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Abstract. Let X be an affine algebraic variety with a transitive action of the algebraic
automorphism group. Suppose that X is equipped with several fixed point free nonde-
generate SLo-actions satisfying some mild additional assumption. Then we prove that
the Lie algebra generated by completely integrable algebraic vector fields on X coincides
with the space of all algebraic vector fields. In particular, we show that apart from a few
exceptions this fact is true for any homogeneous space of form G/R where G is a linear
algebraic group and R is a closed proper reductive subgroup of G.

1. Introduction

In this paper we develop further methods introduced by Kutzschebauch and
the third author in [KK2] which they used to obtain new results in the Andersén—
Lempert theory [A], [AL]. The following notion crucial for this theory was in-
troduced first by Varolin [V1] though its importance for Euclidean spaces was
emphasized already in the earlier paper of Rosay [Ro].

Definition 1. A complex manifold X has the density property if in the compact-
open topology the Lie algebra Lieno (X)) generated by completely integrable holo-
morphic vector fields on X is dense in the Lie algebra VF,(X) of all holomorphic
vector fields on X. An affine algebraic manifold X has the algebraic density
property if the Lie algebra Lieaig(X) generated by completely integrable algebraic
vector fields on it coincides with the Lie algebra VF,(X) of all algebraic vec-
tor fields on it (clearly, the algebraic density property for such an X implies the
density property for it).
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For any complex manifold with the density property the Andersén—Lempert
theory is applicable and its effectiveness in complex analysis was demonstrated in
several papers (e.g., see [FR], [Ro], [V1], [V2]). However, until recently, the class
of manifolds for which this property was established was quite narrow (mostly Eu-
clidean spaces and semisimple Lie groups, and homogeneous spaces of semisimple
groups with trivial centers [TV1], [TV2]). In [KK1] and [KK2] this class was shown
to contain hypersurfaces of the form uv = p(Z) and connected complex algebraic
groups except for C; and tori (C*)™. Furthermore, it was proven in [KK1], [KK2]
that these varieties have the algebraic density property. For C; and (C*)™ the
algebraic density property is not true (for tori of dimension at least 2 this fact is
nontrivial and it follows from the result of Andersén [A2] who established that for
each completely integrable algebraic vector field on any torus its flow preserves the
invariant volume form).

In this paper we study a smooth complex affine algebraic variety X with a
transitive action of the algebraic automorphism group Aut X. This is a mild re-
striction because for an affine algebraic (resp. Stein) manifold with the algebraic
density property (resp. density property) the group of holomorphic automorphism
generated by elements of flows induced by completely integrable algebraic (resp.
holomorphic) vector fields is transitive and even m-transitive for any natural m
(this is a consequence of, say, Theorem 0.2 from [V2]). Though the facts we prove
about such objects are rather logical extension of [KK2], in combination with Lie
group theory they lead to a much wider class of homogeneous spaces with the al-
gebraic density property. Our new technique yields, in particular, to the following.

Theorem A. Let G be a linear algebraic group and let R be a closed proper
reductive subgroup of G such that the homogeneous space G/R has connected com-
ponents different from Cy or a torus (C*)". Then G/R has the algebraic density
property.

Besides the criteria developed in [KK2] the main new ingredient of the proof is
the Luna slice theorem. For the convenience of the readers we recall it in Section 2
together with basic facts about algebraic quotients and some crucial results from
[KK2]. In Section 3 we prove our main theorem. As an application we prove
Theorem A in Section 4 using some technical facts from the Lie group theory
presented in the Appendix.

Acknowledgments. We would like to thank Lev Kapitanski, Frank Kutzscheba-
uch, and William M. McGovern for inspiring discussions and consultations.

2. Preliminaries

Let us fix some notation first. In this paper X will always be a complex affine
algebraic variety and G will be an algebraic group acting on X, i.e., X is a G-
variety. The ring of regular functions on X will be denoted by C[X] and its
subring of G-invariant functions by C[X]%.

2.1. Algebraic (categorical) quotients

Recall that the algebraic quotient X /G of X with respect to the G-action is
Spec(C[X]%). By 7 : X — X /G we denote the natural quotient morphism gener-
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ated by the embedding C[X]¢ < C[X]. The main (universal) property of algebraic
quotients is that any morphism from X constant on orbits of G factors through 7.
In the case of a reductive G several important facts (e.g., see [Schl, [PV], [D], [G])
are collected in the following.

Proposition 1. Let G be a reductive group.

(1) The quotient X J/G is an affine algebraic variety which is normal in the case
of a normal X and the quotient morphism ©: X — X//G is surjective.

(2) The closure of every G-orbit contains a unique closed orbit and each fiber
7Y (y) (where y € X)JG) also contains a unique closed orbit O. Further-
more, 11 (y) is the union of all those orbits whose closures contain O.

(3) In particular, if every orbit of the G-action on X is closed then X /G is
isomorphic to the orbit space X/G.

(4) The image of a closed G-invariant subset under m is closed.

If X is a complex algebraic group, and G is a closed subgroup acting on X by
multiplication, then all orbits of the action are obviously closed. If G is reductive,
the previous proposition implies that the quotient X/G is affine. The next propo-
sition (Matsushima’s criterion) shows that the converse is also true for quotients
of reductive groups.

Proposition 2. Let G be a complex reductive group, and let H be a closed sub-
group of G. Then the quotient space G/H is affine if and only if H is reductive.

Besides reductive group actions in this paper, a crucial role will be played by
C,-actions. In general, algebraic quotients in this case are not affine but only
quasi-affine [W]. However, we shall later use the fact that for the natural action
of any C-subgroup of SLy generated by multiplication one has SLy//C, = C2.

2.2. Luna’s slice theorem (e.g., see [D], [PV])

Let us recall some terminology first. Suppose that f: X — Y is a G-equivariant
morphism of affine algebraic G-varieties X and Y. Then the induced morphism
fa : XJJG — Y/ G is well defined and the following diagram is commutative:

X—Y

.

x)6 Ly

Definition 2. A G-equivariant morphism f is called strongly étale if

(1) the induced morphism fq : X/G — Y//G is étale; and
(2) the quotient morphism 7g : X — X /G induces a G-isomorphism between
X and the fibered product Y xy g (X/G).

From the properties of étale maps [D] it follows that f is étale (in particular,
quasi-finite).

Let H be an algebraic subgroup of G, and let Z be an affine H-variety. We
denote G xpg Z the quotient of G x Z with respect to the action of H given
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by h(g,z) = (gh~!,hz). The left multiplication on G generates a left action on
G Xy Z. The next lemma is an obvious consequence of Proposition 1.

Lemma 3. Let X be an affine G-variety and G be reductive. Then the H -orbits
of G x X are all isomorphic to H. Therefore, the fibers of the quotient morphism
G x X = G xg X coincide with the H-orbits.

The isotropy group of a point € X will be denoted by G,. Recall also that
an open set U of X is called saturated if 7' (7¢(U)) = U. We are ready to state
the Luna slice theorem.

Theorem 4. Let G be a reductive group acting on an affine algebraic variety X,
and let x € X be a point in a closed G-orbit. Then there exists a locally closed
affine algebraic subvariety V (called a slice) of X containing x such that:
(1) V is Gy-invariant;
(2) the image of the G-morphism ¢ : G X, V — X induced by the action is a
saturated open set U of X; and
(3) the restriction ¢ : G xg, V. — U is strongly étale.

Given a saturated open set U, we will denote 7 (U) by U//G. It follows from
Proposition 1 that U//G is open. Theorem 4 implies that the following diagram is
commutative:

GXGIV—>'U

]

V)Gy UjG

and G xq, V>~ U xyyq V| Gs.
2.3. The compatibility criterion

This section presents the criteria for the algebraic density property, introduced in
[KK?2], that will be used to prove the main results of this paper.

Definition 3. Let X be an affine algebraic manifold. An algebraic vector field
o on X is semisimple if its flow is an algebraic C*-action on X. A vector field
d is locally nilpotent if its flow is an algebraic C-action on X. In the last case,
0 can be viewed as a locally nilpotent derivation on C[X]. That is, for every
nonzero f € C[X], there is the smallest n = n(f) for which §”(f) = 0. We set
degs(f) = n — 1. In particular, elements from the kernel Ker ¢ have degree 0 with
respect to 4.

Definition 4. Let ¢; and d2 be nontrivial algebraic vector fields on an affine al-
gebraic manifold X such that d; is a locally nilpotent derivation on C[X], and 02
is either also locally nilpotent or semisimple. That is, §; generates an algebraic
action of H; on X where H; ~ C, and Hj is either C; or C*. We say that §;
and dy are semicompatible if the vector space Span(Ker d; - Ker d3), generated by
elements from Ker d; - Ker d3, contains a nonzero ideal in C[X].

A semicompatible pair is called compatible if in addition one of the following
condition holds:
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(1) when Hy ~ C* there is an element a € Kerdy such that degs (a) = 1,
i.e., d1(a) € Kerdy \ {0}; and

(2) when Hy ~ C4 (i.e. both §; and J2 are locally nilpotent) there is an
element a such that deg; (a) = 1 and degg, (a) < 1.

Remark 1. If [§1,02] = 0, then conditions (1) and (2) with a € Ker 2 hold auto-
matically, i.e., any semicompatible pair of commutative algebraic vector fields is
always compatible.

Example 1. Consider SLy (or even PSLy) with two natural C-subgroups: na-
mely, the subgroup Hy (resp. Hs) of the lower (resp. upper) triangular unipotent

matrices. Denote by
_ (a1 a2
=G %)

an element of SLy. Then the left multiplication generates actions of H; and Hs
on SLy with the following associated locally nilpotent derivations on C[SLy],

0
01 =a1 5 +ax=—,

oby Obs

0 0
0y = bi— +by—.
2 1aa1 + 23a2

Clearly, Ker d; is generated by a; and ay while Ker d5 is generated by b1 and bs.
Hence §; and d5 are semicompatible. Furthermore, taking a = a1bs, we see that
condition (2) of Definition 4 holds, i.e., they are compatible.

It is worth mentioning the following geometrical reformulation of semicompati-
bility which will be needed further.

Proposition 5. Suppose that Hy and Hs are as in Definition 4, X is a normal
affine algebraic variety equipped with nontrivial algebraic H;-actions where i = 1,2
(in particular, each H; generates an algebraic vector field §; on X). Let X; =
X/ H; and let p; : X — X; be the quotient morphisms. Set p = (p1,p2) : X —
Y := X1 x X5 and set Z equal to the closure of p(X) in' Y. Then 61 and 3 are
semicompatible iff p: X — Z is a finite birational morphism.

Definition 5. A finite subset M of the tangent space T,X at a point = of a
complex algebraic manifold X is called a generating set if the image of M under
the action of the isotropy group (of algebraic automorphisms) of x generates T, X .

It was shown in [KK2] that the existence of a pair of compatible derivations d;
and Jy from Definition 4 implies that Lieae(X) contains a C[X]-submodule Id;
where I is a nontrivial ideal in C[X]*. This yields the central criterion for the
algebraic density property [KK2].

n the case of condition (2) in Definition 4 this fact was proven in [KK2] only for
degs, (a) = 0 but the proof works for degs,(a) = 1 as well without any change.
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Theorem 6. Let X be a smooth homogeneous (with respect to AutX) affine al-
gebraic manifold with finitely many pairs of compatible vector fields {5%, 85},
such that for some point xo € X vectors {65 (wo)}™, form a generating set. Then
Lieaig(X) contains a nontrivial C[X]-module and X has the algebraic density prop-
erty.

As an application of this theorem we have the following.

Proposition 7. Let X7 and Xa be smooth homogeneous (with respect to algebraic
automorphism groups) affine algebraic varieties such that each X; admits a finite
number of completely integrable algebraic vector fields {55};";1 whose values at
some point x; € X; form a generating set and, furthermore, in the case of X
these vector fields are locally nilpotent. Then X1 X Xo has the algebraic density
property.

We shall also need two technical results (Lemmas 3.6 and 3.7 in [KK2]) that
describe conditions under which quasi-finite morphisms preserve semicompatibility.

Lemma 8. Let G = SLy and let X, X’ be normal affine algebraic varieties equip-
ped with nondegenerate G-actions (i.e., general G-orbits are of dimension 3). Sup-
pose that subgroups Hy and Hy of G are as in Example 1, i.e., they act naturally on
X and X'. Let p; : X — X, := XJH; and p} : X' — X! := X'JJH; be the quotient
morphisms and let p : X — X' be a finite G-equivariant morphism, i.e., we have
commutative diagrams:

X Pi Xi

Pl
! ° !
X ﬁXi

fori=1,2. Treat C[X;] (resp. C[X]]) as a subalgebra of C[X] (resp. C[X']). Let
Span(C[X1] - C[X32]) contain a nonzero ideal of C[X]. Then Span(C[X]] - C[X}%])

contains a nonzero ideal of C[X'].

The second result is presented here in a slightly different form but with a much
simpler proof.

Lemma 9. Let the assumption of Lemma 8 hold with two exceptions: we do not
assume that G-actions are nondegenerate and instead of the finiteness of p we
suppose that there are a surjective étale morphism r : M — M’ of normal affine
algebraic varieties equipped with trivial G-actions and a surjective G-equivariant
morphism 7' : X' — M’ such that X is isomorphic to the fibered product X' x py M
with p: X — X' being the natural projection (i.e., p is surjective étale). Then the
conclusion of Lemma 8 remains valid.

Proof. By construction, X; = X/ X M. Thus we have the following commutative
diagram

X%(X{ XXé) X(M'XM’) (MXM)%MXM

p y ]
’ (7_/77_/)

X' Xi x X5 M’ x M'.
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Set Z (resp. Z') equal to the closure of p(X) in X7 x X5 (resp. p/(X’) in X{ x X%)
and let D ~ M (resp. D’ ~ M’) be the diagonal subset in M x M (resp. M’ x M").
Since X = X’ x v M we see that Z = Z’ xp/ D. For any affine algebraic variety
Y denote by Yhorm its normalization, i.e., Znorm = Z)owm XD’ D. By Lemma
5 p: X — Zporm is an isomorphism. Since r is surjective it can happen only
when p’ : X’ — Z’ is an isomorphism. Hence the desired conclusion follows from

Proposition 5.

The last result from [KK2] that we need allows us to switch from local to global
compatibility.

Proposition 10. Let X be an SLy-variety with associated locally nilpotent deriva-
tions d1 and 02, let Y be a normal affine algebraic variety equipped with a trivial
SLo-action, and let v : X — Y be a surjective SLs-equivariant morphism. Suppose
that for any y € Y there exists an étale neighborhood g : W — Y such that the vec-
tor fields induced by 01 and 0o on the fibered product X xy W are semicompatible.
Then §1 and &2 are semicompatible.

3. Algebraic density property and SLy-actions

Notation 1. We suppose that Hy, Ho, d1, and 05 are as in Example 1. Note that if
SLo acts algebraically on an affine algebraic variety X then we have automatically
the C,-actions of H; and Hy on X that generate locally nilpotent vector fields on
X which, by abuse of notation, will be denoted by the same symbols §; and do. If
X admits several (say, N') SLo-actions, we denote by {6¥, 65}1_, the corresponding

collection of pairs of locally nilpotent derivations on C[X].

Recall also that an action of a Lie group of a manifold is nondegenerate if the
dimension of general orbits is the same as the dimension of the group. Here is the
first main result of this paper.

Theorem 11. Let X be a smooth complex affine algebraic variety whose group of
algebraic automorphisms is transitive. Suppose that X is equipped with N fixed
point free nondegenerate actions of SLo-groups I'y,...,Tn. Let {5F, 5’2“}sz1 be the
corresponding pairs of locally nilpotent vector fields. If {65 (xo)}_, C Tpo X is a
generating set at some point xg € X then X has the algebraic density property.

Remark 2. Note that we can choose any nilpotent element of the Lie algebra of
SLo as d5. Since the space of nilpotent elements generates the whole Lie algebra we
can reformulate Theorem 11 as follows: a smooth complex affine algebraic variety
X with a transitive group of algebraic automorphisms has the algebraic density
property provided it admits “sufficiently many” fixed point free nondegenerate SLo-
actions, where “sufficiently many” means that at some point zg € X the tangent
spaces of the corresponding SLa-orbits through x generate the whole space T, X.

By virtue of Theorem 6 the main result will be a consequence of the following.

Theorem 12. Let X be a smooth complex affine algebraic variety equipped with
a fized point free nondegenerate SLa-action that induces a pair of locally nilpotent
vector fields {d1,02}. Then these vector fields are compatible.
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In preparation for the proof of Theorem 12 we must establish a number of
results. From now on, we assume that all SLo-actions under consideration are
nondegenerate.

Lemma 13. Let the assumption of Theorem 12 hold and let x € X be a point
contained in a closed SLg-orbit. Then the isotropy group of x is either finite,
or isomorphic to the diagonal C*-subgroup of SLa, or to the normalizer of this
C*-subgroup (which is the extension of C* by Zs).

Proof. By Matsushima’s criterion (Proposition 2) the isotropy group must be re-
ductive and it cannot be SLg itself since the action has no fixed points. The only
two-dimensional reductive group is C* x C* [FuHa] which is not contained in SL.
Thus besides finite subgroups we are left to consider the one-dimensional reductive
subgroups that include C* (which can be considered to be the diagonal subgroup
since all tori are conjugated) and its finite extensions. The normalizer of C* which
is its extension by Zo generated by

0 -1
is reductive. If we try to find an extension of C* by another finite subgroup that
contains an element B not from the normalizer then C* and BC*B~! meet at

the identity matrix. In particular, the reductive subgroup must be at least two-
dimensional, and we have to disregard this case. [J

Proposition 14. Let X, 01,02 be as in Theorem 12. Then there exists a reqular
function g € C[X] such that degg, (g) = degs,(g) = 1.

Proof. Let x € X be a point of a closed SLa-orbit. Luna’s slice theorem yields
diagram (2) with G = SLg and G, being one of the subgroups described in Lemma
13. That is, we have the natural morphism ¢ : SLy x V' — U that factors through
the étale morphism SLg X, V — U where V is the slice at z. First, consider
the case when G, is finite. Then ¢ itself is étale. Furthermore, replacing V' by its
Zariski open subset and U by the corresponding Zariski open SLo-invariant subset
one can suppose that ¢ is also finite. Set f = a1bs where a;,b; are as in Example
1. Note that each §; generates a natural locally nilpotent vector field &; on SLy x V
such that C[V]  Kerd; and ¢, (d;) coincides with the vector field induced by ;
on X. Treating f as an element of C[SLy x V] we have deg; (f) =1, i =1,2. For

every h € C[SLy x V] we define a function h € C[U] by h(u) = D yep—1(u) MY)-
One can check that if & € Kerd; then §;(h) = 0. Hence 62(f) = 0 but we also
need 4;( f) # 0 which is not necessarily true. Thus, multiply f by 8 € C[V]. Since
B € Ker d; we have §; (ﬁf)( ) =2 yeo u), B(my (1))6:(f)(y). Note that &;(f)(yo)
is not zero at a general yy € SLo X V since 61( f) # 0. By a standard application of

the Nullstellensatz we can choose 3 with prescribed values at the finite set ¢~ (ug)
where ug = ¢(yo). Hence we can assume that 5i(ﬁjf)(uo) # 0, ie., deg;, (B‘\f) =1
There is still one problem: 5} is regular on U but necessarily not on X. In order
to fix it we set g = ozé} where « is a lift of a nonzero function on X /G that
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vanishes with high multiplicity on (X/G) \ (U//G). Since « € Ker d; we still have
degs,(g) = 1 which concludes the proof in the case of a finite isotropy group.

For a one-dimensional isotropy group note that f is C*-invariant with respect to
the action of the diagonal subgroup of SLy. That is, f can be viewed as a function
on SLy X« V. Then we can replace morphism ¢ with morphism ¢ : SLy X« V' — U
that factors through the étale morphism SLy xg, V' — U. Now ¢ is also étale and
the rest of the argument remains the same. [

In order to finish the proof of Theorem 12 we need to show semicompatibility of
the vector fields §; and d2 on X. Let U be a saturated set as in diagram (2) with
G = SLs. Since U is SLe-invariant it is H;-invariant (where H; is from Notation
1) and the restriction of d; to U is a locally nilpotent vector field which we denote
again by the same letter. Furthermore, the closure of any SLs-orbit O contains
a closed orbit, i.e., O is contained in an open set like U and, therefore, X can be
covered by a finite collections of such open sets. Thus Proposition 10 implies the
following.

Lemma 15. If for every U as before the locally nilpotent vector fields §1 and &2
are semicompatible on U then they are semicompatible on X.

Notation 2. Suppose further that H; and Hs act on SLy XV by left multiplication
on the first factor. The locally nilpotent vector fields associated with these actions
of Hy and Hj are, obviously, semicompatible since they are compatible on SLo (see
Example 1). Consider the SLag-equivariant morphism G x V. — G x g, V where
V, G = SLg, and G, are as in diagram (2). By definition G x ¢, V is the quotient
of G x V with respect to the G -action whose restriction to the first factor is the
multiplication from the right. Hence H;-action commutes with G -action and,
therefore, one has the induced H;-action on G x¢g, V. Following the convention
of Notation 1 we denote the associated locally nilpotent derivations on G x¢g, V
again by d; and d2. That is, the SLa-equivariant étale morphism ¢ : Gxqg, V = U
transforms the vector field §; on G x¢, V into the vector field 6, on U.

From Lemma 9 and Luna’s slice theorem we immediately have the following.

Lemma 16.

(1) If the locally nilpotent vector fields 61 and 62 are semicompatible on Gx g,V
then they are semicompatible on U.

(2) If the isotropy group G is finite, 1 and d are, indeed, semicompatible on
G xg, V.

Now we have to tackle semicompatibility in the case of a one-dimensional
isotropy subgroup G, using Proposition 5 as a main tool. We start with the
case of G, = C*.

Notation 3. Consider the diagonal C*-subgroup of SLs, i.e., elements of form

Ao
S\ — 0 A .

The action of sy on v € V will be denoted by A.v. When we speak later about the
C*-action on V we shall mean exactly this action. Set Y = SLy x V, Y’ = SLa X+
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V,Y, =Y/H;, Y/ =Y'/H,;. Denote by p; : Y — Y, the quotient morphism of the
H;-action and use the similar notation for Y', ¥/. Set p = (p1,p2) : Y = Y1 x V>
and p’ = (p1,p) 1 V' = Y] X Y5.

Note that ¥; ~ C? x V since SLy//C4 ~ C2 Furthermore, looking at the
kernels of §; and 5 from Example 1, we see for

A= <Zi Zi) € SLs

the quotient maps SLy — SLa/H; ~ C? and SLy — SLy//Hs ~ C? are given by
A+~ (a1,a2) and A — (by,bs), respectively. Hence, the morphism p : SLy x V =
Y 5V x Yy ~C*x V x V is given by

p(al,ag,bl,bg,v) = (al,ag,bl,bg,v,v). (3)

As we mentioned before, to define Y/ = SLs X¢+ V' we let C* act on SLy via right
multiplication. Since H; and Hs act on SLo from the left, there are well-defined
C*-actions on Y7 and Y5 and a torus T-action on Y; X Y5, where T = C* x C*.
Namely,

(A, 1)-(a1, a2, b1,b2,v,w) = (Aax, A ag, pby, ™ oo, A, pw) (4)

for (a1, a9,b1,b2,v,w) € Y1 x Y3 and (A, u) € T.
Since the C*-action on Y and the action of H;, i = 1,2, are commutative, the
following diagram is also commutative:

Y—p>Y1X)/2

pj ql (5)
Y’ L> Yll X YQIa

where ¢ (resp. p) is the quotient map with respect to the T-action (resp. C*-
action). It is also worth mentioning that the C*-action on Y induces the action of
the diagonal of T on p(Y), i.e., for every y € Y we have p(A.y) = (A, N).p(y).

Lemma 17. Let Z = p(Y') in diagram (5) and let Z' be the closure of p'(Y").

(i) The map p:Y — Z is an isomorphism and Z is the closed subvariety of
Yi x Yy =C* x V x V that consists of points (a1,a2,b1,ba,v,w) € Y1 X Yo
satisfying the equations a1bs — asby =1 and v = w.

(ii) Let T be the T-orbit of Z in Yy x Yo and let T be its closure. Then T
coincides with the (C* x 1)-orbit (resp. (1 x C*)-orbit) of Z. Furthermore,
for each (ay,az, by, by, v,w) € T, one has 7(v) = n(w) wheren : V — VC*
1s the quotient morphism.

(iii) The restriction of diagram (5) yields the following:

y—L-7c T

D

y' —% q(2)cZ,
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where Y' =Y //C* = Y/C*, q is the quotient morphism of the T-action (i.e.
2 =TT), and o(Z) = p(Y").

Proof. The first statement is an immediate consequence of formula (3). The begin-
ning of the second statement follows from the fact that the action of the diagonal
C*-subgroup of T preserves Z. This implies that for every t = (a1, a2, b1, b2, v,w) €
T the points v, w € V belong to the same C*-orbit and, in particular, 7(v) = 7(w).
This equality holds for each point in T by continuity.

In diagram (5), Y/ = Y/C* = Y/C* because of Proposition 1(3) and Lemma
3, and the equality ¢(Z) = p'(Y”) is the consequence of the commutativity of that
diagram. Note that T is T-invariant. Hence ¢(T) coincides with Z’ by Proposition
1(4). Being the restriction of the quotient morphism, |7 : T — Z’ is a quotient
morphism itself (e.g., see [D]) which concludes the proof. O

Lemma 18. There is a rational T-quasi-invariant function f on T such that for
t = (a1,a2,b1,be, w,v) € T one has:

(1) (1/£(#))arbs — f(B)ashy = 1 and w = f(t)-0;

(2) the set T\ T is contained in (f)o U (f)oo; and

(3) f generates a regular function on a normalization T of T

Proof. By Lemma 17(ii) any point ¢t = (a1, as9,b1,be,w,v) € T is of the form
t = (N 1).z0 where zg € Z and A € C*. Hence formula (4) implies that w = A\v
and A"laiby — Aagb; = 1. The last equality yields two possible values (one of
which can be oo or 0 if any of the numbers aq, az, by, or ba vanishes)

- -1+ \/1 + 4a1a2b1b2

A
+ 2a2b1
and we assume that
P —1 —+/1+4a1a2b1bs

2(121)1 ’

i.e., w = A_.v. Note that A\;.v = w as well only when

>\+ -1 =+ / 1 + 4a1a2b1b2
T = — =
A -1 - \/1 + 4a1a2b1b2

is in the isotropy group of v.

Consider the set of points ¢ € T such that v is not a fixed point of the C*-action
on V and 7.v = v. Denote its closure by S. Since S is a proper subvariety of T', one
has a well-defined branch A_ of the two-valued function A+ on the complement to
S. Tts extension to T, which is denoted by f, satisfies (1).

Lett, € T and t, -t € T asn — oo. By Lemma 17(ii), ¢, is of the form
tn = (f(tn)ay, (1/f(tn))az, b7, by, f(tn).vn, vn) where

(al a2> € SLo and v = lim v,.

by be 1
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If sequences {f(t,)} and {1/f(¢,)} are bounded, then switching to a subsequence
one can suppose that f(t,) = f(t) € C*, w = f(t)v, and ¢t = (f(¢)a], (1/f(t))as, b,

bl, f(t).v,v) where
ay  aj
(3 ) s

i.e.,t € T. Hence T \ T is contained in ((f)o U (f)so) which is (2).

The function f is regular on T\ S by construction. Counsider ¢ € S with w and
v in the same nonconstant C*-orbit, i.e., w = \.v for some A € C*. Then w = N v
if and only if only A belongs to the coset I' of the isotropy subgroup of v in C*.
For any sequence of points ¢, convergent to ¢ one can check that f(¢,) > A €T
by continuity, i.e., f is bounded in a neighborhood of ¢t. Let v : Ty — T be a
normalization morphism. Then the function f o v extends regularly to v~ 1(¢) by
the Riemann extension theorem. The set of points of S for which v is a fixed point
of the C*-action is of codimension at least 2 in T'. By the Hartogs theorem, f ov
extends regularly to T which concludes (3).

Remark 8. Consider the rational map x : T — Z given by ¢t — (1/f(t),1).t. It
is regular on T\ S and if t € T\ S and z € Z are such that ¢ = (A, 1).z then
k(t) = z. In particular, x sends T-orbits from T into C*-orbits of Z. Furthermore,
the morphism ky = ko v : Ty — Z is regular because this is the case for the
function fow.

Lemma 19. Let E; = {t = (a1, az2,b1,b2,w,v) € T | b; =0} and let Tbicoincide
with TU((f)o\ E2)U((f)oo \ B1). Suppose that Ty, is a normalization of T®. Then
there is a reqular extension of ky : Ty — Z to a morphism &% : T — Z.

Proof. Since the set (f)o N (f)oo is of codimension 2 in T, the Hartogs theorem
implies that it suffices to prove the regularity of % on the normalization of T\
((f)o N (f)oo). Furthermore, by the Riemann extension theorem it is enough to
construct a continuous extension of & from T\ S to 7%\ (S U ((f)o N (f)eo))-

By Lemma 18(2) we need to consider this extension, say, at t= (a1, ag, b, bo, wy v)
€ (Mo \ (f)oo- Let t, — t as m — 0o where

t, = (f(tn)a?, ﬁag,b?,bg, f(tn).vn,vn) eT

with a7b} — a5by = 1 and f(t,) — 0. Perturbing, if necessary, this sequence
{tn} we can suppose every t, ¢ S, i.e., k(t,) = (a},al, b}, by, vy, v,). Note that
limv, = v, by = limby, k = 1,2, and ay — 0 since ay is finite. Hence, 1 =
aby —afbt = albs and af — 1/bs as n — oco. Now we get a continuous extension
of k by putting k(t) = (1/ba,0, b1, b2, v,v). This yields the desired conclusion.

Remark 4. If we use the group (1 x C*) instead of the group (C* x 1) from Lemma
17(ii) in our construction this would lead to the replacement of f by f~1. Fur-
thermore, for the variety 7% = T U ((f)o \ {a1 = 0}) U((f)w \ {a2 = 0}), we obtain
a morphism &% : T¢ — Z similar to &,.

The next fact is intuitively obvious but the proof requires some work.
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Lemma 20. The complement T® of T U T® in T (which is T = (T \ T) N
Uizj{ai = bj = 0}) has codimension at least 2.

Proof. Let t, — t = (a1, ag, b1, bz, w,v) be as in the proof of Lemma 19. Since for
a general point of the slice V' the isotropy group is finite after perturbation we can
suppose that each v, is contained in a nonconstant C*-orbit O,, C V. Treat v,
and f(t,).v, as numbers in C* ~ O,, such that f(¢,).v, = f(tn)v,. Let |v,| and
| f(tn).vpn| be their absolute values. Then one has the annulus A,, = {|f(t,).vn] <
¢ <|vn|} C Oy, ie., ¢ =nv, where |f(t,)| < |n| <1 for each ¢ € A,,. By Lemma
17(iii) 7(v) = 7(w) but by Lemma 18(3) the C*-orbit O(v) and O(w) are different
unless w = v is a fixed point of the C*-action. In any case, by Proposition 1(2)
the closures of these orbits meet at a fixed point ¥ of the C*-action.

Consider a compact neighborhood W = {u € V' | ¢(u) < 1} of ¥ in V where ¢ is
a plurisubharmonic function on V' that vanishes at v only. Note that the sequence
{(A, ).t} is convergent to (a1, as/A, ub1, ba/p, Aow, p.v). In particular, replacing
{tn} by {(\, 1).t,} with appropriate A and p we can suppose that the boundary
0A,, of any annulus A,, is contained in W for sufficiently large n. By the maximum
principle A4, € W. The limit A = lim,,_,o A, is a compact subset of W that
contains both v and w, and also all points n.v with 0 < |n| < 1 (since |f(t,)| — 0).
Unless O(v) = ¥ only one of the closures of the subsets {n.v | 0 < |n| < 1} or
{n.w| |n| > 1} in V is compact and contains the fixed point ¥ (indeed, otherwise
the closure of O(v) is a complete curve in the affine variety V). The argument
above shows that it is the first one.

That is, p.v — © when g — 0. Similarly, A.w — ¥ when A — oco. It is not
difficult to check now that the dimension of the set of such pairs (w,v) is at most
dimV.

Consider the set (T'\ T)N{a1=by=0}. It consists of points t = (0, az, by, 0, w, v)
and, therefore, its dimension is at most dimV + 2. Thus it has codimension at
least 2 in T whose dimension is dim V +4. This yields the desired conclusion. [

The next technical fact may be somewhere in the literature, but, unfortunately,
we did not find a reference.

Proposition 21. Let a reductive group G act on an affine algebraic variety X
and let 7 : X — Q := X//G be the quotient morphism such that one of closed
G-orbits O is contained in the smooth part of X 2. Suppose that v: Xy — X and
o Qn — Q are normalization morphisms, i.e., mov = wy o for some morphism
7N XN = Qn. Then Qn ~ XN /|G for the induced G-action on Xy and 7y is
the quotient morphism.

Proof. Let ¢ : Xy — R be the quotient morphism. By the universal property of
quotient morphims, 7y = ¢ o) where ¢ : R — @ is a morphism. It suffices to
show that ¢ is an isomorphism. The points of @ (resp. R) are nothing but the
closed G-orbits in X (resp. Xy) by Proposition 1, and above each closed orbit in
X we have only a finite number of closed orbits in Xy because v is finite. Hence,
pop: R — @ and, therefore, ¢ : R — Qn are at least quasi-finite. There is
only one closed orbit Oy in Xy above orbit O C reg X. Thus ¢ is injective in a

2Without this assumption on smoothness the proposition does not hold.
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neighborhood of #(Oy). That is, ¢ is birational and by Zariski’s Main Theorem
it is an embedding.

It remains to show that ¢ is proper. Recall that G is a complexification of a
compact subgroup G® and there is a so-called Kempf-Ness real algebraic subvariety
X® of X such that the restriction 7|y= is nothing but the standard quotient
map X® — X®/GR = @ which is automatically proper (e.g., see [Sch]). Set
XR = v71(X®). Then the restriction of Tov to X% is proper being the composition
of two proper maps. On the other hand, the restriction of pomy = mwov to X}% is
proper only when morphism ¢, through which it factors, is proper which concludes
the proof.

Proposition 22. The morphism p' : ' Y' — Z' from diagram (6) is finite bira-
tional.

Proof. The morphism p’ factors through py : Y — Z}j, where p : Z)y — Z' is
a normalization of Z’ and the statement of the proposition is equivalent to the
fact that p'y is an isomorphism. Set Z’(b) = ¢(T®) and Z’(a) = q(T). Note that
Z'\ (Z'(a) U Z'(b)) is in the g-image of the T-invariant set T° from Lemma 20.
Hence Z' \ (Z'(b) U Z'(a)) is of codimension 2 in Z’ and by the Hartogs theorem
it suffices to prove that py is invertible over Z(b)' (resp. Z'(a)).

By Remark 3, &% sends each orbit of the induced T-action on T% onto a C*-
orbit in Z. Thus the composition of R’IJ’V with p: Z ~Y — Y’ is constant on
T-orbits and by the universal property of quotient spaces it must factor through
the quotient morphism ¢% : T% — Q. By Proposition 21, Q = Z}(b) where
ZN(b) = p=Y(Z'(b)). That is, po &y = 7° 0 ¢4 where ° : Z () — Y’'. Our
construction implies that 7° is the inverse of p/y over Z;(b). Hence, p/y is invertible
over Z(b) which concludes the proof.

3.1. Proof of Theorems 12 and 11

Let G = SLg act algebraically on X as in Theorem 12 and let V' be the slice of
this action at a point z € X so that there is an étale morphism G xg, V — U
as in Theorem 4. By Lemmas 15 and 16 for the validity of Theorem 12 it suffices
to prove semicompatibility of the vector fields ¢; and d2 on YV = G x¢, V, which
was already done in the case of a finite isotropy group G, (see Lemma 16(2)).
Consider the quotient morphisms ¢; : Y = V; := Y/ H; where H;, i = 1,2, are as
in Example 1. Set o = (01, 02) : Y — 0(¥) C V1 X Vs. By Proposition 5, Theorem
12 is true if p is finite birational. If G, = C* then p : Y — )i X )> is nothing
but morphism p’ : Y/ — ¥/ x Y] from Proposition 22, i.e., we are done in this
case as well. By Lemma 13 the only remaining case is when G, is an extension
of C* by Zs. Then one has a Zs-action on Y’ such that it is commutative with
H;-actions on Y’ and ) = Y’ /Z5. Since the vector fields §; and do are semicom-
patible on Y’ by Propositions 22 and 5, they also generate semicompatible vector
fields on ) by Lemma 8. This concludes Theorem 12 and, therefore, Theorem 11.
O

Remark 5. (1) Consider Y = G X, V in the case when G = G = SLo, i.e., the
SLo-action has a fixed point. It is not difficult to show that morphism ¢ = (1, 02) :
Y — 0()) C V1 X Ys as in the proof above is not quasi-finite. In particular, §; and
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do are not compatible. However, we do not know if the condition about the absence
of fixed points is essential for Theorem 11. In examples we know the presence of
fixed points is not an obstacle for the algebraic density property. Say, for C™ with
2 < n < 4 any algebraic SLy-action is a representation in a suitable polynomial
coordinate system (e.g., see [Po]) and, therefore, it has a fixed point; but the
algebraic density property is a consequence of the Andersén—Lempert work.

(2) Similarly, we do not know whether the nondegeneration assumption is re-
quired for Theorem 11. The simplest case of a degenerate SLa-action is presented
by the homogeneous space SLy/C* where C* is the diagonal subgroup. Let

ap az
= %)
be a general element of SLy. Then the ring of invariants of the C*-action is
generated by u = ajas, v = bibs, and z = asb; +% (since a1by = 1+ agby = %Jrz)
Hence SLy/C* is isomorphic to a hypersurface S in (Ci’MZ given by the equation
wv = 2% — %. This hypersurface has the algebraic density property by [KK1].

(3) The situation is a bit more complicated if we consider the normalizer T of the
diagonal C*-subgroup of SL; (i.e., T is an extension of C* by Z3). Then P = SLy/T
is isomorphic to S/Zs where the Zg-action is given by (u,v,2) — (—u, —v, —2z).
This interesting surface® has also the algebraic density property. To see this, note
that the diagonal C*-subgroup of SLsy contains the center of SLo which implies that
both S and P are quotients of PSLs. Since PSLy has a trivial center it has the
density property by the Toth—Varolin theorem in [TV2]. Furthermore, the analysis
of their paper shows that they used only completely integrable algebraic vector
fields in the proof, i.e., they established, in fact, the algebraic density property. In
brief, we have the algebraic density property for any homogeneous space that is a
quotient of SLs.

4. Applications

Theorem 11 is applicable to a wide class of homogeneous spaces. Let us start
with the following observation: given a reductive subgroup R of a linear algebraic
group G, any SLao-subgroup I' < G yields a natural T'-action on G/R. Furthermore,
for each point aR € G/R, its isotropy subgroup under this action is isomorphic to
I'NaRa~'. In particular, the action has no fixed points if a~'T'a is not contained
in R for any a € G and it is nondegenerate if I'* := a7 'Ta N R ~ T NaRa~! is
finite for some a € R. Thus Theorem 11 implies the following.

Proposition 23. Let G be an algebraic group and let T'y, ..., Ty be SLa-subgroups
of G such that at some x € G the set {35(x)} is a generating one (where (5%, 83)
s the corresponding pair of locally nilpotent vector fields on G generated by the
natural T';-action). Suppose that for each i = 1,...,k and any a € G, the group

31t can be shown that P is the only Q-homology plane which is simultaneously a
Danilov—Gizatullin surface (i.e., it has a trivial Makar-Limanov invariant (see [FKZ])),
and its fundamental group is Zs.
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I'¢ :=a"'T;aN R is not isomorphic to T'; and, furthermore, T'¢ is finite for some
a. Then G/R has the algebraic density property.

Note that for a simple Lie group G, a generating set at any z € G consists of
one nonzero vector since the adjoint representation is irreducible. Therefore, in
this case the algebraic density property is a consequence of the following.

Theorem 24. Let G be a simple Lie group with Lie algebra different from sls, and
let R be a proper closed reductive subgroup of G. Then there exists an SLo-subgroup
I' in G such that I'® is not isomorphic to T for any a € G and, furthermore, ' is
finite for some a € G.

Surprisingly enough, the proof of Theorem 24 (at least in our presentation)
requires some serious facts from Lie group theory and we shall postpone it untill
the Appendix.

Corollary 25. Let X = G/R be an affine homogeneous space of a semisimple
Lie group G different from SLo. Then X is equipped with N pairs {5}, 55}{;]:1 of
compatible derivations such that the collection {65 (xo)}N_, C Ty, X is a generating
set at some point xg € X. In particular, X has the algebraic density property by
Theorem 6.

Proof. Note that R is reductive by Proposition 2 (Matsushima’s theorem). Then
X is isomorphic to a quotient of form G/R where G = G1 & --- ® Gy, each
G; is a simple Lie group, and R is not necessarily connected. However, we can
suppose that R is connected by virtue of Proposition 8. Consider the projection
homomorphism 7, : G — G and Ry = 7, (R) which is reductive being the image
of a reductive group. If N is the minimal possible then R # Gy for every k.
Indeed, if say Ry = G, then X = (G1®- - ~EBGN_1)/R where R = Ker 7y which
contradicts minimality.

Assume first that none of the G;s is isomorphic to SLy. By Theorem 24 one can
choose an SLg-subgroup I'y, < Gy such that the natural T'y-action on Gy /7, (R)
and, therefore, on G/R is fixed point free. We can also assume that each I'p-action
is nondegenerate. Denote by 6% and d5 the corresponding pair of locally nilpotent
derivations for the I'g-action. Since the adjoint representation is irreducible for
a simple Lie group, {65(e)}_, is a generating set of the tangent space T.G at
e=e @ - Beyn € G, where ey, is the unity of Gi. Consider X = G/R as the set
of left cosets, i.e., X is the quotient of G with respect to the action generated by
multiplication by elements of R from the right. Hence, this action commutes with
multiplication by elements of I'j, from the left and, therefore, it commutes with any
field &7 . Pushing the actions of I'ys to X we get fixed point free nondegenerate SLo-
actions on X and the desired conclusion in this case follows from by Theorem 11.

In the case when some of the Gis are isomorphic to SLy we cannot assume
that each I'y-action is nondegenerate, but now N > 2 and the I'i-actions are still
fixed point free. Consider an isomorphism ¢ : I'y — I';. Then we have an SLo-
group I'?* = {(ok(7),7) | ¥ € Tk} < T'1 x T'y, acting naturally on G x G}, and,
therefore, on G. This isomorphism ¢ can be chosen so that the I'?*-action is
nondegenerate. Indeed, if, say a C*-subgroup L < I'y acts on Gy, trivially, choose
©k so that o (L) acts nontrivially on G; which makes the action nondegenerate. In
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particular, by Theorem 12 we get pairs of compatible locally nilpotent derivations
ka and 5‘2/”“ corresponding to such actions. Set G/ = Go @ --- ® Gy and ¢/ =
ea®...Pen € G. Since the adjoint representation is irreducible for a simple Lie
group the orbit of the set {5;’ *(e)}N_, under conjugations generates a subspace of
S of T,G such that the restriction of the natural projection T.G — TG’ to S is
surjective. In order to enlarge {35*(e)}N_, to a generating subset of T, G consider
an isomorphism s : I's — I'y different from @9 and such that the I'%2-action is
nondegenerate. Denote the corresponding compatible locally nilpotent derivations
by 5%2 and 53’2 on G7 ® G5 (and also by abusing notation on G). Note that the
vectors 5‘2/’2 (e1 @ eq) and 55’2 (e1 @ eq) can be assumed different with an appropriate
choice of 15. Hence these two vectors form a generating subset of Te, @, G1 @ G2.
Taking into consideration the remark about S we see that {65 (e)}N_, U {642(e)}
is a generating subset of T,G. Now pushing these SLo-actions to X we get the
desired conclusion. [

Theorem 26. Let G be a linear algebraic group and let R be a closed proper
reductive subgroup of G such that the homogeneous space G/R has connected com-
ponents different from Cy or a torus (C*)™. Then G/R has the algebraic density
property.

Proof. Since all components of G/R are isomorphic as varieties we can suppose
that G is connected. Furthermore, by Corollary 25 and Remark 5(3), we are done
with a semisimple G.

Let us consider first the case of a reductive but not semisimple G. Then the
center Z ~ (C*)" of G is nontrivial. Let S be the semisimple part of G. Assume
for the time being that G is isomorphic as a group to the direct product S x Z
and consider the natural projection 7 : G — Z. Set Z' = 7(R) = R/R’ where
R’ = RNS. Since we are going to work with compatible vector fields we can suppose
that R is connected by virtue of Lemma 8. Then Z’ is a subtorus of Z and also
R’ is reductive by Proposition 2. Hence G/R = (G/R')/Z' and G/R' = S/R' x Z.
Note that there is a subtorus Z” of Z such that Z"” ~ Z/Z’ and Z' - Z" = Z.
(Indeed, Z’ ~ (C*)* generates a sublattice L ~ Z* of homomorphisms from C*
into Z’ of the similar lattice Z™ of Z ~ (C*)™ such that the quotient Z"/L has
no torsion, i.e., it is isomorphic to Z"*. Since any short exact sequence of free
Z-modules splits we have a Z-submodule K ~ Z"* in Z" such that K + L = Z".
This lattice K yields a desired subtorus Z” ~ (C*)"~*.) Hence G/R is isomorphic
to 07 1(Z") ~ S/R' x Z" where o : G/R' — Z is the natural projection. Note that
both factors are nontrivial since otherwise G/R is either a torus or we are in the
semisimple case again. Thus X has the algebraic density property by Proposition
7 with S/R’ playing the role of X7 and Z” of X5. In particular, we have a finite set
of pairs of compatible vector fields {d%,d5} as in Theorem 6. Furthermore, one can
suppose that the fields 6% correspond to one-parameter subgroups of S isomorphic
to C; and 6% to one-parameter subgroups of Z isomorphic to C*. In the general
case G/R is the factor of X with respect to the natural action of a finite (central)
normal subgroup F < G. Since F is central, the fields §%, 65 induce completely
integrable vector fields 0%, 65 on G/R while 0% (x) is a generating set for some
2o € G/R. By Lemma 8 the pairs {§F, 05} are compatible and the algebraic density
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property for G/R follows again from Theorem 6.

In the case of a general linear algebraic group G different from a reductive
group, C", or a torus (C*)™ consider the nontrivial unipotent radical R, of G.
It is automatically an algebraic subgroup of G, see [Ch, p. 183]. By Mostow’s
theorem [Mo] (see also [Ch, p. 181)]) G contains a (Levi) maximal closed reductive
algebraic subgroup G such that G is the semi-direct product of Gy and R,,
i.e., G is isomorphic as an affine variety to the product R, x Gg. Furthermore,
any other maximal reductive subgroup is conjugated to Gy. Hence, replacing Gg
by its conjugate, we can suppose that R is contained in Gg. Therefore, G/R is
isomorphic as an affine algebraic variety to the Go/R X R, and we are done now
by Proposition 7 with R, playing the role of X; and Go/R of X,.

Remark 6. (1) The algebraic density property implies, in particular, that the Lie
algebra generated by completely integrable algebraic (and, therefore, holomorphic)
vector fields is infinite dimensional, i.e., this is true for homogeneous spaces from
Theorem 26. For Stein manifolds of dimension at least 2 that are homogeneous
spaces of holomorphic actions of a connected complex Lie group the infinite di-
mensionality of such algebras was also established by Huckleberry and Isaev [HI].

(2) Note that as in [KK2] we actually proved a stronger fact for a homogeneous
space X = G/R from Theorem 26. Namely, it follows from the construction that
the Lie algebra generated by vector fields of form fo, where o is either locally
nilpotent or semisimple and f € Kero for semisimple ¢ and deg, f < 1 in the
locally nilpotent case, coincides with AVF(X).

5. Appendix: The proof of Theorem 24
Let us start with the following technical fact.

Proposition 27. Let G be a semisimple group and let R be a semisimple subgroup
of G. Suppose that the number of orbits of nilpotent elements in the Lie algebra t
of R under the adjoint action is less than the number of orbits of nilpotent elements
in the Lie algebra of G under the adjoint action. Then G contains an SLa-subgroup
T such that T'9 := g~ 'T'g N R is different from ¢~ 'T'g for any g € G.

Proof. By the Jacobson—-Morozov theorem (e.g., see Proposition 2 and Corollary in
[Bo, Sect. 8.11.2]) for any semisimple group G there is a bijection between the set
of G-conjugacy classes of slo-triples and the set of G-conjugacy classes of nonzero
nilpotent elements from G which implies the desired conclusion.

In order to exploit Proposition 27 we need to recall some terminology and results
from [Bo].

Definition 6. (1) Recall that a semisimple element h of a Lie algebra is regular,
if the kernel of its adjoint action is a Cartan subalgebra. An sly-subalgebra of the
Lie algebra g of a semisimple group G is called principal if in its triple of standard
generators the semisimple element h is regular and the adjoint action of h has
even eigenvalues (see Definition 3 in [Bo, Sect. 8.11.4]). The subgroup generated
by this subalgebra is called a principal SLa-subgroup of G. As an example of such a
principal subgroup one can consider an SLs-subgroup of SL,, that acts irreducibly
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on the natural representation space C™. In general, principal sly-subalgebras exist
in any semisimple Lie algebra g (see Proposition 8 in [Bo, Sect. 8.11.4]). Any two
principal SLo-subgroups are conjugated (see Proposition 6 in [Bo, Sect. 8.11.3] and
Proposition 9 in [Bo, Sect. 8.11.4]).

(2) A connected closed subgroup P of G is called principal if it contains a
principal SLgp-subgroup?. The rank of P is the rank of the maximal torus it
contains. If this rank is 1 then P coincides with its principal SLo-subgroup (see
Exercise 21 in [Bo, Sect. 9.4]).

Proposition 28. Let R be a proper reductive subgroup of a simple group G dif-
ferent from SLo or PSly. Then there exists an SLo-subgroup I' of G such that
'Y := g~ 'T'g N R is different from g~ 'Tg for any g € G.

Proof. If R is not principal it cannot contain a principal SLs-subgroup and we are
done. Thus it suffices to consider the case of the principal subgroup R only.

Suppose first that R is of rank 1. If R contains ¢~ 'T'g it must coincide with this
subgroup by the dimension argument. Hence it suffices to choose nonprincipal T’
to see the validity of the proposition in this case.

Suppose now that R is of rank at least 2. Then there are the following possi-
bilities (Exercises 20c—e in [Bo, Sect. 9.4]):

(1) R is of type By and G is of type Az or Ag;

(2) R is of type G2 and G is of type Bs, Dy,, or Ag;

(3) G is of type Ay with [ > 3 and R is of type By;

(4) G is of type Ag—1 with I > 3 and R is of type Cj;

(5) G is of type D; with [ > 4 and R is of type B;_1;

(6) G is of type Eg and R is of type Fy.

In order to apply Proposition 27 to these cases we need the Dynkin classification
of nilpotent orbits (with Elkington’s corrections) as described in the Bala—Carter
paper [BaCa2, pp. 6-7].

By this classification the number a,, of such orbits in a simple Lie algebra of
type A, coincides with the number of partitions A of n 4+ 1, i.e., A = (A1,..., Ag)
with natural A; such that [A\| =X A1 +--+ g =n+ 1.

For a simple Lie algebra of type B,,, the number b,,, of nilpotent orbits coincides
with the number of partitions A and p such that 2|A| + |u| = 2m + 1 where p is a
partition with distinct odd parts.

For a simple Lie algebra of type C,,, the number ¢,, of nilpotent orbits coincides
with the number of partitions A and p such that ||+ |u| = m where p is a partition
with distinct parts.

For a simple Lie algebra of type D, the number d,,, of nilpotent orbits coincides
with the number of partitions A\ and p such that 2|\ + |u| = 2m where p is a
partition with distinct odd parts.

The numbers of nilpotent orbits of algebras of type Go, Fy4, Eg, E7, Eg are 5, 16,
21, 45, and 70, respectively.

4The definition of a principal subgroup in [Bo] is different (see Exercise 18 in Section
9.4) but it coincides with this one in the case of a complex Lie group (see Exercise 21c
in Section 9.4).
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Now one has ay > az = 5 > by = 4 which settles case (1) by Proposition 27.
Then b3, dy, ag > 5 which settles case (2). Similarly, ag > b; for I > 3, agi—1 > ¢
for1 > 3,d; > b1 for I > 4, and 21 > 16 which settles cases (3)—(6) and concludes
the proof. 0O

Remark 7. In fact, the statement of Proposition 28 is true for any proper maximal
subgroup R of G. This can be deduced from Dynkin’s classification of maximal
subalgebras in semisimple Lie algebras. We outline the argument below.

Let us consider a maximal subalgebra t in g, where g is a simple Lie algebra. If
t is regular ( i.e., if its normalizer contains some Cartan subalgebra in g), then t
does not contain any principal sla-triple [OVG, Sect. 6.2.4]. Thus we may assume
that v is nonregular.

If g is exceptional, the list of such v is given in Theorems 6.3.4 and 6.3.5 from
[OVG]. All of them are semisimple, and we will only consider simple subalgebras
(otherwise, v once again does not contain any principal slzs). The list of simple
maximal nonregular subalgebras of rank > 2 in exceptional Lie algebras is short:
By in Eg, A in E7 and A, Go, C4, F4 in Eg. In all these cases, Proposition 27
applies.

It remains to consider nonregular maximal subalgeras t of classical Lie algebras.
Any such v is simple, and an embedding of t in g is defined by a nontrivial linear
irreducible representation ¢ : vt — sl(V). Let n = dimV and m = [n/2]. If the
module V' is not self-dual, t is a maximal subalgebra in g = A,,_1. If V is self-dual
and endowed with a skew-symmetric invariant form, ¢ is a maximal subalgebra in
g = C,,; and if V is self-dual with a symmetric invariant form, v is a maximal
subalgebra in g = B,,, or D,,. Denote by o(V') the number of nilpotent orbits in g,
then
min(a,—1, bm) if n odd,

o(V)>o, = {

We want to check that for any irreducible t-module V' (except those correspond-
ing to the trivial embedding v = g), the number o(t) of the nilpotent orbits in t is
less than o(V'). In what follows, representations ¢ generating trivial embeddings
of v in g are excluded. For exceptional v of types Gs, F4, Eg, E7, Eg the smallest
irreducible representation has dimension n = 7, 26, 27, 56, 248 respectively. In all
cases, the inequality o(t) < o, holds.

min(a,—1,dm, ) if 1 is even.

If v is of type A, then either V is not self-dual and n > k 4+ 1 (in which case
o(t) = ar < an—1 = o(V)) or V is self-dual and n > 2(k + 1). Then ap < o,
<o(V).

If v is of type By (k > 2), then all irreducible V are self-dual and n > 2k + 1,
hence by, < o,. If v is of type Ci (k > 3), then all irreducible V are self-dual and
n > 4k, hence ¢ < o,. If v is of type Dy (k > 4), then for any irreducible V,
n > 3k and di, < o,.

From this we conclude that Proposition 27 applies to any simple nonregular v
in g, where g is a classical simple Lie algebra.

Lemma 29. Fach orbit O of a fized point free degenerate SLa-action on an affine
algebraic variety X is two dimensional and closed, and the isotropy group of any
point x € X is either C* or a Zs-extension of C*.
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Proof. In the case of a fixed point free SLy-action the isotropy group I, of a point
from a closed orbit is either finite or C* or Zs-extension of C* by Lemma 13.
Because the action is also degenerate I, cannot be finite and and, therefore, the
closed orbit SLy /I, is two dimensional. By Proposition 1 (2) the closure of O must
contain a closed orbit. Since O itself is at most two dimensional it must coincide
with this closed orbit. [J

Next we need two lemmas with the proof of the first one being straightforward.

Lemma 30. Let G be a simple Lie group of dimension N and rank n, let a be an
element of G and let C(a) be its centralizer. Suppose that k is the dimension of
C(a). Then the dimension of the orbit O of a under conjugations is N — k. In
particular, when a is a regular element (i.e,. dim C(a) = n) we have dim O = N —n
coincides with the codimension of the centralizer of a.

Lemma 31. Let G be a simple Lie group of dimension N and rank n, let R be
a proper reductive subgroup of G whose dimension is M and rank is m and let T’
be an SLa-subgroup of G such that its natural action on G/R is fized point free
degenerate. Suppose that a is a semisimple nonidentical element of T' and k is
the dimension of C(a). Then M > N —k — 1. Furthermore, if a is regular,
M=N-n+m-—2.

Proof. Since the T-action on G/R is fixed point free and degenerate the isotropy
group of any element gR € G/R is either C* or a Zy extension of C* by Lemma
29. Recall that this isotropy group is I' N gRg~! and, therefore, R contains a
unique subgroup of the form g~!'L’g where L’ is a C*-subgroup of I'. That is, L' =
Yo ! Lo for some g € T where L is the C*-subgroup generated by a. Furthermore,
this g is unique modulo a normalizer of L in " because, otherwise, I'Y contain
another C*-subgroup of g~ 'I'g and, therefore, it would be at least two dimensional.
The two-dimensional variety W, , = {(79) ta(yg) | 7 € T} meets R exactly at
two points (Yog) "ta(vog) and (vog) ta"t(v0g) (since the normalizer of L has two
components). Varying g we can suppose that W, , contains a general point of the
G-orbit O, of a under conjugations. Since it meets subvariety RNO, of O, at two
points we see that dim RN O, = dimO, —2 = N — k — 2 by Lemma 30. Thus,
with a running over L we have dm R > N — k — 1.

For the second statement note that b = g 'ag € R is a regular element in G.
Hence the maximal torus in G (and, therefore, in R) containing b is determined
uniquely. Assume that two elements b; = g, lagi € R, 1 = 1,2, are contained
in the same maximal torus 7’ of R and, therefore, the same maximal torus T of
G. Then gog; ' belongs to the normalizer of T, i.e. by is of the form w™'bjw
where w is an element of the Weyl group of T. Thus RN O, meets each maximal
torus 7" at a finite number of points. The space of the maximal tori of R is
naturally isomorphic to R/T},.,, where T} is the normalizer of T7. Hence

orm norm

dimRN O, = dimR — dim T} = M — m. We showed already that the last

norm
dimension is also N — n — 2 which implies M = N —n+m — 2.

Proposition 32. Let the assumption of Lemma 31 hold. Then a cannot be a
reqular element of G.
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Proof. Assume the contrary, i.e., a is regular. Let g be the Lie algebra of G, let h
be its Cartan subalgebra, and let v (resp. t_) be the linear space generated by
positive (resp. negative) root spaces. Set s = t4 + t— and suppose that g’, b, s’
are the similar objects for R with h’ C . Put vy =s' Nty

Each element 2’ of a root space from s’ is of the form 2’ = hy + x4 + x_ where
ho € hand x4+ € t4. Then there exists an element A’ € b’ such that the Lie bracket
[', h'] is a nonzero multiple of 2’ which implies that hg = 0, since [hg, h’'] = 0. Thus
s’ C 5. By assumption b’ is a linear subspace of § of codimension n — m. Hence
Lemma 31 implies that s’ is of codimension 2 in s. We have two possibilities: (1)
either, say, v/, =ty and v’ is of codimension 2 in v_; or (2) v/, is of codimension 1
in vy. In the first case, each element of a root space x € v, being in an eigenspace
of B’ C b, is also an element of a root space of g’. However, for each root the
negative of it is also contained in g’ which implies that t/ = t_. A contradiction.

In case (2) consider the generators x1,...,x; (resp. yi, ...,y ) of all root spaces
in v4 (resp. tv_) such that h; = [x;,y;] is a nonzero element of . Their linear
combination 22:1 cla; is contained in t/, if and only if its coefficients satisfy a
nontrivial linear equation Zi:l di¢f = 0. Similarly, 22:1 ¢; ¥i is contained in v/
if and only if its coefficients satisfy a nontrivial linear equation 22:1 d;c; =0.
Note that dzr = 0 if and only if d; = 0 since, otherwise, one can find a root of g’
whose negative is not a root. Without loss of generality we suppose that the simple
roots are presented by x1,...,Z,, i.e. hi,...,h, is a basis of h. Hence at least
one coefficient dj' # 0 for ¢ < n. Indeed, otherwise v/, contains x1,...,z, which
implies that t/, = v, contrary to our assumption. Note that [a,z;] = 2x; for i <n
(Proposition 8 in [Bo, Sect. 8.11.4]). Furthermore, since any z;, j > n+1, is a Lie
bracket of simple elements one can check via the Jacobi identity that [a, z;] = sx;
where s is an even number greater than 2. If we assume that d;‘ # 0 then a linear
combination x; 4 cx;, ¢ # 0, is contained in ¢/, for some x;, i < n. Taking a Lie
bracket with a we see that 2x; + scx; € v/,. Hence z; € ¥/, ie., d;r = 0 which is
absurd. Thus d;l' # 0 only for k < n. We can suppose that d;-" #0fori<l,<n
and d;r = 0 for any j > [, + 1. Note that h; € §'. If [, > 3 pick any three
distinct numbers 4, j, and k < I,. Then up to nonzero coefficients z; + x; € ¢/, and
yi +yx € v__. Hence h; = [z; + z;,y; + yi] € B/, i.e,, B’ = h. In this case we can
find h € B’ such that [h,z;] = s;z; and [h, z;] = sjz; with s; # s;. As before this
implies that x; € t/,, which is a contradiction. Thus we can suppose that at most
di and df are different from zero.

If lp < 2 and n > 3 we can suppose that [z2, 23] is a nonzero nilpotent element.
The direct computation shows that up to nonzero coefficients [[x2, 3], [y2, ys3]]
coincides with hs — hs. Since hz € i, so is he. The same argument works for h1,
i.e., B’ = b again which leads to a contradiction as before. If n = 2 then the rank
m of R is 1 (since we do not want b’ = ), i.e., R is either C* or SLy. In both
cases dim R < dim G — n + m — 2 contrary to Lemma 31 which yields the desired
conclusion. 0

Combining this result with Definition 6 and Proposition 28 we get the following.

Corollary 33. Let G be a simple Lie group and let R be its reductive nonprincipal
subgroup. Then for any principal SLa-subgroup I' < G we have a finite T'9 for some
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go € G and T9 is different from g~ 'T'g for any g € G.

Lemma 34. Let R be a principal subgroup of G. Then there exists an SLo-
subgroup I' < G such that T'9° is finite for some go € G and 'Y is different from
g 'T'g for any g € G.

Proof. Recall that the subregular nilpotent orbit is the unique nilpotent orbit of
codimension rank g + 2 in g [CM, Sect. 4.1]. It can be characterized as the unique
open orbit in the boundary of the principal nilpotent orbit. The corresponding
slo-triple (X, H,Y) in g is also called subregular. The dimension of the centralizer
of the semisimple subregular element H in this triple is rank g+2 [CM]. We denote
the subregular SLy subgroup of G by I',.

G R rankG+3 | dimG —dim R
Bs Gy 6 7
Dy Gy 7 14
Ag Gy 9 34
Es Fa4 9 26
Agi_1 G 20 + 2 (20-1)—-1
Agy B; 20+ 3 212 4 31
D, Bi_1 [+3 20—1

We will demonstrate that in the cases listed in the above table, no conjugates
of Iy, can belong to R. Then by Lemma 31 the statement of the current lemma
follows whenever dim G — dim R >rank G + 3. From the table above we see that
it covers all the principal embeddings from the proof of Proposition 28, with the
exceptions of the inclusions Bg C Dy and Cy C As.

For G = A,, the subregular sly corresponds to the partition (r,1). If r is odd,
this partition is not symplectic (since in symplectic partitions all odd entries occur
with even multiplicity), and if r is even, this partition is not orthogonal (since
in orthogonal partitions all even entries occur with even multiplicity). In other
words, the subregular SLa-subgroup I, in Ag;—1 (resp., Ag;) does not preserve any
nondegenerate symplectic (resp., orthogonal) form on C? (C?+1) and thus does
not belong to R = C; (resp., R = B;). The same is true for any conjugate of ',
in G.

If G = Dy, the embedding of R = SOg9;_1 in SOy is defined by the choice of
the nonisotropic vector v € C? which is fixed by R. The subregular sly in sog;
corresponds to the partition (2! — 3,3). Thus we see that I'y, C SOg; does not
fix any one-dimensional subspace in C? (its invariant subspaces have dimensions
2l — 3 and 3) and hence none of its conjugates can belong to R. Moreover, we can
choose v such that xv # v for € Ty, © # 1. Thus I'y;N SOg,—1 = {e}. This
establishes the desired conclusion for the embeddings SO; C SOg (i.e., the case of
B3 C Dy) and SO5 C SOg (i.e., the case of By ~ Co C As ~ Dg3), in which the
dimension count of Lemma 31 by itself is not sufficient.

The alignments of slo-triples in the exceptional cases were analyzed in [LMW].
In particular, it was observed there that any conjugacy class of sle-triples in fy
lifts uniquely to a conjugacy class of sly-triples in e¢g. Consulting the explicit
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correspondence given in [LMW, Sect. 2.2], we observe that the largest nonprincipal
nilpotent orbit in ¢ which has nonempty intersection with f4 has codimension 10.
This implies that no sla-triple in 4 lifts to a subregular sly in eg. In other words,
no conjugate of I'y, C Eg belongs to Fy.

When R = Gg, its embedding in SOg is defined by the triality automorphism
7 : SOg — SOg, with R being a fixed point group of this automorphism. Equiv-
alently, R = SO7 N 7(SO7). In particular, only those slo-triples in sog which are
fixed under the triality automorphism belong to ga. Observe that the subregu-
lar (5,3) slo-triple is not fixed by triality (cf. Remark 2.6 in [LMW]). Similarly,
the subregular sly-triple in so; corresponds to the partition (5,1,1). Since the
(5,1,1,1) sly-triple in sog is not invariant under triality, neither is subregular sly
in so07. Thus no conjugates of 'y, in B3 or Dy are fixed by 7, and no conjugates of
Iy belong to Gs.

Finally, when G = Ag, the subregular triple in Ag does not belong to B3 (see
above), and thus none of its conjugates lie in Go C Bs. O

Now Theorem 24 follows immediately from the combined statements of Corol-
lary 33 and Lemma 34.

Remark 8. Note that we proved slightly more than required. Namely, the SLs-
subgroup I' in Theorem 24 can be chosen either principal or subregular.
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