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Abstract. Let G be a special orthogonal group over an algebraically closed field of
characteristic exponent p. In this paper we extend certain aspects of the Dynkin–Kostant
theory of unipotent elements of G (when p = 1) to the general case (including p = 2).

Introduction

0.1. Let k be an algebraically closed field of characteristic exponent p > 1. This
paper is a study of unipotent elements in a special orthogonal group SOQ (where
Q is a nondegenerate quadratic form on a finite-dimensional k-vector space V )
with emphasis on the case where p = 2. We develop some of the proposals in [L2]
which try to extend the Dynkin–Kostant theory [K] of unipotent elements in the
case p = 1 to the case p > 1.

Namely we show that to any unipotent element u ∈ G one can associate canon-
ically a filtration of V whose stabilizer in SOQ is a parabolic subgroup containing
u in the unipotent radical and such that this parabolic is of the same type as
a parabolic attached in the Dynkin–Kostant theory to a unipotent element in a
special orthogonal group with p = 1. This allows us to partition the unipotent
variety of SOQ into pieces which are both smooth varieties and unions of (possibly
several) unipotent conjugacy classes. We show that (for a split rational structure
over a finite field with q elements) each piece has a number of rational points given
by a polynomial in q with integer coefficients independent of q and p. (This kind of
property was stated without proof in [L1].) A similar statement was established for
groups of type C in [L2]; for an exceptional type this is is easily established using
the available tables since in that case each piece contains at most two unipotent
conjugacy classes. In some sense the behaviour of the pieces is more complicated
for orthogonal groups than for other almost simple groups. For example, this is
the only case where the number of unipotent conjugacy classes in a given piece (in
bad characteristic) is not necessarily a power of 2.
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The main result of this paper is Theorem 1.7 which gives a rather explicit
decomposition of the unipotent variety in SOQ into pieces Ξφ; these are the same
as the unipotent pieces of SOQ in [L2, 1.1] (although their definition is slightly
different). Our results verify the validity of properties P1–P5 in [L2, 1.1] for SOQ.
In particular property P5 is proved in our case in 1.8(b). In Section 4 we discuss
an (injective) map from unipotent classes in SOQ to nilpotent orbits in the Lie
algebra.

The proof of Theorem 1.7 is given in Section 2 (when p = 2) and in Section 3
(when p 6= 2).

Notation. We set Z′ = 2Z+1,Z′′ = 2Z. For a ∈ Z, we set Z′
>a = {n ∈ Z′ | n > a},

Z′′
>a = {n ∈ Z′′ | n > a}. The cardinal of a finite set X is denoted by |X |; if X is

an infinite set we write |X | = ∞.

1. Unipotent elements in orthogonal groups

1.1. In this section we give some preparatory material which allows us to state
Theorem 1.7, the main result of this paper.

Let k be a finite or algebraically closed field of characteristic exponent p > 1.
Let C be the category whose objects are k-vector spaces of finite dimension; the
morphisms are linear maps. Let C ′ be the subcategory of C consisting of all V ∈ C
such that dimV ∈ Z′. Let C′′ be the subcategory of C consisting of all V ∈ C
such that dimV ∈ Z′′. Let C̄ be the category whose objects are Z-graded k-vector
spaces V̄ =

⊕
a∈Z

V̄ a such that dim V̄ < ∞; the morphisms are linear maps
respecting the grading.

Let V ∈ C. For N ∈ EndV nilpotent and i > 1 let

EN
i = kerN i/(N(kerN i+1) + kerN i−1).

Then cNi := dimEN
i is the number of Jordan blocks of size i of N . Let e = eN be

the smallest integer > 0 such that N e = 0.
For any symmetric or symplectic bilinear form 〈 , 〉 : V × V → k let Rad〈 , 〉 =

{x ∈ V | 〈x, V 〉 = 0} be the radical of 〈 , 〉.
In the remainder of this paper we fix V ∈ C and a quadratic form Q : V → k

with associated symmetric bilinear form 〈 , 〉 : V × V → k; we have 〈x, y〉 =
Q(x + y) − Q(x) − Q(y) for x, y ∈ V . Let D = dimV . Let R = Rad〈 , 〉. We
assume that Q is nondegenerate, that is, Q|R : R→ k is injective. (In this case we
must have R = 0 unless V ∈ C ′, p = 2 when dimR = 1.)

In the case where D ∈ Z′′ let JQ be the set of D/2-dimensional subspaces of V
on which Q is 0. In the case where |k| < ∞, D ∈ Z′′

>2 we set ηQ = 1 if JQ 6= ∅

and ηQ = −1 if JQ = ∅.
For any subspace W of V we set W⊥ = {x ∈ V | 〈x,W 〉 = 0}.
Let OQ = {T ∈ GL(V ) | Q(Tx) = Q(x) ∀x ∈ V } be the orthogonal group of Q.

In the case where |k| = ∞ we denote by SOQ the identity component of OQ; in

the case where |k| < ∞ we set SOQ = OQ ∩ SOQ̃ where Q̃ is the quadratic form
obtained from Q by extension of scalars to an algebraic closure of k. Let

M̃Q = {N ∈ End(V ) | 1 +N unipotent in OQ}

= {N ∈ End(V ) | N nilpotent, Q(Nx) = −〈x,Nx〉 for all x ∈ V }.
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Note that if N ∈ M̃Q and x, y ∈ V then

〈x,Ny〉+ 〈Nx, y〉+ 〈Nx,Ny〉 = 0.

In particular, for N ∈ M̃Q, we have 〈x,Ny〉 = 〈N †x, y〉 for x, y ∈ V , where

N † := (1 +N)−1 − 1 = −N +N2 −N3 + · · · ∈ M̃Q.

Let N ∈ M̃Q. We have

(a) NV ∩ R = 0.

If x ∈ V and Nx ∈ R then Q(Nx) = −〈x,Nx〉 = 0; since Q : R → k is injective
we see that Nx = 0. Thus (a) holds.

From the definitions we have, for i > 1,

(b) (kerN i)⊥ = N iV +R, (N iV )⊥ = kerN i.

In particular, NR ⊂ R. Since dimR 6 1, it follows that NR = 0.

1.2. In this subsection we assume that p > 1 and that |k| = q < ∞. For any
m ∈ Z′

>1 we set

Pm = q1/4(m2−2m+1)(q2 − 1)(q4 − 1) · · · (qm−1 − 1).

For any m ∈ Z′′
>2 and δ ∈ {1,−1} we set

P δ
m = q1/4(m2−2m)(q2 − 1)(q4 − 1) · · · (qm−2 − 1)(qm/2 − δ).

Let V be a k-vector space with a nondegenerate quadratic form u : V → k. Let
( , ) : V × V → k be the associate symmetric bilinear form. Let R = Rad( , ).
Let s = dimV . Let k ∈ [0, s]. Let SkV be the set of k-dimensional subspaces
W of V such that u|W is nondegenerate. If k ∈ Z′′

>2, we have a partition SkV =⊔
δ∈{1,−1}S

δ
kV where Sδ

kV = {W ∈ SkV | ηu|W = δ}. If s ∈ Z′′, k ∈ Z′ we set

N ε,∗
s,k = |SkV|. If s ∈ Z′, k ∈ Z′, we set N∗,∗

s,k = |SkV|. If s ∈ Z′′, k ∈ Z′′
>2 and

δ ∈ {1,−1}, we set N ε,δ
s,k = |Sδ

kV|. If s ∈ Z′, k ∈ Z′′
>2 and δ ∈ {1,−1}, we set

N∗,δ
s,k = |Sδ

kV|.

(i) If s ∈ Z′′
>2, k ∈ Z′, ε = ηu, then N ε,∗

s,k = P ε
sP

−1
k P−1

t−k.

If p 6= 2 this is obvious. Assume now that p = 2. Let R′ be the radical of
( , )|W for W ∈ SkV . Then R′ is one of the q(s−2)/2(qs/2 − ε) lines in V on
which u is not identically 0. Also R′⊥ is a hyperplane in V and ( , ) induces
a nondegenerate symplectic form on R′⊥/R′. For each such R′, the number of
W ∈ SkV such that R′ ⊂W ⊂ R′⊥ is the number of (k−1)-dimensional subspaces
of R′⊥/R′ on which ( , ) is nondegenerate, hence it is Ps−1P

−1
k P−1

s−k . Hence

N ε,∗
s,k = q(s−2)/2(qs/2 − ε)Ps−1P

−1
k P−1

s−k, as required.

(ii) If s ∈ Z′′
>2, k ∈ Z′′

>2, k < s, ε = ηu, δ ∈ {1,−1}, then

N ε,δ
s,k = 2−1P ε

s (P δ
k )−1(P εδ

s−k)−1.

This is clear: the orthogonal group of u acts transitively on Sδ
kV .
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(iii) If s ∈ Z′, k ∈ Z′, k < s, then N∗,∗
s,k = 2−1

∑
δ∈{1,−1} PsP

−1
k (P δ

s−k)−1.

If p 6= 2 this is obvious. Assume now that p = 2. We set s = 2t+ 1, k = 2a+ 1.
Let R′ = Rad( , )|W for W ∈ SkV . Then R′ is one of the q2t lines in V on which
u is not identically 0. The number of W ∈ SkV , such that the corresponding R′

is equal to R, is the number of 2a-dimensional subspaces of V/R on which ( , ) is
nondegenerate, that is, PsP

−1
k P−1

s−k+1. Let N ′ be the number of W ∈ SkV such
that the corresponding R′ is not equal to R. Then N ′ = (qs−1−1)N ′

0 where N ′
0 is

the number of W with prescribed R′ 6= R. To such W we associate the subspace
W ′ = W + R (of dimension k + 1) of R′⊥ (of dimension s − 1). Note that the
number of possible such W ′ is the number of (k − 1)-dimensional subspaces of
R′⊥/(R+R′) on which ( , ) is nondegenerate, that is, Ps−2P

−1
k P−1

s−k−1. For any
W ′ as above the number of W , such that R′ ⊂ W ⊂W ′ and W ⊕R = W ′, is the
number of subspaces X ⊂ W ′/R′ such that X ⊕R = W ′/R′, that is, qk−1. Thus,

N ′ = (qs−1 − 1)qk−1Ps−2P
−1
k P−1

s−k−1

= q2aq−t2+(t−1)2q(t−a)2−(t−a−1)2(q2t−2a − 1)PsP
−1
k P−1

s−k+1.

We see that

N∗,∗
s,k = PsP

−1
k P−1

s−k+1 + q2aq−t2+(t−1)2q(t−a)2−(t−a−1)2(q2t−2a − 1)PsP
−1
k P−1

s−k+1

= q2t−2aP2t+1P
−1
2a+1P

−1
2t−2a+1

and (iii) follows.

(iv) If s ∈ Z′, k ∈ Z′′
>2, δ ∈ {1,−1}, then N∗,δ

s,k = 2−1Ps(P
δ
k )−1P−1

s−k.

This is clear: the orthogonal group of u acts transitively on Sδ
kV .

We now consider a descending sequence r0 > r2 > r4 > · · · of integers such that
r0 = s and r2n = 0 for large n. We denote by ν(r0, r2, r4, . . . ) (if s ∈ Z′) or by
νε(r0, r2, r4, . . . ) (if s ∈ Z′′

>2, ηu = ε) the number of sequences U0 ⊃ U2 ⊃ U4 ⊃ · · ·
of subspaces of V such that for any n > 0, dimU2n = r2n and the quadratic form
u|U2n

is nondegenerate. We show:

(a) Let X = ν(r0, r2, r4, . . . ) if r0 ∈ Z′ and X = νε(r0, r2, r4, . . . ) if r0 ∈ Z′′
>2

and ε ∈ {1,−1}. Then X is a polynomial in q with coefficients in Z independent
of q or p.

Let M be the number of nonzero terms in the sequence (r0, r2, r4, . . . ). We have
M > 1. We argue by induction on M . If M = 1 we have X = 1. Assume now
that M > 2. If r2n = r2n+2 > 0 for some n we have X = ν(r0, . . . , r2n, r2n+4, . . . )
if r0 ∈ Z′, X = νε(r0, . . . , r2n, r2n+4, . . . ) if r0 ∈ Z′′; the result follows. Hence
we may assume that the nonzero terms of r0, r2, . . . are distinct. If r2n ∈ Z′

for some n > 0, we have X = ν(r0, . . . , r2n, 0, 0, )ν(r2n, r2n+2, . . . ) if r0 ∈ Z′,
X = νε(r0, . . . , r2n, 0, 0, )ν(r2n, r2n+2, . . . ) if r0 ∈ Z′′; in both cases the induction
hypothesis applies to the second factor in the right-hand side. Thus we may assume
that any odd number in the sequence r0, r2, . . . must appear either as r0 or it must
be followed by 0. Thus we must consider four cases.

776 G. LUSZTIG



Case 1. r2n ∈ Z′′ for all n. Let r2m be the last nonzero term of r0, r2, . . . . If
m = 0 we have X = 1. If m > 0 we have, using (ii),

X =
∑

δ1,δ2,...,δm∈{1,−1}

N ε,δ1
r0,r2

N δ1,δ2
r2,r4

· · ·N δm−1,δm

r2m−2,r2m

= 2−m
∑

δ1,δ2,...,δm∈{1,−1}

P ε
r0

(P εδ1
r0−r2

)−1(P δ1δ2
r2−r4

)−1 · · · (P
δm−1δm

r2m−2−r2m
)−1(P δm

r2m
)−1.

This is clearly a polynomial in q with coefficients in Z[2−1]. It is also the product
of a polynomial in q with coefficients in Z with

2−m
∑

δ1,δ2,...,δm∈{1,−1}

(q(r0−r2)/2 − εδ1)
−1(q(r2−r4)/2 − δ1δ2)

−1 · · ·

× (q(r2m−2−r2m)/2 − δm−1δm)−1(qr2m/2 − δm)−1

= (qr0/2+ε)(qr0−r2−1)−1(qr2−r4−1)−1 · · · (qr2m−2−r2m−1)−1(qr2m−1)−1,

hence is a power series with integer coefficients in q. Hence X ∈ Z[q].

Case 2. r0 ∈ Z′′, r2m ∈ Z′, r2n ∈ Z′′ for 0 < n < m and r2n = 0 for n > m.
If m = 1 we have X = N ε,∗

r0,r2
. If m > 1 we have

X =
∑

δ1,δ2,...,δm−1∈{1,−1}

N ε,δ1
r0,r2

N δ1,δ2
r2,r4

· · ·N δm−2,δm−1
r2m−4,r2m−2

N δm−1,∗
r2m−2,r2m

.

As in Case 1 we see, using (ii) and (i) that X ∈ Z[q].

Case 3. r0 ∈ Z′, r2n ∈ Z′′ for n > 0. Let r2m be the last nonzero term of
r0, r2, . . . . We have

X =
∑

δ1,δ2,...,δm∈{1,−1}

N∗,δ1
r0,r2

N δ1,δ2
r2,r4

· · ·N δm−1,δm

r2m−2,r2m
.

As in Case 1 we see, using (ii) and (iv), that X ∈ Z[q].

Case 4. r0 ∈ Z′ and for some m > 0, r2m ∈ Z′, r2n ∈ Z′′ for 0 < n < m and
r2n = 0 for n > m. If m = 1 we have X = N∗,∗

r0,r2
, see (iii). If m > 1 we have

X =
∑

δ1,δ2,...,δm−1∈{1,−1}

N∗,δ1
r0,r2

N δ1,δ2
r2,r4

· · ·N δm−2,δm−1
r2m−4,r2m−2

N δm−1,∗
r2m−2,r2m

.

As in Case 1 we see, using (i), (ii) and (iv), that X ∈ Z[q]. This completes the
proof of (a). �

For any m ∈ Z′′
>0, we set

Rm = qm2/4)(q2 − 1)(q4 − 1) · · · (qm − 1).

Let V ′ be a k-vector space with a nondegenerate symplectic form ( , ) : V ′×V ′ → k.
We consider a descending sequence r1 > r3 > r5 > · · · of even integers such

that r1 = dimV ′ and r2n+1 = 0 for large n. We denote by ν ′(r1, r3, r5, . . . ) the
number of sequences U1 ⊃ U3 ⊃ U5 ⊃ · · · of subspaces of V ′ such that for any
n > 0, dimU2n+1 = r2n+1 and the symplectic form ( , )|U2n+1 is nondegenerate.
Clearly,

(b) ν′(r1, r3, r5, . . . ) = Rr1R
−1
r1−r3

R−1
r3−r5

. . . is a polynomial in q with coeffi-
cients in Z independent of q or p.

777UNIPOTENT ELEMENTS IN SMALL CHARACTERISTIC, II



1.3. Let V̄ ∈ C̄. Define (fa)a∈Z by fa = dim V̄ a. A quadratic form Q̄ : V̄ → k with
associated symmetric bilinear form 〈 , 〉 is said to be compatible with the grading
if Q̄|V̄ a = 0 for a 6= 0 and 〈V̄ a, V̄ a′〉 = 0 for a + a′ 6= 0. In this subsection we fix
such a Q̄ (compatible with the grading) and we assume that it is nondegenerate.
Let R̄ = Rad〈 , 〉. Then R̄ ⊂ V̄ 0, Q|V̄ 0 : V̄ 0 → k is nondegenerate and 〈 , 〉 restricts
to a perfect pairing V̄ −a × V̄ a → k for any a > 1. Hence fa = f−a for all a. Let

E2V̄ = {T ∈ HomC(V̄ , V̄ ) | T (V̄ a) ⊂ V̄ a+2 for any a ∈ Z; 〈Tx, y〉

+ 〈x, Ty〉 = 0 for all x, y ∈ V̄ ; 〈x, Tx〉 = 0 for any x ∈ V̄ −1}.

If T ∈ E2V̄ we have

(a) 〈x, T ax〉 = 0 for any a ∈ Z′
>1 and any x ∈ V̄ −a.

Indeed, we have a = 2a′ + 1 with a′ > 0 and x′ = T a′x ∈ V̄ −1 satisfies
〈x′, Tx′〉 = 0. Thus

0 = 〈T a′x, T a′+1x〉 = (−1)a′〈x, T a〉

and (a) follows.
Let E2

∗ V̄ be the set of all T ∈ E2V̄ such that:

(i) for any a ∈ Z′′
>0, the quadratic form Q̄a : V̄ −a → k, x 7→ Q̄(T a/2x) is

nondegenerate;
(ii) for any a ∈ Z′

>1, the symplectic form V̄ −a × V̄ −a → k, x, y 7→ 〈x, T ay〉 is
nondegenerate.
Note that (i) is automatic for a = 0.

For Ñ ∈ E2V̄ and a > 0 we set KT
a = ker(T a : V̄ −a → V̄ a). If a > 1 then

KT
a = Rad〈 , 〉a where 〈 , 〉a : V̄ −a × V̄ −a → k is x, y 7→ 〈x, T ay〉. Hence condition

(ii) is equivalent to the condition that KT
a = 0 for a ∈ Z′

>1. If a ∈ Z′′
>0 then

the symmetric bilinear form associated to Q̄a is (−1)a/2〈 , 〉a. Hence condition
(i) is equivalent to the condition that Q̄a : KT

a → k is injective for a ∈ Z′′
>2.

(This implies that for such a we have KT
a = 0 unless p = 2 and f−a ∈ Z′, when

dimKT
a = 1.)

This discussion shows that if p 6= 2 an element T ∈ E2V̄ belongs to E2
∗ V̄ if and

only if T a : V̄ −a → V̄ a is an isomorphism for any a > 0.
Returning to the general case we reformulate conditions (i) and (ii) for an

element T ∈ E2V̄ to be in E2
∗ V̄ as follows:

(i′) for any a ∈ Z′′
>0, the map T a/2 : V̄ −a → V̄ 0 is injective and its image IT

a

is such that Q̄|IT
a

is a nondegenerate quadratic form;

(ii′) the symplectic form ωT (x, y) = 〈x, Ty〉 on V −1 is nondegenerate; for any
a ∈ Z′

>1, the map T (a−1)/2 : V̄ −a → V̄ −1 is injective and its image IT
a is

such that ωT |IT
a

is a nondegenerate symplectic form.

Clearly, if (i′) holds then (i) holds. If (i) holds and x ∈ ker(T a/2 : V̄ −a → V̄ 0)
(with a ∈ Z′′

>2) then T ax = 0 hence x ∈ KT
a . We also have Q̄a(x) = 0. Since

Q̄a : KT
a → k is injective we see that x = 0. We see that (i′) holds.
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For a ∈ Z′
>1 and x, y ∈ V̄ −a we have

〈x, y〉a = (−1)(a−1)/2〈T (a−1)/2x, T (a−1)/2y〉1.

Hence if (ii′) holds then (ii) holds. If (ii) holds and x ∈ ker(T (a−1)/2 : V̄ −a → V̄ −1)
(with a ∈ Z′

>1) then T ax = 0 hence x ∈ KT
a and x = 0. We see that (ii′) holds.

If T ∈ E2
∗ V̄ , then, clearly,

V̄ 0 = IT
0 ⊃ IT

2 ⊃ IT
4 ⊃ · · · and V̄ −1 = IT

1 ⊃ IT
3 ⊃ IT

5 ⊃ · · · .

We see that if E2
∗ V̄ 6= ∅, then:

(b) f0 > f−2 > f−4 > · · · and f−1 > f−3 > f−5 > · · · ;
(c) fa ∈ Z′′ if a ∈ Z′.

We say that (fa)a∈Z is admissible if it satisfies (b) and (c). In the remainder
of this subsection we assume that (fa)a∈Z is admissible. Let R0 be the set of all
sequences U0 ⊃ U2 ⊃ U4 ⊃ · · · of subspaces of V̄ 0 such that dimUa = f−a and
Q̄|Ua

is a nondegenerate quadratic form for a = 0, 2, 4, . . . . Let R−1 be the set of
all pairs (ω, (U1, U3, U5, . . . )) where ω is a nondegenerate symplectic form on V̄ −1

and U1 ⊃ U3 ⊃ U5 ⊃ · · · are subspaces of V̄ −1 such that dimUa = f−a and ω|Ua

is a nondegenerate symplectic form for a = 1, 3, 5, . . . . Clearly R0 6= ∅, R−1 6= ∅.
Define ψ : E2

∗ V̄ → R0 ×R−1 by

T 7→ ((IT
0 , I

T
2 , I

T
4 , . . . ), (ωT , (I

T
1 , I

T
3 , I

T
5 , . . . ))).

Clearly,

(d) the fibre of ψ at ((U0, U2, U4, . . . ), (ω, (U1, U3, U5, . . . ))) ∈ R0 × R−1 can be
identified with

∏
a>2 Iso(V̄ −a, Ua);

here Iso(V̄ −a, Ua) is the set of vector space isomorphisms V̄ −a → Ua.

We now assume that k, q are as in 1.2. For any m > 0 we set

Am = q1/2(n2−n)(q − 1)(q2 − 1) · · · (qm − 1).

If f0 ∈ Z′′
>2 let ε = ηQ̄|V̄ 0

. From (d) we see that:

(e) |E2
∗ V̄ | =

∏
a>1Afa

ξν′(f1, f3, f5, . . . )(Rf1)
−1, where ξ = ν(f0, f2, f4, . . . ) if

f0 ∈ Z′; ξ = νε(f0, f2, f4, . . . ) if f0 ∈ Z′′
>2; ξ = 1 if f0 = 0.

1.4. LetX∗ = (X>a)a∈Z be a sequence of subspaces of V such that X>a+1 ⊂ X>a

for any a, X>a = 0 for some a, X>a = V for some a, that is, a filtration (see [L2,
2.2]) of V . We say that X∗ is a Q-filtration of V if for any a > 1 we have:

(a) Q|X>a = 0 and X>1−a = (X>a)⊥.

Then for any a 6 0 we have:
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(b) (X>a)⊥ = X>1−a ⊕R and X>1−a = (X>a)⊥ ∩Q−1(0).

The first equality follows by applying ⊥ to both sides of X>a = (X>1−a)⊥, see
(a). If x ∈ V >1−a ∩R then by (a) we have Q(x) = 0. Since Q : R→ k is injective,
we have x = 0. Thus, V >1−a ∩R = 0. The second equality in (b) follows from the
first equality and (a). This proves (b).

The proof of the following result is standard:

(c) We can find a direct sum decomposition V =
⊕

a∈Z
Xa such that X>a =⊕

a′;a′>aX
a for all a and 〈Xa, Xa′〉 = 0 for a+ a′ 6= 0, Q|Xa = 0 for a 6= 0.

For any Q-filtration X∗ of V we set

E>2X∗ = {N ∈ M̃Q | NX>a ⊂ X>a+2 for all a ∈ Z}.

We show:

(d) If x ∈ X>−1 then 〈x,Nx〉 = 0.

It is enough to show that Q(Nx) = 0. Since Nx ∈ X>1, this follows from (a).

1.5. Let X∗ be a Q-filtration of V . We set graX∗ = X>a/X>a+1. Then grX∗ =⊕
a∈Z

graX∗ ∈ C̄. Let fa = dim graX∗. There is a well defined quadratic form
Q̄ : grX∗ → k such that Q̄(x) = Q(ẋ0) +

∑
a>1〈ẋ−a, ẋa〉 where x =

∑
a xa (with

xa ∈ graX∗) and ẋb is a representative of xb in X>b. The symmetric bilinear form
associated to Q̄ is

∑
a xa,

∑
b x

′
b 7→

∑
a+b=0 〈ẋa, ẋ

′
b〉 where xa ∈ graX∗, x′b ∈ grbX∗

and ẋa, ẋ
′
b are representatives of xa, x

′
b in X>a, X>b. This form is denoted again

by 〈 , 〉; its radical is the image of R under X>0 → gr0X∗. It follows that Q̄
is nondegenerate. It is clearly compatible with the grading. Hence fa = f−a for
any a.

Now let N ∈ E>2X∗. For any a, N restricts to a linear map X>a → X>a+2 and
X>a+1 → X>a+3 hence it induces a linear map graX∗ → gra+2X∗. Taking the
direct sum over a of these linear maps we obtain a linear map N̄ : grX∗ → grX∗.
We have N̄ ∈ E2 grX∗. (If x ∈ graX∗, y ∈ grbX∗ and ẋ, ẏ are representatives
for x, y in X>a, X>b, the sum 〈N̄x, y〉 + 〈x + N̄y〉 is 0 unless a + b + 2 = 0
in which case it is 〈Nẋ, ẏ〉 + 〈ẋ + Nẏ〉 = −〈Nẋ,Nẏ〉 which is again zero since
Nẋ ∈ X>a+2, Nẏ ∈ X>b+2 = X>−a and 〈X>a+2, X>−a〉 = 0. If x, dx are as
above and a = −1, we have 〈x, N̄x〉 = 〈ẋ, Nẋ〉 = −Q(Nẋ) and this is 0 since
Nẋ ∈ X>1 and Q|X>1 = 0.) Thus we have a well-defined map

Φ : E>2X∗ → E2 grX∗, N 7→ N̄.

Let
d =

∑

a<a′;−a−a′>3

fafa′ +
∑

a;−2a>4

fa(fa − 1)/2.

We show:

(a) Φ is an iterated affine space bundle with fibres of dimension d.

Let V =
⊕

aX
a be as in 1.4(c). For any integer k > 2 let Zk be the set of

all collections (Na
b )a,b∈Z;26b−a6qslantk where Na

b : Xa → Xb are linear maps that
satisfy:
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(i) 〈xa, N
a′

−ax
′
a′〉+ 〈Na

−a′xa, x
′
a′〉 = −

∑
b;−a′−2>b>a+2 〈N

a
b xa, N

a′

−bx
′
a′〉 for any

a 6= a′ such that 2 6 −a− a′ 6 k and any xa ∈ Xa, x′a′ ∈ X
a′ ;

(ii) 〈xa, N
a
−axa〉 = −Q(Na

0 xa) −
∑

b<0;−a−2>b>a+2 〈N
a
b xa, N

a
−bxa〉 for any a

such that 4 6 −2a 6 k and any xa ∈ Xa;
(iii) 〈x−1, N

−1
1 x−1〉 = 0 for any x−1 ∈ X−1.

For large k we may identify Zk = E>2X∗ by (Na
b ) 7→ N , Nxa =

∑
b|b>a+2N

a
b xa

with xa ∈ Xa. Moreover, we may identify Z2 = E2grX∗ in an obvious way. We
have obvious maps Z2 > tsZ3 > tsZ4 > ts · · · . These maps eventually become the
identity map of E>2X∗; their composition may be identified with Φ. It is enough
to show that for any k > 3 the obvious map Zk → Zk−1 is an affine space bundle
with fibres of dimension

dk =
∑

a<a′;−a−a′=k

fafa′ +
∑

a;−2a=k

fa(fa − 1)/2.

We shall prove only that the fibre of this map at any given point of Zk−1 is an
affine space of dimension dk. This fibre may be identified with the set of all
collections (Na

b )a,b∈Z;b−a=k where Na
b : Xa → Xb are linear maps that satisfy (i)

with −a − a′ = k, and (ii) with −2a = k. (In these equations the right hand
sides involve only the coordinates of the given point in Zk−1.) In equation (i) with
a 6= a′,−a − a′ = k each of Na′

−a, N
a
−a′ determines the other. So the solutions

of this equation form an affine space of dimension fafa′ . If k ∈ Z′ there are no
further equations. If k ∈ Z′′, in equation (ii) with −2a = k the right hand-side
is a known quadratic form on Xa and the solutions Na

−a form an affine space of
dimension fa(fa − 1)/2. This completes the proof of (a). �

We show:

(b) 1 +E>2X∗ ⊂ SOQ.

To prove this we may assume that |k| = ∞. Since 1 ∈ 1 + E>2X∗ ⊂ OQ

it is enough to show that E>2X∗ is irreducible. Using (a) we see that it is
enough to show that E2grX∗ is irreducible. From the definitions we see that
E2grX∗ is an affine space of dimension

∑
a<a′;−a−a′=2 fafa′ + f−1(f−1 − 1)/2.

This proves (b). �

We set E>2
∗ X∗ = Φ−1(E2

∗grX∗). From (a) we see that:

(c) E>2
∗ X∗ is (via Φ) an iterated affine space bundle over E2

∗grX∗ with fibres
of dimension d.

Using this and the results in 1.3 we see that if E>2
∗ X∗ 6= ∅ then (fa)a∈Z is

admissible.
In the remainder of this subsection we assume that k, q are as in 1.2 and that

(fa)a∈Z is admissible. From (c) we see that:

(d) |E>2
∗ X∗| = qd|E2

∗grX∗|.

We denote |E>2
∗ X∗| by B(fa) if D ∈ Z′, by Bε

(fa) if D ∈ Z′′
>2 and ηQ = ε. From

(d), 1.3(e), 1.2(a),(b) we see that:

(e) Let Y = B(fa) if f0 ∈ Z′, Y = Bε
(fa) if f0 ∈ Z′′,

∑
a fa > 0, ε ∈ {1,−1}.

Then Y is a polynomial in q with coefficients in Z independent of q or p.
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Note that if D ∈ Z′′
>2 we have ηQ = ηQ̄.

1.6. In the remainder of this section we assume that D > 2. Let F̃D be the set of
all collections (fa)a∈Z of natural numbers such that

∑
a fa = D, fa = f−a for all

a and the admissibility conditions 1.3(b),(c) hold. When D ∈ Z′′, let J be the set

of SO(V )-orbits on JQ (if |k| = ∞) or on JQ̃ for Q̃ as in 1.1 (if |k| < ∞); note

that |J | = 2; in this case let

F̃D
0 = {(fa) ∈ F̃D | f0 = 0}, F̃D

1 = {(fa) ∈ F̃D | f0 > 0},

FD = F̃D
1 t (J × F̃D

0 ).

When D ∈ Z′ we set FD = F̃D. For φ ∈ FD of the form (fa) or (j, (fa)) (where
j ∈ J), let Ȳφ be the set of all Q-filtrations X∗ of V such that dim graX∗ = fa for
all a and (in the case where φ = (j, (fa))), X0 = X1 ∈ j; let Yφ be the set of all

pairs (X∗, N) such that X∗ ∈ Ȳφ and N ∈ E>2
∗ X∗. Note that Ȳφ is a partial flag

manifold of SOQ. Moreover, the obvious map Yφ → Ȳφ has fibres E>2
∗ X∗ which

are smooth (if |k| = ∞) since E>2
∗ X∗ is open in the affine space E>2X∗. We see

that Yφ is naturally a smooth variety (if |k| = ∞).
Define Ψ :

⊔
φ∈FD Yφ → {g ∈ SOQ | g unipotent} by (X∗, N) 7→ 1 + N for

(X∗, N) ∈ Yφ. This is well defined by 1.5(b).

Theorem 1.7. In the setup of 1.6, Ψ is a bijection.

An equivalent statement is:

(a) For any unipotent element g ∈ SOQ there is a unique Q-filtration X∗ of V

such that g − 1 ∈ E>2
∗ X∗.

It is enough to prove this in the case where |k| = ∞. The proof is given in 2.12
and 3.3.

For any φ ∈ FD let Ξφ = Ψ(Yφ). The theorem shows that the sets Ξφ form a
partition of the variety of unipotent elements in SOQ and that, for any φ ∈ FD,
Φ restricts to a bijection Yφ → Ξφ. One can show that if |k| = ∞ this is an
isomorphism of the smooth variety Yφ with a subvariety of the variety of unipotent
elements of SOQ. Note that if |k| = ∞ then each Yφ is nonempty hence each Ξφ is

nonempty. (If |k| <∞ then Ξφ is nonempty unless D ∈ Z′′, ηQ = −1, φ ∈ J ×F̃D
0

in which case it is empty.) In the case where |k| = ∞ and p 6= 2, the subsets Ξφ

are exactly the unipotent conjugacy classes in SOQ. If p = 2, the subsets Ξφ are
unions of unipotent conjugacy classes in SOQ but not necessarily single conjugacy
classes; see Section 4.

1.8. In the setup of 1.6 we assume that k, q are as in 1.2. We assume that Theorem
1.7 holds. Let φ ∈ FD. Assume that if D ∈ Z′′, ηQ = −1, then φ ∈ F̃D

1 . We have:

(a) |Yφ| = |Ȳφ||E
>2
∗ X∗|

for any X∗ ∈ Ȳφ. We denote |Yφ| by B̃φ if D ∈ Z′; by B̃ε
φ if D ∈ Z′′ and ηQ = ε.

From (a) and 1.5(e) we see that:

(b) Let Ỹ = B̃φ if D ∈ Z′; Ỹ = B̃ε
φ if D ∈ Z′′ and ηQ = ε. Then Ỹ is a

polynomial in q with coefficients in Z independent of q or p.
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1.9. Let N ∈ M̃Q − {0}, e = eN . We have e > 2. Let E be a complement to
kerNe−1 in V . We show:

(a) The (−1)e−1-symmetric bilinear form ( , ) : E × E → k given by (x, y) =
〈x,Ne−1y〉 is nondegenerate.

Assume that v0 ∈ E, 〈v0, Ne−1E〉 = 0. Then 〈N e−1v0, E〉 = 0. Also,

〈Ne−1v0, kerNe−1〉 = ±〈v0, N
e−1 kerNe−1〉 = 0.

Thus 〈Ne−1v0, E + kerN e−1〉 = 0, that is, 〈N e−1v0, V 〉 = 0 hence N e−1v0 ∈ R.
Using 1.1(a) we deduce N e−1v0 = 0. We see that v0 ∈ kerNe−1 ∩ E = 0. This
proves (a).

We show:

(b) The linear map E⊕e → V given by (v0, v1, . . . , ve−1) 7→ v0 + Nv1 + · · · +
Ne−1ve−1 is injective and 〈 , 〉 is nondegenerate on its image W := E + NE +
· · ·+Ne−1E.

Assume that v = v0 +Nv1 + · · ·+Ne−1ve−1 with vi ∈ E satisfies 0 = 〈v, E〉 =
〈v,NE〉 = · · · = 〈v,N e−1E〉. We must show that vk = 0 for k ∈ [0, e − 1]. We
argue by induction on k. Assume that k ∈ [0, e− 1] and that vk′ = 0 for k′ < k.
From 0 = 〈v,N e−1−kE〉 we get 〈Nkvk, N

e−1−kE〉 = 0 hence (vk , E) = 0 hence
vk = 0 (using (a)). This proves (b).

We show:

(c) We have V = W ⊕ Y (W as in (b), Y = W⊥), R ⊂ Y and Y is N -stable;
moreover, N e−1Y = 0.

The first assertion follows from (b). Now let x ∈ Y . We can write x = x′ + x′′

where x′ ∈ E, x′′ ∈ kerNe−1. We have N e−1x = Ne−1x′ ∈ W ∩Y hence N e−1x =
0. This proves (c).

2. The case p = 2

2.1. In this section we prove Theorem 1.7 assuming that p = 2. In this case the
symmetric bilinear form 〈 , 〉 associated to Q is symplectic. Let N ∈ M̃Q.

For i > 1 we define λN
i : kerN i → k by x 7→ 〈x,N i−1x〉1/2. Note that λN

i = 0
if i ∈ Z′ and λN

i is linear for any i.
For i > 1 we define εNi ∈ {0, 1} by εNi = 0 if λN

i = 0, εNi = 1 if λN
i 6= 0. Note

that εNi = 0 if i ∈ Z′.

2.2. Let N ∈ M̃Q − {0}, e = eN . We have e > 2. Let λ = λN
e . Define a subspace

L = LN of V by

L = Ne−1V if λ = 0,

L = (kerλ)⊥ if λ 6= 0, R = 0,

L = {x ∈ (kerλ)⊥ | q(x) = 0} if λ 6= 0, R 6= 0.

If λ 6= 0 then kerλ is a hyperplane in V containing R; thus L is a line if R = 0.
If λ 6= 0, R 6= 0 then K := (kerλ)⊥ is a two dimensional subspace containing R so
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that 〈 , 〉 is zero on K. Hence q : K → k is a group homomorphism which restricts
to a group isomorphism R→ k hence induces a group isomorphism K/L→ k. We
see that K = L⊕R. Thus L is a line complementary to R in K and kerλ = L⊥.

We show:

(a) L ⊂ L⊥.

Assume first that λ = 0. By 1.1(b) it is enough to show that N e−1V ⊂ kerNe−1

which is clear since 2e− 2 > e. If λ 6= 0 then (a) is clear since L is a line.

We show:

(b) If λ 6= 0, then L ⊂ N e−1(L⊥) if and only if N e−1V ∈ C′′.

Define a symmetric bilinear form ( , ) on V by (y, y′) = 〈y,Ne−1y′〉. We have
Rad( , ) = {y′ ∈ V | Ne−1y′ ∈ R} = kerN e−1 (since Ne−1V ∩ R = 0). We have

λ(y) = (y, y)1/2. Since λ|Rad( , )
= 0, we can find v ∈ V such that (v, y) = λ(y),

that is, 〈Ne−1v, y〉 = λ(y) for any y ∈ V . Since λ 6= 0 we have N e−1v /∈ 0. Clearly,
if y ∈ kerλ then 〈N e−1v, y〉 = 0. Thus N e−1v ∈ (kerλ)⊥.

The symmetric bilinear form ( , )0 on V given by (y, y′)0 = (y, y′) + λ(y)λ(y′)
is symplectic: for y ∈ V we have (y, y)0 = (y, y) + λ(y)2 = 0. Since λ|ker Ne−1 = 0
we see that R0 := Rad( , )0 contains kerN e−1. Since ( , )0 is symplectic we have
dimR0 = D mod 2.

Assume now that N e−1V ∈ C′′. Then dim kerN e−1 = D mod 2. Hence
dim kerNe−1 = dimR0 mod 2, that is, R0/kerNe−1 ∈ C′′. If R0 6= kerNe−1

then dim(R0/kerNe−1) > 2. Hence the kernel of the linear map R0/kerNe−1 → k
induced by λ : R0 → k is nonzero. Thus there exists u ∈ R0 such that u /∈ kerN e−1

and λ(u) = 0. For any y ∈ V we have 0 = (y, u)0 = (y, u) + λ(u)λ(y) = (y, u) so
that u ∈ Rad( , ) = kerNe−1. This contradiction shows that R0 = kerNe−1. Since
Ne−1v 6= 0 we have v /∈ kerN e−1 hence v /∈ R0. Thus there exists v′ ∈ V such
that (v, v′)0 6= 0, that is, (v, v′) + (v, v)(v, v′) 6= 0. It follows that 1 + (v, v) 6= 0.
Moreover we have 0 = (v, v)0 = (v, v) + (v, v)(v, v) so that (v, v)(1 + (v, v)) = 0.
Since 1 + (v, v) 6= 0 we deduce that (v, v) = 0, that is, 〈v,N e−1v〉 = 0. We have
Q(Ne−1v) = 〈Ne−2v,Ne−1v〉 = 〈v,N2e−3v〉. If e > 3 this is 0 since 2e − 3 > e;
if e = 2 this equals 〈v,N e−1v〉 which is again 0. We see that N e−1v is a nonzero
vector in ker(Q : (kerλ)⊥ → k). Hence N e−1v ∈ L − 0. Since L is a line we see
that L is spanned by N e−1v. To show that L ⊂ N e−1(L⊥) it is enough to show
that v ∈ L⊥ or that 〈v, L〉 = 0 or that 〈v,N e−1v〉 = 0. But this equality is already
known. We see that L ⊂ N e−1(L⊥).

Conversely, assume that L ⊂ N e−1(L⊥). Let x ∈ L − 0. We have x = N e−1t
with 〈t, L〉 = 0. In particular, 〈t, x〉 = 0, that is, λ(t) = 0. Since x ∈ L we have
z ∈ kerλ =⇒ 〈x, z〉 = 0. Hence there exists c ∈ k such that 〈x, z〉 = cλ(z)
for all z ∈ V . Since x /∈ R we have c 6= 0. Replacing x by a nonzero scalar
multiple we may assume that 〈x, z〉 = λ(z), that is, (t, z) = λ(z) for all z ∈ V .
Let R1 = Rad( , )|ker λ

. If u ∈ R1 then we have w ∈ kerλ =⇒ (u,w) = 0. Hence
there exists c′ ∈ k such that (u,w) = c′λ(w), that is, (u,w) = c′(t, w) for any
w ∈ V . Hence u− c′t ∈ Rad( , ) = kerNe−1. We see that R1 ⊂ kt+kerN e−1. The
reverse inclusion is obvious. Thus, R1 = kt+ kerN e−1. We see that ( , ) induces
a nondegenerate symmetric bilinear form on kerλ/(kt+ kerN e−1). This induced
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form is symplectic: the equality (y, y′)0 = (y, y′) +λ(y)λ(y′) with ( , )0 symplectic
shows that ( , )|ker λ = ( , )0|ker λ. We deduce that kerλ/(kt + kerN e−1) ∈ C′′.
Since x 6= 0 we have t /∈ kerN e−1 hence dim kerλ−1−dim kerN e−1 ∈ Z′′, that is,
D− 2− (D− dimN e−1V ) ∈ Z′′. We see that N e−1V ∈ C′′. This proves (b). �

We show:

(c) We have L ⊂ N e−1V + R. More precisely, we have L ⊂ N e−1V except
possibly in the case where V ∈ C ′, λ 6= 0, e = 2, cNe ∈ Z′.

If λ = 0 this is obvious. Assume now that λ 6= 0. Since kerN e−1 ⊂ kerλ
we have (kerλ)⊥ ⊂ (kerN e−1)⊥ and using 1.1(b), (kerλ)⊥ ⊂ Ne−1V + R. Since
L ⊂ (kerλ)⊥ we have L ⊂ N e−1V + R. If R = 0 then clearly L ⊂ N e−1V . If
e > 3, R 6= 0 we have Q|Ne−1V = 0; indeed for v ∈ V we have Q(N e−1v) =
〈Ne−2v,Ne−1v〉 = 〈v,N2e−3v〉 = 0. Hence if x ∈ L is written as x = N e−1v + v′

with v ∈ V, v′ ∈ R then 0 = Q(x) = Q(v′). But Q(v′) = 0, v′ ∈ R implies v′ = 0
hence x = Ne−1v and L ⊂ Ne−1V . If cNe ∈ Z′′ then we have L ⊂ N e−1V by (b).
This proves (c). �

We show:

(d) NL ⊂ L, N(L⊥) ⊂ L⊥.

From (c) we see that NL = 0 (since N e = 0 and NR = 0). Thus the first
inclusion holds. The second inclusion follows from the first. �

We define a subset MQ of M̃Q as follows:

MQ = M̃Q if V ∈ C′;

MQ = {Ñ ∈ M̃Q | ker Ñ ∈ C′′} if V ∈ C′′.

We show:

(e) If N ∈MQ − {0}, then Q|L = 0.

If R 6= 0 the result is obvious. Now assume that R = 0. If e > 3 we have
Q|Ne−1V = 0 as in the proof of (c). The same argument shows that Q|Ne−1V = 0 if
λ = 0. If λ = 0 or e > 3 we have L ⊂ N e−1V , see (c), hence Q|L = 0. Thus we may
assume that λ 6= 0, e = 2. Since kerN ∈ C ′′ and V ∈ C′′ we have NV ∈ C′′, that
is, Ne−1V ∈ C′′. As in the proof of (b) we see that L is spanned by N e−1v (v as in
that proof) which is contained in ker(Q : (kerλ)⊥ → k); the result follows. �

2.3. Let N ∈ MQ − {0}, e = eN , λ = λN
e , L = LN . We have e > 2. We set V ′ =

L⊥/L, see 2.2(a). From 2.2(d) we see that N induces a (nilpotent) endomorphism
of V ′, denoted by N ′. Let e′ = eN ′ . If λ = 0 we have e′ 6 e − 1; if λ 6= 0 we
have e′ 6 e. Define a quadratic form Q′ : V ′ → k by Q′(x′) = Q(x) where x is
a representative of x′ ∈ V ′ in L⊥. (To see that Q′ is well defined we use 2.2(e).)
The symplectic form associated to Q′ is 〈x′, y′〉′ = 〈x, y〉 where x′, y′ ∈ V ′ and x, y
are representatives of x′, y′ in L⊥. Its radical is

{x ∈ L⊥ | 〈x, L⊥〉 = 0}/L = (L+R)/L.

It follows that Q′ is nondegenerate. We have N ′ ∈ M̃Q′ . We show:
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(a) N ′ ∈ MQ′ .

To do this we may assume that V ∈ C ′′. Then R = 0. It is enough to show that
dim kerN ′ = dim kerN mod 2. We have kerN ′ = {x ∈ L⊥ | Nx ∈ L}/L. We
have an exact sequence

0 → L
a
−→ kerN

b
−→ {x ∈ L⊥ | Nx ∈ L}/L

c
−→ L ∩N(L⊥) → 0,

where a is the inclusion, b is induced by the inclusion kerN ⊂ L⊥ and c is induced
by x 7→ Nx. Thus dimL− dim kerN + dim kerN ′ − dim(L ∩N(L⊥)) = 0 and it
is enough to show that dimL = dim(L ∩N(L⊥)) mod 2.

Assume first that λ 6= 0. We show that L ⊂ N(L⊥) (this implies that dimL =
dim(L ∩ N(L⊥))). If e = 2 this follows from 2.2(b). (We have NV ∈ C ′′ since
kerN ∈ C′′ and V ∈ C′′.) Assume now that e > 3. Since R = 0 we see from
2.2(c) that L is spanned by N e−1x for some x ∈ V . It is enough to show that
Ne−2x ∈ L⊥; since e > 3 it is enough to show that NV ⊂ L⊥; this is clear since
L⊥ is N -stable of codimension 1.

Assume next that λ = 0. We must show that

dimNe−1V = dim(Ne−1V ∩N(kerNe−1)) mod 2.

If e > 3 we have N e−1V ⊂ N(kerN e−1) hence dimNe−1V = dim(Ne−1V ∩
N(kerNe−1)). If e = 2 we have N(kerN e−1) = 0 and it is enough to show that
NV ∈ C′′. But this follows from kerN ∈ C ′′ and V ∈ C′′. This completes the proof
of (a). �

2.4. Let N ∈ MQ − {0}. Let e, λ, L, V ′, N ′, Q′ be as in 2.2. Properties (i)–(iii)

below describe the invariants cN
′

i , εN
′

i of N ′.

(i) Assume that λ = 0. We have cN
′

e = 0; cN
′

e−2 = cNe−2 + cNe (if e > 2);

cN
′

i = cNi if i 6= e, i 6= e− 2; εN
′

i = εNi for any i.

(ii) Assume that λ 6= 0 and cNe ∈ Z′′. Then cN
′

e = cNe − 2; cN
′

e−1 = cNe−1 + 2;

cN
′

i = cNi for i 6= e, i 6= e− 1; εN
′

e = 0; εN
′

i = εNi for any i 6= e.

(iii) Assume that λ 6= 0, cNe ∈ Z′. Then cN
′

e = cNe − 1; cN
′

e−2 = cNe−2 + 1 (if

e > 2); cN
′

i = cNi for i 6= e, i 6= e − 2; εN
′

e = 0; εN
′

e−2 = 1 (if e > 2);

εN
′

i = εNi for any i /∈ {e, e− 2}.

We have N ′e−1V ′ = (Ne−1(L⊥) + L)/L = N e−1(L⊥)/(Ne−1(L⊥) ∩ L).
If λ = 0 we have L⊥ = kerNe−1 and Ne−1(L⊥) = 0. Hence N ′e−1V ′ = 0 and

cN
′

i = 0 for i > e.
If λ 6= 0 and N e−1V ∈ C′′ (that is cNe ∈ Z′′) we have L ⊂ N e−1(L⊥) (see 2.2(b))

so that N ′e−1V ′ = Ne−1(L⊥)/L. If λ 6= 0 and N e−1V ∈ C′ (that is, cNe ∈ Z′) we
have L 6⊂ N e−1(L⊥) (see 2.2(b)) and, since L is a line, we have N e−1(L⊥)∩L = 0
and N ′e−1V ′ = Ne−1(L⊥). We have an exact sequence

0 → kerN e−1 ∩ L⊥ → L⊥
Ne−1

−−−→ Ne−1(L⊥) → 0.

Now kerN e−1 ⊂ kerλ = L⊥ hence this exact sequence becomes

0 → kerN e−1 → kerλ→ N e−1(L⊥) → 0.
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We see that

dimNe−1(L⊥) = dim kerλ− dim kerN e−1 = dimV − dim kerN e−1 − 1 = cNe − 1,

so that cN
′

e = dimN ′e−1V ′ equals cNe − 1 if cNe ∈ Z′ and equals cNe − 2 if cNe ∈ Z′′.
We write V = W ⊕ Y as in 1.9(c). Let N1 = N |W , N2 = N |Y . Let us now

assume that we are not in the case

V ∈ C′, λ 6= 0, e = 2, cNe ∈ Z′. (∗)

By 2.2(c) we have L ⊂ N e−1V . Since Ne−1Y = 0 we have L ⊂ N e−1W hence
L ⊂ W . Since kerN e−1 ⊂ kerλ = L⊥ and Y ⊂ kerN e−1 we have Y ⊂ L⊥.
Hence we have, canonically, V ′ = W ′ ⊕ Y where W ′ = L⊥

′

/L′ (and L⊥
′

= {x ∈
W | 〈x, L〉 = 0}) with both W ′, Y , N ′-stable. Let N ′

1 = N ′|W ′ . If λ = 0 then

c
N ′

1
e−2 = cN1

e = cNe and c
N ′

1

i = 0 for i 6= e− 2. If λ 6= 0 we have either

c
N ′

1
e = cN1

e − 1 = cNe − 1, c
N ′

1
e−2 = 1, c

N ′

1

i = 0 for i /∈ {e, e− 2}

or
c
N ′

1
e = cN1

e − 2 = cNe − 2, c
N ′

1
e−1 = 2, c

N ′

1

i = 0 for i /∈ {e, e− 1};

the formulas for cN
′

i in (i)–(iii) follow since

cN
′

i = c
N ′

1

i + cN2

i = c
N ′

1

i + cNi for i 6 e− 1.

(These formulas also hold in the excluded case (∗). Indeed in that case we have
cN

′

2 = cN2 −1 as we have seen already. For i > 2 we have cN ′

i = 0 and cN
′

1 +2cN
′

2 =

dimV ′ = dimV − 2 = cN1 + 2cN2 − 2 hence cN
′

1 = cN1 .)
Assume now that l 6= 0. We show that εN

′

e = 0. It is enough to show that if
x ∈ L⊥ then 〈x,Ne−1x〉 = 0. This follows from L⊥ = kerλ. We have εN

′

e−1 = 0

since e− 1 ∈ Z′. (This determines completely εN
′

i in the case where e = 2.)

Assume that λ 6= 0, cNe ∈ Z′, e > 2. We show that εN
′

e−2 = 1. It is enough to
show that there exists x ∈ V such that N e−2x ∈ L and 〈x,Ne−3x〉 6= 0. (For such
x we have automatically x ∈ L⊥ since Ne−1x = 0 and kerN e−1 ⊂ kerλ = L⊥.)
By 2.2(c) we can find y ∈ V such that N e−1y is a basis element of L. We have
〈y,Ne−1y〉 6= 0. (If not we would have y ∈ L⊥ and L ⊂ Ne−1(L⊥) contradict-
ing 2.2(b).) Let x = Ny. We have N e−2x = Ne−1y ∈ L and 〈x,N e−3x〉 =
〈Ny,Ne−2y〉 = 〈y,N e−1y〉 6= 0, as required.

We may now assume that we are not in the case (∗). We use the decompositions
V = W ⊕ Y, V ′ = W ′ ⊕ Y as above. The proof of the remaining assertions on εN

′

i

in (i)–(iii) is standard. �

2.5. Let N ∈ MQ. We associate to N a collection of subspaces (V >a)a∈Z =

(V >a
N )a∈Z of V using induction on D. Let e = eN . If N = 0 we set V >a = V for

a 6 0, V >a = 0 for a > 1. Thus V >a are defined when D 6 1. We may assume
that D > 2, N 6= 0 and that V >a are already defined when V is replaced by a
vector space of dimension < D. We have e > 2. Let λ, L, V ′, N ′, Q′ be as in 2.2
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and 2.3. Let ρ : L⊥ → V ′ be the obvious map. Since L 6= 0, we have dimV ′ < D.
By the induction hypothesis, V ′>a = V ′

N ′
>a is defined for any a ∈ Z. If λ = 0 we

set

V >a = V for a 6 1−e; V >a = ρ−1(V ′>a) for a ∈ [2−e, e−1]; V >a = 0 for a > e.

If λ 6= 0 we set

V >a = V for a 6 −e; V >a = ρ−1(V ′>a) for a ∈ [1−e, e]; V >a = 0 for a > 1+e.

This completes the definition of the subspaces V >a.
From the definition it is clear that V >a+1 ⊂ V >a for any a. Thus (V >a) is a

filtration of V . We show:

(a) If a > 1 we have Q|V >a = 0 and V >1−a = (V >a)⊥.

We use induction on D. For N = 0 the result is obvious. Thus the result holds
when D 6 1. Now assume that D > 2, N 6= 0. Let λ, L, V ′, Q′, N ′ be as above.
By the induction hypothesis we have Q′|

V ′>a

N′
= 0 and V ′>1−a

N ′ = (V ′>a
N ′ )⊥

′

with ⊥′

relative to V ′. It follows that Q|V >a = 0 and V >1−a = (V >a)⊥ for a ∈ [1, e−1] (if
λ = 0) and for a ∈ [1, e] (if λ 6= 0). For a > e (with λ = 0) and for a > 1 + e (with
λ 6= 0) the result is again true since Q|{0} = 0 and {0}⊥ = V . This proves (a).
�

2.6. Let N ∈ MQ−{0}. Let λ, L, V ′, N ′, Q′, e′ be as in 2.2 and 2.3. Let ρ : L⊥ →
V ′ be the obvious map. Define ⊥′ in terms of V ′ in the same way as ⊥ is defined
in terms of V . If e′ > 1 we set λ′ = λN ′

e′ . If e′ > 2 we define L′, V ′′, N ′′, Q′′, e′′

in terms of V ′, N ′, Q′ in the same way as L, V ′, N ′, Q′, e′ were defined in terms of
V,N,Q. If e′ > 2 and e′′ > 1 we set λ′′ = λN ′′

e′′ .
Let V = W ⊕ Y be as in 1.9(c). For a subspace Z of Y let Z` = {y ∈ Y |

〈y, Z〉 = 0}.
In the case where λ = 0, ε′ = ε − 1 > 2, λ′ 6= 0 we can view L′ as a line

in Y as follows. We have N e−1V ⊂ W , Y ⊂ kerN e−1 hence V ′ = W ′ ⊕ Y
where W ′ = (kerN e−1 ∩ W )/Ne−1V . Since W ′ ⊂ kerN ′e−2 ⊂ kerλ′ we have
(kerλ′)⊥

′

⊂W ′⊥′ = Y . Hence L′ ⊂ Y and L′⊥
′

= W ′ ⊕ L′`.
In this subsection we describe explicitly V >a for certain a.

(i) If λ 6= 0 then V >e = L.

We have e′ 6 e. If e′ < e then V ′>e = 0. If e′ = e then (using 2.4(ii), (iii)) we
have εN

′

e = 0 hence λ′ = 0 and V ′>e = 0. Hence V >e = ρ−1(0) = L.

(ii) If λ 6= 0, e′ < e then V >e−1 = L.

If e′ < e − 1 then V ′>e−1 = 0. If e′ = e − 1 and λ′ = 0 then V ′>e−1 = 0. If
e′ = e−1 and λ′ 6= 0 then e′, e are even, contradiction. Hence V >e−1 = ρ−1(0) = L.

(iii) If λ = 0 and either e′ 6 e− 2 or e′ = e− 1, λ′ = 0 then V >e−1 = Ne−1V .

If e′ 6 e−2 we have V ′>e−1 = 0. If e′ = e−1, λ′ = 0 we have again V ′>e−1 = 0.
Hence V >e−1 = ρ−1(0) = L = N e−1V .

788 G. LUSZTIG



(iv) If λ 6= 0, e′ = e then V >e−1 = Ne−1L⊥ + L ⊂ kerN .
Using 2.4(ii), (iii) we have λ′ = 0. Hence e′′ < e′. If either e′′ 6 e′ − 2 or
e′′ = e′ − 1, λ′′ = 0 then from (iii) applied to V ′ we get V ′>e−1 = N ′e−1V ′ and
the result follows. If e′′ = e′ − 1, λ′′ 6= 0 then e′′, e are even, a contradiction. We
have NV >e−1 = 0 since N e = 0 and NL = 0.

(v) If λ = 0 and either e′ 6 e− 3 or e′ = e− 2 > 1, λ′ = 0 or e = 2, e′ = 0 then
V >e−2 = Ne−1V .

If e′ 6 e − 3 then V ′>e−2 = 0. If e′ = e − 2 > 1, λ′ = 0 then V ′>e−2 = 0. If
e = 2, e′ = 0 then V ′ = 0 and V ′>e−2 = 0. Hence V >e−2 = ρ−1(0) = L = N e−1V .

(vi) If λ = 0, e′ = e−1, λ′ 6= 0 then V >e−1 = {x ∈ V | Ne−1x = 0, 〈x,Ne−2x〉 =
0}⊥ ∩ q−1(0),

V >e−1 = Ne−1V ⊕ L′ ⊂ kerN.

By (i) for V ′ we have V ′>e−1 = L′ = {x ∈ V ′ | 〈x,Ne−2x〉 = 0}⊥
′

∩ q′−1(0).
Hence

V >e−1 = kerNe−1 ∩ {x ∈ kerN e−1 | 〈x,Ne−2x〉 = 0}⊥ ∩ q−1(0).

In the last equality of (vi) we regard N e−1V as a subspace of W and L′ as a
subspace of Y (as earlier in this subsection).

(vii) If λ = 0, e′ = e − 2 > 1, λ′ 6= 0 we have V >e−2 = {x ∈ V | Ne−1x =
0, 〈x,Ne−3x〉 = 0}⊥ ⊂ kerN .

By (i) for V ′ we have V ′>e−2 = {x′ ∈ V ′ | 〈x′, N ′e−3x′〉0}⊥
′

∩Q′−1(0). Hence

V >e−2 = kerNe−1 ∩ {x ∈ kerN e−1 | 〈x,Ne−3x〉 = 0}⊥ ∩Q−1(0).

We have NV ⊂ {x ∈ kerN e−1 | 〈x,Ne−3x〉 = 0} since λ = 0. Taking ⊥ we obtain
{x ∈ kerN e−1 | 〈x,Ne−3x〉 = 0}⊥ ⊂ kerN . Since kerN ⊂ kerN e−1 we see that
V >e−2 is as required.

(viii) If λ = 0, e′ = e − 1, λ′ 6= 0, e′′ 6 e′ − 1, we have V >e−2 = {x ∈ V |
Ne−1x = 0, 〈x,Ne−2x〉 = 0}⊥ ∩Q−1(0) ⊂ kerN .

By (ii) for V ′ we have V ′>e−2 = {x′ ∈ V ′ | 〈x′, N ′e−2x′〉0}⊥ ∩Q′−1(0). Hence

V >e−2 = kerNe−1 ∩ {x ∈ kerN e−1 | 〈x,Ne−2x〉 = 0}⊥ ∩Q−1(0).

We have NV ⊂ {x ∈ kerN e−1 | 〈x,Ne−2x〉 = 0}. Taking ⊥ we obtain {x ∈
kerNe−1 | 〈x,Ne−2x〉 = 0}⊥ ⊂ kerN . Since kerN ⊂ kerN e−1 we see that V >e−2

is as required.

(ix) If λ = 0, e′ = e − 1, λ′ = 0 and either e′ = 1 or e > 3, e′′ 6 e′ − 2 or
e > 3, e′′ = e′ − 1, λ′′ = 0 then V >e−2 = Ne−2(kerNe−1) +Ne−1V ⊂ kerN .

By (iii) for V ′ we have V ′>e−2 = N ′e−2V ′. Hence V >e−2 is as required.

(x) If λ = 0, e′ = e−1, λ′ 6= 0, e′′ = e′, then V >e−2 = Ne−1V ⊕(Ne−2L′`+L′) ⊂
kerN .
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Here we regard N e−1V as a subspace of W and L′ as a subspace of Y (as
earlier in this subsection). Then N e−2L′` + L′ is a subspace of Y . By (iv) for
V ′ we have V ′>e−2 = N ′e−2L′⊥

′

+ L′. Since N ′e−2W ′ = 0 we have V ′>e−2 =
N ′e−2L′` + L′ ⊂ Y and V >e−2 = Ne−1V ⊕ (Ne−2L′` + L′). By (iv) for V ′ we
have N(Ne−2L′` + L′) = 0. Hence NV >e−2 = 0.

(xi) If λ = 0, e′ = e − 1, e > 3, λ′ = 0, e′′ = e′ − 1, λ′′ 6= 0 then V >e−2 =
Ne−1V ⊕ ({b ∈ Y | N e−2b = 0, 〈b,N e−3b〉 = 0}` ∩ q−1(0)) ⊂ kerN .

By (vi) for V ′ we have V ′>e−2 = U ′⊥′∩Q′−1(0) where U ′ = {x ∈ V ′ | N ′e−2x =
0, 〈x,N ′e−3x′ = 0}. We write V ′ = W ′ ⊕ Y as in the proof of (x). We write the
condition that x = a + b with a ∈ W ′, b ∈ Y is in U ′ in terms of a, b. Note that
N ′e−2a = 0 and 〈a,N ′e−3a〉 = 0. (The last equality follows from ã ∈W,N e−1ã =
0 =⇒ 〈ã, N e−3ã〉 = 0. Indeed we have ã = Nc with c ∈ W and 〈ã, N e−3ã〉 =
〈Nc,Ne−3Nc〉 = 〈c,Ne−1c〉 = 0 since λ = 0.) We see that U ′ = W ′ ⊕ {b ∈ Y |
Ne−2b = 0, 〈b,N e−3b〉 = 0} and

V ′>e−2 = {b ∈ Y | Ne−2b = 0, 〈b,N e−3b〉 = 0}` ∩Q′−1(0),

V >e−2 = Ne−1V ⊕ ({b ∈ Y | N e−2b = 0, 〈b,N e−3b〉 = 0}` ∩Q−1(0)).

By (vi) for V ′ we have N({b ∈ Y | N e−2b = 0, 〈b,N e−3b〉 = 0}` ∩ Q−1(0)) = 0.
Hence NV >e−2 = 0.

2.7. Let N ∈MQ, e = eN . Let V >a be as in 2.5. We show:

(a) NV >a ⊂ V >a+2 for any a ∈ Z.

When N = 0 the result is obvious. Now assume that N 6= 0. Then e > 2. Let
λ, L, V ′, N ′, Q′ be as in 2.2 and 2.3. We may assume that (a) holds when V,N
are replaced by V ′, N ′. We may assume that (a) holds when V,N are replaced by
V ′, N ′.

Assume first that λ = 0. If a > e then V >a = 0 and (a) is obvious. If
a ∈ {e− 2, e− 1} then NV >a = 0 by 2.6 and (a) holds. Assume now that a = −e
or that a = 1 − e, e > 3. To prove (a) in this case it is enough to show that
NV ⊂ V >a+2, that is (using 2.5(a)), NV ⊂ (V >−1−a)⊥ or that N †(V >−1−a) ∈ R.
This follows from N(V >−1−a) = 0 which has been noted earlier. If a = −1, e = 2
we have NV = V >a+2 and (a) holds. If a 6 −1 − e then V >a+2 = V and (a)
is obvious. If 2 − e 6 a 6 e − 3 then V >a = ρ−1(V ′>a), V >a+2 = ρ−1(V ′>a+2)
(notation of 2.5). Since N ′V ′>a ⊂ V ′>a+2 we see that (a) holds.

Assume next that λ 6= 0. If a > e+1 then V >a = 0 and (a) is obvious. If a ∈ {e−
1, e} then NV >a = 0 by 2.6 and (a) holds. Assume now that a ∈ {−e,−1−e}. To
prove (a) in this case it is enough to show that NV ⊂ V >a+2, that is (using 2.5(a)),
NV ⊂ (V >−1−a)⊥ or that N †(V >−1−a) ∈ R. This follows from N(V >−1−a) = 0
which has been noted earlier. If a 6 −2−e then V >a+2 = V and (a) is obvious. If
1− e 6 a 6 qslante− 2 then V >a = ρ−1(V ′>a), V >a+2 = ρ−1(V ′>a+2) (notation
of 2.5). Since N ′V ′>a ⊂ V ′>a+2 we see that (a) holds. This proves (a).

For any a ∈ Z we set V̄ a = V >a/V >a+1. From (a) we see that N induces a
linear map N̄ : V̄ a → V̄ a+2.
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2.8. In the setup of 2.6 taking ⊥ in 2.6(i),(iii),(vi) we obtain:

If λ 6= 0 then V >1−e = L⊥.
If λ = 0 and either e′ 6 e− 2 or e′ = e− 1, λ′ = 0 then V >2−e = kerNe−1.
If λ = 0, e′ = e− 1, λ′ 6= 0 then V >2−e = (kerNe−1 ∩W )⊕ L′`.

2.9. For any a > 0 we set Ka = ker N̄a : V̄ −a → V̄ a. For any a ∈ Z′′
>2 we define a

quadratic form Qa : V̄ −a → k by Qa(x) = Q0(N̄
a/2x). (Note that N̄a/2x ∈ V̄ 0.)

If ẋ is a representative of x in V >−a we have

Qa(x) = Q(Na/2ẋ) = 〈Na/2−1ẋ, Na/2ẋ〉 = 〈ẋ, Na−1ẋ+ cNaẋ+ · · ·〉,

where c ∈ k. If f > 0 we have 〈x,Na+fx〉 = 0 since 〈V >−a, V >a+2f 〉 = 0.
Moreover,

〈x,Nax〉 = 〈Na/2x+ c′Na/2+1x+ · · · , Na/2x〉

= 〈c′Na/2+1x+ · · · , Na/2x〉 = c′〈x,Na+1x〉 = 0,

where c′ ∈ k. Hence
Qa(x) = 〈ẋ, Na−1ẋ〉.

Let 〈 , 〉a be the symplectic form on V̄ −a associated to Qa. Thus

〈x, x′〉a = 〈N̄a/2x, N̄a/2x′〉0

for x, x′ ∈ V̄ −a. If ẋ, ẋ′ are representatives of x, x′ in V >−a we have

〈x, x′〉a = 〈Na/2ẋ, Na/2ẋ′〉 = 〈ẋ, Naẋ′ + cNa+1ẋ′ + · · ·〉 = 〈ẋ, Naẋ′〉 = 〈x, N̄ax′〉.

(We use that 〈V >−a, V >a+2〉 = 0.) Let Ra be the radical of 〈 , 〉a. If x′ ∈ Ra then
〈x, N̄ax′〉 = 0 for all x ∈ V̄ −a hence N̄ax′ = 0. Thus Ra = Ka. We show:

(a) If a ∈ Z′ we have Ka = 0. If a ∈ Z′′
>00 then Qa is nondegenerate; hence

dimKa ∈ {0, 1}.

If N = 0 we have V >−a = V>1−a = V hence V̄ −a = 0 so that Ka = 0 as
required. Now assume that N 6= 0 so that e > 2. Let λ, L, V ′, N ′, Q′ be as in 2.2
and 2.3. Let V̄ ′a, N̄ ′a, Q′

a be the analogues of V̄ a, N̄a, Qa for V ′, N ′ instead of V,N .
We may assume that the analogue of (a) holds when V,N is replaced by V ′, N ′.
If λ 6= 0, a > e or if λ = 0, a > e we have V̄ −a = 0 hence Ka = 0 as required. If
λ 6= 0, a = e we have V̄ −e = V/L⊥, V̄ e = L, bNe = 0 hence Ka = V/L⊥. We must
show that Qa is not identically zero. It is enough to show that ẋ 7→ 〈ẋ, Na−1ẋ〉
is not identically zero on V ; this holds since λ 6= 0. If λ = 0, a = e − 1, εN

′

e−1 = 0
then V̄ 1−e = V/kerN e−1, V̄ e−1 = Ne−1V and N̄a : V̄ −a → V̄ a is an isomorphism;
hence Ka = 0, as required. If λ = 0, a = e − 1, εN

′

e−1 = 1 then with the notation
of 2.6(vi), 2.8 we have V̄ 1−e = W/(kerN e−1|W ) ⊕ Y/L′`, V̄ e−1 = Ne−1V ⊕ L′;
now N̄e−1 restricts to an isomorphism W/(kerN e−1|W ) → Ne−1V and to the zero
map Y/L′` → L′ (since Ne−1Y = 0). Hence Ka = Y/L′`. We must show that
Qa is not identically 0 on Y/L′` or that x 7→ 〈x,N e−2x〉 is not identically 0 on Y .
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But this follows from εN
′

e−1 = 1. If λ 6= 0, a ∈ [1, e− 1] or if λ = 0, a ∈ [1, e− 2], we
have V̄ −a = V̄ ′−a, V̄ a = V̄ ′a. We can identify N̄ ′a = N̄a and (if a ∈ Z′′) Qa with
Q′

a. Hence the result follows from the induction hypothesis. If a = 0 the result is
obvious. This completes the proof.

We show:

(b) Assume that a ∈ Z′′
>2. We set φa = |{b ∈ Z′′ | cNb ∈ Z′, b > a}|, ξa =

dimKa. We have cNa ∈ Z′ =⇒ ξa = 1; cNa ∈ Z′′, φa ∈ Z′ =⇒ ξa = 1;
cNa ∈ Z′′, φa ∈ Z′′ =⇒ ξa = εNa .

If N = 0 the result is obvious. Now assume that N 6= 0 so that e > 2. Let
λ, V ′, N ′, Q′ be as in 2.2 and 2.3. Let ξ′a, φ

′
a be the analogues of ξa, φa for V ′, N ′

instead of V,N . We may assume that the analogue of (b) holds when V,N is
replaced by V ′, N ′. If λ 6= 0, a > e or if λ = 0, a > e we have (by the proof of
(a)) ξa = 0, as required. If λ 6= 0, a = e we have (by the proof of (a)) ξa = 1
as required. If λ = 0, a = e − 1 then (by the proof of (a)) ξa = εN

′

e−1 = εNe−1 as
required. In the remainder of the proof we assume that either λ 6= 0, a ∈ [1, e− 1]
or λ = 0, a ∈ [1, e− 2]. Then (by the proof of (a)), ξa = ξ′a. Using the induction
hypothesis we see that if cN

′

a ∈ Z′′, φ′a ∈ Z′′ then ξa = ε′a
N ; otherwise, ξa = 1.

Assume first that λ 6= 0. Then e ∈ Z′′ hence a 6 e− 2.

If a = e− 2, cNe−2 ∈ Z′ and cNe ∈ Z′ then cN
′

e−2 ∈ Z′′, cN
′

e ∈ Z′′ and εN
′

e−2 = 1 so
that ξe−2 = 1.

If a = e− 2, cNe−2 ∈ Z′ and cNe ∈ Z′′ then cN
′

e−2 ∈ Z′, cN
′

e ∈ Z′′ so that ξe−2 = 1.

If a = e− 2, cNe−2 ∈ Z′′ and cNe ∈ Z′ then cN
′

e−2 ∈ Z′, cN
′

e ∈ Z′′ and εN
′

e−2 = 1 so
that ξe−2 = 1. Also, φe−2 = 1.

If a = e− 2, cNe−2 ∈ Z′′ and cNe ∈ Z′′ then cN
′

e−2 ∈ Z′′, cN
′

e ∈ Z′′, xe−2 = εN
′

e−2 =
εNe−2.

If a 6 e− 4 we have cN
′

a = cNa . If these are odd then ξa = 1. If these are even
then φa = φ′a mod 2 (if cNe ∈ Z′, cNe−2 ∈ Z′ then φa = φ′a +2; otherwise, φa = φ′a).

Assume next that λ = 0.

If a = e − 2 then cNe ∈ Z′′ and cN
′

a = cNa mod 2. If cN
′

a , cNa are odd we have
ξa = 1. If cN

′

a , cNa are even we have ξa = εN
′

a = εNa .
If a 6 e− 3 we have cN

′

a = cNa . If these are both odd then ξa = 1; if these are
both even then φa = φ′a.

We see that (b) holds. �

We show:

(c) If a ∈ Z′
>1 then the bilinear pairing V̄ −a × V̄ −a → k, x, y 7→ 〈x, N̄ay〉 is

symplectic; it is nondegenerate by (a). Hence V̄ −a ∈ C′′.

If N = 0 we have V̄ −a = 0 if a 6= 0 and (c) is obvious. Assume that N 6= 0.
Then e > 2. Let λ, V ′, N ′ be as in 2.2 and 2.3. We may assume that (c) holds when
V,N are replaced by V ′, N ′. If λ 6= 0, a > e or if λ = 0, a > e we have V̄ −a = 0 and
(c) is obvious. The case λ 6= 0, a = e cannot occur since e ∈ Z′′. If λ = 0, a = e−1
then e− 1 ∈ Z′ and εN

′

e−1 = 0; we have V̄ 1−e = V/kerN e−1 and 〈x,Ne−1x〉 = 0 for
all x. Hence (c) holds. If λ 6= 0, a ∈ [1, e − 1] or if λ = 0, a ∈ [1, e − 2], we have

792 G. LUSZTIG



V̄ −a = V̄ ′−a. Hence the result follows the induction hypothesis. The case a = 0
does not arise. This completes the proof. �

2.10. Let X∗ = (X>a)a∈Z be a Q-filtration of V (see 1.4). Let N ∈MQ, e = eN .
We say that X∗ is N -adapted if conditions (i)–(iii) below hold:

(i) NX>a ⊂ X>a+2 for any a;
For any a > 0 let Ka be the kernel of the map νa : gr−aX∗ → graX∗

induced by Na. We state conditions (ii) and (iii).
(ii) for any a ∈ Z′

>1 we have Ka = 0;
(iii) for any a ∈ Z′′

>2 we have Ka = 0 or dimKa = 1; in the latter case the map

Ka → k, x 7→ 〈ẋ, Na−1ẋ〉 is a bijection.
(For x ∈ graX∗ we denote by ẋ a representative of x in X>a.) Note that

(V >a)a∈Z is N -adapted where V >a = V >a
N . We show:

(a) If (X>a)a∈Z is an N -adapted filtration of V then X>a = V >a for any a.

If V = 0 the result is obvious. Now assume that V 6= 0. If N = 0 and a > 1
then νa : gr−aX∗ → graX∗ is 0 and Ka = 0. Hence X>a = X>a+1 and X>−a =
X>−a+1 so that we have X>1 = X>2 = · · · = 0 and X>0 = X>−1 = · · · = V as
required. We now assume that N 6= 0 hence e > 2. Let λ, L, V ′, N ′, Q′, ρ, ε′ be as
in 2.2 and 2.3. If ε′ > 1 let λ′ be as in 2.6. If ε′ > 2 let Y, L′, L′` be as in 2.6. We
may assume that (a) holds when V,N are replaced by V ′, N ′.

If a > e + 1 or if a = e, λ = 0, then νa : gr−aX∗ → graX∗ is 0 and Ka = 0.
Hence X>a = X>a+1 and X>−a = X>−a+1 so that if λ = 0 we have

X>e = X>e+1 = · · · = 0 and X>1−e = X>−e = · · · = V ;

if λ 6= 0 we have

X>e+1 = X>e+2 = · · · = 0 and X>−e = X>−1−e = · · · = V.

Hence X>a = V >a if a > e+1 or if a = e, λ = 0 or if a 6 −e or if a = 1− e, λ = 0.
Assume that λ 6= 0. Then Ke is the kernel of 0 = νe : V/X>1−e → X>e, that

is, Ke = V/X>1−e. Also Ke → k, x 7→ 〈ẋ, Ne−1ẋ〉 is not identically zero hence
dimV/X>1−e = 1. Since for x ∈ gr1−eX∗ we have ẋ, N e−1ẋ〉 = 0 we see that
X>1−e ⊂ kerλ = L⊥. Since dimX>1−e = dimL⊥ we see that X>1−e = L⊥. We
have X>e = (X>1−e)⊥ ∩Q−1(0) = L as required.

Next we assume that λ = 0. Then Ke−1, the kernel of νa : V/X>2−e → X>e−1,
is

{x ∈ V/X2−e | Ne−1ẋ ∈ X>e = 0} = {x ∈ V/X2−e | Ne−1ẋ = 0}

= kerNe−1/X>2−e.

If εNe−1 = 0 then 〈ẋ, N e−2ẋ〉 = 0 for x in this kernel, that is, for x ∈ Ke−1.
Hence in this case we have Ke−1 = 0. Thus Ne−1 induces an isomorphism
V/X>2−e → X>e−1 so that X>e−1 = Ne−1V,X>2−e = kerNe−1, as required.
We have X>2−e = (X>e−1)⊥ = (V >e−1)⊥ = V >2−e as required.

Now assume that λ = 0, εNe−1 = 1. In this case we have an isomorphism
kerNe−1/X2−e → k induced by λN

e−1, that is, we have

X>2−e = {x ∈ kerN e−1 | λN
e−1x = 0}.

793UNIPOTENT ELEMENTS IN SMALL CHARACTERISTIC, II



This is the same as (kerN e−1∩W )⊕L′` = V >2−e, see 2.8. Taking ⊥ in X>2−e =
V >2−e and intersecting with Q−1(0) we obtain X>e−1 = V >e−1.

If λ = 0, a ∈ [2 − e, e − 1] we have N e−1V ⊂ X>a ⊂ kerNe−1 and we denote
by X ′>a the image of X>a under ρ : kerN e−1 → V ′ = kerNe−1/Ne−1V . For
a 6 1− e we set X ′>a = V ′ and for a > e we set X ′>a = 0. Now (X ′>a)a∈Z is an
N ′-adapted filtration of V ′. (We must only show the analogue of (ii) and (iii) for
N ′ with a = e− 1. We have X ′>1−e/X ′>2−e = kerNe−1/X>2−e; this is Y/L′` if
ε′ = ε− 1, λ′ 6= 0 and 0 otherwise. We have X ′>e−1/X ′>e = X>e−1/Ne−1V . This
is L′ if ε′ = ε − 1, λ′ 6= 0 and 0 otherwise. Hence (ii) and (iii) are obvious in this

case.) By the induction hypothesis we have X ′>a = V ′>a
N for all a. Taking the

inverse image under ρ we see that for a ∈ [2− e, e− 1] we have X>a = V >a.
If λ 6= 0, a ∈ [1 − e, e] we have L ⊂ X>a ⊂ L⊥ and we denote by X ′>a the

image of X>a under ρ : L⊥ → V ′ = L⊥/L. For a 6 −e we set X ′>a = V ′ and
for a > e+ 1 we set X ′>a = 0. Now (X ′>a)a∈Z is an N ′-adapted filtration of V ′.
(We have X ′>−e/X ′>1−e = 0, X ′>e/X ′>e+1 = 0.) By the induction hypothesis

we have X ′>a = V ′>a
N for all a. Taking the inverse image under ρ we see that for

a ∈ [1− e, e] we have X>a = V >a. This completes the proof of (a). �

2.11. Assume that V ∈ C′′. If g ∈ OQ and S ∈ JQ, we set δg = dim(S/(S ∩ g(S)))
mod 2. It is known that δg is independent of the choice of S and that δg = 0 if
and only if g ∈ SOQ.

Let N ∈ M̃Q. We show that:

(a) δ1+N = dim kerN mod 2.

If N = 0 this is clear. Assume now that N 6= 0. Let e = eN , L = LN . We
have e > 2. Let λ, L be as in 2.2. We may assume that V ∈ C ′′. Assume first
that e > 3. As in the proof of 2.2(e) we have Q|L = 0. We set V ′ = L⊥/L. The
nondegenerate quadratic form Q′ : V ′ → k can be defined as in 2.3. The nilpotent
endomorphism N ′ : V ′ → V ′ induced by N belongs to M̃Q′ . As in the proof of
2.3(a) we see that dim kerN ′ = dim kerN mod 2. We have δ1+N = δ1+N ′ . Since
the result may be assumed to hold for N ′ we see that (a) holds. We now assume
that e = 2, that is, N2 = 0, N 6= 0.

Assume that λ 6= 0. We can find x ∈ V such that 〈x,Nx〉 6= 0. Then x,Nx
span a two-dimensional N -stable subspace P of V on which 〈 , 〉 is nondegenerate.
Let V ′ = P⊥ and let Q′ = Q|V ′ . Then V = P ⊕ V ′, Q′ is nondegenerate and N
restricts to a nilpotent map N ′ : V ′ → V ′. Note that dim kerN = dim kerN ′ + 1
and δ1+N = δ1+N ′ + 1 mod 2. Since the result may be assumed to hold for N ′ we
see that (a) holds.

Assume that λ = 0. We write V = W ⊕ Y as in 1.9(c). Then W,Y are N -
stable nondegenerate even-dimensional subspaces of V with 〈W,Y 〉 = 0; moreover,
NY = 0. Hence dim kerN = dim ker(N |W ) + dimY , δ1+N = δ1+N |W . If Y 6= 0
we may assume that the result holds for N |W ; we see that (a) holds. Thus we
may assume that Y = 0. We have V = E ⊕ NE with E as in 1.9(a). Note
that dimNE = D/2, see 1.9(b). Since λ = 0 we have Q|NE = 0. Clearly NE
is 1 + N stable. We see that δ1+N = 0. The nondegenerate symmetric bilinear
form on E described in 1.9(a) is symplectic since λ = 0. Hence dimE ∈ Z′′ and
dimNE ∈ Z′′. We see that dim kerN ∈ Z′′. Thus (a) holds.
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From (a) we deduce that for N ∈ M̃Q we have N ∈MQ if and only if 1 +N ∈
SOQ.

2.12. We prove Theorem 1.7 (with p = 2) in the form 1.7(a). Let T ∈ SOQ be
unipotent. Then N = T − 1 ∈ OQ and by 2.11 we have N = T − 1 ∈ MQ. In 2.5

we have attached to N a Q-filtration X∗ = (V >a
N ) of V . In 2.7 and 2.9 we have

shown that N ∈ E>2
∗ X∗. In 2.10 we have shown that the last property determines

X∗ uniquely. Thus 1.7(a) is established. �

3. The case p 6= 2

3.1. In this section we prove Theorem 1.7 assuming that p 6= 2. In this case we
have R = 0.

Let N ∈ M̃Q − {0}, e = eN . We have e > 2. Let L = LN = Ne−1V , a
subspace of V . By 1.1(b) we have L⊥ = kerNe−1. Since 2e − 2 > e we have
Ne−1V ⊂ kerNe−1 hence:

(a) L ⊂ L⊥.

Clearly,

(b) NL = 0, NV ⊂ L⊥.

We show:

(c) Q|L = 0.

Let v ∈ V . We have q(N e−1v) = 〈Ne−2v,Ne−1v〉 = ±〈v,N2e−3v〉. If e > 3
this is 0 since 2e − 3 > e. If e = 2 this is 0 since 〈v,Nv〉 = −〈Nv, v〉 so that
2〈v,Nv〉 = 0 and 〈v,Nv〉 = 0.

3.2. Let N ∈ M̃Q − {0}, e = eN , L = LN . We have e > 2. We set V ′ = L⊥/L,
see 3.1(a). From 3.1(b) we see that N induces a (nilpotent) endomorphism of
V ′, denoted by N ′. Let e′ = eN ′ . We have e′ 6 e − 1. Define a quadratic form
Q′ : V ′ → k by Q′(x′) = Q(x) where x is a representative of x′ ∈ V ′ in L⊥. (To see
that Q′ is well defined we use 3.1(c).) The symmetric bilinear form associated to
Q′ is 〈x′, y′〉′ = 〈x, y〉 where x′, y′ ∈ V ′ and x, y are representatives of x′, y′ in L⊥.
Its radical is {x ∈ L⊥ | 〈x, L⊥〉 = 0}/L = 0. It follows that Q′ is nondegenerate.

We have N ′ ∈ M̃Q′ .

3.3. Let N ∈ M̃Q, e = eN . We associate to N a collection of subspaces

(V >a)a∈Z = (V >a
N )a∈Z

of V using induction on D. If N = 0 we set V >a = V for a 6 0, V >a = 0 for a > 1.
Thus V >a are defined when D 6 1. We may assume that D > 2, N 6= 0 and that
V >a are already defined when V is replaced by a vector space of dimension < D.
We have e > 2. Let L, V ′, N ′, Q′ be as in 3.1 and 3.2. Let ρ : L⊥ → V ′ be the
obvious map. Since L 6= 0, we have dim V ′ < D. By the induction hypothesis,
V ′>a = V ′

N ′
>a is defined for any a ∈ Z. We set

V >a = V for a 6 1−e; V >a = ρ−1(V ′>a) for a ∈ [2−e, e−1]; V >a = 0 for a > e.
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This completes the definition of the subspaces V >a.
From the definition it is clear that (V >a) is a filtration of V . We show:

(a) If a > 1 we have Q|V >a = 0 and V >1−a = (V >a)⊥.

We use induction on D. For N = 0 the result is obvious. Thus the result holds
when D 6 1. Now assume that D > 2, N 6= 0. Let L, V ′, Q′, N ′ be as above.
By the induction hypothesis we have Q′|

V ′>a

N′
= 0 and V ′>1−a

N ′ = (V ′>a
N ′ )⊥

′

with ⊥′

relative to V ′. It follows that Q|V >a = 0 and V >1−a = (V >a)⊥ for a ∈ [1, e− 1].
For a > e the result is again true since Q|{0} = 0 and {0}⊥ = V . This proves (a).
�

We see that V ∗ = (V >a) is a Q-filtration of V . Clearly, V >a is the same as
the subspace V N

>a defined in terms of the nilpotent endomorphism N : V → V

(without reference to Q) in [L2, 2.3, 2.4]. It follows that NV >a ⊂ V >a+2 for any
a ∈ Z. For any a ∈ Z we set V̄ a = V >a/V >a+1. We see that N induces a linear
map N̄ : V̄ a → V̄ a+2. From [L2, 2.3] we see that for any a > 0, N̄a : V̄ −a → V̄ −a

is an isomorphism. It follows that N ∈ E>2
∗ V ∗. Conversely if X∗ is a Q-filtration

of V such that N ∈ E>2
∗ X∗ we see that for any a > 0 the kernel Ka of the map

gr−aX∗ → graX∗ induced by Na is the radical of the symmetric bilinear form
attached to a nondegenerate quadratic form on gr−aX∗; since p 6= 2 it follows that
Ka = 0. Hence the map gr−aX∗ → graX∗ induced by Na is an isomorphism.
Using [L2, 2.4] it follows that X∗ = V ∗. Thus 1.7(a) holds. �

4. On unipotent conjugacy classes in SOQ (p = 2)

4.1. In this section we assume that k is algebraically closed. Moreover, in this
and the next subsection, we assume that p = 2. Assume that D > 2. Let φ ∈ F̃D

1 .
(See 1.6.) Thus φ = (fa) where f0 > 0. Let

Xφ = {i ∈ Z′
>1 | i = fa for some a ∈ Z′′

>0},

this is a finite set. Let Eφ be the set of all subsets of Xφ×Xφ which are equivalence
relations on Xφ. To any X∗ ∈ Ȳφ (see 1.6) and any N̄ ∈ E2

∗gr∗X∗ we associate
an element S ∈ Eφ as follows. For any i ∈ Xφ let Zi be the subspace of gr0X∗

given by the image of the embedding gr−a/2X∗ → gr0X∗ induced by N̄a/2 for
some/any a ∈ Z′′

>0 such that i = fa; the natural symplectic form 〈 , 〉 on gr0X∗

restricts to a symplectic form on Zi with one-dimensional radical denoted by Li.
By definition, S = {(i, j) ∈ Xφ × Xφ | Li = Lj}. For X∗ ∈ Ȳφ and S ∈ Eφ let
E2
∗ gr∗X∗

S be the set of all N̄ ∈ E2
∗ gr∗X∗ such that (X∗, N̄) give rise to S as above.

Let E>2X∗
S = Φ−1(E2

∗ gr∗X∗
S) where Φ is as in 1.5. We thus obtain a partition

E>2
∗ X∗ =

⊔

S∈Eφ

E>2
∗ X∗

S

into finitely many locally closed subvarieties. For S ∈ Eφ let

ΞS
φ = {g ∈ SOQ | g unipotent g − 1 ∈ E>2

∗ X∗
S}.

Hence Ξφ (see 1.7) is partitioned as Ξφ =
⊔

S∈Eφ
ΞS

φ . Note that each ΞS
φ is stable

under conjugation by SOQ.
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4.2. Let NQ be the set of nilpotent elements ∇ ∈ End(V ) such that 〈x,∇y〉 +
〈∇x, y〉 = 0 for all x, y in V and 〈x,∇x〉 = 0 for all x ∈ V . We can view NQ as
the set of nilpotent elements in the Lie algebra of SOQ. Note that SOQ acts by
conjugation on NQ.

Let u be a unipotent element in SOQ. We associate to u an SOQ-conjugacy class
in NQ as follows. Let N = u − 1 ∈ MQ. Let X∗ = V ∗

N . Then N ∈ E>2X∗ and
N̄ ∈ E2 grX∗ is defined as in 1.5. Let Q̄ be the quadratic form on grX∗ defined in
1.5. We have N̄ ∈ NQ̄. Note that if D ∈ Z′′ then the set of connected components
of JQ and that of JQ̄ may be naturally identified. We can find an isomorphism

of vector spaces grX∗ ∼
−→ V which carries Q̄ to Q and (when D ∈ Z′′) induces

the identity map from the set of connected components of JQ̄ to that of JQ. This
isomorphism carries N̄ to an element ∇ ∈ NQ whose SOQ-orbit is independent of
the choice of isomorphism. Note that 1 +N 7→ ∇ defines a map

{SOQ − conjugacy classes of unipotent elements in SOQ}

→ {SOQ − conjugacy classes of nilpotent elements in Lie SOQ}.

One can show that this map is injective; it is not in general surjective.

4.3. The last map also makes sense in the more general framework of [L2]. Assume
that p > 1. Let G be as in [L2, 0.1]. We assume that property P1 in [L2, 1.1]
holds for G. Let u be a unipotent element in G. By P1 we can find a unique
sequence M= (GM

0 ⊃ GM
1 ⊃ GM

2 ⊃ · · · ) in DG such that u ∈ XM (notation of [L2,
1.1]). In particular we have u ∈ GM

2 . Let g = Lie G, gM
n = Lie GM

n . Let ū be the
image of u in GM

2 /G
M
3 . Since GM

2 /G
M
3 is a connected commutative unipotent group

in which the pth power of any element is 1 we see that it is canonically isomorphic
to its Lie algebra gM

2 /g
M
3 . Hence ū can be identified with an element of gM

2 /g
M
3 .

By definition there exists a homomorphism of algebraic groups h : k∗ → G such
that if we denote by gn the n-eigenspace of the action x 7→ Ad(h(x)) of k∗ on g

(n ∈ Z) we have gM
n = gn ⊕ gn+1 ⊕ · · · for any n > 0; moreover, h is unique up to

GM
0 -conjugacy. Using the decomposition gM

2 = g2 ⊕ gM
3 we can identify gM

2 /g
M
3 with

g2 and we can view ū as an element of g2 hence as a nilpotent element of g. This
element is well defined up to GM

0 -conjugacy. This defines a map

{unipotent G-conjugacy classes in G} → {nilpotent G-conjugacy classes in g}.

We expect that this map is always injective.
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