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Abstract. Let G be a special orthogonal group over an algebraically closed field of
characteristic exponent p. In this paper we extend certain aspects of the Dynkin—Kostant
theory of unipotent elements of G (when p = 1) to the general case (including p = 2).

Introduction

0.1. Let k be an algebraically closed field of characteristic exponent p > 1. This
paper is a study of unipotent elements in a special orthogonal group SO¢ (where
Q@ is a nondegenerate quadratic form on a finite-dimensional k-vector space V)
with emphasis on the case where p = 2. We develop some of the proposals in [L2]
which try to extend the Dynkin—Kostant theory [K] of unipotent elements in the
case p = 1 to the case p > 1.

Namely we show that to any unipotent element u € G one can associate canon-
ically a filtration of V' whose stabilizer in SO is a parabolic subgroup containing
u in the unipotent radical and such that this parabolic is of the same type as
a parabolic attached in the Dynkin—Kostant theory to a unipotent element in a
special orthogonal group with p = 1. This allows us to partition the unipotent
variety of SO¢ into pieces which are both smooth varieties and unions of (possibly
several) unipotent conjugacy classes. We show that (for a split rational structure
over a finite field with ¢ elements) each piece has a number of rational points given
by a polynomial in ¢ with integer coeflicients independent of ¢ and p. (This kind of
property was stated without proofin [L1].) A similar statement was established for
groups of type C in [L2]; for an exceptional type this is is easily established using
the available tables since in that case each piece contains at most two unipotent
conjugacy classes. In some sense the behaviour of the pieces is more complicated
for orthogonal groups than for other almost simple groups. For example, this is
the only case where the number of unipotent conjugacy classes in a given piece (in
bad characteristic) is not necessarily a power of 2.
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The main result of this paper is Theorem 1.7 which gives a rather explicit
decomposition of the unipotent variety in SO¢ into pieces Z4; these are the same
as the unipotent pieces of SOq in [L2, 1.1] (although their definition is slightly
different). Our results verify the validity of properties 3135 in [L2, 1.1] for SOg.
In particular property 5 is proved in our case in 1.8(b). In Section 4 we discuss
an (injective) map from unipotent classes in SO¢ to nilpotent orbits in the Lie
algebra.

The proof of Theorem 1.7 is given in Section 2 (when p = 2) and in Section 3
(when p # 2).

Notation. We set Z' = 2Z+1,Z" = 27Z. Fora € Z, weset Z, , = {n € Z' | n > a},
Z{,={n€Z" | n > a}. The cardinal of a finite set X is denoted by |X|; if X is
an infinite set we write | X| = oo.

1. Unipotent elements in orthogonal groups

1.1. In this section we give some preparatory material which allows us to state
Theorem 1.7, the main result of this paper.

Let k be a finite or algebraically closed field of characteristic exponent p > 1.
Let C be the category whose objects are k-vector spaces of finite dimension; the
morphisms are linear maps. Let C’ be the subcategory of C consisting of all V' € C
such that dimV € Z’. Let C"” be the subcategory of C consisting of all V € C
such that dim V' € Z”. Let C be the category whose objects are Z-graded k-vector
spaces V = Docz V¢ such that dimV < oo; the morphisms are linear maps
respecting the grading.

Let V € C. For N € EndV nilpotent and i > 1 let

EN =ker N*/(N(ker N**1) 4 ker N*™1).

Then ¢ := dim E is the number of Jordan blocks of size i of N. Let e = ex be
the smallest integer > 0 such that N¢ = 0.

For any symmetric or symplectic bilinear form (, ) : V xV — k let Rad y =
{z € V| (x,V) = 0} be the radical of ().

In the remainder of this paper we fix V € C and a quadratic form @ : V' — k
with associated symmetric bilinear form ( , ) : V x V — k; we have (x,y) =
Qz +y) — Qxr) — Qy) for x,y € V. Let D = dimV. Let R = Rad ). We
assume that @ is nondegenerate, that is, Q| : R — k is injective. (In this case we
must have R =0 unless V € C',p =2 when dimR = 1.)

In the case where D € Z" let Jg be the set of D/2-dimensional subspaces of V'
on which @ is 0. In the case where k| < 0o, D € ZY, we set ng = 1if Jo # &
and g = —1if Jg = @.

For any subspace W of V we set Wt = {z € V | (z, W) = 0}.

Let Og ={T € GL(V) | Q(Tz) = Q(x) Vz € V'} be the orthogonal group of Q.
In the case where |k| = oo we denote by SOgq the identity component of Og; in
the case where |k| < oo we set SOg = Og N SO where Q is the quadratic form
obtained from @) by extension of scalars to an algebraic closure of k. Let

Mg = {N € End(V) | 1 + N unipotent in Og}
={N € End(V) | N nilpotent, Q(Nx) = —(z, Nz) for all z € V'}.
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Note that if N € MQ and x,y € V then
(z, Ny) + (Nz,y) + (Na, Ny) = 0.

In particular, for N € MQ, we have (z, Ny) = (Ntz,y) for z,y € V, where
Ni:=(1+N)'—=1=-N+N2—N3+4...€ M.

Let N € MQ. We have

(a) NVNR=0.
If 2 € Vand Nz € R then Q(Nz) = —(x, Nz) = 0; since @ : R — k is injective
we see that Nz = 0. Thus (a) holds.

From the definitions we have, for i > 1,

(b) (ker NV)* = NV + R, (N'V)* = ker N'.
In particular, NR C R. Since dim R < 1, it follows that NR = 0.

1.2. In this subsection we assume that p > 1 and that |k| = ¢ < co. For any
m € Z5,, we set

P, = q1/4(m272m+1)(q2 - 1)(q4 . 1) . (qul _ 1)
For any m € Z%, and ¢ € {1, —1} we set
2_ m m— m
P =g /(2 —1)(g* = 1) -+ (g™ = 1) (g™ = 6).

Let V be a k-vector space with a nondegenerate quadratic form « : V — k. Let
(,):VxV — k be the associate symmetric bilinear form. Let R = Rad( ).
Let s = dimV. Let k € [0,s]. Let SiV be the set of k-dimensional subspaces
W of V such that ulw is nondegenerate. If k € Z%,, we have a partition SxV =
Useqr,—13 5PV where SpV = {W € SiV | nup,, = 6}. If s € Z7, k € Z/ we set
Nop = |SV]. s € Z/ k € Z, we set Ny = |[SpV|. If s € 27, k € Z2, and
§ € {1,-1}, we set Ny = |S§V|. If s € Z/, k € ZY, and 6 € {1,-1}, we set
NI =SV,
(i) If s€Z%,, k€ Z', e =nu, then N;; = P;P,;lP;lk.

If p # 2 this is obvious. Assume now that p = 2. Let R’ be the radical of
(,)lw for W € SiV. Then R’ is one of the ¢(*=2/2(¢%/2 — ¢) lines in V on
which u is not identically 0. Also R’* is a hyperplane in V and ( , ) induces
a nondegenerate symplectic form on R'+/R’. For each such R’, the number of
W € SiV such that R’ € W C R'* is the number of (k — 1)-dimensional subspaces
of R"+/R’ on which ( , ) is nondegenerate, hence it is Ps_1 P, 'P,",. Hence
Noy=qs=2/2(g*/2 — €)Ps_1 P ' P, as required.

(ii) Ifs € Z’;Q, ke Z;’Q, k<s,e=ny, 0€{l,—1}, then

Now =271 PP (P )7

This is clear: the orthogonal group of u acts transitively on S,‘zV.
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(i) Ifs€Z', kel k<s, then NI =271 Y ser1) PPN (P )7L

If p # 2 this is obvious. Assume now that p = 2. We set s =2t + 1,k = 2a + 1.
Let R' = Rad( y},, for W € SiV. Then R’ is one of the ¢*" lines in V on which
u is not identically 0. The number of W € S.V, such that the corresponding R’
is equal to R, is the number of 2a-dimensional subspaces of V/R on which () is
nondegenerate, that is, Pst_lP;IkH. Let N’ be the number of W € S,V such
that the corresponding R’ is not equal to R. Then N’ = (¢°~! — 1) N} where N/ is
the number of W with prescribed R’ # R. To such W we associate the subspace
W' = W + R (of dimension k + 1) of R'* (of dimension s — 1). Note that the
number of possible such W’ is the number of (k — 1)-dimensional subspaces of
R'‘/(R+R') on which (, ) is nondegenerate, that is, Ps_o P, ' P, "}, . For any
W' as above the number of W, such that R' ¢ W C W and W@ R = W, is the
number of subspaces X C W/R' such that X © R = W'/R', that is, ¢*~!. Thus,

N/ — (qsfl o 1)qk71P572Pk71P87_1k_1
_42 _1)2 —a)?—(t—a—1)2 _92a _ _
:q2aq t?+(t—1) q(t ) (¢ 1) (q2t 2 —1)P3Pk 1P571k+1~
We see that
% _ _ a —t2 _1)2 —a)?—(t—a—1)2 —2a _ _
Ns,’k = P, P, 1P571k+1+q2 q t24(t—1) q(t ) —(t 1) (q2t 2a 1)P3Pk 113371]€Jrl

_ 2t—2a -1 p-1
=4q P2t+1P2a+1P2t72a+1

and (iii) follows.

(iv) Ifs€Z', ke Zly, 6 € {1,—1}, then NJjp = 27 P (P)) 1P},

S

This is clear: the orthogonal group of u acts transitively on S,fV.

We now consider a descending sequence rg > 1o > 14 > - -- of integers such that
ro = s and 79, = 0 for large n. We denote by v(rg,r2,74,...) (if s € Z’) or by
v(ro,r2,74,...) (if s € Z%,, Ny = €) the number of sequences Uy D U2 DUy D - -+
of subspaces of V such that for any n > 0, dim Us,, = 19, and the quadratic form
t|u,,, is nondegenerate. We show:

(a) Let X = v(ro,r2,74,...) if 7o € Z' and X = v(ro,72,7a,...) if 1o € ZY,
and € € {1,—1}. Then X is a polynomial in q with coefficients in Z independent
of q or p.

Let M be the number of nonzero terms in the sequence (rg, 72,74, ...). We have
M > 1. We argue by induction on M. If M =1 we have X = 1. Assume now

that M > 2. If rop, = ropqo > 0 for some n we have X = v(rg, ..., o0, Tontd, ... )
if ro € Z', X = v(ro,..., 2n, Tont4a,...) if 7o € Z"; the result follows. Hence
we may assume that the nonzero terms of rg,79,... are distinct. If 79, € Z'
for some n > 0, we have X = v(rg,...,r2,,0,0,)v(ran, "ont2,...) if 1o € Z/,
X =v(roy...,72n,0,0,)0(ran, ronya,...) if 7o € Z”; in both cases the induction
hypothesis applies to the second factor in the right-hand side. Thus we may assume
that any odd number in the sequence rq, 72, ... must appear either as rq or it must

be followed by 0. Thus we must consider four cases.
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Case 1. rop, € Z" for all n. Let ra,, be the last nonzero term of rg,7o,.... If
m = 0 we have X = 1. If m > 0 we have, using (ii),
61 AT61,6 Sm—1,0m
X = Z Nﬁo,}“zNTzlny o 'ermjzﬂ“zm
51,62,...,5m€{1,71}
— 5 —1/pdidz \—1 Om—16m —1(pdm \—1
= 2 " Z P’If() (P’I“CUL’I”Q) (P’I”2172T’4) T (P’I”2m7127’l”2m) (P’I“zm) N

81,82, meE{1,~1}

This is clearly a polynomial in ¢ with coefficients in Z[27!]. It is also the product
of a polynomial in ¢ with coefficients in Z with

9—m Z (q(mfrz)/2 _ 651)71((](?”2*7”4)/2 _ 5152)*1 ..
01,02,...,0m€{1,—1}
X (g2 1) g )
_ (qr0/2+€)(qrofr2 71)71((]7”277”4 71)71 . (qrzm,z%zm 71)71(qr2m 71)71’
hence is a power series with integer coefficients in ¢q. Hence X € ZIq].
Case 2. 19 € Z", 1oy, € 2/, 19, € Z" for 0 < n < m and ro, = 0 for n > m.
If m =1 we have X = N* . If m > 1 we have
g 01,6 Om—2,0m— Om—1,%
X = Z N:O’,},2NT2177.5 o .N7'2m,724;72m1—2NT2m—12;T2m.
51,52,...,67”716{1,71}
As in Case 1 we see, using (ii) and (i) that X € Z]g].
Case 3. rg € Z', rop, € Z" for n > 0. Let rg,, be the last nonzero term of
ro,T2,.... We have
#,61 NT01,6 Sm—1,0m
X = Z N,.O’,;QNT;’,Z o .N7'2m,712;T2m.
51,52,...,5m€{1,71}
As in Case 1 we see, using (ii) and (iv), that X € Z[q].

Case 4. 1o € Z' and for some m > 0, rom € Z', 19, € Z" for 0 < n < m and
ron, =0 forn>m. Ifm=1wehave X = N5*  see (iii). If m > 1 we have

0,727
X = N*01 NO102 | ATOm—2,0m—1 £Om—1,%
T0,T27 "T2,74 T2m—4,T2m—2" T2m—2,T2m "

51,52,...,67”716{1,71}
As in Case 1 we see, using (i), (ii) and (iv), that X € Z[q]. This completes the
proof of (a). O

For any m € ZY,, we set

R =q™ /(¢ = 1)(q" = 1) (¢" = 1).
Let V' be a k-vector space with a nondegenerate symplectic form (, ) : V' xV' — k.
We consider a descending sequence 11 = r3 > r5 > --- of even integers such
that 1 = dimV’ and 7,41 = 0 for large n. We denote by v/'(r1,r3,75,...) the
number of sequences U; D Us D Us D --- of subspaces of V' such that for any
n > 0, dim Uszp41 = 72p41 and the symplectic form ( , )|vs,, ., is nondegenerate.
Clearly,

(b) V' (r1,73,75,...) = Ry R, R, ... is a polynomial in q with coeffi-

T1—T3 T3—7Ts5
cients in Z independent of q or p.
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1.3. Let V € C. Define (f,)aez by fo = dim V. A quadratic form Q : V — k with
associated symmetric bilinear form (, ) is said to be compatible with the grading
if Qli7a =0 fora #0and (V¢ V) =0 for a+a’ # 0. In this subsection we fix
such a @ (compatible with the grading) and we assume that it is nondegenerate.
Let R = Rad( y. Then R C V°, Q|yo : VO — k is nondegenerate and ( , ) restricts
to a perfect pairing V~% x V¢ — k for any a > 1. Hence f, = f_, for all a. Let

E*V = {T € Hom¢(V,V) | T(V*) € Vo2 for any a € Z; (Txz,y)
+ (2, Ty) =0 for all z,y € V; (2, Tz) =0 for any z € V11,

If T € E?V we have
(a) (z,Tx) =0 for any a € Z%, and any x € V.

Indeed, we have a = 2a’ + 1 with @ > 0 and ' = T%2 € V! satisfies
(', Tx'y = 0. Thus

0= (T"%,T" " 2) = (-1)% (2, T%)

and (a) follows. B
Let E2V be the set of all T € E2?V such that:
(i) for any a € ZY%, the quadratic form Qo : V™" = k, x — Q(T?2) is
nondegenerate; - -
(ii) for any a € Z%,, the symplectic form V= x V=
nondegenerate.
Note that (i) is automatic for a = 0.

For N € E2V and a > 0 we set _KaT = ker(T® : V= — I_/“). If @ > 1 then
KI' =Rad ,, where (,)q: V™ *x V™% - kis a,y— (x,T"). Hence condition
(ii) is equivalent to the condition that K] = 0 for a € Z4,. If a € Z% then

a

—k, 7,y (2, T) s

the symmetric bilinear form associated to Q, is (—1)%/2( , ),. Hence condition
(i) is equivalent to the condition that Q, : KI — k is injective for a € zZ,.
(This implies that for such a we have KI' = 0 unless p = 2 and f_, € Z’, when
dim KT = 1.)

This discussion shows that if p # 2 an element T' € E?V belongs to E2V if and
only if 7% : V=% — V' is an isomorphism for any a > 0.

Returning to the general case we reformulate conditions (i) and (ii) for an
element T' € E?V to be in E2V as follows:

i) for any a € Z,, the map T%?2 : V=% — V9 is injective and its image I
>0 a

is such that Q| 7 1s a nondegenerate quadratic form;
(it") the symplectic form wr(x,y) = (x, Ty) on V! is nondegenerate; for any
a € Z,, the map T(=1/2 V= _ V=1 is injective and its image I is

such that wrp| rr 1s a nondegenerate symplectic form.
Clearly, if (i’) holds then (i) holds. If (i) holds and = € ker(]ia/2 Ve VY
(with a € ZZ,) then T%z = 0 hence z € K!. We also have Q,(x) = 0. Since

Q. : KI' — k is injective we see that = = 0. We see that (i) holds.
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Fora € Z, and z,y € V=% we have
(@,y)0 = (1) VAT OD 2y, T2y,

Hence if (ii’) holds then (ii) holds. If (ii) holds and x € ker(T(*~1V/2 : V—o — V1)
(with @ € Z%,) then T%z = 0 hence 2 € K and z = 0. We see that (ii’) holds.
If T € E?V, then, clearly,

Vi=ri'oo>rl>--- and V=Dl o[Fo---.

We see that if E2V # @, then:
) foxfozfuz-andfa>2fs3>2fs52>--
(¢) fa€Z" ifacZ.

We say that (fg)ecz is admissible if it satisfies (b) and (c). In the remainder
of this subsection we assume that (f,).cz is admissible. Let R? be the set of all
sequences Uy D Uy D Uy D --- of subspaces of V0 such that dimU, = f_, and
Q|v, is a nondegenerate quadratic form for a = 0,2,4,.... Let R~! be the set of
all pairs (w, (U1, Us, Us,...)) where w is a nondegenerate symplectic form on y-t
and U; D Us D Us D --- are subspaces of V! such that dimU, = f_, and w|y,
is a nondegenerate symplectic form for a = 1,3,5,.... Clearly R # @, R™! # @.
Define v : E2V — R% x R™! by

T ((IF, 13, 1F,...), (wr, (1L, I3, IF, .. ))).

Clearly,

(d) the fibre of ¢ at (Uo, Uz, Uy, ...), (w, (U1,Us,Us,...))) € R® x R™! can be
identified with [[,~, Iso(V =%, Uy);

here Iso(V =%, U,) is the set of vector space isomorphisms V=% — U,,.
We now assume that k, ¢ are as in 1.2. For any m > 0 we set

Ay = g2 (g = 1)(¢* = 1)+ (¢™ — 1)

If fo € Z%, let e = ng ,. From (d) we see that:

(e) IEEVl = Ha>1Afa€Vl(f17f37f5a"')(Rfl)_l; where 5 = V<f07f2af4a"') Zf
fO S ZI;‘ EZ Ve(anf27f4a"') foO S Z;2; é- =1 foO =0.

1.4. Let X* = (X?%),cz be a sequence of subspaces of V such that X =%t ¢ X>¢
for any a, X% = 0 for some a, X=% =V for some a, that is, a filtration (see [L2,
2.2]) of V. We say that X* is a Q-filtration of V' if for any a > 1 we have:

(a) Q|xsa =0 and XZ179 = (XZ)*+,

Then for any a < 0 we have:
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(b) (XZ9)t =X?1"*® R and X>'7% = (X>2)L N Q~1(0).

The first equality follows by applying * to both sides of XZ¢ = (XZ179)L see
(a). If x € V21720 R then by (a) we have Q(z) = 0. Since Q : R — k is injective,
we have z = 0. Thus, VZ17¢N R = 0. The second equality in (b) follows from the
first equality and (a). This proves (b).

The proof of the following result is standard:

(c) We can find a direct sum decomposition V = @ .5 X such that X>* =
Dorarsa X for all a and (X% XY =0 fora+da #0, Q|xe« =0 fora#0.

For any Q-filtration X* of V we set
EZ2X* = {N € Mg | NX>* C X>*"2 for all a € Z}.

We show:
(d) If z € X>~1 then (x, Nz) = 0.
It is enough to show that Q(Nz) = 0. Since Nx € XZ1, this follows from (a).

1.5. Let X* be a Q-filtration of V. We set gr* X* = X2/ X2+l Then gr X* =
Doczer® X" € C. Let fo_ = dimgr® X*. There is a well defined quadratic form
Q : gr X* — k such that Q(z) = Q(d0) + >_,5,(E—a,Ta) where x = 3 x, (with
xq € gr* X*) and 1y, is a representative of zp in X 2t The symmetric bilinear form
associated to Q is Y., Ta, Dy T > Doy iy (Fa, 4) Where z, € gr* X*, z) € gr’ X*
and ., @, are representatives of x4,z in X% X=° This form is denoted again
by (, ); its radical is the image of R under XZ° — gr®X*. It follows that Q
is nondegenerate. It is clearly compatible with the grading. Hence f, = f_, for
any a.

Now let N € EZ2X*. For any a, N restricts to a linear map X=>¢ — X=>*2 and
XZzatl _, X29+3 hence it induces a linear map gr* X* — gro+2 X*. Taking the
direct sum over a of these linear maps we obtain a linear map N : gr X* — gr X*.
We have N € E?2gr X*. (If x € gr*X*,y € gr’X* and i,y are representatives
for z,y in XZ% X2b the sum (Nz,y) + (x + Ny) is 0 unless a +b +2 = 0
in which case it is (Ni,y) + (& + Ny) = —(Nz, Ny) which is again zero since
Ni € X242 Ny € X202 = X>-0 and (X202, X>~9) = 0. If 2,dx are as
above and a = —1, we have (z, Nx) = (i, Ni) = —Q(Nz) and this is 0 since
Ni € X2 and Q|x>1 = 0.) Thus we have a well-defined map

d:E?2X* - E*grX*, N— N.

Let

d= Z fafa’+ Z fa(fa_l)/z'

a<a’;—a—a’>23 a;—2a>4
We show:
(a) @ is an iterated affine space bundle with fibres of dimension d.

Let V.= @, X be as in 1.4(c). For any integer k > 2 let Zj be the set of
all collections (N{)a,bez;2<b—a<qslantk Where N : X — X? are linear maps that
satisfy:
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(1) <$a7 Nga a’ > + < a’xa’ ’> = - Zb —a’'—22b>a+2 <Nax¢17 Na/bxl’> for any
a # a’ such that 2 < —a —a’ <k and any z, € X, :E/GX“
(i) (@a,N?o2a) = —Q(Ngwa) — Zb<0;—a—2>b>a+2 <Nb IaaN_bza> for any a
such that 4 < —2a < k and any x, € X%
(iit) (z_1, Ny 'z_1) =0 for any x_; € X1,

For large k we may identify Z, = EZ2X* by (N2) — N, Nz, = Pbpzate VoTa
with z, € X Moreover, we may identify Z, = E?gr X* in an obvious way. We
have obvious maps Zy > tsZs > tsZy > ts---. These maps eventually become the
identity map of EZ2X*; their composition may be identified with ®. It is enough
to show that for any k& > 3 the obvious map Z; — Zj_1 is an affine space bundle
with fibres of dimension

dk: Z fafa’+ Z fa(f

a<a’;—a—a’'=k a;—2a=k

We shall prove only that the fibre of this map at any given point of Z;_; is an
affine space of dimension di. This fibre may be identified with the set of all
collections (N{)a,bez;p—a=k Where N : X¢ — X? are linear maps that satisfy (i)
with —a — a’ = k, and (ii) with —2a = k. (In these equations the right hand
sides involve only the coordinates of the given point in Zx_1.) In equation (i) with
a # a,—a—da =k each of NEG,NEG, determines the other. So the solutions
of this equatlon form an affine space of dimension f,f,. If k € Z’' there are no
further equations. If k € Z”, in equation (ii) with —2a = k the right hand-side
is a known quadratic form on X® and the solutions N, form an affine space of
dimension f,(f, —1)/2. This completes the proof of (a). O

We show:

(b) 1+ EZ2X* C SOq.

To prove this we may assume that |k| = co. Since 1 € 1 + EZ2X* C Oq
it is enough to show that EZ2X* is irreducible. Using (a) we see that it is
enough to show that E2gr X* is irreducible. From the definitions we see that
E?%gr X* is an affine space of dimension Ya<ar—a—ar=g fafar + f-1(f-1 = 1)/2.
This proves (b). O

We set EZ?X* = &1 (E2gr X*). From (a) we see that:

(¢) EZ2X* is (via ®) an iterated affine space bundle over E2gr X* with fibres
of dimension d.

Using this and the results in 1.3 we see that if EZ>X* # & then (fa)acz 18
admissible.

In the remainder of this subsection we assume that k, g are as in 1.2 and that
(fa)aez is admissible. From (c) we see that:

(d) [BZ2X*| = ¢*|EZer X*|.

We denote |[EZ*X*| by By, if D € Z', by B, | if D € ZZ, and ng = ¢. From
(d), 1.3(e), 1.2(a),(b) we see that:

(e) Let Y =By if fo€ Z', Y = %Efa) if fo€e 2", Y, fa >0, e {1,-1}.
Then'Y is a polynomial in q with coefficients in Z independent of q or p.
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Note that if D € ZZ, we have ng = ng.

1.6. In the remainder of this section we assume that D > 2. Let FP be the set of
all collections (f,)acz of natural numbers such that ) f, = D, f, = f—, for all
a and the admissibility conditions 1.3(b),(c) hold. When D € Z"”, let J be the set
of SO(V)-orbits on Jq (if [k| = 00) or on Jj for Q as in 1.1 (if |k| < 00); note
that |J| = 2; in this case let
FE =) €FP | fo=0}, FP ={(fa) € F* | fo >0},
FP=FPu(J x FP).

When D € Z' we set FP = FP. For ¢ € FP of the form (f,) or (j,(fa)) (where
j € J), let Y, be the set of all Q-filtrations X* of V' such that dim gr* X* = f, for
all a and (in the case where ¢ = (j, (fa))), X° = X! € j; let J, be the set of all
pairs (X*, N) such that X* € Y and N € EZ?X*. Note that Vs is a partial flag
manifold of SOg. Moreover, the obvious map Vs — )7¢ has fibres EZ2X* which
are smooth (if |k| = oo) since EZ2X* is open in the affine space EZ2X*. We see
that YV is naturally a smooth variety (if |k| = c0).

Define ¥ : | |,c 70 Yo — {9 € SOq | g unipotent} by (X*,N) — 1+ N for
(X*,N) € Y,. This is well defined by 1.5(b).

Theorem 1.7. In the setup of 1.6, ¥ is a bijection.

An equivalent statement is:

(a) For any unipotent element g € SOg there is a unique Q-filtration X* of V
such that g — 1 € EZ?X*.

It is enough to prove this in the case where |k| = co. The proof is given in 2.12
and 3.3.

For any ¢ € FP let =5 = WU(Ys). The theorem shows that the sets =, form a
partition of the variety of unipotent elements in SOg and that, for any ¢ € F D,
O restricts to a bijection Yy — E4. One can show that if [k| = oo this is an
isomorphism of the smooth variety Vg with a subvariety of the variety of unipotent
elements of SO¢. Note that if [k| = oo then each ), is nonempty hence each = is
nonempty. (If |k| < oo then Zg4 is nonempty unless D € Z", ng = —1, ¢ € J x ]?OD
in which case it is empty.) In the case where k| = oo and p # 2, the subsets =,
are exactly the unipotent conjugacy classes in SOq. If p = 2, the subsets =4 are
unions of unipotent conjugacy classes in SOg but not necessarily single conjugacy
classes; see Section 4.

1.8. In the setup of 1.6 we assume that k, g are as in 1.2. We assume that Theorem
1.7 holds. Let ¢ € FP. Assume that if D € Z”, ng = —1, then ¢ € FP. We have:

(2) [Vs| = 1P|l EZ2X 7]
for any X* € V. We denote |Vy| by By if D € Z'; by B, if D € Z” and ng = €.
From (a) and 1.5(e) we see that:

(b) Let?:%(ﬁ if D € Z';f/:%; if D € Z" and ng = . Then Y is a
polynomial in q with coefficients in Z independent of q or p.
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1.9. Let N € MQ — {0},e = ey. We have e > 2. Let E be a complement to
ker N¢~! in V. We show:

(a) The (—1)¢t-symmetric bilinear form (,): E x E — k given by (z,y) =
(x, N~ 1y) is nondegenerate.

Assume that vy € E, (vg, N"1E) = 0. Then (N 1vg, E) = 0. Also,
(N Lo, ker Ne71) = 4(vg, N ker N“1) = 0.

Thus (N° tvg, E + ker N¢=1) = 0, that is, (N®"lvg, V) = 0 hence N°*~tvy € R.
Using 1.1(a) we deduce N¢ vy = 0. We see that vy € ker N“1 N E = 0. This
proves (a).

We show:

(b) The linear map E®¢ — V given by (vo,v1,...,Ve—1) — vo + Nvg + -+ +
Ne¢=Yo._1 is injective and ( , ) is nondegenerate on its image W := E + NE +
4 NIE.

Assume that v = vg + Nvg + -+ + N Lo, with v; € E satisfies 0 = (v, E) =
(v,NE) = --- = (v, N°"1E). We must show that vy = 0 for k € [0,e — 1]. We
argue by induction on k. Assume that k € [0,e — 1] and that vy = 0 for &' < k.
From 0 = (v, N*"'7FE) we get (N*v, N°“17*E) = 0 hence (vx, F) = 0 hence
vr = 0 (using (a)). This proves (b).

We show:

(c) We have V=W @Y (W asin (b), Y = WL), RCY andY is N-stable;
moreover, N°~1Y = 0.

The first assertion follows from (b). Now let € Y. We can write z = 2’ 4+ 2"
where 2’ € E, 2" € ker N°~!. We have N1z = N°~'2/ ¢ WNY hence N* 'z =
0. This proves (c).

2. The case p = 2

2.1. In this section we prove Theorem 1.7 assuming that p = 2. In this case the
symmetric bilinear form (, ) associated to @ is symplectic. Let N € Mg.

For i > 1 we define AN : ker N' — k by z + (2, N*"'z)1/2. Note that AN =0
if i € Z’ and A is linear for any i.

For i > 1 we define ¥ € {0,1} by ¥ =0 if AV =0, €V = 1if A} # 0. Note
that €Y =01if i € Z'.

2.2. Let N € //\/IVQ —{0},e=en. We have e > 2. Let A = A\YY. Define a subspace
L =Ly of V by

L=NV if A\=0,

L= (ker\)t ifA#0,R=0,

L={z¢c (ker )" | g(z) =0} if \#0,R#0.

If A 2 0 then ker A is a hyperplane in V' containing R; thus L is a line if R = 0.
If A #0, R # 0 then K := (ker \)* is a two dimensional subspace containing R so
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that (, ) is zero on K. Hence ¢ : K — k is a group homomorphism which restricts

to a group isomorphism R — k hence induces a group isomorphism K/L — k. We

see that K = L @ R. Thus L is a line complementary to R in K and ker A = L*.
We show:

(a) L C Lt

Assume first that A = 0. By 1.1(b) it is enough to show that N~V C ker N¢~1
which is clear since 2e — 2 > e. If X # 0 then (a) is clear since L is a line.
We show:

(b) If A # 0, then L C N*~Y(L*Y) if and only if N~V € C".

Define a symmetric bilinear form (, ) on V by (y,9) = (y, N~ 1y/). We have
Rad( ) ={y € V| N“"'y € R} = ker N*~! (since N 'V N R = 0). We have
My) = (y,y)Y/2. Since AlRad,, = 0, we can find v € V' such that (v,y) = A(y),
that is, (N“"1v,y) = A(y) for any y € V. Since A # 0 we have N°~1v ¢ 0. Clearly,
if y € ker A then (N°"1v,y) = 0. Thus N°1v € (ker \)*.

The symmetric bilinear form (, )o on V given by (y,v")o = (v,¥") + AMy)A(y')
is symplectic: for y € V we have (y,y)o = (v,y) + A(y)? = 0. Since A|yxer ye-1 =0
we see that Ry := Rad( ), contains ker Ne¢=1. Since (, )o is symplectic we have
dim Ry = D mod 2.

Assume now that N¢7'V € C”. Then dimker N"! = D mod 2. Hence
dimker N¢~! = dim Ry mod 2, that is, Ro/ker N~ € C"”. If Ry # ker N~}
then dim(Rp/ker N¢~1) > 2. Hence the kernel of the linear map Ro/ker N1 — k
induced by A : Ry — k is nonzero. Thus there exists u € Ry such that u ¢ ker N¢~!
and A(u) = 0. For any y € V we have 0 = (y,u)o = (y,u) + A(u)A(y) = (y,u) so
that v € Rad( ) = ker Ne—1. This contradiction shows that Ry = ker N¢~!. Since
Ne¢=ly #£ 0 we have v ¢ ker N°~! hence v ¢ Ry. Thus there exists v/ € V such
that (v,v)g # 0, that is, (v,v") + (v,v)(v,v") # 0. It follows that 1 + (v,v) # 0.
Moreover we have 0 = (v,v)o = (v,v) + (v,v)(v,v) so that (v,v)(1 + (v,v)) = 0.
Since 1+ (v,v) # 0 we deduce that (v,v) = 0, that is, (v, N°"1v) = 0. We have
Q(Ne~ly) = (N=2y, Ne~ly) = (v, N?**73v). If e > 3 this is 0 since 2¢ — 3 > ¢;
if e = 2 this equals (v, N 'v) which is again 0. We see that N°~!v is a nonzero
vector in ker(Q : (ker \)t — k). Hence N*~'v € L — 0. Since L is a line we see
that L is spanned by N lv. To show that L C N¢~!(L%) it is enough to show
that v € L* or that (v, L) = 0 or that (v, N"1v) = 0. But this equality is already
known. We see that L C N°~1(L1).

Conversely, assume that L C N¢"!(Lt). Let x € L — 0. We have x = N¢ !t
with (¢, L) = 0. In particular, (t,z) = 0, that is, A(t) = 0. Since z € L we have
z € ker A\ = (z,z) = 0. Hence there exists ¢ € k such that (z,z) = cA(z)
for all z € V. Since z ¢ R we have ¢ # 0. Replacing x by a nonzero scalar
multiple we may assume that (z,z) = A(z), that is, (t,z) = A(z) for all z € V.
Let Ry = Rad( )|...,- If u € Ry then we have w € ker A\ = (u,w) = 0. Hence
there exists ¢/ € k such that (u,w) = A(w), that is, (u,w) = ¢/(¢t,w) for any
w € V. Hence u—c't € Rad( ) = ker N°~*. We see that Ry C kt+ker N, The
reverse inclusion is obvious. Thus, Ry = kt + ker N°~1. We see that (, ) induces
a nondegenerate symmetric bilinear form on ker A\/(kt 4+ ker N¢~1). This induced
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form is symplectic: the equality (y,y")o = (y,¥") + AM(y)A(y’) with (, )o symplectic

shows that (, )lkera = (, Jolkerr- We deduce that ker \/(kt + ker N¢~1) € C”.

Since x # 0 we have t ¢ ker N°~! hence dimker A — 1 —dimker N¢~! € Z”| that is,

D—2—(D—dim N“71V) € Z”. We see that N~V € C”. This proves (b). [
We show:

(c) We have L C N¢~'V + R. More precisely, we have L C N1V except
possibly in the case where V € C', A #0,e =2,cN € Z'.

If A = 0 this is obvious. Assume now that A # 0. Since ker N~ C ker A
we have (ker \)* C (ker N*~1)* and using 1.1(b), (ker \)* C N*~'V + R. Since
L C (ker \)* we have L € N°“'V + R. If R = 0 then clearly L C N°~'V. If
e > 3, R # 0 we have Q|ye-1y = 0; indeed for v € V we have Q(N¢ 1v) =
(Ne=29, N~1v) = (v, N?¢739) = 0. Hence if x € L is written as x = N lv + o/
with v € V;v' € R then 0 = Q(z) = Q(v'). But Q(v') =0, v’ € R implies v’ =0
hence * = N°"lv and L € N~ V. If ¢ € Z” then we have L C N~V by (b).
This proves (¢). O

We show:

(d) NLC L, N(L*)cCL*.

From (c) we see that NL = 0 (since N® = 0 and NR = 0). Thus the first
inclusion holds. The second inclusion follows from the first. O
We define a subset Mg of Mg as follows:

Mo=Mg ifVec,
Mo ={NeMg|kerNecC"} ifVecC

We show:
(e) If N € Mg — {0}, then Q| = 0.

If R # 0 the result is obvious. Now assume that R = 0. If ¢ > 3 we have
Q|ne—1v = 0 as in the proof of (¢). The same argument shows that Q|ye-1y, = 0 if
A=0.Ifx=0ore>3wehave L C NV see (c), hence Q| = 0. Thus we may
assume that A # 0,e = 2. Since ker N € " and V' € C” we have NV € C”, that
is, N7V € C”. As in the proof of (b) we see that L is spanned by N¢~1v (v as in
that proof) which is contained in ker(Q : (ker \)* — k); the result follows. [

2.3. Let N e Mg —{0},e=en, A = ML =Ly. Wehavee > 2. Weset V' =
Lt /L, see 2.2(a). From 2.2(d) we see that N induces a (nilpotent) endomorphism
of V', denoted by N’. Let ¢/ = enr. If A =0 we have ¢/ < e —1;if A # 0 we
have ¢’ < e. Define a quadratic form Q' : V' — k by Q'(z') = Q(z) where z is
a representative of ' € V' in Lt. (To see that Q' is well defined we use 2.2(e).)
The symplectic form associated to @ is {2/, y") = (z,y) where 2/,y' € V' and z,y
are representatives of /.y’ in L*. Its radical is

{re Lt |(z,L*)=0}/L=(L+R)/L.

It follows that @’ is nondegenerate. We have N’ € MQ/. We show:
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(a) N’ € Mgy

To do this we may assume that V' € C”. Then R = 0. It is enough to show that
dimker N’ = dimker N mod 2. We have ker N’ = {x € L+ | Nx € L}/L. We
have an exact sequence

0L %kerN 2 {zelt | Neell/LSLAN(LY) =0,

where a is the inclusion, b is induced by the inclusion ker N ¢ L+ and ¢ is induced
by x — Nz. Thus dim L — dimker N + dimker N’ — dim(L N N(L1)) = 0 and it
is enough to show that dim L = dim(L N N(L*)) mod 2.

Assume first that A # 0. We show that L C N (L") (this implies that dim L =
dim(L N N(L1Y))). If e = 2 this follows from 2.2(b). (We have NV € C” since
ker N € C” and V € C"”.) Assume now that e > 3. Since R = 0 we see from
2.2(c) that L is spanned by N¢ 1z for some x € V. It is enough to show that
Ne¢=2g € Lt; since e > 3 it is enough to show that NV C L™; this is clear since
L+ is N-stable of codimension 1.

Assume next that A = 0. We must show that

dim N7V = dim(N°"'V N N(ker N°7!))  mod 2.

If e > 3 we have N7V C N(ker N°~!) hence dim N~V = dim(N¢~'V N
N(ker N¢71)). If e = 2 we have N(ker N°~!) = 0 and it is enough to show that
NV € C”. But this follows from ker N € C" and V' € C”. This completes the proof
of (a). O

2.4. Let N € Mg —{0}. Let e, A\, L, V', N’, @’ be as in 2.2. Properties (i)—(iii)
below describe the invariants ¢’ N of N !

(i) Assume that A = 0. We have N =0; Ny =Ny 4N Gfe > 2);
=cNifi#e, 17&6—2 eN fefvforanyi

(ii) Assume that X # 0 and Y € Z". Then ¢ =N —2; N = eV | 4+ 2;

cf-v,:cfvfori;éeJ;ée—l;eéV,:0;6£V/= foranyz;ée

(iii) Assume that A # 0, Y € Z'. Then Y =Y —1; ce o =Ny +1 (f

e>2);c£v/:cZ]-Vfori;«éeJ;ée—Q;ee =0; Ny =1 (if e>2);
N = €N for any i ¢ {e,e —2}.

We have N’ 1V/ = (N~ Y(LY) + L)/L = N~} (L) /(N=Y(LY) N L).

If A = 0 we have L+ = ker N°~! and N*"}(Lt) = 0. Hence N'*"'V’ = (0 and
cﬁv/ =0fori>e.

If A # 0 and N°~1V € C” (that is ¢)¥ € Z") we have L C N¢~1(L*) (see 2. 2(b))
so that N'¢~1V/ = Ne~Y(L1)/L. If x # 0 and N°71V € ¢’ (that is, ¢¥ € Z') w
have L ¢ N¢1(L1) (see 2.2(b)) and, since L is a line, we have N~ 1(LJ-) NL= O
and N'¢71V’ = N¢1(L1). We have an exact sequence

0—kerN“'np+ -t M,

NeE™ 1 (LL) 0.
Now ker N¢~1  ker A = L+ hence this exact sequence becomes

0 — ker N°! — ker A — N Y(Lt) — 0.
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We see that

dim N¢~1(L*) = dimker A — dimker N°~! = dim V — dimker N~ —1 = ¢V — 1,
so that ¢ = dim N'¢~1V’ equals ¢y — 1 if ¢ € Z’ and equals ¢ — 2 if ¢ € 2"

We write V.= W @Y as in 1.9(c). Let Ny = N|w, No = N|y. Let us now
assume that we are not in the case

Vel, 40, e=2, NeZ. (%)

By 2.2(c) we have L C N°7'V. Since N°7'Y = 0 we have L C N 'W hence
L C W. Since ker N1 C kerA = Lt and Y C ker N°~! we have Y C L*.
Hence we have, canonically, V! = W’ @Y where W’ = L+ /L’ (and L+ = {z €
W | (z,L) = 0}) with both W'Y, N'-stable. Let N| = N'|y». If A = 0 then
civ_lQ =cVr =¢l and cfvl =0 for i # e — 2. If A # 0 we have either

N! N} N} )
cel=cr—1=c—1, ¢,y =1, ¢, =0 fori¢{e,e—2}

or
N

N N!
! N _9=¢cN_2 ¢ =2, c;

Ce =2C e—1 —

120 for i ¢ {e,e —1};

N’

the formulas for ¢;" in (i)—(iii) follow since

’ N/ N/ .
ci\’ =ci1+civ2= il—&—cf-v fori<e-—1.

(These formulas also hold in the excluded case (x). Indeed in that case we have
cév/ = ¢l — 1 as we have seen already. For i > 2 we have cﬁv/ =0 and cjlv/ +20é\’/ =
dimV’ = dimV — 2 = ¢V +2¢) — 2 hence ¢ = V)

Assume now that [ # 0. We show that €Y' = 0. It is enough to show that if
x € Lt then (x, N“~'z) = 0. This follows from L1 = ker\. We have ', = 0
since e — 1 € Z/. (This determines completely e’ in the case where e = 2.)

Assume that A # 0,¢Y € Z/,e > 2. We show that €', = 1. It is enough to
show that there exists z € V such that N°7?z € L and (z, N°~3z) # 0. (For such
x we have automatically z € Lt since N°~'z = 0 and ker N~ C ker A = L*.)
By 2.2(c) we can find y € V such that N°~1y is a basis element of L. We have
{y, Ne~ly) # 0. (If not we would have y € L+ and L C N¢ !(L') contradict-
ing 2.2(b).) Let # = Ny. We have N2z = N° 'y € L and (z, N 3z) =
(Ny, Ne72y) = (y, N°"1y) £ 0, as required.

We may now assume that we are not in the case (x). We use the decompositions
V=WeaY,V =W &Y as above. The proof of the remaining assertions on ¢; '
in (i)—(iii) is standard. O
2.5. Let N € Mg. We associate to N a collection of subspaces (VZ%),cz =
(Vﬁa)aez of V using induction on D. Let e = en. If N = 0 we set VZ? =V for
a <0, V2e¢ =0 for a > 1. Thus V=2 are defined when D < 1. We may assume

that D > 2, N # 0 and that V=% are already defined when V is replaced by a
vector space of dimension < D. We have e > 2. Let A\, L, V', N’ @Q’ be as in 2.2
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and 2.3. Let p: L — V' be the obvious map. Since L # 0, we have dim V'’ < D.
By the induction hypothesis, V/2% = V2% is defined for any a € Z. If A = 0 we
set

V24 =V fora<l—e; VZ%=p Y (V'?%) for a € [2—e,e—1]; V2 =0for a > e.
If XA # 0 we set
V2=V fora< —e; VZ%=p Y (V') forac[l—ee]; VZ*=0fora>1+e.

This completes the definition of the subspaces V=2,
From the definition it is clear that V291 C V29 for any a. Thus (VZ%) is a
filtration of V. We show:

(a) If a > 1 we have Q|ysa = 0 and VZ172 = (VZo)L,

We use induction on D. For N = 0 the result is obvious. Thus the result holds
when D < 1. Now assume that D > 2, N # 0. Let A\, L,V’,Q’, N’ be as above.
By the induction hypothesis we have Q| >« = 0 and V'3, "% = (V/37)*" with *

N/

relative to V’. Tt follows that Q|y >« = 0 and VZ17¢ = (V29)L fora € [1,e—1] (if
A=0) and for a € [1,¢] (if A # 0). For a > e (with A = 0) and for a > 1 + e (with
A # 0) the result is again true since Q|ro; = 0 and {0} = V. This proves (a).
U

2.6. Let N € Mg —{0}. Let \, L, V', N, @', ¢’ be asin 2.2 and 2.3. Let p: L+ —
V' be the obvious map. Define 1’ in terms of V' in the same way as L is defined
in terms of V. If ¢/ > 1 we set \' = /\é\f,. If ¢/ > 2 we define L', V" N" Q" e’
in terms of V', N’ Q' in the same way as L, V', N’, Q' ¢/ were defined in terms of
V,N,Q. If e’ >2and e’ > 1 weset \' = )\é\,’/”.

Let V=W @Y be as in 1.9(c). For a subspace Z of Y let Z" = {y € Y |
(v.2) = 0}.

In the case where A = 0, = e—1 > 2, ) # 0 we can view L' as a line
in Y as follows. We have N1V C W, Y C ker N°°! hence V! = W @Y
where W’ = (ker N~ N W)/N¢~1V. Since W’ C ker N'¢"2 C ker N we have
(ker N)Y c W't =Y. Hence I/ C Y and L't = W' @ L'".

In this subsection we describe explicitly V' Z¢ for certain a.

(i) If A # 0 then V=€ = L.

We have e’ < e. If ¢/ < e then V'Z¢ = 0. If ¢’ = e then (using 2.4(ii), (iii)) we
have €' = 0 hence X = 0 and V'>¢ = 0. Hence V> = p~1(0) = L.

(ii) If A #0,¢ < e then V>—1 = L.

If e/ <e—1then V2671 = 0. If e/ =e —1and N = 0 then V/Z¢~! = 0. If
e/ = e—1and \ # 0 then ¢, e are even, contradiction. Hence V¢! = p=1(0) = L.

(iii) If A = 0 and either ¢’ <e—2 ore’ =e—1,N =0 then VZ¢~1 = N7V,

If e/ < e—2wehave V'Z¢~1 = 0. If ¢/’ = e—1,\ = 0 we have again V'>¢~! = (.
Hence VZ¢~! = p=1(0) = L = N°71V.
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(iv) If A\ #0,¢ = e then VZ¢~1 = Ne“1LL + L C ker N.
Using 2.4(ii), (iii) we have A’ = 0. Hence € < ¢’. If either ¢” < ¢ — 2 or
e’ =e¢e — = 0 then from (ii1) applied to we get V'Z¢T0 = - an
/" / 1’ 2\ 0 th f () pp1~ d V/ g V/>e 1 N'e 1V/ d
the result follows. If €” =€’ — 1, X’ # 0 then €”, e are even, a contradiction. We
have NVZ¢~1 =0 since N® =0 and NL = 0.

(v) If A =0 and eithere’ <e—3 ore' =e—22>21,N =0o0re=2,¢ =0 then
Vzer? = NV,

Ife! <e—3then V'2¢2=0. Ife’! =e—2>1,) =0then V272 =0. If
e=2,¢/ =0then V' =0 and V'2¢72 = 0. Hence V=72 = p=}(0) = L = N°~'V.

(Vi) IfFA =0,/ =e—1,N #0 then V> ! ={z € V | N1z =0, (v, N°22) =
0} Ng='(0),

vZel = NV @ L' C ker N.

By (i) for V/ we have V/2¢~! = [/ = {z € V' | (z, N°"2z) = 0} n¢ ~1(0).

Hence

vZel —ker N ' n{z eker N1 | (z, N°"2z) = 0}L ng™1(0).
In the last equality of (vi) we regard N°~'V as a subspace of W and L’ as a

subspace of Y (as earlier in this subsection).

(vii) If A = 0,e/ =e—2 > 1,\N # 0 we have V272 = {z € V | Nelz =
0,(z, N°73z) = 0}+ C ker N.

By (i) for V/ we have V'>¢=2 = {/ € V' | {2/, N’*"32/)0}" N Q'~1(0). Hence
VZe 2 =ker N ' n{x € ker N7 | (z, N°32) = 0} nQ~1(0).

We have NV C {x € ker N°~1 | (z, N3z) = 0} since A = 0. Taking | we obtain
{z € ker N1 | (x, N 32) = 0} C ker N. Since ker N C ker N°~! we see that
V2¢72 is as required.

(viii) If A = 0,/ = e — 1,N # 0,e” < e — 1, we have V=¢72 = {2 € V |
Nelz =0, (z, N 22) =0} NQ~1(0) C ker N.

By (i) for V' we have V/Z¢=2 = {2/ € V' | (z/, N'*"22/)0}+ N Q'~1(0). Hence
V22 =ker NN {z € ker N7 | (z, N°"2z) = 0} n Q™ 1(0).

We have NV C {x € ker N¢~! | (z, N°"?z) = 0}. Taking L we obtain {z €
ker N~ | (z, N°=2x) = 0}+ C ker N. Since ker N C ker N°~! we see that V=2

is as required.

(ix) If A =0, =e—1,N =0 and either ¢ =1 ore > 3, < e —2 or
ex=3,e =¢ —1,\" =0 then V>°72 = N° 2(ker N7 1) + N~V C ker N.

By (iii) for V'’ we have V'Z¢=2 = N’¢=2V/’. Hence V>°2 is as required.

(x)IfA=0,¢/ =e—1,\N #0,e" =€, then V>¢2 = N“IWa (N 2L'"+ L") C
ker N.
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Here we regard N~V as a subspace of W and L’ as a subspace of Y (as
earlier in this subsection). Then N¢~2L'" + L’ is a subspace of Y. By (iv) for
V' we have V/2¢=2 = N'e=2[/L" 4 [/ Since N’ 2W’' = 0 we have V/Z¢"2 =
N'e2[/F + I/ C Y and V22 = N7V @ (N°72L'" + L'). By (iv) for V' we
have N(N¢~2L'F + L') = 0. Hence NV=¢2 = (.

(xi) If A\ =0, =e—1,e >3\ =0, =¢€ —1,\ #0 then V=2 =
N W a({bey | N2 =0, (b, N“3b) = 0}~ N g~1(0)) C ker N.

By (vi) for V' we have V'>¢~2 = U'+'NQ'~1(0) where U' = {x € V' | N'¢" 2z =
0,(z, N'*732' = 0}. We write V' = W/ @Y as in the proof of (x). We write the
condition that x = a + b with a € W’/,b € Y is in U’ in terms of a,b. Note that
N’¢=2g =0 and (a, N'*"3a) = 0. (The last equality follows from a € W, N¢~'q =
0 = (a,N°%a) = 0. Indeed we have a = Nc with ¢ € W and (a, N°~3a) =
(Nce,N*=3Nc) = (¢, N Ic) = 0 since A = 0.) We see that U' = W/ @ {b €Y |
N2 = 0, (b, N°~3) = 0} and

Vl)ef2 _ {b cY ‘ N672b —_ 07 <b, N€*3b> — 0}’_ N Qlfl(o)’
Vo Nl g ({be Y | N“2b =0, (b, N°3b) = 0}~ N Q~1(0)).

By (vi) for V' we have N({b € Y | N2b = 0, (b, N<=3b) = 0}~ 1 Q~1(0)) = 0.
Hence NV2e¢—2 = (.

2.7. Let N € Mg,e =en. Let V> be as in 2.5. We show:
(a) NVZ2 C V29*2 for any a € Z.

When N = 0 the result is obvious. Now assume that N # 0. Then e > 2. Let
AL,V N, Q' be as in 2.2 and 2.3. We may assume that (a) holds when V|, N
are replaced by V’, N’. We may assume that (a) holds when V, N are replaced by
V/,N'".

Assume first that A = 0. If @ > e then V2% = 0 and (a) is obvious. If
a € {e—2,e—1} then NVZ% =0 by 2.6 and (a) holds. Assume now that a = —e
or that @ = 1 — e,e > 3. To prove (a) in this case it is enough to show that
NV C V292 that is (using 2.5(a)), NV C (VZ~179)L or that NT(V>"172) € R.
This follows from N(VZ717%) = 0 which has been noted earlier. If a = —1,¢e = 2
we have NV = V292 and (a) holds. If a < —1 — e then V22 = V and (a)
is obvious. If 2 —e < a < e — 3 then V2 = p~1(V'29) V=2at2 = p=1(y/=>a+2)
(notation of 2.5). Since N'V'Z% C V'Z%*2 we see that (a) holds.

Assume next that A # 0. If a > e+1 then V2% = 0 and (a) is obvious. Ifa € {e—
1,e} then NVZ® = 0 by 2.6 and (a) holds. Assume now that a € {—e, —1—¢}. To
prove (a) in this case it is enough to show that NV C V=92 that is (using 2.5(a)),
NV c (VZ71=9)L or that NT(V>~179) € R. This follows from N(V>717%) =0
which has been noted earlier. If a < —2 —e then V2212 =V and (a) is obvious. If
1 —e < a<gslante — 2 then V= = p~1(V'29), V2at2 = p=1(V'2a+2) (notation
of 2.5). Since N'V'Z% C V'29%2 we see that (a) holds. This proves (a).

For any a € Z we set V? = V=2/V2%%+1 From (a) we see that N induces a
linear map N : V¢ — Vaot2,
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2.8. In the setup of 2.6 taking L in 2.6(i),(iii),(vi) we obtain:
If A\ #0 then VZ17¢ = L+,
If A\ =0 and either ¢/ <e—2 ore' =e—1,\N =0 then V>27¢ = ker N°~ 1.
IfA=0,e =e—1,N #0 then VZ2=¢ = (ker N1 N W) @ L'".

2.9. For any a > 0 we set K, =ker N®: V=% — V% For any a € Z’;Q we define a

quadratic form Q, : V=% — k by Qqu(z) = Qo(N*2z). (Note that N/2z € V°.)
If & is a representative of x in VZ~% we have

Qu(z) = QINY/%i) = (N*/271i, N*/2i) = (i, N7 + N0 + - ),

where ¢ € k. If f > 0 we have (z, Ne"fz) = 0 since (V=79 V=e+2f) = .
Moreover,

(z, Noz) = (N2 + ¢ N2l ... N2g)
= (N g ... NY2g) = ¢/ (x, N“Tlz) = 0,

where ¢’ € k. Hence
Qa(z) = (&, N“"1i).
Let {, )4 be the symplectic form on V=% associated to Q,. Thus

<$,$I>a — <Na/2$,Na/2.’L‘l>0
for z, 2’ € V2. If &, i are representatives of , 2’ in V>~% we have
(z,2")q = (NV25, N2y = (&, N%' + eNTHi! +..) = (&, N%') = (z, N°2').

(We use that (VZ7%,V>%"2) = 0.) Let R, be the radical of (, ),. If 2/ € R, then
(x, N2’y =0 for all x € V~% hence N%’ = 0. Thus R, = K,. We show:

(a) If a € Z' we have K, = 0. If a € ZY,0 then Q, is nondegenerate; hence
dim K, € {0,1}.

If N =0 we have V=72 = Voi1—a = V hence V% = 0 so that K, = 0 as
required. Now assume that N # 0 so that e > 2. Let A\, L, V', N, Q" be as in 2.2
and 2.3. Let V'%, N’ Q' be the analogues of V¢, N, Q, for V', N’ instead of V, N.
We may assume that the analogue of (a) holds when V, N is replaced by V', N’.
If \#0,a >eorif A\ =0,a > e we have V=% = 0 hence K, = 0 as required. If
A#0,a=ewehave V¢ =V/Lt V¢ =L bN°®=0hence K, = V/L*. We must
show that @, is not identically zero. It is enough to show that & +— (&, N a=lg)
is not identically zero on V; this holds since A # 0. If A = 0,a = e — 1, N, =
then V17¢ = V/ker N¢=1 Ve=l = N*=1V and N*: V=% — V%is an 1somorphlsm
hence K, = 0, as requlred fA=0,a=e—1, 667/1 = 1 then with the notation
of 2.6(vi), 2.8 we have V1=¢ = W/(ker N W)@ Y/L'", V¢=t = N~V @ L/;
now N¢~1 restricts to an isomorphism W/ (ker N¢~1|W) — N¢~1V and to the zero
map Y/L'" — L' (since N°~'Y = 0). Hence K, = Y/L'". We must show that
Q. is not identically 0 on Y/L'" or that = +— (x, N*~2z) is not identically 0 on Y.
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But this follows from ¥, = 1. If A £ 0,a € [l,e—1] orif A\ =0, a € [1,e — 2], we
have V=% = V/=¢ Ve = V’'% We can identify N'* = N® and (1f a€Z") Q, with
@!,. Hence the result follows from the induction hypothesis. If a = 0 the result is
obvious. This completes the proof.

We show:

(b) Assume that a € Z2,. We set ¢o = |{b € 2" | ¢} € Z',b > a}], & =
dimK,. We have ¢y €¢ Z' = ¢ =1; N € 27,¢, € Z' = ¢, = 1;
N €l po €L = Lo =€

If N = 0 the result is obvious. Now assume that N # 0 so that e > 2. Let
A VIUN' Q' be as in 2.2 and 2.3. Let &, ¢/, be the analogues of &, ¢, for V', N’
instead of V, N. We may assume that the analogue of (b) holds when V| N is
replaced by V/,N'. If A # 0,a > e or if A = 0,a > e we have (by the proof of
(a)) & = 0, as required. If A # 0,a = e we have (by the proof of (a)) & =1
as required. If A = 0,a = e — 1 then (by the proof of (a)) & = €', = €V | as
required. In the remainder of the proof we assume that either A # 0,a € [1,e — 1]
or A\ =0, a € [1,e —2]. Then (by the proof of (a)), & = &,. Using the induction
hypothesis we see that if ¢ € Z”, ¢!, € Z" then &, = ¢,V; otherwise, £, = 1.

Assume first that A # 0. Then e € Z" hence a < e — 2.

Ifa=e—2¢¥,eZ and ¢ € Z then N, € 27, ¢V € Z” and €', = 1 so

6

that 5@—2 =1.
Ifa=e—2, ce , €Z' and ¢ € Z" then ¢ QGZ’ év EZ”sothatfe_gzl.
Ifa=e—2¢Y,eZ and ¢ € Z' then ¢, € Z/, ¢ € Z” and €Y', = 1 s0

that ée_o = 1. Also, ¢e_n = 1.

Ifa=e—2, céV_Q € 2" and ¢ € 2" then ', € 2, cév/ €2 2oy =eN,=
N,

If a < e — 4 we have cN/ =cN. If these are odd then £, = 1. If these are even
then ¢, = ¢/, mod 2 (1fc € Z' cN , € Z! then ¢, = ¢}, +2; otherwise, ¢, = ¢,).

Assume next that A = 0.

If a = e—2then ¢¥ € Z” and ¢ = ¢ mod 2. If ¢V, ¢ are odd we have
o =1. Ifcév,cév areevenwehavefa—eN =l

If a < e —3 we have ¢ = ¢N. If these are both odd then &, = 1; if these are
both even then ¢, = ¢,.

We see that (b) holds. O
We show:

(c) If a € ZL,, then the bilinear pairing Ve x V= =k, z,y — (x, N%) is
symplectic; it is nondegenerate by (a). Hence V=% € C".

If N =0 we have V™ = 0 if @ # 0 and (c) is obvious. Assume that N # 0.
Then e > 2. Let A\, V', N be as in 2.2 and 2.3. We may assume that (c) holds when
V, N are replaced by V’,N’. If\#0,a >eorif A\ =0,a > e we have V=% = 0 and
(c) is obvious. The case A # 0,a = e cannot occur sincee € Z”". If A\ =0,a =e—1
then e —1 € Z’ and €Y', = 0; we have V1=¢ = V/ker N~ ! and (x, N°~'z) = 0 for
all . Hence (c) holds. If A # 0,a € [l,e — 1] or if A = 0,a € [1,e — 2], we have
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V=% = V'~% Hence the result follows the induction hypothesis. The case a = 0
does not arise. This completes the proof. O

2.10. Let X* = (X?%)4ez be a Q-filtration of V' (see 1.4). Let N € Mg, e =ep.
We say that X* is N-adapted if conditions (i)—(iii) below hold:
(i) NXZ%C X292 for any a;
For any a > 0 let K, be the kernel of the map v* : gr ¢X* — gr¢X*
induced by N®. We state conditions (ii) and (iii).
(ii) for any a € Z%; we have K, = 0;
(iii) for any a € ZZ, we have K, = 0 or dim K, = 1; in the latter case the map
Ko — k, z+— (2, N*1%) is a bijection.
(For = € gr* X* we denote by i a representative of x in X=%.) Note that
(V>%)4ez is N-adapted where V=% = V2. We show:

(a) If (X?%)4ez is an N-adapted filtration of V then XZ% = V=% for any a.

If V= 0 the result is obvious. Now assume that V' #£ 0. f N =0and a > 1
then v : gr X* — gr®X* is 0 and K, = 0. Hence XZ% = X9+l and X>7¢ =
XZ70Fl g0 that we have X?! = X?2 = ... =0and X590 = X5 = --- =V as
required. We now assume that N # 0 hence e > 2. Let A\, L, V', N’,Q’, p, €' be as
in22and 2.3. If ¢ > 11let N’ beasin 2.6. If ¢ > 21let Y, L', L' be as in 2.6. We
may assume that (a) holds when V| N are replaced by V', N'.

Ifa>e+lorifa=e =0, then v*: gr ?X* — gr*X* is 0 and K, = 0.
Hence X2 = X2t and XZ~¢ = X2t g0 that if A = 0 we have

X?e=X>"=...=0 and X1 =Xy ==V
if A # 0 we have
Xzl =X =...=0 and Xs_e=Xs_1_=--=V.

Hence XZ* =V>%ifa>e+lorifa=e,A=0orifa < —corifa=1-e, A =0.

Assume that A # 0. Then K, is the kernel of 0 = v : V/XZ17¢ — X>° that
is, K. = V/XZ17¢. Also K. — k, # — (i, N°"1&) is not identically zero hence
dimV/XZ17¢ = 1. Since for z € gr'=¢X* we have @, N°"1i) = 0 we see that
XZ1=¢ C ker A = L+. Since dim XZ!7¢ = dim L+ we see that XZ!7¢ = Lt. We
have X=¢ = (XZ17¢)L N Q~1(0) = L as required.

Next we assume that A = 0. Then K._1, the kernel of v¢ : V/X>27¢ — X=>e~1
is

{reV/X?|N“'ie X =0} ={z e V/X*°|N“""i=0}
=ker N1/ X>%7¢,

If ¥, = 0 then (i, N°"2i) = 0 for x in this kernel, that is, for * € K._;.
Hence in this case we have K._; = 0. Thus N° ! induces an isomorphism
V/XZ27¢ — X271 g0 that XZ¢7! = N1V, X227¢ = ker N°"!, as required.
We have X>27¢ = (X2~ 1)L = (V2e~ 1)L = V22-¢ a5 required.

Now assume that A = 0,eY; = 1. In this case we have an isomorphism
ker N°~1/X27¢ — k induced by AY ;, that is, we have

e—1>

X727 ={reker NV | NV 2 =0}
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This is the same as (ker N"!NW)@ L' = V>27¢ see 2.8. Taking L in X>27¢ =
V>2-¢ and intersecting with Q~1(0) we obtain X=¢~! = V=¢-1,

If A\ =0,a € [2—e,e—1] we have N1V C X% C ker N°~! and we denote
by X’Z% the image of XZ¢ under p : ker N1 — V' = ker N°"!/N°~1V. For
a<1—eweset X'2%=1V"'and for a > e we set X’>? = 0. Now (X'?%),¢z is an
N’-adapted filtration of V’. (We must only show the analogue of (ii) and (iii) for
N’ with a = e — 1. We have X'Z!17¢/X'>27¢ = ker N¢~1/X>27¢; this is Y/L'" if
€ =e—1,)N # 0 and 0 otherwise. We have X'Z¢~!/X'>¢ = X>¢~1 /Ne=1V This
is L' if ¢ = e—1,X # 0 and 0 otherwise. Hence (ii) and (iii) are obvious in this
case.) By the induction hypothesis we have X'Z% = V' 12\,“ for all a. Taking the
inverse image under p we see that for a € [2 — e, e — 1] we have XZ¢ = V>4,

If \ # 0,a € [1 —e,e] we have L C XZ% C L+ and we denote by X’>? the
image of X2 under p : L+ — V' = L+ /L. For a < —e we set X’?% = V' and
for a > e+ 1 we set X' = 0. Now (X'?%),¢cz is an N’-adapted filtration of V.
(We have X'Z~¢/X'?1=¢ = (, X'?¢/X'?¢T! = (.) By the induction hypothesis
we have X'Z¢ =V’ ]>Va for all a. Taking the inverse image under p we see that for
a € [1 — e, e] we have X>* = V=%, This completes the proof of (a). O

2.11. Assume that V € C”. If g € Og and S € Jg, we set §, = dim(S/(SNg(S)))
mod 2. It is known that ¢, is independent of the choice of S and that §, = 0 if
and only if g € SOg.

Let N € MQ. We show that:

(a) 614+n = dimker N mod 2.

If N = 0 this is clear. Assume now that N # 0. Let e = ey, L = Ly. We
have e > 2. Let A, L be as in 2.2. We may assume that V € C”. Assume first
that e > 3. As in the proof of 2.2(e) we have Q| = 0. We set V' = L+ /L. The
nondegenerate quadratic form Q' : V' — k can be defined as in 2.3. The nilpotent
endomorphism N’ : V' — V' induced by N belongs to M¢. As in the proof of
2.3(a) we see that dimker N = dimker N mod 2. We have 614y = d14n. Since
the result may be assumed to hold for N’ we see that (a) holds. We now assume
that e = 2, that is, N2 =0, N # 0.

Assume that A # 0. We can find 2 € V such that (x, Nx) # 0. Then z, Na
span a two-dimensional N-stable subspace P of V on which ( , ) is nondegenerate.
Let V! = P+ and let Q' = Q|y+. Then V = P® V', Q' is nondegenerate and N
restricts to a nilpotent map N’ : V/ — V’. Note that dimker N = dimker N’ + 1
and d14+n = 014N+ + 1 mod 2. Since the result may be assumed to hold for N’ we
see that (a) holds.

Assume that A = 0. We write V=W @Y as in 1.9(c). Then W,Y are N-
stable nondegenerate even-dimensional subspaces of V' with (W, Y’) = 0; moreover,
NY = 0. Hence dimker N = dimker(N|w) +dimY, 0145 = 614N, FY #0
we may assume that the result holds for N|w; we see that (a) holds. Thus we
may assume that ¥ = 0. We have V. = E @ NE with F as in 1.9(a). Note
that dim NE = D/2, see 1.9(b). Since A = 0 we have Q|yg = 0. Clearly NE
is 1 + N stable. We see that d14n = 0. The nondegenerate symmetric bilinear
form on E described in 1.9(a) is symplectic since A = 0. Hence dim E' € Z” and
dim NE € Z". We see that dimker N € Z”. Thus (a) holds.
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From (a) we deduce that for N € Mg we have N € Mg if and only if 1 + N €
SOq.
2.12. We prove Theorem 1.7 (with p = 2) in the form 1.7(a). Let T € SOg be
unipotent. Then N =T —1€ Og and by 2.11 we have N =T —1€ Mg. In 2.5
we have attached to NV a Q-filtration X* = (V]?a) of V. In 2.7 and 2.9 we have

shown that N € EZ?X*. In 2.10 we have shown that the last property determines
X* uniquely. Thus 1.7(a) is established. O

3. The case p # 2

3.1. In this section we prove Theorem 1.7 assuming that p # 2. In this case we
have R=0.

Let N € Mg —{0},e = en. We have e > 2. Let L = Ly
subspace of V. By 1.1(b) we have Lt = ker N°~1. Since 2e — 2
Ne~'V C ker N*~! hence:

Ne=1V . a

> e we have

(a) L C Lt

Clearly,

(b) NL=0,NV C L.

We show:

(c) QL =0.

Let v € V. We have q(N°"lv) = (N*2y, N°"lo) = +(v, N**73v). If e > 3
this is 0 since 2e — 3 > e. If e = 2 this is 0 since (v, Nv) = —(Nv,v) so that

2(v, Nv) = 0 and (v, Nv) = 0.

3.2. Let N € //\/IVQ —{0},e=en,L = Ly. We have e > 2. We set V' = L+/L,
see 3.1(a). From 3.1(b) we see that N induces a (nilpotent) endomorphism of
V', denoted by N'. Let ¢ = eys. We have ¢/ < e — 1. Define a quadratic form
Q' : V' — kby Q'(2') = Q(x) where z is a representative of #’ € V' in L*. (To see
that @’ is well defined we use 3.1(c).) The symmetric bilinear form associated to
Q' is (2',y') = (x,y) where ',y € V' and z,y are representatives of z/,y" in L.
Its radical is {z € L* | (z,L*) = 0}/L = 0. Tt follows that @’ is nondegenerate.
We have N’ € MQ/.

3.3. Let N € MQ, e = ey. We associate to N a collection of subspaces

(V> ez = (Via)aez

of V' using induction on D. If N = 0 we set VZe=Vfora<0,VZ*=0fora>1.
Thus V>* are defined when D < 1. We may assume that D > 2, N # 0 and that
V2 are already defined when V is replaced by a vector space of dimension < D.
We have e > 2. Let L, V', N’,Q’ be as in 3.1 and 3.2. Let p : L+ — V' be the
obvious map. Since L # 0, we have dimV’ < D. By the induction hypothesis,
V'ze = V! ,2% is defined for any a € Z. We set

V24 =V fora<l—e; V2= p Y (V'?%) fora € 2—e,e—1]; VZ* =0 fora>e.
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This completes the definition of the subspaces V=°.
From the definition it is clear that (V=9) is a filtration of V. We show:

(a) If a > 1 we have Q|ysa = 0 and VZ172 = (VZo)L,

We use induction on D. For N = 0 the result is obvious. Thus the result holds
when D < 1. Now assume that D > 2, N # 0. Let L,V’,Q’, N’ be as above.
By the induction hypothesis we have QI|V’fr7 =0 and V’?V}*a = (V’?\,‘,’)J— with +'

relative to V. It follows that Q|y >« = 0 and VZ!7% = (V=9)L fora € [1,e — 1].
For a > e the result is again true since Q|oy = 0 and {0} = V. This proves (a).
O

We see that V* = (V2%) is a Q-filtration of V. Clearly, V=% is the same as
the subspace V;’l defined in terms of the nilpotent endomorphism N : V — V
(without reference to Q) in [L2, 2.3, 2.4]. It follows that NV =% C VZ*2 for any
a € Z. For any a € Z we set V¢ = V=>9/V 29+ We see that N induces a linear
map N : V¢ — Ve*+2, From [L2, 2.3] we see that for any a > 0, N®: V~¢ — V@
is an isomorphism. It follows that IV € EZ?V*. Conversely if X* is a @Q-filtration
of V such that N € EZ?X* we see that for any a > 0 the kernel K, of the map
gr ?X* — gr*X* induced by N¢ is the radical of the symmetric bilinear form
attached to a nondegenerate quadratic form on gr=%X™*; since p # 2 it follows that
K, = 0. Hence the map gr—*X* — gr*X™* induced by N¢ is an isomorphism.
Using [L2, 2.4] it follows that X* = V*. Thus 1.7(a) holds. O

4. On unipotent conjugacy classes in SOqg (p = 2)

4.1. In this section we assume that k is algebraically closed. Moreover, in this
and the next subsection, we assume that p = 2. Assume that D > 2. Let ¢ € FP.
(See 1.6.) Thus ¢ = (f,) where fo > 0. Let

X,=1{ic 2’21 | i = f, for some a € 2;0}7

this is a finite set. Let £4 be the set of all subsets of X4 x X4 which are equivalence
relations on X4. To any X* € Y, (see 1.6) and any N € E?gr*X* we associate
an element S € &4 as follows. For any i € X, let Z; be the subspace of gr® X*
given by the image of the embedding gr=*/2X* — gr®X* induced by N%/2 for
some/any a € ZY, such that i = f,; the natural symplectic form ( , ) on gr¥ X
restricts to a symplectic form on Z; with one-dimensional radical denoted by Lj;.
By definition, S = {(i,5) € X4 x X4 | L; = L;}. For X* € Yy and S € & let
E? gr* X% be the set of all N € E2 gr* X* such that (X*, N) give rise to S as above.
Let EZ2X% = @~ 1(E2 gr* X}%) where ® is as in 1.5. We thus obtain a partition

EZ’X* = | | EZ’X}
S€g¢
into finitely many locally closed subvarieties. For S € £y let
Ei = {9 €S0¢q | g unipotent g — 1 € EEQX:;},

Hence =4 (see 1.7) is partitioned as =y = |—|Se£¢ Ei Note that each Eg is stable
under conjugation by SOgq.
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4.2. Let Ny be the set of nilpotent elements V € End(V) such that (z, Vy) +
(Vz,y) =0 for all z,y in V and (z,Vz) = 0 for all z € V. We can view N as
the set of nilpotent elements in the Lie algebra of SOg. Note that SOg acts by
conjugation on N.

Let u be a unipotent element in SOg. We associate to u an SOg-conjugacy class
in N as follows. Let N =u—1€ Mg. Let X* = V3. Then N € EZ?X* and
N € E? gr X* is defined as in 1.5. Let Q be the quadratic form on gr X* defined in
1.5. We have N € NQ. Note that if D € Z” then the set of connected components
of Jq and that of J5 may be naturally identified. We can find an isomorphism
of vector spaces gr X* —~ V which carries Q to Q and (when D € Z") induces
the identity map from the set of connected components of Jg to that of Jg. This
isomorphism carries N to an element V € Ng whose SOg-orbit is independent of
the choice of isomorphism. Note that 1 + NV — V defines a map

{SO¢q — conjugacy classes of unipotent elements in SOq}
— {SO¢ — conjugacy classes of nilpotent elements in Lie SOq}.

One can show that this map is injective; it is not in general surjective.

4.3. The last map also makes sense in the more general framework of [L2]. Assume
that p > 1. Let G be as in [L2, 0.1]. We assume that property P in [L2, 1.1]
holds for G. Let w be a unipotent element in G. By ;1 we can find a unique
sequence A= (G§ D G D G5 D --+) in D¢ such that v € X* (notation of [L2,
1.1]). In particular we have u € G5. Let g = Lie G, g5 = Lie G4. Let @ be the
image of v in G§/G%. Since G§ /G4 is a connected commutative unipotent group
in which the pth power of any element is 1 we see that it is canonically isomorphic
to its Lie algebra g5 /g5. Hence @ can be identified with an element of g5/g5.
By definition there exists a homomorphism of algebraic groups h : k* — G such
that if we denote by g" the n-eigenspace of the action x — Ad(h(z)) of k* on g
(n € Z) we have g4 = g" ® g"*t! @ --- for any n > 0; moreover, h is unique up to
G¥4-conjugacy. Using the decomposition g5 = g* @ g5 we can identify g5 /g5 with
g2 and we can view u as an element of g2 hence as a nilpotent element of g. This
element is well defined up to G§-conjugacy. This defines a map

{unipotent G-conjugacy classes in G} — {nilpotent G-conjugacy classes in g}.
We expect that this map is always injective.
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