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Abstract. We prove that an analogue of Jordan’s theorem on finite subgroups of general
linear groups holds for the groups of biregular automorphisms of algebraic surfaces. This
gives a positive answer to a question of Vladimir L. Popov.

1. Introduction

Throughout this paper, k is an algebraically closed field of characteristic zero
and P1 is the projective line over k. Let U be an algebraic variety over k [14,
Vol. 2, Chap. VI, Sect. 1]. Then U(k) and Aut(U) stand for its set of k-points and
the group of biregular k-automorphisms respectively. Unless otherwise stated, by
a point of U we mean a k-point. If U is irreducible then we write k(U) and Bir(U)
for its field of rational functions and the group of birational k-automorphisms
respectively; Aut(U) is a subgroup of Bir(U). By an elliptic curve we mean an
irreducible smooth projective curve of genus 1 over k. If X is an elliptic curve and
T ⊂ X(k) is a nonempty finite set of points on X then the (sub)group

Aut(X, T ) = {u ∈ Aut(X) | u(T ) = T } ⊂ Aut(X)

is finite, since X \ T is a hyperbolic curve. If S is a smooth irreducible projective
surface over k then an irreducible closed curve C in S is called a (−1)-curve if it
is smooth rational and its self-intersection index is −1.

The following definition was inspired by the classical theorem of Jordan [2, Sect.
36] about finite subgroups of general linear groups over fields of characteristic zero.
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Definition 1.1 (Definition 2.1 of [9]). A group B is called a Jordan group if there
exists a positive integer JB such that every finite subgroup B1 of B contains a
normal commutative subgroup, whose index in B1 is at most JB .

Remark 1.2. Clearly, a subgroup of a Jordan group is also Jordan. If a Jordan
group G1 is a subgroup of finite index in a group G then G is also Jordan.

V. L. Popov ([9, Sect. 2], see also [10]) posed a question whether Aut(S) is
a Jordan group when S is an algebraic surface over k. He obtained a positive
answer to his question for almost all surfaces. (The case of rational surfaces was
treated earlier by J.-P. Serre [12, Sect. 5.4]). The only remaining case is when S

is birationally (but not biregularly) isomorphic to a product X × P1 of an elliptic
curve X and the projective line. In [16] the second named author proved that
Aut(S) is a Jordan group if S is a projective surface. The aim of this paper is to
extend this result to the case of arbitrary algebraic surfaces. Our main result is
the following statement, which gives a positive answer to Popov’s question.

Theorem 1.3. If X is an elliptic curve over k and S is an irreducible normal

algebraic surface that is birationally isomorphic to X×P1 then Aut(S) is a Jordan

group.

Remark 1.4. The group Bir(X × P1) is not Jordan [15].

Remark 1.5. Suppose that S is a non-smooth irreducible normal surface. Since it
is normal, there are only finitely many singular points on S. Then, by [10, Sect. 2,
Cor. 8], Aut(S) is Jordan. This implies that in the course of the proof of Theorem
1.3 we may assume that S is smooth. On the other hand, by a theorem of Zariski
[17, Cor. II.2.6 on p. 53], every irreducible smooth surface is quasi-projective. This
implies that in the course of the proof of Theorem 1.3 we may assume that S is
smooth quasi-projective.

Corollary 1.6. Suppose that V is an irreducible normal algebraic variety over k.

If dim(V ) ≤ 2 then Aut(V ) is Jordan.

Proof of Corollary 1.6. We have Aut(V ) ⊂ Bir(V ). If V is not birationally iso-
morphic to a product of the projective line and an elliptic curve then Bir(V ) is
Jordan ([9, Thm. 2.32]) and therefore its subgroup Aut(V ) is also Jordan. If V
is birationally isomorphic to a product of the projective line and an elliptic curve
then dim(V ) = 2 and Theorem 1.3 implies that Aut(V ) is Jordan. �

Theorem 1.7. Let V be an irreducible algebraic variety over k. If dim(V ) ≤ 2
then Aut(V ) is Jordan.

Proof of Theorem 1.7. Let ν : V ν → V be the normalization of V ([8, Chap. III,
Sect. 8], [4, Chap. 2, Sect. 2.14]). Here ν is a birational (surjective) regular map
that is called the normalization map for V , and V ν is an irreducible normal variety
(of the same dimension as V ) over k [8, Thm. 4 on p. 203]. The universality property
of the normalization map implies that every biregular automorphism of V lifts
uniquely to a biregular automorphism of V ν [4, Chap. 2, Sect. 2.14, Thm. 2.25 on
p. 141]. This gives rise to the embedding of groups

Aut(V ) ↪→ Aut(V ν).
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By Corollary 1.6, the group Aut(V ν) is Jordan. Since Aut(V ) is isomorphic to a
subgroup of Jordan group Aut(V ν), it is also Jordan. �

Corollary 1.8. Let V be an algebraic variety over k. If dim(V ) ≤ 2 then Aut(V )
is Jordan.

Proof. Let V1, . . . , Vr be all the irreducible components of V . Clearly, all Vi are
irreducible algebraic varieties with dim(Vi) ≤ dim(V ) ≤ 2. By Theorem 1.7, all
Aut(Vi) are Jordan. Now Lemma 1 in Section 2.2 of [10] implies that Aut(V ) is
also Jordan. �

Remark 1.9. Suppose that k is the field C of complex numbers and X is a smooth
irreducible quasi-projective non-projective surface. Then M = X(C) carries the
natural structure of a connected oriented smooth real noncompact fourfold and the
group Aut(X) embeds naturally in the group Diff(M) of the (real) diffeomorphisms
of the fourfoldM . While Aut(X) is always Jordan, there are examples of connected
oriented smooth noncompact real fourfolds, whose group of diffeomorphisms is not
Jordan [11].

The paper is organized as follows. In Section 2 we discuss minimal closures of
surfaces. In Section 3 we prove Theorem 1.3.

Acknowledgements. We are deeply grateful to Vladimir Popov for a stimulating
question and useful discussions. This work was started in September 2013 when
both authors were visitors at the Max-Planck-Institut für Mathematik (Bonn,
Germany), whose hospitality and support are gratefully acknowledged. Most of
this work was done during the academic year 2013/2014 when the second named
author (Y.Z.) was Erna and Jakob Michael Visiting Professor in the Department
of Mathematics at the Weizmann Institute of Science (Rehovot, Israel), whose
hospitality and support are gratefully acknowledged.

2. Minimal closures

2.1. Let X be an elliptic curve over k and S be a smooth irreducible quasi-
projective surface over k that is birationally isomorphic to X×P

1. There exists an
irreducible smooth projective surface S such that its certain Zariski-open subset is
biregularly isomorphic to S (further, we identify S with this open subset). Clearly,
the inclusion map S ⊂ S is a birational morphism. This implies that

Aut(S) ⊂ Bir(S) = Bir(S)

and therefore one may view Aut(S) as a subgroup of Bir(S). Since S is birationally
isomorphic to S, it is also birationally isomorphic to X × P1.

Let us fix a birational isomorphism between S and X×P1. The projection map
X × P1 → X gives rise to a rational map π : S → X with dense image. Since S is
smooth and X becomes abelian variety (after a choice of a base point), it follows
from a theorem of Weil [1, Sect. 4.4] that π is regular. Since S is projective,
π : S → X is surjective, because its image is closed.

For each x ∈ X(k) we write F x for the effective divisor π∗(x) on S that is the
pullback (under π) of the divisor (x) on X . Clearly, the support of F x coincides
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with the curve π−1(x) on S. One says that the fiber of π over x is reduced if all
irreducible components of the divisor F x have multiplicity 1. We say that the fiber
of π over x is irreducible if the curve π−1(x) is irreducible; if this is the case then
its multiplicity in F x is 1 [6, Chap. 3, Sect. 1.4, Lemma 1.4.1(1) on p. 195].

It is known [13, Chap. IV] that for all but finitely many x ∈ X(k) the fiber of π
over x is irreducible and reduced, and the curve π−1(x) is smooth (and irreducible).
We call such fibers nonsingular and other fibers singular.

If C is a rational curve on S then the restriction of π to C must be a constant
map, because every map from a rational curve to an elliptic curve is constant.
This implies that C lies in a fiber of π. (In particular, every (−1)-curve on S lies
in a fiber of π.) This implies that every birational automorphism of S is fiberwise
[5, Sect. 13, Thm. 2]; see Section 2.2 below.

However, if x ∈ X(k) and the fiber π−1(x) is singular then the corresponding
divisor F x enjoys the following properties [6, Chap. I, Sect. 2.12; Chap. 3, Sect. 1.4,
Lemma 1.4.1 on p. 195] (see also [3]).

(i) Each irreducible component of F x is a smooth rational curve (and the
corresponding graph is a tree) [3, Sect. 3].

(ii) At least one of the irreducible components of F x is a (−1)-curve [3, Sect.
4.2].

(iii) If one of the irreducible components of F x is a (−1)-curve of multiplicity
1 then there is another irreducible (−1)-component of F x [3, Sect. 4.2].

2.2. If σ ∈ Bir(S) then there is a unique biregular automorphism f(σ) : X → X

such that the composition πσ is a regular map that coincides with the composition

f(σ)◦π : S
π
−→ X

f(σ)
−−→ X

(see, e.g., [7, Lect. V, Sect 1.4, p. 99]). Clearly, σ sends the fiber π−1(x) to the
fiber π−1(f(σ)(x)) for all x ∈ X(k). We get a surjective group homomorphism

f : Bir(S) → Aut(X), σ 7→ f(σ)

that fits into a short exact sequence

{1} → BirX(S) ⊂ Bir(S)
f
→ Aut(X) → {1}

where the subgroup BirX(S) consists of all birational automorphisms σ ∈ Bir(S)
such that πσ = π (i.e., σ leaves invariant every fiber of π). In addition, BirX(S)
is isomorphic to the projective linear group PGL(2, k(X)) over the field k(X) of
rational functions on X [7, Lect. V, Sect. 1.4, p. 99].

2.3. We write π for the composition

S ⊂ S
π
−→ X,

i.e., for the restriction of π to S. Recall that Aut(S) ⊂ Bir(S). Since S is a
surface, it is not contained in a union of finitely many fibers of π in S. This
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implies that π(S) is infinite and therefore is everywhere dense in X . It follows from
[14, Vol. 1, Chap. 1, Sect. 5, Thm. 6] that either π(S) = X or the complement
T0 := X(k) \ π(S(k)) is a finite set and

S ⊂ π−1(X \ T0) ⊂ S.

If we write AutX(S) for the intersection (in Bir(S)) of Aut(S) and BirX(S) then
we get a short exact sequence

{1} → AutX(S) ⊂ Aut(S)
f
→ f(Aut(S)) → {1}

where

AutX(S) ⊂ BirX(S), f(Aut(S)) ⊂ Aut(X).

Similarly to the case of projective surfaces, if x ∈ X(k) then we write Fx for
the effective divisor π∗(x) on S that is the pullback (under π) of the divisor (x)
on S. Clearly, the support of Fx coincides with the curve π−1(x) on S. It is also
clear that the divisor Fx on S is the pullback of the divisor F x on S under the
(open) inclusion map S ⊂ S. One says that the fiber of π over x is reduced if all
irreducible components of the divisor Fx have multiplicity 1. We say that the fiber
of π over x is irreducible if it is a multiple of a simple divisor, i.e., the curve π−1(x)
is irreducible. Clearly, if the fiber of π over x is irreducible (resp. reduced, resp.
smooth) then the fiber of π over x is irreducible (resp. reduced, resp. smooth). On
the other hand, if an irreducible component C of F x has multiplicity m > 1 and
meets S, then C ∩ S is an irreducible component of Fx with the same multiplicity
m. In particular, the fiber of π over x is not reduced. Notice also that if C1 and
C2 are distinct irreducible components of F x that meet Fx then C1 := C1

⋂
S and

C2 := C2

⋂
S are distinct irreducible components of Fx; in particular, the fiber of

π over x is not irreducible.
It follows from the results about the fibers of π mentioned in Section 2.1 (see also

theorems of Bertini [14, Vol. 1, Chap. 2, Sects. 6.1 and 6.2]) that either all the fibers
of π are smooth irreducible reduced or the set T1 of points x ∈ π(S(k)) ⊂ X(k)
such that, at least, one of these properties does not hold, is finite. Clearly,

f(Aut(S)) ⊂ Aut(X,T0), f(Aut(S)) ⊂ Aut(X,T1).

This implies that if either T0 or T1 is non-empty then f(Aut(S)) is a finite group
and AutX(S) is a subgroup of finite index in Aut(S).

2.4. It follows from the theorem of Jordan that the projective linear group
PGL(2, k(X)) is Jordan [9], [16]. Since BirX(S) is isomorphic to PGL(2, k(X))
(see Section 2.2), it is also a Jordan group. This implies in turn that its sub-
group AutX(S) is also Jordan. It follows that if either T0 or T1 is non-empty
then Aut(S) contains the Jordan subgroup AutX(S) of finite index and therefore
is Jordan itself, thanks to Remark 1.2.

In order to handle the case of empty T0 and T1, we need additional ideas.
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Definition 2.5. The projective surface S is called a (relative) minimal closure

of S if every (−1)-curve on S meets S. See [3, Sect. 4.9]. A minimal closure
of S always exists [3, Prop. 4.10]. (Warning: if S is a minimal closure then the
complement of S in S does not have to be a divisor!)

Lemma 2.6 (Lemma 4.12 of [3]). Assume that π(S) = X and all the fibers of π

are smooth irreducible and reduced. If S is a minimal closure of S then all the

fibers of π : S → X are irreducible.

Proof. Suppose that there exists x ∈ X(k) such that the fiber of π over x is not
irreducible and therefore is singular. Then F x contains as an irreducible component
a (−1)-curve, say C1 with multiplicity m ≥ 1 (Section 2.1). The minimality of S
implies that C1 = C1

⋂
S is non-empty and therefore is an irreducible component

of Fx with the same multiplicity m (Section 2.3). Since the fiber of π over x is
reduced, m = 1. This implies that F x contains another irreducible component
C2 that is also a (−1)-curve. Again C2 = C2

⋂
S is an irreducible component of

Fx that does not coincide with C1. This implies that the fiber of π over x is not

irreducible, which is not the case. �

Theorem 2.7. Assume that π(S) = X and all the fibers of π are smooth irre-

ducible and reduced. Let S be a minimal closure of S. Then every biregular auto-

morphism of S extends uniquely to a biregular automorphism of S. In other words,

Aut(S) ⊂ Aut(S) ⊂ Bir(S).

Proof. By Lemma 2.6, every fiber F x is an irreducible curve isomorphic to P1.
Let g : S → S be a biregular automorphism of S. Let us extend g to a birational

map
g : S → S.

Assume that g is not a regular map. Let S ′ be a resolution of the indeterminacies

of g, i.e., a smooth irreducible surface included into the following commutative
diagram

S′

u

��

g′

��
?

?

?

?

?

?

?

?

S
g

//___ S
∪ ∪ ,

S
g

//

π

��

S

π

��

X
h

// X

where u is a birational morphism that is a composition of finitely many blow
ups and induces a biregular isomorphism between u−1(S) and S (such a u exists,
because g is defined on S), g′ and π′ = π ◦ u are morphisms, and h = f(g) ∈
Aut(X) is a biregular automorphism of X . (The group homomorphism f is defined
in Section 2.2.) Let D′ ⊂ S′ be the union of all exceptional curves for g′ and let
D = g′(D′) ⊂ S, which is a finite set.
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Every point z of S that does not lie on D has only one preimage g′
−1

(z) ∈ S′

([14, Chap. 2, Sect. 4, Thm. 2]).
Let B′ be the union of exceptional curves for u. Clearly,

B′ ⊂ S′ \ u−1(S).

This implies that
u(B′)

⋂
S = ∅.

We want to show that B′ ⊂ D′, because then g′ contracts all components of B′

and g appears to be a morphism.
Let C ′ be an irreducible component of B′. The point u(C ′) lies in u(B′) and

therefore does not belong to S.
Since X is an elliptic curve, and C ′ is rational, π(g′(C ′)) is a point x ∈ X(k).

Thus, since all the fibers of π are irreducible (thanks to Lemma 2.6), either

Case 1. g′(C ′) is a point and therefore C ′ ⊂ D′;
or

Case 2. g′(C ′) = F x = π−1(x) ⊂ S. Let us put x1 := h−1(x) ∈ X(k). Then
x = h(x1) ∈ X(k). Let s ∈ Fx \ (Fx ∩D) ⊂ S be a point of the fiber Fx, which is

not in the image of D′. Therefore it has only one preimage s1 := g′
−1(s). Moreover,

s1 ∈ u−1(S), because s ∈ S. On the other hand, since g′(C ′) = F x, there is a
point c ∈ C ′ ⊂ S′ \ u−1(S) such that g′(c) = s. Clearly, c 6= s1 and we get a
contradiction that shows that the Case 2 does not occur.

This proves that every g ∈ Aut(S) extends to a regular birational map g : S →
S. Since the same is true for g−1 ∈ Aut(S), the map g is a biregular automorphism
of S. �

3. Proof of Theorem 1.3

Remark 1.5 tells us that we may assume that S is a smooth quasi-projective
surface. In light of the results of Section 2.4, we may also assume that every fiber of
π is smooth irreducible and reduced, and π(S) = X . Let S be a minimal closure
of S. By Theorem 2.7, Aut(S) is a subgroup of Aut(S). Since S is projective,
the results of [16] imply that the group Aut(S) is Jordan and therefore its every
subgroup is Jordan. It follows that Aut(S) is Jordan.

References

[1] S. Bosch, W. Lütkebohmert, M. Raynaud, Néron Models, Springer-Verlag, Berlin,
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[8] D. Mumford, The Red Book of Varieties and Schemes, Lecture Notes in Mathemat-
ics, Vol. 1358, Springer-Verlag, Berlin, 1999.

[9] V. L. Popov, On the Makar-Limanov, Derksen invariants, and finite automorphism

groups of algebraic varieties, in: Affine Algebraic Geometry (The Russell Festschrift),
CRM Proceedings and Lecture Notes 54, American Mathematical Society, Provi-
dence, RI, 2011, pp. 289–311.

[10] V. L. Popov, Jordan groups and automorphism groups of algebraic varieties, in: Au-
tomorphisms in Birational and Affine Geometry, Levico Terme, Italy, October 2012,
Springer Proceedings in Mathematics & Statistics, Vol. 79, 2014, Springer, Heidel-
berg, pp. 185–213.

[11] V. L. Popov, Finite subgroups of diffeomorphism groups, arXiv:1310.6548.

[12] J-P. Serre, A Minkowski-style bound for the orders of the finite subgroups of the

Cremona group of rank 2 over an arbitrary field, Moscow Math. J. 9 (2009), no. 1,
183–198.

[13] I. R. Xafareviq i dr., Algebraiqeskie poverhnosti, Trudy Mat. in-ta im.
V. A. Steklova LXXV (1965). Engl. transl.: I. R. Shafarevich et al., Algebraic

Surfaces, American Mathematical Society, Providence, RI, 1967.

[14] I. R. Xafareviq, Osnovy algebraiqesko� geometrii, 2-e izd., t. 1, Nauka,
M., 1988. Engl. transl.: I. R. Shafarevich, Basic Algebraic Geometry, 2nd ed., Vol.
I, Springer-Verlag, Heidelberg, 1994.

[15] Yu. G. Zarhin, Theta groups and products of abelian and rational varieties. Proc.
Edinburgh Math. Soc. 57 (2014), no. 1, 299–304.

[16] Yu. G. Zarhin, Jordan groups and elliptic ruled surfaces, Transformation Groups, in

[17] O. Zariski, Introduction to the Problem of Minimal Models in the Theory of Algebraic

Surfaces, Publ. Math. Soc. Japan 4, Tokyo, 1958.

334

this .issue


