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Abstract. Let X be an affine algebraic variety with a transitive action of the algebraic
automorphism group. Suppose that X is equipped with several fixed point free nonde-
generate SL2-actions satisfying some mild additional assumption. Then we prove that
the Lie algebra generated by completely integrable algebraic vector fields on X coincides
with the space of all algebraic vector fields. In particular, we show that apart from a few
exceptions this fact is true for any homogeneous space of form G/R where G is a linear
algebraic group and R is a closed proper reductive subgroup of G.

1. Introduction

In this paper we develop further methods introduced by Kutzschebauch and
the third author in [KK2] which they used to obtain new results in the Andersén–
Lempert theory [A], [AL]. The following notion crucial for this theory was in-
troduced first by Varolin [V1] though its importance for Euclidean spaces was
emphasized already in the earlier paper of Rosay [Ro].

Definition 1. A complex manifold X has the density property if in the compact-
open topology the Lie algebra Liehol(X) generated by completely integrable holo-
morphic vector fields on X is dense in the Lie algebra VFhol(X) of all holomorphic
vector fields on X . An affine algebraic manifold X has the algebraic density
property if the Lie algebra Liealg(X) generated by completely integrable algebraic
vector fields on it coincides with the Lie algebra VFalg(X) of all algebraic vec-
tor fields on it (clearly, the algebraic density property for such an X implies the
density property for it).
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For any complex manifold with the density property the Andersén–Lempert
theory is applicable and its effectiveness in complex analysis was demonstrated in
several papers (e.g., see [FR], [Ro], [V1], [V2]). However, until recently, the class
of manifolds for which this property was established was quite narrow (mostly Eu-
clidean spaces and semisimple Lie groups, and homogeneous spaces of semisimple
groups with trivial centers [TV1], [TV2]). In [KK1] and [KK2] this class was shown
to contain hypersurfaces of the form uv = p(x̄) and connected complex algebraic
groups except for C+ and tori (C∗)n. Furthermore, it was proven in [KK1], [KK2]
that these varieties have the algebraic density property. For C+ and (C∗)n the
algebraic density property is not true (for tori of dimension at least 2 this fact is
nontrivial and it follows from the result of Andersén [A2] who established that for
each completely integrable algebraic vector field on any torus its flow preserves the
invariant volume form).

In this paper we study a smooth complex affine algebraic variety X with a
transitive action of the algebraic automorphism group AutX . This is a mild re-
striction because for an affine algebraic (resp. Stein) manifold with the algebraic
density property (resp. density property) the group of holomorphic automorphism
generated by elements of flows induced by completely integrable algebraic (resp.
holomorphic) vector fields is transitive and even m-transitive for any natural m
(this is a consequence of, say, Theorem 0.2 from [V2]). Though the facts we prove
about such objects are rather logical extension of [KK2], in combination with Lie
group theory they lead to a much wider class of homogeneous spaces with the al-
gebraic density property. Our new technique yields, in particular, to the following.

Theorem A. Let G be a linear algebraic group and let R be a closed proper
reductive subgroup of G such that the homogeneous space G/R has connected com-
ponents different from C+ or a torus (C∗)n. Then G/R has the algebraic density
property.

Besides the criteria developed in [KK2] the main new ingredient of the proof is
the Luna slice theorem. For the convenience of the readers we recall it in Section 2
together with basic facts about algebraic quotients and some crucial results from
[KK2]. In Section 3 we prove our main theorem. As an application we prove
Theorem A in Section 4 using some technical facts from the Lie group theory
presented in the Appendix.

Acknowledgments. We would like to thank Lev Kapitanski, Frank Kutzscheba-
uch, and William M. McGovern for inspiring discussions and consultations.

2. Preliminaries

Let us fix some notation first. In this paper X will always be a complex affine
algebraic variety and G will be an algebraic group acting on X , i.e., X is a G-
variety. The ring of regular functions on X will be denoted by C[X ] and its
subring of G-invariant functions by C[X ]G.

2.1. Algebraic (categorical) quotients

Recall that the algebraic quotient X//G of X with respect to the G-action is
Spec(C[X ]G). By π : X → X//G we denote the natural quotient morphism gener-
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ated by the embedding C[X ]G ↪→ C[X ]. The main (universal) property of algebraic
quotients is that any morphism from X constant on orbits of G factors through π.
In the case of a reductive G several important facts (e.g., see [Sch], [PV], [D], [G])
are collected in the following.

Proposition 1. Let G be a reductive group.

(1) The quotient X//G is an affine algebraic variety which is normal in the case
of a normal X and the quotient morphism π : X → X//G is surjective.

(2) The closure of every G-orbit contains a unique closed orbit and each fiber
π−1(y) (where y ∈ X//G) also contains a unique closed orbit O. Further-
more, π−1(y) is the union of all those orbits whose closures contain O.

(3) In particular, if every orbit of the G-action on X is closed then X//G is
isomorphic to the orbit space X/G.

(4) The image of a closed G-invariant subset under π is closed.

If X is a complex algebraic group, and G is a closed subgroup acting on X by
multiplication, then all orbits of the action are obviously closed. If G is reductive,
the previous proposition implies that the quotient X/G is affine. The next propo-
sition (Matsushima’s criterion) shows that the converse is also true for quotients
of reductive groups.

Proposition 2. Let G be a complex reductive group, and let H be a closed sub-
group of G. Then the quotient space G/H is affine if and only if H is reductive.

Besides reductive group actions in this paper, a crucial role will be played by
C+-actions. In general, algebraic quotients in this case are not affine but only
quasi-affine [W]. However, we shall later use the fact that for the natural action
of any C+-subgroup of SL2 generated by multiplication one has SL2//C+

∼= C2.

2.2. Luna’s slice theorem (e.g., see [D], [PV])

Let us recall some terminology first. Suppose that f : X → Y is a G-equivariant
morphism of affine algebraic G-varieties X and Y . Then the induced morphism
fG : X//G→ Y//G is well defined and the following diagram is commutative:

X
f

//

��

Y

��

X//G
fG

// Y//G.

(1)

Definition 2. A G-equivariant morphism f is called strongly étale if

(1) the induced morphism fG : X//G→ Y//G is étale; and
(2) the quotient morphism πG : X → X//G induces a G-isomorphism between

X and the fibered product Y ×Y//G (X//G).

From the properties of étale maps [D] it follows that f is étale (in particular,
quasi-finite).

Let H be an algebraic subgroup of G, and let Z be an affine H-variety. We
denote G ×H Z the quotient of G × Z with respect to the action of H given
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by h(g, z) = (gh−1, hz). The left multiplication on G generates a left action on
G×H Z. The next lemma is an obvious consequence of Proposition 1.

Lemma 3. Let X be an affine G-variety and G be reductive. Then the H-orbits
of G×X are all isomorphic to H. Therefore, the fibers of the quotient morphism
G×X → G×H X coincide with the H-orbits.

The isotropy group of a point x ∈ X will be denoted by Gx. Recall also that
an open set U of X is called saturated if π−1

G (πG(U)) = U . We are ready to state
the Luna slice theorem.

Theorem 4. Let G be a reductive group acting on an affine algebraic variety X,
and let x ∈ X be a point in a closed G-orbit. Then there exists a locally closed
affine algebraic subvariety V (called a slice) of X containing x such that:

(1) V is Gx-invariant;
(2) the image of the G-morphism ϕ : G×Gx

V → X induced by the action is a
saturated open set U of X; and

(3) the restriction ϕ : G×Gx
V → U is strongly étale.

Given a saturated open set U , we will denote πG(U) by U//G. It follows from
Proposition 1 that U//G is open. Theorem 4 implies that the following diagram is
commutative:

G×Gx
V //

��

U

��

V//Gx // U//G

(2)

and G×Gx
V ' U ×U//G V//Gx.

2.3. The compatibility criterion

This section presents the criteria for the algebraic density property, introduced in
[KK2], that will be used to prove the main results of this paper.

Definition 3. Let X be an affine algebraic manifold. An algebraic vector field
σ on X is semisimple if its flow is an algebraic C∗-action on X . A vector field
δ is locally nilpotent if its flow is an algebraic C+-action on X . In the last case,
δ can be viewed as a locally nilpotent derivation on C[X ]. That is, for every
nonzero f ∈ C[X ], there is the smallest n = n(f) for which δn(f) = 0. We set
degδ(f) = n− 1. In particular, elements from the kernel Ker δ have degree 0 with
respect to δ.

Definition 4. Let δ1 and δ2 be nontrivial algebraic vector fields on an affine al-
gebraic manifold X such that δ1 is a locally nilpotent derivation on C[X ], and δ2
is either also locally nilpotent or semisimple. That is, δi generates an algebraic
action of Hi on X where H1 ' C+ and H2 is either C+ or C∗. We say that δ1
and δ2 are semicompatible if the vector space Span(Ker δ1 ·Ker δ2), generated by
elements from Ker δ1 ·Ker δ2, contains a nonzero ideal in C[X ].

A semicompatible pair is called compatible if in addition one of the following
condition holds:
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(1) when H2 ' C∗ there is an element a ∈ Ker δ2 such that degδ1(a) = 1,
i.e., δ1(a) ∈ Ker δ1 \ {0}; and

(2) when H2 ' C+ (i.e. both δ1 and δ2 are locally nilpotent) there is an
element a such that degδ1(a) = 1 and degδ2(a) ≤ 1.

Remark 1. If [δ1, δ2] = 0, then conditions (1) and (2) with a ∈ Ker δ2 hold auto-
matically, i.e., any semicompatible pair of commutative algebraic vector fields is
always compatible.

Example 1. Consider SL2 (or even PSL2) with two natural C+-subgroups: na-
mely, the subgroup H1 (resp. H2) of the lower (resp. upper) triangular unipotent
matrices. Denote by

A =

(
a1 a2
b1 b2

)

an element of SL2. Then the left multiplication generates actions of H1 and H2

on SL2 with the following associated locally nilpotent derivations on C[SL2],

δ1 = a1
∂

∂b1
+ a2

∂

∂b2
,

δ2 = b1
∂

∂a1
+ b2

∂

∂a2
.

Clearly, Ker δ1 is generated by a1 and a2 while Ker δ2 is generated by b1 and b2.
Hence δ1 and δ2 are semicompatible. Furthermore, taking a = a1b2, we see that
condition (2) of Definition 4 holds, i.e., they are compatible.

It is worth mentioning the following geometrical reformulation of semicompati-
bility which will be needed further.

Proposition 5. Suppose that H1 and H2 are as in Definition 4, X is a normal
affine algebraic variety equipped with nontrivial algebraic Hi-actions where i = 1, 2
(in particular, each Hi generates an algebraic vector field δi on X). Let Xi =
X//Hi and let ρi : X → Xi be the quotient morphisms. Set ρ = (ρ1, ρ2) : X →
Y := X1 ×X2 and set Z equal to the closure of ρ(X) in Y . Then δ1 and δ2 are
semicompatible iff ρ : X → Z is a finite birational morphism.

Definition 5. A finite subset M of the tangent space TxX at a point x of a
complex algebraic manifold X is called a generating set if the image of M under
the action of the isotropy group (of algebraic automorphisms) of x generates TxX .

It was shown in [KK2] that the existence of a pair of compatible derivations δ1
and δ2 from Definition 4 implies that Liealg(X) contains a C[X ]-submodule Iδ2
where I is a nontrivial ideal in C[X ]1. This yields the central criterion for the
algebraic density property [KK2].

1In the case of condition (2) in Definition 4 this fact was proven in [KK2] only for
degδ2 (a) = 0 but the proof works for degδ2(a) = 1 as well without any change.
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Theorem 6. Let X be a smooth homogeneous (with respect to AutX) affine al-
gebraic manifold with finitely many pairs of compatible vector fields {δk1 , δk2}mk=1

such that for some point x0 ∈ X vectors {δk2 (x0)}mk=1 form a generating set. Then
Liealg(X) contains a nontrivial C[X ]-module and X has the algebraic density prop-
erty.

As an application of this theorem we have the following.

Proposition 7. Let X1 and X2 be smooth homogeneous (with respect to algebraic
automorphism groups) affine algebraic varieties such that each Xi admits a finite
number of completely integrable algebraic vector fields {δki }mi

k=1 whose values at
some point xi ∈ Xi form a generating set and, furthermore, in the case of X1

these vector fields are locally nilpotent. Then X1 × X2 has the algebraic density
property.

We shall also need two technical results (Lemmas 3.6 and 3.7 in [KK2]) that
describe conditions under which quasi-finite morphisms preserve semicompatibility.

Lemma 8. Let G = SL2 and let X,X ′ be normal affine algebraic varieties equip-
ped with nondegenerate G-actions (i.e., general G-orbits are of dimension 3). Sup-
pose that subgroups H1 and H2 of G are as in Example 1, i.e., they act naturally on
X and X ′. Let ρi : X → Xi := X//Hi and ρ

′
i : X

′ → X ′
i := X ′//Hi be the quotient

morphisms and let p : X → X ′ be a finite G-equivariant morphism, i.e., we have
commutative diagrams:

X
ρi

//

p

��

Xi

qi

��

X ′
ρ′
i

// X ′
i

for i = 1, 2. Treat C[Xi] (resp. C[X ′
i ]) as a subalgebra of C[X ] (resp. C[X ′]). Let

Span(C[X1] · C[X2]) contain a nonzero ideal of C[X ]. Then Span(C[X ′
1] · C[X ′

2])
contains a nonzero ideal of C[X ′].

The second result is presented here in a slightly different form but with a much
simpler proof.

Lemma 9. Let the assumption of Lemma 8 hold with two exceptions: we do not
assume that G-actions are nondegenerate and instead of the finiteness of p we
suppose that there are a surjective étale morphism r : M → M ′ of normal affine
algebraic varieties equipped with trivial G-actions and a surjective G-equivariant
morphism τ ′ : X ′ →M ′ such that X is isomorphic to the fibered product X ′×M ′M
with p : X → X ′ being the natural projection (i.e., p is surjective étale). Then the
conclusion of Lemma 8 remains valid.

Proof. By construction, Xi = X ′
i×M ′M . Thus we have the following commutative

diagram

X

p

��

ρ
// (X ′

1 ×X ′
2)×(M ′×M ′) (M ×M) //

q

��

M ×M

(r,r)

��

X ′
ρ′

// X ′
1 ×X ′

2

(τ ′,τ ′)
// M ′ ×M ′.
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Set Z (resp. Z ′) equal to the closure of ρ(X) in X1×X2 (resp. ρ′(X ′) in X ′
1×X ′

2)
and let D 'M (resp. D′ 'M ′) be the diagonal subset inM×M (resp. M ′×M ′).
Since X = X ′ ×M ′ M we see that Z = Z ′ ×D′ D. For any affine algebraic variety
Y denote by Ynorm its normalization, i.e., Znorm = Z ′

norm ×D′ D. By Lemma
5, ρ : X → Znorm is an isomorphism. Since r is surjective it can happen only
when ρ′ : X ′ → Z ′ is an isomorphism. Hence the desired conclusion follows from
Proposition 5.

The last result from [KK2] that we need allows us to switch from local to global
compatibility.

Proposition 10. Let X be an SL2-variety with associated locally nilpotent deriva-
tions δ1 and δ2, let Y be a normal affine algebraic variety equipped with a trivial
SL2-action, and let r : X → Y be a surjective SL2-equivariant morphism. Suppose
that for any y ∈ Y there exists an étale neighborhood g :W → Y such that the vec-
tor fields induced by δ1 and δ2 on the fibered product X ×Y W are semicompatible.
Then δ1 and δ2 are semicompatible.

3. Algebraic density property and SL2-actions

Notation 1. We suppose that H1, H2, δ1, and δ2 are as in Example 1. Note that if
SL2 acts algebraically on an affine algebraic variety X then we have automatically
the C+-actions of H1 and H2 on X that generate locally nilpotent vector fields on
X which, by abuse of notation, will be denoted by the same symbols δ1 and δ2. If
X admits several (say, N) SL2-actions, we denote by {δk1 , δk2}Nk=1 the corresponding
collection of pairs of locally nilpotent derivations on C[X ].

Recall also that an action of a Lie group of a manifold is nondegenerate if the
dimension of general orbits is the same as the dimension of the group. Here is the
first main result of this paper.

Theorem 11. Let X be a smooth complex affine algebraic variety whose group of
algebraic automorphisms is transitive. Suppose that X is equipped with N fixed
point free nondegenerate actions of SL2-groups Γ1, . . . ,ΓN . Let {δk1 , δk2}Nk=1 be the
corresponding pairs of locally nilpotent vector fields. If {δk2 (x0)}Nk=1 ⊂ Tx0

X is a
generating set at some point x0 ∈ X then X has the algebraic density property.

Remark 2. Note that we can choose any nilpotent element of the Lie algebra of
SL2 as δ2. Since the space of nilpotent elements generates the whole Lie algebra we
can reformulate Theorem 11 as follows: a smooth complex affine algebraic variety
X with a transitive group of algebraic automorphisms has the algebraic density
property provided it admits “sufficiently many” fixed point free nondegenerate SL2-
actions, where “sufficiently many” means that at some point x0 ∈ X the tangent
spaces of the corresponding SL2-orbits through x0 generate the whole space Tx0

X .

By virtue of Theorem 6 the main result will be a consequence of the following.

Theorem 12. Let X be a smooth complex affine algebraic variety equipped with
a fixed point free nondegenerate SL2-action that induces a pair of locally nilpotent
vector fields {δ1, δ2}. Then these vector fields are compatible.
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In preparation for the proof of Theorem 12 we must establish a number of
results. From now on, we assume that all SL2-actions under consideration are
nondegenerate.

Lemma 13. Let the assumption of Theorem 12 hold and let x ∈ X be a point
contained in a closed SL2-orbit. Then the isotropy group of x is either finite,
or isomorphic to the diagonal C∗-subgroup of SL2, or to the normalizer of this
C∗-subgroup (which is the extension of C∗ by Z2).

Proof. By Matsushima’s criterion (Proposition 2) the isotropy group must be re-
ductive and it cannot be SL2 itself since the action has no fixed points. The only
two-dimensional reductive group is C∗ ×C∗ [FuHa] which is not contained in SL2.
Thus besides finite subgroups we are left to consider the one-dimensional reductive
subgroups that include C∗ (which can be considered to be the diagonal subgroup
since all tori are conjugated) and its finite extensions. The normalizer of C∗ which
is its extension by Z2 generated by

A =

(
0 −1
1 0

)

is reductive. If we try to find an extension of C∗ by another finite subgroup that
contains an element B not from the normalizer then C∗ and BC∗B−1 meet at
the identity matrix. In particular, the reductive subgroup must be at least two-
dimensional, and we have to disregard this case. �

Proposition 14. Let X, δ1, δ2 be as in Theorem 12. Then there exists a regular
function g ∈ C[X ] such that degδ1(g) = degδ2(g) = 1.

Proof. Let x ∈ X be a point of a closed SL2-orbit. Luna’s slice theorem yields
diagram (2) with G = SL2 and Gx being one of the subgroups described in Lemma
13. That is, we have the natural morphism ϕ : SL2 × V → U that factors through
the étale morphism SL2 ×Gx

V → U where V is the slice at x. First, consider
the case when Gx is finite. Then ϕ itself is étale. Furthermore, replacing V by its
Zariski open subset and U by the corresponding Zariski open SL2-invariant subset
one can suppose that ϕ is also finite. Set f = a1b2 where ai, bi are as in Example
1. Note that each δi generates a natural locally nilpotent vector field δ̃i on SL2×V
such that C[V ] ⊂ Ker δ̃i and ϕ∗(δ̃i) coincides with the vector field induced by δi
on X . Treating f as an element of C[SL2 × V ] we have degδ̃i(f) = 1, i = 1, 2. For

every h ∈ C[SL2 × V ] we define a function ĥ ∈ C[U ] by ĥ(u) =
∑
y∈ϕ−1(u) h(y).

One can check that if h ∈ Ker δ̃i then δi(ĥ) = 0. Hence δ2i (f̂) = 0 but we also

need δi(f̂) 6= 0 which is not necessarily true. Thus, multiply f by β ∈ C[V ]. Since

β ∈ Ker δ̃i we have δi(β̂f)(u) =
∑

y∈ϕ−1(u) β(πV (y))δ̃i(f)(y). Note that δ̃i(f)(y0)

is not zero at a general y0 ∈ SL2×V since δ̃i(f) 6= 0. By a standard application of
the Nullstellensatz we can choose β with prescribed values at the finite set ϕ−1(u0)

where u0 = ϕ(y0). Hence we can assume that δi(β̂f)(u0) 6= 0, i.e., degδi(β̂f) = 1.

There is still one problem: β̂f is regular on U but necessarily not on X . In order

to fix it we set g = αβ̂f where α is a lift of a nonzero function on X//G that
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vanishes with high multiplicity on (X//G) \ (U//G). Since α ∈ Ker δi we still have
degδi(g) = 1 which concludes the proof in the case of a finite isotropy group.

For a one-dimensional isotropy group note that f is C∗-invariant with respect to
the action of the diagonal subgroup of SL2. That is, f can be viewed as a function
on SL2×C∗V . Then we can replace morphism ϕ with morphism ψ : SL2×C∗V → U
that factors through the étale morphism SL2×Gx

V → U . Now ψ is also étale and
the rest of the argument remains the same. �

In order to finish the proof of Theorem 12 we need to show semicompatibility of
the vector fields δ1 and δ2 on X . Let U be a saturated set as in diagram (2) with
G = SL2. Since U is SL2-invariant it is Hi-invariant (where Hi is from Notation
1) and the restriction of δi to U is a locally nilpotent vector field which we denote
again by the same letter. Furthermore, the closure of any SL2-orbit O contains
a closed orbit, i.e., O is contained in an open set like U and, therefore, X can be
covered by a finite collections of such open sets. Thus Proposition 10 implies the
following.

Lemma 15. If for every U as before the locally nilpotent vector fields δ1 and δ2
are semicompatible on U then they are semicompatible on X.

Notation 2. Suppose further thatH1 andH2 act on SL2×V by left multiplication
on the first factor. The locally nilpotent vector fields associated with these actions
of H1 and H2 are, obviously, semicompatible since they are compatible on SL2 (see
Example 1). Consider the SL2-equivariant morphism G × V → G ×Gx

V where
V , G = SL2, and Gx are as in diagram (2). By definition G×Gx

V is the quotient
of G× V with respect to the Gx-action whose restriction to the first factor is the
multiplication from the right. Hence Hi-action commutes with Gx-action and,
therefore, one has the induced Hi-action on G ×Gx

V . Following the convention
of Notation 1 we denote the associated locally nilpotent derivations on G ×Gx

V
again by δ1 and δ2. That is, the SL2-equivariant étale morphism ϕ : G×Gx

V → U
transforms the vector field δi on G×Gx

V into the vector field δi on U .

From Lemma 9 and Luna’s slice theorem we immediately have the following.

Lemma 16.

(1) If the locally nilpotent vector fields δ1 and δ2 are semicompatible on G×Gx
V

then they are semicompatible on U .
(2) If the isotropy group Gx is finite, δ1 and δ2 are, indeed, semicompatible on

G×Gx
V .

Now we have to tackle semicompatibility in the case of a one-dimensional
isotropy subgroup Gx using Proposition 5 as a main tool. We start with the
case of Gx = C∗.

Notation 3. Consider the diagonal C∗-subgroup of SL2, i.e., elements of form

sλ =

(
λ−1 0
0 λ

)
.

The action of sλ on v ∈ V will be denoted by λ.v. When we speak later about the
C∗-action on V we shall mean exactly this action. Set Y = SL2×V , Y ′ = SL2×C∗
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V , Yi = Y//Hi, Y
′
i = Y ′//Hi. Denote by ρi : Y → Yi the quotient morphism of the

Hi-action and use the similar notation for Y ′, Y ′
i . Set ρ = (ρ1, ρ2) : Y → Y1 × Y2

and ρ′ = (ρ′1, ρ
′
2) : Y

′ → Y ′
1 × Y ′

2 .

Note that Yi ' C2 × V since SL2//C+ ' C2. Furthermore, looking at the
kernels of δ1 and δ2 from Example 1, we see for

A =

(
a1 a2
b1 b2

)
∈ SL2

the quotient maps SL2 → SL2//H1 ' C2 and SL2 → SL2//H2 ' C2 are given by
A 7→ (a1, a2) and A 7→ (b1, b2), respectively. Hence, the morphism ρ : SL2 × V =
Y → Y1 × Y2 ' C4 × V × V is given by

ρ(a1, a2, b1, b2, v) = (a1, a2, b1, b2, v, v). (3)

As we mentioned before, to define Y ′ = SL2 ×C∗ V we let C∗ act on SL2 via right
multiplication. Since H1 and H2 act on SL2 from the left, there are well-defined
C∗-actions on Y1 and Y2 and a torus T-action on Y1 × Y2, where T = C∗ × C∗.
Namely,

(λ, µ).(a1, a2, b1, b2, v, w) = (λa1, λ
−1a2, µb1, µ

−1b2, λ.v, µ.w) (4)

for (a1, a2, b1, b2, v, w) ∈ Y1 × Y2 and (λ, µ) ∈ T.
Since the C∗-action on Y and the action of Hi, i = 1, 2, are commutative, the

following diagram is also commutative:

Y
ρ

//

p

��

Y1 × Y2

q

��

Y ′
ρ′

// Y ′
1 × Y ′

2 ,

(5)

where q (resp. p) is the quotient map with respect to the T-action (resp. C∗-
action). It is also worth mentioning that the C∗-action on Y induces the action of
the diagonal of T on ρ(Y ), i.e., for every y ∈ Y we have ρ(λ.y) = (λ, λ).ρ(y).

Lemma 17. Let Z = ρ(Y ) in diagram (5) and let Z ′ be the closure of ρ′(Y ′).

(i) The map ρ : Y → Z is an isomorphism and Z is the closed subvariety of
Y1 × Y2 = C4 × V × V that consists of points (a1, a2, b1, b2, v, w) ∈ Y1 × Y2
satisfying the equations a1b2 − a2b1 = 1 and v = w.

(ii) Let T be the T-orbit of Z in Y1 × Y2 and let T̄ be its closure. Then T
coincides with the (C∗ × 1)-orbit (resp. (1×C∗)-orbit) of Z. Furthermore,
for each (a1, a2, b1, b2, v, w) ∈ T̄ , one has π(v) = π(w) where π : V → V//C∗

is the quotient morphism.
(iii) The restriction of diagram (5) yields the following:

Y
ρ

//

p

��

Z ⊂ T̄

q

��

Y ′
ρ′

// q(Z)⊂Z ′,

(6)
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where Y ′ = Y//C∗ = Y/C∗, q is the quotient morphism of the T-action (i.e.
Z ′ = T̄ //T), and q(Z) = ρ′(Y ′).

Proof. The first statement is an immediate consequence of formula (3). The begin-
ning of the second statement follows from the fact that the action of the diagonal
C∗-subgroup of T preserves Z. This implies that for every t = (a1, a2, b1, b2, v, w) ∈
T the points v, w ∈ V belong to the same C∗-orbit and, in particular, π(v) = π(w).
This equality holds for each point in T̄ by continuity.

In diagram (5), Y ′ = Y//C∗ = Y/C∗ because of Proposition 1(3) and Lemma
3, and the equality q(Z) = ρ′(Y ′) is the consequence of the commutativity of that
diagram. Note that T̄ is T-invariant. Hence q(T̄ ) coincides with Z ′ by Proposition
1(4). Being the restriction of the quotient morphism, q|T̄ : T̄ → Z ′ is a quotient
morphism itself (e.g., see [D]) which concludes the proof. �

Lemma 18. There is a rational T-quasi-invariant function f on T̄ such that for
t = (a1, a2, b1, b2, w, v) ∈ T one has:

(1) (1/f(t))a1b2 − f(t)a2b1 = 1 and w = f(t).v;
(2) the set T̄ \ T is contained in (f)0 ∪ (f)∞; and
(3) f generates a regular function on a normalization TN of T

Proof. By Lemma 17(ii) any point t = (a1, a2, b1, b2, w, v) ∈ T is of the form
t = (λ, 1).z0 where z0 ∈ Z and λ ∈ C∗. Hence formula (4) implies that w = λ.v
and λ−1a1b2 − λa2b1 = 1. The last equality yields two possible values (one of
which can be ∞ or 0 if any of the numbers a1, a2, b1, or b2 vanishes)

λ± =
−1±

√
1 + 4a1a2b1b2
2a2b1

and we assume that

λ = λ− =
−1−

√
1 + 4a1a2b1b2
2a2b1

,

i.e., w = λ−.v. Note that λ+.v = w as well only when

τ =
λ+
λ−

=
−1 +

√
1 + 4a1a2b1b2

−1−
√
1 + 4a1a2b1b2

is in the isotropy group of v.
Consider the set of points t ∈ T such that v is not a fixed point of the C∗-action

on V and τ.v = v. Denote its closure by S. Since S is a proper subvariety of T , one
has a well-defined branch λ− of the two-valued function λ± on the complement to
S. Its extension to T̄ , which is denoted by f , satisfies (1).

Let tn ∈ T and tn → t ∈ T̄ as n → ∞. By Lemma 17(ii), tn is of the form
tn = (f(tn)a

n
1 , (1/f(tn))a

n
2 , b

n
1 , b

n
2 , f(tn).vn, vn) where

(
an1 an2
bn1 bn2

)
∈ SL2 and v = lim

n→∞
vn.

561



F. DONZELLI, A. DVORSKY, AND S. KALIMAN

If sequences {f(tn)} and {1/f(tn)} are bounded, then switching to a subsequence
one can suppose that f(tn) → f(t) ∈ C∗, w = f(t)v, and t = (f(t)a′1, (1/f(t))a

′
2, b

′
1,

b′2, f(t).v, v) where (
a′1 a′2
b′1 b′2

)
∈ SL2 ,

i.e., t ∈ T . Hence T̄ \ T is contained in ((f)0 ∪ (f)∞) which is (2).

The function f is regular on T \ S by construction. Consider t ∈ S with w and
v in the same nonconstant C∗-orbit, i.e., w = λ.v for some λ ∈ C∗. Then w = λ′.v
if and only if only λ′ belongs to the coset Γ of the isotropy subgroup of v in C∗.
For any sequence of points tn convergent to t one can check that f(tn) → λ ∈ Γ
by continuity, i.e., f is bounded in a neighborhood of t. Let ν : TN → T be a
normalization morphism. Then the function f ◦ ν extends regularly to ν−1(t) by
the Riemann extension theorem. The set of points of S for which v is a fixed point
of the C∗-action is of codimension at least 2 in T . By the Hartogs theorem, f ◦ ν
extends regularly to TN which concludes (3).

Remark 3. Consider the rational map κ : T → Z given by t 7→ (1/f(t), 1).t. It
is regular on T \ S and if t ∈ T \ S and z ∈ Z are such that t = (λ, 1).z then
κ(t) = z. In particular, κ sends T-orbits from T into C∗-orbits of Z. Furthermore,
the morphism κN = κ ◦ ν : TN → Z is regular because this is the case for the
function f ◦ ν.

Lemma 19. Let Ei = {t = (a1, a2, b1, b2, w, v) ∈ T̄ | bi = 0} and let T̄ b coincide
with T ∪((f)0 \E2)∪((f)∞ \E1). Suppose that T̄ bN is a normalization of T̄ b. Then
there is a regular extension of κN : TN → Z to a morphism κ̄bN : T̄ bN → Z.

Proof. Since the set (f)0 ∩ (f)∞ is of codimension 2 in T̄ , the Hartogs theorem
implies that it suffices to prove the regularity of κ̄bN on the normalization of T̄ b \
((f)0 ∩ (f)∞). Furthermore, by the Riemann extension theorem it is enough to
construct a continuous extension of κ from T \ S to T̄ b \ (S ∪ ((f)0 ∩ (f)∞)).

By Lemma 18(2) we need to consider this extension, say, at t=(a1, a2, b1, b2, w, v)
∈ (f)0 \ (f)∞. Let tn → t as n→ ∞ where

tn =

(
f(tn)a

n
1 ,

1

f(tn)
an2 , b

n
1 , b

n
2 , f(tn).vn, vn

)
∈ T

with an1 b
n
2 − an2 b

n
1 = 1 and f(tn) → 0. Perturbing, if necessary, this sequence

{tn} we can suppose every tn /∈ S, i.e., κ(tn) = (an1 , a
n
2 , b

n
1 , b

n
2 , vn, vn). Note that

lim vn = v, bk = lim bnk , k = 1, 2, and an2 → 0 since a2 is finite. Hence, 1 =
an1 b

n
2 −an2 bn1 ≈ an1 b2 and an1 → 1/b2 as n→ ∞. Now we get a continuous extension

of κ by putting κ(t) = (1/b2, 0, b1, b2, v, v). This yields the desired conclusion. �

Remark 4. If we use the group (1×C∗) instead of the group (C∗×1) from Lemma
17(ii) in our construction this would lead to the replacement of f by f−1. Fur-
thermore, for the variety T̄ a = T ∪ ((f)0 \{a1 = 0})∪ ((f)∞ \{a2 = 0}), we obtain
a morphism κ̄aN : T̄ aN → Z similar to κ̄bN .

The next fact is intuitively obvious but the proof requires some work.
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Lemma 20. The complement T̄ 0 of T̄ a ∪ T̄ b in T̄ (which is T̄ 0 = (T̄ \ T ) ∩⋃
i6=j{ai = bj = 0}) has codimension at least 2.

Proof. Let tn → t = (a1, a2, b1, b2, w, v) be as in the proof of Lemma 19. Since for
a general point of the slice V the isotropy group is finite after perturbation we can
suppose that each vn is contained in a nonconstant C∗-orbit On ⊂ V . Treat vn
and f(tn).vn as numbers in C∗ ' On such that f(tn).vn = f(tn)vn. Let |vn| and
|f(tn).vn| be their absolute values. Then one has the annulus An = {|f(tn).vn| <
ζ < |vn|} ⊂ On, i.e., ζ = ηvn where |f(tn)| < |η| < 1 for each ζ ∈ An. By Lemma
17(iii) π(v) = π(w) but by Lemma 18(3) the C∗-orbit O(v) and O(w) are different
unless w = v is a fixed point of the C∗-action. In any case, by Proposition 1(2)
the closures of these orbits meet at a fixed point v̄ of the C∗-action.

Consider a compact neighborhoodW = {u ∈ V | ϕ(u) ≤ 1} of v̄ in V where ϕ is
a plurisubharmonic function on V that vanishes at v̄ only. Note that the sequence
{(λ, µ).tn} is convergent to (λa1, a2/λ, µb1, b2/µ, λ.w, µ.v). In particular, replacing
{tn} by {(λ, µ).tn} with appropriate λ and µ we can suppose that the boundary
∂An of any annulus An is contained inW for sufficiently large n. By the maximum
principle Ān ⊂ W . The limit A = limn→∞ Ān is a compact subset of W that
contains both v and w, and also all points η.v with 0 < |η| < 1 (since |f(tn)| → 0).
Unless O(v) = v̄ only one of the closures of the subsets {η.v | 0 < |η| < 1} or
{η.v | |η| > 1} in V is compact and contains the fixed point v̄ (indeed, otherwise
the closure of O(v) is a complete curve in the affine variety V ). The argument
above shows that it is the first one.

That is, µ.v → v̄ when µ → 0. Similarly, λ.w → v̄ when λ → ∞. It is not
difficult to check now that the dimension of the set of such pairs (w, v) is at most
dimV .

Consider the set (T̄ \T )∩{a1=b2=0}. It consists of points t=(0, a2, b1, 0, w, v)
and, therefore, its dimension is at most dimV + 2. Thus it has codimension at
least 2 in T̄ whose dimension is dimV +4. This yields the desired conclusion. �

The next technical fact may be somewhere in the literature, but, unfortunately,
we did not find a reference.

Proposition 21. Let a reductive group G act on an affine algebraic variety X
and let π : X → Q := X//G be the quotient morphism such that one of closed
G-orbits O is contained in the smooth part of X 2. Suppose that ν : XN → X and
µ : QN → Q are normalization morphisms, i.e., π◦ν = πN ◦µ for some morphism
πN : XN → QN . Then QN ' XN//G for the induced G-action on XN and πN is
the quotient morphism.

Proof. Let ψ : XN → R be the quotient morphism. By the universal property of
quotient morphims, πN = ϕ ◦ ψ where ϕ : R → QN is a morphism. It suffices to
show that ϕ is an isomorphism. The points of Q (resp. R) are nothing but the
closed G-orbits in X (resp. XN ) by Proposition 1, and above each closed orbit in
X we have only a finite number of closed orbits in XN because ν is finite. Hence,
µ ◦ ϕ : R → Q and, therefore, ϕ : R → QN are at least quasi-finite. There is
only one closed orbit ON in XN above orbit O ⊂ regX . Thus ϕ is injective in a

2Without this assumption on smoothness the proposition does not hold.
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neighborhood of ψ(ON ). That is, ϕ is birational and by Zariski’s Main Theorem
it is an embedding.

It remains to show that ϕ is proper. Recall that G is a complexification of a
compact subgroupGR and there is a so-called Kempf–Ness real algebraic subvariety
XR of X such that the restriction π|XR is nothing but the standard quotient
map XR → XR/GR = Q which is automatically proper (e.g., see [Sch]). Set
XR

N = ν−1(XR). Then the restriction of π◦ν toXR

N is proper being the composition
of two proper maps. On the other hand, the restriction of µ ◦πN = π ◦ ν to XR

N is
proper only when morphism ϕ, through which it factors, is proper which concludes
the proof.

Proposition 22. The morphism ρ′ : Y ′ → Z ′ from diagram (6) is finite bira-
tional.

Proof. The morphism ρ′ factors through ρ′N : Y ′ → Z ′
N where µ : Z ′

N → Z ′ is
a normalization of Z ′ and the statement of the proposition is equivalent to the
fact that ρ′N is an isomorphism. Set Z ′(b) = q(T̄ b) and Z ′(a) = q(T̄ a). Note that
Z ′ \ (Z ′(a) ∪ Z ′(b)) is in the q-image of the T-invariant set T̄ 0 from Lemma 20.
Hence Z ′ \ (Z ′(b) ∪ Z ′(a)) is of codimension 2 in Z ′ and by the Hartogs theorem
it suffices to prove that ρ′N is invertible over Z(b)′ (resp. Z ′(a)).

By Remark 3, κ̄bN sends each orbit of the induced T-action on T̄ bN onto a C∗-
orbit in Z. Thus the composition of κ̄bN with p : Z ' Y → Y ′ is constant on
T-orbits and by the universal property of quotient spaces it must factor through
the quotient morphism qbN : T̄ bN → Q. By Proposition 21, Q = Z ′

N (b) where
Z ′
N (b) = µ−1(Z ′(b)). That is, p ◦ κ̄bN = τ b ◦ qbN where τ b : Z ′

N (b) → Y ′. Our
construction implies that τ b is the inverse of ρ′N over Z ′

N(b). Hence, ρ
′
N is invertible

over Z ′
N(b) which concludes the proof.

3.1. Proof of Theorems 12 and 11

Let G = SL2 act algebraically on X as in Theorem 12 and let V be the slice of
this action at a point x ∈ X so that there is an étale morphism G ×Gx

V → U
as in Theorem 4. By Lemmas 15 and 16 for the validity of Theorem 12 it suffices
to prove semicompatibility of the vector fields δ1 and δ2 on Y = G ×Gx

V , which
was already done in the case of a finite isotropy group Gx (see Lemma 16(2)).
Consider the quotient morphisms %i : Y → Yi := Y//Hi where Hi, i = 1, 2, are as
in Example 1. Set % = (%1, %2) : Y → %(Y) ⊂ Y1 ×Y2. By Proposition 5, Theorem
12 is true if % is finite birational. If Gx = C∗ then % : Y → Y1 × Y2 is nothing
but morphism ρ′ : Y ′ → Y ′

1 × Y ′
2 from Proposition 22, i.e., we are done in this

case as well. By Lemma 13 the only remaining case is when Gx is an extension
of C∗ by Z2. Then one has a Z2-action on Y ′ such that it is commutative with
Hi-actions on Y

′ and Y = Y ′//Z2. Since the vector fields δ1 and δ2 are semicom-
patible on Y ′ by Propositions 22 and 5, they also generate semicompatible vector
fields on Y by Lemma 8. This concludes Theorem 12 and, therefore, Theorem 11.
�

Remark 5. (1) Consider Y = G ×Gx
V in the case when G = Gx = SL2, i.e., the

SL2-action has a fixed point. It is not difficult to show that morphism % = (%1, %2) :
Y → %(Y) ⊂ Y1×Y2 as in the proof above is not quasi-finite. In particular, δ1 and
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δ2 are not compatible. However, we do not know if the condition about the absence
of fixed points is essential for Theorem 11. In examples we know the presence of
fixed points is not an obstacle for the algebraic density property. Say, for Cn with
2 ≤ n ≤ 4 any algebraic SL2-action is a representation in a suitable polynomial
coordinate system (e.g., see [Po]) and, therefore, it has a fixed point; but the
algebraic density property is a consequence of the Andersén–Lempert work.

(2) Similarly, we do not know whether the nondegeneration assumption is re-
quired for Theorem 11. The simplest case of a degenerate SL2-action is presented
by the homogeneous space SL2/C

∗ where C∗ is the diagonal subgroup. Let

A =

(
a1 a2
b1 b2

)

be a general element of SL2. Then the ring of invariants of the C∗-action is
generated by u = a1a2, v = b1b2, and z = a2b1+

1
2 (since a1b2 = 1+a2b1 = 1

2 +z).
Hence SL2/C

∗ is isomorphic to a hypersurface S in C3
u,v,z given by the equation

uv = z2 − 1
4 . This hypersurface has the algebraic density property by [KK1].

(3) The situation is a bit more complicated if we consider the normalizer T of the
diagonal C∗-subgroup of SL2 (i.e., T is an extension of C∗ by Z2). Then P = SL2/T
is isomorphic to S/Z2 where the Z2-action is given by (u, v, z) → (−u,−v,−z).
This interesting surface3 has also the algebraic density property. To see this, note
that the diagonal C∗-subgroup of SL2 contains the center of SL2 which implies that
both S and P are quotients of PSL2. Since PSL2 has a trivial center it has the
density property by the Toth–Varolin theorem in [TV2]. Furthermore, the analysis
of their paper shows that they used only completely integrable algebraic vector
fields in the proof, i.e., they established, in fact, the algebraic density property. In
brief, we have the algebraic density property for any homogeneous space that is a
quotient of SL2.

4. Applications

Theorem 11 is applicable to a wide class of homogeneous spaces. Let us start
with the following observation: given a reductive subgroup R of a linear algebraic
groupG, any SL2-subgroup Γ < G yields a natural Γ-action on G/R. Furthermore,
for each point aR ∈ G/R, its isotropy subgroup under this action is isomorphic to
Γ ∩ aRa−1. In particular, the action has no fixed points if a−1Γa is not contained
in R for any a ∈ G and it is nondegenerate if Γa := a−1Γa ∩ R ' Γ ∩ aRa−1 is
finite for some a ∈ R. Thus Theorem 11 implies the following.

Proposition 23. Let G be an algebraic group and let Γ1, . . . ,Γk be SL2-subgroups
of G such that at some x ∈ G the set {δi2(x)} is a generating one (where (δi1, δ

i
2)

is the corresponding pair of locally nilpotent vector fields on G generated by the
natural Γi-action). Suppose that for each i = 1, . . . , k and any a ∈ G, the group

3It can be shown that P is the only Q-homology plane which is simultaneously a
Danilov–Gizatullin surface (i.e., it has a trivial Makar-Limanov invariant (see [FKZ])),
and its fundamental group is Z2.
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Γai := a−1Γia ∩ R is not isomorphic to Γi and, furthermore, Γai is finite for some
a. Then G/R has the algebraic density property.

Note that for a simple Lie group G, a generating set at any x ∈ G consists of
one nonzero vector since the adjoint representation is irreducible. Therefore, in
this case the algebraic density property is a consequence of the following.

Theorem 24. Let G be a simple Lie group with Lie algebra different from sl2, and
let R be a proper closed reductive subgroup of G. Then there exists an SL2-subgroup
Γ in G such that Γa is not isomorphic to Γ for any a ∈ G and, furthermore, Γa is
finite for some a ∈ G.

Surprisingly enough, the proof of Theorem 24 (at least in our presentation)
requires some serious facts from Lie group theory and we shall postpone it untill
the Appendix.

Corollary 25. Let X = G/R be an affine homogeneous space of a semisimple
Lie group G different from SL2. Then X is equipped with N pairs {δk1 , δk2}Nk=1 of
compatible derivations such that the collection {δk2 (x0)}Nk=1 ⊂ Tx0

X is a generating
set at some point x0 ∈ X. In particular, X has the algebraic density property by
Theorem 6.

Proof. Note that R is reductive by Proposition 2 (Matsushima’s theorem). Then
X is isomorphic to a quotient of form G/R where G = G1 ⊕ · · · ⊕ GN , each
Gi is a simple Lie group, and R is not necessarily connected. However, we can
suppose that R is connected by virtue of Proposition 8. Consider the projection
homomorphism πk : G → Gk and Rk = πk(R) which is reductive being the image
of a reductive group. If N is the minimal possible then Rk 6= Gk for every k.
Indeed, if say RN = GN , then X = (G1⊕· · ·⊕GN−1)/R̃ where R̃ = KerπN which
contradicts minimality.

Assume first that none of the Gis is isomorphic to SL2. By Theorem 24 one can
choose an SL2-subgroup Γk < Gk such that the natural Γk-action on Gk/πk(R)
and, therefore, on G/R is fixed point free. We can also assume that each Γk-action
is nondegenerate. Denote by δk1 and δk2 the corresponding pair of locally nilpotent
derivations for the Γk-action. Since the adjoint representation is irreducible for
a simple Lie group, {δk2 (e)}Nk=1 is a generating set of the tangent space TeG at
e = e1 ⊕ · · · ⊕ eN ∈ G, where ek is the unity of Gk. Consider X = G/R as the set
of left cosets, i.e., X is the quotient of G with respect to the action generated by
multiplication by elements of R from the right. Hence, this action commutes with
multiplication by elements of Γk from the left and, therefore, it commutes with any
field δik. Pushing the actions of Γks toX we get fixed point free nondegenerate SL2-
actions on X and the desired conclusion in this case follows from by Theorem 11.

In the case when some of the Gks are isomorphic to SL2 we cannot assume
that each Γk-action is nondegenerate, but now N ≥ 2 and the Γk-actions are still
fixed point free. Consider an isomorphism ϕk : Γk → Γ1. Then we have an SL2-
group Γϕk = {(ϕk(γ), γ) | γ ∈ Γk} < Γ1 × Γk acting naturally on G1 × Gk and,
therefore, on G. This isomorphism ϕk can be chosen so that the Γϕk -action is
nondegenerate. Indeed, if, say a C∗-subgroup L < Γk acts on Gk trivially, choose
ϕk so that ϕk(L) acts nontrivially on G1 which makes the action nondegenerate. In
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particular, by Theorem 12 we get pairs of compatible locally nilpotent derivations
δ̃ϕk

1 and δ̃ϕk

2 corresponding to such actions. Set G′ = G2 ⊕ · · · ⊕ GN and e′ =
e2 ⊕ . . .⊕ eN ∈ G′. Since the adjoint representation is irreducible for a simple Lie
group the orbit of the set {δ̃ϕk

2 (e)}Nk=2 under conjugations generates a subspace of
S of TeG such that the restriction of the natural projection TeG → Te′G

′ to S is
surjective. In order to enlarge {δ̃ϕk

2 (e)}Nk=2 to a generating subset of TeG consider
an isomorphism ψ2 : Γ2 → Γ1 different from ϕ2 and such that the Γψ2 -action is
nondegenerate. Denote the corresponding compatible locally nilpotent derivations
by δ̃ψ2

1 and δ̃ψ2

2 on G1 ⊕ G2 (and also by abusing notation on G). Note that the

vectors δ̃ϕ2

2 (e1⊕e2) and δ̃ψ2

2 (e1⊕e2) can be assumed different with an appropriate
choice of ψ2. Hence these two vectors form a generating subset of Te1⊕e2G1 ⊕G2.

Taking into consideration the remark about S we see that {δ̃ϕk

2 (e)}Nk=2 ∪ {δ̃ψ2

2 (e)}
is a generating subset of TeG. Now pushing these SL2-actions to X we get the
desired conclusion. �

Theorem 26. Let G be a linear algebraic group and let R be a closed proper
reductive subgroup of G such that the homogeneous space G/R has connected com-
ponents different from C+ or a torus (C∗)n. Then G/R has the algebraic density
property.

Proof. Since all components of G/R are isomorphic as varieties we can suppose
that G is connected. Furthermore, by Corollary 25 and Remark 5(3), we are done
with a semisimple G.

Let us consider first the case of a reductive but not semisimple G. Then the
center Z ' (C∗)n of G is nontrivial. Let S be the semisimple part of G. Assume
for the time being that G is isomorphic as a group to the direct product S × Z
and consider the natural projection τ : G → Z. Set Z ′ = τ(R) = R/R′ where
R′ = R∩S. Since we are going to work with compatible vector fields we can suppose
that R is connected by virtue of Lemma 8. Then Z ′ is a subtorus of Z and also
R′ is reductive by Proposition 2. Hence G/R = (G/R′)/Z ′ and G/R′ = S/R′×Z.
Note that there is a subtorus Z ′′ of Z such that Z ′′ ' Z/Z ′ and Z ′ · Z ′′ = Z.
(Indeed, Z ′ ' (C∗)k generates a sublattice L ' Zk of homomorphisms from C∗

into Z ′ of the similar lattice Zn of Z ' (C∗)n such that the quotient Zn/L has
no torsion, i.e., it is isomorphic to Zn−k. Since any short exact sequence of free
Z-modules splits we have a Z-submodule K ' Zn−k in Zn such that K +L = Zn.
This lattice K yields a desired subtorus Z ′′ ' (C∗)n−k.) Hence G/R is isomorphic
to %−1(Z ′′) ' S/R′×Z ′′ where % : G/R′ → Z is the natural projection. Note that
both factors are nontrivial since otherwise G/R is either a torus or we are in the
semisimple case again. Thus X has the algebraic density property by Proposition
7 with S/R′ playing the role of X1 and Z ′′ of X2. In particular, we have a finite set
of pairs of compatible vector fields {δk1 , δk2} as in Theorem 6. Furthermore, one can
suppose that the fields δk1 correspond to one-parameter subgroups of S isomorphic
to C+ and δk2 to one-parameter subgroups of Z isomorphic to C∗. In the general
case G/R is the factor of X with respect to the natural action of a finite (central)
normal subgroup F < G. Since F is central, the fields δk1 , δ

k
2 induce completely

integrable vector fields δ̃k1 , δ̃
k
2 on G/R while δ̃k2 (x0) is a generating set for some

x0 ∈ G/R. By Lemma 8 the pairs {δ̃k1 , δ̃k2} are compatible and the algebraic density
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property for G/R follows again from Theorem 6.
In the case of a general linear algebraic group G different from a reductive

group, Cn, or a torus (C∗)n consider the nontrivial unipotent radical Ru of G.
It is automatically an algebraic subgroup of G, see [Ch, p. 183]. By Mostow’s
theorem [Mo] (see also [Ch, p. 181)]) G contains a (Levi) maximal closed reductive
algebraic subgroup G0 such that G is the semi-direct product of G0 and Ru,
i.e., G is isomorphic as an affine variety to the product Ru × G0. Furthermore,
any other maximal reductive subgroup is conjugated to G0. Hence, replacing G0

by its conjugate, we can suppose that R is contained in G0. Therefore, G/R is
isomorphic as an affine algebraic variety to the G0/R ×Ru and we are done now
by Proposition 7 with Ru playing the role of X1 and G0/R of X2.

Remark 6. (1) The algebraic density property implies, in particular, that the Lie
algebra generated by completely integrable algebraic (and, therefore, holomorphic)
vector fields is infinite dimensional, i.e., this is true for homogeneous spaces from
Theorem 26. For Stein manifolds of dimension at least 2 that are homogeneous
spaces of holomorphic actions of a connected complex Lie group the infinite di-
mensionality of such algebras was also established by Huckleberry and Isaev [HI].

(2) Note that as in [KK2] we actually proved a stronger fact for a homogeneous
space X = G/R from Theorem 26. Namely, it follows from the construction that
the Lie algebra generated by vector fields of form fσ, where σ is either locally
nilpotent or semisimple and f ∈ Kerσ for semisimple σ and degσ f ≤ 1 in the
locally nilpotent case, coincides with AVF(X).

5. Appendix: The proof of Theorem 24

Let us start with the following technical fact.

Proposition 27. Let G be a semisimple group and let R be a semisimple subgroup
of G. Suppose that the number of orbits of nilpotent elements in the Lie algebra r

of R under the adjoint action is less than the number of orbits of nilpotent elements
in the Lie algebra of G under the adjoint action. Then G contains an SL2-subgroup
Γ such that Γg := g−1Γg ∩ R is different from g−1Γg for any g ∈ G.

Proof. By the Jacobson–Morozov theorem (e.g., see Proposition 2 and Corollary in
[Bo, Sect. 8.11.2]) for any semisimple group G there is a bijection between the set
of G-conjugacy classes of sl2-triples and the set of G-conjugacy classes of nonzero
nilpotent elements from G which implies the desired conclusion.

In order to exploit Proposition 27 we need to recall some terminology and results
from [Bo].

Definition 6. (1) Recall that a semisimple element h of a Lie algebra is regular,
if the kernel of its adjoint action is a Cartan subalgebra. An sl2-subalgebra of the
Lie algebra g of a semisimple group G is called principal if in its triple of standard
generators the semisimple element h is regular and the adjoint action of h has
even eigenvalues (see Definition 3 in [Bo, Sect. 8.11.4]). The subgroup generated
by this subalgebra is called a principal SL2-subgroup of G. As an example of such a
principal subgroup one can consider an SL2-subgroup of SLn that acts irreducibly
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on the natural representation space Cn. In general, principal sl2-subalgebras exist
in any semisimple Lie algebra g (see Proposition 8 in [Bo, Sect. 8.11.4]). Any two
principal SL2-subgroups are conjugated (see Proposition 6 in [Bo, Sect. 8.11.3] and
Proposition 9 in [Bo, Sect. 8.11.4]).

(2) A connected closed subgroup P of G is called principal if it contains a
principal SL2-subgroup

4. The rank of P is the rank of the maximal torus it
contains. If this rank is 1 then P coincides with its principal SL2-subgroup (see
Exercise 21 in [Bo, Sect. 9.4]).

Proposition 28. Let R be a proper reductive subgroup of a simple group G dif-
ferent from SL2 or PSl2. Then there exists an SL2-subgroup Γ of G such that
Γg := g−1Γg ∩ R is different from g−1Γg for any g ∈ G.

Proof. If R is not principal it cannot contain a principal SL2-subgroup and we are
done. Thus it suffices to consider the case of the principal subgroup R only.

Suppose first that R is of rank 1. If R contains g−1Γg it must coincide with this
subgroup by the dimension argument. Hence it suffices to choose nonprincipal Γ
to see the validity of the proposition in this case.

Suppose now that R is of rank at least 2. Then there are the following possi-
bilities (Exercises 20c–e in [Bo, Sect. 9.4]):

(1) R is of type B2 and G is of type A3 or A4;

(2) R is of type G2 and G is of type B3,D4,, or A6;

(3) G is of type A2l with l ≥ 3 and R is of type Bl;

(4) G is of type A2l−1 with l ≥ 3 and R is of type Cl;

(5) G is of type Dl with l ≥ 4 and R is of type Bl−1;

(6) G is of type E6 and R is of type F4.

In order to apply Proposition 27 to these cases we need the Dynkin classification
of nilpotent orbits (with Elkington’s corrections) as described in the Bala–Carter
paper [BaCa2, pp. 6–7].

By this classification the number an of such orbits in a simple Lie algebra of
type An coincides with the number of partitions λ of n + 1, i.e., λ = (λ1, . . . , λk)
with natural λi such that |λ| = λ1 + · · ·+ λk = n+ 1.

For a simple Lie algebra of type Bm the number bm of nilpotent orbits coincides
with the number of partitions λ and µ such that 2|λ|+ |µ| = 2m+ 1 where µ is a
partition with distinct odd parts.

For a simple Lie algebra of type Cm the number cm of nilpotent orbits coincides
with the number of partitions λ and µ such that |λ|+|µ| = m where µ is a partition
with distinct parts.

For a simple Lie algebra of type Dm the number dm of nilpotent orbits coincides
with the number of partitions λ and µ such that 2|λ| + |µ| = 2m where µ is a
partition with distinct odd parts.

The numbers of nilpotent orbits of algebras of type G2,F4,E6,E7,E8 are 5, 16,
21, 45, and 70, respectively.

4The definition of a principal subgroup in [Bo] is different (see Exercise 18 in Section
9.4) but it coincides with this one in the case of a complex Lie group (see Exercise 21c
in Section 9.4).
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Now one has a4 > a3 = 5 > b2 = 4 which settles case (1) by Proposition 27.
Then b3, d4, a6 > 5 which settles case (2). Similarly, a2l > bl for l ≥ 3, a2l−1 > cl
for l ≥ 3, dl > bl−1 for l ≥ 4, and 21 > 16 which settles cases (3)–(6) and concludes
the proof. �

Remark 7. In fact, the statement of Proposition 28 is true for any proper maximal
subgroup R of G. This can be deduced from Dynkin’s classification of maximal
subalgebras in semisimple Lie algebras. We outline the argument below.

Let us consider a maximal subalgebra r in g, where g is a simple Lie algebra. If
r is regular ( i.e., if its normalizer contains some Cartan subalgebra in g), then r

does not contain any principal sl2-triple [OVG, Sect. 6.2.4]. Thus we may assume
that r is nonregular.

If g is exceptional, the list of such r is given in Theorems 6.3.4 and 6.3.5 from
[OVG]. All of them are semisimple, and we will only consider simple subalgebras
(otherwise, r once again does not contain any principal sl2s). The list of simple
maximal nonregular subalgebras of rank ≥ 2 in exceptional Lie algebras is short:
B2 in E8, A2 in E7 and A2, G2, C4, F4 in E6. In all these cases, Proposition 27
applies.

It remains to consider nonregular maximal subalgeras r of classical Lie algebras.
Any such r is simple, and an embedding of r in g is defined by a nontrivial linear
irreducible representation ϕ : r → sl(V ). Let n = dimV and m = [n/2]. If the
module V is not self-dual, r is a maximal subalgebra in g = An−1. If V is self-dual
and endowed with a skew-symmetric invariant form, r is a maximal subalgebra in
g = Cm; and if V is self-dual with a symmetric invariant form, r is a maximal
subalgebra in g = Bm or Dm. Denote by o(V ) the number of nilpotent orbits in g,
then

o(V ) ≥ on =

{
min(an−1, bm) if n odd,

min(an−1, dm, cm) if n is even.

We want to check that for any irreducible r-module V (except those correspond-
ing to the trivial embedding r = g), the number o(r) of the nilpotent orbits in r is
less than o(V ). In what follows, representations ϕ generating trivial embeddings
of r in g are excluded. For exceptional r of types G2, F4, E6, E7, E8 the smallest
irreducible representation has dimension n = 7, 26, 27, 56, 248 respectively. In all
cases, the inequality o(r) < on holds.

If r is of type Ak, then either V is not self-dual and n > k + 1 (in which case
o(r) = ak < an−1 = o(V )) or V is self-dual and n > 2(k + 1). Then ak < on
≤ o(V ).

If r is of type Bk (k ≥ 2), then all irreducible V are self-dual and n > 2k + 1,
hence bk < on. If r is of type Ck (k ≥ 3), then all irreducible V are self-dual and
n > 4k, hence ck < on. If r is of type Dk (k ≥ 4), then for any irreducible V ,
n > 3k and dk < on.

From this we conclude that Proposition 27 applies to any simple nonregular r
in g, where g is a classical simple Lie algebra.

Lemma 29. Each orbit O of a fixed point free degenerate SL2-action on an affine
algebraic variety X is two dimensional and closed, and the isotropy group of any
point x ∈ X is either C∗ or a Z2-extension of C∗.
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Proof. In the case of a fixed point free SL2-action the isotropy group Ix of a point
from a closed orbit is either finite or C∗ or Z2-extension of C∗ by Lemma 13.
Because the action is also degenerate Ix cannot be finite and and, therefore, the
closed orbit SL2/Ix is two dimensional. By Proposition 1 (2) the closure of O must
contain a closed orbit. Since O itself is at most two dimensional it must coincide
with this closed orbit. �

Next we need two lemmas with the proof of the first one being straightforward.

Lemma 30. Let G be a simple Lie group of dimension N and rank n, let a be an
element of G and let C(a) be its centralizer. Suppose that k is the dimension of
C(a). Then the dimension of the orbit O of a under conjugations is N − k. In
particular, when a is a regular element (i.e,. dimC(a) = n) we have dimO = N−n
coincides with the codimension of the centralizer of a.

Lemma 31. Let G be a simple Lie group of dimension N and rank n, let R be
a proper reductive subgroup of G whose dimension is M and rank is m and let Γ
be an SL2-subgroup of G such that its natural action on G/R is fixed point free
degenerate. Suppose that a is a semisimple nonidentical element of Γ and k is
the dimension of C(a). Then M ≥ N − k − 1. Furthermore, if a is regular,
M = N − n+m− 2.

Proof. Since the Γ-action on G/R is fixed point free and degenerate the isotropy
group of any element gR ∈ G/R is either C∗ or a Z2 extension of C∗ by Lemma
29. Recall that this isotropy group is Γ ∩ gRg−1 and, therefore, R contains a
unique subgroup of the form g−1L′g where L′ is a C∗-subgroup of Γ. That is, L′ =
γ−1
0 Lγ0 for some γ0 ∈ Γ where L is the C∗-subgroup generated by a. Furthermore,

this γ0 is unique modulo a normalizer of L in Γ because, otherwise, Γg contain
another C∗-subgroup of g−1Γg and, therefore, it would be at least two dimensional.
The two-dimensional variety Wa,g = {(γg)−1a(γg) | γ ∈ Γ} meets R exactly at
two points (γ0g)

−1a(γ0g) and (γ0g)
−1a−1(γ0g) (since the normalizer of L has two

components). Varying g we can suppose that Wa,g contains a general point of the
G-orbit Oa of a under conjugations. Since it meets subvariety R∩Oa of Oa at two
points we see that dimR ∩ Oa = dimOa − 2 = N − k − 2 by Lemma 30. Thus,
with a running over L we have dimR ≥ N − k − 1.

For the second statement note that b = g−1ag ∈ R is a regular element in G.
Hence the maximal torus in G (and, therefore, in R) containing b is determined
uniquely. Assume that two elements bl = g−1

l agl ∈ R, l = 1, 2, are contained
in the same maximal torus T ′ of R and, therefore, the same maximal torus T of
G. Then g2g

−1
1 belongs to the normalizer of T , i.e. b2 is of the form w−1b1w

where w is an element of the Weyl group of T . Thus R ∩Oa meets each maximal
torus T ′ at a finite number of points. The space of the maximal tori of R is
naturally isomorphic to R/T ′

norm where T ′
norm is the normalizer of T ′. Hence

dimR ∩ Oa = dimR − dimT ′
norm = M − m. We showed already that the last

dimension is also N − n− 2 which implies M = N − n+m− 2.

Proposition 32. Let the assumption of Lemma 31 hold. Then a cannot be a
regular element of G.
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Proof. Assume the contrary, i.e., a is regular. Let g be the Lie algebra of G, let h
be its Cartan subalgebra, and let r+ (resp. r−) be the linear space generated by
positive (resp. negative) root spaces. Set s = r+ + r− and suppose that g′, h′, s′

are the similar objects for R with h′ ⊂ h. Put r′± = s′ ∩ r±.
Each element x′ of a root space from s′ is of the form x′ = h0 + x+ + x− where

h0 ∈ h and x± ∈ r±. Then there exists an element h′ ∈ h′ such that the Lie bracket
[x′, h′] is a nonzero multiple of x′ which implies that h0 = 0, since [h0, h

′] = 0. Thus
s′ ⊂ s. By assumption h′ is a linear subspace of h of codimension n −m. Hence
Lemma 31 implies that s′ is of codimension 2 in s. We have two possibilities: (1)
either, say, r′+ = r+ and r′− is of codimension 2 in r−; or (2) r

′
± is of codimension 1

in r±. In the first case, each element of a root space x ∈ r+, being in an eigenspace
of h′ ⊂ h, is also an element of a root space of g′. However, for each root the
negative of it is also contained in g′ which implies that r′− = r−. A contradiction.

In case (2) consider the generators x1, . . . , xl (resp. y1, . . . , yl) of all root spaces
in r+ (resp. r−) such that hi = [xi, yi] is a nonzero element of h. Their linear

combination
∑l

i=1 c
+
i xi is contained in r′+ if and only if its coefficients satisfy a

nontrivial linear equation
∑l

i=1 d
+
i c

+
i = 0. Similarly,

∑l
i=1 c

−
i yi is contained in r′−

if and only if its coefficients satisfy a nontrivial linear equation
∑l

i=1 d
−
i c

−
i = 0.

Note that d+i = 0 if and only if d−i = 0 since, otherwise, one can find a root of g′

whose negative is not a root. Without loss of generality we suppose that the simple
roots are presented by x1, . . . , xn, i.e. h1, . . . , hn is a basis of h. Hence at least
one coefficient d+i 6= 0 for i ≤ n. Indeed, otherwise r′+ contains x1, . . . , xn which
implies that r′+ = r+, contrary to our assumption. Note that [a, xi] = 2xi for i ≤ n
(Proposition 8 in [Bo, Sect. 8.11.4]). Furthermore, since any xj , j ≥ n+1, is a Lie
bracket of simple elements one can check via the Jacobi identity that [a, xj ] = sxj
where s is an even number greater than 2. If we assume that d+j 6= 0 then a linear
combination xi + cxj , c 6= 0, is contained in r′+ for some xi, i ≤ n. Taking a Lie
bracket with a we see that 2xi + scxj ∈ r′+. Hence xj ∈ r′+, i.e., d

+
j = 0 which is

absurd. Thus d+k 6= 0 only for k ≤ n. We can suppose that d+i 6= 0 for i ≤ lo ≤ n
and d+j = 0 for any j ≥ lo + 1. Note that hj ∈ h′. If lo ≥ 3 pick any three
distinct numbers i, j, and k ≤ lo. Then up to nonzero coefficients xi+xj ∈ r′+ and
yi + yk ∈ r′−. Hence hi = [xi + xj , yi + yk] ∈ h′, i.e., h′ = h. In this case we can
find h ∈ h′ such that [h, xi] = sixi and [h, xj ] = sjxj with si 6= sj . As before this
implies that xi ∈ r′+, which is a contradiction. Thus we can suppose that at most
d+1 and d+2 are different from zero.

If l0 ≤ 2 and n ≥ 3 we can suppose that [x2, x3] is a nonzero nilpotent element.
The direct computation shows that up to nonzero coefficients [[x2, x3], [y2, y3]]
coincides with h2 − h3. Since h3 ∈ h′, so is h2. The same argument works for h1,
i.e., h′ = h again which leads to a contradiction as before. If n = 2 then the rank
m of R is 1 (since we do not want h′ = h), i.e., R is either C∗ or SL2. In both
cases dimR < dimG− n+m− 2 contrary to Lemma 31 which yields the desired
conclusion. �

Combining this result with Definition 6 and Proposition 28 we get the following.

Corollary 33. Let G be a simple Lie group and let R be its reductive nonprincipal
subgroup. Then for any principal SL2-subgroup Γ < G we have a finite Γg0 for some
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g0 ∈ G and Γg is different from g−1Γg for any g ∈ G.

Lemma 34. Let R be a principal subgroup of G. Then there exists an SL2-
subgroup Γ < G such that Γg0 is finite for some g0 ∈ G and Γg is different from
g−1Γg for any g ∈ G.

Proof. Recall that the subregular nilpotent orbit is the unique nilpotent orbit of
codimension rank g+2 in g [CM, Sect. 4.1]. It can be characterized as the unique
open orbit in the boundary of the principal nilpotent orbit. The corresponding
sl2-triple (X,H, Y ) in g is also called subregular. The dimension of the centralizer
of the semisimple subregular element H in this triple is rank g+2 [CM]. We denote
the subregular SL2 subgroup of G by Γsr.

G R rankG+ 3 dimG− dimR
B3 G2 6 7
D4 G2 7 14
A6 G2 9 34
E6 F4 9 26

A2l−1 Cl 2l + 2 l(2l− 1)− 1
A2l Bl 2l + 3 2l2 + 3l
Dl Bl−1 l + 3 2l − 1

We will demonstrate that in the cases listed in the above table, no conjugates
of Γsr can belong to R. Then by Lemma 31 the statement of the current lemma
follows whenever dimG − dimR>rankG + 3. From the table above we see that
it covers all the principal embeddings from the proof of Proposition 28, with the
exceptions of the inclusions B3 ⊂ D4 and C2 ⊂ A3.

For G = Ar, the subregular sl2 corresponds to the partition (r, 1). If r is odd,
this partition is not symplectic (since in symplectic partitions all odd entries occur
with even multiplicity), and if r is even, this partition is not orthogonal (since
in orthogonal partitions all even entries occur with even multiplicity). In other
words, the subregular SL2-subgroup Γsr in A2l−1 (resp., A2l) does not preserve any
nondegenerate symplectic (resp., orthogonal) form on C2l (C2l+1) and thus does
not belong to R = Cl (resp., R = Bl). The same is true for any conjugate of Γsr

in G.
If G = Dl, the embedding of R = SO2l−1 in SO2l is defined by the choice of

the nonisotropic vector v ∈ C2l which is fixed by R. The subregular sl2 in so2l
corresponds to the partition (2l − 3, 3). Thus we see that Γsr ⊂ SO2l does not
fix any one-dimensional subspace in C2l (its invariant subspaces have dimensions
2l− 3 and 3) and hence none of its conjugates can belong to R. Moreover, we can
choose v such that xv 6= v for x ∈ Γsr, x 6= 1. Thus Γsr∩ SO2l−1 = {e}. This
establishes the desired conclusion for the embeddings SO7 ⊂ SO8 (i.e., the case of
B3 ⊂ D4) and SO5 ⊂ SO6 (i.e., the case of B2 ' C2 ⊂ A3 ' D3), in which the
dimension count of Lemma 31 by itself is not sufficient.

The alignments of sl2-triples in the exceptional cases were analyzed in [LMW].
In particular, it was observed there that any conjugacy class of sl2-triples in f4
lifts uniquely to a conjugacy class of sl2-triples in e6. Consulting the explicit
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correspondence given in [LMW, Sect. 2.2], we observe that the largest nonprincipal
nilpotent orbit in e6 which has nonempty intersection with f4 has codimension 10.
This implies that no sl2-triple in f4 lifts to a subregular sl2 in e6. In other words,
no conjugate of Γsr ⊂ E6 belongs to F4.

When R = G2, its embedding in SO8 is defined by the triality automorphism
τ : SO8 → SO8, with R being a fixed point group of this automorphism. Equiv-
alently, R = SO7 ∩ τ(SO7). In particular, only those sl2-triples in so8 which are
fixed under the triality automorphism belong to g2. Observe that the subregu-
lar (5, 3) sl2-triple is not fixed by triality (cf. Remark 2.6 in [LMW]). Similarly,
the subregular sl2-triple in so7 corresponds to the partition (5, 1, 1). Since the
(5, 1, 1, 1) sl2-triple in so8 is not invariant under triality, neither is subregular sl2
in so7. Thus no conjugates of Γsr in B3 or D4 are fixed by τ , and no conjugates of
Γsr belong to G2.

Finally, when G = A6, the subregular triple in A6 does not belong to B3 (see
above), and thus none of its conjugates lie in G2 ⊂ B3. �

Now Theorem 24 follows immediately from the combined statements of Corol-
lary 33 and Lemma 34.

Remark 8. Note that we proved slightly more than required. Namely, the SL2-
subgroup Γ in Theorem 24 can be chosen either principal or subregular.
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