim that r¢ 4 ., = O for all possible t,d, k4. If not, then we pick up a d € nyt
such that

(1) Tt,d,ka 7& 07
(11) d= Sr—f41,ir_p1St—f4+15i_ 1" "Sri St g, and iy > ip_q >0 > lr—f+1,
(iil) (ip,...,%r—f41) is maximal with respect to lexicographic order.

Since r + ¢t < min{m,n} and 0 < f < min{r,t}, we can pick f pairs (k;,£;),
r— f+4+ 1 <i<rsuch that

(i) k; €Iy, b; € I, k; > k’j and ¢; >£j if ¢ > 7;
(ii) both vy, and v, are not a tensor factor of vj,;
(iii) both vk, and vy, are not a tensor factor of vj and j = (j,@, j,m )-

We consider the terms vy ® vpq ® vp’s in the expressions of vy q,x,’s in the left-

hand side of (80) with ¢4, # 0 such that either v,, = vy, and Vb, ., = Uk

Or Vg, = Vg, and Vb, = Ugh forr— f+1 < h < r. Such terms occur in

—r+h
the expression of v?f RV ® v Fef dx", where v is a linear combination of the

terms in v¢’s (cf. (78)) with forms vy ® Upg @ vy. If v, = v, and Vb, = Vkys

by previous arguments, the coefficient of vy ® vpq ® vy in vi@f R v ® v?fefda?"”"d
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is [T),— f“( p)h, where ¢, = 1 if k, = 1 and 0 if k, = 0. If vah = vy, and

Vb, = Uty then the coefficient of va ® vpq ® vp in v; ©f RV ® v Fefdzha is

2;{+1(7q)5h, where €, = 1if K, = 1 and 0 if k, = 0. By (80), > 7¢,d,x V¢ = 0
for any fixed k4. Thus, we can assume that kg = (0,---,0) € Ny. If we identify
v¢ with its vpg-component, then vy can be considered as go-highest weight vectors

of V&= @ W®'=f (cf. arguments in the proof of Theorem 22) of the form
V=i, ; @ Vi ®Vj; @ V), WppTa@ Yo Ygm Ta@ d(t).

So, r¢d,x, =0, a contradiction. This proves that S is C-linear independent. Fur-
ther, S is a basis of V, since the cardinality of S is 2f|DZ¢| ATEW)] T ()],
which is the dimension of space consisting of go-highest weight vectors of V" with
highest weight u—v. O

Definition 15. Let § = HomU(g)(?,M;;) be the functor from the category of
finite-dimensional left g-modules to the category of right %5 ,.:-modules over C.

Lemma 31. The functor § is exact.

Proof. In the category of finite-dimensional gl ,-modules, a module is injective
if and only if it is tilting if and only if it is projective (e.g., [6, IV]). Since Ap, is
typical, K, is injective, and hence M;é is injective as a left g-module. So, § is
exact. O

Proposition 32. Suppose A\ = (f,p,v) € Agpy. Then F(K,) = C(f, 4/, (v°)),
where v° = (12, 1),

Proof. By Proposition 14, there is an explicit linear isomorphism between
C(f, 1/, (v°)') and V,, where V, is given in Theorem 30. By Proposition 23 and [23,
Prop. 6.10], this linear isomorphism is a %5 , ;-homomorphism. Thus, C(f, 1/,(v9)")
=V, as right %, ,;-modules. Using the universal property of Kac-modules yields
Homy gy (K, M}t) =V, as %y, r—modules (cf. the proof of Corollary 24). Now,
everything is clear. [

In the remaining part of this section, we calculate decomposition matrices of
PBo,rt. We always assume that p € Z. Otherwise, one can use x; +p; instead of z;
for any p; € C with p—p; € Z. Since A is typical, we have p—q¢ € Zorp—qg < —m
or p—q > n. In the first case, by [23, Thm. 5.21], %, is semisimple and hence
its decomposition matrix is the identity matrix. We assume that p —q < —m. If
p— q > n, one can switch the roles between p and ¢ (or by considering the dual
module of M;é) in the following arguments. Since M;é is a tilting module, it can
be decomposed into the direct sum of indecomposable tilting modules

M)t = @ T69 ¢ for some f¢ € N. (81)
fept

In the remaining part of this paper, we denote T to be the following finite subset
of PT:
T:={¢ € Pt |l #0}. (82)
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Suppose A = (f, p,v) € Ag v Let A= Apq +A= Apg + 1t — ¥ be as in Definition
12. Denote by T, the indecomposable tilting module, which is the projective cover
of L, where L, is the simple g-module with highest weight A. It is known that T’
has filtrations of Kac-modules. Let K, «wp be the unique bottom of 7. Then L,

is the simple g-module of K. Further, AP is the dominant weight defined in

Definition 11 (i). Note that any dominant weight especially A™P can be uniquely
written as (cf. (76) for notation 7)

top

A =Npg+e—7, where e= (1, .., k150, oo, 0| Emt1y ooy Emtty s 0, ey 0) € P,

(83)
T=(T1, e, Ty 05 oo0s O | Tt 15 ooy Tt by, 0, .., 0) € P

for some €, Tj € 779 and ki, ko, ly,05 € 720 with ki+ ke < m, b1+ ¥ < n.
Denote || := )", &, |7] := >, 7. Obviously r +t = |e[ + |7|. Denote g =1 — |¢| =
t —|7|, and set A\*P = (g,e,7). Thus A'*P € Ay, if and only if g > 0. For any
A= (f,u,v) € Aoy, we define N = (f, 1/, (v°)') € Ag 4, where v° is defined as
in Definition 14 (i) and g/, (v°)’ are conjugates of p,v°, respectively.

Now parallel to Corollary 26, we have the following.

Lemma 33. Let A = (f,p,v) € Aot such that X' € Ao,y and (A*P) is
Kleshchev (cf. statements after (36)). Then T\ is a direct summand of M.

Proof. First we clarify some notations: by Definition 12, any A = (f,pu,v) €
Ay 1 corresponds to a unique dominant weight A, thus corresponds to a unique
dominant weight A*P by Definition 11 (i). We claim that T\ is a direct summand
in MZ’)'q_f’t_f. If so, then

v{ T, ® v{ e
is obviously a tilting submodule in M;é which is isomorphic to T'. Thus the claim
implies the result. Therefore, it suffices to consider the case f = 0.

Denote v = Apq — V. Since we assume p < ¢ —m, the weight diagram D,
(cf. Definition 10) of v is obtained from that of A,q in (62) by moving the “>7
at vertex p — ¢ + 1 to its left side at vertex p — 7+ 1 — 1/7(7:)_14_1 for each ¢ with
1 <4 < m, and moving the “<” at vertex ¢ — m + j to its right side at vertex
g—m+j+ ufi)jﬂ for each j with 1 < j < n (cf. (76)). Thus no “x” can
be produced, i.e., v is typical. Hence K, is a direct summand in Mz%' Thus, it
suffices to prove that T is a direct summand in V®" ® K, x M;;, where X means
direct summand of M;;. For this, we can apply [6, IV, Lems. 2.4 and 2.6]. Note
from [6, IV, Lem. 2.4] that the action of the functor F; on K, defined in [6, IV]
only depends on symbols at vertices ¢ and ¢ 4+ 1 of the weight diagram D, of v
(we remark that symbols o, A, V, X in [6, IV] are respectively symbols <, x, &, >
in this paper). Due to condition (77), for any i € I, := I\, \ {¢ — m + n} such
that 4 is involved in a path in the crystal graph in [6, IV, Lemma 2.6], the symbols
at vertex ¢ and ¢ + 1 in the weight diagram D, of v are the same as those in the
weight diagram Dg of Apg. This shows that T is a direct summand in Ve K,
if and only if Ty, 47 is a direct summand in Ver o K Apq More precisely, [6, IV,
Lem. 2.6] implies

~ R2° ~ 792"
F, ...FilKV:T)\ — L, - F,K,, :T)\pq+/§a
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where ¢ is the number of edges in the given path of the form @ x — < >. Thus
the result follows from Corollary 26. [

We remark that there is a bijection between T defined in (82) and the set of
pair-wise non-isomorphic simple %, , ,-modules. See [23, Thm. 7.5]. For any { € T
as above, parallel to Definition 11, we define £°P to be the unique dominant weight
such that L¢ is the simple submodule of K¢ior. To avoid confusion of notations,
we emphasis that £ € T is not an element in Ay ¢, but a dominant weight in P*
(thus in fact, & = X for some A € A, by Lemma 29).

Proposition 34. For any { € T, there is a unique A\ = (f, p,v) € Ao,y such
that €°P = X\pg + p — U (e, P = X by Definition 12). Further, §(T¢) is
isomorphic to the projective cover of Df’“/’(”o)/, where DFF) s the simple
head of C(f, 1, (v°)').

Proof. If ¢ € T, then T¢ is an indecomposable tilting module with ¢ > 0. By The-
orem 16, §F(7T¢) is a direct sum of certain principle indecomposable right %s ;. .-
modules. We claim that §(T¢) is indecomposable for any £ € T. Otherwise,
deqr l¢ is strictly less than the number of principal indecomposable direct sum-
mands of right %s ,;-module % ,,. However, for each principal indecomposable
direct summand P of left %, ,;-module %5 ,., P has to be a projective cover
of irreducible left %s ,:-module, say D, which is the simple head of a left cell
module, say A(¢, o, 8) for some (¢, 5) € Aa i, where A(4, a, B) is defined via a
weakly cellular basis of %, ;. So, there is an epimorphism from P to A(¢, a, 3).
Since & := M}!®gp, .7 is right exact, there is an epimorphism from &(P) to
S(AL, o, 0)). It &(A, e, 0)) # 0, then &(P) is a non-zero direct summand
of M;;. This implies that the number of indecomposable direct summands of
left B, -module P, is strictly less than > .. fe. This is a contradiction
since the number of principal indecomposable direct summands of left %5, .-
module %, is equal to that of right %, ,-module %, ;. So, F(T¢) is inde-
composable. Since Kgor — T¢, we have §(T¢) — F(Kewon). By Proposition 32,
S(Kewon) = C(f, 1/, (v°)'). Thus, C(f, 1/, (v°)") has the simple head, denoted by
DI+ " and hence F(Te) = PH#'(") Since ¢ € T, by Lemma 33, both z/ and
(v°)" are Kleshchev in the sense of (36) with respect to —p, m — ¢ and ¢,p — n.

It remains to prove &(A(4, «, 5°)) # 0 for any § := (¢, «, 8) € Az ¢ By Theo-
rem 30, Vj contains a non-zero vector v := v @ ® Vpg @ Vj ®v‘1®eefwa75t)a/l)(ﬁo)/,
where i and j are defined as in Definition 13. So, it is enough to show v €
S(AY, a, 8°)), where A(4, «, 3°) is defined via a suitable weakly cellular basis of
PBs .yt We use cellular bases of 4 ,_; and % ;_; in Lemma 10 (i) (iii) to con-
struct a weakly cellular basis of %5 ., which is similar to that in Theorem 12. Let
A(¢, a, 5°) be the corresponding left cell module with respect to (£, o, 5°) € Ag .
By arguments similar to those for the proof of Proposition 14, one can verify

A(£7 «, BO) = ’%21T7tefxa3ﬁ0waﬁna’U(BO)’ (mod @5:‘;%)-
Let M = v%s .+ be the cyclic A »t-module generated by v := ’Ui@g RV Q@ Upg @V @

vPf. Then M ®g, , , A({,a, 3°) is a subspace of &(A(/, a, 3°)). Since %Qﬁ}t acts
on M trivially, there is a C-linear map ¢ : M ®g, ., A({, o, 3°) — M such that
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¢(m ® h) = mh for any h € ﬂgmtefzcaxﬁowa’ﬁt)a/U(ﬁo), (mod ,@gtlt) Since Apq is
typical and the ground filed is C, up to a non-zero scalar, we have v = ¢V ® h) ,
where h = efwa”gt)allj(ﬁo), (mod %’5‘%) Thus, 6(A(¢, o, 5°)) #0. O

Remark 4. Proposition 34 implies that C(f, u,v) has the simple head if y and v
are Kleshchev bipartitions with respect to —p,m — ¢ and ¢,p — n in the sense of
(36). Further, all non-isomorphic simple %s ,;-modules can be realized in this
way.

Proposition 35 Suppose & € PY. Then §(Le) = 0 if & & T (cf (82)) and
§(Le) = D) yf € € T, where £9°P = Apg +p—V with (f,pn,v) € Aoy

®! ¢

Proof. By (81), §(L¢) =D et Homg(Lg,TC ). Suppose ()7éf€HomU(g)(L5,T<EB ).
Then L¢ = f(L¢) is a simple submodule of TCea ‘<. Since T, ¢ has the unique simple
submodule Le, §(Le) = 0 if € ¢ T. If € € T, then

F(Le) = Homy(g) (Le, TS ), (84)
which is obviously f¢-dimensional. Let vg, ... ,vég c TE@ ‘¢ be the generators of the
tilting module TgEB b (then vg, e ,vgg span the generating space, denoted V', of
T;B 65), and vg, ... ,v?s € LZME, the corresponding generators of the submodule
L?es of TE@ ‘. Thus, there exists a unique u € U (g) such that

v =wwvg for i=1,... L. (85)
Let v¢ € L¢ be the generator of the simple module L¢. As in the proof of Corollary
27, we can define f': L — Tg@fs to be the U(g)-homomorphism sending v¢ to UE

for i =1,...,0c. Then (f!,..., f%) is obviously a basis of F(L¢) (cf. (84)).
For any A € My, (the algebra of f¢ x {¢ complex matrices), we can define an
element ¢4 € Endy q)(M]})P = B, as follows: ¢al e =01if ¢ # & and
¢

b4 l
¢A|T§Bz§ : (vg,...,v;) — (vgl,...,vg)A, (86)

where the right-hand side is regarded as vector-matrix multiplication, i.e., the
transition matrix of the action of ¢ 4 |T<Beg on the generating space V of Tg@fg under
the basis (vgl, e vég) is A. By the universal property of projective modules, this
uniquely defines an element ¢4 € %5 ,.+. Thus we have the embedding ¢ : M 0 —
PBs .y sending A to ¢pa. Write A as A = (aw)es Then by (86) and definition of

ij=1"
the right action of &5, ; on M}!, we have
' (We)pa = vida = (uvé)flm = u(vi¢a)

Le

—uX:aﬂvE ZaﬂvE —(Zaﬂf)( 3

i.e., the transition matrix of the action of ¢4 on F(L¢) under the basis (f1, ..., f%)
is A. Thus ¢(M,, ) acts transitively on the f¢-dimensional space §(L¢) and hence
S(Le¢) is a simple %3, ;-module. Finally, since L¢ < Ketop, we have §F(Kgtor) —
3(L¢). Note that D/#>(*")" is the simple head of F(Kewp). Thus, F(Le¢) =
pH @)Y O

(87)
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o~

satisfying A\'°P = Npg + o — B. If p = (£,7,8) € Aoy, then [C(L,~,(6°)) :
DFeSB) = (Ty 1 K,).

Theorem 36. Suppose (f,c, ) € Aa,1 such that there is a A € T (cf. (82))
/

Proof. The result follows from Lemma 31, Propositions 32 and 35, together with
the BGG reciprocity formula for g. 0O
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