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Abstract. In this part one of a series of papers, we introduce a new version of quantum
covering and super groups with no isotropic odd simple root, which is suitable for the
study of integrable modules, integral forms, and the bar involution. A quantum covering
group involves parameters q and π with π2 = 1, and it specializes at π = −1 to a quantum
supergroup. Following Lusztig, we formulate and establish various structural results of
the quantum covering groups, including a bilinear form, quasi-R-matrix, Casimir element,
character formulas for integrable modules, and higher Serre relations.

Introduction

Quantum groups have been ubiquitous in Lie theory, mathematical physics,
algebraic combinatorics, and low-dimensional topology since their introduction by
Drinfeld and Jimbo [Dr], [Jim]. We refer to the books of Lusztig and Jantzen [Lu],
[Jan] for a systematic development of the structure and representation theory of
quantum groups.

In a recent paper [HW] by two of the authors, the spin nilHecke and quiver Hecke
algebras (see Wang [Wa], Kang–Kashiwara–Tsuchioka [KKT], Ellis–Khovanov–
Lauda [EKL]) were shown to provide a categorification of quantum covering groups
with a quantum parameter q and a second parameter π satisfying π2 = 1 (we refer
to loc. cit. for more references on categorification); a quantum covering group
specializes at π = −1 to half of a quantum supergroup with no isotropic odd
simple roots, and to half of the Drinfeld–Jimbo quantum group at π = 1.

In the rank one case, a version of the full quantum covering and super group for
osp(1|2) suitable for constructing an integral form, as well as integrable modules
over Q(q) corresponding to each nonnegative integer, was formulated by two of the
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authors [CW]. In particular, the structure and representation theories of quantum
sl(2) and quantum osp(1|2) were shown to be in complete agreement; also see
[Zou] (in contrast to the classical fact that there are “fewer” integrable modules
for osp(1|2) than for sl(2)).

The goal of this paper is to lay the foundations of quantum covering and super
groups with no isotropic odd simple roots, following Lusztig [Lu, Part I] as a
blueprint. We define a new version of quantum covering and super groups with no
isotropic odd simple root, which is suitable for the study of integrable modules for
all possible dominant integral weights, exactly as for the Drinfeld–Jimbo quantum
groups. We formulate and establish various structural results of the quantum
covering and super groups, including a bilinear form, twisted derivations, integral
forms, bar-involution, quasi-R-matrix, Casimir, characters for integrable modules,
and quantum (higher) Serre relations.

The results of this paper on quantum covering groups reduce to Lusztig’s quan-
tum group setting [Lu] when specializing the parameter π to 1, and on the other
hand, reduce to quantum supergroup setting when specializing the parameter π to
−1. For this reason, we work almost exclusively with quantum covering groups.
Even if one is mainly interested in the super case, writing π systematically for the
super sign −1 offers a conceptual explanation for various formulas and construc-
tions. For earlier definitions of quantum supergroups, we refer to Yamane [Ya],
Musson–Zou [MZ], Benkart–Kang–Melville [BKM].

Let us describe the main results in detail. As in [Kac], a super Cartan datum is a
Cartan datum (I, ·) with a partition I = I0�I1 subject to some natural conditions;
also see [HW]. Note the only finite type super Cartan datum is of type B(0, n),
for n ≥ 1. In Section 1, we formulate the definition of half a quantum covering
group associated to a super Catan datum. We develop the properties of a bilinear
form (and a dual version) and twisted derivations on half the quantum covering
group systematically. Then we provide a new proof using twisted derivations of
a theorem in [HW] (also cf. Yamane [Ya] and Geer [Gr]) that the existence of a
non-degenerate bilinear form implies the quantum Serre relations.

Motivated by the rank one construction in [CW], we formulate in Section 2 a
new version of quantum super and covering groups with generators Ei, Fi,Kμ, and
additional generators Jμ, for i ∈ I and μ ∈ Y (the co-weight lattice). The new
generators Ji play a crucial role in formulating the notion of integrable modules
of a quantum supergroup for all dominant integral weights. A study of all such
representations was not possible before (cf. [Kac], [BKM]).

In Section 3, we formulate the quasi-R-matrix for quantum covering or super
groups and establish its basic properties. This generalizes the construction in
the rank one case in [CW]. Then we construct the quantum Casimir and use it to
prove the complete reducibility of the integrable modules. We show that the simple
integrable modules are parametrized by π = ±1 and the dominant integral weights
(in contrast to [BKM], [Kac]), and their character formulas coincide with their
counterpart for quantum groups (which was established by Lusztig [Lu1]). This
character formula (in case π = −1) is shown to hold for the irreducible integrable
modules under some “evenness” restrictions on highest weights as in [BKM] (where
a definition of quantum supergroups without operators Ji was used), deforming
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the construction in [Kac].
The higher Serre relations for quantum covering groups are then established in

Section 4.
This paper lays the foundation for further studies of quantum covering and

super groups. In a sequel [CHW], we will construct the canonical basis, à la
Lusztig and Kashiwara, of quantum covering groups and of integrable modules.
In yet another paper, a braid group action on a quantum covering group and its
integrable modules will be studied in depth.

1. The algebra f

In this section, starting with the super Cartan datum and root datum, we
formulate half a quantum covering group f in terms of a bilinear form on a free
superalgebra ′f , and show that the (q, π)-Serre relations are satisfied in f .

1.1. Super Cartan datum

A Cartan datum is a pair (I, ·) consisting of a finite set I and a symmetric bilinear
form ν, ν′ �→ ν · ν′ on the free abelian group Z[I] with values in Z satisfying

(a) di = i · i/2 ∈ Z>0;
(b) 2i · j/i · i ∈ −N for i �= j in I, where N = {0, 1, 2, . . .}.

If the datum can be decomposed as I = I0
∐

I1 such that

(c) I1 �= ∅,
(d) 2i · j/i · i ∈ 2Z if i ∈ I1,

then it is called a super Cartan datum.
The i ∈ I0 are called even, i ∈ I1 are called odd. We define a parity function

p : I → {0, 1} so that i ∈ Ip(i). We extend this function to the homomorphism

p : Z[I] → Z. Then p induces a Z2-grading on Z[I] which we shall call the parity
grading. We define the height of ν =

∑
i∈I νii ∈ Z[I] by ht(ν) =

∑
νi. (Note we

use different notation than [Lu], where the same quantity is denoted by tr(ν).)
A super Cartan datum (I, ·) is said to be of finite (resp. affine) type exactly

when (I, ·) is of finite (resp. affine) type as a Cartan datum (cf. [Lu, §2.1.3]). In
particular, from (a) and (d) we see that the only super Cartan datum of finite type
is the one corresponding to the Lie superalgebras of type B(0, n) for n ≥ 1.

A super Cartan datum is called bar-consistent or simply consistent if it satisfies

(e) di ≡ p(i) mod 2, ∀i ∈ I.

We note that (e) is almost always satisfied for super Cartan data of finite or
affine type (with one exception). A super Cartan datum is not assumed to be
(bar-)consistent unless specified explicitly below. (Roughly speaking, the “bar-
consistent” condition is imposed whenever a bar involution is involved later on.)

Note that (d) and (e) imply that

(f) i · j ∈ 2Z for all i, j ∈ I.

1.2. Root datum

A root datum associated to a super Cartan datum (I, ·) consists of
(a) two finitely generated free abelian groups Y , X and a perfect bilinear pairing

〈· , ·〉 : Y ×X → Z;
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(b) an embedding I ⊂ X (i �→ i′) and an embedding I ⊂ Y (i �→ i) satisfying
(c) 〈i, j′〉 = 2i · j/i · i for all i, j ∈ I.

We will always assume that the image of the imbedding I ⊂ X (respectively, the
image of the imbedding I ⊂ Y ) is linearly independent in X (respectively, in Y ).

Let X+ = {λ ∈ X | 〈i, λ〉 ∈ N for all i ∈ I}. Note that there are no additional
“evenness” assumptions for X+.

Let π be a parameter such that

π2 = 1.

For any i ∈ I, we set
qi = qi·i/2, πi = πp(i).

Note that when the datum is consistent, πi = πi·i/2; by induction, we therefore
have πp(ν) = πν·ν/2 for ν ∈ Z[I]. We extend this notation so that if ν =

∑
νii ∈

Z[I], then

qν =
∏
i

qνii , πν =
∏
i

πνi
i .

For any ring R we define a new ring Rπ = R[π]/(π2 − 1) (with π commuting with
R). We shall need Q(q)π below.

1.3. Braid group and Weyl group

Assume a Cartan (super) datum (I, ·) is given. For i �= j ∈ I such that 〈i, j ′〉〈j, i′〉>
0, we define an integer mij ∈ Z≥2 by cos2(π/mij) = 〈i, j′〉 〈j, i′〉/4 if it exists, and
set mij =∞ otherwise. We have

〈i, j′〉〈j, i′〉 0 1 2 3 ≥ 4
mij 2 3 4 6 ∞

The braid group (associated to I) is the group generated by si (i ∈ I) subject
to the relations (whenever mij <∞):

sisjsi · · ·︸ ︷︷ ︸
mij

= sjsisj · · ·︸ ︷︷ ︸
mij

. (1.1)

The Weyl group W is defined to be the group generated by si (i ∈ I) subject to
relations (1.1) and additional relations s2i = 1 for all i.

For i ∈ I, we let si act on X (resp. Y ) as follows: for λ ∈ X,λ∨ ∈ Y ,

si(λ) = λ− 〈i, λ〉i′, si(λ
∨) = λ∨ − 〈λ∨, i′〉i.

This defines actions of the Weyl group W on X and Y .

1.4. The algebras ′f and f

Define ′f to be the free associative Q(q)
π
-superalgebra with 1 and with even gen-

erators θi for i ∈ I0 and odd generators θi for i ∈ I1. We abuse notation and define
the parity grading on ′f by p(θi) = p(i). We also have a weight grading | · | on ′f
defined by setting |θi| = i.

1022



FOUNDATIONS OF QUANTUM SUPERGROUPS

The tensor product ′f ⊗ ′f as a Q(q)
π
-superalgebra has the multiplication

(x1 ⊗ x2)(x
′
1 ⊗ x′

2) = q|x2|·|x′
1|πp(x2)p(x

′
1)x1x

′
1 ⊗ x2x

′
2.

Here and below, in all displayed formulas, we will implicitly assume the elements
involved are N[I]× Z2-homogeneous.

There is a similar multiplication formula in ′f ⊗ ′f ⊗ ′f :

(x1 ⊗ x2 ⊗ x3)(x
′
1 ⊗ x′

2 ⊗ x′
3)

= q|x2|·|x′
1|+|x3|·|x′

2|+|x3|·|x′
1|πp(x2)p(x

′
1)+p(x3)p(x

′
2)+p(x3)p(x

′
1)x1x

′
1 ⊗ x2x

′
2 ⊗ x3x

′
3.

We will take r : ′f → ′f ⊗ ′f to be an algebra homomorphism such that r(θi) =
θi ⊗ 1 + 1⊗ θi for all i ∈ I. One checks that the following co-associativity holds:

(r ⊗ 1)r = (1⊗ r)r : ′f → ′f ⊗ ′f ⊗ ′f ;

this is an algebra homomorphism.

Proposition 1.4.1. There exists a unique bilinear form (· , ·) on ′f with values in
Q such that (1, 1) = 1 and

(a) (θi, θj) = δij(1− πiq
−2
i )−1 (∀i, j ∈ I);

(b) (x, y′y′′) = (r(x), y′ ⊗ y′′) (∀x, y′, y′′ ∈ ′f);
(c) (xx′, y′′) = (x⊗ x′, r(y′′)) (∀x, x′, y′′ ∈ ′f).

Moreover, this bilinear form is symmetric.

Here, the induced bilinear form (′f ⊗ ′f)× (′f ⊗ ′f)→ Q(q) is given by

(x1 ⊗ x2, x
′
1 ⊗ x′

2) := (x1, x
′
1)(x2, x

′
2), (1.2)

for homogeneous x1, x2, x
′
1, x

′
2 ∈ ′f .

This is basically [HW, Prop. 3.3], where (θi, θj) = δij(1− πiq
2
i )

−1 was imposed
(note a different sign on the exponent for q2i ). These two cases do not exactly
match under the bar-involution (which sends q �→ πq−1), and so we redo a careful
proof here.

Proof. We follow [Lu, 1.2.3] to define an associative algebra structure on ′f∗ :=
⊕ν

′f∗ν by transposing the “coproduct” r : ′f → ′f ⊗ ′f . In particular, for g, h ∈ ′f∗,
we define gh(x) := (g ⊗ h)(r(x)), where (g ⊗ h)(y ⊗ z) = g(y)h(z).

Let ξi ∈ ′f∗i be defined by ξi(θi) = (1−πiq
−2
i )−1. Let φ : ′f → ′f∗ be the unique

algebra homomorphism such that φ(θi) = ξi for all i. The map φ preserves the
N[I]× Z2-grading.

Define (x, y) = φ(y)(x), for x, y ∈ ′f . The properties (a) and (b) follow directly
from the definition.

Clearly (x, y) = 0 unless (homogeneous) x, y have the same weight in N[I] and
the same parity. All elements involved below will be assumed to be homogeneous.
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It remains to prove (c). Assume that (c) is known for y′′ replaced by y or y′

and for any x, x′. We then prove that (c) holds for y′′ = yy′. Write

r(x) =
∑

x1 ⊗ x2, r(x′) =
∑

x′
1 ⊗ x′

2,

r(y) =
∑

y1 ⊗ y2, r(y′) =
∑

y′1 ⊗ y′2.

Then

r(xx′) =
∑

q|x2|·|x′
1|πp(x2)p(x

′
1)x1x

′
1 ⊗ x2x

′
2,

r(yy′) =
∑

q|y2|·|y′
1|πp(y2)p(y

′
1)y1y

′
1 ⊗ y2y

′
2.

We have

(xx′, yy′) = (φ(y)φ(y′))(xx′) = (φ(y) ⊗ φ(y′))(r(xx′))

=
∑

q|x2|·|x′
1|πp(x2)p(x

′
1)(x1x

′
1, y)(x2x

′
2, y

′)

=
∑

q|x2|·|x′
1|πp(x2)p(x

′
1)(x1 ⊗ x′

1, r(y))(x2 ⊗ x′
2, r(y

′))

=
∑

q|x2|·|x′
1|πp(x2)p(x

′
1)(x1, y1)(x

′
1, y2)(x2, y

′
1)(x

′
2, y

′
2).

(1.3)

On the other hand,

(x⊗ x′, r(yy′)) =
∑

q|y2|·|y′
1|πp(y2)p(y

′
1)(x⊗ x′, y1y′1 ⊗ y2y

′
2)

=
∑

q|y2|·|y′
1|πp(y2)p(y

′
1)(x, y1y

′
1)(x

′, y2y′2)

=
∑

q|y2|·|y′
1|πp(y2)p(y

′
1)(r(x), y1 ⊗ y′1)(r(x

′), y2 ⊗ y′2)

=
∑

q|y2|·|y′
1|πp(y2)p(y

′
1)(x1, y1)(x

′
1, y2)(x2, y

′
1)(x

′
2, y

′
2).

(1.4)

For a summand to make nonzero contribution, we may assume that each of the
four pairs {x1, y1}, {x′

1, y2}, {x2, y
′
1}, {x′

2, y
′
2} has the same weight in N[I] and the

same parity. One checks that the powers of q and π in (1.3) and (1.4) match
perfectly. Hence the two sums in (1.3) and (1.4) are equal, and whence (c). �

We set I to denote the radical of (· , ·). As in [Lu], this radical is a 2-sided ideal
of ′f .

Let f = ′f/I be the quotient algebra of ′f by its radical. Since the different
weight spaces are orthogonal with respect to this inner product, the weight space
decomposition descends to a decomposition f =

⊕
ν fν where fν is the image of ′fν .

Each weight space is finite dimensional. The bilinear form descends to a bilinear
form on f which is non-degenerate on each weight space.

Note that the notation of ′f and f in this paper corresponds to the notation of
′fπ and fπ in [HW].

The map r : ′f → ′f ⊗ ′f satisfies r(I) ⊂ I⊗ ′f + ′f ⊗ I (the proof being entirely
the same as in [Lu, §1.2.6]), whence it descends to a well-defined homomorphism
r : f → f ⊗ f .
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Let tr : ′f → ′f ⊗ ′f be the composition of r with the permutation map

x⊗ y �→ y ⊗ x

of ′f ⊗ ′f to itself. (To have the signs work out below, the tensor permutation
cannot be signed.)

The anti-involution σ : ′f → ′f satisfies σ(θi) = θi for each i ∈ I and

σ(xy) = σ(y)σ(x).

Lemma 1.4.2.

(a) We have r(σ(x)) = (σ ⊗ σ)tr(x), for all x ∈ ′f .
(b) We have (σ(x), σ(x′)) = (x, x′) for all x, x′ ∈ ′f .

Proof. Since (b) will follow immediately from (a), it suffices to prove that r(σ(x)) =
(σ ⊗ σ)tr(x), for all x ∈ ′f . This is obviously true for x ∈ {1, θi : i ∈ I}.

Suppose that r(σ(x′)) = (σ⊗σ)tr(x′) and r(σ(x′′)) = (σ⊗σ)tr(x′′). Let r(x′) =∑
x′
1 ⊗ x′

2 and r(x′′) =
∑

x′′
1 ⊗ x′′

2 . Then r(x′x′′) =
∑

q|x
′
2||x′′

1 |πp(x′
2)p(x

′′
1 )x′

1x
′′
1 ⊗

x′
2x

′′
2 and we have

r(σ(x′x′′)) = r(σ(x′′))r(σ(x′))

=
(∑

σ(x′′
2 )⊗ σ(x′′

1 )
)(∑

σ(x′
2)⊗ σ(x′

1)
)

=
∑

πp(x′
2)p(x

′′
1 )q|x

′
2||x′′

1 |σ(x′
2x

′′
2 )⊗ σ(x′

1x
′′
1 ) = σ ⊗ σ(tr(x′x′′)).

The lemma is proved. �
We note that σ descends to f and shares the above properties.
Let : Q(q)

π → Q(q)
π

be the unique Q-algebra involution (called the bar
involution) satisfying q = πq−1 and π = π.

Assume the super Cartan datum is consistent. Then

qi = πiq
−1
i . (1.5)

We define a bar involution : ′f → ′f such that θi = θi for all i ∈ I and fx = fx
for f ∈ Q(q)π and x ∈ ′f .

Let ′f⊗′f be the Q(q)
π
-vector space ′f ⊗ ′f with multiplication given by

(x1 ⊗ x2)(x
′
1 ⊗ x′

2) = (πq−1)|x2|·|x′
1|πp(x2)p(x

′
1)x1x

′
1 ⊗ x2x

′
2.

Define r still by r(x) = r(x). Then r : ′f → ′f⊗′f is an algebra homomorphism,
being a composition of homomorphisms.

The co-associativity holds for r:

(r ⊗ 1)(r(x)) = (r ⊗ 1)r(x) = (1⊗ r)r(x) = (1⊗ r)(r(x)).

By checking on the algebra generators θi, it is an easy computation to see that
this is an algebra homomorphism.

Let {·, ·} : ′f × ′f → Q(q) be the symmetric bilinear form defined by

{x, y} = (x, y).

It satisfies: {1, 1} = 1, and

{θi, θj} = δi,j(1− πiq
2
i )

−1;

{x, y′y′′} = {r(x), y′ ⊗ y′′}, for all x, y′, y′′ ∈ ′f .
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Lemma 1.4.3. Assume the super Cartan datum is consistent.

(a) Let r(x) =
∑

x1 ⊗ x2. We have

r(x) =
∑

(πq)−|x1|·|x2|πp(x1)p(x2)x2 ⊗ x1.

(b) {x, y} = (−1)ht|x|π(p(x)p(y)+p(x))/2q−|x|·|y|/2q−|x|(x, σ(y)).

Proof. It is straightforward to check both claims are true when x = θi and y = θj
for some i, j ∈ I.

Assume (a) holds for x replaced by x′ and by x′′. We shall prove the claim for
x = x′x′′.

Recall q = πq−1, and r(x) = r(x). Write

r(x′) =
∑

x′
1 ⊗ x′

2, r(x′′) =
∑

x′′
1 ⊗ x′′

2 ,

r(x′x′′) =
∑

q|x
′′
1 |·|x′

2|πp(x′′
1 )p(x

′
2)x′

1x
′′
1 ⊗ x′

2x
′′
2 .

(1.6)

By assumption, we have

r(x′) =
∑

q|x
′
1|·|x′

2|πp(x′
1)p(x

′
2)x′

2 ⊗ x′
1,

r(x′′) =
∑

q|x
′′
1 |·|x′′

2 |πp(x′′
1 )p(x

′′
2 )x′′

2 ⊗ x′′
1 .

Hence,

r(x′)r(x′′) =
∑

q|x
′
1|·|x′

2|πp(x′
1)p(x

′
2)q|x

′′
1 |·|x′′

2 |πp(x′′
1 )p(x

′′
2 )(x′

2 ⊗ x′
1)(x

′′
2 ⊗ x′′

1 )

=
∑

q|x
′
1|·|x′

2|+|x′′
1 |·|x′′

2 |πsq|x
′
1|·|x′′

2 |x′
2x

′′
2 ⊗ x′

1x
′′
1 ,

where s = p(x′
1)p(x

′
2) + p(x′′

1 )p(x
′′
2 ) + p(x′

1)p(x
′′
2 ). Then,

r(x′x′′) = r(x′)r(x′′)

=
∑

(πq)−(|x′
1|·|x′

2|+|x′′
1 |·|x′′

2 |+|x′
1|·|x′′

2 |)πsx′
2x

′′
2 ⊗ x′

1x
′′
1

=
∑

(πq)−|x′
1x

′′
1 |·|x′

2x
′′
2 |πp(x′

1x
′′
1 )p(x

′
2x

′′
2 )q|x

′′
1 |·|x′

2|πtx′
2x

′′
2 ⊗ x′

1x
′′
1 ,

where t = p(x′′
1 )p(x

′
2)+|x′′

1 |·|x′
2|. Now, since the datum is consistent, |x′′

1 |·|x′
2| ∈ 2Z,

and hence we have

r(x′x′′)=
∑

(πq)−|x
′
1x

′′
1 |·|x′

2x
′′
2 |πp(x′

1x
′′
1 )p(x

′
2x

′′
2 )q|x

′′
1 |·|x′

2|πp(x′′
1 )p(x

′
2)x′

2x
′′
2⊗x′

1x
′′
1 . (1.7)

Comparing (1.6) and (1.7), we see that (a) holds.
Let S be the set of y ∈ ′f such that (b) holds for all x ∈ ′f . Let y′, y′′ ∈ S;

we will show y = y′y′′ ∈ S. Let x ∈ ′f and write r(x) =
∑

x′ ⊗ x′′ with x, x′′
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homogeneous. Then

{x, y′y′′} = {r(x), y′ ⊗ y′′} =
{∑

(πq)−|x′|·|x′′|πp(x′)p(x′′)x′′ ⊗ x′, y′ ⊗ y′′
}

=
∑

q−|x′|·|x′′|πp(x′)p(x′′) {x′′, y′} {x′, y′′}
=

∑
(−1)ht|x′|+ht|x′′|q(−|x′′|·|y′|−|x′|·|y′′|−2|x′|·|x′′|)/2q−|x′|−|x′′|

∗ πp(x′)p(x′′)+(p(x′)p(y′′)+p(x′))/2+(p(x′′)p(y′)−p(x′′))/2(x′′, σ(y′))(x′, σ(y′′))
(†)
=

∑
(−1)ht|x|q−|x|·|y|/2q−|x|π(p(x)p(y)+p(x))/2(x′ ⊗ x′′, σ(y′′)⊗ σ(y′))

= (−1)ht|x|q−|x|·|y|/2q−|x|π(p(x)p(y)+p(x))/2(x, σ(y′y′′))

where the equality (†) follows from the observation that the nonzero terms in the
sum occur only when the each of the pairs {x′, y′′} and {x′′, y′} are of the same
weight and parity. Therefore we see y ∈ S. Since the algebra generators lie in S,
the claim is proved. �

In particular, we observe the following corollary.

Corollary 1.4.4. Assume the super Cartan datum is consistent. Then descends
to an involution on f .

1.5. The maps ri and ir

Let i ∈ I. Clearly there are unique Q(q)
π
-linear maps ri, ir : ′f → ′f such that

ri(1) = ir(1) = 0 and ri(θj) = ir(θj) = δij satisfying

ir(xy) = ir(x)y + πp(x)p(i)q|x|·ixir(y),

ri(xy) = πp(y)p(i)q|y|·iri(x)y + xri(y)

for homogeneous x, y ∈ ′f ; see [K]. We see that if x ∈ ′fν , then ir(x), ri(x) ∈ ′fν−i

and moreover that

r(x) = ri(x)⊗ θi + θi ⊗ ir(x) + (. . .) (1.8)

where (. . .) stands in for other bi-homogeneous terms x′ ⊗ x′′ with |x′| �= i and
|x′′| �= i. Therefore, we have

(θiy, x) = (θi, θi)(y, ir(x)), (yθi, x) = (θi, θi)(y, ri(x)) (1.9)

for all x, y ∈ ′f , so ir(I) ∪ ri(I) ⊆ I. Hence, both maps descend to maps on f . It
is also easy to check that

ri σ = σ ir.

Indeed, this is trivially true for the generators, and if this holds for x, y ∈ f , then

ri σ(xy) = ri(σ(y)σ(x)) = πp(i)p(x)qi·|x|ri(σ(y))σ(x) + σ(y)ri(σ(x))

= σ(πp(i)p(x)qi·|x|xir(y) + ir(x)y) = σ ir(xy).
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Lemma 1.5.1. Assume (I, ·) is consistent. For any homogeneous x ∈ f , we have

ri(x) = πp(x)p(i)−p(i)p(i)q|x|·i−i·i
ir(x).

Proof. This is trivial when x = θi. Now assume this is true for x, y ∈ ′f . Then

ir(xy) = ir(x)y + πp(x)p(i)(πq)−|x|·i
ir(y)

= π−p(x)p(i)+p(i)p(i)q−|x|·i+i·iri(x)y

+ π−p(y)p(i)+p(i)p(i)q−|y|·i+i·iπp(x)p(i)(πq)−|x|·ixri(y)

= π−p(x+y)p(i)+p(i)p(i)q−|x+y|·i+i·i(πp(y)p(i)q|y|·iri(x)y + xri(y)
)

= π−p(x+y)p(i)+p(i)p(i)q−|x+y|·i+i·iri(xy).

The lemma is proved. �

Lemma 1.5.2. Let x ∈ fν where ν ∈ N[I] is nonzero.

(a) If ri(x) = 0 for all i ∈ I, then x = 0.
(b) If ir(x) = 0 for all i ∈ I, then x = 0.

Proof. Suppose that ri(x) = 0 for all i. Using (1.9), this means that (yθi, x) = 0
for all y ∈ f and all i ∈ I. But since f is spanned by monomials in the θi, this
implies x ∈ I, and so x = 0 in f . The proof of (b) proceeds similarly. �

1.6. Gaussian (q, π)-binomial coefficients

Let A = Z[q, q−1], and let Aπ be as in §1.1.3. For a ∈ Z and t ∈ N, we define the
(q, π)-binomial coefficients to be

[
a
t

]
i

=

∏t−1
s=0((πiqi)

a−s − qs−a
i )∏t

s=1((πiqi)s − q−s
i )

.

We have [
a
t

]
i

= (−1)tπta−(t2)
i

[
t− a− 1

t

]
i

, (1.10)[
a
t

]
i

= 0 if 0 ≤ a < t, (1.11)

a−1∏
j=0

(
1 + (πiq

2
i )

jz
)
=

a∑
t=0

π
(t2)
i q

t(a−1)
i

[
a
t

]
i

zt if a ≥ 0. (1.12)

Here z is another indeterminate. From (1.10) and (1.12) we deduce that[
a
t

]
i

∈ A. (1.13)
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If a′, a′′ are integers and t ∈ N, then[
a′ + a′′

t

]
i

=
∑

t′+t′′=t

πt′t′′+a′t′′
i qa

′t′′−a′′t′
i

[
a′

t′

]
i

[
a′′

t′′

]
i

. (1.14)

We have

[−1
t

]
i

= (−1)tπ(
t+1
2 )

i for any t ≥ 0, i ∈ I.

For (q, π)-integers we shall denote

[n]i =

[
n
1

]
i

=
(πiqi)

n − q−n
i

πiqi − q−1
i

for n ∈ Z,

[n]!i =

n∏
s=1

[s]i for n ∈ N,

and with this notation we have[
a
t

]
i

=
[a]!i

[t]!i[a− t]!i
for 0 ≤ t ≤ a.

Note that the (q, π)-integers [n]i and the (q, π)-binomial coefficients in general are
not necessarily bar-invariant unless the super Cartan datum is consistent; see (1.5).

If a ≥ 1, then we have

a∑
t=0

(−1)tπ(
t
2)

i q
t(a−1)
i

[
a
t

]
i

= 0 (1.15)

which follows from (1.12) by setting z = −1.
If x, y are two elements in a Q(q)

π
-algebra such that xy = πiq

2
i yx, then for any

a ≥ 0, we have the quantum binomial formula:

(x + y)a =

a∑
t=0

q
t(a−t)
i

[
a
t

]
i

ytxa−t. (1.16)

1.7. Quantum Serre relations

For any n ∈ Z, let the divided powers θ
(n)
i (in f or ′f) be defined as θi/[n]

!
i if n ≥ 0

and 0 otherwise.

Lemma 1.7.1. For any n ∈ Z we have

(a) r(θ
(n)
i ) =

∑
t+t′=n q

tt′
i θ

(t)
i ⊗ θ

(t′)
i ,

(b) r(θ
(n)
i ) =

∑
t+t′=n(πiqi)

−tt′θ
(t)
i ⊗ θ

(t′)
i .

Proof. By the quantum binomial formula (1.16) applied to x = 1⊗θi and y = θi⊗1,
the formula follows. �
Lemma 1.7.2. For any n ≥ 0, we have

(θ
(n)
i , θ

(n)
i ) =

n∏
s=1

πs−1
i

1− (πiq
−2
i )s

= πn
i q

(n+1
2 )

i (πiqi − q−1
i )−n([n]!i)

−1.
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Proof. We prove by induction on n. The lemma is true by definition for n = 0, 1.
For general n, it follows by Lemma 1.7.1(a) that

(
θ
(n)
i , θ

(n)
i

)
= [n]−1

i

(
θ
(n−1)
i ⊗ θi, r

(
θ
(n)
i

))
= [n]−1

i

(
θ
(n−1)
i ⊗ θi,

∑
t+t′=n

qtt
′

i θ
(t)
i ⊗ θ

(t′)
i

)
= [n]−1

i

(
θ
(n−1)
i ⊗ θi, q

n−1
i θ

(n−1)
i ⊗ θi

)
= qn−1

i [n]−1
i (θi, θi)

(
θ
(n−1)
i , θ

(n−1)
i

)
.

Hence by the induction hypothesis, we have

(
θ
(n)
i , θ

(n)
i

)
= qn−1

i [n]−1
i (1 − πiq

−2
i )−1πn−1

i q
(n2)
i (πiqi − q−1

i )−n+1([n− 1]!i)
−1

= πn
i q

(n+1
2 )

i (πiqi − q−1
i )−n([n]!i)

−1.

The lemma is proved. �

Proposition 1.7.3 (Quantum Serre relation). The generators θi of f satisfy the
relations ∑

n+n′=1−〈i,j′〉
(−1)n′

π
n′p(j)+(n

′
2 )

i θ
(n)
i θjθ

(n′)
i = 0

for any i �= j in I.

Proposition 1.7.3 appeared as [HW, Thm. 3.8]. We shall give a new and simpler
proof of Proposition 1.7.3 below after some preparation.

Lemma 1.7.4. Let N ∈ N and a, a′ ∈ N with N = a + a′. Let i, j, k ∈ I be
pairwise distinct. Then

(a) rk(θ
(a)
i θjθ

(a′)
i ) = 0,

(b) rj(θ
(a)
i θjθ

(a′)
i ) = q

a′〈i,j〉
i π

a′p(j)
i

[
N
a′

]
i

θ
(N)
i ,

(c) ri(θ
(a)
i θjθ

(a′)
i ) = q

a′+(N+〈i,j〉−1)
i π

a′+p(j)
i θ

(a−1)
i θjθ

(a′)
i + qa

′−1
i θ

(a)
i θjθ

(a′−1)
i .

Proof. Part (a) is clear from definitions. By (1.8) and Lemma 1.7.1(a) we have

ri′(θ
(a)
j′ ) = δi′,j′q

a−1
i′ θ

(a−1)
i′ .

Parts (b) and (c) follow from this and noting

ri(cba) = cbri(a) + πp(i)p(a)qi·|a|cri(b)a+ πp(i)p(a)+p(i)p(b)qi·|a|+i·|b|ri(c)ba.

The lemma is proved. �
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Proof of Proposition 1.7.3. Let N = 1− 〈i, j ′〉. By the previous lemma, we have

rk

( ∑
n+n′=N

(−1)n′
π
n′p(j)+(n

′
2 )

i θ
(n)
i θjθ

(n′)
i

)
= 0, for k �= i, j.

In addition, we have

rj

( ∑
n+n′=N

(−1)n′
π
n′p(j)+(n

′
2 )

i θ
(n)
i θjθ

(n′)
i

)
=

∑
n+n′=N

(−1)n′
π
n′p(j)+(n

′
2 )

i q
n′〈i,j〉
i π

n′p(j)
i

[
N
n′

]
i

θ
(N)
i

= θ
(N)
i

N∑
t=0

(−1)tπ(
t
2)

i (qi)
t(1−N)

[
N
t

]
i

.

By Condition 1.1(e), 1−N ∈ 2Z if i is odd, so in any case, the right-hand side of
the last equation is

θ
(N)
i

N∑
t=0

(−1)tπ(
t
2)

i (πiq
−1
i )t(N−1)

[
N
t

]
i

= 0,

where the last equality follows from (1.15). Finally,

ri

( ∑
n+n′=N

(−1)n′
π
n′p(j)+(n

′
2 )

i θ
(n)
i θjθ

(n′)
i

)
=

∑
n+n′=N

(−1)n′
π
n′p(j)+(n

′
2 )

i qn
′

i π
n′+p(j)
i θ

(n−1)
i θjθ

(n′)
i

+
∑

n+n′=N

(−1)n′
π
n′p(j)+(n

′
2 )

i qn
′−1

i θ
(n)
i θjθ

(n′−1)
i

=

N−1∑
t=0

(−1)tπtp(j)+p(j)+(t+1
2 )

i qtiθ
(N−1−t)
i θjθ

(t)
i

−
N−1∑
t=0

(−1)tπ(t+1)p(j)+(t+1
2 )

i qtiθ
(N−1−t)
i θjθ

(t)
i

= 0.

Now Proposition 1.7.3 follows by Lemma 1.5.2. �
Note that the bar map on f may not be well-defined when the datum is not

consistent. For example, consider the case (I, ·) has i, j ∈ I0 with i · j = −1, hence
di = dj = 1. Then the calculations above hold; that is, s(θi, θj) := θ

(2)
i θj−θiθjθi+

θjθ
(2)
i = 0; however, since [2]i = π[2]i, it is easy to see that s(θi, θj) /∈ I.

Let Af be Aπ-subalgebra of f generated by the elements θ
(s)
i for various i ∈ I

and s ∈ Z. Since the generators θ
(s)
i are homogeneous, we have Af =

⊕
ν Afν

where ν runs over N[I] and Afν = Af ∩ fν .
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2. The quantum covering and super groups

In this section we give the definition of the quantum covering group U as a
Hopf superalgebra, which specializes at π = −1 to a new variant of a quantum
supergroup. We show that U admits a triangular decomposition U = U−U0U+

with positive/negative parts isomorphic to the algebra f . The novelty here is that
U0 contains some new generators Ji(i ∈ I) which allow us to construct integrable
modules in full generality.

2.1. The algebras ′U and U

Assume that a root datum (Y,X, 〈 , 〉) of type (I, ·) is given. Consider the associa-
tive Q(q)π-superalgebra ′U (with 1) defined by the generators

Ei (i ∈ I), Fi (i ∈ I), Jμ (μ ∈ Y ), Kμ (μ ∈ Y ),

where the parity is given by p(Ei) = p(Fi) = p(i) and p(Kμ) = p(Jμ) = 0, subject
to the relations (a)-(f) below for all i, j ∈ I, μ, μ′ ∈ Y :

K0 = 1, KμKμ′ = Kμ+μ′ , (a)

J2μ = 1, JμJμ′ = Jμ+μ′ , (b)

JμKμ′ = Kμ′Jμ, (c)

KμEi = q〈μ,i′〉EiKμ, JμEi = π〈μ,i′〉EiJμ, (d)

KμFi = q−〈μ,i′〉FiKμ, JμFi = π−〈μ,i′〉FiJμ, (e)

EiFj − πp(i)p(j)FjEi = δi,j
J̃iK̃i − K̃−i

πiqi − q−1
i

, (f)

where for any element ν =
∑

i νii ∈ Z[I] we have set K̃ν =
∏

iKdiνii, J̃ν =∏
i Jdiνii. In particular, K̃i = Kdii, J̃i = Jdii. (Under Condition 1.1(e), J̃i = 1 for

i ∈ I0 while J̃i = Ji for i ∈ I1.)
We also consider the associative Q(q)

π
-algebra U (with 1) defined by the gen-

erators
Ei (i ∈ I), Fi (i ∈ I), Jμ (μ ∈ Y ), Kμ (μ ∈ Y )

and the relations (a)-(f) above, together with the additional relations

for any f(θi : i ∈ I) ∈ I, f(Ei : i ∈ I) = f(Fi : i ∈ I) = 0. (g)

The algebra U will be called the quantum covering group of type (I, ·).
From (g), we see that there are well-defined algebra homomorphisms f → U,

x �→ x+ (with image denoted by U+) and f → U, x �→ x− (with image denoted by
U−) such that Ei = θ+i and Fi = θ−i for all i ∈ I. Clearly, there are well defined
algebra homomorphisms ′f → ′U with the aforementioned properties.

(In terms of standard notations used in some other quantum group literature,
it is understood that Kμ = qμ and Ki = qhi . It is instructive to see our new
generators J ’s can be understood in the same vein as Jμ = πμ and Ji = πhi .)

For any p ≥ 0, we set E
(p)
i = (θ

(p)
i )+ and F

(p)
i = (θ

(p)
i )−.
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Example 2.1.1. In the case I = I1 = {I}, we can identify Y = X = Z with
i = 1 ∈ Y , i′ = 2 ∈ X , and 〈μ, λ〉 = μλ. Then U is the Q(q)

π
-algebra generated

by E,F ,K,J such that

JK = KJ, JE = EJ, JF = FJ, J2 = 1,

KEK = q2E, KFK = q−2F,

EF − πFE =
JK −K−1

πq − q−1
.

Note that the quotient algebras U/((J ± 1)U) are isomorphic to the two variants
of the quantum group Uq(osp(1|2)) defined in [CW].

2.2. Properties of U

By inspection, there is a unique algebra automorphism (of order 4) ω : ′U → ′U
such that

ω(Ei) = πiJ̃iFi, ω(Fi) = Ei, ω(Kμ) = K−μ, ω(Jμ) = Jμ

for i ∈ I, μ ∈ Y . We have ω(x+) = π|x|J̃|x|x− and ω(x−) = x+ for all x ∈ f , and
thus the same formula defines a unique algebra automorphism ω : U→ U.

Similarly, there is a unique isomorphism of Q(q)
π
-vector spaces σ : ′U → ′U

such that

σ(Ei) = Ei, σ(Fi) = πiJ̃iFi, σ(Kμ) = K−μ, σ(Jμ) = Jμ

for i ∈ I, μ ∈ Y such that σ(uu′) = σ(u′)σ(u) for u, u′ ∈ U. We have

σ(x+) = σ(x)+, σ(x−) = π|x|J̃|x|σ(x)−, ∀x ∈ f . (2.1)

Again, this implies that the same formula defines a unique algebra automorphism
σ : U→ U. Note that σ on U+ matches exactly σ on f , but σ on U− looks quite
different from σ on f (in contrast to the quantum group setting [Lu]).

Lemma 2.2.1 (Comultiplication). There is a unique algebra homomorphism Δ :
′U→ ′U ⊗ ′U (resp. Δ : U→ U⊗U) where ′U⊗ ′U (resp. U⊗U) is regarded
as a superalgebra in the standard way, defined by

Δ(Ei) = Ei ⊗ 1 + J̃iK̃i ⊗ Ei (i ∈ I),

Δ(Fi) = Fi ⊗ K̃−i + 1⊗ Fi (i ∈ I),

Δ(Kμ) = Kμ ⊗Kμ (μ ∈ Y ),

Δ(Jμ) = Jμ ⊗ Jμ (μ ∈ Y ).

Proof. The relations 2.1 (a)-(c) are trivial to verify. For the relation (d), we have

Δ(Ei)Δ(Fj) = EiFj ⊗ K̃−j + J̃iK̃i ⊗ EiFi + Ei ⊗ Fj + πp(i)p(j)J̃iK̃iFj ⊗ EiK̃−j,

Δ(Fj)Δ(Ei) = FiEj ⊗ K̃−j + J̃iK̃i ⊗ FjEi + πp(i)p(j)Ei ⊗ Fj + Fj J̃iK̃i ⊗ K̃−jEi.
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So using the fact that FjK̃i ⊗ K̃−jEi = K̃iFj ⊗ EiK̃−j, we have

Δ(Ei)Δ(Fj)− πp(i)p(j)Δ(Fj)Δ(Ei)

= (EiFj − πp(i)p(j)FjEi)⊗ K̃−j + J̃iK̃i ⊗ (EiFj − πp(i)p(j)FjEi)

= δi,j

(
J̃iK̃i − K̃−i

πiqi − q−1
i

)
⊗ K̃−j + J̃iK̃i ⊗

(
δi,j

J̃iK̃i − K̃−i

πiqi − q−1
i

)

= δi,j
Δ(J̃i)Δ(K̃i)−Δ(K̃−i)

πiqi − q−1
i

.

Finally, define maps j± : ′f ⊗ ′f → ′U⊗ ′U given by

j+(x ⊗ y) = x+J̃|y|K̃|y| ⊗ y+, j−(x ⊗ y) = x− ⊗ K̃−|x|y−.

Then by construction, these maps are algebra homomorphisms, and satisfy

j+r(x) = Δ(x+), j−r(x) = Δ(x−).

Since r, r factor through f , so do j+r and j−r, implying that

f(Δ(Ei)) = f(Δ(Fi)) = 0

for all f(θi : i ∈ I) ∈ I. �

The previous proof shows that j+r(x) = Δ(x+) and j−r(x) = Δ(x−), so in
particular, we have

Δ(x+) =
∑

x+
1 J̃|x2|K̃|x2| ⊗ x+

2 ,

Δ(x−) =
∑

πp(x1)p(x2)(πq)−|x1|·|x2|x−
2 ⊗ K̃−|x2|x

−
1 ,

for r(x) =
∑

x1 ⊗ x2. In particular, this yields the formulas

Δ(E
(p)
i ) =

∑
p′+p′′=p

qp
′p′′

i J̃p′′
i E

(p′)
i K̃p′′

i ⊗ E
(p′′)
i ,

Δ(F
(p)
i ) =

∑
p′+p′′=p

(πiqi)
−p′p′′

F
(p′)
i ⊗ K̃−p′

i F
(p′′)
i .

Proposition 2.2.2. For x ∈ ′f and i ∈ I, we have (in ′U)

(a) x+Fi − π
p(x)
i Fix

+ =
ri(x)

+J̃iK̃i − K̃−i π
p(x)−p(i)
i ir(x)

+

πiqi − q−1
i

,

(b) Eix
− − π

p(x)
i x−Ei =

J̃iK̃i ir(x)
− − π

p(x)−p(i)
i ri(x)

−K̃−i

πiqi − q−1
i

.
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Proof. Assume that (a) is known for x′ and x′′; we shall show it holds for x = x′x′′.
Let y′ = (x′)+, iy

′ = ir(x
′)+ and similarly for ri, x

′′, and x.

yFi = π
p(x′′)
i y′Fiy

′′ +
y′y′′i J̃iK̃i − y′K̃−i π

p(x′′)−p(i)
i iy

′′

πiqi − q−1
i

= π
p(x′x′′)
i Fiy + π

p(x′′)
i

y′iJ̃iK̃i y
′′ − K̃−iπ

p(x′)−p(i)
i iy

′y′′

πiqi − q−1
i

+
y′ y′′i J̃iK̃i − y′K̃−iπ

p(x′′)−p(i)
i iy

′′

πiqi − q−1
i

= πp(x′x′′)p(i)Fi y +
yiJ̃iK̃i − K̃−iπ

p(x)−p(i)
i iy

πiqi − q−1
i

.

Since (a) holds for the generators, it holds for all x ∈ ′f .
If we apply ω−1, we obtain

πiJ̃ix
−Ei − π

p(x)−p(i)
i J̃iEix

− =
ri(x)

−J̃iK̃−i − K̃i π
p(x)−p(i)
i ir(x)

−

πiqi − q−1
i

,

and multiplying both sides by π
p(x)−p(i)
i J̃i establishes (b). �

We record the following formulas for further use.

Lemma 2.2.3 ([CW, Lemma 2.8]). For any N,M ≥ 0 we have in U or ′U

E
(N)
i F

(M)
i =

∑
t

π
MN−(t+1

2 )
i F

(M−t)
i

[
K̃i; 2t−M −N

t

]
i

E
(N−t)
i ,

F
(N)
i E

(M)
i =

∑
t

(−1)tπ(M−t)(N−t)−t2

i E
(M−t)
i

[
K̃i;M +N − (t+ 1)

t

]
i

F
(N−t)
i ,

E
(N)
i F

(M)
j = πMNp(i)p(j)F

(M)
j E

(N)
i if i �= j,

where [
K̃i; a
t

]
i

=

t∏
s=1

(πiqi)
a−s+1J̃iK̃i − qs−a−1

i K̃−i

(πiqi)s − q−s
i

.

The coproduct Δ is coassociative; the verification is the same as in the non-
super case. There is a unique algebra homomorphism e : U → Q(q)

π
satisfying

e(Ei) = e(Fi) = 0 and e(Jμ) = e(Kμ) = 1 for all i, μ.
Recall the bar involution on Q(q)

π
from (1.5). This extends to a unique

homomorphism of Q-algebras x : U→ U such that

Ei = Ei, Fi = Fi, Jμ = Jμ, Kμ = JμK−μ,

and fx = fx for all f ∈ Q(q)
π
and x ∈ U.

Let AU
± be the images of Af defined at the end of §1.7. We define AU to be

the Aπ-subalgebra of U generated by E
(t)
i , F

(t)
i ,

[
Ki;a
t

]
i
, Jμ and Kμ, for all i ∈ I,

μ ∈ Y , and positive integers a ≥ t.
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2.3. Triangular decompositions for ′U and U

If M ′,M are two ′U-modules, then M ′⊗M is naturally a ′U⊗ ′U-module; hence
by restriction to ′U under Δ, it is a ′U-module.

Lemma 2.3.1. Let λ ∈ X. There is a unique ′U-module structure on the Q(q)
π
-

module ′f such that for any homogeneous z ∈ ′f , and μ ∈ Y and any i ∈ I, we
have

Kμ · z = q〈μ,λ−|z|〉z, Jμ · z = π〈μ,λ−|z|〉z, Fi · z = θiz, Ei · 1 = 0.

Proof. The uniqueness is immediate. To prove the existence, define

Ei · z =
−q〈i,λ〉i ri(z) + π

p(z)−p(i)
i (πiqi)〈i,λ−|z|+i′〉

ir(z)

πiqi − q−1
i

.

Note that this is essentially the formula prescribed by Proposition 2.2.2. A straight-
forward computation shows that this, along with the desired formulas for the F
and K actions define a ′U-module structure on ′f . �

We denote this ′U-module by Mλ (which is a free Q(q)
π
-module). Similarly, to

an element λ ∈ X , we associate a unique ′U-module structure on ′f such that for
any homogeneous z ∈ ′f , any μ ∈ Y and any i ∈ I we have

Kμ · z = q〈μ,−λ+|z|〉z, Jμ · z = π〈μ,−λ+|z|〉z, Ei · z = θiz, Fi · 1 = 0.

We denote this ′U-module by M′
λ (which is again a free Q(q)

π
-module). We form

the ′U-module M′
λ ⊗Mλ; we denote the unit element of ′f = Mλ by 1 and that

of ′f = M′
λ by 1′. Thus, we have the canonical element 1′ ⊗ 1 ∈ M′

λ ⊗Mλ. We
emphasize that M′

λ ⊗Mλ is again free as a Q(q)
π
-module.

Proposition 2.3.2. Let U0 be the associative Q(q)π-algebra with 1 defined by the
generators Kμ, Jμ (μ ∈ Y ) and the relations in §2.1(a),(b). Then U0 is isomorphic
to the group algebra of Y × (Y/2Y ) over Q(q)

π
. Moreover,

(a) The Q(q)π-linear map ′f ⊗ U0 ⊗ ′f → ′U given by u ⊗ JνKμ ⊗ w �→
u−JνKμw

+ is an isomorphism.
(b) The Q(q)

π
-linear map ′f ⊗ U0 ⊗ ′f → ′U given by u ⊗ JνKμ ⊗ w �→

u+JνKμw
− is an isomorphism.

Proof. Note that (b) follows from (a) by applying ω. As a Q(q)
π
-module, ′U is

spanned by words in the Ei, Fi, Kμ, and Jμ. By using the defining relations, we
can rewrite any word as a linear combination of words where the Fi come before
the Jμ and Kμ, which come before the Ei, thus the given map is surjective.

To prove the map is injective, let λ, λ′ ∈ X , and consider the module M′
λ′⊗Mλ

described before. There is a Q(q)
π
-linear map φ : ′U→M′

λ′⊗Mλ given by φ(u) =
u ·1′⊗1. Pick a Q(q)π-basis of ′f consisting of homogeneous elements containing 1.
Assume that in ′U there is some relation of the form

∑
b′,μ,b cb′,μ,bb

′−JνKμb
+ = 0

and let N be the largest integer such that ht|b′| = N and cb′,μ,b �= 0 for some μ, b.
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Then

0 = φ
( ∑

b′,μ,ν,b

cb′,μ,ν,bb
′−JνKμb

+
)
=

∑
b′,μ,ν,b

cb′,μ,ν,bΔ(b′−JνKμb
+) · 1⊗ 1.

Now

Δ(b′−) =
∑
b′1,b

′
2

g′(b′, b′1, b
′
2)b

′−
1 ⊗ K̃−|b′1|b

′−
2 ,

Δ(b+) =
∑
b1,b2

g(b, b1, b2)b
+
1 J̃|b2|K̃|b2| ⊗ b+2 ,

so we have

0 =
∑

πp(b′2)p(b1)cb′,μ,ν,bg(b, b1, b2)g
′(b′, b′1, b

′
2)b

′−
1

× JνKμb
+
1 J̃|b2|K̃|b2| · 1′ ⊗ K̃−|b′1|b

′−
2 JνKμb

+
2 · 1.

If b2 �= 1, then b+2 · 1 = 0 so we must have b2 = 1 and thus b1 = b. Therefore the
expression reduces to

0 =
∑

πp(b′2)p(b)cb′,μ,ν,bg
′(b′, b′1, b

′
2)b

′−
1 JνKμb

+ · 1′ ⊗ K̃−|b′1|b
′−
2 JνKμ · 1.

By the definition of the module structure, this becomes

0 =
∑

πp(b′2)p(b)cb′,μ,ν,bg
′(b′, b′1, b

′
2)π
〈ν,λ−λ′+|b|〉q〈μ,λ−λ′+|b|〉b′−1 · b⊗ K̃−|b′1|b

′
2.

We can now project this equality onto the summand M′
λ′ ⊗ ′fν where ht ν = N .

Then by construction, |b′2| ≤ |b| and ht|b′2| = N . Since cb′,μ,b = 0 if ht|b′| > N , we
must have |b| = |b′2| and thus b′ = b′2, b

′
1 = 1, so

∑
πp(b′)p(b)cb′,μ,ν,bπ

〈ν,λ−λ′+|b|〉q〈μ,λ−λ′+|b|〉b⊗ b′ = 0.

It follows that ∑
ν,μ

cb′,μ,ν,bπ
〈ν,λ−λ′+|b|〉q〈μ,λ−λ′+|b|〉 = 0

for all choices of λ, λ′, μ, b and b′ with ht|b′| = N . Therefore cb′,μ,ν,b = 0 for any b′

with ht|b′| = N , contradicting the choice of N . �

Corollary 2.3.3.

(a) The Q(q)π-linear map f⊗U0⊗f → U given by u⊗JνKμ⊗w �→ u−JνKμw
+

is an isomorphism.

(b) The Q(q)
π
-linear map f ⊗U0⊗ f → U given by u⊗Kμ⊗w �→ u+JνKμw

−

is an isomorphism.
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Proof. Once again (b) follows from (a) by applying the involution ω. Let J± be the
two-sided ideal of ′U generated by I± = {x± : x ∈ I}. Then U = ′U/(J+ + J−).
Now from Proposition 2.2.2 iterated, we see that

(′U+
)I− ⊆ I−U0(′U+

); I+(′U−
) ⊆ (′U−

)U0I+.

Using the triangular decomposition of ′U, we have J−= ′UI−′U⊆I−U0(′U+
)⊆

J−, hence J− = I−U0(′U+
). Similarly, J+ = (′U−

)U0I+. Therefore,

U =
′U− ⊗U0 ⊗ ′U+

′U− ⊗U0 ⊗ I+ + I− ⊗U0 ⊗ ′U+ =
′U−

I−
⊗U0 ⊗

′U+

I+
,

from which (a) follows. �
Corollary 2.3.4. The maps ± : f → U±, x �→ x±, are Q(q)

π
-algebra isomor-

phisms, and U0 → U is a Q(q)π-algebra embedding.

For ν ∈ N[I], we shall denote the image f±ν by U±
ν .

Proposition 2.3.5. Let x ∈ fν where ν ∈ N[I] is nonzero.

(a) If x+Fi = π
p(x)
i Fix

+ for all i ∈ I then x = 0.

(b) If x−Ei = π
p(x)
i Eix

− for all i ∈ I then x = 0.

Proof. It follows from Proposition 2.2.2 and the linear independence of ri(x)
+J̃iK̃i

(respectively, the linear independence of J̃iK̃−i ir(x)
+) that ri(x)

+ = ir(x)
+ = 0

for all i. Hence x = 0 by Lemma 1.5.2. �
2.4. Antipode

For ν ∈ N[I], write ν =
∑

i νii and ν =
∑htν

a=1 ia for ia ∈ I. Then we set

c(ν) = ν · ν/2−
∑
i

νii · i/2 ∈ Z,

e(ν) =
∑
a<b

p(ia)p(ib) ∈ Z.

Lemma 2.4.1. Let ν ∈ N[I].

(a) There is a unique Q(q)
π
-linear map S : U→ U such that

S(Ei) = −J̃−iK̃−iEi, S(Fi) = −FiK̃i, S(Kμ) = K−μ, S(Jν) = J−ν ,

and S(xy) = πp(x)p(y)S(y)S(x) for all x, y ∈ U.
(b) For any x ∈ fν , we have

S(x+) = (−1)htνπe(ν)(πq)c(ν)J̃−νK̃−νσ(x)
+,

S(x−) = (−1)htνπe(ν)q−c(ν)σ(x)−K̃ν .

(c) There is a unique Q(q)
π
-linear map S′ : U→ U such that

S′(Ei) = −EiJ̃−iK̃−i, S′(Fi) = −K̃iFi, S′(Kμ) = K−μ, S(Jν) = J−ν ,
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and S′(xy) = πp(x)p(y)S′(y)S′(x) for all x, y ∈ U.

(d) For any x ∈ fν , we have

S′(x+) = (−1)htνπe(ν)(πq)−c(ν)σ(x)+J̃−νK̃−ν ,

S′(x−) = (−1)htνπe(ν)qc(ν)K̃νσ(x)
−.

(e) We have SS′ = S′S = 1.

(f) If x ∈ fν , then S(x+) = (πq)−f(ν)S′(x+) and S(x−) = qf(ν)S′(x−) where
f(ν) =

∑
i νii · i.

The map S (resp. S′) is called the antipode (resp. the skew-antipode) of U.
Note that

S(E
(n)
i ) = (−1)n(πiq

2
i )
(n2)J̃−niK̃−niE

(n)
i ,

S′(E(n)
i ) = (−1)n(πiq

2
i )

−(n2)E(n)
i J̃−niK̃−ni,

S(F
(n)
i ) = (−1)n(πiq

2
i )

−(n2)F (n)
i K̃ni,

S′(F (n)
i ) = (−1)n(πiq

2
i )
(n2)K̃niF

(n)
i .

2.5. Specializations of U at π = ±1

The specialization at π = 1 (respectively, at π = −1) of a Q(q)
π
-algebra R is

understood as Q(q)⊗Q(q)π R, where Q(q) is the Q(q)
π
-module with π acting as 1

(respectively, as −1).
Let J be the (2-sided) ideal of U generated by {Jμ − 1|μ ∈ Y }.
The specialization at π = −1 of the algebra U/J is naturally identified with a

quantum group associated to the Cartan datum (I, ·) (cf. [Lu]). The specialization
at π = 1 of the algebra U, denoted by U|π=1, is a variant of this quantum group,
with some extra (harmless) central elements Jμ. Specialization at π = 1 for the
rest of the paper essentially reduces our results to those of Lusztig [Lu].

The specialization at π = 1 of the superalgebraU/J is identified with a quantum
supergroup associated to the super Cartan datum (I, ·) considered in the literature;
cf. [Ya], [BKM]. The specialization at π = −1 of U, denoted by U|π=−1, will also
be referred to as a quantum supergroup of type (I, ·), and the extra generators
Ji allow us to formulate integrable modules V (λ) for all λ ∈ X+, which was not
possible before.

All constructions and results in the remainder of this paper clearly afford special-
izations at π = −1, which provide new constructions and new results for quantum
supergroups and their representations.

2.6. The categories C and O

In the remainder of this paper, by a representation of the algebra U we mean a
Q(q)π-module on which U acts. Note we have a direct sum decomposition of the
Q(q)

π
-module Q(q)

π
= (π+1)Q(q)⊕(π−1)Q(q) , where π acts as 1 on (π+1)Q(q)

and as −1 on (π − 1)Q(q).
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We define the category C (of weight U-modules) as follows. An object of C is a
Z2-graded U-module M = M0 ⊕M1, compatible with the Z2-grading on U, with
a given weight space decomposition

M =
⊕
λ∈X

Mλ, Mλ =
{
m ∈M | Kμm = q〈μ,λ〉m,Jμm = π〈μ,λ〉m, ∀μ ∈ Y

}
,

such that Mλ = Mλ
0
⊕Mλ

1
where Mλ

0
= Mλ ∩M0 and Mλ

1
= Mλ ∩M1. The Z2-

graded structure is only particularly relevant to tensor products, and will generally
be suppressed when irrelevant. We have the followingQ(q)

π
-module decomposition

for each weight space: Mλ = (π + 1)Mλ ⊕ (π − 1)Mλ; accordingly, we have
M = M+ ⊕M− as U-modules, where M± := ⊕λ∈X(π ± 1)Mλ is a U-module on
which π acts as ±1, i.e., a U|π=±1-module. Hence the category C decomposes into
a direct sum C = C+ ⊕ C−, where C± can be identified with categories of weight
modules over the specializations U|π=±1.

Lemma 2.6.1. A simple U-module is a simple module of either U|π=1 or U|π=−1.

Let M ∈ C and let m ∈Mλ. The formulas below follow from Lemma 2.2.3.

(a) E
(N)
i F

(M)
i m =

∑
t π

MN−(t+1
2 )

i

[
N −M + 〈i, λ〉

t

]
i

F
(M−t)
i E

(N−t)
i m;

(b) F
(M)
i E

(N)
i m =

∑
t π

(M−t)(N−t)−t2

i

[
M −N − 〈i, λ〉

t

]
i

E
(N−t)
i F

(M−t)
i m;

(c) F
(M)
i E

(N)
j m = E

(N)
j F

(M)
i m, for i �= j;

(d)

[
K̃i; a
t

]
i

m =

[〈i, λ〉+ a
t

]
i

m.

Note thatU⊗U is a superalgebra with multiplication (a⊗b)(c⊗d)=πp(b)p(c)ac⊗
bd. A tensor product of U-modules M ⊗N is naturally a U⊗U-module with the
obvious diagonal grading under the action (x⊗ y)(m⊗ n) = πp(y)p(m)xm⊗ yn.

The tensor product of modules is naturally a U-module under the coproduct
action. Moreover, C is closed under tensor products. Note that for a ∈ Z>0,
M ′,M ′′ ∈ C, m′ ∈M ′λ′

and m′′ ∈M ′′λ′′
, we have

E
(a)
i (m′ ⊗m′′) =

∑
a′+a′′=a

π
a′′p(m′)+a′′〈i,λ′〉
i q

a′a′′+a′′〈i,λ′〉
i E

(a′)
i m′ ⊗ E

(a′′)
i m′′,

F
(a)
i (m′ ⊗m′′) =

∑
a′+a′′=a

π
a′′p(m′)+a′a′′

i q
−a′a′′−a′〈i,λ′′〉
i F

(a′)
i m′ ⊗ F

(a′′)
i m′′.

To any M ∈ C, we can define a new U-module structure via u ·m = ω(u)m; we
denote this module by ωM . By definition, note that ωMλ = M−λ.

Let λ ∈ X . Then there is a unique U-module structure on f such that for any
y ∈ f , μ ∈ Y and i ∈ I we have Kμy = q〈μ,λ−|y|〉y, Jνy = π〈ν,λ−|y|〉y, Fiy = θiy,
and Ei1 = 0. As in the non-super case, this follows readily from the triangular
decomposition. This module will be called a Verma module and denoted by M(λ).
The parity grading on f induces a parity grading on M(λ) where p(1) = 0. As
before, we have a U-module decomposition M(λ) = M(λ)+ ⊕ M(λ)−, where
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M(λ)± can be identified as the Verma module of U|π=±1 (which is a Q(q)-vector
space).

For any M ∈ C and an element m ∈Mλ such that Eim = 0 for all i, there is a
unique U-homomorphism M(λ) → M via 1 �→ m. This can be proved as in [Lu,
3.4.6], using now Lemma 2.2.3.

Let O be the full subcategory of C such that for any M in O and m ∈M , there
exists an n ≥ 0 such that x+m = 0 for all x ∈ fν with htν ≥ n. Note that M(λ)
and its quotient U-modules belong to O.

2.7. Category Cint of integrable modules

An object M ∈ C is said to be integrable if for any m ∈ M and any i ∈ I, there

exists n0 ≥ 1 such that E
(n)
i m = F

(n)
i m = 0 for all n ≥ n0. Let Cint be the full

subcategory of C whose objects are the integrable U-modules.
For M,M ′,M ′′ ∈ Cint, we have

ωM,M ′⊗M ′′ ∈ Cint. The proof of the following
lemma proceeds as in the non-super case; see [Lu, Lemma 3.5.3].

Lemma 2.7.1. For (ai), (bi) ∈ NI and λ ∈ X, let M be the quotient of U by the
left ideal generated by the elements F ai+1

i , Ebi+1
i , Kμ − q〈μ,λ〉 with μ ∈ Y , and

Jν − π〈ν,λ〉 with ν ∈ Y . Then M is an integrable U-module.

The proof of the following proposition proceeds as in the non-super case; see
[Lu, Prop. 3.5.4 and 23.3.11].

Proposition 2.7.2. If u ∈ U such that u acts as zero on every integrable module,
then u = 0.

Proposition 2.7.3. Let λ ∈ X+.

(a) Let T be the left ideal of f generated by the elements θ
〈i,λ〉+1
i for all i ∈ I.

Then T is a U-submodule of the Verma module M(λ).
(b) The quotient U-module V (λ) := M(λ)/T is integrable.

The proof is as in the non-super case [Lu, Prop. 3.5.6]. As usual V (λ) = V (λ)+⊕
V (λ)−, and T = T+⊕T−; moreover we have the identification V (λ)± = M(λ)±/T±.

We denote the image of 1 in V (λ) by v+λ when convenient. This module has an
induced parity grading from the associated Verma module by setting p(v+λ ) = 0.
When considering the image of 1 in the module ωV (λ), we will denote this vector
by v−λ .

Proposition 2.7.4. Let M be an object of Cint and let m ∈ Mλ be a non-zero
vector such that Eim=0 for all i. Then λ ∈ X+ and there is a unique morphism
(in Cint) t

′ : V (λ)→M sending v+λ to m.

The proof is as in the non-super case [Lu, Prop. 3.5.8].

3. The quasi-R-matrix and the quantum Casimir

In this section, we introduce the quasi-R-matrix as well as the quantum Casimir
for U and establish their basic properties. Using the Casimir element, we show
that the category Oint is semisimple and classify its simple object by dominant
integral weights.
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3.1. The quasi-R-matrix Θ

Consider the vector spaces

HN = U+U0
( ∑

htν≥N

U−
ν

)
⊗U+U⊗U−U0

( ∑
htν≥N

U+
ν

)

for N ∈ Z>0. Note that HN is a left ideal in U⊗U; moreover, for any u ∈ U⊗U,
we can find an r ≥ 0 such that HN+ru ⊂ HN .

Let (U ⊗ U)∧ be the inverse limit of the vector spaces (U ⊗ U)/Hn. Then
the Q(q)π-algebra structure extends by continuity to a Q(q)π-algebra structure on
(U⊗U)∧, and we have the obvious algebra embedding U⊗U→ (U⊗U)∧.

Let : U⊗U→ U⊗U be the Q-algebra homomorphism given by ⊗ . This
extends to a Q-algebra homomorphism on the completion. Let Δ : U → U ⊗U
be the Q(q)

π
-algebra homomorphism given by Δ(x) = Δ(x).

Theorem 3.1.1.

(a) There is a unique family of elements Θν ∈ U−
ν ⊗U+

ν (with ν ∈ N[I]) such
that Θ0 = 1⊗ 1 and Θ =

∑
ν Θν ∈ (U⊗U)∧ satisfies Δ(u)Θ = ΘΔ(u) for

all u ∈ U (where this identity is in (U⊗U)∧).
(b) Let B be a Q(q)

π
-basis of f such that Bν = B ∩ fν is a basis of fν for any

ν. Let {b∗ | b ∈ Bν} be the basis of fν dual to Bν under ( , ). We have

Θν = (−1)htνπe(ν)πνqν
∑
b∈Bν

b− ⊗ b∗+ ∈ U−
ν ⊗U+

ν ,

where e(ν) is defined as in §2.4.
The element Θ will be called the quasi-R-matrix for U.

Proof. Consider an element Θ ∈ (U ⊗U)∧ of the form Θ =
∑

ν Θν with Θν =∑
b,b′∈Bν

cb′,bb
′−⊗ b∗+, cb′,b ∈ Q(q)

π
. The set of u ∈ U such that Δ(u)Θ = ΘΔ(u)

is clearly a subalgebra of U containing U0. Therefore, it is necessary and sufficient
that it contains the Ei and Fi. This amounts to showing that

∑
b1,b2∈Bν

cb1,b2Eib
−
1 ⊗ b∗+2 +

∑
b3,b4∈Bν−i

π
p(b3)
i cb3,b4 J̃iK̃ib

−
3 ⊗ Eib

∗+
4

=
∑

b1,b2∈Bν

π
p(b2)
i cb1,b2b

−
1 Ei ⊗ b∗+2 +

∑
b3,b4∈Bν−i

cb3,b4b
−
3 K̃−i ⊗ b∗+4 Ei,

and ∑
b1,b2∈Bν

π
p(b1)
i cb1,b2b

−
1 ⊗ Fib

∗+
2 +

∑
b3,b4∈Bν−i

cb3,b4Fib
−
3 ⊗ K̃−ib

∗+
4

=
∑

b1,b2∈Bν

cb1,b2b
−
1 ⊗ b∗+2 Fi +

∑
b3,b4∈Bν−i

π
p(b4)
i cb3,b4b

−
3 Fi ⊗ b∗+4 J̃iK̃i.
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Let z ∈ f . Then since the inner product is nondegenerate, this equality is equiva-
lent to the equality

∑
b1,b2∈Bν

cb1,b2(b
∗
2, z)(Eib

−
1 − π

p(b∗2)
i b−1 Ei)

+
∑

b3,b4∈Bν−i

cb3,b4
(
π
p(b3)
i (θib

∗
4, z)J̃iK̃ib

−
3 − (b∗4θi, z)b

−
3 K̃−i

)
= 0,

and

∑
b1,b2∈Bν

cb1,b2(b1, z)(π
p(b1)
i Fib

∗+
2 − b∗+2 Fi)

+
∑

b3,b4∈Bν−i

cb3,b4
(
(θib3, z)K̃−ib

∗+
4 − π

p(b4)
i (b3θi, z)b

∗+
4 J̃iK̃i

)
= 0.

Note that p(b1) = p(b2) = p(b3) + p(i) = p(b4) + p(i). Using Proposition 2.2.2 and
the derivations, we have

∑
b1,b2∈Bν

(πiqi − q−1
i )−1cb1,b2(b

∗
2, z)(J̃iK̃i ir(b1)

− − π
p(b1)−p(i)
i ri(b1)

−K̃−i)

+
∑

b3,b4∈Bν−i

cb3,b4(θi, θi)
(
π
p(b3)
i (b∗4, ir(z))J̃iK̃ib

−
3 − (b∗4, ri(z))b

−
3 K̃−i

)
= 0,

and

∑
b1,b2∈Bν

−(πiqi − q−1
i )−1cb1,b2(b1, z)(ri(b2)

+J̃iK̃i − π
p(b2)−p(i)
i K̃−i ir(b2)

+)

+
∑

b3,b4∈Bν−i

cb3,b4(θi, θi)
(
(b3, ir(z))K̃−ib

∗+
4 − π

p(b4)
i (b3, ri(z))b

∗+
4 J̃iK̃i

)
= 0.

Using the triangular decomposition, this is equivalent to the equalities

∑
b1,b2

cb1,b2(b
∗
2, z)ir(b1) +

∑
b3,b4

πiqiπ
p(b4)
i cb3,b4(b

∗
4, ir(z))b3 = 0, (3.1)

∑
b1,b2

cb1,b2π
p(b1)−p(i)
i (b∗2, z)ri(b1) +

∑
b3,b4

πiqicb3,b4(b
∗
4, ri(z))b3 = 0, (3.2)

∑
b1,b2

cb1,b2(b1, z)ri(b2) +
∑
b3,b4

πiqiπ
p(b4)
i cb3,b4(b3, ri(z))b

∗
4 = 0, (3.3)

∑
b1,b2

π
p(b2)−p(i)
i cb1,b2(b1, z)ir(b2) +

∑
b3,b4

πiqicb3,b4(b3, ir(z))b
∗
4 = 0. (3.4)
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Now when cb,b′ = (−1)ht(ν)πe(ν)πνqνδb,b′ , we have

∑
b

πe(ν)qν(b
∗, z)ir(b)−

∑
b′

πe(ν)πνqν(b
′∗, ir(z))b′ = 0,∑

b

πe(ν−i)πνqν(b
∗, z)ri(b)−

∑
b′

πe(ν−i)πνqν(b
′∗, ri(z))b′ = 0,∑

b

πe(ν)πνqν(b, z)ri(b)−
∑
b′

πe(ν)πνqν(b
′, ri(z))b′∗ = 0,∑

b

πe(ν−i)πνqν(b, z)ir(b)−
∑
b′

πe(ν−i)πνqν(b
′, ir(z))b′∗ = 0.

These equalities are easily verified by checking when z is a basis or dual basis
element.

Thus the existence of such a Θ is verified. Suppose Θ′
ν and Θ′ also satisfy the

conditions in (a). Then Θ−Θ′ =
∑

cb,b′b
− ⊗ b′+ must satisfy (3.1)-(3.4) and has

cb,b = 0 for b ∈ B0. Suppose cb,b′ = 0 for b, b′ ∈ B′
ν for ht(ν′) < n and assume

ht(ν) = n. Then the second sum in (3.1) is zero, so ir(
∑

b1,b2
cb1,b2(b

∗
2, z)b1) = 0.

But then
∑

b1,b2
cb1,b2(b

∗
2, z)b1 = 0, whence (

∑
b2
cb1,b2b

∗
2, z) = 0 for all z ∈ f .

Therefore cb1,b2 = 0 for all b1, b2 ∈ Bν . By induction Θ − Θ′ = 0, proving
uniqueness. �

Example 3.1.2. Let I = I1 = i as in Example 2.1.1, and let us determine Θ in this
case using Theorem 3.1.1(b). The obvious basis to choose is B =

{
θ(n) : n ∈ N

}
,

and then we see from Lemma 1.7.1 that Θ =
∑

n anF
(n) ⊗ E(n), where an =

(−1)n(πq)−(n+1
2 )[n]!(πq − q−1)n (compare with [CW, §5]).

Recall that the bar involution on U makes sense under the assumption that the
super Cartan datum is consistent.

Corollary 3.1.3. Assume that the super Cartan datum is consistent. We have
ΘΘ = ΘΘ = 1⊗ 1 with equality in the completion.

Proof. First note that by construction Θ is invertible. We have Δ(u)Θ = ΘΔ(u),
so ΘΔ(u) = ΘΔ(u) = ΘΔ(u). Now applying the bar involution to both sides and
rearranging, we get

Θ
−1

Δ(u) = Δ(u)Θ
−1

.

By uniqueness, Θ
−1

= Θ. �

We can specialize the identity Δ(u)Θ = ΘΔ(u) to deduce

(Ei ⊗ 1)Θν + (J̃iK̃i ⊗ Ei)Θν−i = Θν(Ei ⊗ 1) + Θν−i(K̃−i ⊗ Ei),

(1⊗ Fi)Θν + (Fi ⊗ K̃−i)Θν−i = Θν(1⊗ Fi) + Θν−i(Fi ⊗ J̃iK̃i).
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Setting Θ≤p =
∑

htν≤p Θν , we obtain that

(Ei ⊗ 1 + J̃iK̃i ⊗ Ei)Θ≤p −Θ≤p(Ei ⊗ 1 + K̃−i ⊗ Ei)

=
∑

htν=p

(J̃iK̃i ⊗ Ei)Θν −
∑

htν=p

Θν(K̃−i ⊗ Ei), (3.5)

(Fi ⊗ K̃−i + 1⊗ Fi)Θ≤p −Θ≤p(Fi ⊗ K̃i + 1⊗ Fi)

=
∑

htν=p

(Fi ⊗ K̃−i)Θν −
∑

htν=p

Θν(Fi ⊗ J̃iK̃i). (3.6)

3.2. The quantum Casimir

Let B,Bν be as in Theorem 3.1.1. Let S be the antipode and m : U⊗U→ U be
the multiplication map u ⊗ u′ �→ uu′. Applying m(S ⊗ 1) to the identities (3.5)
and (3.6), we obtain that, for any p ≥ 0,∑

htν≤p

∑
b∈Bν

(−1)htνπνqν
(
S(Eib

−)b∗+ + π
p(ν)
i S(J̃iK̃ib

−)Eib
∗+

− π
p(ν)
i S(b−Ei)b

∗+ − S(b−K̃−i)b
∗+Ei

)
=

∑
htν=p

∑
b∈Bν

(−1)pπνqν
(
π
p(ν)
i S(J̃iK̃ib

−)Eib
∗+ − S(b−K̃−i)b

∗+Ei

)
,

and ∑
htν≤p

∑
b∈Bν

(−1)htνπνqν
(
π
p(ν)
i S(b−)Fib

∗+ + S(Fib
−)K̃−ib

∗+

− S(b−)b∗+Fi − π
p(ν)
i S(b−Fi)b

∗+J̃iK̃i

)
=

∑
htν=p

∑
b∈Bν

(−1)pπνqν
(
S(Fib

−)K̃−ib
∗+ − π

p(ν)
i S(b−Fi)b

∗+J̃iK̃i

)
.

Now set Ω≤p =
∑

htν≤p

∑
b∈Bν

(−1)htνπνqνS(b
−)b∗+. Then observing that

S(Eib
−)b∗+ + π

p(ν)
i S(J̃iK̃ib

−)Eib
∗+

= π
p(ν)
i S(b−)(−J̃−iK̃−iEi)b

∗+ + π
p(ν)
i S(b−)J̃−iK̃−iEib

∗+ = 0,

we have

J̃−iK̃−iEiΩ≤p − K̃iΩ≤pEi

=
∑

htν=p

∑
b∈Bν

(−1)pπνqν
(
π
p(ν)
i S(K̃ib

−)Eib
∗+ − S(b−K̃−i)b

∗+Ei

)
,

Ω≤pFi − FiK̃iΩ≤pJ̃iK̃i

= −
∑

htν=p

∑
b∈Bν

(−1)pπνqν
(
S(Fib

−)K̃−ib
∗+ − π

p(ν)
i S(b−Fi)b

∗+J̃iK̃i

)
.
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Example 3.2.1. Let I = I1 = i as in Examples 2.1.1 and let Θ be as defined in
Example 3.1.2. Then using §2.4,

Ω≤p =
∑

1≤n≤p

an(πq
2)−(

n
2)F (n)KnE(n).

We note that though this is a rather different construction than the Casimir-type
element in [CW], it will nevertheless be used toward a similar purpose.

Let M ∈ O. Then for any m ∈ M we have that Ω(m) = Ω≤pm is independent
of p when p is large enough. We can write

Ω(m) =
∑
b

(−1)ht|b|π|b|q|b|S(b−)b∗+m.

Then we have

J̃−iK̃−iEiΩ = K̃iΩEi, ΩFi = FiK̃iΩJ̃iK̃i, ΩKμ = KμΩ,

as operators on M . Therefore for m ∈Mλ, we have

ΩEim = (πiq
2
i )

−〈i,λ+i′〉EiΩm, ΩFi = (πiq
2
i )
〈i,λ+i′〉FiΩm.

This can be rephrased in terms of the antipode. Define the Q(q)
π
-linear map

S : U→ U by S(u) = S(u). Then ΩS(u) = S(u)Ω : M →M for u ∈ U.
Let C be a fixed coset of X with respect to Z[I] ≤ X . Let G : C → Z be a

function such that

G(λ) −G(λ− i′) =
i · i
2
〈i, λ〉 for all λ ∈ C, i ∈ I. (3.7)

Clearly such a function exists and is unique up to addition of a constant function.

Lemma 3.2.2. Let λ, λ′ ∈ C ∩X+. If λ ≥ λ′ and G(λ) = G(λ′), then λ = λ′.

Let M ∈ C. For each Z[I]-coset C in X , define MC =
⊕

λ∈C Mλ. It is clear
that

M =
⊕

C∈X/Z[I]

MC . (3.8)

Proposition 3.2.3. Let M ∈ O, and let Ω : M →M be as above.

(a) Assume there exists C as above such that M = MC . Let G : C → Z

be a function satisfying (3.7). We define a linear map Ξ : M → M by
Ξ(m) = (πq2)G(λ)m for all λ ∈ C and m ∈Mλ. Then ΩΞ is a locally finite
U -module homomorphism.

(b) Assume that M is a quotient of M(λ′). Then ΩΞ acts as (πq2)G(λ′) on M .
(c) For M as in (a), the eigenvalues of ΩΞ are of the form (πq2)c for c ∈ Z.

The operator ΩΞ is called the Casimir element of U (though note that the
Casimir element formally lives in a completion of U).
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Proof. We compute that for m ∈Mλ,

ΩΞEim = Ω(πq2)G(λ+i′)Eim = (πq2)G(λ+i′)−G(λ)−si〈i,λ+i′〉EiΩΞm = EiΩΞm.

A similar argument applies to the Fi, and clearly ΩΞ commutes with Kμ, Jμ,
proving the first assertion of (a). The local finiteness claim is a standard category
O type argument. Parts (b) and (c) follow now easily. �
3.3. The complete reducibility in Oint

Recall the categories O and Cint from §2.6–2.7. Form another category Oint :=
O ∩ Cint.

Lemma 3.3.1. Let M ∈ C. Assume that M is a nonzero quotient of the Verma
module M(λ) and that M is integrable. Then

(a) λ ∈ X+;
(b) M+ and M− are either simple or zero.

Proof. It is clear that (a) holds by some rank one consideration. An argument sim-
ilar to that for [Lu, Lemma 6.2.1] shows that if dimQ(q) M

λ = 1 then M is simple;

in this case, M must be equal to either M+ or M−. Otherwise, dimQ(q) M
λ = 2,

then dimQ(q) M
λ
+ = dimQ(q) M

λ
1 = 1, and we repeat the argument above for the

integrable U-module M±. �
Theorem 3.3.2. Let M be a U-module in Oint. Then M is a sum of simple U-
submodules.

Proof. Note that as discussed in §2.6 we may assume that M = M+ or M = M−.
Since the case for M+ follows from [Lu, Thm. 6.2.2], it is enough to prove the
theorem for M = M−. Virtually the same argument as in loc. cit. holds, which
we will now sketch.

Using (3.8), we may further assume there is a coset C of Z[I] in X such that
M = MC . Then we may pick a function G satisfying (3.7) and avail ourselves of
Proposition 3.2.3. Since the Casimir element commutes with the U-action, we may
further assume that M lies in a generalized eigenspace of the Casimir element.

Consider the set of singular vectors of M(that is, the set of vectors m ∈ M
for which Eim = 0 for all i ∈ I) and let M ′ be the submodule they generate.
Then each homogeneous singular vector generates a simple submodule by virtue
of Lemma 3.3.1, so M ′ is a sum of simple modules.

It remains to show that M = M ′, so take M ′′ = M/M ′ and suppose M ′′ �= 0.
Then there is a maximal weight λ ∈ C such that M ′′λ �= 0. Then the Casimir
element acts on the submodule generated by a nonzero m1 ∈ M ′′λ by (−q2)G(λ)

by Proposition 3.2.3, and so in particular M must lie in the generalized (−q2)G(λ)-
eigenspace of the Casimir element.

On the other hand, m is the image of a vector m̃ ∈ M \M ′. The U+-module
generated by m̃ contains a singular vector m2 of weight η ≥ λ, and the Casimir
element acts on the module generated by m2 as (−q2)G(η). Then G(η) = G(λ) and
η ≥ λ, so by Lemma 3.2.2 η = λ. But the m̃ is a singular vector, contradicting
that our choice of m1 was nonzero. �
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Corollary 3.3.3.

(a) For λ ∈ X+, the U-modules V (λ)+ and V (λ)− are simple objects of Oint.
(b) For λ, λ′ ∈ X+, the U-modules V (λ)+ and V (λ′)+, and respectively V (λ)−

and V (λ′)−, are isomorphic if and only if λ = λ′. (Clearly, V (λ)+ and
V (λ′)− are non-isomorphic.)

(c) Any integrable module in O is a direct sum of simple modules of the form
V (λ)± for various λ ∈ X+.

Proof. The argument in [Lu, Cor. 6.2.3] holds using our Lemma 3.3.1 above. �
3.4. Character formula

Denote by ρ ∈ X such that 〈i, ρ〉 = 1 for all i ∈ I. We claim the following character
formula of V (λ) for every λ ∈ X+:

chV (λ)± =

∑
w∈W (−1)�(w)ew(λ+ρ)−ρ∑
w∈W (−1)�(w)ew(ρ)−ρ

. (3.9)

This is equivalent to claiming V (λ) is always a Q(q)
π
-free module for each λ ∈ X+.

This character formula holds for V (λ)+ with λ ∈ X+ by a theorem of Lusztig [Lu1].
A proof of this formula for V (λ)− is possible, but requires techniques outside the
scope of this paper.

Assume now that λ ∈ X+ satisfies an evenness condition

〈i, λ〉 ∈ 2Z+, ∀i ∈ I1. (3.10)

Then the action of U on V (λ) factors through an action of the algebra U/J (see
§2.5), and (3.9) holds by [BKM, Thm. 4.9] on the characters of integrable mod-
ules of the usual quantum groups. The irreducible integrable modules of the cor-
responding Kac–Moody superalgebras were known [Kac] to be parametrized by
highest weights λ ∈ X+ satisfying (3.10). Hence, for λ ∈ X+ which does not
satisfy (3.10), the usual q-deformation argument cannot be applied directly to
V (λ)−.

Note there are always weights λ satisfying (3.10) which are large enough relative
to every i ∈ I. Therefore, the same type of arguments as in [Lu, Chap. 33] show
that the algebra f and hence U admit the following equivalent formulations.

Proposition 3.4.1. The algebra f is isomorphic to the algebra generated by θi, i ∈
I, subject to the quantum Serre relation as in Proposition 1.7.3.

Proposition 3.4.2. The algebra U is isomorphic to the algebra generated by
Ei, Fi (i ∈ I) and Jμ,Kμ (μ ∈ Y ), subject to the relations 2.1(a)–(f) and the
quantum Serre relations for Ei’s as well as for Fi’s (in place of θi’s in Proposi-
tion 1.7.3).

As a consequence of (3.9) and Proposition 3.4.1, the character of U− is given
by

chU− =
1∑

w∈W (−1)�(w)ew(ρ)−ρ
=

∏
α>0

(1− e−α)(−1)1+p(α) dim gα , (3.11)

where g denotes the Kac–Moody superalgebra of type (I, ·) (cf. [Kac]), “α > 0”
denotes positive roots of g, p(·) denotes the parity function, and gα denotes the
α-root space.
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4. Higher Serre relations

In this section we formulate and establish the higher Serre relations, which will
be instrumental in determining the action of a braid group on a quantum covering
group and integrable modules in a future work.

4.1. Higher Serre elements

For i, j ∈ I, and n,m ≥ 0, set

p(n,m; i, j) = mnp(i)p(j) +

(
m

2

)
p(i).

For i �= j, define the elements

ei,j;n,m =
∑

r+s=m

(−1)rπp(n,r;i,j)
i (πiqi)

−r(n〈i,j′〉+m−1)E
(r)
i E

(n)
j E

(s)
i , (4.1)

e′i,j;n,m =
∑

r+s=m

(−1)rπp(n,r;i,j)
i (πiqi)

−r(n〈i,j′〉+m−1)E
(s)
i E

(n)
j E

(r)
i , (4.2)

fi,j;n,m =
∑

r+s=m

(−1)rπp(n,r;i,j)
i q

r(n〈i,j′〉+m−1)

i F
(s)
i F

(n)
j F

(r)
i , (4.3)

f ′
i,j;n,m =

∑
r+s=m

(−1)rπp(n,r;i,j)
i q

r(n〈i,j′〉+m−1)

i F
(r)
i F

(n)
j F

(s)
i . (4.4)

When there is no confusion by fixing i and j, we will abbreviate ei,j;n,m = en,m,
e′i,j;n,m = e′n,m, fi,j;n,m = fn,m, f ′

i,j;n,m = f ′
n,m. Note that we have the equalities

e′n,m = σ(en,m), f ′
n,m = σω2(fn,m), en,m = ω(f ′

n,m), e′n,m = ω(fn,m). (4.5)

4.2. Commutations with divided powers

Lemma 4.2.1. The following hold:

(a) −q−n〈i,j′〉−2m

i π
m+np(j)
i Eien,m + en,mEi = [m+ 1]ien,m+1.

(b) −Fien,m + π
m+np(j)
i en,mFi = [−n 〈i, j′〉 −m+ 1]iπ

np(j)+1
i K̃−1

i en,m−1.

Proof. When i ∈ I0 this is [Lu, Lemma 7.1.2]. We therefore assume i ∈ I1. Then,
〈i, j′〉 ∈ 2Z by 1.1(d). The left-hand side of (a) is∑
r+s=m

(−1)rπp(n,r;i,j)
i (πiqi)

−r(n〈i,j′〉+m−1)[s+ 1]iE
(r)
i E

(n)
j E

(s+1)
i

+
∑

r+s=m

(−1)r+1π
p(n,r;i,j)+np(j)+m
i (πiqi)

−r(n〈i,j′〉+m−1)−n〈i,j′〉−2m

× [r+1]iE
(r+1)
i E

(n)
j E

(s)
i

=
∑

r+s=m+1

(−1)rπp(n,r;i,j)
i (πiqi)

−r(n〈i,j′〉+m)

× (
(πiqi)

r−(m+1)πr−1+m
i [r]i + (πiqi)

r[s]i
)
E

(r)
i E

(n)
j E

(s)
i ,
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where we have used

p(n, r − 1; i, j) ≡ p(n, r; i, j) + np(i)p(j) + (r − 1)p(i) (mod 2) (4.6)

in the last line. Part (a) now follows from the computation

(πiqi)
r−(m+1)πr−1+m

i [r]i + (πiqi)
r[s]i = q−s

i [r]i+(πiqi)
r[s]i = [r + s]i = [m+ 1]i.

To prove (b), observe that

FiE
(r)
i E

(n)
j E

(s)
i =π

r+np(j)+s
i E

(r)
i E

(n)
j E

(s)
i Fi−π

r+np(j)+1
i E

(r)
i E

(n)
j E

(s−1)
i [K̃i; s−1]

− πiE
(r−1)
i [K̃i; r − 1]E

(n)
j E

(s)
i .

Therefore,

−Fien,m + π
m+np(j)
i en,mFi

=
∑

r+s=m

(−1)rπp(n,r;i,j)+r+np(j)+1
i (πiqi)

−r(n〈i,j′〉+m−1)E
(r)
i E

(n)
j E

(s−1)
i [K̃i; s−1]

+
∑

r+s=m

(−1)rπp(n,r;i,j)+1
i (πiqi)

−r(n〈i,j′〉+m−1)E
(r−1)
i [K̃i; r − 1]E

(n)
j E

(s)
i

=
∑

r+s=m−1

(−1)rπp(n,r;i,j)+r+np(j)+1
i (πiqi)

−r(n〈i,j′〉+m−1)E
(r)
i E

(n)
j E

(s)
i [K̃i; s]

+
∑

r+s=m−1

(−1)r−1π
p(n,r+1;i,j)+1
i (πiqi)

−(r+1)(n〈i,j′〉+m−1)E
(r)
i [K̃i; r]E

(n)
j E

(s)
i

=
∑

r+s=m−1

(−1)rπp(n,r;i,j)
i (πiqi)

−r(n〈i,j′〉+(m−1)−1)π
np(j)+1
i πr

i (�)E
(r)
i E

(n)
j E

(s)
i

where, using (4.6) we compute

(�) =(πiqi)
−r[K̃i;−s− n 〈i, j′〉 − 2r]− (πiqi)

−n〈i,j′〉−m+1−r[K̃i;−r]

=
(πiqi)

−r(πiqi)
−m+1−n〈i,j′〉−r − (πiqi)

−n〈i,j′〉−m+1−r(πiqi)
−r

πiqi − q−1
i

J̃iK̃i

+
(πiqi)

−n〈i,j′〉−m+1−rqri − (πiqi)
−rq

n〈i,j′〉+m−1+r

i

πiqi − q−1
i

K̃−1
i

=πr
i

(πiqi)
−n〈i,j′〉−m+1 − q

n〈i,j′〉+m−1

i

πiqi − q−1
i

K̃−1
i .

This proves (b). �
The next result, which is a π-analogue of [Lu, Lemma 7.1.3], follows by a

straightforward induction argument.

Lemma 4.2.2. The following formulas hold:
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(a)

E
(N)
i en,m =

N∑
k=0

(−1)kqN(n〈i,j′〉+2m)+(N−1)k

i π
N(np(j)+m)+(k2)
i

×
[
m+ k

k

]
i

en,m+kE
(N−k)
i ;

(b)

F
(M)
i en,m =

M∑
h=0

(−1)hq−(M−1)h
i π

M(m+np(j))+(M−m)h
i

×
[−n 〈i, j′〉 −m+ h

h

]
i

K̃−h
i en,m−hF

(M−h)
i .

Lemma 4.2.3. Let m = 1− n 〈i, j′〉. Then

Fjen,m − π
mp(i)+n
j en,mFj=πn

j

(
K̃−1

j

qn−1
j

πjqj − q−1
j

en−1,m − J̃jK̃j

q1−n
j

πjqj − q−1
j

en−1,m

)
.

Proof. To begin, if r + s = m, then

FjE
(r)
i E

(n)
j E

(s)
i = π

mp(i)+n
j E

(r)
i E

(n)
j E

(s)
i Fj − π

rp(i)+1
j E

(r)
i E

(n−1)
j [K̃j , n− 1]E

(s)
i .

Since m = 1− 〈i, j′〉, the exponent of πiqi in en,m is 0; see (4.1). Therefore,

Fjen,m − π
mp(i)+n
j en,mFj

= −πj

∑
r+s=m

(−1)rπp(n−1,r;i,j)
i [K̃j; 1− n− raji]E

(r)
i E

(n−1)
j E

(s)
i

= −πj

∑
r+s=m

(−1)rπp(n−1,r;i,j)
i q

−r〈i,j′〉
i

(πjqj)
1−n

πjqj − q−1
j

J̃jK̃jE
(r)
i E

(n−1)
j E

(s)
i

+ πj

∑
r+s=m

(−1)rπp(n−1,r;i,j)
i (πiqi)

r〈i,j′〉 (πjqj)
n−1

πjqj − q−1
j

K̃−1
j E

(r)
i E

(n−1)
j E

(s)
i .

We have used p(n, r; i, j) = p(n− 1, r; i, j) + rp(i)p(j) to simplify the second line,

and q
−r〈i,j′〉
i = q

−r〈j,i′〉
j and π

r〈j,i′〉
j = 1 = π

r〈i,j′〉
i in the two subsequent lines.

Since (n− 1) 〈i, j′〉+m− 1 = −〈i, j′〉, the result follows. �

As a consequence of the previous lemmas we obtain a generalization of the
quantum Serre relations.

Proposition 4.2.4 (Higher Serre Relations). Let i, j ∈ I be distinct. If m >
−n 〈i, j′〉, then ei,j;n,m = 0.
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Proof. As before, fix i and j and write en,m = ei,j;n,m. Note that e′1,1−〈i,j′〉 =

σ(e1,1−〈i,j′〉) is just the usual quantum Serre relations (see Proposition 1.7.3).
Using Lemma 4.2.1(a), it follows by induction onm that e1,m = 0 form ≥ 1−〈i, j′〉.
Now, let n > 1 and assume that en−1,m = 0 for all m > (1 − n) 〈i, j′〉. By
Lemma 4.2.1(b), en,1−n〈i,j′〉 supercommutes with Fi, and by Lemma 4.2.3 and
induction, it supercommutes with Fj (note that m = 1− n 〈i, j′〉 > (1− n) 〈i, j′〉).
It trivially supercommutes with Fk for k �= i, j. Therefore, by Proposition 2.3.5
we deduce that en,1−n〈i,j′〉 = 0. Again, using Lemma 4.2.1(a) and induction m the
en,m = 0 for m ≥ 1− n 〈i, j′〉. �
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function and the very strange formula, Adv. Math. 30 (1978), 85–136.

[KKT] S.-J. Kang, M. Kashiwara, S. Tsuchioka, Quiver Hecke superalgebras, arXiv:

1107.1039.

[K] M. Kashiwara, On crystal bases of the q-analogue of universal enveloping algebras,
Duke Math. J. 63 (1991), 465–516.

[Lu1] G. Lusztig, Quantum deformations of certain simple modules over enveloping al-
gebras, Adv. in Math. 70 (1990), 447–498.

[Lu] G. Lusztig, Introduction to Quantum Groups, Progress in Mathematics, Vol. 110,
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