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Abstract. We describe a conjectural classification of Poisson vertex algebras of CFT
type and of Poisson vertex algebras in one differential variable (= scalar Hamiltonian
operators).

0. Introduction

Recall that a Poisson vertex algebra (PVA) is a unital commutative associative
algebra V with a derivation D, endowed with a λ-bracket { .λ. } : V⊗V → C[λ]⊗V ,
which satisfies the axioms of a Lie conformal algebra, and the λ-bracket is related
to the product by the left Leibniz rule:

{aλbc} = {aλb}c+ b{aλc}. (0.1)

In this case one says that the differential algebra V is endowed with a Poisson
λ-bracket.

Recall, for completeness, that a Lie conformal algebra is a C[D]-module, en-
dowed with a λ-bracket, which satisfies the following three axioms [K]:

(sesquilinearity) {Daλb} = −λ{aλb}, {aλDb} = (D + λ){aλb},
(Skew-commutativity) {bλa} = −←{a−λ−Db},
(Jacobi identity) {aλ{bµc}} − {bµ{aλc}} = {{aλb}λ+µc}.
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The left arrow in the second axiom means that D is moved to the left. Extension
of these definitions to the super case is straightforward, using the usual sign rule.

Recall that the left Leibniz rule and skew-commutativity imply the right Leibniz
rule [DK]:

{bcλa} = {bλ+Da}→c+ {cλ+Da}→b, (0.2)

where the right arrow means that D is moved to the right.
The awkward name “Poisson vertex algebra” comes from the fact that it arises

as a quasiclassical limit of a family of vertex algebras [DK] in the same way as a
Poisson algebra arises as a quasiclassical limit of a family of associative algebras.

Note that PVA is a local counterpart of a Coisson (= chiral Poisson) algebra,
defined in [BD]. PVA can also be obtained as a formal Fourier transform of a local
Poisson bracket [BDK], which plays an important role in the theory of infinite-
dimensional integrable Hamiltonian systems. In fact, as demonstrated in [BDK],
the language of Poisson vertex algebras is often more convenient and transparent
than the equivalent languages of local Poisson brackets, used in the book [FT], or
of Hamiltonian operators, used in the book [D].

In the present paper we shall discuss the problem of the classification of Poisson
λ-brackets on the algebra of differential polynomials

R` = C[u
(n)
i | i = 1, . . . , ` ; n ∈ Z+]

in ` differential variables ui, where the derivation D is defined in the usual way:

Du
(n)
i = u

(n+1)
i , n ∈ Z+. As usual, we shall write f ′ in place of Df , in particular,

ui, u
′
i, u
′′
i ,... shall often replace u

(0)
i , u

(1)
i , u

(2)
i ,.... In the super case one considers

the algebra R`,m of differential polynomials in ` even differential variables and m
odd ones.

It is clear that, as in the Poisson algebra case, a λ-bracket on R` is uniquely
determined by the λ-brackets {uiλuj}, i, j = 1, . . . , `, due to sesquilinearity and the
left and right Leibniz rules. It is explained in [BDK] that, as in the Poisson algebra
case, the necessary and sufficient conditions for the validity of PVA axioms is skew-
commutativity for each pair ui, uj and Jacobi identity for each triple ui, uj , uk. As
in the Poisson algebra case, there is an explicit formula for the λ-bracket of any
f , g ∈ R` in terms of λ-brackets of differential variables [DK]:

{fλg} =
∑

16i,j6`
m,n∈Z+

∂g

∂u
(n)
j

(D + λ)n{uiD+λ
uj}→(−D − λ)m

∂f

∂u
(m)
i

. (0.3)

It turns out to be more natural to consider an algebra of dif and only if erential
functions extension R̃` of R`[x], that is a domain R̃`, containing R`[x], such that

all partial derivatives ∂/∂u
(n)
i extend to commuting derivations of R̃` and only

finitely many functions ∂f/∂u
(n)
i are nonzero for each f ∈ R̃`. Then D extends

to R̃` by the formula D = (∂/∂x) +
∑

16i6`
n∈Z+

u
(n+1)
i

(
∂/∂u

(n)
i

)
, and formula (0.3)

extends the λ-bracket from R` to R̃`, making the latter a PVA as well [BDK]. An
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element f of R̃` is called a quasiconstant (resp. a constant) if ∂f/∂u
(n)
i = 0 for

all i and n (resp. if, in addition, ∂f/∂x = 0). We denote by C the subalgebra of
all constants.

Recall that, given a Poisson λ-bracket on R̃`, the associated Hamiltonian op-
erator is the matrix H = (Hij(D)), where Hij(D) = {ujD

ui}→. Conversely, the
λ-bracket can be reconstructed from H via

{uiλuj} = Hji(D + λ)(1). (0.4)

Also, given
∫
hdx ∈ R̃` /DR̃`, the corresponding system of Hamiltonian equations

is du/dt = {hλu}|λ=0

(
=H

(
δ
∫
hdx/δu

))
[BDK].

Recall that the skew-commutativity of the λ-bracket is equivalent to the skew-
adjointness of H [BDK]. Hence, unlike the Poisson algebra situation, the λ-bracket

of a function f ∈ R̃` with itself can be nonzero. In fact, the skew-commutativity
axiom is equivalent to the relation {fλf} =

∑
j odd(D + 2λ)jFj , Fj ∈ R̃`. Thus,

even the cases of one or two differential variables are already highly nontrivial.
Apart from a conjecture, stated at the end of the Introduction, we shall be con-
cerned only with these two cases.

In the case ` = 1 we have R1 = C[u, u′, u′′, . . .] and, according to the above

remarks, a skew-commutative λ-bracket on R̃1 is determined by

{uλu} =

N∑

j=1
j odd

(D + 2λ)jfj , fj ∈ R̃1. (0.5)

Here N is a positive odd integer, called the order of the λ-bracket, provided that
fN 6= 0. Note that the Jacobi identity for the triple u, u, u holds in the case when
all the fj in (0.5) are quasiconstants. Such a λ-bracket is called a quasiconstant
coefficient Poisson λ-bracket.

For an arbitrary Poisson λ-bracket on R̃1 the Jacobi identity for the triple u, u, u
gives a very complicated system of partial differential equations on the functions
fj . In order to state our first result on the structure of these functions, define the

differential order of f ∈ R̃1, denoted by ord(f), as the maximal m ∈ Z+, such
that ∂f/∂u(m) 6= 0, if f is not a quasiconstant, and as −∞ if f is a quasiconstant.
Define the level m of the λ-bracket (0.5) of order N by m = maxj{j + ord(fj)}.
Note that m is a positive integer if the λ-bracket is not a quasiconstant coefficient
one.

Theorem 0.1. The possible values m of the level of a nonquasiconstant coefficient
Poisson λ-bracket (0.5) of order N are 1

2 (N − 1) 6 m 6 2N + 1, m 6= 2N ,
m 6= 1

2 (N + 1) if N ≡ −1 mod 4, and m 6= 1
2 (N − 1), 1

2 (N + 3) if N ≡ 1 mod 4.

The notion of a level in the equivalent language of Hamiltonian operators was
considered by I. Dorfman [D], who obtained our upper estimate of the level by a
different method. The classification of Hamiltonian operators of orderN = 1, 3 and
5, obtained in [V], [GD], [A], [AV], [O], [D], [M], [C], and some further calculations
lead to the following conjecture.
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Conjecture 0.2. With the exception of level m = 1 in the case N = 3, the only
possible values of the level of a nonquasiconstant coefficient Poisson λ-bracket of
order N are m = N,N + 1, or N + 2. (Examples below show that all these values
of m do occur, with the exception of m = 2 in the case N = 1).

This conjecture holds for N 6 11, but for N > 11 we can prove only that
m < 2N − 6 by a more detailed analysis of the Jacobi identity (1.6) for the triple
u, u, u. (The proof of Theorem 0.1 uses only the highest total degree in the λ and
µ terms in (1.6)).

From the conformal field theory (CFT) point of view, the most interesting PVAs
are those which are obtained as a quasiclassical limit from a family of vertex alge-
bras of CFT type, which we shall call the PVA of CFT type. By definition, this is an
algebra of differential polynomialsR` with ` differential variables L,W1, . . . ,W`−1,
endowed with a λ-bracket, satisfying the axioms of PVAs, and such that:

(i) {LλL} = (D + 2λ)L+ cλ3, where c is a constant; and
(ii) {LλWj} = (D +∆jλ)Wj , j = 1, ..., `− 1.

Property (i) says that the differential variable L generates the Virasoro PVA (with
central charge 12c), while property (ii) says thatWj is a primary element of confor-
mal weight ∆j . Important examples of PVA of CFT type are provided by classical
W -algebrasWk(g, f) associated to a simple Lie algebra g and its nilpotent element
f (see, e.g., [DK]). We prove the following theorem.

Theorem 0.3.

(a) Let R2 be endowed with a PVA structure, generated by a Virasoro differen-
tial variable L with c 6= 0 and a primary differential variable W of integer
conformal weight ∆ > 2, such that {WλW} 6= 0. Then this PVA is iso-
morphic to one of the classical W -algebras Wk(g, f), where g is a simple
Lie algebra of rank 2 and f is a principal nilpotent element of g.

(b) Let R1,1 be endowed with a super PVA structure, generated by an even
Virasoro differential variable L with c 6= 0 and an odd primary differential
variable W of conformal weight ∆ ∈ 1

2 + N, such that {WλW} 6= 0. Then
this PVA is isomorphic to the Neveu–Schwarz super PVA, namely, ∆ = 3

2
and

{WλW} = L+ 2λ2c.

This theorem supports the following conjecture.

Conjecture 0.4. Let A = C[D]L⊕ C[D]W1 ⊕ · · · ⊕ C[D]W`−1 ⊕ CC be a C[D]-
module with DC = 0. Endow S(A) with a Poisson λ-bracket, for which {LλL} =
(D + 2λ)L + λ3C and the Wj are primary of conformal weight ∆j ∈ N (so that
S(A)/(C − c) is a PVA of CFT type). Assume that A does not contain C[D]-
submodules I, such that IS(A) is a proper noncentral PVA ideal of S(A). Then
S(A)/(C− c) is isomorphic to a classical W -algebra Wk(g, f), where g is a simple
Lie algebra (including the 1-dimensional one), f is its nilpotent element and c =
−k(x|x) (here f, x are elements of an sl2 triple, such that [x, f ] = −f ).

One can state a similar conjecture in the super case.
We will prove Theorem 0.1 in Section 1 and Theorem 0.3 in Section 2.
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In Section 3 we discuss the problem of the classification of scalar Hamiltonian
operators of arbitrary (odd) orderN (i.e., the case ` = 1) up to contact transforma-
tions. Recall that such a classification for N 6 5 was obtained in a series of papers
by Vinogradov [V], Gelfand and Dorfman [GD], Astashov [A], [AV], Mokhov [M],
Olver [O], and Cooke [C]. We introduce the following new family of compatible
Hamiltonian operators of order N = 2n+3 > 3, H (N,0) = D2 ◦ ((1/u) ◦D)2n ◦D.
We prove in Section 4 that these operators are Hamiltonian and compatible (i.e.,
any of their linear combinations with constant coefficients is Hamiltonian). Fur-
thermore, in Section 3 we introduce a sequence of Hamiltonian operators H [N,c(x)]

of order N > 7, depending on a linear quasiconstant c(x).

Our main observation is that any Hamiltonian operator of order N > 7 can be
taken by a contact transformation to one of the following four types:

(1) a skew-adjoint differential operator with quasiconstant coefficients;
(2) a linear combination with constant coefficients of the operators H (n,0), 3 6

n 6 N ;
(3) the operators H [N,c(x)], where N > 9 and c′′(x) = 0; and
(4) a “small” family of exceptional Hamiltonian operators.

We checked that this is indeed true for 7 6 N 6 13, and in Section 3 we exibit
in each of these cases the operators of type (4). The strategy of the proof is the
same as in the above-mentioned papers, but the use of the machinery of PVAs
considerably simplifies calculations. First, using Conjectures 0.2 and 3.4 on the
level and the leading coefficient, one shows that by a contact transformation the
leading coefficient can be made equal to 1. After that, using contact transforma-
tions that keep the leading coefficient as 1, one reduces the Hamiltonian operator
to a canonical form.

Remarkably, it turns out that for N = 13 the set of operators of “exceptional”
type (4) is empty, i.e. any Hamiltonian operator of order N = 13 can be taken
by a contact transformation to an operator of type (1), (2) or (3)! We conjecture
that the same holds for all N > 13.

In Section 3 we also analyze the hierarchies of integrable Hamiltonian equations,
obtained by the Lenard–Magri scheme [Ma], [BDK] from a compatible pair of
Hamiltonian operators, which we call the bi-Hamiltonian integrable equations, for
one of our compatible pairs. On the basis of this analysis we state Conjecture 3.18
on the classification of all scalar bi-Hamiltonian integrable equations.

Acknowledgments. We would like to thank A. Mikhailov, O. Mokhov and V.
Sokolov for enlightening discussions and correspondence.

1. Proof of Theorem 0.1

The Jacobi identity for the λ-bracket (0.5) reads

{uλ{uµu}} − {uµ{uλu}} = {{uλu}λ+µu}. (1.6)

Substituting (0.5) in (1.6) and using (0.3), we obtain a polynomial equation in λ, µ
and ∂fj/∂u

(i). The highest total degree in λ and µ in this equation is 2N +m.
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Equating this term to 0, we obtain, after dividing by 2NfN ,

min{N ,m}∑

j=1
j odd

FN+m,j(λ, µ)
∂fj

∂u(m−j)
= 0.

Here the polynomials Fn,j(u, v) for 1 6 j 6 n, j odd, are as follows:

Fn,j(u, v) = un−j(v − w)j + vn−j(w − u)j + wn−j(u− v)j ,

where we let w = −(u + v). Hence Theorem 0.1 follows immediately from the
following proposition.

Proposition 1.1. Let N be a positive odd integer and let m = 2N or m > 2N+2.
Then the collection of polynomials SN,m := {FN+m,j(u, v)}16j6N, j odd is linearly
independent.

The proof of the proposition is based on the following lemma.

Lemma 1.2.

(a)
(
∂2/∂u2 + ∂2/∂v2 − ∂2/∂u∂v

)
Fn,j = (n − j)(n − j − 1)Fn−2,j + 3j(j −

1)Fn−2,j−2 (the right-hand side is zero if n 6 2).
(b) 4(u2 + uv + v2)Fn,j = 3Fn+2,j + Fn+2,j+2.
(c) If n is divisible by 3, then the polynomial u2+uv+v2 does not divide Fn,1.

Proof. Part (a) is straightforward. Part (b) is proved, using that 4(u2 + uv + v2)
can be written in the following three forms:

3u2 + (u+ 2v)2 = 3v2 + (2u+ v)2 = 3(u+ v)2 + (u− v)2.

Then we rewrite the left-hand side of (b), using consistently for each of the three
summands these three forms.

Part (c) is proved by noting that u2+uv+v2 vanishes at u = 1, v = ω := e2πi/3,
while Fn,1(1, ω) = ω − ω2 6= 0. �

Corollary 1.3.

(a) If the collection of polynomials SN,m is linearly independent, then the col-
lection of polynomials SN,m+2 is linearly independent.

(b) If N+m+2 is divisible by 3 and the collection SN,m is linearly independent,
then the collection SN+2,m is linearly independent.

Proof. Applying to a linear dependence of elements from SN,m+2, the operator
∂2/∂u2+∂2/∂v2−∂2/∂u∂v and using Lemma 1.2(a), we obtain a linear dependence
between the polynomials {(n− j)(n− j − 1)FN+m,j + 3j(j − 1)FN+m,j−2, where
n = N +m+2 and 1 6 j 6 N , j odd}. But this set is linearly independent if the
set SN,m is, proving (a).

In order to prove (b), multiplying all elements from SN,m by u2 + uv + v2,
we obtain, due to Lemma 1.2(b), a linearly independent set of polynomials S =
{3Fn+2,j+Fn+2,j+2, where n = N+m, 1 6 j 6 N , j odd}. Since by Lemma 1.2(c),
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the polynomial Fn+2,1 is not divisible by u2 + uv + v2, we conclude that the set
S ∪{Fn+2,1} is linearly independent, which implies that the set SN+2,m is linearly
independent.

Now we can complete the proof of Proposition 1.1 by induction on N . If N = 1,
then SN,m consists of one nonzero polynomial. Due to Corollary 1.3(a) it suffices
to prove the proposition when m = 2N and m = 2N + 3. Note that, by the
inductive assumption, SN−2,2N is linearly independent, hence by Corollary 1.3(b),
SN,2N is linearly independent. Similarly, by the inductive assumption, SN−2,2N+3

is linearly independent, hence by Corollary 1.3(b), SN,2N+3 is linearly independent.
�

Remark 1.4. Ifm < 2N orm = 2N+1, then the set of polynomials SN,m is linearly
dependent. Indeed, we can view any of the polynomials FN+m,j as an element of
the set SN+m of polynomials of the form (u−v)(v−w)(w−u)f(u, v, w) where f is
a symmetric polynomial in u, v, w, considered mod(u+v+w), of degree N+m−3.
Hence dimSN+m equals the number of partitions of N + m − 3 in a sum of 2’s
and 3’s. But the latter number is smaller than dimSN,m = (N + 1)/2 for the
considered values of m.

2. Proof of Theorem 0.3

Lemma 2.1. Let V be a PVA of CFT type with all conformal weights positive.
Then an element P of V is primary if and only if it is a polynomial in W1, . . . ,W`.

Proof. The “if” part is clear by the Leibniz rule (0.1). In order to prove the “only
if” part, note that we have, by induction on m,

{LλL
(m)} = λm+3c+ (lower powers of λ). (2.7)

Writing, as usual, Lλ =
∑

n∈Z+
(λn/n!)L(n), we obtain a sequence of derivations

L(m) of V (due to (0.1)). Due to (2.7) we have, in particular,

L(n)L
(m) = δn,m+3αc for n > m+ 3, (2.8)

where α is a nonzero constant.
Write the element P as a polynomial in W

(n)
j , j = 1, . . . , `, n ∈ Z+, with

coefficients in C[L,L′, L′′, · · · ]. If one of these coefficients, say f , is not constant,
let m be the maximal integer for which L(m) occurs in f . Then, due to (2.8),
L(m+3)f = αc

(
∂f/∂L(m)

)
6= 0. Hence f is not primary.

Likewise, we have

L(n)W
(m)
j = δn,m+1∆j if n > m+ 1.

Hence, if m is maximal such that W
(m)
j occurs for some j in a polynomial P ∈

C[W
(n)
j | j = 1, . . . , ` n ∈ Z+], we have L(m+1)P =

∑
j ∆j

(
∂P/∂W

(m)
j

)
. Hence P

can be primary only if P ∈ C[W1, . . . ,W`]. �
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Recall that L(0) = D and that L(1) is a diagonalizable operator on a PVA V of
CFT type. If L(1)P = ∆P , ∆ ∈ C, one says that P has conformal weight ∆ and
puts ∆ = ∆P . One has

∆PQ = ∆P +∆Q, ∆P ′ = ∆P + 1,

if P and Q are eigenvectors of L(1). Moreover, the coefficient of λj in {PλQ} has
conformal weight ∆P +∆Q − j − 1. In other words, all the summands in {PλQ}
have conformal weight ∆P +∆Q − 1 if we put ∆λ = 1.

Now let V be a PVA as in Theorem 0.3 and assume that ∆ ∈ 1
2Z+, ∆ > 1.

It follows from the skew-commutativity of the λ-bracket and the properties of the
conformal weight that

{WλW} =

N∑

j=1
j odd

(D + 2λ)jPj , PN 6= 0, (2.9)

where N is a positive odd integer, 1 6 N 6 2∆− 1 and Pj has conformal weight
2∆− j − 1. Hence we may write

{LλPj} = (D + (2∆− j − 1)λ)Pj +

2∆−j∑

k=2

λkQj,k, (2.10)

where ∆Qj,k
= 2∆− j − k.

The following lemma is straightforward.

Lemma 2.2. The Jacobi identity for the triple L,W,W is equivalent to the fol-
lowing equations

Qj,2k=

(
j + 2k

j

)
P ′j+2k , Qj,2k+1=

(
2∆

(
j + 2k

j

)
−
(
j + 2k + 1

j

))
Pj+2k . (2.11)

First, we assume that ∆ is an integer > 2, and we shall prove claim (a) of the
theorem. Denote by aj the coefficient of L(2∆−3−j) in Pj and by bj the coefficient
of W (∆−1−j) in Pj and let g = P2∆−1. From the conformal weight considerations
it follows that aj , bj and g are constants (depending on c).

Lemma 2.3. If g = 0 and b∆−1 = 0, then {WλW} = 0.

Proof. By Lemma 2.1 the only primary elements in V are polynomials inW . Since
the conformal weight of {WλW} is 2∆− 1, we conclude that it may contain only
W ε where ε = 0 or 1. Thus, by the conditions of the lemma, all Pj are not
primary elements, unless they are 0. Now by downward induction, beginning with
g = P2∆−1 = 0, we show, using (2.11), that all Pj are primary, hence zero, and
that all Qj,k = 0. �
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Introduce the following two polynomials in x and y:

G1(x, y) =

2∆−3∑

j=1
j odd

ajx
jy2∆−3−j , F1(x, y) =

∆−1∑

j=1
j odd

bjx
jy∆−1−j ,

and put

G(x, y) = G1

(
x− y

2
,
x+ y

2

)
, F (x, y) = F1

(
x+ y

2
,
x− y

2

)
.

We obviously have

G(y, x) = −G(x, y), F (y, x) = (−1)∆F (x, y) = −F (−x,−y). (2.12)

Then the W (r) terms for r ∈ Z+ of the WWW Jacobi identity {Wλ{WµW}} −
{Wµ{WλW}} = {{WλW}λ+µW} give the following identity if we let x = λ, y = µ,
z = D + λ+ µ,

(x− (∆− 1)(y + z))G(y, z) + cycl = 2F (x,−y)F (x+ y,−z) + cycl, (2.13)

where “cycl” means that we add two terms obtained from the first one by cyclically
permuting x, y, z.

The constant term of the WWW Jacobi identity gives the following identity,
multiplied by the constant g,

x2∆−1F (x+ y, y)− y2∆−1F (x+ y, x) = (−1)∆(x+ y)2∆−1F (x,−y). (2.14)

Finally, the constant term of the LWW identity gives

cG(x, y) = 48g

(
∆
x2∆−1 − y2∆−1

(x+ y)2
− x2∆ − y2∆

(x+ y)3

)
. (2.15)

In particular,
cG(x, 0) = 48g(∆− 1)x2∆−3. (2.16)

We also have
F (0, x) = Ax∆−1 for some constant A. (2.17)

Letting z = 0 in (2.13), and plugging (2.15), (2.16) and (2.17) in it, we obtain

24gc(∆− 1)

(x+ y)2
((∆− 1)(x2∆−1 − y2∆−2)(x+ y)2

+ (xy2∆−3 − x2∆−3y)(x+ y)2

−∆(x+ y)(x2∆−1 − y2∆−1) + x2∆ − y2∆)

=A(x∆−1 + y∆−1 − (x+ y)∆−1)F (−x, y).

(2.18)

891



ALBERTO DE SOLE, VICTOR G. KAC AND MINORU WAKIMOTO

First, we prove that g = 0 if ∆ is an odd integer > 3. In the contrary case,
letting y = 0 in (2.14), we get F (x, 0) = F (0, x) = 0. Hence, letting z = 0 in
(2.13), we get

(x − (∆− 1)y)G(y, 0)− (y − (∆− 1)x)G(x, 0) = (∆− 1)(x+ y)G(x+ y).

Substituting (2.16) in this formula, we obtain (after cancelling 48gc(∆− 1))

(∆− 1)(x2∆−2 − y2∆−2)− x2∆−3y + xy2∆−3

=(∆− 1)x2∆−2 − (∆− 2)x2∆−3y + (∆− 3)x2∆−4y2 + · · · ,

which is impossible if ∆ > 3.
Next, we consider the case g = 0. Since ∆ 6= 2, it follows from (2.18) that

A = 0, hence, by (2.17),
F (0, x) = 0. (2.19)

Also, it follows from (2.12) that

F (−x, x) = 0. (2.20)

Since g = 0, by (2.15), G(x, y) = 0, hence (2.13) becomes

F (x,−y)F (x+y,−z)+F (y,−z)F (y+z,−x)+F (z,−x)F (x+z,−y) = 0. (2.21)

We will show, using the above three equations, that F (x, y) = 0, which implies, in
particular, that b∆−1 = 0, and we can apply Lemma 2.3.

For this, consider the function ϕ(t) = F (x, tx)/x∆−1. This is a polynomial in t.

Lemma 2.4. The polynomial ϕ(t) has the following properties:

(i) ϕ(a) = 0, a 6= 0 ⇒ ϕ(a−1) = 0;
(ii) ϕ(−2)ϕ(3) = 0; and
(iii) ϕ(a) = 0, a 6= 0 ⇒ ϕ(a−2)ϕ(a+ a−1) = 0.

Properties (ii) and (iii) imply that ϕ(t) = 0.

Proof. Property (i) follows from (2.12) since F (x, y) is a homogeneous polynomial.
In order to prove (ii), let y = −2x, z = x in (2.20) and use (2.18) and (2.19).
Similarly, (iii) is proved by putting x = az, y = a−1z in (2.20) and using (i).

Next, by (ii), ϕ(a1) = 0 for some a1, such that |a1| > 1. Since | − a21| > |a1|
and |a1 + a−11 | > |a1|, it follows from (iii) that ϕ(a2) = 0 for some a2, such that
|a2| > |a1|, etc. Thus the polynomial ϕ(t) has infinitely many zeros, hence equals
zero. �

Lemma 2.4 completes the proof of (a) in the case g = 0. Now consider the case
g 6= 0. Then identity (2.14) holds and we also obtain from (2.18), putting there
y = 1, that

the polynomial

H(x) = (∆− 3)x2∆−2(x+ 1)− x2∆−3 + x3 − (∆− 3)x(x + 1)

is divisible by the polynomial f(x) = (x + 1)∆−1 − x∆−1 − 1.

(2.22)
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By the above discussion we may assume that ∆ is an even integer. Now we will
show that (2.22) is impossible for all positive even integers ∆ > 6.

In order to show that (2.22) does not hold for these ∆, note that f(x) =
f(−x−1), hence the divisibility ofH(x) by f(x) implies the divisibility ofH1(x) :=
−(x+1)H(−x−1) by f(x). Next, we haveH1(x) ≡ H0(x) mod(f), whereH0(x) =
(∆− 3)x(x+1)x2∆−2 − x2∆−2 +2(∆− 3)(x∆+1 +x∆)− 2x∆−1 + (x+1)4 + (∆−
3)x(x+1)2+(∆−3)x(x+1)−1. Then P (x) := H0(x)−xH(x) = 2(∆−3)x∆+1+
2(∆− 3)x∆ − 2x∆−1 +2(∆− 1)x3 +2(2∆− 3)x2 + 2(∆− 1)x is divisible by f(x)
if and only if H0(x) is. Now assume that ∆ > 6. Then, dividing P (x) by f(x),
we obtain the remainder Ax∆−3+ lower degree terms, where A 6= 0. Thus, H(x)
is not divisible by f(x) for ∆ even > 6.

We conclude the proof of (a) by a direct computation in cases ∆ = 3, 4 and 6.
For example, in the case of ∆ = 3, from the conformal weight considerations, we
have {WλW} = (D + 2λ)P1 + (D + 2λ)3P3 + (D + 2λ)5P5, where P1 = αL2 +
βL′′+ γW ′, P3 = δL, P5 = ε, and α, β, γ, δ, ε are constants, not all equal to zero.
Then the LWW Jacobi identity determines these five constants up to a nonzero
common factor, and after rescaling, we get:

P1 = 28L2 + 23 · 3cL′′, P3 = 23 · 5cL, P5 = c2.

The WWW Jacobi identity then automatically holds, and we obtain the classical
W -algebra Wk(s`3, f).

Similar, but more complicated computations give, for ∆ = 4,

{WλW} =
7∑

j=1
j odd

(D + 2λ)jPj ,

where

P1 = 211 · 32L3 + 26cL
′2 + 27 · 29cLL′′ + 24 · 3c2L(4) + 24 · 7

√
2LW + 2

√
2cW ′′,

P3 = 26 · 72cL2 + 25 · 7c2L′′ + 2 · 3 · cW, P5 = 24 · 7c2L, P7 = c3.

This is the classical W -algebra Wk(sp4, f).
Finally, for ∆ = 6 we get

{WλW} =

11∑

j=1
j odd

(D + 2λ)jPj ,

where deg1 Pj = 11 − j with deg1 L = 2, deg1W = 6, deg1D = 1, deg1 c = 0
and deg2 Pj = 5 with deg2 L = deg2 c = 1, deg2W = 3, deg2D = 0. The explicit
formulas for Pj are too long to be reproduced here. This is the classicalW -algebra
Wk(G2, f).

The proof of (b) is similar, but simpler. We again use Lemmas 3.1 and 3.2. In
this case the polynomials Pj do not contain the terms, linear in W (m), m ∈ Z+,
since ∆ ∈ 1

2 + Z, hence the linear terms of Pj are linear combinations of L(m),
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m ∈ Z+, and 1. Denote the coefficient of L(2∆−3−j) in Pj by aj , and let g = P2∆−1.
Then aj = 0 if j is odd. As before, let

G1(x, y) =

2∆−3∑

j=0
j even

ajx
jy2∆−3−j , G(x, y) = G1

(
x− y

2
,
x+ y

2

)
.

As before, computing the W (r)-terms of the WWW Jacobi identity, we get
(
(∆− 1)(z − y) + x

)
G(z,−y) + cycl = 0. (2.23)

The constant term of the LWW identity gives

G(x, y) = 48g

2∆−3∑

j=0
j odd

(−1)j(j + 1)

(
∆− j + 2

2

)
x2∆−3−jy. (2.24)

Plugging (2.18) in (2.17) and computing the coefficient of z2 we get

48g((3∆− 6)(xy2∆−5 + x2∆−5y))− (∆− 1)(∆− 3)(x2∆−4 − y2∆−4) = 0.

But this is impossible if ∆ > 5
2 and g 6= 0. Hence {WλW} = 0 if ∆ > 5

2 , proving
(b).

Example 2.5. The differential algebra R2 with W of conformal weight 4 and the
λ-bracket

{WλW} = (D + 2λ)(αL3 + βLW )

is a PVA with central charge c = 0 for any values of α, β ∈ C, however, only for the
value α/β = 26 · 32 ·

√
2/7 this PVA is a member of a family of PVAs, depending

on an arbitrary central charge c.

3. On classification of Poisson λ-brackets of arbitrary order N in
one differential variable

In this section we study Poisson λ-brackets on the algebra of differential func-
tions V = R̃1. The inclusion of x allows us to consider contact transformations,
see [A], [AV], [M], which preserve the order of the λ-bracket (but do not preserve
translation invariance, i.e. independence of the coefficients of x).

A contact transformation of the differential algebra V is a transformation of the
form

x = ϕ(y, v, vy), u = ψ(y, v, vy), Dx =
1

ϕ′
Dy, (3.25)

such that the following conditions hold:

∂ϕ

∂vy
ψ′ =

∂ψ

∂vy
ϕ′, ϕ′ and ρϕ′ :=

∂ψ

∂v
ϕ′ − ∂ϕ

∂v
ψ′ are invertible elements ofV .

Note that the Jacobian of the transformation (y, v, vy) 7→ (x, u, ux) equals ρ2.
An example of a contact transformation is the Legendre transformation: ϕ =
v′, ψ = yv′ − v (for which ρ = −1). The contact transformations are precisely
all automorphisms of the algebra V , which leave invariant the contact form ω =
du−u′dx up to multiplication by a function (the factor being ρ), and also precisely
those transformations which preserve the order of any Hamiltonian operator [M].
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Example 3.1. The Legendre transformation takes the operator DN to the differ-
ential operator TN := (1/u′′)(D ◦ (1/u′′))N [M]. It follows that the operators TN

for positive odd N are Hamiltonian and compatible, which answers the question
raised in [C1].

Example 3.2. The contact transformation ϕ = v, ψ = −y takes the translation
invariant Hamiltonian operator D ◦ ((1/u′)D)N−1 to a quasiconstant coefficient
(but not translation invariant) Hamiltonian operator DN + 2xD + 1.

We will say that two λ-brackets on V or two Hamiltonian operators are equiva-
lent if, in an algebra of the differential functions extension of V , one of them can
be transformed to another by a contact transformation. The following result is
well known.

Theorem 3.3 ([V], [GD], [A], [AV], [M], [O]). Any Hamiltonian operator in one
function u of order N = 1 (resp. N = 3) is equivalent to the following (unique)
one:

D (resp. D3 + a(2uD+ u′), a ∈ C).

Using Conjecture 0.2 for order N Poisson λ-brackets, the first step in their
classification is the following conjecture, which we checked for N 6 11.

Conjecture 3.4. Let fN be the leading coefficient of a Poisson λ-bracket on V of
order N (recall that N is odd) and level m = N + ε, where ε = 1 or 2 and let
Nε = N + 2ε− 3. Then

NεfN
∂2fN
∂u(ε)2

= (Nε + 1)

(
∂fN
∂u(ε)

)2
.

Equivalently, fN = a/
(
(u(ε) + b)Nε

)
, where a, b ∈ V have differential order at most

ε− 1.

The following remark shows that Hamiltonian operators remain Hamiltonian
under contact transformations.

Remark 3.5. Given an element P = P (x, u, u′, . . .) ∈ V (resp. a differential opera-

tor H), denote by P̃ (resp. H̃) the element (resp. differential operator) obtained
from P (resp. H) by the substitution (3.25). Then under the contact transforma-
tion (3.25), an evolution partial differential equation du/dt = P gets transformed

to dv/dt = (1/ρ)P̃ and, for
∫
h dx ∈ V/DV , the variational derivative δ

∫
hdx/δu

gets transformed to (1/ρϕ′)(δ
∫
h̃dy/δv). A Hamiltonian (evolution) partial dif-

ferential equation du/dt = H(δ
∫
hdx/δu), where H is a Hamiltonian operator,

gets transformed to dv/dt = Hnew(δ
∫
h̃dy/δv), where Hnew = (1/ρ)H̃ ◦ (1/ρϕ′) is

again a Hamiltonian operator [M].
The following remark shows how the first two coefficients of a λ-bracket change

under contact transformations.

Remark 3.6. A contact transformation takes the λ-bracket (0.5) to a λ-bracket of

the form (0.5) with some coefficients gj ∈ V , where gN = f̃N/ρ
2ϕ′N+1. Further-

more, fN = gN = 1 if and only if the contact transformation has the form ϕ = ϕ(y),
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ψ = ϕ′(y)−(N+1)/2v + f(y), and then gN−2 = ϕ′2f̃N−2 +
1
3n(n

2 − 1)S(ϕ), where
S(ϕ) = ϕ′′′/ϕ′ − 3ϕ′′2/2ϕ′2 is the Schwarz derivative.

A classification of Hamiltonian operators of order N = 5 was obtained by Cooke
[C], who showed that such an operator can be transformed either to a quasiconstant
coefficient skew-adjoint operator, or to a certain canonical form, depending on one
parameter. This canonical form is not translation invariant, but it can be slightly
simplified, using the contact transformation with ϕ = ey, ψ = e−3yv, to make it
translation invariant. It turned out that, by the further contact transformation
ϕ = y, ψ = v2/2, the canonical form can be recast in a beautiful form, which can
be easily generalized to arbitrary order N .

Theorem 3.7.

(a) Any Poisson Hamiltonian operator of order N = 5 on V is equivalent to
either a quasiconstant coefficient skew-adjoint operator or to one of the
following translation invariant Hamiltonian operators (b, c ∈ C):

(D2 − c2) ◦ 1

u
◦D ◦ 1

u
(D2 − c2) + bD(D2 − c2). (3.26)

These two types of Hamiltonian operators are not equivalent. The Hamil-
tonian operators (3.26), corresponding to parameters (b, c) and (b1, c1), are
equivalent if and only if either b 6= 0 and bc = ±b1c1 or b = b1 = 0.

(b) The (compatible for all c ∈ C) Hamiltonian operators

H(5,c) = (D2 − c2) ◦ 1

u
◦D ◦ 1

u
(D2 − c2) and Kc = D(D2 − c2)

give rise to the Lenard–Magri scheme

Kcξj+1,c = H(5,c)ξj,c, j = 0, 1, 2, . . . ,

with ξ0,c = − 2

c2
if c 6= 0, ξ0,0 = x2, ξ1,c =

1

u2
,

(3.27)

where, for j > 1, ξj,c lie in V0 := C[u, u−1, u(n); n > 1] and depend polyno-
mially on c. This scheme produces an integrable hierarchy of Hamiltonian
evolutionary equations du/dtj = Kcξj+1,c, j = 0, 1, 2, . . ., the first one
being (after rescaling ):

du

dt0
=

(
u′′

u3
− 3

u′2

u4
− c2

2

1

u2

)′
. (3.28)

Proof. The proof of (a) consists of three steps (cf. [AV], [M], [C]). First, one proves
that the level m 6 7 (cf. Conjecture 0.2, which is proved for N = 5). Second,
one shows, as in [C], that, by a contact transformation one can make the leading
coefficient equal to 1. (Here one uses Conjecture 3.4, which is proved for N = 5.)
Third, one shows that any Poisson λ-bracket {uλu} =

∑
j=1,3,5(D + 2λ)jfj with

f5 = 1, either has f1 and f3 quasiconstant, or has the following f1 and f3, where
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one can add to u an arbitrary quasiconstant (this is Proposition 4.10 from [C]
recast in terms of λ-brackets):

f1 =
1

4
c21 + 3c′′1 + 2c1

u′′

u
− c1

u′2

u2
− 4c′1

u′

u

+
1

2
c1c2u+ 3c2u

′′ − 3c2
u′2

u
− 3c′′2u+ 4

u(4)

u

− 12
u′u′′′

u2
+ 12

u′′2

u2
− 24

u′2u′′

u3
+ 21

u′4

u4
,

f3 =c1 + c2u+ 12
u′′

u
− 14

u′2

u2
,

(3.29)

where the cj = cj(x) are quasiconstants satisfying the following equation:

2c1c
′
2 + c2c

′
1 + 4c′′′2 = 0. (3.30)

By Remark 3.5 a contact transformation keeps the leading coefficient to be 1 if
and only if ϕ = ϕ(y) and ψ = ϕ′(y)−3v + f(y), and this transformation takes
the pair of quasiconstants c1, c2 to the pair of quasiconstants c1, c2, where c1 =
ϕ′2c1(ϕ) + 4S(ϕ), c2 = c2(ϕ)/ϕ

′. By such a transformation one can make c1 = 0,
so that c2(x) = Ax2 +Bx+C where A,B,C ∈ C. We can make C = 0, replacing
x by x+ const. Then, applying the transformation with ϕ = y−1, we make A = 0
and keep c1 = 0 since S(ϕ) = 0 and, if B 6= 0, we can make C = 0 replacing x
by x + const. Taking further ϕ = ey, we make both c1, c2 constant and, finally,
by the transformation ϕ = y, ψ = v2/2, the corresponding Hamiltonian operator
is reduced to the form, described in (a), where c = c1, b = c2. The equivalence,
stated in (a), is immediate by the above remarks. All these computations use
Mokhov’s transformation formula (see Remark 3.5). For N > 5 the strategy is the
same, but the computational difficulties increase exponentially.

In order to prove (b), let Hc = (1/u) ◦ D ◦ (1/u) ◦ (D2 − c2), K = D, so
that H(5,c) = (D2 − c2)Hc, Kc = (D2 − c2)K. Obviously, any solution to the
Lenard–Magri scheme

Dξj+1,c = Hcξj,c, j = 0, 1, 2, . . . , (3.31)

with ξ0,c = −2/c2 if c 6= 0, ξ0,0 = x2, ξ1,c = 1/u2, is a solution to the Lenard–
Magri scheme (3.27). Note that Hc = D ◦ Hc − 1

2Kcξ1,c, where Hc = (1/u2) ◦
(D2 − c2) + (u′/u3)(D + c)− (D + c) ◦ (u′/u3). Hence (3.31) becomes

Dξj+1,c = D(Hcξj,c)− 1
2ξj,c(Kcξ1,c). (3.32)

We construct a solution ξ0,c, . . . , ξn,c to (3.31), such that ξj,c ∈ V0 for j =
1, . . . , n, by induction on n. We already have it for n = 1. If we have it for n,
then it is also a solution to the Lenard–Magri scheme (3.25) with skew-adjoint
operators, hence, by [BDK, Lemma 2.6], ξj,c(Kcξi,c) ∈ DV0 for all i, j = 1, . . . , n.
In particular, this holds for j = n and i = 1, which implies that equation (3.32)
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has a solution ξj,c ∈ V0 for j = 1, . . . , n+1. Using the recurrent formula (3.32), it
is easy to prove by induction that the ξj,c are linearly independent and, for j > 1,
depend polynomially on c.

Letting h0 = −2u/c2 if c 6= 0 and h0 = x2u if c = 0 and h1 = −1/u, so that
ξj,c = δ

∫
hjdx/δu for j = 0, 1 by [BDK, Theorem 2.7 and Prop. 1.9], there exist∫

h2dx,
∫
h3dx, . . . ∈ V0/DV0, such that ξj,c = δ

∫
hjdx/δu for j > 2, hence the

hierarchy, defined in (b), is integrable. �

Equation (3.28) appears in [MSS] in a classification of integrable evolution equa-
tions (see equation (4.1.26) there).

Remark 3.8. The contact transformation ϕ = y, ψ = v2/2 takes the Poisson λ-
brackets with f5 = 1 and f1, f3 as in (3.29), to the Poisson λ-brackets {uλu}(5,c1,c2)
=
∑

j=1,3,5(D + 2λ)jgj , where

g1 =
1

u6
( 14 c

2
1u

4 + c1c2u
6 − 2c1u

3u′′ + 6c1u
2u′2

+ 3c′′1u
4 − 6c′′2u

6 − 8c′1u
3u′ − 2u3u(4)

+ 24u2u′u′′′ + 18u2u′′2 − 144uu′2u′′ + 120u′4),

g3 =
1

u4
(c1u

2 + 2c2u
4 + 4uu′′ − 12u′2), g5 =

1

u2
,

and ci = ci(x) satisfy (3.30). The corresponding Hamiltonian operator is, provided
that c1(x) 6= 0,

H(5,c1,c2) = B∗(2,c1,c2) ◦D ◦B(2,c1,c2),

where B(2,c1,c2) = (1/u)D2+a(x)D−a′(x)−a′′(x)/(a(x)u), c1(x) = −8a′′(x)/a(x),
c2(x) = −2a(x)2, a(x) is a nonzero quasiconstant, and

H(5,0,c(x)) = H(5,0) + 1
2c(x)D

3 + 3
4c
′(x)D2,

where c′′′(x) = 0. If c2 = 0, then H(5,c1,c2) is equivalent to H
(5,0); otherwise, it is

equivalent to H(5,c) + 1
2Kc, where 8c2 = 2c′22 − 4c2c

′′
2 − c1c

2
2 (which is a constant

due to (3.30)).
Motivated by Theorem 3.7, introduce the following skew-adjoint differential

operator of order N = 2n+ 3 > 3 and the leading coefficient u3−N ,

H(N,0) = D2 ◦
(
1

u
D

)2n
◦D. (3.33)

We show in the next section that all the operators H (N,0) are Hamiltonian and
compatible. Note that two linear combinations of the form H (N,0)+a1H

(N−2,0)+
a2H

(N−4,0) + · · · + anH
(3,0), where all aj ∈ C, are equivalent if and only if there

exists a nonzero constant s, such that aj is replaced by sjaj for all j.
It is straightforward to show that the contact transformation ϕ = (eay − 1)/a,

ψ = e−byv, where a = (n+1)c, b = (n+2)c, c ∈ C, takes the Hamiltonian operator
H(N,0) to the Hamiltonian operator

H(N,c) = (−1)n(D − c) ◦ (B(n,c))∗ ◦D ◦B(n,c) ◦ (D + c),
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where

B(n,c) =
1

u
(D − c) ◦ 1

u
◦ (D − 2c) ◦ 1

u
◦ ... ◦ 1

u
(D − nc).

Here ∗ stands for taking the adjoint differential operator, and B(0,c) = 1.
The same arguments as in the proof of Theorem 3.7(a) lead to a classification

of Hamiltonian operators of orders 7, 9 and 11. We state here the results, omitting
the detailed proofs.

Theorem 3.9. Any Hamiltonian operator of order 7 is equivalent either to a qua-
siconstant coefficient skew-adjoint differential operator or to the operator H(7,c(x))+
b2D3, where

H(7,c(x)) = −B∗(3,c(x)) ◦D ◦B(3,c(x)), B(3,c(x)) =
1

u
D ◦ 1

u
D2 + c(x)D − 1

2c
′(x),

and c′′′(x) = 0, b ∈ C. These two types of Hamiltonian operators are not equivalent.
The Hamiltonian operators H(7,c(x))+ b2D3 and H(7,c1(x))+ b21D

3 are equivalent if
and only if α2c1(x) = c(α3x+ β) and α2b1 = ±b for some constants α 6= 0 and β.
Such a Hamiltonian operator is equivalent to a linear combination of the operators
H(j,0) if and only if c(x) = c ∈ C, and one has H(7,c) = H(7,0)+2cH(5,0)+c2H(3,0).

Remark 3.10. The compatible pair of Hamiltonian operatorsH(7,c(x)), where c
′′′(x)

= 0, and D3 give rise to a Lenard–Magri scheme with ξ0 = 1 if c′′(x) 6= 0 (resp.
ξ0 = c(x) if c′′(x) = 0, c′(x) 6= 0) and ξ0 = − 1

2x
2. The first Hamiltonian equations

of the resulting hierarchy are (up to a constant factor)

du

dt0
=H(7,c(x))ξ0 =

(
u′′

u3
− 3u′2

u4
− 1

4

(c(x)2)′′

c′′(x)

)′ (
resp. =

(
u′′

u3
− 3u′2

u4
− 3

2
c(x)

)′)
,

du

dt0
=H(7,c(x))ξ0

=

(
u(4)

u5
− 15

u′u′′′

u6
− 10

u′′2

u6
+ 105

u′′u′2

u7
− 105

u′4

u8

+
(
2c(x)− 1

4c
′′(x)x2 + 1

2c
′(x)x

)u′′
u3

−
(

3
2c
′(x)x + 6c(x)− 3

4c
′′(x)x2

)u′2
u4

+ 5c′(x)
u′

u3
− 5

4

c′′(x)

u2
− 15

16c(x)
2 + 9

16 c(x)c
′′(x)x2 − 9

8c(x)c
′(x)x

+ 3
64c
′′(x)2x4 − 3

16c
′(x)c′′(x)x3 + 3

16c
′(x)2x2

)′
= D3 δh1

δu
,

where

h1 = a(x)u+
1

u

(
c(x)− 1

8c
′′(x)x2 + 1

4c
′(x)x

)
− u′2

2u5

and

a(x) =
x2

32

(
− 18c(x)2 − 6c(x)c′′(x)x2 + 20c(x)c′(x)x

− c′′(x)2x4 + 5c′(x)c′′(x)x3 − 7c′(x)2x2
)
.
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We can show that this Lenard–Magri scheme produces an integrable hierarchy
of Hamiltonian equations. The first of these equations includes equations (4.1.23)
and (4.1.24) from [MSS], while the second seems to be new.

For N = 2n + 5 > 5 and a quasiconstant c(x), such that c′′(x) = 0, we intro-
duce the following skew-adjoint differential operator of order N with the leading
coefficient u3−N ,

H [N,c(x)] = (−1)n(B[n+2,c(x)])∗ ◦D ◦B[n+2,c(x)],

where

B[n+2,c(x)] =

(
1

u
D − c(x)

)
. . .

(
1

u
D − nc(x)

)(
1

u
D2 + c(x)D − c′(x)

)

is a differential operator of order n+2. By the same method, as in Section 4, one
shows that H [N,c(x)] is a Hamiltonian operator.

For N = 7 we have H(7,−c(x)2) = H [7,c(x)] if c′′(x) = 0.

Theorem 3.11. Any Hamiltonian operator of order 9 is equivalent either to a
quasiconstant coefficient skew-adjoint differential operator, or to the Hamiltonian
operator H [9,c(x)] + aD3, where c′′(x) = 0, a ∈ C, or to the Hamiltonian operator
H(9,c(x)) + a2H(5,0,c(x)/2) + b3D3, where

H(9,c(x)) = B∗
(
D ◦ 1

u
◦D ◦ 1

u
D + c(x)D + 1

2c
′(x)

)
B,

B =
1

u
◦D ◦ 1

u
D2 + c(x)D − 1

2c
′(x),

H(5,0,c(x)) is defined in Remark 3.8, and a, b ∈ C, c′′(x) = 0. These three types of
Hamiltonian operators of order 9 are not equivalent. The Hamiltonian operators,
corresponding to the triples (c(x), a, b) and (c1(x), a1, b1), are equivalent if and only
if αc1(x) = c(α2x+ β), αa1 = ±a, and αb1 = εb for some constants α 6= 0, β and
a cube root of unity ε. An operator H(9,c(x)) is equivalent to a linear combination

of the operators H(j,0) with constant coefficients if and only if c(x) = c ∈ C, and
one has H(9,c) = H(9,0) + 3cH(7,0) + 3c2H(5,0) + c3H(3,0).

Remark 3.12. The compatible, for N 6 9, pair of Hamiltonian operators H [N,c(x)]

andD3 gives rise to a Lenard–Magri scheme with ξ0 = 1 and ξ0 = x2. We can show
that this Lenard–Magri scheme produces an integrable hierarchy of Hamiltonian
equations if N = 9. The simplest equation of this hierarchy is, up to a constant
factor, the following equation of order 5, which seems to be new (here c′′(x) = 0,
c′(x) 6= 0),

du

dt0
=H [9,c(x)]1 =

(
u(4)

u5
− 15

u′u′′′

u6
− 10

u′′2

u6
+ 105

u′′u′2

u7
− 105

u′4

u8

+ 20c′(x)
u′2

u5
− 5c′(x)

u′′

u4
+ 5c′(x)2

1

u2
− 20c(x)c′(x)

u′

u3

+ 15c(x)2
u′2

u4
− 5c(x)2

u′′

u3
− 5c(x)4

)′
.

(In this way for N = 5 we get the integrable hierarchy in Theorem 3.7 and for
N = 7 a special case of the integrable hierarchy of Remark 3.10.)
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Theorem 3.13. Any Hamiltonian operator of order 11 is equivalent either to a
quasiconstant coefficient skew-adjoint differential operator, or to a linear combi-
nation with constant coefficients of the operators H (j,0) with 3 6 j 6 11, j odd, or
to the operator

H [11,c(x)] + a

(
1

u4
D7 − 14

u′

u5
D6 +

1

3u6

(
− 10c(x)2u4 − 8c′(x)u3

− 60uu′′ + 285u′2
)
D5 +

5

3u7

(
10c(x)2u4u′

− 10c(x)c′(x)u5 + 12c′(x)u3u′ − 9u2u′′′ + 120uu′u′′ − 225u′3
)
D4

+
1

3u8

(
7c(x)4u8 + 40c(x)2u5u′′ − 120c(x)2u4u′2 + 174c(x)c′(x)u5u′

− 40c′(x)2u6 + 48c′(x)u4u′′ − 192c′(x)u3u′2 − 18u3u(4) + 300u2u′u′′′

+ 210u2u′′2 − 2340uu′2u′′+2520u′4− 4
3au

8
)
D3+

1

3u9

(
42c(x)3c′(x)u9

+ 10c(x)2u6u′′′ − 90c(x)2u5u′u′′ + 120c(x)2u4u′ + 81c(x)c′(x)u6u′′

− 243c(x)c′(x)u5u′2 + 81c′(x)2u6u′ + 12c′(x)u5u′′′ − 144c′(x)u4u′u′′

+ 240c′(x)u3u′3 − 3u4u(5) + 60u3u′u(4) + 105u3u′′u′′′ − 585u2u′2u′′′

− 810u2u′u′′2+3465uu′3u′′−2520u′5
)
D2+

7

3u5
c(x)c′(x)

(
3c(x)c′(x)u5

+ u2u′′′ − 9uu′u′′ + 12u′3
)
D +

7

3u5
c′(x)2

(
− 3c(x)c′(x)u5 − u2u′′′

+ 9uu′u′′ − 12u′3
))

,

where c′′(x) = 0, a ∈ C, or to the operator H(11,c(x)) + aH(5,0,2c(x)), where

H(11,c(x)) = −B∗(11,c(x)) ◦D ◦B(11,c(x)),

B(11,c(x)) =

(
1

u
D ◦ 1

u
D + 1

4c(x)

)
◦
(
1

u
D ◦ 1

u
D2 + c(x)D − 1

2c
′(x)

)
,

and a ∈ C, c′′(x) = 0, or to the operator H[11,c(x)]+aH(5,0,14c(x)), a ∈ C, c′′(x) = 0,
where H[11,c(x)] is too long to be reproduced here (its computer printout takes seven
pages).

Remark 3.14. The compatible pairs of Hamiltonian operators

(H(11,c(x)), H(5,0,2c(x))) and (H[11,c(x)], H(5,0,14c(x)))

give rise to Lenard–Magri schemes with ξ0 = 1 and ξ0 = c(x). We conjecture that
these two Lenard–Magri schemes produce integrable hierarches of Hamiltonian
equations.

Now we proceed to state our conjectures on the classification of Hamiltonian
operators (in one differential variable u) of arbitrary (odd) order N .
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Conjecture 3.15.

(a) Any Hamiltonian operator is equivalent to a Hamiltonian operator with the
leading coefficient 1. Note that for N = 2n+3 > 3 the latter is equivalent to
a Hamiltonian operator H with the leading coefficient u3−N by the contact
transformation x = y, u = vn+1/(n+ 1).

(b) If H is a translation invariant nonconstant coefficient Hamiltonian opera-
tor of order N = 2n + 3 > 7 with the leading coefficient 1, then after the
contact transformation x = y, u = vn+1/(n+1) + const. it becomes either
H(N,c) with c ∈ C, or a linear combination with constant coefficients of the
operators H(j,0) with 3 6 j 6 N , j odd.

(c) Any translation invariant Hamiltonian operator of order N > 7 is equiva-
lent to either a quasiconstant coefficient skew-adjoint differential operator,
or to a linear combination of the operators H (j,0) with 3 6 j 6 N , j odd.

(d) For N > 7 the Hamiltonian operator H (N,1) is not compatible with any
translation invariant Hamiltonian operator other than a scalar multiple of
itself.

(e) Any Hamiltonian operator of order N > 13 is equivalent to either a quasi-
constant coefficient skew-adjoint differential operator, or to a linear com-
bination with constant coefficients of the operators H (j,0) with 3 6 j 6 N ,
j odd, or to the Hamiltonian operator H [N,c(x)], where c′′(x) = 0.

(f) For N > 11 the Hamiltonian operator H [N,c(x)] with c′(x) 6= 0, c′′(x) = 0
is compatible only with a constant multiple of itself.

We verified Conjectures 3.15(a), (b), (d), (e) and (f) for N 6 13, but were
unable to prove (c) even for N = 7. Note that Conjecture 3.15(a) follows from
Conjectures 0.2 and 3.4 and, conversely, it implies these conjectures.

Remark 3.16. It follows from (3.33) that for ξj := ξj,c=0, where ξj,c are the same
as in Theorem 3.7(b), we have

D3ξj+n = H(2n+3,0)ξj , j = 0, 1, 2, . . . , n = 1, 2, . . . .

In particular, ξj := ξnj give a solution to the Lenard–Magri scheme D3ξj+1 =

H(2n+3,0)ξj , j = 0, 1, . . ..

Remark 3.17. Let H(5,ax) denote the Hamiltonian operator, corresponding to the
λ-bracket {uλu}(5,c1,c2) from Remark 3.8 with c1 = 0, c2 = ax, where a is a
nonzero constant, and let H(9,ax) be the Hamiltonian operator from Theorem 3.11
with c(x) = ax. Then the triple of Hamiltonian operators H(9,ax), H(5,ax), D

3 is
compatible. Let ξn be the sequence produced by the Lenard–Magri scheme

H(5,ax)ξn = D3ξn+1, ξ0 = x2.

Then H(9,ax)ξ0 = H(5,ax)ξ2.

In view of Conjecture 3.15 and Remarks 3.16 and 3.17, the following conjecture,
consistent with the known classification results of general integrable equations
[MSS], seems natural.
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Conjecture 3.18. Any integrable bi-Hamiltonian equation in u is equivalent by
a contact transformation to one, contained in either the linear hierarchy, or the
KdV hierarchy, or the HD hierarchy, or the hierarchy defined in Theorem 3.7(b),
or the hierarchies discussed in Remarks 3.10, 3.12 and 3.14. (For the definition of
integrability of a Hamiltonian equation and the construction via the Lenard–Magri
scheme of the KdV and HD hierarchies, see, e.g., [BDK].)

4. Compatible family of Hamiltonian operators H
(N,0)(D)

Recall the definition (3.33) of the operator H (N,0)(D), where N > 3,

H(N,0)(D) = D2 ◦B(N−3)(D) ◦D, where B(n)(D) :=

(
1

u
D

)n

. (4.34)

We denote by {· λ ·}N the corresponding λ-bracket, which is given by

{uλu}N = (λ+D)2B(N−3)(λ+D)λ. (4.35)

Theorem 4.1. The operators H (N,0)(D), N > 3 odd, are compatible Hamiltonian
operators. Namely, any linear combination

{uλu} =
∑

N > 3, odd
(finite)

αN{uλu}N , (4.36)

with constant coefficients αN , is a Poisson λ-bracket.

Lemma 4.2. For every m,n ∈ Z+ we have

{B(m)(λ+D)1λ+µu}n+3

= − λ(λ+ µ+D)2B(n)(λ+ µ+D)

(
B(m)(λ+D)

1

u

− (−1)mB(m)(µ+D)
1

u

)
.

(4.37)

Proof. We prove equation (4.37) by induction on m ∈ Z+. For m = 0 both sides
of (4.37) are zero. For m > 0 we have, by the definition (4.34) of the operator
B(n)(D),

{B(m+1)(λ+D)1λ+µu}n+3 =

{
1

u
(λ +D)B(m)(λ+D)1λ+µu

}

n+3

= −{uλ+µ+Du}n+3→
1

u2
(λ+D)B(m)(λ+D)1

−{B(m)(λ+D)1λ+µ+Du}n+3→ (µ+D)
1

u
.

(4.38)
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In the last identity we used sesquilinearity and the right Leibniz formula. By the
definition (4.35) of the λ-bracket {· λ ·}n+3, the first term in the right-hand side of
(4.38) is equal to

−(λ+ µ+D)2B(n)(λ + µ+D)(λ + µ+D)
1

u
B(m+1)(λ+D)1

= − λ(λ+µ+D)2B(n)(λ+ µ+D)

(
B(m+1)(λ +D)

1

u

+
(
Bm(λ+D)

1

u

)(
(µ+D)

1

u

))
.

(4.39)

By inductive assumption, the second term in the right-hand side of (4.38) is equal
to

−λ(λ+ µ+D)2B(n)(λ+ µ+D)

((
−B(m)(λ+D)

1

u

)(
(µ+D)

1

u

)

+ (−1)mB(m+1)(µ+D)
1

u

)
.

(4.40)

Combining (4.39) and (4.40), we conclude that the right-hand side of (4.38) is
equal to

−λ(λ+ µ+D)2B(n)(λ+ µ+D)

(
B(m+1)(λ +D)

1

u
+ (−1)mB(m+1)(µ+D)

1

u

)
,

thus proving the claim. �

Lemma 4.3. For every m,n ∈ Z+ we have

− 1

u

(
(λ+D)B(m)(λ+D)λ

)(
(µ+D)B(n)(µ+D)µ

)
+ {uλB(n)(µ+D)µ}m+3

= −λ2µ2B(n)(λ+ µ+D)B(m)(λ+D)
1

u
. (4.41)

Proof. We prove equation (4.41) by induction on n ∈ Z+. For n = 0 both sides of
(4.41) are equal to −λ2µ2B(m)(λ+D)(1/u). For n > 0, we have, by sesquilinearity
and the left Leibniz formula,

{uλB(n+1)(µ+D)µ}m+3 = {uλ
1

u
(µ+D)B(n)(µ+D)µ}m+3

= − 1

u2
{uλu}m+3(µ+D)B(n)(µ+D)µ

+
1

u
(λ+ µ+D){uλB(n)(µ+D)µ}m+3.

(4.42)

The first term in the right-hand side of (4.42) is equal to

− 1

u

(
(λ+D)2B(m)(λ+D)λ

)(
B(n+1)(µ+D)µ

)
,
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and summing this to

− 1

u

(
(λ +D)B(m)(λ+D)λ

)(
(µ+D)B(n+1)(µ+D)µ

)
,

we get

− 1

u
(λ+ µ+D)

1

u

(
(λ+D)B(m)(λ+D)λ

)(
(µ+D)B(n)(µ+D)µ

)
.

Combining the above results we get, by the inductive assumption,

− 1

u

(
(λ+D)B(m)(λ+D)λ

)(
(µ+D)B(n+1)(µ+D)µ

)
+
{
uλB

(n+1)(µ+D)µ
}
m+3

=
1

u
(λ+µ+D)

(
− 1

u

(
(λ+D)B(m)(λ+D)λ

)(
(µ+D)B(n)(µ+D)µ

)

+
{
uλB

(n)(µ+D)µ
}
m+3

)

= − λ2µ2B(n+1)(λ+µ+D)B(m)(λ+D)
1

u
,

as we wanted. �

Proof of Theorem 4.1. Skew-commutativity of the λ-bracket (4.36) is clear, since,
for odd N , the operators H(N,0)(D) are skew-adjoint. We thus only have prove
the Jacobi identity

{uλ{uµu}} − {uµ{uλu}} = {{uλu}λ+µu}. (4.43)

By Lemma 4.3, the first term in the left-hand side of (4.43) is, denoting M =
m+ 3, N = n+ 3,

∑

M,N

αMαN{uλ{uµu}N}M

=
∑

M,N

αMαN (λ+ µ+D)2{uλB(n)(µ+D)µ}M

=
∑

M,N

αMαN (λ+ µ+D)2
(
1

u

(
(λ+D)B(m)(λ+D)λ

)(
(µ+D)B(n)(µ+D)µ

)

− λ2µ2B(n)(λ+ µ+D)B(m)(λ+D)
1

u

)
.

The first term in the right-hand side of (4) is invariant under the exchange of λ
and µ, hence it gives no contribution to the Jacobi identity. Hence, the left-hand
side of (4.43) is

−λ2µ2
∑

M,N

αMαN (λ+ µ+D)2B(n)(λ + µ+D)

·
(
B(m)(λ+D)

1

u
−B(m)(µ+D)

1

u

)
.

(4.44)
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By Lemma 4.2, the right-hand side of (4.43) is

∑

M,N

αMαN{{uλu}Mλ+µu}N

=
∑

M,N

αMαNλµ
2{B(m)(λ +D)1λ+µu}N

= − λ2µ2
∑

M,N

αMαN (λ+ µ+D)2B(n)(λ+ µ+D)

·
(
B(m)(λ+D)

1

u
−B(m)(µ+D)

1

u

)
,

which is equal to (4.44). �
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