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Abstract. We provide a survey of past research and a list of open problems regarding
central simple algebras and the Brauer group over a field, intended both for experts and
for beginners.

Introduction

There are many accessible introductions to the theory of central simple algebras
and the Brauer group, such as [Al61], [He], [Pi], [Dr], [Ro91, Chap. 7], [Ke], [Ja],
and [GiS] — or at a more advanced level [CT], [S99], and [Wad]. But there has not
been a survey of open problems for a while — the most prominent recent references
are the excellent surveys [Am82], [S84], [S92], and [S01]. Since the last survey,
major new threads have appeared related to geometric techniques. As examples,
we mention (in chronological order):

• Saltman’s results on division algebras over the function field of a p-adic curve,
see [S97a], [S07], [B10], [PS99], [PS10];

• De Jong’s result on the Brauer group of the function field of a complex
surface, see [dJ], [Lie], and Section 4;
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• Harbater, Hartmann, and Krashen’s patching techniques, see [HHK09] and
[HHK]; and

• Merkurjev’s bounding of the essential p-dimension of PGLn, see [M10], [Ma],
and Section 6.

Motivated by these and other developments, we now present an updated list of
open problems. Some of these problems are — or have become — special cases of
much more general problems for algebraic groups. To keep our task manageable, we
(mostly) restrict our attention to central simple algebras and PGLn. The following
is an idiosyncratic list that originated during the Brauer group conference held at
Kibbutz Ketura in January 2010.
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0. Background

Basic definitions

Let F be a field. In this paper a central simple F -algebra is a finite-dimensional
F -algebra whose center is F and whose only two-sided ideals are (0) and A. An
F -division algebra is a central simple F -algebra that is also a division ring. Every
central simple F -algebra B is isomorphic to a matrix algebra over a unique F -
division algebra A by Wedderburn’s theorem, and A is then said to be associated
with B. Two algebras are said to be Brauer-equivalent or simply equivalent if their
respective associated division algebras are F -isomorphic. Thus two algebras A and
B are equivalent if there exist numbers n and m such that Mn(A) ∼= Mm(B). The
resulting set of equivalence classes forms the (classical) Brauer group Br(F ), and
this set inherits a group structure from the F -tensor product on algebras. The
index of a central simple algebra is the degree of its associated division algebra,
and the period (or exponent) is the order of its Brauer class.

An F -algebra is étale if it is F -isomorphic to a finite product
∏n

i=1 Ki, where
each Ki is a finite separable field extension of F . Note that the fields Ki are
uniquely determined up to F -isomorphism. The algebra is Galois if it is isomor-
phic to Kn for a Galois field extension K/F . The Galois closure of an étale
F -algebra isomorphic to

∏n
i=1 Ki is the F -isomorphism class of Kn, where K is

the compositum of the Galois closures of the fields Ki.
A Galois F -algebra T has Galois group G if G is a (finite) group that acts

on T via F -automorphisms such that the induced action on HomF -alg(T, Fsep)

is simple and transitive, where Fsep is a separable closure of F . More formally,
Spec T → SpecF is a G-torsor (see also [Mi80, §I.5]). In contrast to the uniqueness
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of the Galois closure, the Galois group of a Galois F -algebra isomorphic to Kn is
in general not uniquely defined, and can be any group of order n · [K : F ] that
contains Gal(K/F ) as a subgroup. For example, Kn admits a cyclic Galois group
if and only if K/F is cyclic. To define the action of a suitable group G on Kn, as
well as for a more intrinsic definition of Galois closure, see [S99, p. 40].

Definition of a crossed product

The classical theory shows that each central simple F -algebra B of degree n con-
tains a maximal (commutative) étale subalgebra T of degree n over F . Equiva-
lently, there exists an étale extension T/F of degree n that splits B, i.e., such that
B ⊗F T ∼= Mn(T ). By definition, B is a crossed product if B contains a Galois
maximal étale subalgebra, and B is cyclic if B contains a cyclic-Galois maximal
étale subalgebra. It is easy to see that every B is Brauer-equivalent to a crossed
product. For if L/F is the Galois closure of a maximal étale subalgebra T ⊂ B
and [L : T ] = m, then L is a Galois maximal étale subalgebra of C = Mm(B).

Problems involving crossed products usually focus on the Galois splitting fields
of division algebras, and their Galois groups. For B is a G-crossed product Brauer-
equivalent to A via some G-Galois maximal étale subalgebra L/F if and only if A
is split by an H-Galois field extension K/F , where H ≤ G and K is the image of
L under an (any) F -algebra homomorphism from L to Fsep.

It follows from the above that if A is a crossed product or is cyclic, then so
is every B = Mn(A). The converse turns out to be false; there exist noncrossed
products, as we shall see below. Moreover, in case F has prime characteristic p,
Albert proved that every p-algebra (i.e., central simple algebra of period a power
of p) is Brauer-equivalent to a cyclic algebra. But [AmSa] gives an example of a
noncyclic p-algebra. One can lift this example to a complete discrete valuation ring
of characteristic 0 and so find a central simple algebraA over a field of characteristic
0 such that Mn(A) is cyclic for some n but A is not.

Cohomological interpretation

Much of the interest in crossed products stems from the fact that the Galois
structure of a crossed product allows us to describe it simply (see Section 6) and
explicitly. For if B is a crossed product via a G-Galois extension K/F , then the
algebra structure of B is encoded in a Galois 2-cocycle f ∈ Z2(G,K×), which is
easily extracted from B in principle. Conversely, each f ∈ Z2(G,K×) defines a
G-crossed product Bf with maximal subfield K/F , by letting

Bf =
⊕

s∈G

Kus

be a K-vector space on formal basis elements us, and defining multiplication by
usut = f(s, t)ust and usx = s(x)us for all s, t ∈ G and x ∈ K. The equivalence
relation on central simple algebras induces an equivalence on cocycles, and the
resulting group of equivalence classes is the Galois cohomology group H2(G,K×).
Note that every central simple algebra is a crossed product if and only if the
correspondence between classes extends to the level of cocycles and algebras.
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The crossed product problem for division algebras

The central organizing problem in the theory of central simple algebras and the
Brauer group is to determine, possibly for a given field F , the extent to which
F -central simple algebras are crossed products and, in particular, cyclic crossed
products. Since every central simple algebra representing a given Brauer class is a
crossed product if and only if its associated division algebra is a crossed product,
the interesting question is whether every division algebra is a crossed product,
possibly over a given field F .

Fields over which all division algebras are known to be crossed products include:
fields of cohomological dimension at most 1, e.g. algebraically closed fields and
quasi-finite fields (over which all division algebras are split); global fields and local
fields (over which all division algebras are cyclic); and, at least for algebras of
period prime to the residue characteristic, strictly Henselian fields (over which all
division algebras are abelian crossed products, see [B01, Theorem 1]).

For much of the twentieth century it was reasonable to conjecture that all di-
vision algebras over all fields were crossed products. Then, in an astonishing de-
velopment in 1972, S. A. Amitsur produced noncrossed product division algebras
of any degree n divisible by 23 or p2 for an odd prime p, in characteristic 0. The
centers of these (universal) division algebras are given as invariant fields whose
precise nature is itself a topic of considerable interest (see Section 5). Soon after
Amitsur’s discovery, in [ScSm], Schacher and Small extended Amitsur’s result to
include the case where the characteristic is positive and does not divide the de-
gree. In [S78a], Saltman included the p-algebra case, when n is divisible by p3.
Subsequent constructions of noncrossed products — none improving on the indexes
found by Amitsur — have since appeared in [Ri77], [S78b], [Ro81], [T86], [JW86],
[B95], [ReY01, Theorem 1.3], [BMT], and others. The most explicit construction
to date is in [Han].

Responding to the sensitivity of Amitsur’s degree p2 examples to the ground
field’s characteristic and roots of unity, Saltman and Rowen observed that every
division algebra of degree p2 becomes a crossed product on some prime-to-p exten-
sion (the degree p case being trivial), whereas for degree p3 and above, examples
exist that are stable under such extensions ([RoS92]); see [McK07, Cor. 2.2.2] for
the p-algebra case.

1. Noncyclic algebras in prime degree

Perhaps the most important open problem in the theory of central simple alge-
bras is:

Problem 1.1. Given a prime p, construct a noncyclic division algebra of degree
p over some field F .

This was listed as Problem 7 in Amitsur’s survey [Am82], and as Problem 1 in
[S92]. Of course, division algebras of nonprime degree need not be cyclic. This is
true already in the smallest possible case of degree 4 ([Al33]).
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What is known

Prime-degree division algebras for the two smallest primes are always cyclic. The
p = 2 case is elementary, and the p = 3 case was solved by Wedderburn in 1921
([Wed]). A result that should be included with these two is that any division
algebra of degree n = 4 is a crossed product ([Al61]). In 1938 Brauer proved that
any division algebra of degree p = 5 has a (solvable) Galois splitting field of degree
dividing 60 ([Br38]); this result was improved somewhat in [RoS96]. Despite the
promising start, this vexing problem remains completely open for p > 3. Specific
candidates for prime degree noncrossed products have been proposed in [Ro99, §4]
and [V04, p. 487].

It is natural to specialize the problem to fields with known properties. For some
fields F , one knows that every division algebra of degree p is cyclic: when F has
no separable extensions of degree p (trivial case), when F is a local field or a global
field (by Albert, Brauer, Hasse, and Noether), and when F is the function field of
a `-adic curve for ` prime and different from p [S07].

Generalization

In 1934 Albert proved that an F -division algebra A of prime degree p is a crossed
product if and only if A contains a noncentral element x such that xp is in F ,
called a p-central element (“Albert’s cyclicity criterion”, [Al61, XI, Theorem 4.4]).
It is natural to ask whether such elements exist in algebras of degree greater than
p. When p = 2 and the degree is 4, and the characteristic is not 2, Albert’s crossed
product result shows that 2-central elements do exist. On the other hand, it is
shown in [AmSa] that there exist algebras of degree p2 and characteristic p with
no p-central elements. Using this, it is shown in [S80] that for n a multiple of p2,
the universal division algebra of degree n over the rational field Q has no p-central
elements. When F has a primitive pth root of unity, there are no known examples
of division F -algebras of degree a multiple of p that do not have p-central elements.

2. Other problems regarding crossed products

There are still some important unresolved problems concerning crossed prod-
ucts. The first is a slight generalization of Problem 1.1.

Problem 2.1. Determine whether F -division algebras of prime period are crossed
products.

Both Problems 1.1 and 2.1 are related to the problem of computing the essential
dimension of algebraic groups described in Section 6.

What is known

This problem is even less resolved than Problem 1.1, in the sense that no noncrossed
products of prime period have ever been discovered, and no one has shown that all
division algebras of a fixed prime period must be crossed products. For odd primes
p the problem is completely open. (Note that the proof of Theorem 6 in [Ro82]
concerning the existence of noncrossed products of prime period is incorrect. In the
modified version that appeared later as [Ro88, Theorem 7.3.31], the flaw appears
in the last paragraphs of page 255.)
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Division algebras of (period, index) = (2, 2n) are known to be crossed products
for n ≤ 3, and the problem for n > 3 is open. Albert proved the (2, 4) case
(“Albert’s theorem”) in [Al32, Theorem 6], see also [Ja, §5.6.9]. Rowen proved the
(2, 8) case for any field in [Ro78] and [Ro84], see also [Ja, §5.6.10].

We present two other open problems concerning the existence of noncrossed
products. As mentioned above, the smallest noncrossed product p-algebras known
have degree p3. Therefore we have:

Problem 2.2. Determine whether p-algebras of degree p2 are crossed products.

In view of the fact that all known examples of noncrossed product algebras
occur over fields of cohomological dimension at least 3, it is natural to ask:

Problem 2.3. If F has cohomological dimension at most 2, is every central simple
F -algebra a crossed product?

For algebras of period 2, the answer is “yes”, by Merkurjev [K90]. The answer
to this question for other periods is unknown, even when F is the function field of
a complex surface.

Smallest Galois splitting fields

One way to study the failure of a division algebra to be a crossed product is to
determine, for a given division algebra A, the smallest Brauer-equivalent crossed
product B = Mr(A). It is equivalent to determining the smallest degree finite
Galois splitting fields for A. As Brauer, Hasse, and Noether knew in the 1920s,
“minimal” Galois splitting fields can have arbitrarily large degree (Roquette cites
[BrN] and [Has] in [Roq04, Chap. 7.1]), so it is important to specify that the degree
(rather than the splitting field) be minimal.

To simplify the exposition, we say a finite group G splits a central simple F -
algebra A if there exists a G-Galois field extension of F that splits A (equivalently,
if some Mm(A) is a G-crossed product). Since a splitting field of A may or may
not contain a maximal subfield of A, the problem with respect to division algebras
divides into parts.

Problem 2.4. Determine the smallest splitting group(s) of an F -division algebra
A arising from the Galois closure of a maximal subfield of A. Determine in partic-
ular whether every A of degree n has a separable maximal subfield whose Galois
closure has group An (the alternating group).

Problem 2.5. Determine whether every division algebra is split by an abelian
group, and find degree bounds over specific fields.

What is known

Both problems are related to Problem 5 in [Am82] and to Problem 2.5 is Question
1 in [Am82]. In the situation where A is a crossed product, Problem 2.4 becomes
a problem of group admissibility. It then has a strong number and group-theoretic
character, and we put it in Problem 11.1 below.

If A has degree n, then A contains a maximal separable subfield (of degree n)
that is contained in an Sn-Galois maximal étale subalgebra, which bounds the
answer to the first part of Problem 2.4 from above. It is clear that these are in
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general not hard bounds, since if n = 3 then C3 splits A by Wedderburn’s results.
It is unknown whether there exists a (noncrossed product) division algebra of
degree n > 4 that is split by no proper subgroup of Sn, prompting Amitsur to ask
Problem 2.4.

With the additional structure provided by an involution of the first kind in the
period 2 case, some positive results for Problem 2.4 can be proved for charF 6= 2.
In particular, if A has period 2 and 2-power degree 2m, one can prove the existence
of a subfield of degree m in a maximal separable subfield of A, and it follows that
the Galois closure has group H = Cm

2 o Sm. Using the main result of Parimala,
Sridharan, and Suresh in [PSS93], one can improve this to H̄ = Cm−1

2 o Sm; we
leave the details to the interested reader. Note that H is not contained in A2m,
but H̄ is.

Amitsur proved that if the universal division algebra (defined in Section 5 below)
UD(k, n) over an infinite field k is split by a group G, then every division algebra
over a field F containing k is split by (a subgroup of) G ([Am91, Theorem 2];
also see [Am82, p. 15] and [TA85, §7.1]). Thus Problem 2.5 is intimately con-
nected to the problem of splitting the universal division algebra, which is Problem
8 in [Am82]. In [Am82] Amitsur remarked that if n is the composite of r rela-
tively prime numbers ni, then Sn1

× · · · × Snr
splits UD(k, n). Then in [TA85,

Theorem 7.3] Tignol and Amitsur established a remarkable lower bound on the
order of a splitting group of UD(k, n), for infinite k, and n not divisible by chark.
See [TA86, Cor. 9.4] and [ReY01, Theorem 1.3] for improvements and alternative
proofs of this bound in the case where n is a prime power.

If charF does not divide the period n of an F -division algebraA, the Merkurjev–
Suslin theorem shows that A has a meta-abelian splitting field, obtained by adjoin-
ing nth roots of unity, if necessary, and then a Kummer extension. This theorem
solved Amitsur’s Question 3 in [Am82], and it solves the first part of Problem 2.5
if F contains the nth roots of unity. Results bounding the “symbol length” over a
particular field provide upper bounds for the degree of abelian (or meta-abelian)
Galois splitting fields, and for this we refer to Problem 3.5. Tignol and Amitsur
submitted a lower bound for the order of an abelian splitting group in [TA85, §7.5].

When F does not contain nth roots of unity, Problem 2.5 has a similar relation-
ship to the more general open problem of determining whether the Brauer group is
generated by cyclic classes, and for this we refer to Section 3. This latter problem
was Question 2 in [Am82]. The problem is settled for the 2-, 3-, and 5-torsion
subgroups of Br(F ).

Smallest Galois splitting fields for p-algebras

Somewhat more is known about Problem 2.5 for p-algebras. If charF = p and
A is an F -division algebra of p-power degree, then Albert showed that A has a
cyclic splitting field in [Al36], see also [Al61, Chap. VII, Theorem 9.31]. Louis
Isaac Gordon proved the existence of noncyclic 2-algebras (of period and index
4) in [Go] and Amitsur and Saltman proved the existence of noncyclic division
p-algebras (which are generic abelian crossed products) of every degree pn (n ≥ 2)
in [AmSa]. These results raised questions about bounds of cyclic splitting fields.
The following result follows from Albert’s methods.
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Proposition 2.6. Suppose F is a field that is finitely generated of transcendence
degree r over a perfect field k of characteristic p > 0. Then a p-algebra of (p-power)
period q is split by a cyclic field extension of degree qr over F .

Proof. A p-algebra A of period q is split by F 1/q , by [Al61, Chap. VII.7, Theo-
rem 2], and since [F 1/q : F ] = qr ([BourA, A.V.100, Prop. 4] and [BourA, A.V.135,
Cor. 3]), A is similar to a tensor product of r cyclic p-algebras of degree q by [Al61,
Chap. VII.9, Theorem 28], hence A is split by a cyclic extension of degree qr, by
[Al61, Chap. VII.9, Lemma 13]. �

In particular, the center Z(k, n) of generic degree n matrices over a field k
is known to be finitely generated ([S99, Cor. 14.9]), so if k is a finite field of
characteristic p, and Z(k, n) has transcendence degree m over k, then it follows
that the universal division algebra UD(k, pn) is split by a cyclic field extension of
degree pmn, and hence for any field F containing k, any F -division algebra A of
degree pn is split by a cyclic extension of degree pmn over F , by [Am82, p. 15].

Because of this connection between the degree of a cyclic splitting field of a
p-algebra and the transcendence degree of the center of generic matrices over the
prime field, Problem 2.5 for p-algebras is closely tied to Section 6 on essential
dimension. As for known bounds on the transcendence degree m of Z(k, n), we
have m ≤ p2n + 1 from general principles, and if p is odd and pn ≥ 5, then
m ≤ (pn − 1)(pn − 2)/2 by [LRRS]. (Note the pn = 2, 3 cases are settled by
Wedderburn’s cyclicity results.)

Crossed products and descent from prime-to-p extensions

Since every division algebra has a maximal separable subfield, every division alge-
bra of prime degree p is a crossed product after scalar extension to a prime-to-p
field extension. This has led to some attempts at “descent”: If A is an F -division
algebra of prime degree p, and K/F is a Galois splitting field for A whose group
G is a semidirect product G = Cp o H with Cp normal in G and H of order m
prime-to-p, then A ⊗F KCp is a Cp-crossed product division algebra, and we can
ask whether the Galois structure descends to A. This idea goes back to Albert
([Al38]). In the particularly interesting case where H = Cm and KCp = F (ζp) for
a primitive pth root of unity ζp, we call A a quasi-symbol, after [V04]. Note in this
case charF 6= p.

The problem below is strongly related to Problems 3, 4, and 5 in [S92]. As
Saltman noted in [S92], showing the division algebra A above is cyclic is equivalent
to showing that the G-crossed product Mm(A) is also a G′-crossed product, where
G′ is a group that has Cp as an image. As in [TA85], write G ⇒ G′ if every
G-crossed product is necessarily a G′-crossed product, and G ⇒F G′ if G ⇒ G′

for G-crossed products whose centers contain F .

Problem 2.7. Determine groups G and G′ and conditions on F under which
G ⇒F G′. In particular:

(1) Determine, for m prime-to-p, whether Cp o Cm ⇒F Cp × Cm.

(2) Determine whether all quasi-symbols are cyclic.
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What is known

Background on the first part of Problem 2.7, as well as a basic symmetry result for
abelian groups, may be found in [TA85]. We will say that a finite group G splits
an F -algebra A if A is split by a G-Galois extension of F . Note that in Problem
2.7(1), Cp o Cm ⇒F Cp × Cm if and only if all F -algebras A of prime degree p
that are split by Cp o Cm are cyclic.

In 1938 Albert showed that if charF = p, and A is a p-algebra of degree p split
by a Galois extension whose group is of the form Cp oCm for m prime-to-p, then
A is cyclic ([Al38]), hence Cp oCm ⇒F Cp ×Cm in this case. He actually proved
more generally that for p dividing n and arbitrary m, any (Cn o Cm)-crossed
product is abelian, again for charF = p (see [ArJa] for a different proof). In 1999
Rowen proved that if A is a p-algebra of odd degree p that becomes equivalent
to a certain type (“Type A”) of p-symbol over a quadratic extension E/F , then
A is already cyclic over F ([Ro99, Theorem 3.4]). This generalized Wedderburn’s
degree 3 theorem (in characteristic 3) and proved the cyclicity of a certain p-
algebra of degree p studied by Albert. Rowen constructed a generic p-algebra of
degree p that becomes a symbol over a quadratic extension, and conjectured it to
be noncyclic for p > 3 ([Ro99, §4]).

In 1982, Rowen and Saltman showed that if n is odd, F contains a primitive
nth root of unity (so charF does not divide n), and A is a division algebra of
degree n that is split by the dihedral group Dn = Cn o C2 of order 2n, then A is
cyclic ([RoS82]). Thus Dn ⇒F Cn ×C2 in this case. Their techniques generalized
those used by Albert to prove cyclicity in degree 3 in [Al61]. Mammone and Tignol
proved the same result using different methods in [MamT], and Haile gave another
proof in [Hai]. Both [HKRT, Cor. 30] and [V04, Theorem 13.6] state that under
certain hypotheses, including n odd and [F (µn) : F ] ≤ 2, Dn ⇒F Cn ×C2. In the
n = 5 case, Matzri showed how to adapt Rowen and Saltman’s proof to remove the
roots of unity and characteristic hypotheses ([Mat]), before using results of [V04]
to prove that 5Br(F ) is generated by cyclic classes when charF 6= 5.

In 1983 Merkurjev, in a paper that heavily influenced [V04] and [Mat], proved
a criterion for quasi-symbols of prime degree to be cyclic. To state this result,
we fix some notation and hypotheses. Let p be a prime, n = pr, ζn a primitive
nth root of unity, E = F (ζp), ν : Gal(E/F ) → (Z/p)× the canonical map, and
ϕ : Gal(E/F ) → (Z/p)× a character. Then consider the hypothesis

ζn ∈ E and K/F is a (Cn oϕ Cm)-Galois extension, with E = KCn . (2.8)

In this notation, a quasi-symbol of degree p split by K is said to be of type (ϕ, ϕ′),
where ϕ′ = νϕ−1. Merkurjev’s criterion is that a quasi-symbol of degree n = p
is cyclic if and only if it is of type (ν, 1) or (1, ν) ([M83]). Vishne, expanding on
Merkurjev’s framework, proved that Merkurjev’s cyclicity criterion holds for quasi-
symbols of degrees n = pr under (2.8), and constructed a generic quasi-symbol,
which he conjectured to be noncyclic. He also proved that the type of a quasi-
symbol (of degree n = pr) is symmetric in ϕ and ϕ′, so that a quasi-symbol split
by Cn oϕ Cm is also split by Cn oϕ′ Cm.

In 1996 Rowen and Saltman proved that if F contains a pth root of unity, and A
is a division algebra of degree p that is split by the semidirect product CpoCm for
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m = 2, 3, 4, or 6 and dividing p− 1, then A is cyclic. Thus Cp oCm ⇒F Cp ×Cm

in this case. Vishne extended this result for quasi-symbols of degree n = pr under
(2.8), for any m dividing p− 1 ([V04]).

If m divides n and F contains the mth roots of unity, then it is elementary to
show Cn ⇒F Cn/m ×Cm (see [V03] for a proof). This is best possible, since there
are division algebras D/F where the absolute Galois group of F is rank 2 abelian.
As for p-algebras, Saltman proved in [S77] that if charF = p and n is a power of
p, then Cn ⇒F G for any group G of order n. Finally, Vishne proved in [V03]
that if charF does not divide n and F contains the n/mth roots of unity, then
Dn ⇒F Dm × Cn/m holds for classes of period 2 ([V03]).

Part of the goal of Problem 2.7 is to construct division algebras that are split by
a restricted class of groups, and then to say something about these groups. At the
extreme, we call a group G rigid (resp. rigid over F ) if G ⇒ G′ (resp. G ⇒F G′)
implies G ∼= G′. Thus G is rigid (over F ) if there exists a central simple algebra
(over F ) that is a crossed product with respect to G and G only. In general, a
central simple algebra can be a crossed product with respect to many different
groups; Schacher showed in [Sc] that for any number n there exists a number field
F and a central simple F -algebra A that is a crossed product with respect to every
group of order n (see Problem 11.1). This result notwithstanding, Amitsur [Am72]
proved that elementary abelian groups are rigid, and used this fact in his proof that
the generic division algebra is not a crossed product. Saltman, and then Amitsur
and Tignol, proved every noncyclic abelian group is rigid in [S78a] and [TA85]. A
rigid group (nonabelian) of type Cp oCm with m prime-to-p, as mentioned in the
beginning of this section, would settle Problem 1.1, and perhaps for this reason
the existence of nonabelian rigid groups appeared as Problem 4 in [S92]. Brussel
solved this problem for groups of p-power order in 1995, giving examples of rigid
nonabelian groups over the fields Q(t), of the type

G = Cp2 o Cp = {x, y | |x| = p2, |y| = p, yxy−1 = xp+1}

for any prime p ([B95]), and then when p is odd, of the type G = Cp3 oCp ([B96]).
All of Brussel’s examples depend on the absence of roots of unity in the ground
field, and it is unknown whether the same results hold without this assumption.

Note

In the end, the goal of the problems described in this section is to determine the
nature of Galois splitting fields of smallest degree for cohomology classes of various
kinds. But from an algebra-theoretic point of view, the importance of the crossed
product problem is due at least partly to a long history of attempted solutions,
together with a sentiment expressed by A. A. Albert, who spent much of his career
studying it.

The importance of crossed products is due not merely to the fact
that up to the present they are the only [central] simple algebras
which have actually been constructed but also to Theorem 1: Every
[central] simple algebra is similar to a crossed product. — Albert,
1939 [Al61, §V.3]
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3. Generation by cyclic algebras

By far the most elementary central simple algebras known are the cyclic alge-
bras, which were the first to be studied, and which to this day have provided an
indispensable tool for investigating central simple algebras and the Brauer group.
For these reasons, one of the most important practical problems in the study of
the Brauer group is to determine whether or not the Brauer group is generated
by the classes of cyclic algebras. This appears as Question 2 in [Am82]. Au-
thors who studied this problem in the 1930s in one form or another include Albert
([Al36]), Teichmüller ([Te36]), Nakayama ([N]), and Witt ([Wi37]). For local and
global fields, the question has an affirmative answer by the well-known theorems of
Hasse and Albert, Brauer, Hasse, and Noether, respectively. There are no known
counterexamples.

After Amitsur’s work on noncrossed products, an affirmative answer for general
F might well have seemed unlikely. But in a seminal breakthrough, Merkurjev
and Suslin proved in 1983 that if F contains the nth roots of unity, then nBr(F )
is generated by the classes of (cyclic) symbol algebras of degree n, via the norm
residue homomorphism in K-theory ([MS83]). The essence of their result was that
when F contains the nth roots of unity, the composition

H1(F, µn)⊗H1(F, µn) → H2(F, µ⊗2
n ) → H2(F, µn) = nBr(F )

is surjective, where the first map is the cup product, and the second map is the

cup product with a chosen generator of H0(F, µ
⊗(−1)
n ) = Hom(µn,Z/n). Thus

nBr(F ) is “generated in degree 1”. This work strongly suggests the following natural
question, which was posed in the 1930s by Albert:

Problem 3.1 ([Al36, p. 126]). Is the n-torsion subgroup nBr(F ) generated by the
classes of cyclic algebras of degree (dividing) n?

Problem 3.1 has an affirmative answer in the following important cases:

(1) n is a power of the characteristic of F . This follows from [Al61, Chap.
VII.7, Theorem 2] and [Al61, Chap. VII.9, Theorem 28].

(2) n divides 30. It suffices to note that the answer is “yes” for n = 2 by [M81],
n = 3 by [M83], and n = 5 by [Mat].

(3) n is prime and adjoining a primitive nth root unity yields an extension of
degree ≤ 3 by [M83]. This leads to the results summarized in the previous
item.

(4) F contains a primitive nth root of unity. By the Merkurjev–Suslin theorem,
as discussed above.

The smallest open case for n prime is therefore:

Problem 3.2. Is 7Br(F ) generated by cyclic algebras of degree 7 when charF 6= 7
and F does not contain a primitive seventh root of unity?

(These problems are related to the following very special question stated by
M. Mahdavi-Hezavehi: If the multiplicative group F× is divisible, does it follow
that Br(F ) is zero? The answer is “yes” if Br(F ) is generated by cyclic algebras,
because cyclic algebras are split over such a field. Therefore the answer is also
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“yes” if F has characteristic 0, because in that case F has all the roots of unity so
the Merkurjev–Suslin theorem applies.)

For composite n, even the following is unclear:

Problem 3.3. Is 4Br(F ) generated by cyclic algebras of degree 4 when charF 6= 2
and

√
−1 6∈ F ?

And one can ask the weaker question:

Problem 3.4. Is nBr(F ) generated by algebras of degree n?

When n is prime, the answer to Problem 3.4 is “yes” by [M83]. More generally,
Merkurjev proved in [M86] that if n is a power of an odd prime p not equal to
charF , or if n is a power of 2 =: p and

√
−1 ∈ F , then nBr(F ) is generated by

quasi-symbols (for the definition of quasi-symbols, see the discussion preceding
Problem 2.7) whose index is bounded by nn/p. This result reduces Problem 3.1
to the determination of whether classes of quasi-symbols are generated by cyclic
classes. Problem 3.4 is already open in the case n = 4.

Symbol length

Once it is known that nBr(F ) is generated by classes of cyclic algebras, the focus
turns to the minimal number of cyclic algebras (of fixed degree) needed to represent
it in the Brauer group.

Suppose m and n have the same prime factors, m |n, and mBr(F ) is generated
by cyclic algebras. Let `F (m,n) denote the minimal number such that every
central simple F -algebra of degree n and period (dividing) m is similar to a tensor
product of `F (m,n) cyclic algebras of degree m, unless no such bound exists, in
which case set `F (m,n) = ∞. If F contains the mth roots of unity, the generic
division algebra can be used to show that `F (m,n) is finite, by the Merkurjev–
Suslin theorem. In this case, we may assume m is a power of a prime p by [T84,
Theorem 2.2], and `F (m,n) is known as the symbol length.

Problem 3.5. Suppose p is a prime, r ≤ s, and prBr(F ) is generated by cyclic
algebras. Compute `F (p

r, ps).

The basic background on this problem can be found in [T84]. Almost all of
the known results for `F (m,n) are either for p-algebras, or fields F containing the
mth roots of unity. Of course, `F (p, p) = 1 for p = 2, 3 by the classical theory,
for any field F . Albert’s theorem shows that `F (2, 4) = 2, and `F (2, 8) = 4 when
charF 6= 2 by [T84, Theorem 2.6]. For proofs of these and other results that follow
more or less immediately from earlier work, see [T84]. In 1937 Teichmüller proved
that for p-algebras, `F (p

r, ps) ≤ ps! (ps!− 1) ([Te37]).
Lower bounds can be obtained via results on indecomposable algebras, which

we treat in Section 9. In [T84, Theorem 2.3], Tignol proved that if p is a prime
and F is a field containing the prth roots of unity, then `F (p

r, ps) ≥ s, by showing
that the generic division algebra itself cannot be represented as a sum of fewer
than s classes of cyclic algebras of degree pr. Tignol’s lower bounds were improved
by Jacob in [J] in the prime period case, via the construction of indecomposable
algebras of period p and index pn for all n ≥ 1 except, of course, for p = 2 and
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n = 2. His bounds, valid for F containing a primitive pth root of unity, are
`F (p, p

s) ≥ 2s− 1 for p odd, and `F (2, 2
s) ≥ 2s− 2 ([J, Remark 3.7]).

For upper bounds, we then have `F (p, p) ≤ 1
2 (p − 1)! for any odd prime p,

provided F contains the pth roots of unity, by [Ro88, Theorem 7.2.43]. Kahn
established some upper bounds for `F (2, 2

s) in [K00, Theorem 1] for fields of char-
acteristic not 2, and conjectured the bound `F (2, 2

s) ≤ 2s−1, which holds in the
known cases listed above. Finally, Becher and Hoffmann proved that if F contains a
pth root of unity and satisfies the (admittedly strong) hypothesis [F× : F×p] = pm,
then `F (p, p

s) = m/2 for p odd or p = 2 and F nonreal. If p = 2 and F is real,
the result is (m+ 1)/2 ([BecH]).

In a related result, Mammone and Merkurjev showed that if A is a p-algebra
of period pr and degree ps, and A becomes cyclic over a finite separable field
extension, then A can be represented by at most ps−r classes of cyclic algebras
([MamM, Prop. 5]).

In [S97a] Saltman proved that if F is the function field of an l-adic curve, then
the degree of any F -division algebra divides the square of its period, and it follows
by Albert’s theorem that if l 6= 2, then `F (2, 4) = 2. If l 6= p and F contains the pth
roots of unity, then Suresh proved that `F (p, p

2) = 2 for odd p in [Sur]. Brussel and
Tengan removed the roots of unity requirement in [BT], using a different method.
The bounds in the p = 2 case were crucial to the determination of the u-invariant
of function fields of l-adic curves by Parimala and Suresh [PS10], see also [PS99]
and [PS05].

The first open case of Problem 3.5 (with or without roots of unity) is:

Problem 3.6. Find an upper bound on `F (p, p
2) and `F (p

2, p2) for p ≥ 3.

4. Period-index problem

By the basic theory, the period of a central simple algebra divides its index (i.e.,
per(A) | ind(A) for all A), and the two numbers have the same prime factors. For
a field F , define the Brauer dimension Br.dim(F ) to be the smallest number n
such that ind(A) divides per(A)n for every central simple F -algebra A; if no such
n exists, set Br.dim(F ) = ∞.

Example 4.1. If Br(F ) = 0, then trivially Br.dim(F ) = 0. For F a local field or
a global field Br.dim(F ) = 1 by Albert, Brauer, Hasse, and Noether. For F a field
finitely generated and of transcendence degree 2 over an algebraically closed field,
Br.dim(F ) = 1 by de Jong [dJ] and [Lie, Theorem 4.2.2.3]. In case Br.dim(F ) = 1,
one says that “F has period = index”.

One can focus this notion on a particular prime p. Define Br.dimp(F ) to be the
smallest number n such that ind(A) divides per(A)n for every central simple F -
algebra A whose index is a power of p. If no such n exists, we put Br.dimp(F ) = ∞.

Examples 4.2.

(1) M. Artin conjectured in [Ar82] that Br.dim(F ) = 1 for every C2 field F .
He proved that Br.dim2(F ) = Br.dim3(F ) = 1 for such fields, but no more
is known.
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(2) For F finitely generated and of transcendence degree 1 over an `-adic field
Br.dimp(F ) = 2 for every prime p 6= ` by [S97a]. Is Br.dim`(F ) finite?

(3) If F is a complete discretely valued field with residue field k such that
Br.dimp(k) ≤ d for all primes p 6= char(k), then Br.dimp(F ) ≤ d+1 for all
p 6= char k by [HHK09, Theorem 5.5].

Example 4.3. If F has characteristic p and transcendence degree r over a perfect
field k, then Br.dimp(F ) ≤ r by Proposition 2.6.

Problem 4.4. If F is finitely generated over a field F0 with Br.dim(F0) finite, is
Br.dim(F ) necessarily finite?

It is natural to start by considering only certain fields F0. For example, sup-
pose that F has prime characteristic p and we take F0 to be its prime field, so
Br.dim(F0) = 0. If F has transcendence degree 1 over F0, then F is global and
Br.dim(F ) = 1. If F has transcendence degree 2 over F0, then Br.dim(F ) ≤ 3 by
Lieblich [Lie].

Problem 4.5. Define a notion of “dimension” for some class of fields F such that

Br.dim(F ) ≤ dimF − 1 and dim(F (t)) = dimF + 1.

One possibility would be to set a Ci field to have dimension i. The notion of
cohomological dimension is obviously not the right one in view of Merkurjev’s
example of a field F with cohomological dimension 2 and Br.dim(F ) = ∞ from
[M92].

5. Center of generic matrices

Amitsur’s universal division algebra has already appeared several times in this
paper. In this section we discuss some interesting questions regarding its center.

We begin with the definition. Let F be a field, let V = Mn(F ) ⊕Mn(F ), and
let F (V ) be the field of rational functions on V . For k = 1, 2, let xijk be the
coordinate function defined by the standard elementary matrix Eij ⊕ 0 or 0⊕Eij ,
depending on k, and set Xk = (xijk) ∈ Mn(F (V )). We call the F -algebra R(F, n)
generated by X1 and X2 the ring of (two) generic n-by-n matrices over F ([S99,
Chap. 14]). It is a noncommutative domain that can be specialized to give any
central simple L-algebra of degree n, for every extension L of F [S99, §14.1]. The
field of fractions of its center C(F, n) ⊂ R(F, n) is denoted by Z(F, n), and called
the center of generic n-by-n matrices over F . The (central) localization of R(F, n)
by the nonzero elements of C(F, n) is denoted by UD(F, n), and is called the
generic division algebra of degree n over F . In the language of [GMS, p. 11], the
class of UD(F, n) in H1(Z(F, n),PGLn) is a versal torsor.

There is another way to view the above construction, due to Procesi. Let
PGLn(F ) = GLn(F )/F× be the projective linear group. This group has a rep-
resentation on V via the action A · (B1, B2) = (AB1A

−1, AB2A
−1). It follows

that PGLn(F ) acts on F (V ), and one can show the invariant field F (V )PGLn(F )

is Z(F, n). Furthermore, PGLn(F ) acts naturally on Mn(F (V )) = Mn(F ) ⊗F

F (V ) via the action on each tensor factor, and one can show the invariant ring
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Mn(F (V ))PGLn(F ) is UD(F, n) (see [S99, Theorem 14.16] for proofs of both re-
sults). This invariant field point of view puts the problems of this section in the
bigger context of birational invariant fields of reductive groups and particularly
the birational invariant fields of almost free representations of reductive groups.

One can begin with the above construction and modify it to make other generic
constructions. For example, put D := UD(F, n) and Z := Z(F, n) and assume
m divides n. Let Zm(F, n) be the generic splitting field of the division algebra
equivalent to D⊗m over Z, and set UDm(F, n) = D⊗ZZm(F, n). Then UDm(F, n)
is a generic division algebra of degree n and period m with center Zm(F, n). In the
language of [GMS], the class of UDm(F, n) in H1(Zm(F, n),GLn/µm) is a versal
torsor. Another example uses Procesi’s result that Z(F, n) = F (M)Sn where Sn is
the symmetric group and M is a specific Sn lattice (see [S99, Theorem 14.17]). The
group Sn appears because it is the Galois group of the Galois closure of a “generic”
maximal subfield of UD(F, n). It follows that if H ⊂ Sn is a subgroup and we set
ZH(F, n) = F (M)H , then UDH(F, n) = D⊗Z ZH(F, n) is a generic central simple
algebra having H as the Galois group of the Galois closure of a maximal subfield.
In particular, if H has order n and acts transitively on {1, . . . , n} (we say H is a
transitive subgroup of Sn) we have formed the generic H-crossed product algebra
and its center. In this context, see also [Ros]. One can combine these constructions
and form generic crossed products of period m, but we will have nothing to say
about these.

The general problem addressed here concerns the properties of the fields Z(F, n)
and their subsidiary fields Zm(F, n) and ZH(F, n). To state the questions, define
L/F to be rational if L is purely transcendental over F . Define L/F to be stably
rational if there is a rational L′/L such that L′/F is rational. More generally,
say that L1/F and L2/F are stably isomorphic if there are rational L′

i/Li such
that L′

1
∼= L′

2 over F . Finally, define L/F to be retract rational if the following
holds. There is a localized polynomial ring R = F [x1, . . . , xr](1/s) and an F
subalgebra S ⊂ R with an F algebra retraction R → S (meaning S → R → S
is the identity) such that L is the field of fractions of S. It is pretty clear that
rational implies stably rational implies retract rational, and in fact (much harder)
these implications cannot be reversed.

To simplify the discussion note the result of Katsylo [Kat] and Schofield [Sch]
that if n = ab for a and b relatively prime, then Z(F, n) is stably isomorphic to the
field compositum Z(F, a)Z(F, b). Similar statements are possible for the Zm(F, n)
and ZH(F, n). This often (but not always) allows reduction to the case where n is
a prime power.

Problem 5.1 ([Pro, p. 240]). Is Z(F, n)/F rational, stably rational, or retract
rational? The same question for Zm(F, n) and ZH(F, n).

This appears as Problem 8 in [S92] (see also Saltman’s Problems 9, 10, and
11), and is a major topic of the surveys [Le] and [Form]. We note that Z(F, n)/F
is retract rational if and only if division algebras of degree n have the so-called
lifting property, see [S99, p. 77]. Similar statements can be made for Zm(F, n) and
ZH(F, n).

When n is 2, 3, or 4 then Z(F, n) is rational, as proved (respectively) by
Sylvester, Procesi, and Formanek. When n is 5 or 7, Bessenrodt and Le Bruyn
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showed in [BesL] that Z(F, n) is stably rational, and a second, more elementary
proof of this was given by Beneish [Be98].

There are a few results for the Zm(F, n). The field Z2(F, 4) is stably rational by
Saltman [S02]. Saltman and Tignol [ST] showed that Z2(F, 8) is retract rational.
Beneish [Be05] showed that Z2(F, 8) is stably rational. Finally, we leave to the
well-read reader to prove that when H ⊂ Sn is cyclic and transitive and F contains
a primitive nth root of unity, then ZH(F, n) is rational (and results are available for
general F , n not of the form 8m, and retract rationality). Thus the first interesting
specific question along these lines is:

Problem 5.2. Determine if ZH(F, 9) is rational, stably rational, or retract ratio-
nal, where H = C3 × C3 ⊂ S9 is transitive.

6. Essential dimension

Essential dimension counts the number of parameters needed to define an al-
gebraic structure. This notion was introduced in the late 1990s by Buhler and
Reichstein [BuRe] and placed in a general functorial context by Merkurjev [BerF].
Given a field F , a functor F : FieldsF → Sets from the category of field exten-
sions of F (together with F -embeddings) to the category of sets, a field extension
F → K, and an element a ∈ F (K), a field of definition of a is a field extension
F → L and an F -embedding L → K such that a is in the image of the map
F (L) → F (K). The essential dimension of a (over F ), denoted by edF (a), is the
infimum of the transcendence degrees tr degF (L) over all fields of definition L of
a. Finally, the essential dimension of F is the number

edF (F ) = sup{edF (a)},

where the supremum is taken over all field extensions F → K and all elements
a ∈ F (K). We will suppress the dependence on the base field F when no confusion
may arise.

The essential p-dimension of F , denoted by edF,p(F ) or simply edp(F ), is
defined similarly. One replaces edF (a) with edF,p(a), which is the infimum of
edF (aK′) as K ′ varies over all finite embeddings K → K ′ of prime-to-p degree.
Obviously, edF,p(a) ≤ edF (a) for all a, hence edF,p(F ) ≤ edF (F ).

Definition 6.1. The essential dimension ed(G) = edF (G) of an algebraic group
G over F is the essential dimension of the functor H1(−, G). Similarly, the essential
p-dimension edp(G) = edF,p(G) of G is the essential p-dimension of the functor
H1(−, G).

The essential dimension of an algebraic group G equals the essential dimension
of any versal G-torsor, see [BerF, §6]. For a broad survey of essential dimension
results, see Reichstein’s sectional address [Re10] to the 2010 ICM in Hyderabad,
India.

The functor H1(−,PGLn) is identified via Galois descent with the functor as-
signing to a field extension F → K the isomorphism classes of central simple
K-algebras of degree n. As we shall discuss below, computation of the essential
dimension of PGLn is relevant to the theory of central simple algebras, in the
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sense that knowing the “number of parameters” needed to define central simple
algebras of degree n can lead to conclusions about their structural properties (e.g.,
concerning decomposability and crossed product structure).

Problem 6.2. Compute the essential dimension and the essential p-dimension of
PGLn. In particular:

(1) Compute edF (PGL4) when charF = 2.
(2) Compute edF (PGL5).

What is known

The generic division algebra UD(F, n) of degree n corresponds to a versal PGLn-
torsor, see Section 5. It is immediate from Procesi’s description of Z(F, n) by
means of invariants that ed(PGLn) ≤ n2 + 1, see [Pro, Theorem 1.8]. With some
additional work, Procesi [Pro, Theorem 2.1] proved that ed(PGLn) ≤ n2. The
current best upper bounds are

ed(PGLn) ≤
{

1
2 (n− 1)(n− 2) if n ≥ 5 and n is odd,
n2 − 3n+ 1 if n ≥ 4, F = Fsep, and char(F ) = 0,

see [LRRS, Theorem 1.1], [Lem, Prop. 1.6], and [FaF].
Tsen’s theorem can be used to show that ed(PGLn) ≥ 2 for any n ≥ 2, see

[Re00, Lemma 9.4a]. The current best lower bounds are

ed(PGLn) ≥ edp(PGLn) ≥ (r − 1)pr + 1,

where pr is the highest power of p dividing n and we assume charF 6= p, see
Merkurjev [Ma] and the discussion below. This improves on the long-standing
lower bound ed(PGLpr ) ≥ edp(PGLpr ) ≥ 2r in [Re99, Theorem 16.1], [ReY00,
Theorem 8.6]. Finally, because of the decomposition of central simple algebras
into prime powers, ed(PGLnm) ≤ ed(PGLn) + ed(PGLm) if (n,m) = 1.

Table 1 lists current bounds for ed(PGLn) for small values of n, obtained by
combining the bounds in this discussion with those after the discussion of Prob-
lem 6.4. (A slightly different table on the same topic can be found at the end of
Baek’s thesis [Ba].) Of course, the bounds may improve upon further specification
of the field. The cases for n = 4 in characteristic 2 and for n = 5 are the smallest
unknown cases, and each has important implications for the crossed product prob-
lems of Sections 2 and 1, respectively (see discussion below). The feeble bounds
on the second line of the table — when the characteristic divides n— illustrate our
lack of knowledge in this case. One of the few positive results is that the upper
bound ed(PGL4) ≤ 5 from [LRRS, Cor. 3.10(a)] holds without hypotheses on the
base field.

Table 1. Bounds for ed(PGLn), references found in the text.

n 2 3 4 5 6 7 8 9 10

ed(PGLn)
charF 6 |n 2 2 5 2† – 6

3 – 6
2†

3
2† – 15
3 – 15

17 – 64 10 – 28 2† – 8
3 – 8

ed(PGLn)
charF |n 2 2 2 – 5 2 – 6 2 – 3 2 – 15 2 – 64 2 – 28 2 – 8

† means “when F contains ζn/2 if n is even or ζn + ζ−1
n if n is odd”.
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Much more is known about essential p-dimension. For example, edp(PGLn) =
edp(PGLpr ) if pr is the highest power of p dividing n [ReY00, 8.5.5]; in particular,
edp(PGLn) = 0 if p does not divide n. Every central simple algebra of degree p
becomes cyclic over a prime-to-p extension, which gives edp(PGLp) = 2 [ReY00,
8.5.7]. Using an extension of Karpenko’s incompressibility theorem to products
of p-primary Severi–Brauer varieties, Karpenko and Merkurjev [KaM] provide a
formula for the essential dimension of any finite p-group, considered over a field
containing the pth roots of unity. This general formula was extended to twisted
p-groups and algebraic tori in [LMMR], and ultimately used with great success by
Merkurjev [M10], [Ma] to establish the formula edp(PGLp2) = p2 + 1 for any field
F with charF 6= p, and the current best lower bound

(r − 1)pr + 1 ≤ edp(PGLpr) ≤ p2r−2 + 1. (6.3)

The above upper bound is in a recent preprint by Ruozzi [Ru], improving on
[MeRe, Theorem 1.1]. For p = 2 and r = 3, note that the upper and lower bounds
coincide, yielding ed2(PGL8) = 17 when charF 6= 2.

Asymptotic bounds

It might be illustrative to view these bounds on ed(PGLn) asymptotically, in terms
of big-O notation. In that language, we have the naive upper bound that ed(PGLn)
is O(n2) and the naive lower bound that it is Ω(1), because it is between n2+1 and
2. The furious profusion of bounds listed in this section are invisible in this context,
except for Merkurjev’s lower bound (6.3), which shows that ed(PGLn) is not O(n).
(This settled in the negative Bruno Kahn’s “barbecue problem” posed in 1992, see
[MeRe, §1].) The gap between the upper and lower bounds for PGLn stands in

interesting contrast with the situation for Spinn: ed(Spinn) is both O(
√
2
n
) and

Ω(
√
2
n
), i.e., is asymptotically bounded both above and below by constants times√

2
n
, by [BRV].

Essential dimension and crossed products

Let G be a finite group of order n ≥ 2. Let CPAlgn (resp. AlgG) be the func-
tor FieldsF → Sets assigning to F → K the set of isomorphism classes of crossed
product (resp. G-crossed product) K-algebras of degree n. Of course, ed(CPAlgn)
is the maximum of ed(AlgG) over all groups G of order n. These functors are
relevant to the crossed product problem discussed in Section 2. For example,
ed(AlgG) ≤ ed(CPAlgn) ≤ ed(PGLn), with equality if every central simple al-
gebra of degree n over every field extension of F is a G-crossed product. An
inequality ed(CPAlgn) < ed(PGLn) would imply the existence of a noncrossed
product algebra of degree n over some field extension of F .

Problem 6.4. Determine structural conclusions about central simple algebras
from essential (p-)dimension bounds.

(1) Calculate bounds for ed(CPAlgn) and ed(AlgG).
(2) Compute the difference ed(AlgG)− ed(G).
(3) If ed(CPAlgn) = ed(PGLn), determine whether every algebra of degree n

over every extension of F is a crossed product.
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What is known

By [Al61, Chap. IX.6, Theorem 9], H1(−,PGLn) is isomorphic to the functor AlgG
for n = 2, 3, 6 and G = Cn, and for n = 4 and G = C2×C2. A result communicated
to us by Merkurjev states that ed(AlgCn

) = ed(Cn)+1 when charF does not divide
n (see Proposition 6.6). Since ed(C2) = ed(C3) = 1 (over any field, see also [Se08,
§1.1], [JLY, §2.1]), and ed(C6) equals 1 or 2 (depending on whether F contains the
sixth roots of unity or not), we obtain the values listed in Table 1 for n = 2, 3, 6
and charF not dividing n. When n = 6 and charF divides n, one can show that
ed(C6) = 2 using [Led, Theorem 1], and therefore 2 ≤ ed(PGL6) ≤ 3. Note that
Proposition 6.6 resolves Problem 6.4(2) for G = Cn, when charF does not divide
n.

In [Ma, Theorem 7.1], Merkurjev proved that ed(AlgC2×C2
) = 5 when charF 6=

2, and thus ed(PGL4) = 5 (see also Rost [R]). Note that since ed(AlgC4
) =

ed(C4)+1 ≤ 3 when charF 6= 2, this implies the existence of noncyclic algebras of
degree 4. These algebras necessarily have period 4 because otherwise they would
be biquaternion. Examples of such algebras were exhibited in [Al33].

One can bound ed(AlgG) by bounding the number of generators of G. If a
finite group G of order n can be generated by r ≥ 2 elements, then ed(AlgG) ≤
(r−1)n+1, see [LRRS, Cor. 3.10(a)]. This shows ed(PGL4) ≤ 5 when charF = 2.
The bound is sharp for charF 6= p: if G = Cr

p for r ≥ 2 and charF 6= p, then
ed(AlgG) = edp(AlgG) = (r − 1)pr + 1 by [Ma, Theorem 7.1]. Note that this
resolves Problem 6.4(1) for elementary abelian G. One can bound the number of
generators by r ≤ log2(n) for n ≥ 4, see [LRRS, Cor. 3.10(b)], and this bound is
realized on elementary abelian 2-groups. Thus ed(CPAlgn) ≤ (log2(n) − 1)n + 1
for n ≥ 4. Now we have

ed(CPAlg8) ≤ 17 = ed2(PGL8) ≤ ed(PGL8).

As there exist noncrossed products of degree 8, it is reasonable to guess that at
least one of the two inequalities is strict.

Algebras with small exponent

The functor H1(−,GLn/µm) assigns to a field K the isomorphism classes of central
simple K-algebras of degree n and period dividing m. Of course, H1(−,GLn/µn) =
H1(−,PGLn). By Albert’s theorem, every algebra of degree 4 and period 2 is bi-
quaternion, ultimately yielding ed(GL4/µ2) = ed2(GL4/µ2) = 4 when charF 6= 2,
see [BaM10, Remark 8.2]. When charF = 2, all algebras of degree 4 and period
2 are cyclic by [Al34], hence ed(GL4/µ2) = ed(AlgC4

) ≤ ed(C4) + 1 = 3 (one can
bound ed(C4) using Witt vectors of length 2, see [JLY, Theorem 8.4.1]). Similarly,
for GL8/µ2, Rowen [Ro78] produced triquadratic splitting fields, ultimately yield-
ing ed(GL8/µ2) = ed2(GL8/µ2) = 8 when charF 6= 2, see [BaM10, Cor. 8.3]. In
particular, this implies the existence of algebras of degree 8 and period 2 (when
charF 6= 2) that are not decomposable as a product of three quaternion algebras;
such examples were exhibited in [AmRT].

When charF 6= p, the current best bounds for edp(GLpr/µps) are

(r − 1)2r−1

(r − 1)pr + pr−s

}

≤ edp(GLpr/µps) ≤
{

22r−2 for p = 2 and s = 1,
p2r−2 + pr−s otherwise,
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for r ≥ 2 and 1 ≤ s ≤ r, see [BaM10, Theorem 6.1, 7.2], [Ru, Theorem 1.1], and
[Ba, Theorem 4.1.30]. For p odd and r = 2, the upper and lower bounds coincide,
yielding

edp(GLp2/µp2) = p2 + 1 and edp(GLp2/µp) = p2 + p.

This implies the existence of indecomposable algebras of degree p2 and period p,
as exhibited previously in [T87], and is an example of an essential dimension result
having implications on the existence of algebras with certain structural properties.

The smallest open cases seem to be:

Problem 6.5. Compute edF (GL8/µ2) when charF = 2; edF (GL16/µ2) when
charF 6= 2; and edF (GLp2/µp) for odd primes p and all F .

The last part overlaps with Problem 2.1.
We prove the essential dimension result stated above:

Proposition 6.6. If charF does not divide n>1, then edF (AlgCn
)=edF (Cn)+1.

Proof. Since clearly edF (AlgCn
) ≤ edF (Cn) + 1, it suffices to produce an algebra

with essential dimension at least edF (Cn) + 1. Suppose K/F is a field extension,
L/K is a cyclic field extension of degree n, and A = (L/K, σ, t) is a cyclic crossed
product over the rational function field K(t). The parameter t defines a discrete
valuation v on K, and we have a residue ∂v(A) = χ, for an element χ of order n
in the character group X(K). If A is defined as A0 over an extension E/F , then
t defines a discrete valuation v0 on E, and ∂v0(A0) = χ0 ∈ X(κ(v0)). Since the
residue map commutes with scalar extension — scaled by the ramification index
if necessary —χ0 has order at least n, hence edF (Cn) ≤ tr degF (κ(v0)). Since
tr degF (κ(v0)) < tr degF (E), we conclude edF (Cn) < edF (A). �

7. Springer problem for involutions

Involutions on central simple algebras are ring-antiautomorphisms of period 2.
They come in different types, depending on their action on the center and on the
type of bilinear forms they are adjoint to after scalar extension to an algebraic
closure of the center: an involution is of orthogonal (resp. symplectic) type if it
is adjoint to a symmetric, nonalternating bilinear form (resp. to an alternating
bilinear form) over an algebraic closure; it is of unitary type if its restriction to the
center is not the identity. The correspondence between central simple algebras with
involution and linear algebraic groups of classical type was first pointed out by Weil
[Wei]; it is a deep source of inspiration for the development of the theory of central
simple algebras with involution, see [KMRT]. For semisimple linear algebraic
groups, Tits defined in [Ti66] a notion of index, which generalizes the Schur index of
central simple algebras and the Witt index of quadratic forms. Anisotropic general
linear groups arise from division algebras, and anisotropic quadratic forms yield
anisotropic orthogonal groups. More generally, every adjoint group of type 1Dn or
2Dn over a field of characteristic different from 2 can be represented as the group
of automorphisms of a central simple algebra A of degree 2n with orthogonal
involution σ; the group is anisotropic if and only if σ is anisotropic in the following
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sense: for x ∈ A, the equation σ(x)x = 0 implies x = 0. The behavior of the index
under scalar extension is a major subject of study, to which the following problem,
first formulated in [BayST, p. 475], pertains:

Problem 7.1. Suppose σ is an anisotropic orthogonal or symplectic involution on
a central simple algebra A over a field F . Does σ remain anisotropic after scalar
extension to any odd-degree field extension of F ?

(If charF = 2, the question makes sense, but to preserve the relation with linear
algebraic groups one should replace the orthogonal involution σ with a quadratic
pair [KMRT, §5B].)

Representing A as EndDV for some vector space V over a division algebra D,
we may rephrase the problem in terms of Hermitian forms: if a Hermitian or skew-
Hermitian form over a division algebra with orthogonal or symplectic involution
is anisotropic, does it remain anisotropic after any odd-degree extension? When
the central simple algebra is split (which is always the case if its degree degA
is odd), orthogonal involutions are adjoint to symmetric bilinear forms, and the
problem has an affirmative solution by a well-known theorem of Springer [EKM,
Cor. 18.5] (actually first proved — but not published — by E. Artin in 1937, see
[K08, Remark 1.5.3]). On the other hand, every symplectic involution on a split
algebra is hyperbolic, hence isotropic, so the problem does not arise for symplectic
involutions on split algebras. At the other extreme, if A is a division algebra, then
the solution is obviously affirmative, since A remains a division algebra after any
odd-degree extension and every involution on a division algebra is anisotropic.

Variants of Problem 7.1 take into account the “size” of the isotropy: call a right
ideal I ⊂ A isotropic for an involution σ if σ(I) · I = {0}, and define its reduced
dimension by rdimI = dim I/degA. The reduced dimension of a right ideal can be
any multiple of the Schur index indA between indA and degA, but for isotropic
ideals we have rdimI ≤ 1

2 degA, see [KMRT, §6A]. The involution σ is called
metabolic if A contains an isotropic ideal of reduced dimension 1

2 degA. A weak
version of Springer’s theorem holds for arbitrary involutions: Bayer and Lenstra
proved in [BayL, Prop. 1.2] that an involution that is not metabolic cannot become
metabolic over an odd-degree field extension. As a result, Problem 7.1 also has
an affirmative solution when indA = 1

2 degA, for in this case isotropy implies
metabolicity. (See [BerFT, Theorem 1.14] for the analogue for quadratic pairs.)

If charF 6= 2 and indA = 2, Problem 7.1 was solved in the affirmative by
Parimala, Sridharan, and Suresh [PSS01]. The symplectic case is easily reduced
to the case of quadratic forms by an observation of Jacobson relating Hermitian
forms over quaternion algebras to quadratic forms. The orthogonal case also is
reduced to the case of quadratic forms, using scalar extension to the function field
of the conic that splits A. That approach relates Problem 7.1 to another important
question, to which Parimala, Sridharan, and Suresh gave a positive solution when
indA = 2 and charF 6= 2:

Problem 7.2. Suppose σ is an anisotropic orthogonal involution on a central
simple algebra A over a field F . Does σ remain anisotropic after scalar extension
to the function field FA of the Severi–Brauer variety of A?

(This is a special case of a general problem concerning semisimple algebraic
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groups, namely whether a projective homogeneous variety under one group has a
rational point over the function field of a projective homogeneous variety under
another group. From this perspective, Problem 7.2 is asking for an analogue of
the index reduction results from [SchB], [MPW96], [MPW98], etc.)

By Springer’s theorem, an affirmative answer to Problem 7.2 readily implies that
Problem 7.1 has an affirmative solution for orthogonal involutions. Surprisingly,
Karpenko [Ka09a] recently proved that the converse also holds when charF 6= 2:
an orthogonal involution cannot become isotropic over FA unless it also becomes
isotropic over some odd-degree extension of F .

Problem 7.2 is addressed in the following papers (besides [PSS01] and [Ka09a]):
[Ka00], [Ka09b], [G09], [Ka10b]. In [Ka00] and [Ka10a, §2.5], Karpenko gives an
affirmative solution when A is a division algebra. This result is superseded in
[Ka09b], where he proves that for any quadratic pair on a central simple algebra
A of arbitrary characteristic, the Witt index of the quadratic form to which the
quadratic pair is adjoint over FA is a multiple of indA. In particular, it follows
that if the quadratic pair becomes hyperbolic over FA, then indA divides 1

2 degA.
An alternative proof of the latter result is given by Zainoulline in [G09, App. A]. A
much stronger statement was soon proved by Karpenko [Ka10b]: if charF 6= 2, an
orthogonal involution that is not hyperbolic cannot become hyperbolic over FA.
(The special case where degA = 8 and indA = 4 was obtained earlier by Sivatski
in [Si, Prop. 3], using Laghribi’s work on eight-dimensional quadratic forms [Lag,
Theorem 4].)

Note that the orthogonal and symplectic cases of Problem 7.1 are related by
the following observation: tensoring a given central simple F -algebra with involu-
tion (A, σ) with the “generic” quaternion algebra (x, y)F (x,y) with its conjugation
involution yields a central simple F (x, y)-algebra with involution (A′, σ′), which is
anisotropic if and only if σ is anisotropic. If charF 6= 2, the involution σ′ is orthog-
onal (resp. symplectic) if and only if σ is symplectic (resp. orthogonal). Therefore,
a negative solution to Problem 7.1 for a given degree d and index i in the orthog-
onal (resp., symplectic) case readily yields a negative solution in the symplectic
(resp. orthogonal) case in degree 2d and index 2i. The same idea can be used to
obtain symplectic versions of the results on Problem 7.2, where FA is replaced by
a field over which the index of A is generically reduced to 2, see [Ka10b, App. A].

If charF 6= 2, the smallest index for which Problem 7.1 is open is 4, and
the smallest degree is 12. Since Parimala, Sridharan, and Suresh do not address
the characteristic 2 case in [PSS01], Problem 7.1 — restated for quadratic pairs —
seems to be open in this case already for index 2 and degree 8. (The answer to
Problem 7.1 is “yes” in the degree 6 case. This can be seen via the exceptional
isomorphism D3 = A3.)

Unitary involutions

The analogue of Problem 7.1 for unitary involutions was solved in the negative in
[PSS01]: for any odd prime p, there is a central simple algebra A of degree 2p and
index p with anisotropic unitary involution over a field F = `((t)), where ` is a
ramified quadratic extension of a p-adic field k, which becomes isotropic over any
odd-degree extension of F that splits A. If p ≥ 5, there are unitary involutions
on division algebras of degree p that become isotropic after scalar extension to
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any maximal subfield. As Parimala, Sridharan, and Suresh suggest at the end of
their paper, the correct analogue of Problem 7.1 for unitary involutions should
probably ask: Does the involution remain anisotropic after scalar extension to a
field extension of degree coprime to 2 indA?

Motivated by this observation, we can generalize Problem 7.1 by asking:

Problem 7.3. Let G be an absolutely almost simple linear algebraic group that
is anisotropic over F . Does G remain anisotropic over every finite extension K/F
of dimension not divisible by any prime in S(G)?

Here S(G) denotes the set of “homological torsion primes” from [Se95, §2.2.3],
exhibited in Table 2. Roughly speaking, the results on Problem 7.1 for orthogonal
and symplectic involutions concern the types B, C, and D cases of Problem 7.3
and the results for unitary involutions concern the type A case. The answer to
Problem 7.3 is “yes” for G of type G2 or F4; this can be seen by inspecting the
cohomological invariants of these groups described in [KMRT].

Table 2. The set S(G) of homological torsion primes for an absolutely
almost simple algebraic group G.

type of G elements of S(G)

An 2 and prime divisors of n+ 1
Bn, Cn, Dn (n > 4), G2 2

D4, F4, E6, E7 2 and 3
E8 2, 3, and 5

8. Artin–Tate conjecture

Motivated by an analogue of the Birch and Swinnerton-Dyer conjecture for
abelian varieties over global fields of characteristic p, Tate (reporting on joint work
with Artin) [Ta66b] introduces a host of conjectures for surfaces over finite fields.
As most of the progress on these conjectures has been made from their connection
with the Tate conjecture on algebraic cycles and the Birch and Swinnerton-Dyer
conjecture, a natural challenge arises: Can progress be made on the conjectures in
this section using “central simple algebra techniques”?

Let k = Fq be a finite field of characteristic p and X a geometrically connected,
smooth, and projective k-surface. Let Br(X) = H2

ét(X,Gm), which equals the
Azumaya Brauer group since X is regular over a field.

Conjecture (Artin–Tate conjecture A). The Brauer group of X is finite.

Since Br(X) = Brur(k(X)), where Brur(k(X)) denotes the unramified (at all
codimension 1 points) Brauer group of the function field k(X) of X , Conjecture A
is equivalent to:

Conjecture (Artin–Tate conjecture A). If k(X) is a function field of transcen-
dence degree 2 over a finite field, then there are finitely many unramified classes
in Br(k(X)).

241



ASHER AUEL, ERIC BRUSSEL, SKIP GARIBALDI, AND UZI VISHNE

Relationship with the Tate conjecture on algebraic cycles

Let ` 6= p be a prime. Let P2(X, t) be the characteristic polynomial of the action
of the (geometric) Frobenius morphism on the `-adic cohomology H2(X,Q`(1)),
where X = X ×k ksep. Let NS(X) = Pic(X)/Pic0(X) denote the Néron–Severi
group of X and ρ(X) = rankZ NS(X) its Picard number. Tate [Ta65, §3] has ear-
lier conjectured a relationship between the Picard number and this characteristic
polynomial for surfaces.

Conjecture (Tate’s conjecture T). The Picard number of X is equal to the mul-
tiplicity of the root t = q−1 in the polynomial P2(X, t).

Tate [Ta66b, §4, Conj. C] refines this by providing a conjectural leading term
for the polynomial P2(X, t) at t = q−1.

Conjecture (Artin–Tate conjecture C).

lim
s→1

P2(X, q−s)
(

1− q1−s
)ρ(X)

=
|Br(X)| | det(hNS(X))|
qα(X) |NS(X)tors|2

,

where hNS(X) is the intersection form on the Néron–Severi group modulo torsion,
α(X) = χ(X,OX)− 1 + dimPicX , and PicX is the Picard variety of X.

In fact, it turns out that showing the finiteness of Br(X) is the “hard part,” and
all of the above conjectures are equivalent.

Theorem 8.1. The following statements are equivalent:

(1) Conjecture A holds for X, i.e. Br(X) is finite.
(2) `Br(X) is finite for some prime ` (with ` = p allowed ).
(3) Conjecture T holds for X.
(4) Conjecture C holds for X.

In [Ta66b, Theorem 5.2] the prime-to-p part of this theorem is proved, i.e.,
the finiteness of the prime-to-p part of the Brauer group p′Br(X) is equivalent to
Conjecture C up to a power of p. Milne [Mi75, Theorem 4.1] proves the general case
using comparisons between étale and crystalline cohomology. Note that in [Mi75],
Milne assumes that p 6= 2, though on his website addendum page, he points out
that by appealing to Illusie [Il] in place of a preprint of Bloch, this hypothesis may
be removed.

In turn, Conjecture T is a special case of the Tate conjecture on algebraic cycles
[Ta65, Conj. 1], made at the AMS Summer Institute at Woods Hole, 1964. Denote
by Zi(X) the group of algebraic cycles of codimension i on a variety X .

Conjecture (Tate conjecture). Let k be a field finitely generated over its prime
field, Γ = Gal(ksep/k), and X a geometrically connected, smooth, and projective
k-variety. Then the image of the cycle map

cl : Zi(X) → H2i(X,Q`(i))

spans the Q`-vector subspace H2i(X,Q`(i))
Γ of Galois invariant classes.

In the case of interest to us, of (co)dimension 1 cycles on a surface over a finite
field, the cycle map factors through the Néron–Severi group and Milne [Mi75,
Theorem 4.1] (following Tate [Ta65, §3]) proves that the Tate conjecture (in this
case, equivalent to ρ(X) = rankZ H

2(X,Q`(1))
Γ) is equivalent to Conjecture T.
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What is known

Conjecture T is known for many special classes of surfaces: rational surfaces (Milne
[Mi70]), Fermat hypersurfaces Xn

0 +Xn
1 +Xn

2 +Xn
3 = 0, with p ≡ 1 mod n or pa ≡

−1 mod n for some a (Tate [Ta65, §3]), abelian surfaces and products of two curves
(Tate [Ta66a, Theorem 4]), K3 surfaces with a pencil of elliptic curves (Artin
and Swinnerton-Dyer [ArSD, Theorem 5.2]), K3 surface of finite height (where
p ≥ 5) (Nygaard [Ny, Cor. 3.4] and Nygaard and Ogus [NyO, Theorem 0.2]),
and certain classes of Hilbert modular surfaces (Harder, Langlands, and Rapoport
[HLR], Murty and Ramakrishnan [MuRa], Langer [Lan00], [Lan04]). Conjecture
T respects birational equivalence. Furthermore, if X → X ′ is a finite morphism
and Conjecture T holds for X , then it holds for X ′. In particular, Conjecture T
holds for unirational surfaces and Kummer surfaces. Also, Conjecture T holds for
any surface that lifts to a smooth surface in characteristic 0 with geometric genus
pg = 0.

Relationship with the Birch and Swinnerton-Dyer conjecture

The refined statement of the Birch and Swinnerton-Dyer (BSD) conjecture over
global fields of characteristic p appears in [Ta66b, §1].

Conjecture (BSD conjecture). Let K be a global field of characteristic p, A an
abelian K-variety, and L∗(A, s) the L-function of A with respect to a suitably
normalized Tamagawa measure. Then L∗(A, s) has an analytic continuation to
the complex plane and

lim
s→1

L∗(A, s)

(s− 1)r
=

|X(A)| |det(hA)|
|A(K)tors| |Â(K)tors|

,

where hA is the Néron–Tate height pairing on A(K) modulo torsion, Â is the dual
abelian variety, and r = rankZ A(K) is the rank of the Mordell–Weil group.

Milne [Mi68] proves the BSD conjecture for constant abelian varieties. Other-
wise, there are a host of results on the BSD conjecture for particular classes of
abelian varieties over global fields of characteristic p. For a modern treatment
of the BSD conjecture for abelian varieties over number fields, see Hindry and
Silverman [HS, App. F.4].

Now let C be a geometrically connected, smooth, and projective k-curve with
function field K = k(C) and suppose that there is a proper flat morphism f :
X → C with generic fiber XK a geometrically connected, smooth, and projective
K-curve. Let A be the Jacobian of XK .

Theorem 8.2 (Artin–Tate conjecture d). Conjecture C for the k-surface X is
equivalent to the BSD conjecture for the Jacobian A of the K-curve XK .

Tate explains that “this conjecture gets only a small letter d as label, because it
is of a much more elementary nature” than Conjecture C or the BSD conjecture, see
[Ta66b, §4]. The Artin–Tate conjecture d is proved by Liu, Lorenzini, and Raynaud
[LLR05], following a suggestion of Leslie Saper. In fact, as shown in [LLR05, Proof
of Theorem 1], any geometrically connected, smooth, and projective k-surface X
is birational to another such surface X ′ admitting a proper flat morphism f ′ :
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X ′ → P1 with geometrically connected, smooth, and projective generic fiber. In
particular, up to birational transformations, we may replace any surface by a
surface fibered over a curve to which Conjecture d applies.

Square order of the Brauer group

If either group is assumed to be finite, then a precise relationship between |Br(X)|
and |X(A)| is given in Liu, Lorenzini, and Raynaud [LLR04, Theorem 4.3],
[LLR05, Cor. 3] in terms of the local and global periods and indices of the curve XK.

Theorem 8.3 (Liu, Lorenzini, and Raynaud [LLR05, Cor. 3]). Let f : X → C
be as above. For each closed point v of C, denote by Kv the completion of K = k(C)
at v, and by δv and δ′v the index and period, respectively, of the Kv-curve XKv

.
Denote by δ the index of the K-curve XK . Assume that either Br(X) or X(A) is
finite, where A is the Jacobian of XK . Then

|X(A)|
∏

v∈C

δvδ
′
v = |Br(X)| δ2

and |Br(X)| is a square.

As explained in the Introduction of [LLR05], the fact that the Brauer group of X
has (conjecturally) square order is surprising given the history of the subject. Tate
[Ta66b] (see also Milne [Mi75, Theorem 2.4]) exhibits a skew-symmetric bilinear
pairing,

Br(X)× Br(X) → Q/Z,

(x, y) 7→ tr(x̃ ∪ βỹ),

on the Brauer group of a surface over a finite field, defined by taking lifts x̃, ỹ ∈
H2

ét(X,µn) of x, y ∈ nBr(X), where β : H2
ét(X,µn) → H3

ét(X,µn) is the cobound-
ary map arising from the exact sequence 1 → µn → µn2 → µn → 1, and
tr : H5

ét(X,µ⊗2
n ) ∼= Z/nZ is the arithmetic trace map induced from duality and the

Hochschild–Serre spectral sequence, as in [Ta66b, Formula 5.4]. This pairing is
nondegenerate on the prime-to-p part of the Brauer group and has kernel consist-
ing of the maximal divisible subgroup of Br(X). In particular, if Br(X) is assumed
to be finite, it must have order either a square or twice a square.

In the late 1960s Manin published examples of rational surfaces over finite fields
with Brauer group of order 2. Finally, in 1996, Urabe found a mistake in Manin’s
examples and proved that rational surfaces always have Brauer groups of square
order. The proof that 2Br(X) is a square in [LLR05] uses knowledge of 2X(A),
via Theorem 8.2.

The (conjectural) square order of Br(X) would immediately result from the
existence of a nondegenerate alternating pairing. Of course, this is only a nontrivial
question on the 2-primary torsion Br(X)2 of the Brauer group.

Problem 8.4. Given a geometrically connected, smooth, projective surface X
over a finite field k, is there a nondegenerate alternating pairing on Br(X)2 with
values in Q/Z?

This is addressed in Urabe [U, Theorem 0.3], where it is proved that the re-
striction of Tate’s skew-symmetric form to ker(Br(X) → Br(X)) is alternating.
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As a corollary, this settles the question whenever H3
ét(X,Z2(1))tors is trivial, in

particular, this is the case for rational surfaces, ruled surfaces, abelian surfaces,
K3 surfaces, or complete intersections in projective space. The question is still
open, for example, if X is an Enriques surface. Also see Poonen and Stoll’s [PooS,
§11] possible strategy for finding a counterexample.

9. The tensor product problem

Both surveys [Am82] and [S92] address problems concerning division algebra
decomposability. We say an F -division algebra D is decomposable if there exist F -
division algebras A and B such that D ' A⊗F B. All division algebras decompose
into p-primary tensor factors, and all p-primary factors with equal period and index
are indecomposable, so the problem of when a division algebra decomposes is only
interesting for division algebras of unequal prime-power period and index. Albert
proved that any division algebra of period 2 and index 4 is decomposable in [Al32],
and for a long time all known division algebras of unequal period and index were
decomposable. However, in 1979 Saltman [S79] and Amitsur, Rowen, and Tignol
[AmRT] independently constructed nontrivially indecomposable division algebras.
In 1991 Jacob produced indecomposable division algebras of prime period p and
index pn for any n ≥ 1, except when p = 2 and n = 2 ([J]). Thus by the
time of Saltman’s survey [S92], examples had been produced of many period-index
combinations, though not in every characteristic.

Shortly after [S92], Karpenko produced indecomposable division algebras (of a
generic type) in any characteristic with any odd prime-power period pm and index
pn, for any m ≤ n (see also [McK08]), and period 2 and index 2n for n ≥ 3. The
odd degree examples used the index reduction formula of Schofield and van den
Bergh [SchB] and the theory of cycles on Severi–Brauer varieties ([Ka95]); the 2-
power degree examples used Karpenko’s theorem [Ka98, Prop. 5.3] that a division
algebra A of prime period is indecomposable if the torsion subgroup of the Chow
group of codimension 2 cycles on the Severi–Brauer variety of A is nontrivial.

There were two problems on indecomposability in [S92], one (Problem 6) on the
existence of an indecomposable division algebra of p-primary degree that becomes
decomposable after a prime-to-p extension, and the other (Problem 7) on the
existence of indecomposable division algebras of unequal period and index over
fields finitely generated over a prime field. Both were solved by Brussel, in [B00,
Problem 6] and [B96, Problem 7]. However, Brussel’s solution to Problem 6 relied
on the absence of a pth root of unity in the center. Karpenko’s examples, on the
other hand, are manifestly stable under prime-to-p extension.

In spite of the fact that some gaps remain (no one has submitted an indecom-
posable division algebra of period 4 and index 16, for example), recent work has
focused less on producing examples of indecomposable division algebras of given
index and period, and more on understanding the significance of indecomposability
and its relation to common subfields.

For a fixed primitive nth root of unity ξ, and a, b ∈ F×, let (a, b)n denote
the symbol algebra of degree n over F , generated by elements u and v under the
relations un = a, vn = b, uv = ξvu.
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Problem 9.1. Suppose (a, b)n and (c, d)n are symbol algebras of degree n over F ,
and ind((a, b)n ⊗F (c, d)n) < n2. Determine whether there are necessarily symbol
algebras (a′, b′)n and (c′, d′)n that share a common maximal subfield, and such
that (a, b)n ⊗F (c, d)n ∼= (a′, b′)n ⊗F (c′, d′)n?

One can also consider splitting fields instead of maximal subfields:

Problem 9.2. Suppose A and B are F -division algebras such that ind(A⊗B) <
ind(A) · ind(B). Determine the common subfields of A and B.

What is known

The first major result on Problem 9.1 was Albert’s theorem that in characteristic
not 2, the tensor product of two quaternion division algebras is a division algebra
if and only if the quaternions do not have a common maximal subfield ([Al72]).
The characteristic 2 analog was proved by Sah [Sah], and improved by Draxl: if
the tensor product of two quaternion division algebras is not a division algebra,
then they have a common separable maximal subfield (also see [L]).

Using a similar proof, Risman [Ri75] showed that for any quaternion algebra
A and any division algebra B, if A ⊗ B is not a division algebra, then either B
contains a field K such that A⊗K is not a division algebra, or A contains a field
K such that K ⊗B is not a division algebra.

In spite of the Albert–Sah theorem for quaternions, Tignol and Wadsworth [TW,
Prop. 5.1] produced for any odd integer n an example in which A and B are division
algebras of degree n, A ⊗F B is not a division algebra, and yet A and B have no
common maximal subfields. Saltman pointed out that for these examples, A⊗FB

op

is a division algebra, and noted that a better question to ask is whether one could
have A⊗i⊗B not a division algebra for all i, with A and B still having no common
subfields. Mammone answered the question in [Mam], producing examples A⊗F B
with A of degree n and B of degree n2 for any n. Then Jacob and Wadsworth
[JW93, Theorem 1] constructed examples of degree p for any odd prime p, using
valuation-theoretic methods. The Jacob and Wadsworth examples directly support
an affirmative answer to Problem 9.1. In [Ka99, Theorem II.1], Karpenko produced
an essentially different family of examples, also of equal odd prime degrees, using
the theory of the Chow group of Severi–Brauer varieties.

As for Problem 9.2, it follows from Albert’s and Risman’s examples that if
A is a quaternion, B has degree 2n, and A ⊗ B is not a division algebra, then
A and B have a common splitting field of degree less than or equal to 2n over
F . The Mammone, Jacob and Wadsworth, and Karpenko examples showed that
the results of Albert and Risman could not be generalized in the obvious way;
in particular any common splitting field of the degree p examples is divisible by
p2. However, Karpenko proceeded to generalize the results of Albert and Risman
as follows. Let A be a central simple F -algebra of degree p, let B1, . . . , Bp−1 be
central simple F -algebras of degrees pn1 , . . . , pnp−1 , and let n = n1 + · · · + np−1.
Suppose that for every i = 1, . . . , p − 1, A ⊗F Bi has zero divisors. Then there
exists a field extension E/F of degree less than or equal to pn that splits all of
the algebras A,B1, . . . , Bp−1 ([Ka99, Theorem 1.1]). In a similar vein, Krashen
proved that if A1, . . . , Apk are central simple F -algebras of degrees pn for a prime
p, and A1 ⊗F · · · ⊗F Apk has index pk, then the Ai are split by an étale extension
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E/F of degree pn(p
k−1)m, where m is prime-to-p ([Kr10, Cor. 4.4]). Problems such

as these are connected with the notion of canonical dimension, see [Ka10a] for a
survey.

As noted above, Karpenko’s examples made use of the seminal index reduction
formula due to Schofield and Van den Bergh from [SchB]. Such formulas should
play a role in helping to resolve Problem 9.2, which is framed quite generally. For
example, there has been considerable recent interest in the special case: If A and
B have the same splitting fields (chosen from some class of extension fields), then
are A and B isomorphic? We address this in the next section.

10. Amitsur’s conjecture

As a central simple F -algebra A is largely understood via the study of its split-
ting fields (see Section 0), it is natural to try to determine exactly how much
information about A is captured by its splitting fields alone.

In [Am55] Amitsur constructed for any F -division algebra A a generic splitting
field F (A), whose defining property is that a field extension L/F splits A if and
only if F (A) has a place in L (see [BourC, VI.2]). The first field of this type was
constructed by Witt in [Wi34], for quaternion algebras. Amitsur proved that his
F (A) is the function field of the Severi–Brauer variety SB(A) of A, first studied
by Châtelet in [Châ]. Nowadays, the generic splitting field of a central simple
algebra is viewed as a special instance of the generic splitting field of a (reductive)
algebraic group, as described in [KeR]. Amitsur proved:

Theorem 10.1 ([Am55, §9]). Let A and B be central simple F -algebras.

(1) A and B have the same splitting fields if and only if A is Brauer-equivalent
to B⊗i for some integer i relatively prime to the period of A.

(2) If F (A) is isomorphic to F (B), then A and B generate the same subgroup
of the Brauer group.

He then posed the following converse of (2):

Conjecture 10.2 (Amitsur’s conjecture). If A and B have the same degree and
generate the same subgroup of the Brauer group, then F (A) and F (B) are isomor-
phic.

The question was raised in [Am55], and appears as Question 6 in [Am82].

By definition, the generic splitting fields F (A) and F (B) are isomorphic if and
only if the Severi–Brauer varieties SB(A) and SB(B) are F -birational. It is not
hard to show that if A and B are as in the conjecture, then F (A) and F (B) are
stably isomorphic.

What is known

Amitsur was able to prove his conjecture in either the case where A has a maximal
subfield that is cyclic Galois, or in the case where A is arbitrary and B is Aop

[Am55]. Roquette later extended these results to the case where A has a maximal
subfield which is solvable Galois [Roq64]. Tregub, using very different techniques,
proved the result for A arbitrary of odd degree in the case where B is equivalent to
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A⊗2 [Tr]. Krashen generalized Roquette’s results to the case where A has a max-
imal subfield whose Galois closure is dihedral (hence quadratic over the maximal
subfield), and also showed that the conjecture may be reduced to considering the
case where every nontrivial subfield of A is a maximal subfield [Kr03].

Theorem 10.1(1) says that the splitting fields almost determine the algebra. But
it may be too much to expect to know all of the splitting fields of a central simple
algebra, and so we will pose a finer problem. Note first that Theorem 10.1(2)
says that if algebras A and B have degree n, then the fields F (A) and F (B) have
transcendence degree n−1. It follows that if A and B have the same splitting fields
of transcendence degree < n, then they generate the same subgroup of the Brauer
group. It is therefore natural to ask about splitting fields of smaller transcendence
degrees, or even finite splitting fields.

Problem 10.3. Determine whether two division algebras that have the same
splitting fields in a given class (say finite, or of transcendence degree at most 1),
necessarily generate the same subgroup in the Brauer group.

The smallest open case appears to be:

Problem 10.4. Determine whether two division algebras of degree 3 that have
the same splitting fields of transcendence degree ≤ 1 generate the same subgroup
of the Brauer group.

In the case of finite extensions, one has to be a bit more careful; one may easily
construct examples of central simple algebras A and B over global fields which
have all the same finite splitting fields, but which do not generate the same cyclic
subgroup of the Brauer group [PraR, p. 149]. On the other hand, it is easy to
show that if A and B are quaternion algebras over a global field that have the
same collection of quadratic splitting fields, then A and B must be isomorphic.
This motivates the following.

Problem 10.5. Show that if F is a field which is finitely generated over a prime
field or over an algebraically closed field, then any two quaternion division algebras
having the same finite splitting fields (or even just the same maximal subfields)
must be isomorphic.

What is known

The restriction to finitely generated fields is necessary. One can take colimits of
function fields in the style of [M92] to construct nonisomorphic quaternion division
algebras with the same maximal subfields, see, e.g., [GS, §2.1].

Garibaldi and Saltman [GS] showed that if F has trivial “unramified Brauer
group” (in a sense including the Archimedean places), then any two quaternion
division algebras over F having the same maximal subfields must be isomorphic.
Rapinchuk and Rapinchuk proved similar results for period 2 division algebras in
[RR]. Krashen and McKinnie [KrM] showed that if quaternion algebras over F
may be distinguished by their finite splitting fields, then the same is true over
F (x).

For algebras of higher degree, the situation for global fields leads one to the
following problem:
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Problem 10.6. Show that if F is a field which is finitely generated over a prime
field or over an algebraically closed field, and D is a division algebra, then there
are only finitely many other division algebras which share the same collection of
finite splitting fields.

What is known

One may easily verify this for global fields. Krashen and McKinnie [KrM] showed
that if this is true for a field F , it remains true for the field F (x).

11. Other problems

11.A. Group admissibility and division algebras

Let F be a field and G a finite group. We say G is F -admissible if there exists a
G-crossed product F -division algebra A.

Problem 11.1. Determine which groups are F -admissible, for a field F .

This problem is an extension of the inverse Galois problem, and is especially
interesting for F = Q. It appears as part of Problem 5 in [Am82].

The next problem, also known as the Q-admissibility conjecture, was first rec-
ognized in [Sc].

Problem 11.2. Prove every Sylow-metacyclic group is Q-admissible.

What is known

We discuss only the number field case of Problem 11.1. Schacher initiated the study
of admissibility in his thesis, where he proved that for any finite group G there
exists a number field F over which G is F -admissible ([Sc, Theorem 9.1]). His key
observation was that if F is a global field, a group G is F -admissible if and only if
(a) G is the group for a Galois extension L/F ; and (b) for every prime p dividing
|G|, there are two places v1 and v2 such that Gal(Lvi/Fvi) contains a p-Sylow
subgroup of G ([Sc, Prop. 2.5]). It follows easily that a Q-admissible group is Sylow-
metacyclic: every Sylow subgroup P of G contains a normal subgroup H such that
both H and P/H are cyclic [Sc, Theorem 4.1]. This motivated Problem 11.2.

All Sylow-metacyclic abelian groups [Sc, Theorem 6.1] and all metacyclic p-
groups [GoS79] are Q-admissible. Liedahl extended the latter result to give nec-
essary and sufficient conditions on a pair (G,F ) for G to be F -admissible, where
G is a metacyclic p-group and F is a number field [Li]. In 1983 Sonn settled
Problem 11.2 for solvable groups, proving they are all Q-admissible in [So].

To help organize the work for nonsolvable groups we make the following obser-
vations. Schacher showed that Sn is Q-admissible if and only if n ≤ 5 in [Sc, Theo-
rem 7.1]. He showed that the alternating group An is not Q-admissible for n ≥ 8 in
[Sc, Theorem 7.4], but did not solve the problem for n = 4, 5, 6, and 7, though Gor-
don and Schacher proved A4 = PSL(2, 3) is Q-admissible in [GoS77]. Schacher also
noted that the groups PSL(2, p), which are simple for p ≥ 5, are Sylow-metacyclic
for p a prime, making them a natural target for attempts at Problem 11.2. Chillag
and Sonn noted that the central extensions SL(2, pn) of PSL(2, pn) are Sylow-
metacyclic for n ≤ 2 and p ≥ 5, and that a nonabelian finite simple Sylow-
metacyclic group belongs to the set {A7,M11,PSL(2, p

n) for n ≤ 2 and pn 6= 2, 3}
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([CS, Lemma 1.5]). In 1993, Fein, Saltman, and Schacher proved that any finite
Sylow-metacyclic group that appears as a Galois group over Q is Q(t)-admissible
[FSS].

Here is a list of known nonsolvable Q-admissible groups and the papers in which
the results appear: A5 = PSL(2, 4) = PSL(2, 5) ([GoS79]); A6 = PSL(2, 9) and A7

([FeV], [ScSo]); SL(2, 5) ([FeFe]); the double covers Ã6 = SL(2, 9) and Ã7 ([Fe94]);
PSL(2, 7) and PSL(2, 11) ([AlSc]); and SL(2, 11) ([Fe02]). In some cases these
groups are known to be F -admissible in more general circumstances. For example,
the condition “2 has at least two prime divisors in F or F does not contain

√
−1”

is necessary and sufficient for the F -admissibility of the groups SL(2, 5) ([FeFe]);
A6 and A7 ([ScSo]), and PSL(2, 7) ([AlSc]). Feit proved PSL(2, 11) is F -admissible
over all number fields in [Fe04]. Problem 11.2 for PSL(2, 13) remains open.

Interestingly, an analog of the Q-admissibility conjecture was recently proved
by Harbater, Hartmann, and Krashen for the function field of a curve over a dis-
cretely valued field with algebraically closed residue field, using patching machinery
[HHK].

11.B. SK1 of central simple algebras

For a central simple F -algebra A, write SL1(A)(F ) for the elements of A with
reduced norm 1 and

SK1(A) := SL1(A)(F )/[A×, A×].

This group depends only on the Brauer class of A [Dr, p. 160]. If A is not divi-
sion, then SK1(A) is the Whitehead group of the linear algebraic group SL1(A)
appearing in the Kneser–Tits problem, see [Ti78] and [Gi].

The basic question is: What is this group? It is always abelian (obviously) and
torsion with period dividing the index of A [Dr, p. 157, Lemma 2]. It was for a long
time an open question (called the Tannaka–Artin problem) whether it is always
zero. For example, Wang proved in [Wang] that it is zero if the index of A is
square-free. Then in [Pl] Platonov exhibited a biquaternion algebra with nonzero
SK1; reworked versions of this example can be found also in [KMRT] and [Dr, §24].
Moreover, every countable abelian torsion group of finite exponent — e.g., a finite
abelian group — is SK1(A) for some algebra A over some field.

One can also consider SK1 simultaneously over all extensions of F , which is
connected with the structure of SLr(A) as a variety:

Theorem 11.3. For a central simple F -algebra A, SK1(A ⊗ L) = 0 for every
extension L/F if and only if SLr(A) is retract rational for every (resp., some)
r ≥ 2.

The “if” direction can be found in [Vo, p. 186]. The full theorem amounts to
combining the results from ibid. with [Gi, Theorem 5.9]. Gille’s theorem further-
more shows that the conditions are equivalent to the abstract group SLr(A)(L)
being “projectively simple” for every extension L/F and every r ≥ 2.

The main problem from this point of view is to prove the following converse to
Wang’s result:
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Conjecture 11.4 (Suslin [Sus, p. 75]). If SK1(A ⊗ L) = 0 for every extension
L/F , then the index of A is square-free.

The main known result on this conjecture is due to Merkurjev in [M93] and
[M06]: If 4 divides the index of A, then SK1(A⊗ L) 6= 0 for some L/F .

11.C. Relative Brauer groups

Let F be a field with nontrivial Brauer group. Which subgroups of the Brauer
group of F are algebraic relative Brauer groups; i.e., of the form Br(K/F ) for some
algebraic field extension K of F ? Which subgroups of the Brauer group of F are
abelian relative Brauer groups; i.e., of the form Br(K/F ) for some abelian field
extension K of F ?

In particular, if n > 1 when is the n-torsion subgroup nBr(F ) of Br(F ) an
algebraic (resp. abelian) relative Brauer group?

It is conjectured that if F is finitely generated (and infinite), then nBr(F ) is an
abelian relative Brauer group for all n if and only if F is a global field.

What is known

If F is a global field, then nBr(F ) is an abelian relative Brauer group for all n
([KS03]; [Po]; [KS06]). The conjecture above is that the converse holds. So far
the following is known [PoSW]: if ` is a prime different from the characteristic of
F and F contains the `2 roots of unity, then the conjecture holds for n = `, i.e.,
there is no abelian extension K/F such that `Br(F ) = Br(K/F ).

11.D. The Brumer–Rosen conjecture

Amongst the first examples one sees, probably the fields R or iterated Laurent
series R((x1))((x2)) · · · ((xn)) are the only ones whose Brauer group is nonzero
and finite. This leads to the following naive question:

Problem 11.5. For which natural numbers n is there a field F such that |Br(F )|=
n?

Fein and Schacher [FS] noted that every power of 2 can occur. The following,
finer conjecture would imply that these are the only possibilities. Specifically, for
any field F , we can decompose Br(F ) into a direct sum of its p-primary components
Br(F )p and ask if the following holds:

Conjecture 11.6 (Brumer–Rosen [BR]). For a given field F and each prime p,
one of the following holds:

(a) Br(F )p = 0.
(b) Br(F )p contains a nonzero divisible subgroup.
(c) p = 2 and Br(F )2 is an elementary abelian 2-group.

Some remarks:

(1) In contrast with the case for fields covered by this conjecture, every finite
abelian group can be obtained as the Brauer group of some commutative
ring [Ford].

(2) Every divisible torsion abelian group is the Brauer group of some field,
see [M85]. (Interestingly, this paper does not appear in MathSciNet, is
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not listed in the journal’s table of contents, and has apparently not been
translated into English.)

(3) Br(F )2 is an elementary abelian 2-group if and only if the cup product
map ? · (−1) : H2(F, µ2) → H3(F, µ⊗2

2 ) is an injection [LLT, Cor. A4].

“Many” cases of the conjecture are known:

• If p = charF . In this case, Br(F )p is p-divisible by Witt’s theorem [Dr,
p. 110].

• If p = 2 or 3. These are Theorem 3 and Corollary 2 in [M83].
• If p is odd and there is a division algebra of degree p that is cyclic. This

is Theorem 2 in [M83]. This gives a connection between the Brumer–Rosen
conjecture and Problems 1.1 and 3.1.

• If p = 5 or F contains a primitive pth root of unity. These follow from the
previous bullet, because in these cases the p-torsion in Br(F ) is generated by
cyclic algebras of degree p.

Clearly, Merkurjev has largely settled the conjecture, in the same sense that the
Merkurjev–Suslin theorem settled a large portion of Problem 3.1 on generation by
cyclic algebras. The smallest open case is p = 7, and this case would be settled by
a “yes” answer to Problem 3.2. Does there exist a field with Brauer group Z/7?

We remark that Fein and Schacher’s main result in [FS] was that “many” of
the possibilities predicted by Brumer and Rosen actually occur: every countable
abelian torsion group of the form D⊕V for D divisible and V a vector space over
F2 occurs as the Brauer group of some algebraic extension of Q. Efrat [Ef] gives
general criteria on the field F for Br(F )2 to be finite and nonzero.

11.E. Invariants of central simple algebras

Once one is interested in central simple F -algebras of degree n— equivalently,
elements of H1(F,PGLn)— it is natural to want to know the invariants of PGLn

in the sense of [GMS] with values in, say, mod-2 Galois cohomology H i(−,Z/2Z)
or the Witt ring W (−). (In this subsection, we assume for simplicity that the
characteristic of F does not divide 2n.)

Note that this problem is related to Problem 5.1: If PGLn has a nonconstant
invariant that is unramified in the sense of [GMS, p. 87], then the center of generic
matrices Z(F, n) from Section 5 is not a rational extension of F , see ibid., page
87. There are no nonconstant unramified invariants with values in H i(−,Gm) for
i ≤ 3 by [S85] (for i = 2) and [S97b] (for i = 3).

This problem is also related to essential dimension as in Section 6, because coho-
mological invariants provide lower bounds on essential dimension. Specifically: If F
is algebraically closed and there is a nonzero invariant H1(−,PGLn) → H i(−, C)
for some finite Galois module C, then ed(PGLn) ≥ i by [GMS, p. 32].

What is known

The case n = 2 concerns quaternion algebras and the invariants are determined in
[GMS, pp. 43, 66]. For n an odd prime, there are no nonconstant Witt invariants
(for trivial reasons) and the mod-n cohomological invariants are linear combina-
tions of constants and the connecting homomorphism H1(−,PGLn) → H2(−, µn),
see [G, §6.1].
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The case n = 4 is substantial, but solved. Rost, Serre, and Tignol [RST] con-
struct invariants of algebras of degree 4, including one that detects whether an
algebra is cyclic. (See [T06] for analogous results in characteristic 2.) Rost proved
that, roughly speaking, the invariants from [RST] generate all cohomological in-
variants of algebras of degree 4 — see [Ba, §3.4] for details.

The next interesting case is n = 8. Here, Baek and Merkurjev [BaM09] solve
the subproblem of determining the invariants of algebras of degree 8 and period 2,
i.e., of GL8/µ2. Beyond this, not much is known.
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