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Abstract. It is well known that the category of real Lie supergroups is equivalent
to the category of the so-called (real) Harish-Chandra pairs, see [DM], [Kost], [Kosz].
That means that a Lie supergroup depends only on the underlying Lie group and its Lie
superalgebra with certain compatibility conditions. More precisely, the structure sheaf
of a Lie supergroup and the supergroup morphisms can be explicitly described in terms
of the corresponding Lie superalgebra. In this paper we give a proof of this result in the
complex-analytic case. Furthermore, if (G,OG) is a complex Lie supergroup and H ⊂ G
is a closed Lie subgroup, i.e., it is a Lie subsupergroup of (G,OG) and its odd dimension
is zero, we show that the corresponding homogeneous supermanifold (G/H,OG/H) is
split. In particular, any complex Lie supergroup is a split supermanifold.

It is well known that a complex homogeneous supermanifold may be nonsplit (see,
e.g., [OS1]). We find here necessary and sufficient conditions for a complex homogeneous
supermanifold to be split.

1. Preliminaries

We will use the word “supermanifold” in the sense of Berezin and Leites (see
[BL], [L]). Throughout we will be interested in the real or complex-analytic version
of the theory, denoting by K the ground field R or C. Let (M,OM ) be a super-
manifold. The underlying complex manifoldM is called the reduction of (M,OM ).
We denote by JM ⊂ OM the subsheaf of ideals generated by odd elements of
the structure sheaf. The sheaf OM/JM is naturally identified with the structure
sheaf FM of M . The natural homomorphism OM → FM will be denoted by
f 7→ fred. A morphism φ : (M,OM ) → (N,ON ) of supermanifolds will be denoted
by φ = (φred, φ

∗), where φred :M → N is the corresponding mapping of the reduc-
tions and φ∗ : ON → (φred)∗(OM ) is the homomorphism of the structure sheaves.
We denote by v(M,OM ) the Lie superalgebra of vector fields on (M,OM ). If
x ∈M and mx is the maximal ideal of the local superalgebra (OM )x, then the vec-
tor superspace Tx(M,OM ) = (mx/m

2
x)

∗ is the tangent space to (M,OM ) at x ∈M .
From the inclusions v(mx) ⊂ (OM )x and v(m2

x) ⊂ mx, where v ∈ v(M,OM ), it
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follows that v induces an even linear mapping evx(v) : mx/m
2
x → (OM )x/mx ' C.

In other words, evx(v) ∈ Tx(M,OM ), and so we obtain an even linear map

evx : v(M,OM ) → Tx(M,OM ). (1)

Let us take Yx ∈ Tx(M,OM ). There is a neighborhood (U,OM ) of the point x
and a vector field Y ∈ v(U,OM ) such that evx(Y ) = Yx. We may regard Yx as a
linear function on (OM )x. Namely, Yx(fx) := (Y (fx))red(x), where fx ∈ (OM )x.
It is easy to verify that this definition doesn’t depend on the choice of Y .

Let (M,FM ) be a complex-analytic, smooth or real-analytic manifold and let
EM be a (holomorphic, smooth or real-analytic) vector bundle overM . Denote by
EM the sheaf of (holomorphic, smooth or real-analytic) sections of EM . We get the
supermanifold (M,

∧
FM

EM ) of the corresponding class. A supermanifold (M,OM )
is called split ifOM '

∧
FM

EM for a certain vector bundle EM of the corresponding
class. It is known that any real (smooth or real-analytic) supermanifold is split.

We may consider the supermanifold (pt,K) of dimension (0|0), where pt is a
point. If (M,OM ) is an arbitrary supermanifold, then for any point x ∈ M we
denote by δx : (pt,K) → (M,OM ) the morphism, defined in the following way:

(δx)red(pt) = x, δ∗x(f) =

{
fred(x), if x ∈ U ,
0, if x /∈ U ,

where f ∈ OM (U) and U ⊂M is open.

Definition 1. A Lie supergroup is a group object in the category of superman-
ifolds, i.e., a supermanifold (G,OG), for which the following three morphisms
are defined: µ : (G,OG) × (G,OG) → (G,OG) (the multiplication morphism),
ι : (G,OG) → (G,OG) (the inversion morphism), ε : (pt,K) → (G,OG) (the iden-
tity morphism). Moreover, these morphisms should satisfy the usual conditions,
modeling the group axioms:

(1) µ ◦ (µ× id) = µ ◦ (id× µ);

(2) µ ◦ (ε× id) = id, µ ◦ (id× ε) = id; and

(3) µ ◦ (id × ι) ◦ diag = ε, µ ◦ (ι × id) ◦ diag = ε, where diag : (G,OG) →
(G,OG)× (G,OG) is the diagonal morphism.

The underlying manifold G of a Lie supergroup is a (real or complex) Lie group.
The element e = εred(pt) is the identity element of G. Let (G,OG), (H,OH) be
two Lie supergroups and µG, µH the respective multiplication morphisms. A
morphism Ψ : (G,OG) → (H,OH ) is called a homomorphism of Lie supergroups

if Ψ ◦ µG = µH ◦ (Ψ × Ψ). The corresponding mapping Ψred : G → H is a
homomorphism of Lie groups.

Definition 2. An action of a Lie supergroup (G,OG) on a supermanifold (M,OM )
is a morphism ν : (G,OG)× (M,OM ) → (M,OM ), such that the following condi-
tions hold:

• ν ◦ (µ× id) = ν ◦ (id× ν); and
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• ν ◦ (ε× id) = id.

In this case νred is the action of G on M .

We will denote by g the Lie superalgebra of (G,OG). By definition g is the
subalgebra of v(G,OG), consisting of all right invariant vector fields on (G,OG).
(A vector field Y on (G,OG) is called right invariant if (Y ⊗ id) ◦ µ∗ = µ∗ ◦ Y .) It
is well known that any right invariant vector field Y has the form

Y = (X ⊗ id) ◦ µ∗ (2)

for a certain X ∈ Te(G,OG) and the map X 7→ (X ⊗ id) ◦ µ∗ is an isomorphism
of the vector space Te(G,OG) onto g, see [Var, Theorem 7.1.1]. We will identify g

and Te(G,OG) using this isomorphism.
Let ν = (νred, ν

∗) : (G,OG)× (M,OM ) → (M,OM ) be an action. Then there is
a homomorphism of the Lie superalgebras ν : g → v(M,OM ), given by the formula

X 7→ (X ⊗ id) ◦ ν∗. (3)

As in [O1], we use the following definition of a transitive action.

Definition 3. An action ν is called transitive if νred is transitive and the mapping
evx ◦ ν is surjective for all x ∈M . (The map evx is given by (1).) In this case the
supermanifold (M,OM ) is called (G,OG)-homogeneous. A supermanifold (M,OM )
is called homogeneous, if it possesses a transitive action of a certain Lie supergroup.

Let us consider the following compositions of the morphisms for any g ∈ G:

lg : (G,OG) = (g,K)× (G,OG)
δg×id
−−−−→ (G,OG)× (G,OG)

µ
−→ (G,OG),

rg : (G,OG) = (G,OG)× (g,K)
id×δg
−−−−→ (G,OG)× (G,OG)

µ
−→ (G,OG).

They are called left and right translations by g, respectively. Denote ωg := lg◦rg−1 ,
g ∈ G. The formula AdG(g) := (dωg)e defines a representation AdG : G→ Aut (g),
called the adjoint representation of the Lie group G in g.

Let (M,OM ) be a supermanifold. A subsupermanifold of (M,OM ) is a super-
manifold (N,ON ) together with a morphism ϕ : (N,ON ) → (M,OM ) such that
ϕred : N →M is a homeomorphism on the subset ϕred(N) ⊂M endowed with the
induced topology and (dϕ)p is injective at every point p ∈ M . In this case we will
sometimes use the notation (M,OM ) ⊂ (N,ON ).

Let (G,OG) be a Lie supergroup. We say that a subsupermanifold ϕ : (H,OH)→
(G,OG) is a Lie subsupergroup in (G,OG) if (H,OH) possesses a Lie super-
group structure, such that ϕ is a homomorphism of the Lie supergroups. In this
case we identify the Lie superalgebra h of (H,OH) with the Lie subsuperalgebra
(dϕ)e(h) ⊂ g.

Let us introduce the category of (super) Harish-Chandra pairs (see [DM]). A
Harish-Chandra pair is a pair (G, g) that consists of a Lie group G and a Lie
superalgebra g = g0̄ ⊕ g1̄, where g0̄ is the Lie algebra of G, provided with a
representation αG of G in g such that:

• αG preserves the parity and induces the adjoint representation of G in g0̄;
• the differential (dαG)e at the identity e ∈ G coincides with the adjoint rep-
resentation ad of g0̄ in g.
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Let (G, g) and (H, h) be two Harish-Chandra pairs. A morphism of (G, g) to
(H, h) is a pair of homomorphisms Φ : G → H , ϕ : g → h with the following
compatibility conditions:

• (dΦ)e = ϕ |g0̄
; and

• ϕ ◦ αG(g) = αH(Φ(g)) ◦ ϕ for all g ∈ G.

It is clear how to associate a Harish-Chandra pair to a given Lie supergroup
(G,OG). Indeed, we may take the underlying Lie group G with the Lie super-
algebra g of (G,OG) equipped with the adjoint representation αG = AdG. Fur-
thermore, if Ψ : (G,OG) → (H,OH ) is a homomorphism of Lie supergroups, then
(Ψred, (dΨ)e) is a morphism of the Harish-Chandra pairs (G, g) → (H, h). This
correspondence is a functor from the category of Lie supergroups to the category
of Harish-Chandra pairs. From Theorem 3.5 and Remark 3.5.2 in [Kost] it can
be deduced that this functor is an equivalence of categories in the real case. The
proof in [Kost] uses the fact that the C∞-supermanifold can be reconstructed from
the algebra of global sections of its structure sheaf (see [Kost, Remark 2.14.2]).
Since such reconstruction is in general impossible for holomorphic supermanifolds,
this argument doesn’t seem to immediately carry over to the holomorphic case.
We will give a different proof of the equivalence that works both in the real and
holomorphic cases.

Let us denote the category of Harish-Chandra pairs by HCP and the category
of Lie supergroups by SLG.

Acknowledgment. The author is grateful to A. L. Onishchik, P. Heinzner, A. T.
Huckleberry and anonymous referees for useful comments.

2. Equivalence between HCP and SLG

In this section we will prove that the categories HCP and SLG are equivalent.
We denote by ObC the set of objects of a category C and by Hom(X,Y ) the
set of morphisms X → Y for two objects X,Y ∈ ObC. First, we shall describe a
functor F from the category HCP to SLG that was constructed by Koszul in [Kosz].
Further, we show that for any object Y ∈ ObSLG there exists X ∈ ObHCP
such that F (X) is isomorphic to Y . Finally, we prove that F : Hom(X,Y ) →
Hom(F (X), F (Y )) is a bijection for every X,Y ∈ ObHCP. This will imply that
F determines an equivalence of our categories (see [TS]).

2.1. The construction of F

If a (real or complex) Harish-Chandra pair (G, g) is given, then we can construct
a Lie supergroup in the following way (see [BS], [Kosz]). Let U(g) be the universal
enveloping superalgebra of g (see [S]). It is clear that U(g) is a U(g0̄)-module,
where U(g0̄) is the universal enveloping algebra of g0̄. The natural action of g0̄ on
the sheaf FG gives rise to a structure of the U(g0̄)-module on FG(U) for any open
set U ⊂ G. Putting

ÔG(U) = HomU(g0̄)(U(g),FG(U))

for every open U ⊂ G, we get a sheaf ÔG of Z2-graded vector spaces (here we
assume that the functions from FG(U) are even).

268



LIE SUPERGROUPS AND SPLIT HOMOGENEOUS SUPERMANIFOLDS

As a consequence of the graded version of the theorem of Poincaré, Birkhoff
and Witt, we obtain that U(g0̄)⊗

∧
(g1̄) ' U(g) as U(g0̄)-modules (see [Kosz], [S]).

The isomorphism is given by the formula X ⊗ Y 7→ X · γ(Y ), where

γ :
∧

(g1̄) → U(g), X1 ∧ · · · ∧Xr 7→
1

r!

∑

σ∈Sr

(−1)|σ|Xσ(1) · · ·Xσ(r). (4)

The enveloping superalgebra U(g) has a Hopf superalgebra structure (see [S]).
Indeed, the map

g → U(g)⊗ U(g), X 7→ X ⊗ 1 + 1⊗X,

can be extended to a comultiplication map 4 : U(g) → U(g) ⊗ U(g), and the
antipode map S : U(g) → U(g) is given by

S(X) = −X, S(1) = 1, S(Y · Z) = (−1)p(Y )p(Z)S(Z) · S(Y ),

where X ∈ g, Y, Z ∈ U(g) and p(V ) is the parity of V . We can define a multipli-

cation in each ÔG(U), where U ⊂ G is open, by

f1 · f2 := MultFG ◦ (f1 ⊗ f2) ◦ 4.

Here f1, f2 ∈ ÔG(U) and by MultFG is denoted the product in the sheaf FG. Note

that, for homogeneous X,Y ∈ U(g) and f1, f2 ∈ ÔG(U), we have

(f1 ⊗ f2)(X ⊗ Y ) = (−1)p(f2)p(X)f1(X)⊗ f2(Y ). (5)

Furthermore, U(g) is super-cocommutative, i.e., T s ◦ 4 = 4, where

T s(X ⊗ Y ) = (−1)p(X)p(Y )Y ⊗X. (6)

Using (5) and (6) we get f1 · f2 = (−1)p(f1)p(f2)f2 · f1. Hence, the sheaf ÔG is a
sheaf of commutative associative superalgebras with unit.

Further,
∧
(g1̄) is also a cosuperalgebra with comultiplication defined by

4g1̄
(X) = X ⊗ 1 + 1⊗X, 4g1̄

(X1 ∧ · · · ∧Xr) = 4g1̄
(X1) ∧ · · · ∧ 4g1̄

(Xr),

where X,Xi ∈ g1̄. As above, this permits us to regard Hom(
∧
(g1̄),FG) as a sheaf

of superalgebras which we may identify with the sheaf of superalgebras FG⊗
∧
(g∗1̄).

Moreover, the homomorphism γ given by (4) is a homomorphism of cosuperalge-

bras. It follows that the mapping ÔG → Hom(
∧
(g1̄),FG), given by f 7→ f ◦γ, is an

isomorphism of sheaves of superalgebras. Hence, ÔG ' FG ⊗
∧
(g∗1̄), and (G, ÔG)

is a supermanifold. Clearly, it is split and corresponds to the trivial bundle over
G with the fiber

∧
(g∗1̄).

Now we are able to define a structure of a Lie supergroup on (G, ÔG). The
following formulas define the multiplication morphism, the inversion morphism
and the identity morphism, respectively (see [BS]):
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µ∗(f)(X ⊗ Y )(g, h) = f(X · αG(g)(Y ))(gh),

ι∗(f)(X)(g) = f(αG(g
−1)(S(X)))(g−1),

ε∗(f) = f(1)(e).

(7)

Here X,Y ∈ U(g), f ∈ ÔG, g, h ∈ G, and we identify the enveloping superalgebra
U(g ⊕ g) with the tensor product U(g) ⊗ U(g). The group axioms can be easily

verified, using the Hopf (super)algebra axioms. Note that (G, ÔG) corresponds to
the Harish-Chandra pair (G, g) and αG = AdG.

Let (Φ, ϕ) be a morphism of Harish-Chandra pairs (G, g) → (H, h). Then we

can define a morphism F ((Φ, ϕ)) = Ψ : (G, ÔG) → (H, ÔH) by the following
formula:

Ψred = Φ, Ψ∗(f)(X)(g) = f(ϕ(X))(Φ(g)), f ∈ ÔH , X ∈ U(g), g ∈ G. (8)

Let us prove that Ψ is a homomorphism of Lie supergroups. We should show that
Ψ ◦ µG = µH ◦ (Ψ × Ψ), where µG and µH are the multiplication morphisms of

(G, ÔG) and (H, ÔH) respectively. By definition, we have

µ∗
G ◦Ψ∗(f)(X ⊗ Y )(g, h) = Ψ∗(f)(αG(h

−1)(X) · Y )(gh)

= f(ϕ(αG(h
−1)(X) · Y ))(Φ(gh))

and

(Ψ∗ ×Ψ∗) ◦ µ∗
H(f)(X ⊗ Y )(g, h) = µ∗

H(f)(ϕ(X)⊗ ϕ(Y ))(Φ(g),Φ(h))

= f(αH(Φ(h−1))(ϕ(X)) · ϕ(Y ))(Φ(g)Φ(h)).

Now our assertion follows from the definition of a morphism of Harish-Chandra
pairs.

2.2. Isomorphisms of objects

Let (G,OG) be a Lie supergroup and g the corresponding Lie superalgebra. We
want to prove that (G,OG) is isomorphic to the Lie supergroup F (P ) which cor-
responds to the Harish-Chandra pair P = (G, g). Actually, we are going to prove
a more general assertion, and therefore we first extend the functor F to a wider
class of objects.

Let H be a closed Lie subgroup of G. As above, putting

ÔG/H(U) = HomU(g0̄)(U(g),FG/H(U))

for every open U ⊂ G/H , we get a sheaf of superalgebras ÔG/H . By the same

argument as above, (G/H, ÔG/H) is a split supermanifold and ÔG/H is isomorphic

to FG/H ⊗
∧
(g∗1̄) (see [Kosz]). The isomorphism ÔG/H → Hom(

∧
(g1̄),FG) '

FG/H ⊗
∧
(g∗1̄) is again given by the formula f 7→ f ◦ γ, where γ is defined by (4).
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Further, let ν : (G,OG) × (M,OM ) → (M,OM ) be a transitive action. For
simplicity we will denote the vector field (X⊗ id)◦ν∗ also by X . Denote by H the
stabilizer of a certain point x ∈M by the action νred. Our next aim is to define a
morphism of supermanifolds (G/H, ÔG/H) → (M,OM ). We will use the natural

correspondence X 7→ X̂ between even vector fields on (M,OM ) and vector fields

on M which is completely determined by the relation X̂(fred) = (X(f))red for all
f ∈ OM . Let f ∈ OM (U), where U is an open set in M . Denote by β the natural
biholomorphic mapping G/H → M , gH 7→ gx. Let us define the linear mapping
ΦG/H(f) : U(g) → FG/H(β

−1(U)) by

ΦG/H(f)(X) := (−1)p(X)p(f)β∗(X(f))red, (9)

where X ∈ U(g) and X and f are homogeneous. If X ∈ g0̄, denote by X the

corresponding vector field on G/H . Note that β∗ ◦ X̂ = X ◦ β∗. The mapping
ΦG/H(f) is a homomorphism of U(g0̄)-modules. In fact, for any Xi ∈ g0̄, Yj ∈ g1̄,
we have

ΦG/H(f)(X1 · · ·Xr · Y1 · · ·Yq) = (−1)p(Y1···Yq)p(f)β∗((X1 · · ·Xr · Y1 · · ·Yq)(f))red

= (−1)p(Y1···Yq)p(f)β∗(X̂1 · · · X̂r)[(Y1 · · ·Yq(f))red]

= (−1)p(Y1···Yq)p(f)(X1 · · ·Xr)β
∗[(Y1 · · ·Yq(f))red]

= (X1 · · ·Xr)(ΦG/H(f)(Y1 · · ·Yq)).

Proposition 1. ΦG/H : OM → ÔG/H is a homomorphism of sheaves of superal-

gebras and (β,ΦG/H) : (G, ÔG/H ) → (M,OM ) is a morphism of supermanifolds.

To prove Proposition 1, we need the following two lemmas.

Lemma 1. Let X1, . . . , Xr ∈ g1̄, then

4(X1 · · ·Xr) =
∑

a+b=r

(−1)|τ |Xk1 · · ·Xka ⊗Xl1 · · ·Xlb , (10)

where k1 < · · · < ka, l1 < · · · < lb and τ is the permutation such that

τ(k1, . . . , ka, l1, . . . , lb) = (1, . . . , r).

Proof. For r = 1 the formula is just the definition of 4. Further, using induction,
we get

4(X1 · · ·Xr+1) = 4(X1 · · ·Xr) · 4(Xr+1)

=
∑

a+b=r

(−1)|τ |Xk1 · · ·Xka ⊗Xl1 · · ·Xlb) · (Xr+1 ⊗ 1 + 1⊗Xr+1)

=
∑

a+b=r

(−1)|τ |+bXk1 · · ·Xka ·Xr+1 ⊗Xl1 · · ·Xlb

+
∑

a+b=r

(−1)|τ |Xk1 · · ·Xka ⊗Xl1 · · ·Xlb ·Xr+1

=
∑

a′+b′=r+1

(−1)|τ
′|Xk1 · · ·Xka′ ⊗Xl1 · · ·Xlb′ ,
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where k1 < · · · < ka′ , l1 < · · · < lb′ and

τ ′(k1, . . . , k
′
a, l1, . . . , l

′
b) = (1, . . . , r + 1). �

Lemma 2. Let X1, . . . , Xr ∈ g1̄ and f1, f2 ∈ OM , then

(X1 · · ·Xr)(f1f2) =
∑

a+b=r

(−1)|τ |+p(f1)b(Xk1 · · ·Xka)(f1)(Xl1 · · ·Xlb)(f2), (11)

where k1 < · · · < ka, l1 < · · · < lb and τ(k1, . . . , ka, l1, . . . , lb) = (1, . . . , r).

Proof. For r = 1 the formula is simply the Leibniz rule. Again, using induction,
we get

(X1 · · ·Xr+1)(f1f2) = X1(
∑

a+b=r

(−1)|τ |+p(f1)b(Xk1 · · ·Xka)(f1)(Xl1 · · ·Xlb)(f2))

=
∑

a+b=r

(−1)|τ |+p(f1)b(X1 ·Xk1 · · ·Xka)(f1)(Xl1 · · ·Xlb)(f2)

+ (−1)|τ |+p(f1)b+p(f1)+a(Xk1 · · ·Xka)(f1)(X1 ·Xl1 · · ·Xlb)(f2)

=
∑

a′+b′=r+1

(−1)|τ
′|+p(f1)b

′

(Xk1 · · ·Xka′ )(f1)(Xl1 · · ·Xlb′ )(f2),

where k1 < · · · < ka′ , l1 < · · · < lb′ and

τ ′�(k1, . . . , k
′
a, l1, . . . , l

′
b) = (1, . . . , r + 1). �

Proof of Proposition 1. We should check the equality

(ΦG/H(f1) · ΦG/H(f2))(X) = (ΦG/H(f1f2))(X)

for X ∈ U(g), f1, f2 ∈ OM . Without loss of generality we may assume that
X = X1 · · ·Xr, Xi ∈ g1̄, and that f1, f2 are homogeneous. Using (10), we get

(ΦG/H(f1) · ΦG/H(f2))(X1 · · ·Xr)

= MultFG(ΦG/H(f1)⊗ ΦG/H(f2))(
∑

a+b=r

(−1)|τ |Xk1 · · ·Xka ⊗Xl1 · · ·Xlb)

=
∑

a+b=r

(−1)|τ |+p(f2)aΦG/H(f1)(Xk1 · · ·Xka)ΦG/H(f2)(Xl1 · · ·Xlb)

=
∑

a+b=r

(−1)|τ |+p(f2)a(−1)p(f1)a+p(f2)bβ∗[(Xk1 · · ·Xka)(f1)(Xl1 · · ·Xlb)(f2)]red

=
∑

a+b=r

(−1)|τ |+p(f2)r+p(f1)aβ∗[(Xk1 · · ·Xka)(f1)(Xl1 · · ·Xlb)(f2)]red.
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On the other hand, by (11) we have

(ΦG/H(f1f2))(X1 · · ·Xr)

= (−1)r(p(f1)+p(f2))β∗((X1 · · ·Xr)(f1f2))red

= (−1)r(p(f1)+p(f2))
∑

a+b=r

(−1)|τ |+p(f1)bβ∗[(Xk1 · · ·Xka)(f1)(Xl1 · · ·Xlb)(f2)]red

= β∗[(Xk1 · · ·Xka)(f1)(Xl1 · · ·Xlb)(f2)]red.

The equality proves the first assertion of Proposition 1. The second assertion
follows from the first one. The proof is complete. �

We may consider the special case when the odd dimension of (M,OM ) is equal
to the odd dimension of (G,OG). Later we will see that this condition is equivalent
to the following one:

dim(H,OH ) = dimH |0,

where (H,OH) is the stabilizer of x (see below). In other words, (H,OH) =
(H,FH) is an ordinary Lie subgroup of G = (G,FG).

Proposition 2. The morphism (β,ΦG/H) : (G/H, ÔG/H) → (M,OM ) is a sub-

mersion. If, in addition, dim(M,OM ) = dimM | dim g1̄, then (β,ΦG/H) is an

isomorphism of supermanifolds. In particular, all complex homogeneous super-

manifolds of this kind are split.

Proof. Let y ∈ M . Denote by my and m̂y the maximal ideals of the local superal-

gebras (OM )y and (ÔG/H)y respectively. It is easy to see that

m̂y = {h ∈ (ÔG/H )y | h(1)(y) = 0},

m̂2
y = {h ∈ m̂y | h(X)(y) = 0 for allX ∈ g}.

Note that ΦG/H(my) ⊂ m̂y. Let us take f ∈ my \m
2
y. The action ν is transitive,

hence there existsX ∈ g such that (X(f))red(y) 6= 0. Therefore, ΦG/H(f)(X)(y) 6=
0 and ΦG/H(f) ∈ m̂y \ m̂

2
y. It follows that the induced map my/m

2
y → m̂y/m̂

2
y is

injective. Hence, the dual map (m̂y/m̂
2
y)

∗ → (my/m
2
y)

∗ (or the differential of
(β,ΦG/H) at the point y) is surjective. Hence (β,ΦG/H) is a submersion. Further,
since

dim(M,OM ) = dim(G/H, ÔG/H) = dimM | dim g1̄,

we get that the differential is an isomorphism at every point y ∈ M . Hence,
(β,ΦG/H) is a local isomorphism (see [L, Inverse Function Theorem]). But the
mapping β is bijective, hence (β,ΦG/H) is an isomorphism. �

In the case when (M,OM ) = (G,OG) and ν = µ we get

Corollary. All complex supergroups are split supermanifolds.

This fact also follows from the results of [Mol]. Note that not all complex
homogeneous supermanifolds are split. Some examples can be found in [OS1].
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Now we return to the correspondence between Lie supergroups and Harish-
Chandra pairs. In the case when (M,OM ) = (G,OG), formula (9) defines a

homomorphism of sheaves of superalgebras ΦG : OG → ÔG if we put x = e and
β = id. Define by ΦG × ΦG the second component of the morphism

(id,ΦG)× (id,ΦG) : (G, ÔG)× (G, ÔG) → (G,OG)× (G,OG).

Lemma 3. We have ΦG × ΦG = ΦG×G.

Proof. It is sufficient to check the equality

(ΦG × ΦG)|pr∗i (OG) = ΦG×G|pr∗i (OG), i = 1, 2,

where pri : (G,OG) × (G,OG) → (G,OG) is the projection onto the ith factor.

Let p̂ri : (G, ÔG) × (G, ÔG) → (G, ÔG) be also the projection onto the ith factor

and h ∈ ÔG. For example, p̂r∗1(h) has the following form as a U((g⊕ g)0̄)-module
homomorphism of U(g⊕ g) ' U(g)⊗ U(g) to FG×G:

p̂r∗1(h)(X
r · Y q)(g1, g2) =

{
0, if q 6= 0,
h(Xq)(g1), if q = 0.

(12)

Here Xr := X1 · · ·Xr, Y
q := Y1 · · ·Yq , where Xi are from the first copy of g and

Yj are from the second one.
Let us take f ∈ (OG)̄i. By definition of ΦG × ΦG and by (12) we get

(ΦG × ΦG)(pr
∗
1(f))(X

r · Y q)(g1, g2)

= p̂r∗1(ΦG(f))(X
r · Y q)(g1, g2) =

{
0, if q 6= 0,
ΦG(f)(X

r)(g1), if q = 0.

On the other hand,

ΦG×G(pr
∗
1(f))(X

r · Y q)(g1, g2) = (−1)p(X
r·Y q)p(f)[Xr · Y q(pr∗1(f))]red(g1, g2)

=

{
0, if q 6= 0,
(−1)p(X

r)p(f)(Xr(f))red(g1), if q = 0.

This completes the proof. �

Proposition 3. (id,ΦG) : (G, ÔG) → (G,OG) is an isomorphism of Lie super-

groups.

Proof. Due to Lemma 3, we should check that (ΦG×G ◦ µ∗)(f) = (µ̂∗ ◦ ΦG)(f)

for all f ∈ OG, where µ̂ is the multiplication morphism for (G, ÔG). Let Xr

and Y q be as in the proof of Lemma 3. Recall that in Section 1 the morphism
δx : (pt,K) → (M,OM ) was defined. Obviously, we have

ΦG×G(µ
∗(f))(Xr · Y q)(g1, g2) = (−1)p(X

r·Y q)p(f)(δ∗g1 ⊗ δ∗g2) ◦X
r · Y q

◦ µ∗(f) = (−1)p(X
r·Y q)p(f)(δ∗g1 ◦X

r ⊗ δ∗g2 ◦ Y
q) ◦ µ∗(f), g1, g2 ∈ G.

(13)
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We will use the following equalities:

(r∗g1 ⊗ id) ◦ µ∗ = (id⊗ r∗g1 ◦ ω
∗
g1) ◦ µ

∗,

r∗gi ◦X = X ◦ r∗gi , i = 1, 2;

δ∗g2 ◦ r
∗
g1 = δ∗g2g1 , δ∗g2g1 ◦ ω

∗
g1 = δ∗g1g2 .

(14)

Here g1, g2 ∈ G, X ∈ U(g). By (14) we get

(δ∗g1 ◦X
r ⊗ δ∗g2 ◦ Y

q) ◦ µ∗(f) = (δ∗e ◦ r
∗
g1 ◦X

r ⊗ δ∗g2 ◦ Y
q) ◦ µ∗(f)

= (δ∗e ◦X
r ⊗ δ∗g2 ◦ Y

q) ◦ (r∗g1 ⊗ id) ◦ µ∗(f)

= (δ∗e ◦X
r ⊗ δ∗g2 ◦ Y

q ◦ r∗g1 ◦ ω
∗
g1) ◦ µ

∗(f)

= (δ∗e ◦X
r ⊗ δ∗g2 ◦ r

∗
g1 ◦ Y

q ◦ ω∗
g1) ◦ µ

∗(f)

= (δ∗e ◦X
r ⊗ δ∗g2g1 ◦ Y

q ◦ ω∗
g1) ◦ µ

∗(f)

= (δ∗e ◦X
r ⊗ δ∗g1g2 ◦ ω

∗
g−1
1

◦ Y q ◦ ω∗
g1) ◦ µ

∗(f)

= (δ∗e ◦X
r ⊗ δ∗g1g2 ◦AdG(g1)(Y

q)) ◦ µ∗(f).

(15)

By induction it is easy to check that

(Y q)(f) = (−1)A(Y q)(δ∗e ◦ Yq ⊗ · · · ⊗ δ∗e ◦ Y1 ⊗ id) ◦ (µq)∗(f), where

A(Y q) = p(Yq−1)p(Yq) + p(Yq−2)p(Yq−1 · Yq) + · · ·+ p(Y1)p(Y2 · · ·Yq).
(16)

Here µq is the multiplication morphism of q + 1 copies of (G,OG). Indeed, for
q = 1, assertion (16) is just the definition of a right invariant vector field. Further,

(Y q)(f) = Y1((−1)A(Y2···Yq)(δ∗e ◦ Yq ⊗ · · · ⊗ δ∗e ◦ Y2 ⊗ id)(µq−1)∗(f))

= (−1)A(Y2···Yq)(−1)p(Y1)p(Y2···Yq)(δ∗e ◦ Yq ⊗ · · · ⊗ δ∗e ◦ Y1 ⊗ id)(µq)∗(f)

= (−1)A(Y q)(δ∗e ◦ Yq ⊗ · · · ⊗ δ∗e ◦ Y1 ⊗ id)(µq)∗(f).

By (16) we have

(δ∗e◦X
r ⊗ δ∗g1g2 ◦AdG(g1)(Y

q)) ◦ µ∗(f)

= (−1)A(Xr)+A(Y q)(δ∗e ◦Xr ⊗ · · · ⊗ δ∗e ◦X1 ⊗ δ∗e ◦AdG(g1)(Yq)⊗ · · ·

⊗ δ∗e ◦AdG(g1)(Y1)⊗ δ∗g1g2)(µ
r+q)∗(f)

= (−1)A(Xr)+A(Y q)+A(Y q ·Xr)(δ∗g1g2 ◦AdG(g1)(Y
q) ◦Xr)(f)

= (−1)A(Xr)+A(Y q)+A(Y q ·Xr)(−1)p(X
r)p(Y q)(δ∗g1g2 ◦X

r ◦AdG(g1)(Y
q))(f)

= (δ∗g1g2 ◦X
r ◦AdG(g1)(Y

q))(f).

On the other hand,

µ∗(Φ(f))(Xr · Y q)(g1, g2) = Φ(f)(Xr ·AdG(g1)(Y
q))(g1g2)

= (−1)p(X
r·Y q)p(f)(δ∗g1g2 ◦X

r · AdG(g1)(Y
q))(f).

This completes the proof. �
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2.3. The bijection between morphisms

Let (G, g) and (H, h) be two Harish-Chandra pairs and let (G, ÔG) and (H, ÔH )
be the corresponding Lie supergroups with multiplication morphisms µG and µH ,
respectively. Let Ψ : (G, ÔG) → (H, ÔH) be a homomorphism of Lie supergroups.
Let Xe ∈ g and X = (Xe ⊗ id) ◦ µ∗

G be the corresponding right invariant vector

field on (G, ÔG) and Y = ((dΨ)eXe ⊗ id) ◦ µ∗
H . Then the vector fields X and Y

are Ψ-related, i.e.,

X(Ψ∗(f)) = Ψ∗(Y (f)), f ∈ ÔH .

Now we are able to prove that Ψ depends only on Ψred and (dΨ)e. Indeed,

[Ψ∗(f)(X)](g) = (−1)p(X)p(f)[X(Ψ∗(f))]red(g)

= (−1)p(X)p(f)[Ψ∗(Y (f))]red(g)

= (−1)p(X)p(f)[Y (f)]red(Ψred(g))

= f((dΨ)eX)(Ψred(g)),

where X ∈ U(g), f ∈ ÔH , g ∈ G. It follows that all homomorphisms of (G, ÔG)

to (H, ÔH) have the form (8) if we put ϕ = (dΨ)e, Φ = Ψred. Hence, the map
F : Hom(X,Y ) → Hom(F (X), F (Y )) is surjective. The injectivity of the map
F : Hom(X,Y ) → Hom(F (X), F (Y )) is obvious.

2.4. The main result

We have proved the following theorem.

Theorem 1. The category of complex Lie supergroups is equivalent to the category

of complex Harish-Chandra pairs.

Theorem 1 implies some important consequences: the existence of a Lie super-
group for a given Lie superalgebra, and the existence of a Lie subsupergroup for
a given Lie subsuperalgebra. (The last assertion we will discuss below.) Using
Theorem 1 these two assertions can be proven in the complex-analytic case as in
[Kost, Corollary to Theorem 3.7 and Theorem 3.8].

Remark. The same method can be used to prove Theorem 1 in the category of
affine algebraic supergroups in the sense of [W].

3. Homogeneous supermanifolds

Suppose that a closed Lie subsupergroup (H,OH) of (G,OG) (this means that
the Lie subgroup H is closed in G) is given. Consider the corresponding coset
superspace (G/H,OG/H) (see [FLV], [Kost]). Denote by µG×H the composition of
the morphisms

(G,OG)× (H,OH) ↪→ (G,OG)× (G,OG)
µ

−→ (G,OG),

by pr1 : (G,OG)× (H,OH) → (G,OG) the projection onto the first factor and by
π the natural mapping G→ G/H , g 7→ gH . Let us take U ⊂ G/H open. Then

OG/H(U) = {f ∈ OG(π
−1(U)) | (µG×H)∗(f) = pr∗1(f)}. (17)
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Denote by ν : (G,OG) × (G/H,OG/H) → (G/H,OG/H) the natural supergroup
action. It is given by ν∗(f) = µ∗(f), where f ∈ OG/H(U) ⊂ OG(π

−1(U)).
A Harish-Chandra pair (H, h) is called a Harish-Chandra subpair of a Harish-

Chandra pair (G, g) if H is a Lie subgroup of G and h is a Lie subsuperalgebra of g,
such that h0̄ = LieH and αH = αG|H . There is a correspondence between Harish-
Chandra subpairs of (G, g) and Lie subsupergroups of (G,OG). (The Lie super-
group (G,OG) corresponds to the Harish-Chandra pair (G, g).) More precisely, let
ϕ : (H,OH) → (G,OG) be a Lie subsupergroup. Then the corresponding Harish-
Chandra pair (H, h) is a Harish-Chandra subpair, becauseH ⊂ G is a Lie subgroup
and h = (dϕ)e ⊂ g is a Lie subalgebra such that h0̄ = LieH and αH = αG|H .
Further, let ϕ : (H,OH) → (G,OG) and ϕ′ : (H ′,OH′ ) → (G,OG) be two Lie
subsupergroups which determine the same Harish-Chandra pair (H, h). We claim
that there is an isomorphism of Lie supergroups ψ : (H,OH) → (H ′,OH′) such
that ϕ′ ◦ψ = ϕ. As we have seen above, any homomorphism of Lie supergroups is
determined by its underlying map and its differential at the point e. To define ψ,
we put ψred = id : H → H ′ (note that H = H ′) and (dψ)e = (dϕ′)−1

e ◦ (dϕ)e.
Conversely, let (H, h) be a Harish-Chandra subpair of (G, g). Then we get the

Lie supergroup (H,OH) using the construction from Subsection 2.1. There is a
natural homomorphism ϕ : (H,OH) → (G,OG), where ϕred : H → G is the
inclusion and ϕ∗ : OG → OH is given by

ϕ∗(f)(X)(h) = f(X)(ϕred(h)), X ∈ U(h) ⊂ U(g), h ∈ H.

Clearly, the Harish-Chandra subpair which corresponds to the Lie subsupergroup
(H,OH) coincides with (H, h).

Let ν : (G,OG) × (M,OM ) → (M,OM ) be a transitive action. Denote by νx,
where x ∈M , the composition of the morphisms

(G,OG) = (G,OG)× (x,K)
id×δx−→ (G,OG)× (M,OM )

ν
−→ (M,OM ).

Lemma 4. We have evx ◦ ν(X) = (dνx)e(Xe), X ∈ g.

Proof. By definition we get

evx(ν(X))(f) = [ν(X)(f)]red(x), (dνx)e(Xe)(f) = Xe ◦ ν
∗
x(f),

for f ∈ (OM )x. Let δx(h) := (h)red(x), h ∈ OM . Then,

evx(ν(X))(f) = [(Xe ⊗ id) ◦ ν∗(f)]red(x) = (Xe ⊗ δx) ◦ ν
∗(f)

= Xe ◦ (id⊗ δx) ◦ ν
∗(f) = Xe ◦ ν

∗
x(f) = (dνx)e(Xe)(f). �

Remark. By the axioms of an action we have νx = νgx ◦ rg−1 for all g ∈ G. Using
Lemma 4 we get that a supermanifold (M,OM ) is (G,OG)-homogeneous if and
only if νred is a transitive action of G on M and (dνx)e is surjective for some
x ∈M .

As in [Kost], we can define the stationary subsupergroup (Gx,OGx) of the point
x in the following way. Consider the Harish-Chandra subpair (Gx, gx) of (G, g),
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where Gx is the stabilizer of x and gx = Ker(dνx)e. A subsupergroup (Gx,OGx)
is called the stabilizer of x, if it determines (Gx, gx). Further, assume that the
action ν is transitive. In this case, in [Vis] another definition of the stabilizer
of x was given. It is easy to prove that these two definitions are equivalent.
Moreover, (M,OM ) ' (G/Gx,OG/Gx) and hence dim(M,OM ) = dim(G,OG) −
dim(Gx,OGx) (see, [Kost], [Vis]).

4. Homogeneous split supermanifolds

In this section we will consider only complex supermanifolds. Note that all real
supermanifolds are split.

Let us introduce a new category SSM (split supermanifolds). We put

ObSSM =
{
(M,

∧
EM )

∣∣ EM is a locally free sheaf on M
}
.

Equivalently, we can say that ObSSM consists of all split supermanifolds (M,OM )
with a fixed isomorphism OM '

∧
EM for a certain locally free sheaf EM on M .

Note that OM is naturally Z-graded by (OM )p '
∧p EM . All the time we will

consider this Z-grading. Further, if X,Y ∈ Ob SSM we put

Hom(X,Y ) = all morphisms of X to Y preserving the Z-gradings.

As in the category of supermanifolds, we can define in SSM a group object
(split Lie supergroup), an action of a split Lie supergroup on a split supermanifold
(split action) and a homogeneous split supermanifold. More precisely, we get these
notions if we consider in Definitions 1, 2 and 3 morphisms and objects from SSM.

Let (M,
∧
EM ) and (N,

∧
EN ) be two split supermanifolds, where EM and EN

are the sheaves of sections of vector bundles EM and EN , respectively. The direct
product in the category SSM is defined by

(M,
∧

EM )× (N,
∧

EN ) := (M ×N,
∧

(EM ⊕ EN)).

Here the fixed Z-grading is given by

p∧
(EM ⊕ EN ) =

⊕

t+s=p

r∧
EM ⊗

s∧
EN .

It is easy to see that this definition agrees with the definition of the direct product
in the category of supermanifolds, see [L].

There is a functor, say gr, from the category of supermanifolds to the category
of split supermanifolds. Let us briefly describe this construction (see, e.g., [O1],
[OS1]). Let (M,OM ) be a supermanifold. As above, denote by JM ⊂ OM the sub-
sheaf of ideals generated by odd elements of OM . Then, by definition, gr(M,OM )
is equal to the split supermanifold (M, grOM ), where

grOM =
⊕

p>0

(grOM )p, J 0
M := OM , (grOM )p = J p

M/J
p+1
M .
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In this case (grOM )1 is a locally free sheaf and there is a natural isomorphism of
grOM onto

∧
(grOM )1. If ψ = (ψred, ψ

∗) : (M,OM ) → (N,ON ) is a morphism,
then gr(ψ) = (ψred, gr(ψ

∗)), where gr(ψ∗) : grON → grOM is defined by

gr(ψ∗)(f + J p
N ) := ψ∗(f) + J p

M for f ∈ (JN )p−1.

Recall that by definition every morphism ψ of supermanifolds is even and as a
consequence sends J p

N into J p
M .

Let (G,OG) be a Lie supergroup with the group morphisms µ, ι and ε. Then it
is easy to see that gr(G,OG) is a split Lie supergroup with the group morphisms
gr(µ), gr(ι) and gr(ε). Similarly, an action ν : (G,OG) × (M,OM ) → (M,OM )
gives rise to the action gr(ν) : gr(G,OG)× gr(M,OM ) → gr(M,OM ).

Obviously, a split Lie supergroup is a Lie supergroup. Furthermore, the follow-
ing result holds.

Proposition 4. A Lie supergroup (G,OG) with the Lie superalgebra g possesses a

structure of a split Lie supergroup if and only if [g1̄, g1̄] = 0. Any Lie subsupergroup

of a split Lie supergroup possesses a structure of a split Lie supergroup.

Proof. Let (G,OG) be a split Lie supergroup, let OG =
⊕

p(OG)p be the fixed Z-
grading and let µ be the multiplication morphism. Let us prove that [g1̄, g1̄] = {0}.
It is enough to check that [X,Y ](f) = 0 for f ∈ (OG)0 and f ∈ (OG)1, where
X,Y ∈ g1̄. By (2) we get

[X,Y ](f) = (X ⊗ id) ◦ µ∗ ◦ (Y ⊗ id) ◦ µ∗(f)

+ (Y ⊗ id) ◦ µ∗ ◦ (X ⊗ id) ◦ µ∗(f)

= −((Y ⊗X ⊗ id) + (X ⊗ Y ⊗ id)) ◦ (µ2)∗(f),

where µ2 is the multiplication morphism of three copies of (G,OG). Note that
by definition of a split Lie supergroup (µ2)∗(f) ∈ (OG×G×G)0, if f ∈ (OG)0 and
(µ2)∗(f) ∈ (OG×G×G)1, if f ∈ (OG)1. It follows that

(X ⊗ Y ⊗ id)((µ2)∗(f)) = (Y ⊗X ⊗ id)((µ2)∗(f)) = 0.

Conversely, let (G,OG) be a Lie supergroup and [g1̄, g1̄] = 0. As we have seen
above, the sheaf OG = HomU(g0̄)(U(g),FG) is a Z-graded sheaf. Recall that the
Z-grading is induced by the mapping OG → Hom(

∧
(g1̄),FG), f 7→ f ◦ γ, where γ

is defined by (4). More precisely,

f ∈ (OG)p ⇔ f ◦ γ(X1 ∧ · · · ∧Xr) = 0 for r 6= p, Xi ∈ g1̄.

It follows that any Lie supergroup is contained in ObSSM. We want to prove that
the structure morphisms (7) of (G,OG) preserve this Z-grading. Let us check that
µ∗((OG)p) ⊂ (OG×G)p, p > 0. Further, if [g1̄, g1̄] = 0, then γ is a homomorphism
of algebras (not only of coalgebras), see (4). It follows that

f ∈ (OG)p ⇔ f(X1 · · ·Xr) = 0 for r 6= p, Xi ∈ g1̄. (18)
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Let X1, . . . , Xr be from the first copy of g1̄ and let Y1, . . . , Yq be from the second
one, r + q 6= p, g, h ∈ G and f ∈ (OG)p, then

µ∗(f)(X1 · · ·Xr · Y1 · · ·Yq)(g, h) = f(X1 · · ·Xr · αG(g)(Y1 · · ·Yq))(gh) = 0.

This implies that µ∗(f) ∈ (OG×G)p. For the inversion morphism the proof is
similar.

The second assertion is obvious. Indeed, if (H,OH) ⊂ (G,OG) is a Lie subsu-
pergroup, h = Lie (H,OH ), then h ⊂ g is a subsuperalgebra. Hence, [h1̄, h1̄] = 0.
�

Corollary. A split Lie supergroup is a semidirect product of a usual Lie group G
and the (unique ) connected supergroup of purely odd dimension.

Lemma 5. Let ν : (G,OG)× (M,OM ) → (M,OM ) be a transitive action of a Lie

supergroup (G,OG) on a supermanifold (M,OM ), then the action

gr ν : (G, grOG)× (M, grOM ) → (M, grOM )

is also transitive. In particular, if (M,OM ) is split and homogeneous, then it

always admits a transitive split action.

Proof. Since gr νred = νred it is enough to show that d(gr νx)e is surjective for
some x ∈ M (see the Remark after Lemma 4). Since d(gr νx)e = d(νx)e, the
proof is complete. The second assertion follows from the isomorphism (M,OM ) '
(M, grOM ). �

Let H be a closed Lie subgroup of a Lie group G, let E be a complex vector
space and let θ : H → GL(E) be a holomorphic representation. Denote by Eθ the
sheaf of sections of the homogeneous vector bundle Eθ which corresponds to θ,
i.e., the quotient space of the direct product G×E by the following action of H :

(g, v)
h
7→ (gh−1, θ(h)v), g ∈ G, h ∈ H, v ∈ E.

Furthermore, let π : G → G/H be the natural projection and let U ⊂ G/H
be open. There is an injective homomorphism of sheaves Φθ : Eθ → π∗(FG ⊗ E)
given by

Eθ(U) 3 s 7→ fs ∈ FG(π
−1(U))⊗E,

fs(g) := g−1s(gH), g ∈ G.

It is well known that

Φθ(E
θ(U)) = {f ∈ FG(π

−1(U))⊗E | θ(h)f(gh) = f(g), g ∈ G, h ∈ H}.

Note that
∧
Eθ = E∧θ is also a homogeneous bundle. An easy computation shows

that Φ∧θ :
∧
Eθ → π∗(FG ⊗

∧
E) is a homomorphism of the sheaves of superalge-

bras.
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Let V be a vector space. Our aim is now to describe the isomorphism of sheaves
of superalgebras

ΨV : FG ⊗
∧
V ∗ → Hom(

∧
V,FG)

mentioned in Subsection 2.1. Let (ξi) be a basis of V , (ξ∗i ) the dual basis of V ∗,
h ∈ FG, and i1 < · · · < ik, j1 < · · · < jr. Then

ΨV (hξ
∗
i1 ∧ · · · ∧ ξ∗ik ) = (−1)k(k−1)/2hf ξi1∧···∧ξik ,

where

f ξi1∧···∧ξik (ξj1 ∧ · · · ∧ ξjr ) =

{
1, (j1, · · · , jr) = (i1, . . . , ik),
0, (j1, · · · , jr) 6= (i1, . . . , ik).

The direct computation shows that it is a homomorphism of the sheaves of super-
algebras.

Proposition 5. Let (G,OG) be a split Lie supergroup, (H,OH) ⊂ (G,OG) a

closed Lie subsupergroup and (M,OM ) := (G/H,OG/H). The Z-grading OG =⊕
p>0(OG)p, where (OG)p is determined by (18), induces the Z-grading (OM )p on

the subsheaf OM ⊂ OG. Moreover, (OM )1 is a locally free sheaf and (OM )p =∧p(OM )1. In particular, the coset supermanifold (M,OM ) is split and the natural

action of the Lie supergroup (G,OG) on (M,OM ) is split.

Proof. The sheaf OM was defined by (17). The supergroup (G,OG) is a split Lie
supergroup, hence (µG×H)∗((OG)p) ⊂ (OG×H)p. Furthermore, it is easy to see
that pr∗1((OG)p) ⊂ (OG×H)p. Hence, the sheaf OM is Z-graded by the subsheaves

(OM )p = {f ∈ (OG)p | (µG×H)∗(f) = pr∗1(f)}.

Consider the representation ψ : H → GL((g1̄/h1̄)
∗) defined by

[ψ(h)(v)](X + h1̄) = v(AdG(h
−1)(X) + h1̄) for h ∈ H, v ∈ (g1̄/h1̄)

∗, X ∈ g1̄.

Our goal now is to show that OM '
∧
Eψ as sheaves of Z-graded algebras. Denote

by Γ the isomorphism of sheaves OG = ÔG → Hom(
∧
(g1̄),FG) described in

Subsection 2.1. We have

OM ⊂ ÔG
Γ

−→ Hom(
∧

(g1̄),FG).

By definition f ∈ (OM )p if and only if f ∈ (ÔG)p and (µG×H)
∗(f) = pr∗1(f).

Using (7) and (12) we can write the last condition in the following form:

f(Xr · AdG(g)(Y
q))(gh) =

{
0, if q 6= 0,
f(Xr)(g), if q = 0,

(19)

for all g ∈ G, h ∈ H , where Xr = X1 · · ·Xr, Xi ∈ g, Y q = Y1 · · ·Yq , Yj ∈
h = Lie (H,OH ), r + q = p. The supergroup (G,OG) is a split Lie supergroup,
it follows by Proposition 4 that [g1̄, g1̄] = 0. As we mentioned above, in this
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case the mapping (4) is an injective homomorphism of superalgebras (not only of
cosuperalgebras). Hence s ∈ Γ((OM )p) if and only if s ∈ Hom(

∧p
(g1̄),FG) and

the following condition holds:

s(Xr ∧ AdG(g)(Y
q))(gh) =

{
0, if q 6= 0,
s(Xr)(g), if q = 0,

(20)

for all g ∈ G, h ∈ H , Xr = X1 ∧ · · · ∧Xr ∈
∧r

(g1̄), Y
q = Y1 ∧ · · · ∧ Yq ∈

∧q
(h1̄),

r + q = p.
We may regard the sheaf Hom(

∧
(g1̄/h1̄),FG) as a sheaf of superalgebras. The

multiplication is defined as in Subsection 2.1. Define the injective homomorphism
of sheaves of superalgebras in the following way:

Υ : Hom(
∧

(g1̄/h1̄),FG) → Hom(
∧

(g1̄),FG),

Υ(f)(AdG(g)(X))(g) = f(X)(g),

where X ∈
∧
(g1̄), X is the image of X by the natural homomorphism

∧
(g1̄) →∧

(g1̄/h1̄), g ∈ G.
Consider the composition of the injective homomorphisms of sheaves of super-

algebras

∧
Eψ

Φ∧ψ
−−−→ FG ⊗

∧
(g1̄/h1̄)

∗
Ψ∧

(g1̄/h1̄)∗

−−−−−−−→ Hom
(∧

(g1̄/h1̄),FG

)

Υ
−→ Hom

(∧
(g1̄),FG

)
.

Our goal now is to show that

Γ((OM )p) = Υ ◦Ψ∧
(g1̄/h1̄)∗ ◦ Φ∧ψ(

p∧
Eψ), p > 0.

This will imply our assertion.
Note that f ∈ Ψ∧

(g1̄/h1̄)∗ ◦Φ∧ψ(
∧p Eψ) if and only if f ∈ Hom(

∧p(g1̄/h1̄),FG)
and the following condition holds:

f(AdG(h
−1)(X))(gh) = f(X)(g),

where X ∈
∧p

(g1̄), g ∈ G, h ∈ H . Further, s ∈ Υ ◦ Ψ∧
(g1̄/h1̄)

∗ ◦ Φ∧ψ(
∧p

Eψ) if
and only if s ∈ Hom(

∧p
(g1̄),FG) and the following condition holds:

s(AdG(g)(X))(gh) =

{
0, if X = 0,
s(AdG(g)(X))(g), if X 6= 0.

(21)

Conditions (20) and (21) are equivalent.
To complete the proof we recall that the action ν : (G,OG) × (M,OM ) →

(M,OM ) is defined by ν∗(f) = µ∗(f), f ∈ OM ⊂ OG, and the map µ∗ and the
inclusion OG×M ↪→ OG×G preserve the chosen Z-gradings. �

Let us formulate the general result concerning a complex homogeneous split
supermanifold.
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Theorem 2. Let (G,OG) be a complex Lie supergroup with the Lie superalgebra

g = g0̄⊕g1̄. If [g1̄, g1̄] = 0, then all (G,OG)-homogeneous supermanifolds (M,OM )
are split supermanifolds. Moreover, the sheaf OM is isomorphic to

∧
Eψ, where Eψ

is the sheaf of sections of the homogeneous vector bundle Eψ, which corresponds

to the representation ψ : H → GL((g1̄/h1̄)
∗) given by

ψ(h)(v)(X + h1̄) := v(AdG(h
−1)(X) + h1̄) for h ∈ H, X ∈ g1̄, v ∈ (g1̄/h1̄)

∗.

Conversely, if a complex homogeneous supermanifold (M,OM ) is split, then there

is a Lie supergroup (G,OG) with [g1̄, g1̄] = 0, where g = g0̄ ⊕ g1̄ = Lie (G,OG),
such that (G,OG) acts on (M,OM ) transitively.

Proof. The theorem follows from Propositions 4 and 5 and Lemma 5. �

Let us prove for example that the complex projective superspace CP1|2 is split.
It is isomorphic to the coset space GL2|1(C)/(P,OP ), where

GL2|1(C) =




∗ ∗ X

∗ ∗ X

X X ∗


 , (P,OP ) =



∗ ∗ X

0 ∗ X

0 X ∗


 .

Here ∗ are even coordinates and X are odd coordinates. It is easy to see that

GL2|1(C)/(P,OP ) ' (G′,OG′)/(P ′,OP ′),

where

(G′,OG′) =




∗ ∗ 0
∗ ∗ 0
X X ∗


 , (P ′,OP ′) =



∗ ∗ 0
0 ∗ 0
0 X ∗


 .

Let g′ = Lie (G′,OG′). Then

g′1̄ =







0 0 0
0 0 0
a b 0




∣∣∣∣∣ a, b ∈ C



 .

We see that [g′1̄, g
′
1̄] = {0}. By Theorem 2 we get that CP1|2 is split.

We close this section by mentioning some results about nonsplit supermani-
folds. The first example of a nonsplit supermanifold was published in [G]; this

is the quadric in the projective superplane CP
2|2. In [Man] four series of super-

manifolds of flags were constructed corresponding to four series of classical linear
Lie superalgebras. In [LPW] it was proved that all split complex supermanifolds
whose reduction is projective algebraic are projective (i.e., embeddable in a com-
plex projective superspace.) Penkov and Skornyakov [PS] found necessary and
sufficient conditions for a supermanifold of flags to be projective. More precisely,
they showed that almost all such supermanifolds are not projective. From these
two results it follows that supermanifolds of flags are mostly nonsplit.

In [OS2] it was proved that the isotropic super-Grassmannian of maximal type
IGrn|n,s|t(C) associated with an odd bilinear form is nonsplit whenever t > 1 and
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s > 2. In [OS1] the complete solution of the problem was given for the isotropic
super-Grassmannian of maximal type associated with an even bilinear form. Note
that the method of [OS1] and [OS2] can be used for all series of flag supermanifolds.

In [O2] the problem of classifying all homogeneous complex supermanifolds
whose reduction is the complex Grassmannian Grn|k was studied. Under the as-
sumption that the odd isotropy representation is irreducible and under certain
restrictions on (n|k), it was proved that the only nonsplit supermanifold of this
sort is the Π-symmetric super-Grassmannian constructed by Manin [Man].

The problem of the classification of nonsplit supermanifolds having as retract
the split supermanifold (M,Ω), where Ω is the sheaf of holomorphic forms on a
given complex manifold M of dimension > 1, was studied in [O3]. In the case
when M is an irreducible compact Hermitian symmetric space, the complete clas-
sification of nonsplit supermanifolds with retract (M,Ω) was given.
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