
Transformation Groups c©Birkhäuser Boston (2013)
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Abstract. We use equivariant localization and divided difference operators to determine
formulas for the torus-equivariant fundamental cohomology classes of K-orbit closures
on the flag variety G/B, where G = GL(n,C), and where K is one of the symmetric
subgroups O(n,C) or Sp(n,C). We realize these orbit closures as universal degeneracy
loci for a vector bundle over a variety equipped with a single flag of subbundles and a
nondegenerate symmetric or skew-symmetric bilinear form taking values in the trivial
bundle. We describe how our equivariant formulas can be interpreted as giving formulas
for the classes of such loci in terms of the Chern classes of the various bundles.

1. Introduction

Suppose that V → X is a rank n vector bundle over a smooth complex variety
X, and that V is equipped with a symmetric or skew-symmetric bilinear form
γ taking values in the trivial bundle, along with a complete flag of subbundles
F•. Let b ∈ Sn be an involution, assumed fixed point-free if n is even and γ is
skew-symmetric. Consider the degeneracy locus

Db = {x ∈ X | rank(γ|Fi(x)×Fj(x)) ≤ rb(i, j) ∀i, j}, (1)

where rb(i, j) is a non-negative integer depending on b, i, and j. The main result
of this paper is a recursive procedure by which one may obtain a formula for
the fundamental class [Db] ∈ H∗(X) in the first Chern classes c1(Fi/Fi−1) for
i = 1, . . . , n, under certain genericity assumptions. If n is even, γ is symmetric,
and b is fixed point-free, the locus Db has two irreducible components; we also
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describe how to obtain formulas for the fundamental classes of these components.
Such formulas involve the Chern classes of the subquotients of F• together with
an Euler class of V .

Although this is a nice, compact description of our results, this project was not
initially motivated by a desire to find formulas for such degeneracy loci. Rather,
the motivation was to answer the following questions, in order:

(1) Can torus-equivariant cohomology classes of certain orbit closures on the
flag variety G/B (analogous to Schubert varieties) be computed explicitly
using localization techniques?

(2) Are such orbit closures universal cases of certain types of degeneracy loci,
as Schubert varieties are?

(3) If so, what types of degeneracy loci are parametrized by such orbit clo-
sures? Can a translation be made between a formula for the equivariant
cohomology class of such an orbit closure and the fundamental class of such
a degeneracy locus?

In the cases considered in this paper, the answers to (1)–(2) turn out to be “yes”,
and the answer to (3) turns out to be a typical locusDb as defined in (1) above, with
the translation between the two settings being very straightforward. Consideration
of questions (1)–(3) above was motivated by earlier work of W. Fulton ([F1], [F2],
[F3]) on Schubert loci in flag bundles, their role as universal degeneracy loci of maps
of flagged vector bundles, and by connections between this work and the torus-
equivariant cohomology of the flag variety, H∗T (G/B), discovered by W. Graham
([G]). We briefly describe this earlier work. Suppose V is a vector bundle over a
variety X, and suppose that E• and F• are two complete flags of subbundles of V .
Let w ∈ Sn be given, and consider the locus

Ωw = {x ∈ X | rank(Ei(x) ∩ Fj(x)) ≥ rw(i, j) for all i, j},

where rw(i, j) is a non-negative integer depending on w, i, and j. Fulton considered
the problem of finding a formula for the fundamental class [Ωw] ∈ H∗(X) in terms
of the Chern classes of the bundles involved. Assuming that the flags E•, F• are
“sufficiently generic” (in a sense that can be made precise), the problem reduces to
the universal case of finding formulas for the fundamental classes of Schubert loci
in the flag bundle Fl(V ). Moreover, it is enough to find a formula for the smallest
Schubert locus (that corresponding to a point in every fiber). One may then
deduce formulas for larger loci from this formula by applying “divided difference
operators”, moving inductively up the (weak) Bruhat order.

Graham considered this problem in a more universal and Lie-theoretic setting.
Let G be a reductive algebraic group over C, with T ⊆ B ⊆ G a maximal torus and
Borel subgroup, respectively. Denote by E the total space of a universal principal
G-bundle. This is a contractible space with a free action of G (hence also a free
action of B, by restriction). Let BB and BG denote the spaces E/B and E/G,
respectively. Then BB and BG are classifying spaces for the groups B and G. In
the setting of [G], the primary object of interest is the diagonal ∆ ⊆ BB×BGBB.
After a translation between H∗(BB ×BG BB) and the T -equivariant cohomology
H∗T (G/B) of G/B, one sees that the problem of describing [∆] ∈ H∗(BB×BGBB)
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is equivalent to that of describing the T -equivariant class of a point. In the setting
of T -equivariant cohomology, one has use of the localization theorem, which allows
one to verify the correctness of a formula for the class of a point simply by checking
that it restricts correctly at all of the T -fixed points. The observation is that had a
formula for this class not already been discovered by Fulton using other methods,
it might have been determined simply by identifying how it should restrict at each
fixed point and attempting to guess a class which restricts as required.

Of course, this observation is of limited use in the case of Schubert varieties,
since formulas for their equivariant classes are already known, but it suggests
that perhaps equivariant classes of other loci with torus actions, for which we
do not already know formulas, could be computed in this way. With this in
mind, we turn now to our primary objects of interest, the closures of orbits of
symmetric subgroups on G/B. Let G be a connected, complex, simple algebraic
group of classical type. Let θ be a (holomorphic) involution of G— that is, θ is an
automorphism of G whose square is the identity. Fix T ⊆ B, a θ-stable maximal
torus and Borel subgroup of G, respectively. Let K = Gθ be the subgroup of
elements of G which are fixed by θ. Such a subgroup of G is referred to as a
symmetric subgroup.

K acts on the flag variety G/B with finitely many orbits ([Ma]), and the ge-
ometry of these orbits and their closures plays an important role in the theory of
Harish-Chandra modules for a certain real form GR of the group G— namely, one
containing a maximal compact subgroup KR whose complexification is K. For this
reason, the geometry of K-orbits and their closures have been studied extensively,
primarily in representation-theoretic contexts.

Their role in the representation theory of real groups aside, K-orbit closures can
be thought of as generalizations of Schubert varieties, and, in principle, any ques-
tion one has about Schubert varieties may also be posed about K-orbit closures. In
the present paper, we apply equivariant localization as described above to discover
previously unknown formulas for the S-equivariant fundamental classes of K-orbit
closures on G/B, where S = K ∩ T , a maximal torus of K contained in T . (Note
that the K-orbit closures do not have a T -action, which is why we work with re-
spect to the smaller torus.) We do so for the symmetric pairs (GL(n,C),O(n,C)),
(SL(n,C),SO(n,C)), and (GL(2n,C),Sp(2n,C)).

In each case, this is done in two steps. First, we identify the closed orbits and
their restrictions at the various S-fixed points. Using this information, we produce
polynomials in the generators of H∗S(G/B) which restrict at the S-fixed points as
required. We then conclude by the localization theorem that these polynomials
represent the equivariant fundamental classes of the closed K-orbits.

Second, we outline how divided difference operators can be used to deduce for-
mulas for the fundamental classes of the remaining orbit closures. This is analogous
to what is done for Schubert varieties. Although combinatorial parametrizations
of K\G/B, as well as descriptions of its weak closure order in terms of such
parametrizations, are typically more complicated than the case of Schubert va-
rieties, in the cases treated in this paper, things are relatively straightforward.
Indeed, the orbit sets in each case can be parametrized by a subset of the Weyl
group, consisting of involutions in the case K = O(n,C), and of fixed point-free
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involutions in the case K = Sp(n,C).
Having carried out these computations in our examples, we finally discover

that the K-orbit closures parametrize degeneracy loci of the type described in (1),
by examining linear algebraic descriptions of the orbit closures as sets of flags,
considering their isomorphic images in the universal space BK ×BG BB, and by
considering what sorts of additional structures on a vector bundle over a variety
give rise to a classifying map into this universal space.

The paper is organized as follows: In the remainder of this introduction, we
cover some preliminaries on equivariant cohomology and localization; the general
means by which we hope to apply these techniques to closed K-orbits; and the
way in which divided difference operators can then be used to determine formulas
for the remaining orbit closures. In the second section, we carry this out explicitly
in our examples. Finally, in the third section, we give the details of the translation
between our formulas for K-orbit closures and Chern class formulas for degeneracy
loci of the type described in (1).

Acknowledgement. The results presented here are part of the author’s PhD the-
sis, written at the University of Georgia under the direction of his research advisor,
William A. Graham. The author thanks Professor Graham wholeheartedly for his
help in conceiving that project, as well as for his great generosity with his time
and expertise throughout.

1.1. Notation

Here we define some notations which will be used throughout the paper.
We denote by In the n × n identity matrix, and by Jn the n × n matrix with

1’s on the antidiagonal and 0’s elsewhere, i.e., the matrix (ei,j) = δi,n+1−j . Jn,n
shall denote the block matrix which has Jn in the upper-right block, −Jn in the
lower-left block, and 0’s elsewhere. That is,

Jn,n :=

(
0 Jn
−Jn 0

)
.

We will use both “one-line” notation and cycle notation for permutations. When
giving a permutation in one-line notation, the sequence of values will be listed
with no delimiters, while for cycle notation, parentheses and commas will be used.
Hopefully this will remove any possibility for confusion on the part of the reader.
So, for example, the permutation π ∈ S4 which sends 1 to 2, 2 to 3, 3 to 1, and 4
to 4 will be given in one-line notation as 2314 and in cycle notation as (1, 2, 3).

We will consider signed permutations of {1, . . . , n} viewed as embedded in some
larger symmetric group, either S2n or S2n+1, as follows: The signed permutation
π of {1, . . . , n} is associated to the permutation σ ∈ S2n defined by

σ(i) =

{
π(i) if π(i) > 0,

2n+ 1− |π(i)| if π(i) < 0,

and
σ(2n+ 1− i) = 2n+ 1− σ(i)
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for i = 1, . . . , n.
Embedding signed permutations in S2n+1 works the same way, with 2n replaced

by 2n+ 1 in the definitions above. Note that this forces σ(n+ 1) = n+ 1.
When dealing with a signed permutation w of {1, . . . , n}, we will at times want

to consider what we call the “absolute value” of w, which we denote |w|. This is
defined in the obvious way, by |w|(i) = |w(i)|. So for example, if 132 denotes the
signed permutation sending 1 7→ 1, 2 7→ −3, and 3 7→ −2, we have that |132| = 132.

We will also deal often with flags, i.e., chains of subspaces of a given vector
space V . A flag

{0} ⊂ F1 ⊂ F2 ⊂ . . . ⊂ Fn−1 ⊂ Fn = V

will often be denoted by F•. When we wish to specify the components Fi of a
given flag F• explicitly, we will typically use the shorthand notation

F• = 〈v1, . . . , vn〉 ,

which shall mean that Fi is the linear span C · 〈v1, . . . , vi〉 for each i.
We will always be dealing with characters of tori S (the maximal torus of K)

and T (the maximal torus of G). Characters of S will be denoted by capital Y
variables, while characters of T will be denoted by capital X variables. Equivariant
cohomology classes, on the other hand, will be represented by polynomials in lower-
case x and y variables, where the lower-case variable xi means 1⊗Xi, and where
the lower-case variable yi means Yi ⊗ 1. (See Proposition 1.)

Unless stated otherwise, H∗(−) shall always mean cohomology with C-coeffici-
ents.

Lastly, we note here once and for all that K\G/B should always be taken to
mean the set of K-orbits on G/B, unless explicitly stated otherwise. (This as
opposed to B-orbits on K\G, or B ×K-orbits on G.)

1.2. Equivariant cohomology (of the flag variety), and
the localization theorem

Our primary cohomology theory is equivariant cohomology with respect to the
action of a maximal torus S of K. The S-equivariant cohomology of an S-variety
X is, by definition,

H∗S(X) := H∗((ES ×X)/S).

Here, ES denotes the total space of a universal principal S-bundle (a contractible
space with a free S-action), as in the introduction. In the next section, we will
also briefly refer to S-equivariant homology, which is by definition the Borel–Moore
homology H∗((ES×X)/S). (For information on Borel–Moore homology; see, e.g.,
[F5, §B.2].) For smooth X, which is all we shall be concerned with here, the two
theories are identified via Poincaré duality, so we work almost exclusively with
cohomology.

Note that H∗S(X) is always an algebra for the ring ΛS := H∗S({pt.}), the S-
equivariant cohomology of a 1-point space (equipped with trivial S-action). The
algebra structure is given by pullback through the constant map X → {pt.}.

Taking X to be the flag variety G/B, we now describe H∗S(X) explicitly. Let
R = S(t∗), the C-symmetric algebra on the dual to the Lie algebra t of a maximal
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torus T of G. Let R′ = S(s∗), the C-symmetric algebra on the dual to the Lie
algebra s of S. It is a standard fact that R ∼= ΛT , and R′ ∼= ΛS . Let n be
the dimension of T , and let r be the dimension of S. Let X1, . . . , Xn denote
coordinates on t∗, taken as generators for the algebra R. Likewise, let Y1, . . . , Yr
denote coordinates on s∗, algebra generators for R′.

Note that there is a map R → R′ induced by restriction of characters, whence
R′ is a module for R. Note also that W acts on R, since it acts naturally on the
characters Xi. Then it makes sense to form the tensor product R′ ⊗RW R. As it
turns out, this is the S-equivariant cohomology of X.

Proposition 1. With notation as above, H∗S(X) = R′ ⊗RW R. Thus elements of
H∗S(X) are represented by polynomials in variables xi := 1⊗Xi and yi := Yi ⊗ 1.

Proof. For the case S = T , this is the well-known fact that H∗T (X) ∼= R ⊗RW R,
for which a proof can be found in [B1]. For lack of a reference in the more general
case, when S may be a strict subtorus of T , we provide a proof here, which of
course applies also to the case S = T .

It is easy to see that H∗S(X) is free over R′ of rank |W |. Indeed, we have a flag
bundle E×S (G/B)→ BS. This is a locally trivial fibration with fiber isomorphic

to G/B. On the space E ×S (G/B), for any character λ ∈ T̂ , we have a line
bundle Lλ which restricts to the line bundle Lλ = G ×B Cλ over the fiber G/B.
Express the |W | Schubert classes (a basis for H∗(G/B)) as polynomials in the
Chern classes of these line bundles. Then those same polynomials evaluated at
the Chern classes of the line bundles Lλ give |W | classes in H∗(E ×S G/B) which
restrict to a basis for the cohomology of H∗(G/B). The claim now follows from
the Leray–Hirsch Theorem.

Now, note that there is a map R′ ⊗C R → H∗S(G/B). The map is the tensor
product of two maps, p : R′ → H∗S(G/B) and q : R → H∗S(G/B). The map p
is pullback through the map to a point, as described above. The map q takes a
character λ to c1(Lλ). The map p⊗q is surjective, since the S-equivariant Schubert
classes are hit by the map q on the second factor.

Since R is free over RW of rank |W |, R′⊗RW R is free over R′ of rank |W |, hence
H∗S(G/B) and R′⊗RW R are both free R′-modules of the same rank. Consider the
possibility that p ⊗ q factors through R′ ⊗RW R— that is, suppose that x ⊗ y 7→
p(x)q(y) is a well-defined map R′ ⊗RW R → H∗S(G/B). If so, then this map is
clearly surjective, since p ⊗ q is, so it is injective as well, being a map of free R′-
modules of the same rank. The map is moreover a ring homomorphism, and so it
is in fact an isomorphism of rings.

Thus we need only see that the map φ : R′⊗RW R→ H∗S(G/B) given by φ(α⊗
β) = p(α)q(β) is well-defined. To see this, note first that the space E×S (G/B) is
isomorphic to the space BS ×BG BB. Indeed, the map E ×G→ E ×BG E given
by (e, g) 7→ (e, eg) is an isomorphism, since E → BG is a principal G-bundle. This
map is S×B-equivariant, where S×B acts on E×G by (e, g).(s, b) = (es, s−1gb),
and on E ×BG E by (e1, e2).(s, b) = (e1s, e2b). Thus the isomorphism descends
to quotients, and (E ×G)/(S × B) ∼= E ×S (G/B), while (E ×BG E)/(S × B) ∼=
BS ×BG BB.

Now, we have a map φ̃ : H∗(BS)⊗H∗(BG) H
∗(BB)→ H∗(BS ×BG BB) given
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by α⊗ β 7→ π∗1(α)π∗2(β), where π1, π2 are the projections from BS ×BG BB onto
BS and BB, respectively. There is no question of this map being well-defined;
that it is well-defined is immediate given commutativity of the square

BS ×BG BB //

��

BB

��
BS // BG

.

It is well-known that H∗(BS) ∼= R′, H∗(BB) ∼= R, and H∗(BG) ∼= RW , so clearly
H∗(BS) ⊗H∗(BG) H

∗(BB) ∼= R′ ⊗RW R. Thus to see that φ is well-defined, we

can simply observe that it is precisely the map φ̃ when H∗(BS)⊗H∗(BG)H
∗(BB)

is identified with R′ ⊗RW R, and H∗(BS ×BG BB) is identified with H∗S(G/B) =
H∗(E ×S (G/B)) via the isomorphism described above.

On the first factor R′, the map φ maps a character λ of S to c1((E ×S Cλ) ×
(G/B)). The bundle (E×SCλ)×G/B is the line bundle associated to the principal
S-bundle E × G/B → E ×S (G/B) and the 1-dimensional representation Cλ of

S. On the other hand, the map φ̃ maps λ to c1(π∗1(Lλ)). The bundle π∗1Lλ =
(E×S Cλ)×BGBB is the line bundle associated to the principal S-bundle E×BG
BB → BS ×BG BB and the same 1-dimensional representation Cλ of S. Since
these two line bundles are associated to principal S-bundles which correspond via
our isomorphism, and to the same representation of S, they are in fact the same
line bundle when the two spaces are identified. Thus φ and φ̃ agree on the R′

factor.
The story on the second factor is much the same. The map φ maps a character λ

of T to c1(E×S (G×BCλ)), the first Chern class of the line bundle associated to the
principal B-bundle E×SG→ E×S(G/B) and the 1-dimensional representation Cλ
of B (where, as usual, the T -action on Cλ is extended to B by letting the unipotent

radical act trivially). The map φ̃ maps λ to c1(π∗2Lλ), with π∗2Lλ = BS×BG (E×B
Cλ) the line bundle associated to the principal B-bundle BS×BGE → BS×BGBB
and the same representation of B. Since these principal bundles correspond via our
identification, and since the line bundles are associated to these principal bundles
and the same representations of B, they are the same line bundle. Thus φ and φ̃
agree on the R factor as well. �

As mentioned, the S-equivariant cohomology of any S-variety X is an algebra
for ΛS , the S-equivariant cohomology of a point. We have the following standard
localization theorem for actions of tori, one reference for which is [B1]:

Theorem 2. Let X be an S-variety, and let i : XS ↪→ X be the inclusion of the
S-fixed locus of X. The pullback map of ΛS-modules

i∗ : H∗S(X)→ H∗S(XS)

is an isomorphism after a localization which inverts finitely many characters of S.
In particular, if H∗S(X) is free over ΛS, then i∗ is injective.

The last statement is what is relevant for us, since when X is the flag variety,
H∗S(X) = R′ ⊗RW R is free over R′. Thus in the case of the flag variety, the
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localization theorem tells us that any equivariant class is entirely determined by
its image under i∗. As noted in the next section (cf. Proposition 4), the locus of
S-fixed points is finite, and indexed by the Weyl group W , even in the event that
S is a proper subtorus of the maximal torus T of G. Thus in our setup,

H∗S(XS) ∼=
⊕
w∈W

ΛS ,

so that in fact a class in H∗S(X) is determined by its image under i∗w for each
w ∈ W , where here iw denotes the inclusion of the S-fixed point wB. Given a
class β ∈ H∗S(X) and an S-fixed point wB, we will typically denote the restriction
i∗w(β) at wB by β|wB , or simply by β|w if no confusion seems likely to arise.

Suppose that Y is a closed K-orbit. We denote by [Y ] ∈ H∗S(X) its S-equivariant
fundamental class. For the sake of clarity, we explain this abuse of notation. To
be precise, by [Y ] we mean the Poincaré dual to the direct image of the fundamen-
tal (equivariant) homology class of Y in HS

∗ (X). This is the unique equivariant
cohomology class α ∈ H∗S(X) having the property that α ∩ [X] = [Y ].

We describe in the next section how to compute [Y ]|wB for w ∈ W . Since [Y ]
is completely determined by these restrictions, the idea is to compute them and
then try to “guess” a formula for [Y ] based on them. For us, a “formula for [Y ]”
is a polynomial in the variables xi and yi (defined in the statement of Proposition
1) which represents [Y ]. Note that such a formula amounts to a particular choice
of lift of [Y ] from R′ ⊗RW R to R′ ⊗C R.

To be able to tell whether a given guess at a formula for [Y ] is correct, we must
understand how the restriction maps i∗w work. That is the content of the next
proposition.

Proposition 3. Suppose that β ∈ H∗S(X) is represented by the polynomial f =
f(x, y) in the xi and yi. Then β|wB ∈ ΛS is the polynomial f(ρ(wX), Y ). Here, ρ
denotes the restriction t∗ → s∗.

Proof. It suffices to check that

yi|wB = Yi,

and that
xi|wB = ρ(wXi).

For the first, recall that the class yi ∈ H∗S(X) is π∗(Yi), where π : X → {pt.}
is the map to a point, and Yi ∈ s∗ is a coordinate on s. Letting iw denote the
inclusion of the fixed point wB into X, we have that π ◦ iw = id, so that i∗w ◦ π∗ is
the identity on H∗S({wB}). Thus i∗w(yi) = i∗w(π∗(Yi)) = Yi, which is what is being
claimed.

For the second, recall that xi is the S-equivariant Chern class cS1 (LXi) = c1(E×S
LXi), with Xi ∈ t∗. Thus

i∗w(xi) = i∗w(c1(E ×S LXi)) = c1(i∗w(E ×S LXi)).

The bundle i∗w(E×SLXi) over BS is pulled back from the bundle i∗w(E×TLXi) over
BT through the natural map BS → BT . The bundle i∗w(E×T LXi) corresponds to
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a T -equivariant bundle over {wB} (i.e., a representation of T ) having weight wXi,
as one easily checks. Thus the bundle i∗w(E×SLXi) corresponds to an S-equivariant
bundle over {wB} having S-weight ρ(wXi), since the pullback ΛT → ΛS through
the map BS → BT is determined by restriction of characters. �

1.3. Closed orbits

Let G,B, T,K, S,W be as in the introduction. Let Φ = Φ(G,T ) denote the roots
of G. Let Φ+ denote the positive system of Φ such that the roots of B are negative,
and denote Φ− = −Φ+ = Φ(B, T ). Let X = G/B be the flag variety.

In our computations of equivariant classes, the closed orbits play a key role.
These are the orbits for whose classes we give formulas explicitly. We use equiv-
ariant localization as described in the previous section to verify the correctness of
these formulas. Taking such formulas as a starting point, formulas for classes of
remaining orbit closures can then be computed using divided difference operators,
as explained in the next section.

In this subsection, we give the general facts regarding the closed orbits which
we use to compute their equivariant classes. By equivariant localization, to deter-
mine a formula for the S-equivariant class of a closed orbit, it suffices, at least in
principle, to compute the restriction of this class at each S-fixed point. We start
by identifying the S-fixed points. We know that the T -fixed points are finite, and
indexed by W . The question is whether XS can be larger than this, in the event
that S is a proper subtorus of T . In fact, it cannot. We refer to [B2] for the
following result:

Proposition 4 ([B2]). If K = Gθ is a symmetric subgroup of G, T is a θ-stable
maximal torus of G, and S is a maximal torus of K contained in T , then (G/B)S =
(G/B)T .

With the S-fixed locus described, we now outline how the restriction of the class
of a closed orbit to an S-fixed point can be computed explicitly. The key fact that
we use is the self-intersection formula. To show that the self-intersection formula
even applies, we first need the following easy result:

Proposition 5. Suppose that K is a connected symmetric subgroup of G. Then
each closed K-orbit is isomorphic to the flag variety for the group K. In particular,
any closed K-orbit is smooth.

Proof. Suppose that K · gB is a closed orbit. Then K · gB ∼= K/StabK(gB), and
clearly, StabK(gB) = g−1Bg ∩K. Because K · gB is a closed subvariety of G/B
and because G/B is complete, K · gB is complete as well. Thus g−1Bg ∩K is a
parabolic subgroup of K ([H, §21.3]). Since it is contained in the Borel subgroup
g−1Bg of G, it is solvable, and so it is in fact a Borel subgroup of K. Thus K · gB
is isomorphic to a quotient of K by a Borel. �

Let Y be a closed K-orbit, with Y
i
↪→ X the inclusion. Recall that what we are

trying to compute is a formula for the Poincaré dual α to the equivariant homology
class i∗([Y ]) ∈ HS

∗ (X). (By abuse of notation, we will generally denote the class
α by [Y ].) By equivariant localization, this class is determined by knowing α|wB
for each w ∈ W . Suppose that wB ∈ Y . Denote by jw the inclusion of wB into
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Y , and by iw the inclusion of wB into X, so that iw = i ◦ jw. Then in HS
∗ (X), we

have the following:

i∗w(i∗([Y ]) = (j∗w ◦ i∗)(i∗([Y ])) = j∗w((i∗ ◦ i∗)([Y ]))

= j∗w(cSd (NYX) ∩ [Y ]) = cSd (NYX|wB) ∩ j∗w([Y ])

= cSd (NYX|wB) ∩ [wB],

where d is the codimension of Y in X. Here we have used some basic facts of
intersection theory regarding pushforwards and pullbacks, for which the standard
reference is [F4]. Note that we are able to use the self-intersection formula because
Y is smooth, and hence E ×S Y is regularly embedded in E ×S X.

On the other hand,

i∗w(i∗([Y ])) = i∗w(α ∩ [X]) = α|wB ∩ i∗w([X]) = α|wB ∩ [wB].

Then in H∗S(X), we have

α|wB = cSd (NYX|wB).

Thus computing the restriction of the class α at each S-fixed point amounts
to computing cSd (NYX|wB) ∈ H∗S({pt.}) ∼= C[X1, . . . , Xr]. We want to compute
this Chern class explicitly, as a polynomial in the Xi. Note that the S-equivariant
bundle NYX|wB is simply a representation of the torus S, and its top Chern class is
the product of the weights of this representation. We now compute these weights.

The S-module NYX|wB is simply TwX/TwY , so we determine the weights of
S on TwX and TwY , then remove the weights of TwY from those of TwX. It is
standard that

TwX = g/Ad(w)(b).

Since B has been taken to correspond to the negative roots, the weights of S on
TwX are the restrictions of the following weights of T on TwX:

Φ \ wΦ− = wΦ+.

A similar computation can be made for TwY . We know that

TwY = k/(k ∩Ad(w)(b)),

so the weights of S on TwY are as follows:

ΦK \ (ΦK ∩ wΦ−),

where ΦK denotes the roots of K. Subtracting this set of weights from those on
TwX, we conclude the following:
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Proposition 6. The weights of S on NYX|wB are ρ(wΦ+) \ (ρ(wΦ+) ∩ ΦK),
where ρ denotes restriction t∗ → s∗.

Knowing this, the goal is then to describe the closed orbits, as well as the S-
fixed points contained in each. The number of closed orbits is known in each of the
examples we consider in this paper; see [RS1], [RS2]. As explained in [W, §1.3],
given a concrete realization of G and K and using basic results from those same
references, it is also easy to determine a fixed-point contained in each.

Given that K · wB is a closed orbit, the remaining S-fixed points contained in
that orbit are of the form w′w, with w′ ∈ WK , viewed as an element of W via
the inclusion of Weyl groups WK ↪→ W . Note that it is not completely obvious
that WK is a subgroup of W in the event that S ( T (as is the case in the
examples we consider here), since it is not a priori clear that NK(S) is a subgroup
of NG(T ). That it is follows from that fact that T can be recovered as ZG(S), the
centralizer of S in G (see [S], [B2]). Since any element of G normalizing S must
also normalize ZG(S) = T , we have an inclusion NK(S) ⊂ NG(T ). This gives a
map WK = NK(S)/S → NG(T )/T = W defined by nS 7→ nT . The kernel of this
map is {nS | n ∈ NK(S)∩T}. Since S = K ∩T , the group NK(S)∩T is simply S:

NK(S) ∩ T = NK(S) ∩ (T ∩K) = NK(S) ∩ S = S.

Thus the kernel of the map WK →W is {1}, and so it is an inclusion.

1.4. Other orbits

As alluded to in the previous section, the idea is to compute formulas for classes
of all K-orbit closures using formulas for the closed orbits as a starting point for
applying divided difference operators. This works because the closed orbits are
minimal with respect to the “weak order” on K\G/B ([RS1, Thm. 4.6]). We now
describe the weak ordering, and how divided difference operators enter the picture.
Let α ∈ ∆ be a simple root, and let Pα be the minimal parabolic subgroup of G
of type α containing B. Consider the canonical map

πα : G/B → G/Pα.

This is a P1-bundle. Letting Q ∈ K\G/B be given, consider the set Zα(Q) :=
π−1α (πα(Q)). The map πα is K-equivariant, so Zα(Q) is K-stable. Assuming K is
connected, Zα(Q) is also irreducible, so it has a dense K-orbit. In the event that
K is disconnected, one sees that the component group of K acts transitively on
the irreducible components of Zα(Q), and from this it again follows that Zα(Q)
has a dense K-orbit.

If dim(πα(Q)) < dim(Q), then the dense orbit on Zα(Q) is Q itself. However, if
dim(πα(Q)) = dim(Q), the dense K-orbit will be another orbit Q′ of one dimension
higher. In either event, using notation as in [MT], we make the following definition:

Definition 1. With notation as above, sα · Q shall denote the dense K-orbit on
Zα(Q). In the event that α = αi for some chosen ordering of the simple roots, if
sαi ·Q = Q′ 6= Q, we will also use the notation Q <i Q

′ for brevity.
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Definition 2. The partial ordering on K\G/B generated by relations of the form
Q < Q′ if and only if Q′ = sα ·Q (with dim(Q′) = dim(Q) + 1) for some α ∈ ∆ is
referred to as the weak closure order, or simply the weak order.

Let Y, Y ′ denote the closures of Q,Q′, respectively. Assume that Q′ = sα · Q,
and define an operator ∂α on H∗S(X), known as a “divided difference operator” or
a “Demazure operator”, as follows:

∂α(f) =
f − sα(f)

α
.

Let d denote the degree of πα|Y over its image. Using standard facts from
intersection theory, along with the fact that ∂α = π∗α ◦ (πα)∗, it is easy to see that
[Y ′] = (1/d)∂α([Y ]).

Putting all of this together, we see that we can recursively determine formulas
for the equivariant classes of all orbit closures given the following data:

(1) Formulas for classes of the closed orbits.

(2) The weak closure order on K\G/B.

(3) For any two orbits Q,Q′, with closures Y, Y ′, and with the property that
Q′ = sα ·Q, the degree d of πα|Y over its image.

In fact, the aforementioned degree d is always either 1 or 2, as follows from
the exposition of [RS1, Sect. 4]. Namely, sα · Q 6= Q only in cases where α is a
“complex” or “non-compact imaginary” root for the orbit Q, and the degree d is 2
if and only if α is “non-compact imaginary type II”. In all other cases, the degree
is 1. In our examples here, this can all be boiled down to elementary combinatorics
involving only subsets of the Weyl group, so we do not discuss the more general
picture here. The interested reader may see [RS1], [RS2] for more details.

In [B3], the graph for the weak order on K-orbit closures is endowed with
additional data, as follows: If Y ′ = sα · Y 6= Y , then the directed edge originating
at Y and terminating at Y ′ is labelled by the simple root α, or perhaps by an index
i if α = αi for some predetermined ordering of the simple roots. Additionally, if
the degree of πα|Y is 2, then this edge is double. (In other cases, the edge is
simple.) We modify this convention as follows: Rather than use simple and double
edges, in our diagrams we distinguish the degree two covers by dashed edges, as
opposed to the usual solid. (We do this simply because our weak order graphs were
created using GraphViz, which does not, as far as the author can ascertain, have
a mechanism for creating a reasonable-looking double edge. On the other hand,
creating dashed edges is straightforward.)

2. Examples

G will be the special linear group, consisting of determinant-1 invertible matrices
with complex entries.

For a maximal torus T of G, let Yi denote coordinates on t = Lie(T ), so that

Φ = {Xi −Xj | i 6= j}.
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We choose the “standard” positive system

Φ+ = {Xi −Xj | i < j},

and let Φ− = −Φ+. Take B to be the Borel subgroup containing T and whose
roots are Φ−. (Concretely, we may take T to be the diagonal elements of G, and
B to be the lower-triangular elements of G. Then t is the set of all trace-zero
diagonal matrices, and Xi(diag(a1, . . . , an)) = ai for each i.)

In this case, the Weyl group W is isomorphic to the symmetric group, and
elements of W act on the coordinates Xi by permutation of the indices.

2.1. K ∼= SO(2n + 1,C)

We realize K = SO(2n + 1,C) as the subgroup of G = SL(2n + 1,C) preserving
the quadratic form given by the antidiagonal matrix J = J2n+1. That is, K = Gθ

where θ is the involution

θ(g) = J(g−1)tJ.

We remark that in the notation of the introduction, this choice of K corresponds
to the real form GR = SL(2n+ 1,R) of G.

This realization of K is in fact conjugate to the “usual” one, that being the
fixed point set of the involution θ′(g) = (g−1)t. We prefer our choice of realization
because we can take a maximal torus S = K ∩ T consisting of diagonal elements,
and a Borel subgroup B consisting of lower-triangular elements.

The torus s = Lie(S) has the form diag(a1, . . . , an, 0,−an, . . . ,−a1). Thus if
X1, . . . , X2n+1 represent coordinates on t, restricting to s we have ρ(Xn+1) = 0,
and ρ(Xi) = Yi, ρ(X2n+2−i) = −Yi for i = 1, . . . , n.

The roots of K are as follows:

• ±Yi (i = 1, . . . , n);

• ±(Yi + Yj) (1 ≤ i < j ≤ n);

• ±(Yi − Yj) (1 ≤ i < j ≤ n).

The Weyl group WK of K should be thought of as consisting of signed permu-
tations of {1, . . . , n} (changing any number of signs). This is the action of WK on
the coordinates Yi ∈ s∗. WK is embedded in W as described in Subsection 1.1.

A formula for the closed orbit. As it turns out, there is a unique closed orbit in
this case. In our chosen realization, it is the orbit K · 1B, and, by the straight-
forward remarks given at the end of Subsection 1.3, it contains the S-fixed points
corresponding to elements of WK , embedded in S2n+1 as we have just mentioned.

We give a formula for the S-equivariant class of the lone closed orbit.

Proposition 7. Let Q = K ·1B be the closed K-orbit of the previous proposition.
Then [Q] is represented by

P (x, y) := (−2)n
n∏
i=1

(xi + xn+1)(xn+1 + x2n+2−i)
∏

1≤i<j≤n

(xi + xj)(xi + x2n+2−j).
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Proof. We apply Proposition 6 to determine the restriction [Q]|w at a fixed point
w ∈ Q. To compute the set ρ(wΦ+), we determine the restrictions of the positive
roots Φ+ to s, then apply the signed permutation corresponding to w to that set
of weights. (The result is the same as if we viewed w as a signed element of S2n+1,
applied that permutation to the elements of Φ+, and then restricted the resulting
roots to s.)

Restricting the positive roots {Xi −Xj | 1 ≤ i < j ≤ 2n + 1} to s, we get the
following set of weights:

(1) Yi − Yj , 1 ≤ i < j ≤ n, each with multiplicity 2 (one is the restriction of
Xi −Xj , the other the restriction of X2n+2−j −X2n+2−i).

(2) Yi + Yj , 1 ≤ i < j ≤ n, each with multiplicity 2 (one is the restriction of
Xi −X2n+2−j , the other the restriction of Xj −X2n+2−i).

(3) Yi, 1 ≤ i ≤ n, each with multiplicity 2 (one is the restriction of Xi −Xn+1,
the other the restriction of Xn+1 −X2n+2−i).

(4) 2Yi, 1 ≤ i ≤ n, each with multiplicity 1 (the restriction of Xi −X2n+2−i).

Now, consider applying a signed permutation w to this set of weights. The
resulting set of weights will be

(1) For each i, j (1 ≤ i < j ≤ n), either Yi − Yj or −(Yi − Yj), occurring with
multiplicity 2 (these weights come from applying w to weights of either type
(1) or (2) above).

(2) For each i, j (1 ≤ i < j ≤ n), either Yi + Yj or −(Yi + Yj), occurring with
multiplicity 2 (these weights also come from applying w to weights of either
type (1) or (2) above).

(3) For each i (1 ≤ i ≤ n), either Yi or −Yi, occurring with multiplicity 2 (these
weights come from applying w to weights of type (3) above).

(4) For each i (1 ≤ i ≤ n), either 2Yi or −2Yi, ocurring with multiplicity 1
(these weights come from applying w to weights of type (4) above).

Discarding roots of K, we are left with the following weights:

(1) For each i, j (1 ≤ i < j ≤ n), either Yi − Yj or −(Yi − Yj), occurring with
multiplicity 1.

(2) For each i, j (1 ≤ i < j ≤ n), either Yi + Yj or −(Yi + Yj), occurring with
multiplicity 1.

(3) For each i (1 ≤ i ≤ n), either Yi or −Yi, occurring with multiplicity 1.

(4) For each i (1 ≤ i ≤ n), either 2Yi or −2Yi, occurring with multiplicity 1.

It is clear that the number of weights of the form −Yi and the number of weights
of the form −2Yi are the same, so weights of those two forms account for an even
number of negative signs. So in computing the restriction, to get the sign right,
we need only concern ourselves with the signs of the weights of types (1) and (2)
above.

We claim that the number of Yi ± Yj (i < j) occurring with a negative sign is
congruent mod 2 to l(|w|). (Cf. Subsection 1.1 for this notation.) Indeed, suppose
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first that |w| does not invert i and j, so that k = |w(i)| < |w(j)| = l. Then there
are four possibilities:

(1) w(i), w(j) are both positive. In this case, Yw(i) + Yw(j) = Yk + Yl, and
Yw(i) − Yw(j) = Yk − Yl. Neither of these is a negative root.

(2) w(i) is negative, and w(j) is positive. Then Yw(i) +Yw(j) = −(Yk−Yl), and
Yw(i) − Yw(j) = −(Yk + Yl). Both of these are negative roots.

(3) w(i) is positive, and w(j) is negative. Then Yw(i) + Yw(j) = Yk − Yl, and
Yw(i) − Yw(j) = Yk + Yl. Neither of these is a negative root.

(4) w(i), w(j) are both negative. Then Yw(i) +Yw(j) = −(Yk +Yl), and Yw(i)−
Yw(j) = −(Yk − Yl). Both of these are negative roots.

All this is to say that if |w| does not invert i and j, then this accounts for an
even number of negative signs occurring in the restriction. On the other hand, if
|w| does invert i and j, so that k = |w(j)| < |w(i)| = l, then again there are four
possibilities:

(1) w(i), w(j) are both positive. In this case, Yw(i) + Yw(j) = Yk + Yl, and
Yw(i) − Yw(j) = −(Yk − Yl). One of these is a negative root.

(2) w(i) is negative, and w(j) is positive. Then Yw(i) + Yw(j) = Yk − Yl, and
Yw(i) − Yw(j) = −(Yk + Yl). One of these is a negative root.

(3) w(i) is positive, and w(j) is negative. Then Yw(i) +Yw(j) = −(Yk−Yl), and
Yw(i) − Yw(j) = Yk + Yl. One of these is a negative root.

(4) w(i), w(j) are both negative. Then Yw(i) +Yw(j) = −(Yk +Yl), and Yw(i)−
Yw(j) = Yk − Yl. One of these is a negative root.

The upshot is that if w ∈ Q is an S-fixed point, then

[Q]|w = F (Y ) := (−1)l(|w|)2n
n∏
i=1

Y 2
i

∏
1≤i<j≤n

(Yi + Yj)(Yi − Yj).

So we seek a polynomial in x1, . . . , x2n+1, y1, . . . , yn, say p, with the property
that

p(ρ(wX), Y ) =

{
F (Y ) if w ∈WK ,

0 otherwise.

It is straightforward to check that P (x, y) has these properties. Indeed, suppose
first that w ∈ WK . (We should think of w here as a signed element of S2n+1,
since this is how w acts on the Xi.) Consider first the factors xi + xn+1 and
xn+1 + x2n+2−i for i = 1, . . . , n. Supposing w(i) ≤ n, Xi + Xn+1 gives Xw(i) +
Xn+1, which restricts to Yw(i) + 0 = Yw(i). On the other hand, Xn+1 + X2n+2−i
gives Xn+1 + Xw(2n+2−i), which restricts to 0 − Yw(i) = −Yw(i), so the product
(xi +xn+1)(xn+1 +x2n+2−i) restricts to −Y 2

w(i). If w(i) > n+ 1, then the product

of these two terms restricts to −Y 2
2n+2−w(i), with the negative term coming from

xi + xn+1, and the positive term coming from the xn+1 + x2n+2−i. As i runs
from 1 to n, the product of all these terms restricts to (−1)n

∏n
i=1 Y

2
i . This

explains the factor of (−2)n in our formula, as opposed to just 2n. The (−1)n is
to account for a possible sign flip coming from terms of this type. So the terms
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(−2)n
∏n
i=1(xi + xn+1)(xn+1 + x2n+2−i) of our putative formula contribute the

2n
∏n
i=1 Y

2
i portion of the required restriction.

Next, consider the terms xi +xj and xi +x2n+2−j . Applying w and restricting,
these give (up to sign) all required terms of the form Yi + Yj and Yi − Yj (i < j).
Writing each such term as either +1 or −1 times a positive root by factoring
out negative signs as necessary, we effectively introduce the sign of (−1)l(|w|), as
required.

On the other hand, given any w /∈ WK (i.e., a non-signed element of S2n+1),
there are two possibilities:

Case 1: w does not fix n+ 1.
In this case, w moves n+1 to some i such that 1 ≤ i ≤ 2n+1, and i 6= n+1. Let

j = w−1(2n+ 2− i). (Note, of course, that j 6= n+ 1.) Applying w to xj + xn+1,
we get X2n+2−i +Xi, which restricts to 0.

Case 2: w fixes n+ 1.
In this case, w(2n+2−i) 6= 2n+2−w(i) for some 1 ≤ i ≤ n. Let j = 2n+2−w(i),

and let k = w−1(j). Clearly, k 6= i, 2n + 2 − i, or n + 1, so the factor xi + xk
appears in P . Applying w to this factor gives Xw(i) +X2n+2−w(i), which restricts
to zero.

We see that in either case, applying w then restricting kills one of the factors
appearing in P , and so the result is zero for any w /∈ WK , as desired. This
completes the proof. �

Remark 1. An alternate representative of [Q] is

P (x, y) := (−2)n
n∏
i=1

(xn+1 + yi)(xn+1 − yi)
∏

1≤i<j≤n

(xi + xj)(xi + x2n+2−j).

Indeed, this was the first representative discovered by the author. However, the
representative of the previous proposition is preferable from our perspective, es-
sentially because a formula involving only the xi will pull back to a Chern class
formula for the class of a certain degeneracy locus. It is not clear that the repre-
sentative involving the yi should have such an interpretation.

Parametrization of K\G/B and the weak order. As described in [RS1, Examples
10.2,10.3], the K-orbits in this case are in bijection with the set of “twisted in-
volutions”. This is a subset of W , defined in [RS1]. In this particular case, the
twisted involutions turn out to be in bijection with the ordinary involutions of
W . (The passage from twisted involutions to honest involutions is accomplished
by left-multiplication by the long element w0.) Thus the K-orbits on G/B are
parametrized by involutions of W .

Relative to this parametrization, the lone closed orbit Q corresponds to the long
element w0 = (1, 2n+1)(2, 2n) . . . (n, n+2), and the weak order graph is generated
from this starting point by the following rules: Given an involution b ∈ W , with
Qb the corresponding K-orbit,

(1) If l(sib) > l(b), then si ·Qb = Qb.
(2) Else, if sibsi 6= b, then Qb <i Qsibsi , and the edge in the weak order graph

is solid.
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(3) Else, Qb <i Qsib, and the edge in the weak order graph is dashed.

This description of the weak order follows from some basic results of [RS1],
combined with straightforward combinatorial arguments. We omit the details
here, but the interested reader can find them in [W, §2.2.2].

The parametrization of K\G/B by involutions is convenient because an invo-
lution b ∈ W encodes a linear algebraic description of the orbit corresponding to
b in a straightforward way. Namely, given an involution b, define, for any i and j,

rb(i, j) := #{k ≤ i | b(k) ≤ j}.

Let V = C2n+1, and let γ : V ⊗ V → C denote the orthogonal form with isometry
group K. For any flag F• = (F1 ⊂ . . . ⊂ F2n+1) ∈ X, denote by γ|Fi×Fj the
restriction of γ to pairs of the form (v, w) with v ∈ Fi and w ∈ Fj . The claim is
that if b ∈W is an involution, then the set

Qb := {F• ∈ X | rank(γ|Fi×Fj ) = rb(i, j) for all i, j}

is a K-orbit on G/B, and that the association b 7→ Qb defines a bijection between
involutions in W and K-orbits.

Since any permutation w is uniquely determined by the set of numbers rw(i, j),
it is clear by definition that the Qb are mutually disjoint. It is also clear that each
set Qb, if non-empty, is stable under K and hence is at least a union of K-orbits.
If we can see that every Qb is non-empty, it will follow that each must be a single
K-orbit. Indeed, as mentioned above, we know by the results of [RS1] that the
orbits are in bijection with the involutions of W . If each Qb is non-empty, then it
is impossible for any one of them to be anything other than a single K-orbit, for
then there would be more K-orbits than involutions.

Thus we show that each set Qb is non-empty by producing an explicit repre-
sentative satisfying the appropriate rank conditions. It suffices to produce a basis
{v1, . . . , v2n+1} for C2n+1 such that the matrix for the form γ relative to this basis
is a monomial matrix (that is, a matrix such that each row and column has exactly
one non-zero entry) whose image in W is b. Then we can simply take our flag F•
to be 〈v1, . . . , v2n+1〉.

We choose such a basis as follows. (Recall that the form γ is defined by 〈ei, ej〉 =
δi,2n+2−j .) First, for each i such that b(i) 6= i, choose vi and vb(i) to be ek and
e2n+2−k for some k 6= n + 1. (Of course, we should choose a different such k for
each such i.) There are an odd number of i such that b(i) = i— for one such
i, choose vi to be en+1, and for all other pairs i1, i2 of such i, choose vi1 to be
ek + e2n+2−k for some k 6= n + 1 (and not yet used in the first step above), and
choose vi2 to be ek − e2n+2−k for the same k. (We should choose a different such
k for each such pair i1, i2.)

Proposition 8. With v1, . . . , v2n+1 defined as above, the flag 〈v1, . . . , v2n+1〉 lies
in Qb.

Proof. We first note that the matrix for the form γ relative to this basis is indeed
a monomial matrix whose image in W is b. This means precisely that for each i,
〈vi, vj〉 is non-zero if and only if j = b(i).
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For any i with b(i) 6= i, this is clear. Indeed, vi = ek for some k, while vb(i) =
e2n+2−k. Meanwhile, ek appears with coefficient 0 in all other vi by design. Since
〈ei, ej〉 = δi,2n+2−j , we see that 〈vi, vj〉 = δj,b(i).

Now suppose that b(i) = i. Then either vi = en+1, or vi = ek ± e2n+2−k for
some k 6= n + 1 (and not equal to any k used to define vi with b(i) 6= i). In the
former case, we have 〈

vi, vb(i)
〉

= 〈vi, vi〉 = 〈en+1, en+1〉 = 1,

while 〈vi, vj〉 = 0 for any other j, since en+1 appears with coefficient 0 in all other
vi. In the latter case, supposing that vi = ek + e2n+2−k, we have〈

vi, vb(i)
〉

= 〈vi, vi〉 = 〈ek, e2n+2−k〉+ 〈e2n+2−k, ek〉) = 2.

If vi = ek − e2n+2−k, the corresponding computation shows that
〈
vi, vb(i)

〉
= −2.

For j 6= b(i), either ek appears with coefficient 0 in vj (in which case 〈vi, vj〉 = 0),
or vj = ek ∓ e2n+2−k, and in that case,

〈vi, vj〉 = 〈ek, e2n+2−k〉 − 〈e2n+2−k, ek〉) = 0.

This establishes that the matrix for γ relative to the basis {vi} is indeed
monomial, with image b in W . Now, note that if F• = 〈v1, . . . , v2n+1〉, then
rank(γ|Fi×Fj ) is, by definition, the rank of the upper-left i × j rectangle of this
matrix. For any monomial matrix with image b in W , the rank of the upper-left
i× j rectangle is precisely rb(i, j). This proves the claim. �

We illustrate with two examples. Suppose n = 2, so we are dealing with G =
GL(5,C), K = O(5,C). First consider the involution b = (2, 4). Since b moves 2
and 4, we first choose v2 = e1 and v4 = e5. Since b fixes 1, 3, and 5, we first choose
v1 = e3, then we choose v3 = e2 + e4 and v5 = e2 − e4. Our ordered basis is thus

{e3, e1, e2 + e4, e5, e2 − e4}.

Relative to this ordered basis, the form γ has matrix
1 0 0 0 0
0 0 0 1 0
0 0 2 0 0
0 1 0 0 0
0 0 0 0 −2

 ,

and one checks that if F• = 〈v1, . . . , v5〉, then the rank conditions specified by
b = (2, 4) are satisfied.

Next, consider b = (1, 3)(2, 5). We first choose v1 = e1, v3 = e5, v2 = e2, and
v5 = e4. Finally, since b fixes only 4, we choose v4 = e3. So our ordered basis is
〈e1, e2, e5, e3, e4〉, and the form γ, relative to this basis, has matrix

0 0 1 0 0
0 0 0 0 1
1 0 0 0 0
0 0 0 1 0
0 1 0 0 0

 .
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One again checks easily that if F• = 〈v1, . . . , v5〉, the rank conditions encoded by
b = (1, 3)(2, 5) are satisfied.

Using the linear algebraic description of K-orbits as sets of flags, it is also easy
to describe K-orbit closures as sets of flags. This will be useful to us in Section
3, when we will realize the K-orbit closures as universal cases of degeneracy loci
bearing similar linear algebraic descriptions. Indeed, the result is the following:

Proposition 9. Suppose that b ∈ S2n+1 is an involution, with Qb the associated
K-orbit. Then

Qb = {F• | rank(γ|Fi×Fj ) ≤ rb(i, j) for all i, j}

Proof. As we have mentioned, the orbits in this case are parametrized by the
twisted involutions of W , and it is explained in [RS2] (with the proof appearing
in [RS3]) that in such cases, the closure order on K-orbits is given precisely by
the induced Bruhat order on twisted involutions. Passing from twisted involutions
to honest involutions by left-multiplication by w0 inverts this order, so that when
K-orbits are parametrized by involutions, their closure order is given precisely by
the reverse Bruhat order on these involutions. The claim now follows from the
definition of the Bruhat order given in [F5, §10.5] in terms of the rank numbers
rb(i, j). �

Example. We now work out a very small example in detail, the case n = 1. (So
G = GL(3,C), K = O(3,C).) Here, there are 4 involutions, and hence 4 orbits.

We start from the minimal element w0 = (1, 3), and work our way up as de-
scribed in the previous subsection. Since

s1w0s1 = (1, 2)(1, 3)(1, 2) = (2, 3) 6= w0,

we have Qw0
<1 Q(2,3), and the edge is solid.

Similarly,
s2w0s2 = (2, 3)(1, 3)(2, 3) = (1, 2) 6= w0,

so Qw0 <2 Q(1,2), and again the edge is solid.
Now, we move up to the orbits corresponding to (1, 2) and (2, 3). Start with

(2, 3) = s2. Since l(s1s2) > l(s2), s1 ·Q(2,3) = Q(2,3). So we check s2. Since

s2s2s2 = s2,

we have Q(2,3) <2 Qs2s2 = Q1, and in this case the edge is dashed.
The situation with (1, 2) = s1 is identical, with s2 above replaced by s1, so that

Q(1,2) <1 Q1, and the edge is dashed. The weak order graph appears as Figure 1
of the appendix.

With this complete, we now determine formulas for the S-equivariant classes of
all orbit closures. By Proposition 7 above, the class of the closed orbit correspond-
ing to w0 is given by the formula [Q] = −2(x1 + x2)(x2 + x3). The class [Y(2,3)] is
given by

[Y(2,3)] = ∂1([Q]),
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and since

∂1(f(x1, x2, x3, y)) =
f − f(x2, x1, x3, y)

x1 − x2
,

we have [Y(2,3)] = 2(x1 + x2). Similarly, [Y(1,2)] = ∂2([Q]) = −2(x2 + x3).

Finally, we can compute [Yid] either as 1
2∂2([Y(2,3)]), or as 1

2∂1([Y(1,2)]). Using
either formula, we get that [Yid] = 1, as expected.

The results are summarized in Table 1 of the appendix. The weak order graph
and the list of formulas for the larger case n = 5 appear in Figure 2 and Table 2.
(In that case, there are 26 orbits.)

2.2. K ∼= SO(2n,C)

We now treat the case of the even special orthogonal group.
As before, we realize K as the subgroup of SL(2n,C) preserving the orthogonal

form given by the antidiagonal matrix J = J2n.
Here, if Xi (i = 1, . . . , 2n) are coordinates on t, restriction to s is given by

ρ(Xi) = Yi and ρ(X2n+1−i) = −Yi for each i = 1, . . . , n.
The roots of K are

ΦK = {±(Yi ± Yj) | i < j}.

In this case, the Weyl group WK of K acts on torus characters by signed per-
mutations which change an even number of signs. The inclusion of WK into W
described in Subsection 1.1 thus has the further property that

σ(i) > n for an even number of i = 1, . . . , n. (2)

Formulas for the closed orbits. There are 2 closed orbits in this case [RS1, Example
10.3]. In our chosen realization, these are Q1, the orbit K · 1B, and Q2, the orbit
K · snB, with sn the simple transposition (n, n + 1). Fixed points in the orbit
Q1 correspond to the elements of WK , i.e., the signed permutations of {1, . . . , n}
changing an even number of signs, embedded in S2n as just described above. Fixed
points in the orbit Q2 correspond to (n,−n)·WK , where (n,−n) denotes the signed
permutation of {1, . . . , n} which interchanges n with −n. (Note that sn ∈ S2n

is the image of (n,−n) under our preferred embedding of signed permutations
into W .) Thus Q2 contains the fixed points of S2n which correspond to signed
permutations of {1, . . . , n} changing an odd number of signs.

We give formulas for the S-equivariant classes of Q1 and Q2:

Proposition 10. With Q1 and Q2 as in the previous proposition, [Q1] is repre-
sented by the polynomial P1(x, y), and [Q2] by the polynomial P2(x, y), where

P1(x, y) = 2n−1(x1 . . . xn + y1 . . . yn)
∏

1≤i<j≤n

(xi + xj)(xi + x2n+1−j);

and

P2(x, y) = 2n−1(x1 . . . xn − y1 . . . yn)
∏

1≤i<j≤n

(xi + xj)(xi + x2n+1−j).
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Proof. We demonstrate the correctness of the formula for [Q1]. The argument
is similar to that given in the previous case for the lone closed orbit of the odd
orthogonal group.

As stated, Q1 consists of those S-fixed points corresponding to elements of
WK — that is, signed permutations with an even number of sign changes. Take
w ∈ Q1 to be such a fixed point. We use Proposition 6 to compute the restriction
[Q1]|w. As in the previous example, we first determine the restriction of the positive
roots Φ+ to s, then apply the signed permutation w to that set of weights.

Restricting the positive roots {Xi − Xj | 1 ≤ i < j ≤ 2n} to s, we get the
following set of weights:

(1) Yi − Yj , 1 ≤ i < j ≤ n, each with multiplicity 2 (one is the restriction of
Xi −Xj , the other the restriction of X2n+1−j −X2n+1−i).

(2) Yi + Yj , 1 ≤ i < j ≤ n, each with multiplicity 2 (one is the restriction of
Xi −X2n+1−j , the other the restriction of Xj −X2n+1−i).

(3) 2Yi, 1 ≤ i ≤ n, each with multiplicity 1 (the restriction of Xi −X2n+1−i).

Now, consider applying a signed permutation w ∈ WK to this set of weights.
The resulting set of weights will be

(1) ±(Yi − Yj), 1 ≤ i < j ≤ n, each occurring with either a plus or minus sign,
and with multiplicity 2 (these weights come from applying w to weights of
either type (1) or (2) above).

(2) ±(Yi + Yj), 1 ≤ i < j ≤ n, each occurring with either a plus or minus sign,
and with multiplicity 2 (these weights also come from applying w to weights
of either type (1) or (2) above).

(3) ±2Yi, 1 ≤ i ≤ n, each ocurring with either a plus or minus sign, and with
multiplicity 1 (these weights come from applying w to weights of type (3)
above).

Subtracting roots of K, we are left with the following weights:

(1) ±(Yi − Yj), 1 ≤ i < j ≤ n, each occurring with either a plus or minus sign,
and with multiplicity 1.

(2) ±(Yi + Yj), 1 ≤ i < j ≤ n, each occurring with either a plus or minus sign,
and with multiplicity 1.

(3) ±2Yi, 1 ≤ i ≤ n, each occurring with either a plus or minus sign, and with
multiplicity 1.

The number of weights of the form −2Yi is even, since w changes an even
number of signs. So in computing the restriction, to get the sign right, we need
only concern ourselves with the signs of the weights of types (1) and (2) above.

We may argue just as in the proof of Proposition 7 that the number of Yi ± Yj
(i < j) occurring with a negative sign is congruent mod 2 to l(|w|). As such, if
w ∈ Q1 is an S-fixed point, then

[Q1]|w = F (Y ) := (−1)l(|w|)2nY1 . . . Yn
∏

1≤i<j≤n

(Yi + Yj)(Yi − Yj).

So we seek a polynomial in x1, . . . , x2n, y1, . . . , yn, say f , with the property that
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f(ρ(wX), Y ) =

{
F (Y ) if w ∈WK ,

0 otherwise.

It is straightforward to verify that P1 has these properties. Indeed, first take
w ∈ WK . Then applying w to the term y1 . . . yn + x1 . . . xn gives 2Y1 . . . Yn, since
w permutes the Xi with an even number of sign changes, and each restricts to
the corresponding Yi. Multiplying this by 2n−1 gives us the 2nY1 . . . Yn part of F .
The terms xi + xj and xi + x2n+1−j give, up to sign, all terms of the form Yi + Yj
and Yi− Yj (i < j). Rewriting each such term as either +1 or −1 times a positive
root by factoring out negative signs as necessary, we effectively introduce the sign
of (−1)l(|w|), as required.

On the other hand, if w /∈WK , then there are two possibilities:

Case 1: w is a signed element of S2n corresponding to a signed permutation
with an odd number of sign changes.

In this case, w clearly kills the term y1 . . . yn+x1 . . . xn, and hence f(ρ(wX), Y )
= 0.

Case 2: w is not a signed element of S2n.
In this case, then w(2n + 1 − i) 6= 2n + 1 − w(i) for some 1 ≤ i ≤ n. Let

j = 2n+ 1− w(i), and let k = w−1(j). Clearly, k 6= i or 2n+ 1− i. So the factor
xi + xk appears in P1. Applying w to this factor gives Xw(i) +X2n+1−w(i), which
then restricts to zero.

We see that in either case, f(ρ(wX), Y ) = 0. This proves that P1(x, y) repre-
sents [Q1].

The verification of the formula for [Q2] is very similar, and so is omitted. �

Remark 2. Note that the representatives for [Q1] and [Q2] involve both the x and
y variables. Unlike the odd case, there do not seem to be representatives involving
only the x-variables (at least not that the author was able to find). However, note
that if we consider the lone closed orbit of O(2n,C) on X (the union of Q1 and Q2),
its class (being the sum of [Q1] and [Q2]) involves only the x-variables. This reflects
the fact that the fundamental classes of degeneracy loci parametrized by O(2n,C)-
orbit closures are expressible in the Chern classes of a flag of vector subbundles of
a given vector bundle V over a variety X. By contrast, the fundamental classes of
the irreducible components of such loci, parametrized by SO(2n,C)-orbit closures,
are only expressible in these Chern classes together with the Euler class of the
bundle V ; see [EG]. See Section 3 for more details.

Parametrization of the orbits and the weak order. Again we refer to [RS1, Exam-
ples 10.2,10.3]. Although we took K to be SO(2n + 1,C) in Subsection 2.1, the
orbits of O(2n + 1,C) on GL(2n + 1,C)/B are identical to the description given
there. Indeed, when one deals with the odd orthogonal group, the element −1
lies in the non-identity component, so that one can pass from one component of
this group to the other by an element which acts trivially on GL(2n+ 1,C)/B. If
one thinks of K being the full orthogonal group instead of the special orthogonal
group, then the parametrization described in Subsection 2.1 applies equally well
to the even case. That is, O(2n,C)-orbits on GL(2n,C)/B are again parametrized
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by involutions of S2n, the weak order is described the same way, and the orbits
(and their closures) bear the same linear algebraic descriptions. However, when
one considers the SO(2n,C)-orbits on G/B, things are a bit more complicated.
Some of the O(2n,C)-orbits coincide with a single SO(2n,C)-orbit, while others
split as a union of two distinct SO(2n,C)-orbits. As described in [RS1, Examples
10.2,10.3], the precise result is as follows: If b ∈ S2n is an involution, and Qb is the
corresponding O(2n,C)-orbit on the flag variety, then

(1) Qb is a single SO(2n,C)-orbit if b has a fixed point.
(2) Qb is the union of two distinct SO(2n,C)-orbits if b is fixed point-free.

If b is an involution with fixed points, then one can determine a representative
of the SO(2n,C)-orbit Ob just as described in Subsection 2.1. If b is fixed point-
free, then one can determine a representative of the O(2n,C)-orbit corresponding
to b using the same procedure. This gives a representative of one of the two
SO(2n,C)-orbits which correspond to b. Note that this representative is always an
S-fixed flag, corresponding to a permutation in S2n. To get a representative of the
other SO(2n,C)-orbit corresponding to b, one can multiply this permutation by
the transposition (n, n+1) and take the S-fixed flag corresponding to the resulting
element of S2n.

The two closed orbits are particular examples of this. Indeed, the closed orbits
are the two components of the O(2n,C)-orbit corresponding to the involution w0,
which is fixed point-free. To get a representative of one component, one follows
the procedure of Subsection 2.1 to obtain the standard flag 〈e1, . . . , e2n〉. Then, to
get a representative of the other component, we apply the permutation (n, n+ 1)
to obtain 〈e1, . . . , en−1, en+1, en, en+2, . . . , e2n〉.

The weak closure order on SO(2n,C)-orbits, as well as whether edges of the
weak order graph are solid or dashed, require a bit more care to get right when
dealing with orbits which are components of O(2n,C)-orbits. Given two O(2n,C)-
orbits Q1 and Q2, with Q1 <i Q2, supposing that either orbit (or both) splits
as a union of two SO(2n,C)-orbits, how does one describe the weak order on the
components?

Note that there are two possible ways this can occur: Either Q1 and Q2 both
split, or Q1 splits and Q2 does not. Each possibility can occur, as we see in the
case n = 2. Indeed, when considering O(4,C)-orbits, parametrized by involutions,
we have w0 <1 (1, 3)(2, 4), each of which is fixed point-free. Thus both of these
orbits split. We also have w0 <2 (1, 4), and (1, 4) has fixed points, so it does not
split. The third “possibility”, where Q1 does not split while Q2 does, is clearly not
possible either from a geometric or a combinatorial standpoint. Indeed, it cannot
happen that two different components of Q2 are both dense in π−1α (πα(Q1)) for
α = αi ∈ ∆. This is reflected combinatorially by the the fact that if b ∈ W is an
involution with fixed points, and if l(sib) < l(b), then both of the following must
hold:

(1) sibsi has fixed points. Indeed, if b fixes any value other than i or i+ 1, then
sibsi fixes that same value. Otherwise, if b(i) = i, then sibsi(i+ 1) = i+ 1,
and if b(i+ 1) = i+ 1, then sibsi(i) = i.

(2) If sibsi = b, then sib also has fixed points. Indeed, if sibsi = b, then b
must preserve the set {i, i + 1}, as well as its complement. If b fails to fix
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any value other than i and i + 1, then it must fix both i and i + 1, since
b is assumed to have fixed points. But in this case, we have l(sib) > l(b),
since sib has one more inversion than b, namely (i, i+ 1) 7→ (i+ 1, i). This
contradicts our assumption that l(sib) < l(b), thus b must fix some value
outside of {i, i+ 1}. Then sib necessarily fixes the same value.

Let us consider the two possible cases. Take first the case when Q1 splits while
Q2 does not. Then by the results of Subsection 2.1, in the weak order graph
for O(2n,C)-orbits, any edge joining Q1 to Q2 must be dashed. Indeed, if the
involution corresponding to Q1 is fixed point-free, then sibsi is also fixed point-
free. Since Q2 does not split, it corresponds to an involution with fixed points,
which obviously cannot be sibsi. The only conclusion is that sibsi = b, and that
the involution corresponding to Q2 is sib. This implies that any edge joining Q1

to Q2 is dashed.

The situation in this case turns out to be what one would likely expect: Q1

splits as components Q′1 and Q′′1 , and we have

(1) Q′1 <i Q2, and the edge is solid.

(2) Q′′1 <i Q2, and the edge is solid.

The geometry here is simple: The restriction of the map παi : G/B → G/Pαi
to Q1 is generically 2-to-1. Over a generic point gPαi in the image, one of the
two preimage points will lie in Q′1, and the other will lie in Q′′1 . Thus the further
restriction of παi to either component of Q1 is birational.

Now consider the second case, where both Q1 and Q2 split (say as Q′1, Q′′1 and
Q′2, Q′′2). In this case, we can see combinatorially that any edge joining Q1 to Q2

must be solid. Indeed, Q1 corresponds to a fixed point-free involution b, while Q2

corresponds to a fixed point-free involution c for some si. If sibsi = b, then sib
must have fixed points. Since c is assumed not to have fixed points, we must have
that sibsi = c. Thus any edge joining Q1 to Q2 is solid.

It follows from [RS1, Prop. 7.9, Part (i)] that we should have one of the following
two cases:

(1) Q′1 <i Q
′
2 and Q′′1 <i Q

′′
2 (both edges solid).

(2) Q′1 <i Q
′′
2 and Q′′1 <i Q

′
2 (both edges solid).

However, it is not obvious (at least to the author) how to tell which is the case
once we have fixed our choices of Q′1, Q′′1 , Q′2, and Q′′2 . As a simple example,
consider the case n = 2, with Q1 the bottom orbit corresponding to w0, and Q2

the orbit corresponding to (1, 3)(2, 4). As noted above, we have Q1 <1 Q2. It
is also the case that s3w0s3 = (1, 3)(2, 4), so Q1 <3 Q2 as well. If we declare,
say, that Q′1, Q′′1 , Q′2, and Q′′2 are represented by 〈e1, e2, e3, e4〉, 〈e1, e3, e2, e4〉,
〈e1, e2, e4, e3〉, and 〈e1, e3, e4, e2〉, respectively, how does one know which of the
following four sets of closure relations is correct?

(1) Q′1 <1 Q
′
2, Q′1 <3 Q

′
2, Q′′1 <1 Q

′′
2 , Q′′1 <3 Q

′′
2 .

(2) Q′1 <1 Q
′
2, Q′1 <3 Q

′′
2 , Q′′1 <1 Q

′′
2 , Q′′1 <3 Q

′
2.

(3) Q′1 <1 Q
′′
2 , Q′1 <3 Q

′′
2 , Q′′1 <1 Q

′
2, Q′′1 <3 Q

′
2.

(4) Q′1 <1 Q
′′
2 , Q′1 <3 Q

′
2, Q′′1 <1 Q

′
2, Q′′1 <3 Q

′′
2 .
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Ultimately, we can answer this question by examining the formulas for the
equivariant fundamental classes of these orbit closures and computing their re-
strictions at S-fixed points contained in one orbit closure or another. In the
example given above, we know that the orbit Q′1 is represented by the polyno-
mial 2(y1y2 + x1x2)(x1 + x2)(x1 + x3). Applying ∂1 to this polynomial, we get
2(y1y2 + x1x2)(x1 + x2). This polynomial must represent either [Q′2] or [Q′′2 ]. As
chosen above, Q′2 is represented by the S-fixed point corresponding to 1243, while
Q′′2 is represented by the S-fixed point corresponding to 1342. Computing the
restriction of the class ∂1([Q′1]) at the fixed point 1243, we get

2(Y1Y2 + Y1Y2)(Y1 + Y2) = 4Y1Y2(Y1 + Y2).

On the other hand, when we compute the restriction of the class ∂1([Q′1]) at the
fixed point 1342, we get

2(Y1Y2 + Y1Y3)(Y1 + Y3) = 2(Y1Y2 − Y1Y2)(Y1 − Y2) = 0.

This tells us that we must have Q′1 <1 Q
′
2 (and hence also Q′′1 <1 Q

′′
2). Indeed, the

computation shows that the S-fixed point 1243 must be contained in the closure
of the orbit s1 ·Q′1, or else the restriction of [s1 ·Q′1] at 1243 would necessarily be
zero. This says s1 ·Q′1 = Q′2. A similar computation involving ∂3([Q′1]) shows also
that Q′1 <3 Q

′
2 and Q′′1 <3 Q

′′
2 . Thus option (1) above is the correct one.

Example. We give the results of the remainder of the computation for the case
n = 2, some of which was worked out in the previous subsection to enhance the
clarity of the exposition there. (We treat both the cases G = GL(4,C),K =
O(4,C) and G = SL(4,C),K = SO(4,C).) There are 10 involutions in W :

id; (1, 2); (1, 3); (1, 4); (2, 3); (2, 4); (3, 4); (1, 2)(3, 4); (1, 3)(2, 4); (1, 4)(2, 3).

The weak order graph for O(4,C)-orbits on X is given in Figure 3 of the ap-
pendix, with formulas shown in Table 3. The only comment we offer on that
computation is simply to point out that the formula for the bottom orbit cor-
responding to w0 is obtained by adding the formulas for the classes of the two
irreducible components, those being the two closed SO(4,C)-orbits.

The weak order graph for SO(4,C)-orbits on X is given in Figure 4, with for-
mulas shown in Table 4. All the ideas required for the computation are discussed
in the previous subsection, so we offer no further comment here.

2.3. K ∼= Sp(2n,C)

The final K to consider in type A is K = Sp(2n,C), which corresponds to the real
form GR = SL(n,H) of SL(2n,C). (H denotes the quaternions.) We realize K as
the isometry group of the skew form given by Jn,n (cf. Subsection 1.1) — that is,
K is the fixed point subgroup of the involution

θ(g) = Jn,n(g−1)tJn,n.

As was the case with the orthogonal groups, one checks easily that given this
realization of K, the diagonal elements S = K ∩ T are a maximal torus of K,
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and the lower-triangular elements B′ = B ∩K are a Borel subgroup of K. Also
as with the orthogonal groups, we have rank(K) < rank(G), so we have a proper
inclusion of tori S ( T , and we work over S-equivariant cohomology H∗S(X). If
X1, . . . , X2n ∈ t∗ are coordinates on t, restriction to s is given by ρ(Xi) = Yi,
ρ(X2n+1−i) = −Yi for i = 1, . . . , n.

The roots of K are the following:

ΦK = {±(Yi ± Yj) | 1 ≤ i < j ≤ n} ∪ {±2Yi | i = 1, . . . , n}.
The Weyl group WK acts on s∗ as signed permutations of the coordinate func-

tions {Y1, . . . , Yn} with any number of sign changes. WK embeds into W just as
in our prior examples.

A formula for the closed orbit. As was the case with K = SO(2n + 1,C), here
there is only one closed orbit — namely, Q = K · 1B, the orbit of the S-fixed point
corresponding to the identity of W . The S-fixed points contained in Q correspond
to the images of elements of WK in W .
Q being the only closed K-orbit, we give a formula for its S-equivariant class.

The proof is virtually identical to that given in the case of the odd orthogonal
group, except simpler, so we omit it.

Proposition 11. Let Q be the closed K-orbit of the previous proposition. Then
[Q] is represented by

P (x, y) :=
∏

1≤i<j≤n

(xi + xj)(xi + x2n+1−j).

Parametrization of the orbits and the weak order. We refer the reader to [RS1,
Example 10.4], and to [W, §2.4.2] for even further detail. Here, the K-orbits are
not in one-to-one correspondence with twisted involutions of W , but do inject into
them. The set of twisted involutions of W is once again in bijection with the
honest involutions (the bijection again being left-multiplication by w0) so that the
K-orbits are parametrized by some subset of the involutions ofW . The appropriate
subset of W turns out to be the set of fixed point-free involutions.

When one parametrizes the K-orbits by fixed point-free involutions, the unique
closed orbit once again corresponds to w0. From this starting point, the weak order
poset can be generated by the following rules: Given a fixed point-free involution
b and a simple reflection si,

(1) If l(sib) > l(b), or if sibsi = b, then si ·Qb = Qb.
(2) Else, Qb <i Qsibsi , and the edge is solid.

The parametrization of K\G/B by fixed point-free involutions encodes precisely
the same linear algebraic descriptions of the orbits and orbit closures in this case
as it does in the case of the orthogonal groups. Namely, letting γ denote the
symplectic form with isometry group K, if we define Qb to be

{F• ∈ X | rank(γ|Fi×Fj ) = rb(i, j) for all i, j},
then Qb is a single K-orbit on G/B, and the association b 7→ Qb defines a bijection
between the set of fixed point-free involutions and K\G/B. Moreover,

Qb = {F• ∈ X | rank(γ|Fi×Fj ) ≤ rb(i, j) for all i, j}.
Indeed, the proof is exactly same as that given for Proposition 9.
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Example. We give the details of the computation in the very small case n = 2
(so (G,K) = (SL(4,C),Sp(4,C))). Here, there are 3 fixed point-free involutions,
and hence 3 orbits. The involutions are (1, 2)(3, 4), (1, 3)(2, 4), and (1, 4)(2, 3).

We start at w0 = (1, 4)(2, 3) and work upward, applying the rule of the previous
subsection:

s1w0s1 = (1, 3)(2, 4),

s2w0s2 = w0,

s3w0s3 = (1, 3)(2, 4),

so w0 <1 (1, 3)(2, 4) and w0 <3 (1, 3)(2, 4). Next, we move up to (1, 3)(2, 4), noting
that we only need to compute the action of s2:

s2(1, 3)(2, 4)s2 = (1, 2)(3, 4),

and we are done. The weak order graph appears as Figure 5 of the appendix.
By Proposition 11, the formula for [Yw0

] is (x1 + x2)(x1 + x3). We obtain
[Y(1,3)(2,4)] by applying either ∂1 or ∂3. In either case, the result is [Y(1,3)(2,4)] =
x1 + x2. Finally, we obtain [Y(1,2)(3,4)] by applying ∂2 to [Y(1,3)(2,4)], and of course
the result is [Y(1,2)(3,4)] = 1. These formulas appear in Table 5.

The weak order graph and formulas for the larger example n = 3 appear in
Figure 6 and Table 6, respectively. (In that case, there are 15 orbits.)

3. K-orbit closures as universal degeneracy loci

In this section, we describe our main application of the formulas obtained in
the previous section, realizing the K-orbit closures as universal degeneracy loci of
a certain type determined by K. We describe a translation between our formulas
for equivariant fundamental classes of K-orbit closures and Chern class formulas
for the fundamental classes of such degeneracy loci.

3.1. Generalities

Before handling the specifics of the cases at hand, we first discuss the general
setup. Denote by E a contractible space with a free action of G. Then E also
has a free action of B, and of K, by restriction of the G-action. We shall use the
same space E = EG = EB = EK as the total space of a universal principal G,
B, or K-bundle, as appropriate. Denote by BG, BB, and BK the quotients of E
by the actions of G, B, and K, respectively. These are classifying spaces for the
respective groups.

The reason we have worked in S-equivariant cohomology H∗S(G/B) through-
out is to take advantage of the localization theorem. However, the equivariant
fundamental classes of K-orbit closures in fact live in K-equivariant cohomology
H∗K(G/B). (In the event that K is disconnected, this should be interpreted as
H∗K0(G/B), where K0 denotes the identity component of K.) Indeed, for a K-
orbit closure Y , the S-equivariant class [Y ]S is simply the image π∗([Y ]K) under
the pullback by the natural map

π : E ×S (G/B)→ E ×K (G/B).
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It is a basic fact about equivariant cohomology that this pullback is injective,
and embeds H∗K(G/B) in H∗S(G/B) as the WK-invariants ([B1]). Thus H∗K(G/B)
is a subring of H∗S(G/B), and the S-equivariant fundamental classes of K-orbit
closures live in this subring.

Now, H∗K(G/B) is, by definition, the cohomology of the space E ×K (G/B),
and this space is easily seen to be isomorphic to the fiber product BK ×BG BB.
(The argument is identical to that given in the proof of Proposition 1 to show that
E ×S (G/B) ∼= BS ×BG BB— simply replace S by K.)

Now, suppose that X is a smooth variety, and that V → X is a complex vector

bundle of rank n. In any event, we have a classifying map X
ρ−→ BG such that V

is the pullback ρ∗(V), where V = E ×G Cn is a universal vector bundle over BG,
with Cn carrying the natural representation of G.

For any closed subgroup H of G, BH → BG is a fiber bundle with fiber iso-
morphic to G/H. A lift of the classifying map ρ to BH corresponds to a reduction
of structure group to H of the bundle V . Such a reduction of structure group can
often be seen to amount to some additional structure on V . For instance, in type
A, reduction of the structure group of V from GL(n,C) to the Borel subgroup B
of upper-triangular matrices is well-known to be equivalent to V being equipped
with a complete flag of subbundles.

We will be concerned with certain structures on V which amount to a reduction
of structure group to K. Such a reduction gives us a lift of the classifying map ρ
to BK. Suppose that we know what this structure is, and that V possesses this
structure, along with a single flag of subbundles E•. Then we have two separate
lifts of ρ, one to BK, and one to BB. Taken together, these two lifts give us a
map

X
φ−→ BK ×BG BB.

Our general thought is to consider a subvariety D of X which is defined as a
set by linear algebraic conditions imposed on fibers over points in X. These linear
algebraic conditions describe the “relative position” of a flag of subbundles of V
and the additional structure on V amounting to the lift of the classifying map to
BK. The varieties we consider are precisely those which are set-theoretic inverse
images under φ of (isomorphic images of) K-orbit closures in BK ×BG BB ∼=
E×K (G/B). The linear algebraic descriptions of such a subvariety D come directly
from similar linear algebraic descriptions of a corresponding K-orbit closure Y . We
also realize various bundles on X as pullbacks by φ of certain tautological bundles
on the universal space, so that the Chern classes of the various bundles on X
are pullbacks of S-equivariant classes represented by the variables xi and yi, or
perhaps polynomials in these classes.

Assuming that our setup is “suitably generic”, by which we mean precisely that

[D] = [φ−1(Y )] = φ∗([Y ]), (3)

our equivariant formula for [Y ] gives us, in the end, a formula for [D] in terms
of the Chern classes of the bundles involved. See [F5, §B.3, Lemma 5] for a
sufficient condition to guarantee this for any map φ of nonsingular varieties. The
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genericity requirement should be thought of philosophically as an insistence that
the structures on the bundle V be in general position with respect to one another.

With the general picture painted, we now proceed to our specific examples.

3.2. Examples

Here we make explicit the general setup described in the previous subsection in
the examples covered in this article. We start with the case G = GL(n,C) and
K = O(n,C), with n either even or odd.

The space BK is a G/K-bundle over BG, with G/K the space of all nonde-
generate, symmetric bilinear forms on Cn. This correspondence associates to the
coset gK ∈ G/K the form g · γ, with

g · γ(v, w) = γ(g−1v, g−1w).

The form γ is the one associated to the coset 1K, and is defined by

γ(ei, ej) = δi,n+1−j

where e1, . . . , en is the standard basis for Cn. Then a point eK ∈ BK can naturally
be identified with a quadratic form on the fiber VeG in the following way: Let
v1, . . . , vn = [e, e1], . . . , [e, en] ∈ E ×G Cn be a basis for VeG, and define the form
associated to eK by

〈vi, vj〉 = δi,n+1−j .

It is a standard fact that a vector bundle V → X of rank n admits a reduction
of structure group to O(n,C) if and only if the bundle carries a nondegenerate
quadratic form. By this we mean a bundle map Sym2(V )→ X×C which restricts
to a nondegenerate quadratic form on every fiber. (We will always assume our
forms take values in the trivial line bundle.) If ρ : X → BG is a classifying map
for the bundle V , then the lift of ρ to BK sends x ∈ X to the point of BK which
represents the form γ|Vx = γ|Vρ(x) on the fiber Vρ(x). Then γ is effectively pulled
back from a corresponding “tautological” form τ on π∗V → BK (π the projection
BK → BG), whose values on the fiber of π∗V over every point of BK are identified
by the point itself.

Similarly, BB is a G/B-bundle over BG. A point eB ∈ BB can be nat-
urally identified with a complete flag on the fiber VeG: Letting v1, . . . , vn =
[e, e1], . . . , [e, en] ∈ E ×G Cn be a basis for VeG, the flag associated to eB ∈ BB
is the one whose ith subspace is the span of v1, . . . , vi. BB carries a tautological
flag of bundles T•, with (Ti)eB being equal to the ith subspace of the flag on VeG
represented by the point eB. A lift of the classifying map ρ to BB amounts to a
complete flag E• of the vector bundle V , with the flag pulled back from T•. Indeed,
over any x ∈ X, the fiber (E•)x is precisely (T•)ρ(x).

Thus we see that given a vector bundle V (with classifying map ρ) equipped with
a quadratic form γ and a complete flag of subbundles E•, we get a map φ : X →
BK ×BG BB which sends x ∈ X to the point (τ |ρ(x), (T•)ρ(x)) = (γ|Vx , (E•)x).

Now, recall that the K-orbits are parametrized by involutions in the case at
hand, and that given an involution b ∈ Sn, we have by Proposition 9 that the
closure of the corresponding K-orbit Qb is precisely

Qb = {F• | rank(γ|Fi×Fj ) ≤ rb(i, j) for all i, j}. (4)
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For the sake of brevity, given a form γ on a vector space V , together with a flag
F• on V , we say that γ “has rank at most b on the flag F•” if the flag satisfies the
conditions of (4) relative to γ.

We note that if Yb = Qb ⊆ G/B is a K-orbit closure, then the isomorphism
between E ×K (G/B) and BK ×BG BB carries E ×K Yb to the set of all (Form,
Flag) pairs where the form has rank at most b on the flag. Indeed, given gB ∈ Yb,
the point [e, gB] ∈ E×K Yb is carried to the point (eK, egB) ∈ BK×BGBB. This
point represents the antidiagonal form on VeG relative to the basis [e, e1], . . . , [e, en],
together with the flag gB on VeG relative to that same basis. Then the form
has rank at most b on the flag, by choice of gB. On the other hand, any point
(eK, egB) ∈ BK ×BGBB where the antidiagonal form on VeG has rank at most b
on the flag gB is matched up with the point [e, gB], clearly an element of E×K Yb.

Given this, together with our description of the map φ, we see that given a
vector bundle V over X with a form and a flag, and an involution b, the locus

Db = {x ∈ X | γ|Vx has rank at most b on (F•)x} (5)

is precisely φ−1(Ỹb), with Ỹb the isomorphic image of E ×K Yb in BK ×BG BB.

Thus generically, the class of such a locus is given by [Db] = φ∗(Ỹb).
Now, consider the equivariant classes xi. G/B has a tautological flag of bundles

T•. Each bundle in this flag is K-equivariant, so that we get a flag of bundles
(T•)K = E ×K T• on (G/B)K := E ×K G/B. This flag pulls back to a tautologi-
cal flag (T•)S on (G/B)S whose subquotients (Ti)S/(Ti−1)S are the line bundles
E×S (G×B CXi). Recall that the classes xi are precisely the first Chern classes of
the latter line bundles. The bundles (T•)K on (G/B)K match up with the bundles
T• on BK ×BG BB via the isomorphism between the two base spaces, and as we
have noted, the latter bundles pull back to the flag F• of bundles on X. The
upshot is that

φ∗(xi) = c1(Fi/Fi−1)

for i = 1, . . . , n.
All this discussion amounts to the following: Our formulas for the equivari-

ant classes of the K-orbit closure Yb, which we note involve only the x variables,
(generically) give formulas for [Db] in the Chern classes c1(Fi/Fi−1).

Note that the above analysis applies to the case G = GL(n,C), K = O(n,C).
The case G = SL(n,C), K = SO(n,C) is identical in the event that n is odd, but
a bit different in the case that n is even. We address this in a moment. First, we
point out that the above analysis applies equally well to the case of G = SL(2n,C),
K = Sp(2n,C), with only very minor modifications. The orbit closures in that
case are parametrized by fixed point-free involutions, and descriptions of their
closures are identical to those of (4) when γ is taken to be the skew form for which
K is the isometry group. A lift of the classifying map to BK then amounts to
a nondegenerate skew form on the bundle V , by which we mean a bundle map∧2

(V )→ X×C which restricts to a nondegenerate skew form on each fiber. Given
such a form, along with a flag of subbundles of V , one can define a degeneracy
locus Db ⊆ X associated to a fixed point-free involution b just as in (5) above. And
just as above, our formulas for the equivariant classes of K-orbit closures (which
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again involve only the x variables) pull back to a formula for [Db] in the Chern
classes of the subquotients of the flag.

We now address the case of (SL(2n,C),SO(2n,C)). In the even case, each
O(2n,C)-orbit on GL(n,C)/B associated to a fixed point-free involution splits
as a union of two SO(2n,C)-orbits, so that each O(2n,C)-orbit closure has two
irreducible components, each the closure of a distinct SO(2n,C)-orbit. Thus a
formula for the class of an SO(2n,C)-orbit closure associated to a fixed point-
free involution b should pull back to a formula for an irreducible component of
the locus Db, defined as in (5). Note (see, e.g., Table 4) that our formulas for
equivariant classes of SO(2n,C)-orbit closures associated to involutions with fixed
points involve the x-variables only, but the formulas for equivariant classes of orbit
closures associated to fixed point-free involutions typically also involve the class
y1 . . . yn. We now identify this class as pulling back to an “Euler class” e ∈ H∗(X)
associated to our bundle with quadratic form.

The Euler class of a rank 2n complex vector bundle V → X with nondegenerate
quadratic form is a class e ∈ H2n(X) which is uniquely defined up to sign by
the following property: If W → Y is any rank 2n complex vector bundle with
nondegenerate quadratic form, possessing a maximal (rank n) isotropic subbundle
E, and if ρ : Y → X is a map for which W = ρ∗V , then ρ∗(e) = ±cn(E). In
particular, the space BK carries the bundle V (omitting the pullback notation),
equipped with a “tautological” nondegenerate quadratic form, as we have already
noted, so there is an associated Euler class in H2n(BK). (For the interested reader,
we mention that this class is the Euler class — in the sense of [MS, §9] — of a rank
2n real bundle on BK whose complexification is V. The real bundle in question is
pulled back, through a homotopy equivalence BSO(2n,C) → BSO(2n,R), from
the canonical rank 2n real bundle VR on the latter classifying space.) The Euler
class of V → X is the pullback of this class in H2n(BK) through the classifying
map. Note that it exists even in cases where V does not carry a maximal isotropic
subbundle. This class is not a polynomial in the Chern classes of V . (This could
indicate that the equivariant classes of SO(2n,C)-orbit closures on G/B associated
to fixed point-free involutions are not expressible in the x-variables alone.) These
facts are explained further in [EG] where, among other results, the existence of
an algebraic Euler class of a Zariski-locally trivial bundle with quadratic form is
established.

Now, note that the class y1 . . . yn ∈ H∗S(G/B) is (the pullback to H∗S(G/B)
of) cn(

⊕n
i=1 LYi) in the notation of Subsection 1.2, Proposition 1 (again omitting

pullback notation). The bundle
⊕n

i=1 LYi is a maximal isotropic subbundle of the
pullback of V to BS through the projection BS → BK. Thus y1 . . . yn, viewed
as a class in H∗K(G/B), is an Euler class for V. Pulling all the way back to X
through the classifying map, we see that φ∗(y1 . . . yn) is an Euler class for the
bundle V → X.

Summarizing, our formulas for the equivariant classes of SO(2n,C)-orbit clo-
sures can be interpreted as formulas for the fundamental classes of irreducible com-
ponents of degeneracy loci Db (b a fixed point-free involution) defined as above,
expressed in the first Chern classes of the subquotients of the flag of subbundles,
together with an Euler class for the bundle with quadratic form.
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A. Appendix: Weak order graphs and tables of formulas in examples

Figure 1. (SL(3,C), SO(3,C))

Figure 2. (SL(5,C), SO(5,C))
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Figure 3. (GL(4,C),O(4,C))

Figure 4. (SL(4,C), SO(4,C))
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Figure 5. (SL(4,C), Sp(4,C))

Figure 6. (SL(6,C), Sp(6,C))
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Table 1. Formulas for (SL(3,C), SO(3,C))

Involution π Formula for [Yπ]
(1, 3) −2(x1 + x2)(x2 + x3)
(1, 2) −2(x2 + x3)
(2, 3) 2(x1 + x2)
id 1

Table 2. Formulas for (SL(5,C), SO(5,C))

Involution π Formula for [Yπ]
(1, 5)(2, 4) 4(x1 + x3)(x3 + x5)(x2 + x3)(x3 + x4)(x1 + x2)(x1 + x4)
(1, 5)(3, 4) −4(x1 + x2)(x1 + x3)(x1 + x4)(x2 + x3)(x2 + x3 + x4 + x5)
(1, 4)(2, 5) 4(x1 + x2)(x1 + x3)(x2 + x3)(x3 + x4)(x3 + x5)
(1, 5)(2, 3) 4(x1 + x2)(x1 + x3)(x1 + x4)(x3 + x4)(x2 + x3 + x4 + x5)
(2, 5)(3, 4) −4(x1 + x2)(x1 + x3)(x2 + x3)(x3 + x5)
(1, 4)(3, 5) −4(x1 + x2)(x1 + x3)(x2 + x3)(x2 + x3 + x4 + x5)
(1, 5) −2(x1 + x2)(x1 + x3)(x1 + x4)(x2 + x3 + x4 + x5)
(1, 3)(2, 5) 4(x1 + x2)(x3 + x4)(x23 + x24 +

∑
1≤i<j≤5 xixj)

(1, 4)(2, 3) 4(x1 + x2)(x1 + x3)(x1 + x3 + x4 + x5)(x2 + x3 + x4 + x5)
(2, 4)(3, 5) 4(x1 + x2)(x1 + x3)(x2 + x3)
(1, 3)(4, 5) −4(x1 + x2)(x1 + x2 + x3 + x4)(x2 + x3 + x4 + x5)
(2, 5) −2(x1 + x2)(x1x2 + x1x3 + x1x4 + x1x5 + x2x3 + x2x4

+x2x5 + x23 + x3x4 + x3x5 + x24 + x4x5)
(1, 4) −2(x1 + x2)(x1 + x3)(x2 + x3 + x4 + x5)

(1, 2)(3, 5) −4
(
x22x3 + x2x

2
3 − x2x24 − x2x4x5 − x3x24

−x3x4x5 − x34 − x24x5 + (x21 + x1x2)
∑5
i=2 xi + x1x3

∑5
i=3 xi

)
(1, 3)(2, 4) 4(x1 + x2)(x1 + x3 + x4 + x5)(x2 + x3 + x4 + x5)
(2, 3)(4, 5) 4(x1 + x2)(x1 + x2 + x3 + x4)
(1, 3) −2(x1 + x2)(x2 + x3 + x4 + x5)
(1, 2)(4, 5) −4(x1 + x2 + x3 + x4)(x2 + x3 + x4 + x5)
(2, 4) −2(x1 + x2)(x4 + x5)
(3, 5) −2(x4 + x5)(x1 + x2 + x3 + x4)
(1, 2)(3, 4) 4(x4 + x5)(x2 + x3 + x4 + x5)
(2, 3) 2(x1 + x2)
(4, 5) 2(x1 + x2 + x3 + x4)
(1, 2) −2(x2 + x3 + x4 + x5)
(3, 4) −2(x4 + x5)
id 1
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Table 3. Formulas for (GL(4,C),O(4,C))

Involution π Formula for [Yπ]
(1, 4)(2, 3) 4x1x2(x1 + x2)(x1 + x3)
(1, 3)(2, 4) 4x1x2(x1 + x2)
(1, 4) 2x1(x1 + x2)(x1 + x3)
(1, 2)(3, 4) 4x1(x1 + x2 + x3)
(1, 3) 2x1(x1 + x2)
(2, 4) 2(x1 + x2)(x1 + x2 + x3)
(1, 2) 2x1
(3, 4) 2(x1 + x2 + x3)
(2, 3) 2(x1 + x2)
id 1

Table 4. Formulas for (SL(4,C), SO(4,C))

Parameter
for Q Representative for Q Formula for [Y ]

+(1, 4)(2, 3) 〈e1, e2, e3, e4〉 2(x1x2+y1y2)(x1+x2)(x1+x3)
−(1, 4)(2, 3) 〈e1, e3, e2, e4〉 2(x1x2−y1y2)(x1+x2)(x1+x3)
+(1, 3)(2, 4) 〈e1, e2, e4, e3〉 2(x1x2+y1y2)(x1+x2)
−(1, 3)(2, 4) 〈e1, e3, e4, e2〉 2(x1x2−y1y2)(x1+x2)
(1, 4) 〈e1, e2+e3, e2−e3, e4〉 2x1(x1+x2)(x1+x3)
+(1, 2)(3, 4) 〈e1, e4, e2, e3〉 2(y1y2+x21+x1x2+x1x3)
−(1, 2)(3, 4) 〈e1, e4, e3, e2〉 −2(y1y2−x21−x1x2−x1x3)
(1, 3) 〈e1, e2+e3, e4, e2−e3〉 2x1(x1+x2)
(2, 4) 〈e2+e3, e1, e2−e3, e4〉 2(x1+x2)(x1+x2+x3)
(1, 2) 〈e1, e4, e2+e3, e2−e3〉 2x1
(3, 4) 〈e2+e3, e2−e3, e1, e4〉 2(x1+x2+x3)
(2, 3) 〈e2+e3, e1, e4, e2−e3〉 2(x1+x2)
id 〈e1+e4, e1−e4, e2+e3, e2−e3〉 1

Table 5. Formulas for (SL(4,C), Sp(4,C))

Involution π Formula for [Yπ]
(1, 4)(2, 3) (x1 + x2)(x1 + x3)
(1, 3)(2, 4) x1 + x2
(1, 2)(3, 4) 1
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Table 6. Formulas for (SL(6,C), Sp(6,C))

Involution π Formula for [Yπ]
(1, 6)(2, 5)(3, 4) (x1 + x2)(x1 + x5)(x1 + x3)(x1 + x4)(x2 + x3)(x2 + x4)
(1, 5)(2, 6)(3, 4) (x1 + x2)(x1 + x3)(x1 + x4)(x2 + x3)(x2 + x4)
(1, 6)(2, 4)(3, 5) (x1 + x2)(x1 + x5)(x1 + x3)(x1 + x4)(x2 + x3)
(1, 4)(2, 6)(3, 5) (x1 + x2)(x1 + x3)(x2 + x3)(x1 + x2 + x4 + x5)
(1, 5)(2, 4)(3, 6) (x1 + x2)(x1 + x3)(x1 + x4)(x2 + x3)
(1, 6)(2, 3)(4, 5) (x1 + x2)(x1 + x5)(x1 + x3)(x1 + x4)
(1, 4)(2, 5)(3, 6) (x1 + x2)(x1 + x3)(x2 + x3)
(1, 3)(2, 6)(4, 5) (x1 + x2)(x21 + x22 +

∑
1≤i<j≤5 xixj)

(1, 5)(2, 3)(4, 6) (x1 + x2)(x1 + x3)(x1 + x4)
(1, 2)(3, 6)(4, 5) (x1 + x2 + x3 + x4)(x1 + x2 + x3 + x5)
(1, 3)(2, 5)(4, 6) (x1 + x2)(x1 + x2 + x3 + x4)
(1, 4)(2, 3)(5, 6) (x1 + x2)(x1 + x3)
(1, 2)(3, 5)(4, 6) x1 + x2 + x3 + x4
(1, 3)(2, 4)(5, 6) x1 + x2
(1, 2)(3, 4)(5, 6) 1
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