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Abstract. Let G be a complex semisimple linear algebraic group, and X a wonderful
G-variety. We determine the connected automorphism group Aut0(X) and we calculate
Luna’s invariants of X under its action.

1. Introduction

Let X be a smooth complete algebraic variety over C, and let Aut0(X) be the
connected component containing the identity of its automorphism group. It is well
known that Aut0(X) is an algebraic group, with Lie algebra equal to the global
sections of the tangent bundle of X .

Let us consider this group in the framework of varieties endowed with an action
of a connected reductive algebraic group G. The simplest case occurs when the
action of G on X is transitive, i.e. we have a projective homogeneous space X =
G/P for P a parabolic subgroup of G. In this setting Aut0(X) is known, and it is
always semisimple; it is interesting to notice that in a few cases it strictly contains
the image of G under the given homomorphism G → Aut0(X).

As soon as we abandon the transitivity hypothesis the situation gets much more
complicated, even if we stick to quasi-homogeneous varieties, which means X hav-
ing an open dense G-orbit. For example, in general, Aut0(X) need not be reductive.
The case of toric varieties is known since the work [De70] by Demazure: in this
case Aut0(X) is completely determined using the fan of convex cones representing
the toric variety X . The case of regular varieties is studied by Bien and Brion
in [BB96]; one of their results is the structure of the Lie algebra of Aut0(X) as a
G-module.

More recently, Brion has considered the case of wonderful varieties, which are
regular varieties with some extra hypotheses. In [Br07] he shows that Aut0(X) is
always semisimple in this case, that X is wonderful under its action too, and he
describes some aspects of the action of Aut0(X) on X . These results also have
useful consequences on the broader class of spherical varieties.

In this paper we determine the automorphism groups Aut0(X) for any wonderful
variety X . In particular, we show that “most often” the image of G is equal to the
whole Aut0(X), especially if the number of G-orbits on X is greater than 2. Our
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approach to describing these varieties uses their discrete invariants introduced by
Luna in [Lu01]: they separate wonderful varieties as shown by Losev in [Lo07].

We describe in detail all varieties such that Aut0(X) strictly contains the image
of G, and we determine Luna’s invariants of X under the action of Aut0(X).

Acknowledgements. I would like to thank the anonymous referees for many use-
ful remarks and for pointing out an error in the last section of a previous version
of this paper.

2. Invariants of wonderful varieties

2.1. Definitions

Throughout this paper, G will be a semisimple connected linear algebraic group
over C. In G we fix a Borel subgroup B, a maximal torus T ⊂ B, and we denote
by S the corresponding set of simple roots. For simple groups, we will refer to the
usual Bourbaki numbering of simple roots.

We will often denote by L a Levi subgroup of some parabolic subgroup P ⊇ B
of G. The choice of L is always supposed to be such that B ∩ L and T ∩ L are,
respectively, a Borel subgroup and a maximal torus of L: in this way the simple
roots of L with respect to B ∩ L and T ∩ L are naturally identified with a subset
of S.

More generally, whenever we have two reductive groups G̃ ⊃ G, the choices of
Borel subgroups B̃, B and maximal tori T̃ , T will always be such that B̃ ⊃ B and
T̃ ⊃ T .

Definition 2.1.1 ([Lu01]). A wonderful G-variety is an irreducible algebraic va-
riety X over C such that:

(1) X is smooth and projective;

(2) G has an open (dense) orbit on X , and the complement is the union of
(G-stable) prime divisors X (1), . . . , X(r) which are smooth, with normal
crossings, and satisfy

⋂r
i=1 X(i) 6= ∅;

(3) if x, y ∈ X are such that
{
i | x ∈ X(i)

}
=

{
j | y ∈ X(j)

}
, then x and y lie

on the same G-orbit.

We will also use the notation (G, X) instead of X only, to keep track of the group
G we are considering. The number r of G-stable prime divisors is the rank of
(G, X), and the divisors X(i) are called boundary prime divisors. Their union is
denoted by ∂(G, X), the boundary of (G, X).

Wonderful varieties include complete G-homogeneous spaces G/P , for P a
parabolic subgroup, as the special case where the rank is zero. A wonderful variety
X is always spherical, i.e. a Borel subgroup has an open dense orbit on X : see
[Lu96]. The theory developed by Luna in [Lu01] defines the following “discrete
invariants”.

Definition 2.1.2. Let X be a wonderful G-variety. We define Ξ(G, X) to be
the lattice of B-eigenvalues (B-weights) of rational functions on X that are B-
eigenvectors. This lattice has a basis Σ(G, X), whose elements are called the
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spherical roots of X , defined as the set of weights of T acting on the quotient
tangent space

TzX

Tz(G · z)
,

where z is the unique point of X fixed by the Borel subgroup opposite to B with
respect to T . We define ∆(G, X) to be the set of B-stable but not G-stable prime
divisors on X , called colors. It is a finite set, and it is equipped with a map

ρG,X : ∆(G, X) → HomZ(Ξ(G, X), Z)

defined as follows: if D is a color then ρG,X(D) is a functional on Ξ(G, X) taking
on γ the value νD(fγ), where νD is the discrete valuation on C(X)∗ associated to
D, and fγ ∈ C(X)∗ is a B-eigenvector whose B-eigenvalue is γ. This notion is
well defined because B has an open orbit on X and therefore fγ is unique up to
the multiplication by a constant. It is also common to write this as a coupling:
〈D, γ〉 = ρG,X(D)(γ). Finally, we define Sp(G, X) to be the set of simple roots
associated to the parabolic subgroup P (G, X) ⊇ B defined as the stabilizer of the
open B-orbit of X .

It is immediate from the definitions that any intersection of n boundary prime
divisors of X is again a wonderful variety, of rank r − n (for any n = 0, . . . , r).
Moreover, each spherical root γi can be naturally associated to a boundary prime
divisor X(i) on X , namely the one such that the T -weights of the quotient

TzX
(i)

Tz(G · z)

are precisely Σ(G, X)\{γi}. A spherical root γi can also be associated to a rank 1
wonderful G-subvariety on X , namely:

X(i) =
⋂

j 6=i

X(j).

This X(i) has γi as its unique spherical root.
Finally, γi is always a linear combination of simple roots of G with nonnegative

coefficients; the set of simple roots whose coefficient is nonzero is called the support

of γi. The support of a set of spherical roots is defined as the union of the supports
of its elements.

It is worth noticing that these invariants obey some rather strict conditions of
a combinatorial nature, as discussed by Luna in [Lu01]. In the rest of this paper
we will sometimes use these conditions, although it will not be necessary to recall
all the combinatorics that arise from the theory.

The last ingredient we need here is the following relation between colors and
simple roots.

Definition 2.1.3. Let X be a wonderful G-variety, D one of its colors and α a
simple root of G. We say that α moves D if D is not stable under the action of
the minimal parabolic subgroup containing B and associated to the simple root α.

With this definition, Sp(G, X) is precisely the set of simple roots moving no
color.
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Lemma 2.1.1 ([Lu01]). Let α be a simple root moving a color D of a wonderful

G-variety X. Suppose that α is not contained in the support of any spherical root

of X. Then D is moved only by α, and α moves only D; moreover, the functional

ρG,X(D) is equal to α∨|Ξ(G,X), where α∨ is the coroot associated to α.

Other links between functionals associated to colors and simple roots moving
them will be found in Section 4.

Definition 2.1.4. Let X be a wonderful G-variety. We denote by A(G, X) the
set of colors of X moved by simple roots which are also spherical roots, and we
call the triple (Sp(G, X), Σ(G, X), A(G, X)) the spherical system of X .

Results in Losev’s paper [Lo07] directly imply the following:

Theorem 2.1.1 ([Lo07]). If two wonderful G-varieties X1, X2 have the same

spherical system (where A(G, Xi) is considered just as an abstract finite set en-

dowed with the application ρG,Xi
|A(G,Xi), i = 1, 2 ), then they are G-equivariantly

isomorphic.

2.2. Subvarieties, products and parabolic inductions

Definitions and results in this subsection are a part of Luna’s theory developed in
[Lu01]: we will omit here all the proofs.

Let X be a wonderful G-variety of rank r, and consider a G-stable irreducible
closed subvariety Y of codimension k. Any such Y is always wonderful, and equal
to the intersection of k border prime divisors of X :

Y =

k⋂

j=1

X(ij)

for distinct i1, . . . , ik in {1, . . . , r}. We can describe the spherical system of Y in
terms of that of X . First of all, Sp(G, Y ) = Sp(G, X). Then, the spherical roots
Σ(G, Y ) are exactly Σ(G, X)\{γi1 , . . . , γik

}. Finally, the set A(G, Y ) is equal to
A(G, X) minus all colors moved only by simple roots in Σ(G, X)\Σ(G, Y ).

Definition 2.2.1. A wonderful G-variety X is a product if G = G1 × G2 and
X = X1 × X2 where Xi is a wonderful Gi-variety for i = 1, 2. If X is not a
product, we say it is indecomposable.

A wonderful variety is a product exactly when its associated data is a product,
in the following sense:

Definition 2.2.2. The spherical system (Sp(G, X), Σ(G, X), A(G, X)) is a prod-

uct if G = G1 ×G2, correspondingly, S = S1 ∪ S2 with S1 ⊥ S2, and we have:

– Sp(G, X) = Sp
1 ∪ Sp

2 ;

– Σ(G, X) = Σ1 ∪ Σ2;

– A(G, X) = A1 ∪ A2;

– for all D ∈ A1, ρG,X(D) is zero on Σ2 and for all D ∈ A2; ρG,X(D) is zero
on Σ1;
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where we define Sp
i = Sp(G, X)∩ Si, Σi = {γ ∈ Σ(G, X) | supp γ ⊆ Si}, and Ai is

the set of colors in A(G, X) moved only by simple roots in Si (i = 1, 2).

A very simple example of a product is where some factor has rank 0; about this
case, Definition 2.2.2 immediately implies the following.

Lemma 2.2.1. Let X be a wonderful G-variety, and suppose that G = G1 ×G2.

Then X is a product X1 ×X2 where X1 is a rank 0 wonderful G1-variety if and

only if supp Σ(G, X) doesn’t contain any simple root of G1.

Let X be a wonderful G-variety, and suppose that the stabilizer H of a point in
the open G-orbit is such that R(Q) ⊆ H ⊆ Q for some proper parabolic subgroup
Q of G, where R(Q) is the radical of Q. Then X is isomorphic to G×Q Y where
Y is a Q-variety where the radical R(Q) acts trivially. Moreover, Y turns out
to be wonderful under the action of Q/R(Q), thus also under the action of L a
Levi subgroup of Q. Here G ×Q Y is defined as the quotient (G × Y )/∼ where
(g, x) ∼ (gq, q−1x) for all q ∈ Q.

Definition 2.2.3. Such a wonderful variety X ∼= G×Q Y is said to be a parabolic

induction of Y by means of Q. A wonderful variety which is not a parabolic
induction is said to be cuspidal.

On the combinatorial side, this corresponds to the following.

Definition 2.2.4. The spherical system (Sp(G, X), Σ(G, X), A(G, X)) is said to
be cuspidal if supp Σ(G, X) ∪ Sp(G, X) = S.

If X has no rank 0 factor then it is cuspidal if and only if supp Σ(G, X) = S.
Noncuspidal wonderful varieties are often “ignored” due to the fact that the

G-action on X is completely determined by the L-action on Y , and the spherical
system (Sp(G, X), Σ(G, X), A(G, X)) is equal to (Sp(L, Y ), Σ(L, Y ), A(L, Y )), of
course, up to the identification of the simple roots of L with a subset of S.

On the other hand, the whole sets of colors of X and Y are different: the set
∆(L, Y ) is in natural bijection with a proper subset of ∆(G, X). The remaining
colors of X are in bijection with the simple roots of G which are not simple roots
of L: any such simple root α is associated to a color D of X , in such a way that
α and D behave as in Lemma 2.1.1.

In this paper we won’t leave aside noncuspidal varieties: the automorphism
groups Aut0(X) and Aut0(Y ) may behave quite differently.

3. Automorphism groups

3.1. Main theorem

In his paper [Br07], Brion proves a number of results about the automorphism
groups of wonderful varieties. In particular,

Theorem 3.1.1 ([Br07]). Let X be a wonderful G-variety, and let G̃ be any closed

connected subgroup of Aut0(X) containing the image of G. Then:

(1) G̃ is a semisimple group, and X is wonderful under its action;
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(2) the colors of X under the action of G̃ and under the image of G are the

same (if we fix in G̃ a Borel subgroup containing the image of B);

(3) the boundary prime divisors of X under the action of the full group Aut0(X)
are precisely the fixed divisors, i.e., by definition those boundary prime di-

visors X(i) (under the action of G ) such that 〈D, γi〉 < 0 for some color D.

The expression fixed prime divisor should not be confused with the notion of
a color moved by a simple root. The latter regards B-stable prime divisors that
lie on (more precisely, intersect) the open G-orbit of X . For such a divisor, being
moved by a simple root corresponds to an information about its stabilizer, which
is aways a parabolic subgroup of G.

Instead, the fixed prime divisors are contained in the boundary: they are exactly
the divisors that are stable under any connected group of automorphisms of X
containing G.

Here is our main result.

Theorem 3.1.2. Let X be a wonderful G-variety, and let us suppose that G acts

faithfully. Then Aut0(X) = G, except for the indecomposable varieties listed in

Subsections 3.2, 3.4, 3.5, 3.6, and products of wonderful varieties involving at least

one of such cases.

The theorem follows from Corollary 3.3.1, and Subsections 3.2, 3.4, 3.5, 3.6.
In these subsections we also determine the boundary and the invariants of X
as a wonderful variety with respect to the action of Aut0(X), for all X where
Aut0(X) 6= G. For many of these varieties, explicit geometrical descriptions are
provided.

The theorem can also be “a posteriori” reformulated in a different form, us-
ing certain smooth morphisms with connected fibers between wonderful varieties.
This reformulation (Theorem 4.2.1) has a more concise statement, evidencing the
fact that wonderful varieties of rank 1 play a crucial role whenever we have an
automorphism group bigger than G.

On the other hand, apparently it cannot be proven without appealing to The-
orem 3.1.2; this will be investigated in Section 4.

Let us make a last remark about parabolic inductions and full automorphism
groups: the following lemma will be useful in subsequent proofs.

Lemma 3.1.1. Let (G, X) be a wonderful variety, and suppose that it is a parabo-

lic induction obtained from a cuspidal one, call it (L, Y ). Let γ be a spherical

root of (L, Y ), let α be a simple root of G but not of L, and suppose that α is

nonorthogonal to some simple root of supp γ. Then the border prime divisor of

(G, X) associated to γ is fixed.

Proof. The spherical root γ is a linear combination of the simple roots of its sup-
port, with positive coefficients. On the other hand, α is associated to some color
D of (G, X), in such a way that ρX(D) = α∨: see the end of Subsection 2.2. This
implies that D is nonpositive on any simple root of L, and hence it is strictly
negative on γ. �
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3.2. Rank 0

Let X be a wonderful G-variety of rank 0, i.e. a homogeneous space G/P where P
is a parabolic subgroup of G. Let us also suppose that G acts faithfully, hence in
particular G is adjoint. In [De77] Demazure shows that Aut0(G/P ) is always equal
to G, except for a few cases called exceptional. If G is simple, the only exceptional
cases are:

1rk=0 G = PSp2n (n > 2), P = the stabilizer of a point of P2n−1: here Aut0(X) =
PSL2n and G/P ∼= Aut0(X)/P ′ ∼= P2n−1 where P ′ is the stabilizer in
Aut0(X) of a point of P2n−1;

2rk=0 G = PSO2n+1 (n > 2), P = the stabilizer of an isotropic n-dimensional
subspace of C2n+1: if we choose a suitable extension to C2n+2 of the sym-
metric bilinear form defining PSO2n+1, then Aut0(X) = PSO2n+2 and
P ′=the stabilizer of an isotropic (n + 1)-dimensional subspace of C2n+2;
the quotients Aut0(X)/P ′ and G/P are isomorphic via F 7→ F ∩ C

2n+1;
3rk=0 G = G2, P = the stabilizer of [v] ∈ P(V ), where v is a primitive vector

in the irreducible seven-dimensional G2-module V ; the latter can be seen
as the complexification of the real vector space of pure octonions: here
Aut0(X) = PSO7 and it stabilizes the norm of octonions.

If G is not simple, then the exceptional cases occur exactly when one of the simple
components Gi of G (and the corresponding parabolic subgroup Pi of Gi) appears
as one of the three cases above.

Now let X = G/P be exceptional, with G simple: X is a wonderful variety of
rank zero both under Aut0(X) and G. Hence Ξ(G, X) = Ξ(Aut0(X), X) = {0} and
Σ(G, X) = Σ(Aut0(X), X) = ∅, thus A(G, X) = A(Aut0(X), X) = ∅; the whole
set of colors ∆(Aut0(X), X) is of course in bijection with S\Sp(Aut0(X), X). The
only invariant to be calculated is Sp(Aut0(X), X):

1rk=0 G = PSp2n (n > 2), Sp(G, X) = {α2, . . . , αn},
Aut0(X) = PSL2n, Sp(Aut0(X), X) = {α2, . . . , α2n−1};

2rk=0 G = PSO2n+1 (n > 2), Sp(G, X) = {α1, . . . , αn−1},
Aut0(X) = PSO2n+2, Sp(Aut0(X), X) = {α1, . . . , αn};

3rk=0 G = G2, Sp(G, X) = {α2},
Aut0(X) = PSO7, Sp(Aut0(X), X) = {α2, α3}.

It will be useful to notice that in all three cases Sp(G, X) contains all simple roots
of G except for only one.

3.3. Borders and automorphisms

It is natural to ask how “strong” is the border as an invariant to study the full
automorphism group. The rank 0 exceptional varieties show that we can have
different groups acting with the same border (empty in this case), and thus the
same orbits, on the same wonderful variety. This can happen in higher rank too,
as we will see in this subsection; however, as soon as one of the groups is Aut0(X)
the picture is quite simple.
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In the proof of the following useful proposition, we will refer to the classification
of cuspidal indecomposable rank 1 ([Ah83], [HS82], [Br89]) and rank 2 wonderful
varieties ([Wa96]). A list of all of them, including their invariants, can be found
in [Wa96].

Proposition 3.3.1. Let X be a wonderful G-variety where G acts faithfully, and

suppose ∂(G, X) = ∂(Aut0(X), X). Then either G = Aut0(X), or X is a product

where at least one of the factors is one of the exceptional rank 0 cases listed in

Subsection 3.2.

Proof. The case of rank 0 was already done in Subsection 3.2. So we suppose X
of rank at least 1, and let us suppose that G 6= Aut0(X).

The closed G-orbit Z of X is the intersection of all G-boundary divisors. Since
∂(G, X) = ∂(Aut0(X), X), Z is also the closed Aut0(X)-orbit. The adjoint groups
of G and of Aut0(X) are obviously different, and it is not difficult to see that they
both act faithfully on Z.

In other words, (G, Z) is exceptional in the sense of Subsection 3.2. So either G
is simple and (G, Z) is 1rk=0, 2rk=0 or 3rk=0, or G splits into a product G = G1×G2

and, correspondingly, Z = Z1 ×Z2, where (G1, Z1) is one of the three cases above
(actually, the adjoint group of G1, but this is irrelevant in what follows). For
simplicity, let us say that G always splits in this way, with G2 possibly trivial.

If (G, X) itself splits as a product (G1, X1)× (G2, X2), where (G1, X1) has rank
0, then X1 = Z1 and we are done: (G1, X1) will be an exceptional rank 0 factor
of X .

Let us suppose that (G, X) doesn’t split as such a product: our aim is to
show that this leads to an absurd. The idea is that the closed orbit (G, Z), with
the exceptional factor (G1, Z1), forces which spherical roots are allowed to have
support on simple roots of G1. As a consequence, very strong conditions on the
spherical system are imposed, leading to a contradiction to the fact that ∂(G, X) =
∂(Aut0(X), X).

First of all, thanks to Lemma 2.2.1, there exists at least one spherical root, call
it γ1, whose support contains some simple root of G1. Recall its associated rank 1
wonderful G-subvariety

X(1) =
⋂

j 6=1

X(j).

It has only one spherical root, namely γ1, and of course the same closed orbit Z
as X .

Like any wonderful variety of rank 1, (G, X(1)) can be obtained from a cuspidal,
indecomposable rank 1 variety (L, X ′

(1)) using parabolic inductions and products
by rank 0 wonderful varieties.

Our first claim is that L contains the factor G1, from which it follows that Z1 is
also a factor of Z ′, the closed orbit of X ′

(1). To prove the claim, observe that supp γ1

contains some simple root of G1: this shows that G1 intersects nontrivially L.
Moreover, Sp(G1, Z1) (and thus Sp(G, X)) contains all simple roots of G1 ex-

cept one, call it α. We already know that the set Sp can never contain a connected
component of the support of a spherical root, this follows at once from the classi-
fication of rank 1 wonderful varieties. We conclude that α ∈ supp γ1.
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If L doesn’t contain G1, then there is some simple root of G1 moving some
color and outside the support of any spherical root, as described by the behavior
of colors under parabolic induction. This is an absurd, so we have proven our first
claim.

Now we look at the list in [Wa96] of cuspidal indecomposable rank 1 wonderful
varieties. Our (L, X ′

(1)) must appear there, with closed orbit (L, Z ′), and where

the latter has the exceptional factor (G1, Z1) equal to 1rk=0, 2rk=0 or 3rk=0. With
these conditions, the only candidates for (L, X ′

(1)) are cases 10, 11, 13, 14 of [Wa96].

More precisely, cases 10 or 11 could occur if (G1, Z1) = 2rk=0, and cases 13 or 14
if (G1, Z1) = 3rk=0. No case could occur if (G1, Z1) = 1rk=0. Notice that for all
these four candidates we have G1 = L.

Our second claim is that (L, X ′
(1)) = (G1, X

′
(1)) is a factor of (G, X). This

follows immediately from the classification in rank 2 of [Wa96]: it shows that the
rank 1 cases 10, 11, 13, 14 can appear inside some higher rank variety only if they
are factors of it.

Finally, in all the cases 10, 11, 13, 14 the border divisor is not fixed. But
(G1, X

′
(1)) is a factor of (G, X), so at least one of the border divisors of (G, X) is

not fixed: this is absurd since we were supposing that ∂(G, X) = ∂(Aut0(X), X).
�

As we said, the proposition fails if we replace Aut0(X) with some connected

group G̃ strictly between Aut0(X) and G: the above proof suggests the rank 1
cases 10, 11, 13, 14 of [Wa96] as counterexamples.

If (G, X) is one of them, then X is homogeneous under Aut0(X), but there exists

an intermediate connected group G ⊂ G̃ ⊂ Aut0(X) such that X is wonderful both

under G and under G̃ with the same orbits. However, a proof similar to Proposition
3.3.1 shows that these are the only indecomposable wonderful varieties (regardless
of the rank, provided it is > 1) having this property.

Let us see these cases in detail. For (G, X) equal to cases 10, 11, 13, 14, we

have that (G̃, X) is equal, respectively, to cases 5D, 6D, 7B, 8B. More precisely:

11-6D : X = P7, ∂(G, X) = ∂(G̃, X) is a smooth quadric, and

G = PSO7,
Sp(G, X) = {α1, α2},
Σ(G, X) = {α1+2α2+3α3},
A(G, X) = ∅,

G̃ = PSO8,

Sp(G̃, X) = {α2, α3, α4},

Σ(G̃, X) = {2α1+2α2+α3+α4},

A(G̃, X) = ∅;

14-8B : X = P
6, ∂(G, X) = ∂(G̃, X) is a smooth quadric, and

G = G2,
Sp(G, X) = {α2},
Σ(G, X) = {4α1+2α2},
A(G, X) = ∅,

G̃ = PSO7,

Sp(G̃, X) = {α2, α3},

Σ(G̃, X) = {2α1+2α2+2α3},

A(G̃, X) = ∅.

Case 10-5D (resp. 13-7B) is a smooth quadric of dimension 7 (resp. 6), a 2:1 cover of

case 11-6D (resp. 14-8B). The group G̃ is SO8 (resp. PSO7) and all the invariants
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are the same as in case 11-6D (resp. 14-8B), except that the spherical root is always
one-half of the spherical root of case 11-6D (resp. 14-8B), under both the actions

of G and G̃.

Corollary 3.3.1. If a wonderful variety (G, X) is a product of two wonderful

varieties (G1, X1), (G2, X2), then Aut0(X) = Aut0(X1)×Aut0(X2).

Proof. The wonderful variety (Aut0(X1)×Aut0(X2), X) is of course the product of
(Aut0(X1), X1) and (Aut0(X2), X2). All boundary prime divisors of (Aut0(X1), X1)
and of (Aut0(X2), X2) are fixed (Theorem 3.1.1), and from the analysis of the in-
variants associated to a product this implies that all boundary prime divisors of
(Aut0(X1) × Aut0(X2), X) are fixed. In other words, we have ∂(Aut0(X), X) =
∂(Aut0(X1) × Aut0(X2), X). Now our corollary is an easy consequence of Propo-
sition 3.3.1 applied to the wonderful variety (Aut0(X1)×Aut0(X2), X). �

This corollary allows us to deal, from now on, with indecomposable varieties
only.

3.4. Rank 1

Proposition 3.4.1. Let X be an indecomposable wonderful G-variety of rank 1
where G acts faithfully. Then G = Aut0(X) if and only if X is not cuspidal, or

G = G2 and X is the only rank 1 wonderful G-variety having spherical root α1+α2

(case 15 of [Wa96]).

Proof. Theorem 3.1.1 implies that if a rank 1 variety (G, X) has a nonfixed border
prime divisor, then Aut0(X) strictly contains G, and X is homogeneous under the
action of Aut0(X). This regards all the cuspidal indecomposable rank 1 varieties of
[Wa96] except one: case 15 (in the notations of the cited paper). On the other hand
if (G, X) is equal to case 15, it is not homogeneous under Aut0(X) thanks to the
same theorem: its border prime divisor is fixed, hence ∂(G, X) = ∂(Aut0(X), X)
and Proposition 3.3.1 assures us that Aut0(X) = G in this case.

Now we turn to the noncuspidal case. Any noncuspidal indecomposable rank
1 variety (G, X) is obtained by parabolic induction from a cuspidal one. The
latter might be a product, however it will have only one cuspidal rank 1 factor,
call it (L, X ′). It is very easy to see from Lemma 2.2.1 that in order to obtain an
indecomposable (G, X), some simple root of G but not of L must be nonorthogonal
to some simple root of L.

Since (L, X ′) is cuspidal and indecomposable of rank 1, supp Σ(L, X ′) is the
whole set of simple roots of L. Lemma 3.1.1 assures us in this case, that the
border prime divisor of (G, X) is fixed, and Aut0(X) = G as a consequence of
Proposition 3.3.1. �

Let us describe (Aut0(X), X) for all rank 1 varieties (G, X) that are homoge-
neous under Aut0(X). In [Ah83] this is done for all X having an affine open G-orbit,
so we will work on the remaining ones, namely cases 9B and 9C of [Wa96]:

9B Here G = PSO2n+1 (n > 2), Σ(G, X) = {γ1 = α1 + · · ·+ αn}, Sp(G, X) =
{α2, . . . , αn−1}, A(X) = ∅. The generic stabilizer (described in [Wa96])
has a Levi component isomorphic to GLn and the unipotent radical iso-
morphic to

∧2
C

n. If ω is the symmetric bilinear form on C
2n+1 defining
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G, the open G-orbit of X is isomorphic to
{

(E, F ) ∈ Gr(2n, C2n+1)×Gr(n, C2n+1)

∣∣∣∣
ω|E nondegenerate,
F isotropic, F ⊂ E

}
.

If we ignore the condition “ω|E nondegenerate” we obtain the whole X .
Therefore, with a suitable extension of ω to C2n+2, X is isomorphic to

{
(E′, F ′) ∈ Gr(2n + 1, C2n+2)×Gr(n + 1, C2n+2)

∣∣∣∣
F ′ isotropic,
F ′ ⊂ E′

}
,

where the isomorphism is given by (E ′, F ′) 7→ (E′ ∩ C2n+1, F ′ ∩ C2n+1).
Now it is evident that X is homogeneous under Aut0(X) = PSO2n+2, and
Sp(Aut0(X), X) = {α2, . . . , αn}.

9C Here G = PSp2n (n > 2), ΣG(X) = {γ1 = α1 + 2α2 + · · ·+ 2αn−1 + αn},
Sp(G, X) = {α3, . . . , αn}, A(X) = ∅. The generic stabilizer has a Levi
component isogenous to Sp2n−2×C∗ and the unipotent radical isomorphic
to C. If ω is the skew-symmetric bilinear form defining G, the open G-orbit
of X is isomorphic to

{
(E, F ) ∈ Gr(2, C2n)× P(C2n)

∣∣∣∣
E nonisotropic,
F ⊂ E

}
.

If we ignore the condition “E nonisotropic” we obtain the whole X . So X
is homogeneous under Aut0(X) = PSL2n, and we have Sp(Aut0(X), X) =
{α3, . . . , α2n−1}.

3.5. Rank 2

Proposition 3.5.1. Let X be an indecomposable G-wonderful variety of rank 2
where G acts faithfully. If X is cuspidal then G = Aut0(X) except for the following

cases:

1rk=2 G = PSL2×PSp2n (n > 2), X is case 1 of type C of [Wa96]; in particular,

Sp(G, X) = {α′3, . . . , α
′
n},

Σ(G, X) = {γ1 = α1 + α′1, γ2 = α′1 + 2α′2 + · · ·+ 2α′n−1 + α′n},

A(G, X) = ∅;

2rk=2 G = PSp2n (n > 2), X is the first of the two cases 5 of type C of [Wa96];
in particular,

Sp(G, X) = {α3, . . . , αn},

Σ(G, X) = {γ1 = 2α1, γ2 = α1 + 2α2 + · · ·+ 2αn−1 + αn},

A(G, X) = ∅;

3rk=2 G = PSp2n (n > 2), X is the second of the two cases 5 of type C of [Wa96];
in particular,

Sp(G, X) = {α3, . . . , αn},

Σ(G, X) = {γ1 = α1, γ2 = α1 + 2α2 + · · ·+ 2αn−1 + αn},

A(G, X) = {D+
1 , D−

1 },

ρG,X :

{
〈D+

1 , γ1〉 = 1 〈D−
1 , γ1〉 = 1,

〈D+
1 , γ2〉 = 0 〈D−

1 , γ2〉 = 0;
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4rk=2 G = PSO9, X is case 3 of type B of [Wa96]; in particular,

Sp(G, X) = {α2, α3},

Σ(G, X) = {γ1 = α2 + 2α3 + 3α4, γ2 = α1 + α2 + α3 + α4},

A(G, X) = ∅.

If X is not cuspidal, then G = Aut0(X) except for:

5rk=2 any indecomposable noncuspidal variety (G, X) obtained by parabolic in-

duction from (L, Y ), where we require that (L, Y ) is a product (of possibly

only one factor ) having a rank 2 factor equal to the cuspidal case 1 above,

and that G = G1 × PSp2n, i.e. the component PSp2n of the group L is

preserved when passing from L to G.

Proof. Let us begin with the cuspidal case. Varieties 1rk=2, 2rk=2, 3rk=2, 4rk=2

are exactly the indecomposable cuspidal rank 2 varieties where some border divisor
is not fixed, following the tables in [Wa96]. All other varieties satisfy ∂(G, X) =
∂(Aut0(X), X) as a consequence of Theorem 3.1.1, and Aut0(X) = G as a conse-
quence of Proposition 3.3.1.

In the noncuspidal case, let (G, X) be a noncuspidal indecomposable rank 2
variety, obtained by parabolic induction from a cuspidal one, say (L, Y ). We can
always consider (L, Y ) as a product, of possibly only one factor. Anyway, it has
rank 2, like (G, X).

This means that the cuspidal indecomposable factors of (L, Y ) of rank > 0 are
either one of rank 2, or two of rank 1. In the latter case, the situation is similar
to the second part of the proof of Proposition 3.4.1 (the “noncuspidal part”): we
discover in the same way that one of the two border divisors of (G, X) can be
nonfixed only if (G, X) itself is a product where one of the factors has rank 1
and a nonfixed border divisor. This is absurd, since we are supposing (G, X)
indecomposable.

We are left with the case where (L, Y ) has a rank 2 cuspidal indecomposable
factor (L1, Y1). It is evident that if the border divisors of (L1, Y1) are all fixed,
then the same happens for (G, X), so we may suppose that (L1, Y1) has at least
one nonfixed divisor. Then (L1, Y1) is equal to 1rk=2, 2rk=2, 3rk=2 or 4rk=2.

For 2rk=2, 3rk=2 and 4rk=2, the group L1 is simple and the spherical root
corresponding to the nonfixed divisor has support equal to the whole set of simple
roots of the group. From Lemma 3.1.1 we deduce that this divisor is nonfixed in
(G, X) only if the factor L1 of L is also a factor of G. So we have a decomposition
G = L1 × G1, where no spherical root of X has support on G1: Lemma 2.2.1
implies that (G, X) is either a product or equal to (L1, Y1), and this is absurd,
(G, X) being noncuspidal and indecomposable.

Therefore the only situation where (G, X) has a nonfixed divisor occurs if
(L1, Y1) = 1rk=2, where the nonfixed divisor corresponds to a spherical root whose
support is the set of simple roots of Sp2n. This divisor remains nonfixed in (G, X)
if and only if the factor Sp2n of L1 is also a factor of G, and this completes the
proof. �

Let us discuss the cuspidal varieties of the proposition above. In each case, only
one border divisor is fixed: it is a rank 1 wonderful variety which is homogeneous
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under its automorphism group, and which coincides with the closed Aut0(X)-orbit
on X . Moreover, it always appears in full detail in Subsection 3.4 as case 9B or 9C.

Using the knowledge of this divisor and its invariants under the action of its
automorphism group, it is immediate to deduce the automorphism groups and the
relative invariants of our rank 2 varieties. An explicit geometrical description is
also possible for the first three varieties.

1rk=2 Aut0(X) = PSL2 × PSL2n, and X is the following variety:

X =

{
(E, M)

∣∣∣∣
E ∈ Gr(n, C2n),
M ∈ P(Hom(C2, E))

}
,

where Hom(C2, E) is the space of linear homomorphisms between a fixed
C2 and the two-dimensional space E. The action of G and of Aut0(X) are
defined in the same way. The factors PSp2n ⊂ G and PSL2n ⊂ Aut0(X) act
in the usual way on the Grassmannian; an element (x, y) (where x ∈ SL2

and y ∈ Sp2n or SL2n) acts on the coordinate “M” as

P(Hom(C2, E)) → P(Hom(C2, yE)),
M = [f ] 7→ [y ◦ f ◦ x−1].

The invariants under the action of Aut0(X) are

Sp(Aut0(X), X) = {α′3, . . . , α
′
2n−1},

Σ(Aut0(X), X) = {γ1 = α1 + α′1},

A(Aut0(X), X) = ∅.

2rk=2 Aut0(X) = PSL2n, X = Bldiag(P2n−1)((P
2n−1 × P2n−1)/∼), where (x, y) ∼

(y, x):

Sp(Aut0(X), X) = {α3, . . . , α2n−1},

Σ(Aut0(X), X) = {γ1 = 2α1},

A(Aut0(X), X) = ∅.

3rk=2 Aut0(X) = PSL2n, X = Bldiag(P2n−1)(P
2n−1 × P2n−1):

Sp(Aut0(X), X) = {α3, . . . , α2n−1},

Σ(Aut0(X), X) = {γ1 = α1},

A(Aut0(X), X) = {D+
1 , D−

1 }, 〈D+
1 , γ1〉 = 〈D−

1 , γ1〉 = 1.

4rk=2 Aut0(X) = PSO10; here X under the action of Aut0(X) is a parabolic
induction from (L, Y ), where L = PSO8 and (L, Y ) is the rank 1 variety
P7 (cf. rank 1 case 6D). The parabolic induction is given identifying L with
a Levi part of the parabolic subgroup of PSO10 associated to the simple
roots α2, α3, α4, α5. The invariants under the action of Aut0(X) are

Sp(Aut0(X), X) = {α2, α3, α4},

Σ(Aut0(X), X) = {γ1 = α2 + 2α3 + α4 + 2α5},

A(Aut0(X), X) = ∅.
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In the end, let us consider the noncuspidal exception 5rk=2. Here our (G, X)
is a parabolic induction from (L, Y ) where (L, Y ) is the first cuspidal case, and
G = G1 × PSp2n. Again, it is easy to prove that Aut0(X) = G1 × PSL2n and the
invariants behave, mutatis mutandis, in the same way as for 1rk=2.

3.6. Higher rank

Proposition 3.6.1. Let X be an indecomposable G-wonderful variety of rank at

least 3, and let us suppose that G acts faithfully. Then G = Aut0(X) except for

any variety (G, X) such that G has a factor PSp2n with associated simple roots

α1, . . . , αn, and the invariants of X satisfy

Σ(G, X) 3 α1 + 2α2 + · · ·+ 2αn−1 + αn,

Sp(G, X) 63 α1.

Before proving the proposition, we remark that these kinds of varieties also
appear in rank 1, namely case 9C, and in rank 2, namely varieties 1rk=2, 2rk=2,
3rk=2, 5rk=2.

Proof. If G 6= Aut0(X), then some of the border prime divisors of (G, X) are
not fixed. Hence at least one of the rank 1 wonderful G-subvarieties must have
a nonfixed border prime divisor: call it (G, X(1)). Since (G, X) is indecompos-
able, Definition 2.2.2 implies directly that (G, X(1)) is contained in some rank 2
wonderful G-subvariety having an indecomposable rank 2 factor.

Call this factor (G1, Y ): it again has a nonfixed border prime divisor, so it must
appear in Proposition 3.5.1. If (G1, Y ) is noncuspidal, then (G, X) falls into the
family 5rk=2, therefore our conditions are satisfied.

Otherwise, we have to look at the classification of rank 2 wonderful varieties in
[Wa96]. We find out that varieties 2rk=2 and 4rk=2 cannot be subvarieties (nor
factors of subvarieties) of any indecomposable bigger variety, so (G1, Y ) is either
1rk=2 or 3rk=2: again, our conditions for (G, X) are satisfied.

On the other hand, the classification in rank 2 shows that if a variety satisfies
our conditions, then the divisor associated to the spherical root α1 + 2α2 + · · ·+
2αn−1 + αn cannot be fixed, and this finishes the proof. �

We can describe a little more precisely these exceptions in rank > 2: the classi-
fication in rank 2 can easily be used to understand what are all wonderful varieties
satisfying the conditions in Proposition 3.6.1. They might be regarded as composed
by three families:

1rk>2 Any variety of rank > 2 satisfying the conditions of 5rk=2.
2rk>2 Any variety (G, X) such that: G has a simple factor PSp2n with associated

simple roots α1, . . . , αn, and the invariants of X satisfy

Σ(G, X) ⊇





γ1 = α1 + 2α2 + . . . + 2αn−1 + αn,
γ2 = α1,
γ3 = α



,

A(G, X) 3 D, such that D is moved by both α1 and α,

for α some simple root of G not among α1, . . . , αn.
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3rk>2 The rank 3 variety (G, X) where G = PSp2n × PSp2m and X is uniquely
determined by

Σ(G, X) =





γ1 = α1 + 2α2 + · · ·+ 2αn1−1 + αn,
γ2 = α′1 + 2α′2 + · · ·+ 2α′n2−1 + α′m,
γ3 = α1 + α′1



 .

In this case, the variety X has a decription similar to 1rk=2, cf. Subsection
3.5:

X =




(E1, E2, M)

∣∣∣∣∣∣

E1 ∈ Gr(2, C2n),
E2 ∈ Gr(2, C2m),
M ∈ P(Hom(E1, E2))




.

To conclude this section, we describe the varieties (Aut0(X), X) for all these
higher rank exceptions. Let (G, X) be one of them: the group G has one or more
factors isomorphic to PSp,

G = G1 × PSp2n1
× PSp2n2

× · · · × PSp2nk
,

where each PSp2ni
(with simple roots αi

1, . . . , α
i
ni

) gives the prescribed spherical
root αi

1+2αi
2+· · ·+2αi

ni−1+αi
ni

. As in the previous subsection, it is straightforward
to show that Aut0(X) will differ from G only in the factors PSp2ni

which turn into
PSL2ni

, and that the spherical systems of X with respect to G and to Aut0(X)
will differ only accordingly to this change.

Precisely: let us call βi
1, . . . , β

i
2ni−1 the simple roots of PSL2ni

. Then, the
spherical root αi

1 + 2αi
2 + · · · + 2αi

ni−1 + αni
disappears in Σ(Aut0(X), X); any

other spherical root involving αi
1 in the support (such as, e.g., αi

1 itself) remains
the same, with βi

1 taking the place of αi
1. All other spherical roots of (G, X) appear

unchanged in (Aut0(X), X), and the sets A(G, X), A(Aut0(X), X) are exactly the
same.

The set Sp(Aut0(X), X) coincides with Sp(G, X) in what concerns the simple
roots of G1. Finally, Sp(Aut0(X), X) “behaves” like Sp(G, X) on the PSp factors
of the group, in the sense that Sp(G, X) contains all simple roots of PSp2ni

except
αi

1 and αi
2, and, correspondingly, Sp(Aut0(X), X) contains all roots of PSL2ni

except βi
1 and βi

2.

4. Morphisms

4.1. The set of all colors

It is possible to recover all colors and the values of the associated functionals,
starting only from the spherical system of a wonderful variety (G, X). Following
[Lu01] and its notations, we can identify each color in ∆(G, X)\A(G, X) with the
simple roots it is moved by. This gives a disjoint union

∆(G, X) = A(G, X) ∪∆a′(G, X) ∪∆b(G, X).

The set ∆a′(G, X) is in bijection with the set of simple roots α such that 2α is
a spherical root. For such a color D, we have ρG,X(D) = 1

2α∨|Ξ(G,X). The set

∆b(G, X) is in bijection with the following set
(
S\

(
Σ(G, X) ∪ 1

2Σ(G, X) ∪ Sp(G, X)
))/

∼
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where α ∼ β if α = β, or if α ⊥ β and α + β ∈ Σ(G, X) (or 1
2 (α + β) ∈ Σ(G, X)).

For such a color D, the associated functional ρG,X(D) is equal to α∨, for α any
representative of the ∼-equivalence class associated to D.

4.2. Smooth G-equivariant morphisms

The theory of spherical varieties is used in [Lu01] to study surjective G-equivariant
morphisms with connected fibers between wonderful G-varieties.

Here it is enough to recall the case of smooth morphisms. Let ∆′ be a sub-
set of ∆(G, X), such that there exists a linear combination with positive integer
coefficients

η =
∑

D∈∆′

nDρG,X(D),

such that η(γ) > 0 for all γ ∈ Σ(G, X). Suppose moreover that whenever we have
a spherical root γ with η(γ) = 0, then 〈D, γ〉 = 0 for all D ∈ ∆′.

Then there exist a unique (up to G-isomorphism) wonderful G-variety X∆′ , and
a unique surjective G-equivariant map f∆′ : X → X∆′ with connected fibers, such
that

∆′ = {D ∈ ∆(G, X) | f∆′(D) = X∆′} .

The morphism f∆′ is smooth, and we call such a ∆′ a smooth distinguished subset of
colors. The invariants of X∆′ are the same of X , except for the following changes:

(1) all spherical roots where η is positive disappear;
(2) all colors of ∆′ disappear; this may cause obvious changes in the sets A

and Sp.

A particular case occurs when ∆′ contains only one element δ: it must take
nonnegative values on all spherical roots and we call positive such a color.

In [Lu01] the induced maps f{δ} were studied in detail in the case where δ ∈
A(G, X) and where G has only components of type A: it was called a projective

fibration. Without these restrictions on δ and G the analysis of loc.cit. cannot
always be applied.

If we restrict ourselves to indecomposable varieties of rank at least 2, we can
reformulate our main Theorem 3.1.2 in the following way.

Theorem 4.2.1. Let (G, X) be an indecomposable wonderful variety of rank at

least 2. Then Aut0(X) 6= G if and only if there exists a smooth distinguished

subset of colors ∆′ ⊂ ∆(G, X) such that the variety (G, X∆′) has a rank 1 factor

which is homogeneous under its full automorphism group, and which has spherical

root γ where all colors of ∆′ take nonnegative values (when γ is considered as a

spherical root of X ).

Proof. The “if” part can be proven independently from Theorem 3.1.2: it is an
easy consequence of Theorem 3.1.1, so let us begin with it.

Consider the variety X∆′ . The rank 1 factor in the hypothesis implies that one
of the border divisors of X∆′ is not fixed, in other words, all colors of X∆′ take
nonnegative values on the associated spherical root γ.

This border divisor corresponds to a border divisor of X , say X (1). But we have
∆(G, X) = ∆(G, X∆′) ∪ ∆′ and colors of ∆′ are never negative on γ, so X (1) is
not fixed and Aut0(X) 6= G.
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Now we proceed to the “only if” part. A possible strategy here is the following:
since Aut0(X) 6= G, Proposition 3.3.1 implies ∂(Aut0(X), X) 6= ∂(G, X). So at
least one border prime divisor of X is not fixed, and on the corresponding spherical
root γ no color of X takes a negative value. We could then define ∆′ to be the set
of all colors of X which are zero on γ.

But in order to prove that this ∆′ is smooth distinguished, we should essentially
repeat the combinatorial analysis contained in the proofs of Propositions 3.5.1 and
3.6.1. So let us use directly Theorem 3.1.2 and choose ∆′ in each of the exceptions
listed in Subsections 3.5 and 3.6. For most of them, ∆′ can be chosen to contain
only one color δ, which is positive:

1rk=2 δ ∈ ∆b(G, X), moved by α1 and α′1;
2rk=2 δ ∈ ∆a′(G, X), moved by α1;
3rk=2 δ = D+

1 ∈ A(G, X);
4rk=2 δ ∈ ∆b(G, X), moved by α4;
5rk=2 as for 1rk=2;
1rk>2 as for 1rk=2;
3rk>2 δ ∈ ∆b(G, X), moved by α1 and α′1.

For the remaining case 2rk>2 we observe that the spherical root on the part PSp2n

implies that α2 moves a unique color D. We can choose here ∆′ = ∆(G, X)\{D}.
It is easy to see that all these ∆′ satisfy the required conditions, and this finishes

the proof. �

In the hypotheses of the above theorem, let us consider the variety (Aut0(X), X)
and the set ∆′. It is easy to check case-by-case that ∆′ is again smooth distin-
guished under the action of Aut0(X), thus it defines a smooth Aut0(X)-equivariant
map

f̃∆′ : X → X̃∆′

with the same properties as f∆′ . Again a simple case-by-case proof shows that
X̃∆′ = X∆′ , and that Aut0(X∆′) = Aut0(X). From the uniqueness property of f∆′

and the fact that Aut0(X) ⊃ G, it follows also that f̃∆′ = f∆′ .
We may rephrase these conclusions in the following way: the group Aut0(X∆′)

is bigger than G, and all the elements of Aut0(X∆′)\G lift to X via f∆′ .
It would be very interesting to have a direct proof of this lifting property of f∆′ .

However, this property fails if we try to replace the condition in Theorem 4.2.1
with the weaker one “there exists ∆′ such that X∆′ has an automorphism group
bigger than G”: this is not enough to assure Aut0(X) 6= G, not even in the cases
where ∆′ contains only one color.

A counterexample is given by the rank 1 cuspidal case 15 of [Wa96], where
G = G2 and

Sp(G, X) = ∅,

Σ(G, X) = {γ1 = α1 + α2},

A(G, X) = ∅.

Here there are two colors D1, D2 ∈ ∆b(G, X), moved, respectively, by α1, α2. We
can choose δ = D2, so that X{δ} = 3rk=0. Thus Aut0(X{δ}) 6= G, but Proposition
3.4.1 says that Aut0(X) = G.
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