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Abstract. When one expands a Schur function in terms of the irreducible characters of the
symplectic (or orthogonal) group, the coefficient of the trivial character is 0 unless the indexing
partition has an appropriate form. A number of q, t-analogues of this fact were conjectured
in [10]; the present paper proves most of those conjectures, as well as some new identities
suggested by the proof technique. The proof involves showing that a nonsymmetric version of
the relevant integral is annihilated by a suitable ideal of the affine Hecke algebra, and that any
such annihilated functional satisfies the desired vanishing property. This does not, however,
give rise to vanishing identities for the standard nonsymmetric Macdonald and Koornwinder
polynomials; we discuss the required modification to these polynomials to support such results.

1. Introduction

Whenever one considers an identity of Schur functions, it is natural to consider
whether that identity admits a q, t-analogue; that is, whether there is a corresponding
identity for Macdonald polynomials. One such (classical) identity arises in the repre-
sentation theory of real Lie groups or, equivalently, in the theory of compact symmetric
spaces.

Theorem. [7] For any integer n > 0 and partition λ with at most n parts, the integral∫

O∈O(n)

sλ(O) dO

(with respect to Haar measure on the orthogonal group ) vanishes unless λ = 2µ for

some µ (i.e., unless every part of λ is even ). Similarly, for n even, the integral
∫

S∈Sp(n)

sλ(S) dS

vanishes unless λ = µ2 for some µ.

Recall that the Schur function sλ is a symmetric polynomial in n variables which gives
the character of an irreducible (polynomial) representation of U(n) (GL(n)). (More
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precisely, sλ refers to a symmetric function in infinitely many variables, which when
specialized sλ(x1, x2, . . . , xn, 0, 0, . . .) is as stated. For our purposes, only the finite
version is relevant.) The character’s value on a matrix is given by evaluating the Schur
function at the matrix’s eigenvalues. The above theorem describes which representations
have O(n) (Sp(n)) invariants—exactly those indexed by partitions all of whose parts
are even (occur with even multiplicity).

The symmetric function interpretation of this theorem is that if one expands sλ in
terms of the irreducible characters of O(n) (Sp(n)), the coefficient of the trivial character
is 0 unless λ = 2µ (λ = µ2). This formulation has a nice q, t-analogue in several cases.

Remark. The nonzero values of the integral are in this case all equal to 1; this will
fail upon passing to the Macdonald analogue, although in all cases for which we can
compute the nonzero values, the said values are at least “nice” (i.e., expressible as a
ratio of products of binomials).

This can in turn be restated in terms of the eigenvalue densities of the orthogonal
and symplectic groups. For the symplectic group, this is particularly simple (integrating
over the torus T instead of the whole group):

∫
sλ(z1, z

−1
1 , z2, z

−1
2 , . . . , zn, z−1

n )
∏

16i6n

|zi − 1/zi|2
∏

16i<j6n

|zi + 1/zi − zj − 1/zj |2 dT

vanishes unless λ = µ2 for some µ. For the orthogonal group, the situation is more
complicated, as the orthogonal group has two components, and the structure of the
eigenvalues on a given component depends significantly on the parity of the dimension;
we thus obtain four different integrals:

∫
sλ(. . . , z±1

i , . . . )
∏

16i<j6n

|zi + 1/zi − zj − 1/zj|2 dT, (1.1)

∫
sλ(. . . , z±1

i , . . . ,±1)
∏

16i6n−1

|zi − 1/zi|2
∏

16i<j6n−1

|zi + 1/zi − zj − 1/zj|2 dT, (1.2)

∫
sλ(. . . , z±1

i , . . . , 1)
∏

16i6n

|1− zi|2
∏

16i<j6n

|zi + 1/zi − zj − 1/zj |2 dT, (1.3)

∫
sλ(. . . , z±1

i , . . . ,−1)
∏

16i6n/2

|1 + zi|2
∏

16i<j6n

|zi + 1/zi − zj − 1/zj|2 dT, (1.4)

where the first two integrals correspond to the two components of O(2n), and the last
two integrals correspond to the two components of O(2n+1), and the claim is that each
integral vanishes unless all (2n or 2n + 1) parts of λ have the same parity.

In [10], q, t-analogues of each of these integrals were conjectured; that is, suitable
choices of density were found such that specializing a Macdonald polynomial as above,
then integrating against the appropriate density, gives 0 unless the partition satisfies
the appropriate condition. In particular, the q, t-analogue of the symplectic vanishing
integral (which we will prove in Section 3) reads as follows.
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Theorem. For any integer n > 0, and partition λ with at most 2n parts, and any

complex numbers q, t with |q|, |t| < 1, the integral

∫
Pλ(. . . , z±1

i , . . . ; q, t)
∏

16i6n

(z±2
i ; q)

(tz±2
i ; q)

∏

16i<j6n

(z±1
i z±1

j ; q)

(tz±1
i z±1

j ; q)
dT

vanishes unless λ = µ2 for some µ.

The proof below then suggests other statements along these lines, some of which are
conjectured in [10], but some of which are new. Conversely, although we prove most of
the conjectures of [10], Conjectures 3 and 5 of that paper remain open.

In many of these other identities, we relate a Macdonald or Koornwinder polynomial
with one value of parameters q, t to polynomials in which q or t is replaced by its square
or square root and thus these identities can be viewed as “quadratic” identities in the
sense of basic hypergeometric series.

Similarly, one of the special cases of this theorem proved in [10] was shown to be
equivalent to a quadratic transformation for a univariate hypergeometric series. Thus
in a sense these identities can be viewed as multivariate analogues of quadratic trans-
formations.

There is a fundamental obstruction in using the affine Hecke algebra approach to
directly proving the orthogonal cases which here only follow from the observation of [10]
that the symplectic and orthogonal identities are equivalent by a sort of duality. Etingof
(personal communication) has suggested an alternate approach using the construction
of Macdonald polynomials in Etingof and Kirillov [4]. This approach works (for Jack
polynomials; there are some technical difficulties in extending it to the quantum group
case) for the orthogonal but not symplectic vanishing identities and, like our approach, it
also gives no information about the nonzero values of the integrals. Presumably, others
of the identities we prove below could be proved in similar ways, where for Koornwinder
polynomials we must use the construction of Oblomkov and Stokman [8].

In [12] the Koornwinder polynomials are generalized to a family of biorthogonal
abelian functions. It is thus natural to conjecture that the vanishing identities should
extend to the elliptic level. At present, this is somewhat problematic as neither the
(double) affine Hecke algebra approach nor the Oblomkov and Stokman construction
have been extended to this setting.

It is also worth noting that a different limit of the biorthogonal abelian functions gives
ordinary symmetric Macdonald polynomials (as orthogonal polynomials) [11], suggest-
ing that our Macdonald polynomial identities should also be limits of elliptic vanishing
identities. It is likely that taking different limits of a single elliptic vanishing identity
could give both a Macdonald and a Koornwinder identity. A particularly likely example
are the identities (4.1) and (4.7).

Identities (4.5) and its dual (4.6) below can be generalized using a third approach
that actually works on both cases. This will be discussed in a future paper.

Acknowledgments. We would like to thank the Institute for Quantum Information
and the Department of Mathematics at Caltech for hosting our respective visits there,
where this collaboration began.
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2. Conventions and notation

A partition with 6 n parts is a nonincreasing integer tuple λ = (λ1 > λ2 > · · · > λn >

0). We write |λ| = ∑n
i=1 λi or as λ `∑n

i=1 λi. We also let `(λ) = max{k > 0 | λk 6= 0}
so for instance, above we are taking `(λ) 6 n. We will denote the zero (or empty)
partition by 0, when clear in context. We can picture a partition λ as a Ferrer diagram:
a collection of |λ| cells whose coordinates we label (i, j) with 1 6 j 6 λi. So we can
refer to a cell as (i, j) ∈ λ. We write λ′ for the conjugate partition, which corresponds
to a Ferrer diagram with cells having coordinates (j, i).

A tuple ν = (ν1, . . . , νn) of nonnegative integers is called a composition of |ν| = ∑i νi.
We will denote by ν+ the partition obtained by writing the parts of ν in nonincreasing
order.

Given a partition µ, we write λ = µ2 if λ2i−1 = λ2i = µi. In particular, the parts
of µ2 occur with even multiplicity. We write λ = 2µ if λi = 2µi, so each part of 2µ is
even. Note that if λ = µ2, then the transposed partition λ′ = 2µ′.

We define
(a; q) =

∏

k>0

(1− aqk)

and (a1, a2, . . . , a`; q) = (a1; q)(a2; q) · · · (a`; q). As an example, we set (x±1
i x±1

j ; q) =

(xixj , xix
−1
j , x−1

i xj , x
−1
i x−1

j ; q)=(xixj ; q)(xix
−1
j ; q)(x−1

i xj ; q)(x
−1
i x−1

j ; q). We write (a; q)
for what is often denoted (a; q)∞ in the literature, but as every q-symbol we use is infi-
nite, there is no risk of confusion.

We also define

C0
µ(x; q, t) =

∏

(i,j)∈µ

(1− qj−1t1−ix) =
∏

16i6`(µ)

(t1−ix; q)

(qµi t1−ix; q)
,

C−
µ (x; q, t) =

∏

(i,j)∈µ

(1− qµi−jtµ
′

j−ix)

=
∏

16i6`(µ)

(x; q)

(qµi t`(µ)−ix; q)

∏

16i<j6`(µ)

(qµi−µj tj−ix; q)

(qµi−µj tj−i−1x; q)
, (2.1)

C+
µ (x; q, t) =

∏

(i,j)∈µ

(1− qµi+j−1t2−µ′

j−ix)

=
∏

16i6`(µ)

(qµi t2−`(µ)−ix; q)

(q2µi t2−2ix; q)

∏

16i<j6`(µ)

(qµi+µj t3−j−ix; q)

(qµi+µj t2−j−ix; q)
. (2.2)

Similar to the q-symbols, we let C0,±
µ (a1, a2, . . . , a`; q) = C0,±

µ (a1; q) · · ·C0,±
µ (a`; q). We

refer to [10] for more details about these expressions and relations that hold among them
(in particular, those expressing C0,±

µ2 (x; q, t) or C0,±
2µ (x; q, t) in terms of C0,±

µ (x; q2, t) and

C0,±
µ (x; q, t2)).
It will be convenient in the sequel to use a plethystic substitution notation slightly

different from that in the literature. When we write g([rk]) for symmetric functions
g, rk, k > 1 we mean the image of g under the homomorphism pk 7→ rk where the pk are
the power sum symmetric functions. We take the convention px = 0 if x 6∈ {1, 2, 3, . . .}.
We abbreviate the case r2k+1 = 0, r2k = pk by g([2pk/2]). This is plethystic notation
for the specialization g(. . . ,±√xi, . . .).
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2.1. The extended affine symmetric group S̃n

S̃n = Sn n Zn can be identified with the group of bijections w : Z → Z such that
w(x + n) = w(x) + n for all x ∈ Z; if we also include bijections such that w(x + n) =

w(x) − n, we obtain a group S̃+
n = (Sn × Z2) n Zn, which is also an extended affine

Weyl group (see Section 6). The length 0 subgroup of S̃+
n is generated by π(x) = x + 1

and ι(x) = n + 1− x.

S̃n has generators s0, s1, . . . , sn−1, π where

sj(i) =





i, i 6≡ j, j + 1 (mod n),

i + 1, i ≡ j (mod n),

i− 1, i ≡ j + 1 (mod n).

By convention we will view these bijections as acting on Z from the right.
It is easy to see these generators satisfy the type A braid relations

sisj = sjsi, i− j 6≡ ±1 (mod n),

sisjsi = sjsisj , i− j ≡ ±1 (mod n); n > 2,

and

πsiπ
−1 = si−1,

and quadratic relation s2
i = 1.

The extended affine Hecke algebra Hn of type A is defined to be the C(q, t)-algebra
with generators T0, T1, . . . , Tn−1, π, subject to the braid relations

TiTj = TjTi, i− j 6≡ ±1 (mod n),

TiTjTi = TjTiTj , i− j ≡ ±1 (mod n); n > 2,

and the quadratic relation

(Ti − t)(Ti + 1) = 0,

and
πTiπ

−1 = Ti−1.

Given a reduced word u = si1si2 · · · sik
, we write Tu = Ti1Ti2 · · ·Tik

, which is in-
dependent of reduced word expression by the relations above. Note TuTv = Tuv if
`(u) + `(v) = `(uv).

Observe that on specializing t = 1 we recover the group algebra C(q)S̃n whose gen-
erators we typically denote {s0, s1, . . . , sn−1, π}.

Given an automorphism φ : Hn → Hn and right module L, we write Lφ for the
twisted module with action v · h := v(φ(h)). In the case φ(h) = TuhT−1

u we write Lu

for Lφ.
We will write T i = Ti + 1− t. Note T iTi = t. (This is not Lusztig’s bar involution.)
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We have another presentation of Hn given by T1, T2, . . . , Tn−1,Y
±1
1 , Y ±1

2 , . . . ,Y ±1
n , with

additional relations

YiYj = YjYi, ∀i, j,
TiYj = YjTi, j 6= i, i + 1,

TiY
−1
i Ti = tY −1

i+1, 1 6 i < n,

where we can also express the final one as TiYi+1 = YiT i.
This presentation relates to the first via

Y1 = T1 . . . Tn−1π, (2.3)

Y2 = T2 . . . Tn−1πT 1, (2.4)

...

Yn = πT 1 . . . Tn−1. (2.5)

(This disagrees with the convention that tYi+1 = TiYiTi, but has the advantage of
making dominant weights map to positive words!) That is, for a partition λ, Y λ =
Y λ1

1 Y λ2

2 · · ·Y λn
n simplifies in the other generators to a word involving only Ti and π and

not involving T i.
Hn acts on the space of polynomials V =C(q1/n, t)[x1, . . . , xn, (x1x2 · · ·xn)−1/n] via

Tif = tf +
xi+1 − txi

xi+1 − xi
(fsi − f), (2.6)

T0f = tf +
x1 − tqxn

x1 − qxn
(fs0 − f), (2.7)

(πf)(x1, . . . xn) = f(qxn, x1, . . . xn−1), (2.8)

where fsi(x1, . . . , xi, xi+1, . . . , xn) = f(x1, . . . , xi+1, xi, . . . , xn) and fs0(x1, . . . , xn)
= f(qxn, . . . , q−1x1). Observe

Ti1 = t, (2.9)

π1 = 1, (2.10)

Yi1 = tn−i. (2.11)

Observe the Ti act trivially on (x1x2 · · ·xn)−1/n, but π multiplies it by q−1/n.
Given a partition λ or, more generally, a dominant weight of SLn × GL1, i.e., a

nonincreasing sequence of rational numbers with integer sum and integer differences,
we can associate a monomial in V , namely

∏
i xλi

i . This generates an S̃n-submodule of
V . This however is not invariant under Hn, but if we sum the spaces corresponding to all
weights weakly dominated by λ, then the space is invariant under Hn, and similarly for
weights strictly dominated by λ. The quotient of these two modules gives a deformation
to Hn of the S̃n-submodule associated to λ. In this space, the commuting operators Yi

have joint eigenvalues which are simply permutations of the sequence

. . . qλi tn−i . . . .
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Generically, this deformation is a submodule of V , and thus the corresponding eigen-
functions are polynomials, namely the nonsymmetric Macdonald polynomials.

It will be convenient to introduce a special notation for dominant weights with neg-
ative parts. If µ, ν are partitions with `(µ) + `(ν) 6 n, then µν̄ is the dominant weight
vector of SLn ×GL1 (µ1, . . . , µ`(µ), 0, . . . , 0,−ν`(ν), . . . ,−ν1). We extend this to domi-
nant weights with rational coefficients in the obvious way.

Recall that if L is a functional on the polynomial space (or on any left module), then
h ∈ Hn acts on the right via (L · h)(f) := L(hf).

This representation has the following interpretation in terms of the double affine
Hecke algebra (while we do not use or even define the double affine Hecke algebra here,
it is worth noting we can view these problems in a larger context). Our affine Hecke
algebra is a subalgebra of the double affine Hecke algebra, and it has a “trivial” module,
which is the one-dimensional module on which π− 1 and all Ti − t vanish. If we induce
this trivial module up to the double affine Hecke algebra and then restrict it back down,
V sits inside the restriction. The Mackey formula thus gives us a decomposition of V
into irreducibles (when q, t are generic) which we describe explicitly below.

If we specialize q, t to complex numbers such that |q|, |t| < 1, then the nonsymmetric
density

∆S = ∆
(n)
S (q, t) =

∏

i<j

(xi/xj , qxj/xi; q)

(txi/xj , qtxj/xi; q)

is defined and can be integrated over the unit torus. Moreover, it is a standard result
of Macdonald polynomials theory that if f ∈C(q1/n, t)[x1,. . ., xn, (x1· · ·xn)−1/n], then∫

f∆S dT∫
∆S dT

∈ C(q1/n, t), (2.12)

where dT is Haar measure on the unit torus. That is, there exists a rational function
in q1/n, t that agrees with the above for any specialization such that the integrals are
defined. Similar comments apply to all the integrals we consider which can thus be
considered either as analytic quantities with appropriately specialized parameters or
as algebraic quantities with generic parameters. In particular, the normalized integral( ∫

f∆S dT
)
/
( ∫

∆S dT
)

= [E0]f where E0 is the nonsymmetric Macdonald polynomial
corresponding to the empty partition. A similar statement holds in the other cases.

Above, we used the notation
[fµ]g

for the coefficient of fµ in the expansion of g, where {fµ} is a given a basis of some
space of functions and g is another function in that space. It should be clear in all cases
in which we use this notation which basis is intended.

Note that π is self-adjoint and the Ti are adjoint to Tn−i with respect to the inner
product this density defines

〈f, g〉 =

∫
f(x1, . . . , xn)g

(
1

xn
, . . . ,

1

x1

)
∆S dT.

An equivalent way of stating this uses the fact that Hn⊗Hn has a natural action on
C(q1/n, t)[y1, . . . , yn, z1, . . . , zn, (y1z1 · · · ynzn)−1/n] and says that the linear functional

L(h) =

∫
h

(
x1, . . . , xn,

1

xn
, . . . ,

1

x1

)
∆

(n)
S (q, t) dT



732 ERIC M. RAINS AND MONICA VAZIRANI

is annihilated by the ideal 〈π⊗ 1− 1⊗π, Ti⊗ 1− 1⊗Tn−i, (1 6 i 6 n)〉. As we will see
below, such annihilation gives rise to vanishing identities. In this case, we obtain the
(standard) fact that, for weights λ and µ,

∫
Pλ(x1, . . . , xn)Pµ

(
1

xn
, . . . ,

1

x1

)
∆̃S dT

vanishes if λ 6= µ. Here, ∆̃S is the symmetric density

∆̃S = ∆̃
(n)
S (q, t) =

∏

i<j

(xi/xj , xj/xi; q)

(txi/xj , txj/xi; q)
=
∏

i6=j

(xi/xj ; q)

(txi/xj ; q)

which up to scalar is the symmetrization of ∆S .
The operators Yi are not self-adjoint and, more generally, the ideal does not contain

elements of the form Yi ⊗ 1 − c1 ⊗ Y ±1
j . However, if we conjugate by 1 ⊗ Tw0

it will
contain Yi ⊗ 1 − 1 ⊗ Yi and this implies orthogonality of Y -eigenvectors with respect
to the conjugated inner product. With respect to the original inner product, we find
that the eigenfunctions of the Yi are orthogonal to the images of those functions under
T−1

w0
. This is precisely the orthogonality of nonsymmetric Macdonald polynomials given

in [1]. (To be precise, Cherednik shows that the nonsymmetric Macdonald polynomials
(a.k.a. the eigenfunctions of the Yi) are orthogonal to the polynomials modified by the
substitution q → 1/q, t → 1/t, but this turns out to be equivalent.) It follows that
the symmetric Macdonald polynomials are orthogonal with respect to this density and
hence the symmetrized density.

2.2. The extended affine hyperoctahedral group C̃n

We also consider C̃n = Cn n Zn, which can be identified with the centralizer in S̃2n of
the element ι of S̃+

2n or, equivalently, as the group of bijections w : Z → Z such that

w(i+2n) = w(i)+2n and w(2n+1−i) = 2n+1−w(i). C̃n has generators s0, s1, . . . , sn,
where

sj(i) =





i, i 6≡ j, j + 1, 2n− j, 2n + 1− j (mod 2n),

i + 1, i ≡ j, 2n− j (mod 2n),

i− 1, i ≡ j + 1, 2n + 1− j (mod 2n).

It is easy to see these generators satisfy the type C braid relations

sisj = sjsi, |i− j| > 1,

sisjsi = sjsisj , |i− j| = 1, i, j 6= 0, n,

s0s1s0s1 = s1s0s1s0,

snsn−1snsn−1 = sn−1snsn−1sn,

and quadratic relation s2
i = 1.

For n > 1, the affine Hecke algebra HC
n of type BC is defined to be the C(q, t, a, b, c, d)-

algebra with generators T0, T1, . . . , Tn, subject to the type C braid relations

TiTj = TjTi, |i− j| > 1,

TiTjTi = TjTiTj , |i− j| = 1, i, j 6= 0, n,

T0T1T0T1 = T1T0T1T0,

TnTn−1TnTn−1 = Tn−1TnTn−1Tn,
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and the quadratic relations

(T0 + 1)(T0 + cd/q) = 0,

(Ti + 1)(Ti − t) = 0, i 6= 0, n,

(Tn + 1)(Tn + ab) = 0.

In fact, the algebra HC
n can be defined for n = 1 and all considerations below will work

in that case. If n = 1 there are simply no braid relations, only quadratic ones. We omit
the details.

The diagram automorphism of affine Cn gives rise to an action of the involution σ
on HC

n given by

σTiσ
−1 = Tn−i,

σaσ−1 = c/
√

q,

σbσ−1 = d/
√

q.

If the action of σ on scalars is trivial, i.e., c = a
√

q, d = b
√

q, then we can enlarge HC
n

to an extended affine Hecke algebra as in Section 6. In general, we can view σ as giving
an intertwiner between Hecke algebras with different parameters.

For 1 6 i < n, we will write T i = Ti +1− t. Note T iTi = t. We set Tn = Tn +1+ab
so that TnTn = −ab and T 0 = T0 + 1 + (cd)/q so T 0T0 = −(cd)/q.

As with type A, we have another presentation of HC
n given by generators T1, . . . , Tn,

Y ±1
1 , Y ±1

2 , . . . , Y ±1
n , with additional relations

YiYj = YjYi, ∀i, j,
TiYj = YjTi, j 6= i, i + 1,

TiY
−1
i Ti = tY −1

i+1, 1 6 i < n,

TnY −1
n Tn = −t2−2n q

cd
Yn − t1−n

( q

cd
+ 1
)
Tn.

This presentation relates to the first via:

Y1 = T1 . . . Tn . . . T1T0, (2.13)

Y2 = T2 . . . Tn . . . T1T0T 1, (2.14)

...

Yn = Tn . . . T1T0T 1 . . . Tn−1. (2.15)

There is also an intertwiner

Yω =
∏

16i6n

Tn . . . Tiσ

which satisfies YiYω = YωYi (but note that the two Yi live in different Hecke algebras)
and Y 2

ω = Y1Y2 . . . Yn. The significance of the intertwiner Yω is that the symmetric ver-
sion Yω(1+Y −1

1 )(1+Y −1
2 ) · · · (1+Y −1

n ) takes a Koornwinder polynomial with parameters
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a, b, c, d to a multiple of the corresponding Koornwinder polynomial with parameters
c/
√

q, d/
√

q, a
√

q, b
√

q. In fact, this is precisely the difference operator which was the
fundamental tool of [10]. This is one reason why in Section 6 we consider such a general
version of extended affine Weyl groups.

When computing in HC
n or, more generally, in the braid group, B(C̃n), one helpful

tool is the natural injection HC
n → H2n such that

Ti 7→ TiT2n−i,

T0 7→ T0,

Tn 7→ Tn,

and such that σ acts as conjugation by πn. Under this mapping, the natural lifting of
the Y operators to the braid group behaves as follows:

Yi 7→ YiY
−1
2n−i, (2.16)

Yωσ−1 7→
∏

16i6n

Yiπ
−n. (2.17)

The Hecke algebra HC
n and the intertwiner σ act on the vector space of Laurent

polynomials C(q1/2, t, a, b, c, d)[x±1
1 , . . . , x±n

n ] via

T0f = −(cd/q)f +
(1− c/x1)(1− d/x1)

1− q/x2
1

(fs0 − f), (2.18)

Tif = tf +
xi+1 − txi

xi+1 − xi
(fsi − f), (2.19)

Tnf = −abf +
(1− axn)(1− bxn)

1− x2
n

(fsn − f), (2.20)

(σf)(a, b, c, d; x1, . . . , xn) = f(c/
√

q, d/
√

q, a
√

q, b
√

q;
√

q/xn, . . . ,
√

q/x1). (2.21)

Recall that for i 6= 0, n, f si(x1, . . . , xi, xi+1, . . . , xn) = f(x1, . . . , xi+1, xi, . . . , xn), and
fs0(x1, . . . , xn)=f(q/x1, x2 . . . , xn), fsn(x1, . . . , xn)=f(x1, . . . , xn−1, 1/xn).

In particular, in the space corresponding to monomials for the partition λ, the joint
eigenvalues of the operators Yi, (abcdt2n−2q−1)Y −1

i are (signed) permutations of the
sequence

. . . qλi t2n−1−i(abcd/q) . . . q−λiti−1.

The nonsymmetric density is

∆K = ∆
(n)
K (a, b, c, d; q, t)

=
∏

16i6n

(x2
i , qx

−2
i ; q)

(axi, bxi, cxi, dxi, aqx−1
i , bqx−1

i , cx−1
i , dx−1

i ; q)

×
∏

16i<j6n

(xix
±1
j , qx−1

i x±1
j ; q)

(txix
±1
j , qtx−1

i x±1
j ; q)
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Here we integrate over the unit torus with parameters specialized to have norm < 1.
As with the Sn case, the normalized integral of any polynomial with rational function
coefficients meromorphically continues to a rational function.

The operators Ti are self-adjoint with respect to the induced inner product.

The corresponding symmetric density is

∆̃K = ∆̃
(n)
K (a, b, c, d; q, t)

=
(q; q)n

2nn!

∏

16i6n

(x±2
i ; q)

(ax±1
i , bx±1

i , cx±1
i , dx±1

i ; q)

∏

16i<j6n

(x±1
i x±1

j ; q)

(tx±1
i x±1

j ; q)
,

with normalization [5]

∫
∆̃

(n)
K (a, b, c, d; q, t) dT =

∏

06j<n

(t, t2n−2−jabcd; q)

(tj+1, tjab, tjac, tjad, tjbc, tjbd, tjcd; q)
.

Again normalized integrals over this density can be taken by computing the constant

coefficient in the expansion with respect to Koornwinder polynomials K
(n)
λ [6], giving

a rational function in q, t, a, b, c, d. In fact, one of the main results of [10] is that
this integral essentially depends algebraically on n. More precisely, it is shown there
that there exists a functional IK(f ; q, t, T ; a, b, c, d) on the space of ordinary symmetric
functions such that

IK(f ; q, t, tn; a, b, c, d) = [K
(n)
0 (· · · zi · · · ; q, t; a, b, c, d)]f(· · · z±1

i · · · ) =

∫
f∆̃

(n)
K dT

∫
∆̃

(n)
K dT

for all integers n > 0. This can also be viewed as taking coefficients with respect to a ba-
sis K̃λ( ; q, t, T ; a, b, c, d) of the space of symmetric functions over C(q, t, T, a, b, c, d) with

the property that for all integers n such that n > `(λ), K̃λ(· · · z±1
i · · · ; q, t, tn; a, b, c, d) =

K
(n)
λ (· · · zi · · · ; q, t; a, b, c, d). (These K̃λ transform nicely under an analogue of Macdon-

ald’s involution and so we can use them to prove dual results in several cases.)

3. A U(2n)/Sp(2n) vanishing integral

Theorem 3.1. For any integer n > 0, and partition λ with at most 2n parts, and any

complex numbers q, t with |q|, |t| < 1, the integral

∫
P

(2n)
λ (z±1

1 , . . . , z±1
n ; q, t)∆̃

(n)
K (

√
t,−

√
t,
√

qt,−
√

qt; q, t) dT

=

∫
P

(2n)
λ (z±1

1 , . . . , z±1
n ; q, t)

∏

16i6n

(z±2
i ; q)

(tz±2
i ; q)

∏

16i<j6n

(z±1
i z±1

j ; q)

(tz±1
i z±1

j ; q)
dT (3.1)

vanishes unless λ = µ2 for some µ.
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Proof. Consider the following linear functional on the space of polynomials in 2n vari-
ables:

L(f) : =

∫
f(z1, . . . , zn, 1/zn, . . . , 1/z1)

∏

16i6n

(z2
i , qz−2

i ; q)

(tz2
i , qtz−2

i ; q)

×
∏

16i<j6n

(ziz
±1
j , qz−1

i z±1
j ; q)

(tziz
±1
j , qtz−1

i z±1
j ; q)

dT

=

∫
f(z1, z2, . . . , zn, 1/zn, . . . , 1/z2, 1/z1)∆

(n)
K (

√
t,−

√
t,
√

qt,−
√

qt; q, t) dT.

If f is symmetric, then we can freely symmetrize the density; since the density is recog-
nizable as a special case of the nonsymmetric Koornwinder density, it symmetrizes to the
symmetric density above. In other words, it will suffice to show that L(Pλ( ; q, t)) = 0
unless λ = µ2.

Since nonsymmetric Macdonald polynomials of type C are orthogonal with respect to

the density ∆
(n)
K

(√
t,−

√
t,

√
qt,−√qt; q, t), we can interpret the result as saying when

we expand type A Macdonald polynomials in terms of those of type C the coefficient of
the trivial one is zero unless λ = µ2. (In the notation of Section 2, [EC

0 ]EA
λ = 0 unless

λ = µ2.)
The advantage of passing to this nonsymmetric functional is that we can use the

affine Hecke algebra. Indeed, a straightforward calculation gives the following facts
about the interaction between L and the Hecke algebra:

L(T0f) = tL(f), (3.2)

L(Tnf) = tL(f), (3.3)

L(Tif) = L(T2n−if), 1 6 i 6 n− 1. (3.4)

But, in fact, for generic q and t, any linear functional satisfying these three conditions
will also satisfy the vanishing property “L(Pλ(; q, t)) = 0 unless λ = µ2”.

The calculation to verify (3.2), (3.3), (3.4) is very similar to that of computing the
adjoint of Ti with respect to 〈 , 〉. A sample computation is given here: First recall
(Tn − t)f =

(
(xn+1 − txn)/(xn+1 − xn)

)
(fsn − f) by (2.6). After specializing as above,

this will become
(
(z−1

n − tzn)/(z−1
n − zn)

)
g1 where g1 is a Laurent polynomial sent to

−g1 under the change of variables zn ↔ z−1
n . Observe the density

∆ =
∏

16i6n

(z2
i , qz−2

i ; q)

(tz2
i , qtz−2

i ; q)

∏

16i<j6n

(ziz
±1
j , qz−1

i z±1
j ; q)

(tziz
±1
j , qtz−1

i z±1
j ; q)

=
(1− z2

n)

(1− tz2
n)

g2,

where g2 is symmetric under the change of variables zn ↔ z−1
n . Hence L((Tn − t)f) =∫ (

(z−1
n − tzn)/(z−1

n − zn)
)
g1

(
(1− z2

n)/(1− tz2
n)
)
g2 =

∫
g1g2 =

∫
(−g1)g2 as we are in-

tegrating over the torus T and hence get the same integral under the change of variables
zn ↔ z−1

n . This shows L((Tn − t)f) = 0.
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Let V6λ be the space of polynomials spanned by monomials xν := xν1

1 xν2

2 . . . where
ν is a composition of |λ| dominated by λ (i.e., such that the corresponding partition
ν+ is dominated by λ); similarly, let V<λ be the space spanned by monomials strictly

dominated by λ. Both subspaces are invariant under the action of the Hecke algebra,
and we may thus consider the spaces Lλ of functionals on V≤λ/V<λ satisfying (3.2),
(3.3), (3.4). If we can show that Lλ = 0 unless λ = µ2, we will be done, since V≤λ/V<λ

is isomorphic (for generic q, t) to the invariant subspace generated by Pλ(; q, t) (with
basis given by Eν(; q, t) with ν+ = λ).

Fix a partition λ not of the form µ2. Now, the monomials in the orbit of xλ form
a basis of V≤λ/V<λ (for all nonzero q, t, not just generic q, t), and in that basis, the
action of the Hecke algebra has coefficients in Z[q±1, t]. Thus Lλ is the solution space of
a system of linear equations with coefficients in Z[q±1, t]. Now, the generic dimension
of such a solution space is bounded above by the dimension under any specialization.
Therefore, it will suffice to find one such specialization for which the claim holds, and
thus the dimension of the solution space is 0 for generic q, t.

In particular, take t = 1, so that the affine Hecke algebra is just the group algebra
of S̃n with the corresponding action on polynomials. Then any functional L ∈ Lλ is
invariant under the subgroup generated by s0, sn, and sis2n−i for 1 6 i 6 n−1. This is
precisely the subgroup of elements invariant under the involution si 7→ s2n−i, and thus,
in particular, contains a number of translations, which act diagonally on monomials. It
follows immediately that L(xν) = 0 unless νi = ν2n+1−i for 1 6 i 6 n. Since ν is simply
a permutation of λ, the claim follows. �

Remark. It similarly follows that for generic q, t, dim(Lµ2 ) 6 1. In fact, since the
integrals ∫

mµ2(. . . z±1
i . . . ) dT

are nonzero, we can also conclude that dim(Lµ2) > 1 for all q, t (since we have ex-
hibited a linear functional that specializes to a nonzero functional.) This implies for a
wide class of irreducible representations we have a multiplicity one condition, i.e., that
there exists at most a one-dimensional space of linear functionals satisfying the above
invariance conditions (3.2), (3.3), (3.4). This is in a sense a deformation of the fact that
(U(2n), Sp(2n)) is a Gelfand pair, together with the identification of which representa-
tions are spherical. This appears to be true for general representations, but we do not
consider that question here.

Now, as it stands, this argument is somewhat unsatisfactory; it would be nice to avoid
the step of specialization to t = 1. Certainly, there is a natural analogue of the subgroup
of translations inside the affine Hecke algebra; unfortunately, the conditions on L do
not imply any sort of invariance with respect to the standard commutative subalgebra.
Related to this is the fact that the obvious corresponding statement for nonsymmetric
Macdonald polynomials does not hold; that is, for t = 1, the conditions on L suffice
to make L(Eν( ; q, 1)) = 0 unless νi = ν2n+1−i for 1 6 i 6 n, but this is not true for
t 6= 1. The key to resolving both of these issues is the fact that, although the standard
commutative subalgebra is in some sense canonical (or, at least, is one of two canonical
choices), it is not the only reasonable choice; we will consider this in more detail in
the sections below. Equivalently, we can leave the commutative subalgebra alone and
transform the functional, thus conjugating the ideal of equations on the functional. This



738 ERIC M. RAINS AND MONICA VAZIRANI

gives nice identities for nonsymmetric Macdonald polynomials but makes the resulting
functional extremely complicated. We consider this approach in Sections 5 and 7.

Another flaw, which is intrinsic in the way we use the affine Hecke algebra, is that we
obtain no information about the nonzero values of the integral. Indeed, the conditions
on L determine it only up to a scalar multiple for each µ. In this case, the nonzero values
were already determined (conditional on the vanishing result) in [10]; but for some of
the other vanishing results we prove below, it is still an open question to determine the
nonzero values.

For the present case, however, we have (in the notation of [10], and recalling the
argument given there)

Corollary 3.2. For any integer n > 0 and any partition µ with at most n parts,

1

Z

∫
Pµ2(. . . ,z±1

i , . . . )
∏

16i6n

(z±2
i ; q)

(tz±2
i ; q)

∏

16i<j6n

(z±1
i z±1

j ; q)

(tz±1
i z±1

j ; q)
dT

=
1

Z

∫
Pµ2(. . . , z±1

i , . . . )∆̃
(n)
K (

√
t,−

√
t,
√

qt,−
√

qt; q, t) dT

=
C0

µ(t2n; q, t2)C−
µ (qt; q, t2)

C0
µ(qt2n−1; q, t2)C−

µ (t2; q, t2)
,

where the normalization Z is chosen to make the integral 1 when µ = 0.

Proof. Let L be the above linear functional on symmetric functions (so that we are
computing the value of L(Pµ2( ; q, t))); we have already established that L(Pλ( ; q, t)) = 0
unless λ is of the form µ2. Now, consider the value

L((e1 − e2n−1)Pλ( ; q, t)),

where ei is the elementary symmetric function. On the one hand, this is 0, since the
mere act of specializing to z±1

i annihilates e1−e2n−1. On the other hand, we can expand
(e1− e2n−1)Pλ( ; q, t) as a linear combination of Macdonald polynomials using the Pieri
identity; if we throw out those polynomials annihilated by L, at most two terms remain.
Together with the identity

L(P1n+λ( ; q, t)) = L(e2nPλ( ; q, t)) = L(Pλ( ; q, t)),

we obtain an identity of the form

L(Pµ2( ; q, t)) = Cµ/ν( ; q, t)L(Pν2( ; q, t)),

where ν is obtained by removing a single square from the diagram of µ. The claim then
follows by induction in |µ|. �

Remark. For many of the vanishing integrals considered below, either the linear func-
tional fails to factor through a homomorphism, or the homomorphism it does factor
through does not have any useful elements in its kernel, and we thus cannot apply the
“Pieri trick” described above to obtain the nonzero values.
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Remark. In this case, the normalization Z simplifies as
∏

16j6n

(t, t2n−j ; q)

(t2j+2,−qtj+1; q)(−qt2j+2; q2)
.

This is of course simply Macdonald’s constant term identity of type C.
The final flaw in the above argument is that it only applies to the symplectic case

of the vanishing integral. The point is that in the symplectic case, the condition on
compositions ν translates to a very simple condition on the action of translations for
t = 1, namely that certain translations should act in the same way on the monomial
xν . For the orthogonal case, the corresponding condition on eigenvalues of translations
is actually Zariski dense; in particular, it cannot be detected by any finitely generated
ideal of the Hecke algebra. It turns out, however, that one can deduce the orthogonal
vanishing integrals from the symplectic vanishing integral, using the fact that both can
be viewed as statements about the algebra of symmetric functions, related by a slightly
modified Macdonald involution. (Note, in particular, that the conjugate partition to
one of the form µ2 is of the form 2ν.)

We thus obtain the following corollary, dual to Corollary 3.2. For the details, see
Section 8 of [10]. Each of the four integrals is with respect to an appropriate special
case of the normalized Koornwinder density; we denote such an n-dimensional integral

as I
(n)
K (f ; q, t; a, b, c, d).

Corollary 3.3. For all integers n > 0 and partitions λ with at most n parts,

1
2I

(n)
K (Pλ(. . . , z±1

i , . . . ; q, t); q, t;±1,±
√

t)

+ 1
2I

(n−1)
K (Pλ(. . . , z±1

i , . . . ,±1; q, t); q, t;±t,±
√

t) = 0,

unless λ is of the form 2µ, in which case the value is

C0
µ(t2n; q2, t)C−

µ (q; q2, t)

C0
µ(qt2n−1; q2, t)C−

µ (t; q2, t)
.

Similarly,

1
2I

(n)
K (Pλ(. . . , z±1

i , . . . , 1; q, t); q, t; t,−1,±
√

t)

+ 1
2I

(n)
K (Pλ(. . . , z±1

i , . . . ,−1; q, t); q, t; 1,−t,±
√

t) = 0,

unless λ is of the form 2µ, in which case the value is

C0
µ(t2n+1; q2, t)C−

µ (q; q2, t)

C0
µ(qt2n; q2, t)C−

µ (t; q2, t)
.

Remark. Note that again the nonzero values follow via an application of the Pieri iden-
tity from the fact that the linear functionals vanish where required. Etingof (personal
communication) has pointed out a direct proof of the orthogonal vanishing integrals
in the Jack polynomial limit, using the construction of [4] for Jack polynomials; pre-
sumably the Macdonald polynomial analogue of the construction can be used to obtain
the orthogonal vanishing integral for Macdonald polynomials. Etingof’s argument also
gives no information about the nonzero values, and just as the nature of the Hecke al-
gebra made it impossible to use our argument in the orthogonal case, the nature of the
Etingof–Kirillov construction of Jack polynomials makes it impossible to use Etingof’s
argument in the symplectic case.
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4. Other vanishing integrals

In this section we list the remaining vanishing results. For each result, we list the
functional L that gives the vanishing integral, and the associated right ideal I in the
Hecke algebra (of type A or C) that kills L. We also give the subgroup S of the braid
group that leaves the functional invariant in the classical limit, as this motivated many
of the relevant definitions. In fact, in each case the subgroup S of the braid group lies
over the commutator of an involution in the extended affine Weyl group. For instance,
each ideal I is generated by elements

t−1/2
σ Tσ − χ(σ),

where σ is a generator of S and χ is the character of B(W̃ ) given by its action on the
constant polynomials. (Here tσ is the parameter associated to Tσ, i.e., (Tσ+1)(Tσ−tσ) =
0.)

In each case we argue as in Section 3, that is, we exhibit a specialization of the
parameters such that: (a) in that specialization a nonzero functional annihilated by I
exists only if λ is of the stated form; and (b) if λ is of the stated form then there is a
unique such nonzero functional (which can be obtained by specializing the appropriate
integral). Since the space of functionals annihilated by an ideal can only get bigger
under specialization, this implies: (a) that if λ is not of the appropriate form, then for
generic parameters no such functional exists; and (b) if λ is of the appropriate form,
such a functional exists and is generically unique.

Note that this uniqueness is on a partition by partition basis. It is quite possible (and
indeed we give examples below) for there to be multiple nice functionals on the space
of all polynomials that are all annihilated by the same ideal and thus satisfy the same
vanishing conditions. (See for instance Sections 4.1, 4.2 below.) For the S̃n cases, this

specialization is simply t = 1. For the C̃n cases, we must moreover take a = 1, b = −1,
c =

√
q, d = −√q. In all cases this has the effect of turning the Hecke algebra into a

group algebra and the (nonsymmetric) Macdonald and Koornwinder polynomials into
monomials and the density trivial, at which point the functional is easy to evaluate.

One consequence of this global nonuniqueness is that in order to determine the
nonzero values of such a functional, it is not enough to know how the affine Hecke
algebra acts. One must in fact consider more carefully the explicit structure of the
functional, e.g., as in the Pieri trick used above (or, more generally, how the double
affine Hecke algebra interacts with the functional). Even if such a calculation could be
pushed through, this would still leave the nontrivial task of deducing the values on the
symmetric Macdonald and Koornwinder polynomials from the nonsymmetric ones.

In each case there is an associated family of chambers (see Section 7) such that the
elements of the form Y C

ν contained in S imply the appropriate vanishing theorem. The
fact that these chambers are not the standard chamber implies that the standard non-
symmetric Macdonald polynomials do not satisfy vanishing results, but the nonstandard
EC

λ do. This is so because a different choice of chamber C twists the Hecke algebra mod-
ule by an inner automorphism that results in an isomorphic module, which is easily seen
from the fact that the irreducible modules Lλ we consider have distinct central charac-
ters. In any event, while the nonstandard choice of chamber C gives a different family of
nonsymmetric Macdonald polynomials EC

λ (as they are the eigenfunctions of commut-
ing operators Y C) the symmetric Macdonald polynomials stay the same. (P C

λ = Pλ;
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symmetric functions in the Y C are always central.) Further discussions on EC
λ , Y C are

in Section 7.

4.1. Macdonald polynomial results: S̃2n

Case 1. This case was discussed in Section 3 above.

Theorem 4.1.
∫

Pλ(. . . z±1
i . . . ; q, t)

∏

16i6n

(z±2
i ; q)

(tz±2
i ; q)

∏

16i<j6n

(z±1
i z±1

j ; q)

(tz±1
i z±1

j ; q)
dT = 0, (4.1)

unless λ = µ2, in which case (when suitably normalized ) it is

C0
µ(t2n; q, t2)C−

µ (qt; q, t2)

C0
µ(qt2n−1; q, t2)C−

µ (t2; q, t2)
.

This is the case T = tn of the symmetric function identity

IK(Pλ( ; q, t); q, t, T ;±
√

t,±
√

qt) =





C0
µ(T 2; q, t2)C−

µ (qt; q, t2)

C0
µ(qT 2/t; q, t2)C−

µ (t2; q, t2)
, λ = µ2,

0, otherwise.

The action of the Macdonald involution on lifted Koornwinder polynomials dualizes
this to

IK(Pλ( ; q, t); q, t, T ;±1,±
√

t) =





C0
µ(T 2; q2, t)C−

µ (q; q2, t)

C0
µ(qT 2/t; q2, t)C−

µ (t; q2, t)
, λ = µ2,

0, otherwise.

Taking T ∈ {tn, tn+1/2} gives that the four integrals

I
(n)
K (Pλ(x±1

1 , . . . , x±1
n ; q, t); q, t;±1,±

√
t),

I
(n−1)
K (Pλ(x±1

1 , . . . , x±1
n−1, 1,−1; q, t); q, t;±t,±

√
t),

I
(n)
K (Pλ(x±1

1 , . . . , x±1
n , 1; q, t); q, t; t,−1,±

√
t),

I
(n)
K (Pλ(x±1

1 , . . . , x±1
n ,−1; q, t); q, t; 1,−t,±

√
t),

vanish unless all (2n or 2n + 1, as appropriate) parts of λ have the same parity.
We take

S = 〈U0, Un, UiU
−1
2n−i〉 ⊆ B(S̃2n).

The relevant chambers are such that r and rω have the same sign, where ω is the longest
element of Sn, and r is a root such that r + rω 6= 0. Invariant functionals (L(σf) = 0,
σ ∈ S) vanish on EC

λ unless λi = λ2n+1−i, 1 6 i 6 n.
The associated right ideal of H2n is given by IS

1 = 〈T0 − t, Tn − t , Ti − T2n−i〉.
The functional, which obeys LIS

1 = 0 (equivalently, L(σf) = 0, ∀σ ∈ S) is

L(p) =

∫
p(z1, z2, . . . zn, 1/zn, . . . 1/z2, 1/z1)

∏

16i6n

(z2
i , qz−2

i ; q)

(tz2
i , qtz−2

i ; q)

∏

16i<j6n

(ziz
±1
j , qz−1

i z±1
j ; q)

(tziz
±1
j , qtz−1

i z±1
j ; q)

dT.
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Case 2.

Theorem 4.2. Let µ, ν be partitions. Then

∫
P

(2n)
µν̄ (. . .±√

zi. . .; q, t)
∏

16i6n

((zi/zj)
±1; q2)

(t2(zi/zj)±1; q2)
dT

=

∫
P

(2n)
µν̄ (. . .±√

zi. . .; q, t)∆̃
(n)
S (q2, t2) dT = 0,

unless µ = ν, when (suitably normalized ) the integral is

(−1)|µ|C−
µ (q; q, t)C+

µ (t2n−2q; q, t)C0
µ(tn,−tn; q, t)

C−
µ (t; q, t)C+

µ (t2n−2t; q, t)C0
µ(qtn−1,−qtn−1; q, t)

.

Remark. The nonzero values can be computed using the Pieri identity as in the proof
of Corollary 3.2. The same nonzero values (apart from the factor (−1)|µ|) appear in
Conjecture 5 of [10], which remains open.

Note that this is well-defined because P
(2n)
µν̄ (. . .±√zi. . .; q, t) is invariant under

√
zi 7→

−√zi and it is therefore in C(q, t)[z1
±1, . . . , zn

±1].
Since multiplying a Macdonald polynomial by (z1z2 · · · zn)m has the effect of adding

m to each part (which works for all m ∈ (1/n)Z) we can restate this in terms of ordinary
Macdonald polynomials as follows.

Corollary 4.3.
[Pmn( ; q2, t2)]Pλ([2pk/2]; q, t) = 0,

unless λ = (2m)2n − λ.

This statement is self-dual, i.e., applying Macdonald’s involution gives the same
identity.

We take
S = 〈U2i−1, U2iU2i−1U

−1
2i+1U

−1
2i , U−1

2i U2i−1U
−1
2i+1U2i, π

2〉.
Chambers are such that r and rι have opposite signs, where ι(2i−1) = 2i, ι(2i) = 2i−1.

IS
2 = 〈T2i−1 − t , T2i(T2i−1 − T2i+1), π2 − 1〉.

IS
2 -invariant functionals vanish on EC

λ unless λ2i−1 + λ2i = 0, 1 6 i 6 n.
The functional, which obeys LIS

2 = 0 is

L(p) =

∫
p(z1,−z1, z2,−z2, . . . , zn,−zn)

∏

16i<j6n

(z2
i /z2

j , q2z2
j /z2

i ; q2)

(t2z2
i /z2

j , q2t2z2
j /z2

i ; q2)
dT.

Theorem 4.4. Let λ be a weight of the double cover of GL2n, i.e., a half-integer vector

such that λi − λj ∈ Z ∀i, j.
∫

P
(2n)
λ (. . . t±1/2zi . . . ; q, t)

∏

16i<j6n

((zi/zj)
±1; q)

(t2(zi/zj)±1; q)
dT = 0,

unless λi = −λ2n+1−i.

We allow half-integral λ here in order to allow m odd in the symmetric function
analogue.
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Corollary 4.5.

[Pmn( ; q, t2)]Pλ([pk(tk/2 + t−k/2)]; q, t) = 0,

unless λ = m2n − λ. Dually,

[Pmn( ; q2, t)]Pλ(; q, t) = 0,

unless λ = (2m)n − λ.

Remark. Experimentally, the nonzero values appear to be nice, but the kernel of the
specialization f 7→ f(· · · t±1/2zi · · · ) is too complicated for us to obtain recurrences from
the Pieri identity.

For this vanishing integral, we can take the same S2 and IS
2 , but use a different

functional

L(p) =

∫
p(z1, tz1, z2, tz2, . . . , zn, tzn)

∏

16i<j6n

(zi/zj , qzj/zi; q)

(t2zi/zj , qt2zj/zi; q)
dT

=

∫
p(z1, tz1, z2, tz2, . . . , zn, tzn)∆̃

(n)
S (q, t2) dT. (4.2)

Case 3.

Theorem 4.6. (q 7→ q2)
∫

P
(2n)
µν̄ (. . . q±1/4zi . . . ; q, t)

∏

16i<j6n

((zi/zj)
±1; q1/2)

(t(zi/zj)±1; q1/2)
dT = 0,

unless µ = ν.

Corollary 4.7. For any partition λ,

[Pmn( ; q, t)]Pλ([pk(qk/2 + q−k/2)]; q2, t) = 0, (4.3)

unless λ = m2n − λ. Dually,

[Pmn( ; q, t)]Pλ( ; q, t2) = 0,

unless λ = (2m)n − λ.

Remark. That (4.3) holds when `(λ) > 2n follows immediately from the fact that Mac-
donald polynomials are triangular with respect to the dominance order and the way the
specialization acts on monomials.

Again, the nonzero values appear nice, but the Pieri trick fails.
We take

S = 〈UiU
−1
i+n, π〉.

Chambers are such that r and rι have opposite signs, where ι(i) = i+n, ι(i+n) = ι(i).
The associated right ideal is

IS
3 = 〈Ti − Ti+n, π − 1〉.

IS
3 -invariant functionals vanish on EC

λ unless λi + λi+n = 0.
The functional is

L(p) =

∫
p(q1/2z1, q

1/2z2, . . . , q
1/2zn, z1, z2, . . . , zn)

∏

16i<j6n

(zi/zj , q
1/2zj/zi; q

1/2)

(tzi/zj , q1/2tzj/zi; q1/2)

=

∫
p(q1/2z1, q

1/2z2, . . . , q
1/2zn, z1, z2, . . . , zn)∆̃

(n)
S (

√
q, t). (4.4)
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4.2. Koornwinder polynomial results: C̃2n

Case 1.

Theorem 4.8. In symmetric function terms,

IK(K̃λ([2pk/2]; q, t, T ; a,−a, c,−c); q2, t2, T ;−t,−qt, a2, c2) = 0,

unless λ = µ2, when it is

(−1)|µ|C−
µ (qt; q, t2)C+

µ (a2c2T 2/t4; q, t2)C0
µ(T,−a2T/t,−c2T/t, a2c2T/t2; q, t2)

C+
µ (a2c2T 2/qt3; q, t2)C−

µ (t2; q, t2)C0
µ2(a2c2T 2q/t2; q2, t2)

.

Dually,

IK(K̃λ([2pk/2]; q, t, T ; a,−a, c,−c); q2, t2, T ;−1,−t, a2, c2) = 0,

unless λ = 2µ, when it is

(−1)|µ|C−
µ (q; q2, t)C+

µ (a2c2T 2/t3; q2, t)C0
µ(T,−a2T/t,−c2T/t, a2c2T/t2; q2, t)

C−
µ (t; q2, t)C+

µ (a2c2T 2/qt2; q2, t)C0
2µ(a2c2T 2/t3; q2, t2)

.

The nonzero values are computed via the Pieri identities for Koornwinder polynomials
[3]. For T = t2n, both formal integrals become actual integrals; similarly, for T = t2n+1,
the second formal integral becomes

I
(n)
K (K

(2n+1)
λ (. . . ,±zi, . . . ,

√
−1; q, t; a,−a, c,−c); q2, t2;−t,−t2, a2, c2).

For this identity, we work with the case b = −a, d = −c of HC
n and its polynomial

representation, and take

S = 〈U2i−1, U
±1
2i U2i−1U

−1
2i+1U

∓1
2i , U±1

0 U1U
∓1
0 , U±1

2n U2n−1U
∓1
2n 〉 ⊆ B(C̃2n)

with associated right ideal

IK
1 = 〈T2i−1 − t, T2i(T2i−1 − T2i+1), T0(T1 − t), T2n(T2n−1 − t)〉.

The functional is

L(p) =

∫
p(z

1/2
1 ,−z

1/2
1 , z

1/2
2 ,−z

1/2
2 , . . . z1/2

n ,−z1/2
n )∆

(n)
K (a2,−t, c2,−qt; q2, t2).

Theorem 4.9. In symmetric function terms,

IK(K̃λ([pk(tk/2+t−k/2)]; q, t, T ; a, b, c, d); q, t2, T ; t1/2a, t1/2b, t1/2c, t1/2d)=0, (4.5)

unless λ = µ2. The dual statement is

IK(K̃λ( ; q, t; T ; a, b, c, d); q2, t, T ; a, b, c, d) = 0, (4.6)

unless λ = 2µ.
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In the case n = 1 the above identity becomes an identity of Askey–Wilson polynomials
and admits a direct hypergeometric proof (Rahman, personal communication).

Once again, the Pieri trick fails but, in fact, the nonzero values

t−|µ|C0
µ(T, Tα, Tβ, Tγ, T δ, T ε, Tζ, Tαζ; q, t2)C+

µ (T 2αζ/t2; q, t2)C−
µ (qt; q, t2)

C0
2µ2(T 2αζ; q, t2)C+

µ (T 2αζ/qt; q, t2)C−
µ (t2; q, t2)

,

where
α = ab/t, β = ac/t, γ = ad/t, δ = bc/t, ε = bd/t, ζ = cd/t,

for the first integral and

q|µ|C0
µ(T, Tα, Tβ, Tγ, T δ, T ε, Tζ, Tαζ; q2, t)C+

µ (T 2αζ/t; q2, t)C−
µ (q; q2, t)

C0
2µ2(T 2αζ; q2, t)C+

µ (T 2αζ/q; q2, t)C−
µ (t; q2, t)

for the second can be obtained as a limit of the elliptic version derived in [9].
We take S and IK

1 as above, but now with generic a, b, c, d, and the functional we
need is

L(p) =

∫
p(t−1/2z1, t

1/2z1,t
−1/2z2, t

1/2z2,

. . . , t−1/2zn, t1/2zn)∆
(n)
K (t1/2a, t1/2b, t1/2c, t1/2d; q, t2).

Case 2.

Theorem 4.10. In symmetric function terms,

IK(K̃λ([pk(qk/2+q−k/2)]; q2, t, T 2; a, b, qa, qb); q, t, T ;±
√

t, q1/2a, q1/2b)=0, (4.7)

unless λ = µ2. The dual statement is

IK(K̃λ( ; q, t2; T 2; a, b, ta, tb); q, t, T ;±
√

t, a, b) = 0,

unless λ = 2µ.

We take c = q1/2a, d = q1/2b (so consider the case q 7→ √
q above)

S = 〈U0U
−1
2n , UiU

−1
2n−i, Un〉 ⊆ B(C̃2n)

and the associated right ideal

S = 〈T0 − T2n , Ti − T2n−i, Tn − t〉.

The functional is

L(p):=

∫
p(q1/4z1, . . . , q

1/4zn, q1/4/zn, . . . , q1/4/z1)∆
(n)
K (

√
t,−

√
t, q1/4a, q1/4b; q1/2, t).
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5. A construction using the Hecke algebra

In this section we give another proof of the existence of nonzero functional L in the
nonvanishing case (another proof of the vanishing condition can also be deduced) along

with an explicit construction of L ∈ Lλ (up to scalar). We only do this for the S̃2n case,
leaving the Koornwinder case to the reader. We do not explicitly compute the scalar
that relates the L constructed in this section to the integral given in Section 3. We also
warn the reader that since we are computing in (V≤λ/V<λ)∗ versus V ∗

<λ, we do not give
information about L(Eµ)/L(Eν) except when µ+ = ν+.

In what follows we will use the presentation of H2n as generated by T1, T2, . . ., T2n−1,
Y ±1

1 , . . . , Y ±1
2n Y ±1

1 , . . . , Y ±1
n , because it allows us to work more explicitly with a basis

of Lλ given by simultaneous Yi-eigenfunctionals.
This presentation also gives us another description of V≤λ/V<λ and of its dual Lλ =

(V≤λ/V<λ)∗. Given λ ` 2n, let J = Jλ = {j | sjλ = λ}, let H(λ) be the parabolic
subalgebra generated by {Tj | j ∈ J} and all the Y ±1

1 , . . . , Y ±1
2n , and let C(q, t)λ be the

one-dimensional H(λ) module on which Yi − qλi t2n−i = 0, Tj − t = 0 ∀j ∈ J . Then we
have

Lλ ' C(q, t)λ ⊗H(λ) H2n.

(Note that V≤λ/V<λ is isomorphic to H2n ⊗H(w0λ) C(q, t)w0λ (which is isomorphic to
H2n ⊗H(λ) C(q, t)λ when q, t are generic) and thus is in this sense self-dual. This can
be seen directly or follows from the Mackey decomposition of V .)

For ease of notation, we introduce the standard invariant form 〈 , 〉, and let δ =
δ2n = (2n− 1, . . . , 2, 1, 0), εi = (0, . . . , 0, 1, 0, . . . , 0), αi = εi − εi+1. We can then write
λi = 〈λ, εi〉. We also have 〈λ, µ〉 = 〈wλ, wµ〉, where w ∈ S2n acts as w(λ1, . . . , λ2n) =
(λw−1(1), . . . , λw−1(2n)).

We observe that the center Z(H2n) is given by symmetric Laurent polynomials in
Y1, . . . , Y2n and each Lλ has distinct central character. Further, the Y -weight spaces of
Lλ are all one-dimensional and hence give a distinguished basis of the module, up to
scalars. From the above description of Lλ, it is easy to see that the basis of simultaneous
Yi-eigenvectors is {vw | w ∈ W J} with

vw(Yi − q〈w
−1λ,εi〉t〈w

−1δ,εi〉) = 0,

where W J is the set of minimal length right coset representatives for 〈sj | j ∈ J〉 ⊆ S2n.
We normalize this basis so that the right action of the Ti, 1 6 i < n, is given by

vwTi =
t− 1

1− q−〈w−1λ,αi〉t−〈w−1δ,αi〉
vw +

1− q〈w
−1λ,αi〉t1+〈w

−1δ,αi〉

1− q−〈w−1λ,αi〉t−〈w−1δ,αi〉
vwsi

with the convention vwsi
= 0 if wsi 6∈ W J . In that case, notice vwTi = tvw, vwYiY

−1
i+1 =

tvw and, in particular, λw(i) = λw(i+1). Observe that the above action does not depend
on the relative lengths `(w) and `(wsi), which is why this particular normalization is
preferred in this setting.

We note that this basis is dual to the one given by the nonsymmetric Macdonald
polynomials up to proportionality. (We leave it to the reader to rescale as necessary,
possibly also rescaling the Ti, to get exactly the dual basis.)
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We want to express our functional L (given by integrating a specialized polynomial
against a given density) in terms of this basis {vw}. To do this, we conjugate the
right ideal I such that L · I = 0 to a related right ideal TuIT−1

u which has a nicer
presentation in terms of the Yi. This corresponds to working with the twisted module
Lu

λ ' Lλ. Hence we explicitly describe the functional LT−1
u in terms of the dual basis

to nonsymmetric Macdonald polynomials, but not L itself. The vanishing result stated
above will hold for suitable nonsymmetric Macdonald polynomials with Eν replaced by
TuEν . This twist by u is motivated by the viewpoint of Section 7 regarding nonstandard
large commutative subalgebras.

For each functional L and corresponding ideal I such that LI = 0, we describe
TuIT−1

u = I ′, determine all λ such that there exists nonzero v ∈ Lλ with vI ′ = 0, and
show this v is unique up to scalar.

It will follow from our explicitly computed generators of TuIT−1
u that it contains a

large binomial ideal in the commutative subalgebra C[Y ±1
i ]. This translates directly to

conditions under which LT−1
u (Eν) is forced to vanish. In particular this implies for any

L such that LT−1
u I = 0 that LT−1

u (Eν) vanishes. In each case this will immediately
give the desired vanishing result for Pν+ . However, one can ask for something stronger,
namely that for each partition λ either the stated vanishing condition holds or there
exists a unique I-killed functional.

In what follows, all ideals are right ideals.

5.1. Second proof of Theorem 4.1

Recall IS
1 = 〈T0 − t, Tn − t, Ti − T2n−i (1 6 i < n)〉 is the right ideal with given

generators. Let u be the permutation defined by

u(i) =

{
2(n− i) + 1 i 6 n,

2(i− n) i > n,

and set I ′ = I ′1
A

= TuIS
1 T−1

u . Observe `(u) = 2
(
n
2

)
. Then

I ′ = 〈T2i−1 − t, T2i(T2i+1 − T2i−1), tY2i − Y2i−1 (1 6 i < n)〉.

One can verify

Tu(Ti − T2n−i)T
−1
u = Tu(2n−i)(Tu(i) − Tu(i)−2)T

−1
u(2n−i)

= T2(n−i)(T2(n−i)+1 − T2(n−i)−1)T
−1
2(n−i),

Tu(Tn − t)T−1
u = T1 − t,

Tu(tT−1
0 − 1)T−1

u = Y −1
2n−1Y2nT2n−1 − 1.

From the first two equations, we can show T2i−1 − t ∈ I ′, inductively as T2i+1 − t =
((T2i−1−t)T2iT2i−1+T2i(T2i+1−T2i−1)T

−1
2i (T 2

2i−tT2i))T
−1
2i+1T

−1
2i ∈ I ′. Then tY −1

2n−1Y2n−
1 = Y −1

2n−1Y2nt− T 2n−1 + T2n−1 − t = (Y −1
2n−1Y2nT2n−1 − 1)T 2n−1 + (T2n−1 − t) ∈ I ′.
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To show tY2i − Y2i−1 ∈ I ′, it suffices to show Y2i(T2i−1 − t) ∈ I ′ as Y2i(T2i−1 − t) =
(T2i−1 − t)Y2i−1 − (tY2i − Y2i−1). Note

Y2i(T2i−1 − t) = t−2T2iT2i+1Y2i+2T2i+1T2i(T2i−1 − t)

= t−2T2iT2i−1Y2i+2T2i+1T2i(T2i−1 − t)

+ t−2(T2iT2i+1 − T2iT2i−1)Y2i+2T2i+1T2i(T2i−1 − t)

∈ t−2Y2i+2T2iT2i−1T2i+1T2i(T2i−1 − t) + I ′

= t−2Y2i+2(T2i+1 − t)T2iT2i−1T2i+1T2i + I ′.

Because tY2i − Y2i−1 ∈ I ′ it follows that if a functional L′ is annihilated by I ′, then
L′(Eµ) = 0 unless µ1 = µ2, µ3 = µ4, and so on, thus directly proving the vanishing
result, Theorem 3.1.

We may thus restrict our attention to partitions of the form λ = µ2. We wish to show
that in this case, Lλ contains a unique I ′-killed functional and give an explicit expression
for that functional in terms of the basis {vw}. Of course, it is only possible to determine
the functional up to an overall scalar (and, in fact, because we are only considering this
one partition at a time, we have such a scalar for every valid partition). What this does
determine is the relative values of an I ′-killed functional on nonsymmetric Macdonald
polynomials. The actual values of such a functional are at least in principle determined
by its values on symmetric Macdonald polynomials (since for t = 1 we can exhibit a
functional for which those values are nonzero). Moreover, experimentally, the resulting
scale factors are still nice. However, it appears somewhat nontrivial to prove a closed
form.

Next we will determine under what conditions Lλ contains a functional annihilated
by I ′, and show that it is unique up to scalar. We will give an explicit expression for
this functional in terms of the vw.

We will need some more notation.
For w ∈ W let R(w) = {α > 0 | wα < 0}. Notice for w ∈ S2n we have R(w) =

{εi − εj | i < j, w(i) > w(j)} and |R(w)| = `(w). For ι an involution acting on the
weight lattice, let Rι(w) = { 1

2 (α + ι(α)) | α ∈ R(w)}. Since ι is an involution, the
sizes of its orbits are either one or two. When it is necessary to differentiate, we set
Rι

1 = {α ∈ R(w) | ι(α) = α}, Rι
2 = { 1

2 (α + ι(α)) | α ∈ R(w), ι(α) 6= α}.
Proposition 5.1. Suppose λ = µ2. Then any v ∈ Lλ with vI ′ = 0 is proportional to

the nonzero I ′-killed functional

∑

w∈W J

ι(w−1λ)=w−1λ

(
∏

β∈Rι(w−1)

q−〈λ,β〉t−〈δ,β〉
1− q−〈λ,β〉t1−〈δ,β〉

1− q〈λ,β〉t1+〈δ,β〉

)
vw, (5.1)

where ι is the involution on the weight lattice with ι(ε2i−1) = ε2i.

Proof. Write v =
∑

w∈W J cwvw and suppose vI ′ = 0.
That v(tY2i − Y2i−1) = 0 forces 〈w−1λ, αi〉 = 0 and 〈w−1δ, αi〉 − 1 = 0 whenever

cw 6= 0. In particular, v 6= 0 implies ιλ = λ, which we have already included in
our hypotheses as λ = µ2. Also, it automatically follows for such an expression that
v(T2i−1 − t) = 0.
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That vT2i(T2i+1 − T2i−1) = 0 forces a relation on cw and cws2is2i+1s2i−1s2i
, and the

resulting relation between nonzero cw and cid is independent of the reduced expression
for w and is given by (5.1). �

5.2. Second proofs of Theorems 4.2, 4.4

In order to accommodate Theorem 4.4, we must allow half-integral weights, i.e., include
(z1z2 · · · z2n)−1/2 in the algebra of polynomials on which we act. Recall IS

2 = 〈π2 −
1, T0(T2n−1−T1), T2i−1− t, T2i(T2i+1−T2i−1) (1 6 i < n)〉. Let v be the permutation
defined by

v(2i + 1) = n− i,

v(2i) = n + i,

and set I ′ = TvIT−1
v . Notice that v = u−1 with u the permutation for the ideal in

Section 5.1, so that I ′ = Tu−1IT−1
u−1 . Then

I ′ = 〈Tn − t, Ti − T2n−i, YiY2n−i+1 − t2n−1 (1 6 i < n)〉.

We can use the same computations as with the first ideal, using the fact there is an
anti-involution ∗ on the Hecke algebra sending Tw 7→ Tw−1 , i.e., if TuaT−1

u = b, then
Tvb

∗T−1
v = a∗. Hence, we get Tn − t, Ti − T2n−i ∈ I ′. To be more precise,

Ti − T2n−i = TvTu(2n−i)(Tu(i) − Tu(i)−2)T
−1
u(2n−i)T

−1
v

= TvT2(n−i)(T2(n−i)+1 − T2(n−i)−1)T
−1
2(n−i)T

−1
v ,

Tn − t = Tv(T1 − t)T−1
v .

One can verify

Tu−1(π−2 − 1)T−1
u−1 = Tn−1 · · ·T2T1TnTn−1 · · ·T2π

−2T−1
2n−2 · · ·T−1

1 − 1

∈ T2n−1 · · ·Tn+1TnTn−1 · · ·T2π
−2T−1

2n−2 · · ·T−1
1 − 1 + I ′

= t2n−1Y −1
2n Y −1

1 − 1 + I ′.

The second step comes from the fact that we have T2n−1 · · ·Tn+1 − Tn−1 · · ·T1 =∑n−1
i=1 (T2n−i − Ti)T2n−i−1T2n−i−2 · · ·Tn+1Ti−1 · · ·T2T1 ∈ I ′.

Proposition 5.2. Suppose λ satisfies λi = −λ2n−i+1 (1 6 i < n), i.e., if we set

ν = ((m/2)2n) + λ, then ν = (m2n) − ν (even for m = 0 ). Then any v ∈ Lλ with

vI ′ = 0 is proportional to the nonzero I ′-killed functional

v =
∑

w∈W J

ι(w−1λ)=w−1λ

(
∏

β∈Rι
2
(w−1)

−1

q〈λ,β〉t〈δ,β〉
1− q−〈λ,β〉t1−〈δ,β〉

1− q〈λ,β〉t1+〈δ,β〉

×
∏

β∈Rι
1
(w−1)

−1

q〈λ,β〉t〈δ,β〉

)
vw. (5.2)

Here ι is the involution on the weight lattice with ι(εi) = −ε2n−i+1.
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Proof. In the above expression Rι
1(w

−1) represents the ι-orbit sums on R(w−1) where
the orbit has size 1, and Rι

2(w
−1) represents the ι-orbit sums on R(w−1) where the orbit

has size 2.
Write v =

∑
w∈W J dwvw and suppose vI ′ = 0.

That v(YiY2n−i+1 − t2n−1) = 0 forces 〈w−1λ, εi + ε2n−1〉 = 0, 〈w−1δ, εi + ε2n−1〉 −
2n + 1 = 0, whenever dw 6= 0. In particular, v 6= 0 implies ιλ = λ, which is in the
hypotheses of our proposition.

That v(Ti − T2n−i) = 0 forces a relation on dw and dwsis2n−i
corresponding to the

first term in the above product. (Note that ι(αi) = α2n−i.) That v(Tn− t) = 0 forces a
relation on dw and dwsn

corresponding to the second term in the above product. (Note
that ι(αn) = αn.) The resulting relation between nonzero dw and did is independent of
the reduced expression for w and is given by (5.2). �

5.3. Second proof of Theorem 4.6

Again we must allow half-integral weights.
Recall I = 〈π − 1, Ti − Ti+n (0 6 i < n)〉. Let u be the permutation defined by

u(i) =

{
i, i 6 n,

3n− i + 1, i > n,

and set I ′ = TuIT−1
u . Note that u is the longest element of S1 × · · · × S1︸ ︷︷ ︸

n

×Sn.

Then

I ′ = 〈Tn + 1− t− t1−nYn+1, Ti − T2n−i, YiY2n−i+1 − t2n−1 (1 6 i < n)〉.
One can verify

Tu(Ti − Ti+n)T−1
u = Ti − T2n−i,

Tu(π − 1)T−1
u = Tn+1Tn+2 · · ·T2n−1πT−1

n+1 · · ·T−1
2n−1 − 1.

Hence

I ′ 3 Tn+1Tn+2 · · ·T2n−1π − T2n−1 · · ·Tn+1 ≡ Tn+1Tn+2 · · ·T2n−1π − Tn−1 · · ·T1.

And so we have I ′ 3 Tn+1 · · ·T2n−1πT−1
1 · · ·T−1

n−1T
−1
n − T−1

n = t−nYn+1 − T−1
n =

t−1(t1−nYn+1 − (Tn + 1− t)).
Then also I ′ 3 (t−nYn+1 − T−1

n )(tnYn + t2n−1Tn) = Yn+1Yn − t2n−1. From this it is
easy to show YiY2n−i+1 − t2n−1 ∈ I ′.

Proposition 5.3. Suppose λ satisfies λi = −λ2n−i+1 (1 6 i < n), i.e., if we set

ν = ((m/2)
2n

) + λ, then ν = (m2n) − ν (even for m = 0, sorting parts in the latter

expression so it is a partition ). Then any v ∈ Lλ with vI ′ = 0 is proportional to the

nonzero I ′-killed functional

v =
∑

w∈W J

ι(w−1λ)=w−1λ

(
∏

β∈Rι
2
(w−1)

−1

q〈λ,β〉t〈δ,β〉
1− q−〈λ,β〉t1−〈δ,β〉

1− q〈λ,β〉t1+〈δ,β〉

×
∏

β∈Rι
1
(w−1)

(−1)
1− q−〈λ,β〉/2t(1−〈δ,β〉)/2

1− q〈λ,β〉/2t(1+〈δ,β〉)/2

)
vw. (5.3)

Here again ι is the involution on the weight lattice with ι(εi) = −ε2n−i+1.
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Proof. In the above expression Rι
1(w

−1) represents the ι-orbit sums on R(w−1) where
the orbit has size 1, and Rι

2(w
−1) represents the ι-orbit sums on R(w−1) where the orbit

has size 2.
Write v =

∑
w∈W J bwvw and suppose vI ′ = 0.

That v(YiY2n−i+1 − t2n−1) = 0 forces 〈w−1λ, εi + ε2n−1〉 = 0, 〈w−1δ, εi + ε2n−1〉 −
2n+1 = 0, whenever bw 6= 0. In particular, v 6= 0 implies ιλ = λ, which we have already
included in our hypotheses.

That v(Ti−T2n−i) = 0 forces a relation on bw and bwsis2n−i
corresponding to the first

term in the above product. (Note that ι(αi) = α2n−i.) That v(Tn +1− t− t1−nYn+1) =
0 forces a relation on bw and bwsn

corresponding to the second term in the above
product. (Note that ι(αn) = αn.) The resulting relation between nonzero bw and bid is
independent of the reduced expression for w and is given by (5.3). �

6. Extended affine Weyl groups

Let W be a finite Weyl group acting on a Euclidean space R
n, with associated root

lattice Λ0, not assumed to span Rn. A generalized weight lattice for W is a lattice Λ
(spanning Rn) containing Λ0 such that

2〈r, ν〉
〈r, r〉 ∈ Z

for all roots r and vectors ν ∈ Λ. (The specification of a pair (W, Λ) is equivalent to
the classical notion of a root datum. In particular, there is a one-to-one correspondence
between isomorphism classes of pairs (W, Λ) and isomorphism classes of connected com-
pact Lie groups; here Λ is the inverse image of the identity element under the exponential
map.)

An extended affine Weyl group is then a group of the form W̃ = G n Λ, where Λ is
a generalized weight lattice for a finite Weyl group W , and G ⊂ Aut(Λ) contains W as

a normal subgroup. Given ν ∈ Λ, we denote the corresponding element of W̃ by τν to
avoid confusion.

An alcove is the closure of a fundamental region for the normal subgroup W nΛ0; the
standard alcove is the unique alcove containing the origin contained in the fundamental
chamber of W . The union of the boundaries of the alcoves is a union of hyperplanes;
the distance between two alcoves is the number of such hyperplanes that separate their
interiors. Given w ∈ W̃ , the length of w is the distance between the standard alcove
and its image under w. In particular, the elements of length 0 are those that preserve
the standard alcove, and there is a natural map from W̃ to the length 0 subgroup with
kernel W n Λ0.

The braid group B(W̃ ) is generated by elements U(w) for w ∈ W̃ , subject to the

relations U(w1w2) = U(w1)U(w2) whenever `(w1w2) = `(w1) + `(w2); thus B(W̃ )

contains a subgroup identified with the length 0 subgroup of W̃ , and is generated over
this subgroup by U(s) for s of length 1.

The Hecke algebra H(W̃ ) is obtained from the group algebra of B(W̃ ) by adding

further quadratic relations (U(s) − t
1/2
s )(U(s) + t

−1/2
s ) = 0. We require ts = ts′ if

s and s′ are conjugate, since then U(s) and U(s′) are conjugate. More generally, if
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σ ∈ W̃ is of length 0 (and so acts on the affine Dynkin diagram) we have σ acting on

scalars by σtsσ
−1 = tσsσ−1 . If there are simple reflections which are conjugate in W̃

but not in W n Λ0 then this action on scalars is nontrivial and, therefore, the resulting

extended affine Hecke algebra is no longer a central algebra over C[t
±1/2
s ]. However, if

we specialize the ts appropriately, one can indeed obtain a central algebra over C[t
±1/2
s ].

Alternatively, we can view such σ as giving an intertwining map between two different
Hecke algebras.

For instance, in the case of HC
n , the outer involution σ in general gives an intertwin-

ing map between two different instances of HC
n . In particular, it takes nonsymmetric

Koornwinder polynomials for one set of parameters to nonsymmetric Koornwinder poly-
nomials with modified parameters. This becomes significant because the construction
of Y operators given in the next section includes such intertwiners and this explains,
for instance, the difference operator of [10].

For the cases S̃n, C̃n which are of particular interest to us, we can represent elements
of the corresponding braid groups pictorially as periodic braids. We follow (American)
book-spine conventions; that is, the leftmost symbol in a word corresponds to the top-
most move in the corresponding braid picture. To save space, commuting symbols may
be drawn as occurring at the same time.

The generators of the braid group are denoted Ui; in the Hecke algebra, they satisfy

Ui − U−1
i = t

1/2
i − t

−1/2
i , and we define Ti =

√
tiUi.

In S̃n, Ui corresponds to a picture in which (reading down) the jth strand (from the
left) crosses under the (j + 1)st strand for all j ≡ i mod n.

Figure 1. Ui ∈ B(S̃n).

Figure 2. U0 ∈ B(S̃n).

Similarly, π corresponds to the operation that simply moves each strand one step to
the right.
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Figure 3. π ∈ B(S̃n).

The elements Yi ∈ B(S̃n) (i.e., the elements of the braid group given by replacing Ti

by Ui and T i by U−1
i in (2.3), (2.4), (2.5)) moves the strands congruent to i mod n n

steps to the right, underneath the adjacent strands congruent to 1 . . . i− 1 and over the
remaining strands. See Figures 4, 5.

Figure 4. Y1 ∈ B(S̃n).

Figure 5. Yi ∈ B(S̃n).

Similarly, B(C̃n) corresponds to braids which are symmetric with respect to rotations
about a vertical line between i and i + 1 for i ≡ 0 mod n. Note that the two rotation
symmetries generate a translation, and thus B(C̃n) is naturally a subgroup of B(S̃2n).

Figure 6. Ui ∈ B(C̃n).
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Figure 7. U0 ∈ B(C̃n).

Figure 8. Un ∈ B(C̃n).

Figure 9. Y1 ∈ B(C̃n).

Figure 10. Yi ∈ B(C̃n).

7. Commutative subgroups of affine braid groups

The cleanest proof of our quadratic transformations requires the construction of
nonstandard commutative subalgebras of affine Hecke algebras. It turns out that there
is a natural construction that associates a commutative subgroup of an extended affine
braid group to each chamber of the associated finite Weyl group.

More precisely, to each chamber we may associate an injective homomorphism Λ →
B(W̃ ). We first consider a related construction which associates a map W̃ → B(W̃ ) to

each alcove of W̃ . For the standard alcove this is just the map

w 7→ U(w)
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used to define B(W̃ ). More generally, we define

Uw1
(w2) := U(w1)

−1U(w1w2).

Note that if we multiply w1 on the right by an element of length 0 that this has no
effect on U(w1), which is therefore a function only depending on the associated alcove.
More precisely, we have the following.

Lemma 7.1. Let A0 denote the standard alcove of the extended affine Weyl group W̃ .

Then for any simple reflection s of W̃ and any element w ∈ W̃ ,

Uw(s) = U(s)±1.

The sign is positive if and only if the simple root corresponding to s is positive for the

alcove Aw
0 . For any length 0 element σ,

Uw(σ) = σ.

Proof. By definition, we have

Uw(s) = U(w)−1U(ws).

If `(ws) > `(w), then U(ws) = U(w)U(s), and thus Uw(s) = U(s); otherwise, U(w) =
U(ws)U(s) and Uw(s) = U(s)−1. Since `(ws) > `(w) if and only if s is positive for the
alcove Aw

0 , the claim follows.
For length 0 elements, we find that `(wσ) = `(σw) = `(w), and the claim follows.

�

With this in mind, we will also write

UA(w) = UwA
(w),

where A is the alcove AwA

0 .
We also trivially have:

Lemma 7.2. For any element w ∈ W̃ and any alcove A,

UA(w)−1 = UAw(w−1).

Similarly, for any elements w1, w2 ∈ W̃ and any alcove A,

UA(w1w2) = UA(w1)UAw1 (w2).

We can thus describe UA(w) as follows: Take any expression (reduced or not) for w
in terms of simple reflections, say

w = s1s2 . . . snσ.
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Then by iterating the second lemma, we obtain

UA(w) = UA(s1)UAs1 (s2)UAs1s2 (s3) · · ·UAs1···sn−1 (sn)σ (7.1)

= U(s1)
±1U(s2)

±1 · · ·U(sn)±1σ, (7.2)

where each sign is given by the sign of the given simple root on the current choice of
alcove.

So far everything we have been saying could apply just as well to any (extended)
Coxeter group. In the case of an extended affine Weyl group, we have the additional
structure of the associated finite Weyl group W . In particular, in addition to the alcoves
of W̃ , we may consider the chambers of W .

Using the natural quotient map W̃ → G we may associate to each simple root of
W̃ a root of G and may thus sensibly talk about the sign of a root with respect to a
chamber. Thus given a chamber C of the finite Weyl group W and a simple reflection
of W̃ , we can define

UC(s) = U(s)±1,

with positive sign precisely when the corresponding root is positive for C; that is, when
the corresponding half-space contains C. Then, for any word w =

snsn−1 . . . s1σ in the generators of W̃ , we define

UC(w) = UC(s1)UCs1 (s2)UCs1s2 (s3) · · ·UCs1···sn−1 (sn)σ.

Theorem 7.3. Let W̃ be an extended affine Weyl group, and let C be a chamber

of the associated finite Weyl group W . Then, for any word w in the generators of

W̃ , there exists a vector vw such that, for any alcove A ⊂ vw + C,

UA(w) = UC(w).

In particular, UC(w) depends on w only via its image in W̃ , and

UC(w1w2) = UC(w1)UCw1 (w2).

Proof. We restrict our attention to the case W̃ = W nΛ0; the general case is analogous.
Write w = s1 . . . sn, and consider

UC(w) = U(s1)
±1 · · ·U(sn)±1.

For 1 6 i 6 n, let Hi(w) denote either the half-space corresponding to si or its com-
plement (the former precisely when U(si)

±1 occurs with positive sign), and define a
sequence of convex sets Di(w) by

Dn(w) = Hn(w), (7.3)

Di(w) = Di+1(w)si ∩Hi(w). (7.4)

We claim that the following is true for 1 6 i 6 n:

(a) The set Di(w) is nonempty, and satisfies

Di(w) + Cs1···si−1 = Di(w).

(b) For any alcove A ⊂ Di(w),

UA(si · · · sn) = UCs1···si−1 (si · · · sn).
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Indeed, a simple induction argument reduces to the case n = 1, in which case (a) and
(b) are immediate.

Thus any choice vw ∈ D1(w) proves the first claim of the theorem. The remaining
claims follow from the corresponding results for alcoves. �

The point of using chambers rather than alcoves is that chambers are left invariant
by translations. As a result, if Λ denotes the translation subgroup of W̃ , we find the
following.

Corollary 7.4. For any chamber C, UC induces a homomorphism UC : Λ → B(W̃ ).
The homomorphisms associated to different choices of C are conjugate, in the sense that

UCw(τν) = UC(w)−1UC(wτνw−1)UC(w)

for arbitrary w ∈ W̃ .

Proof. The first claim is immediate. For the second claim, we write

UC(wτνw−1) = UC(w)UCw (τν)UCw(w−1). �

Remark. Note more generally that for each chamber C we can extend this homomor-
phism to a homomorphism from the stabilizer of C to B(W̃ ).

We will define Y C
ν = UC(τν) accordingly, and write Yν = Y C0

ν . Note the Y C
ν commute

(as Λ is commutative).
It was observed by Cherednik [2, 1, p. 265] that such alternate Y C

ν exist. Our appli-
cation appears to be the first in which these alternate Y C

ν play a major role.
In addition to the relevance of alternate chambers to our vanishing results, note also

that with respect to our standard inner product for S̃n it lets us express the adjoint to
the standard Yν as Y C

w0ν where C is the opposite chamber to the standard one.

Theorem 7.5. Suppose the weight λ is dominant for the chamber C, that is, λ ∈ C.

Then

Y C
λ = U(τλ).

In general, if we write λ = λ+ − λ− with λ± ∈ C, then

Y C
λ = U(τλ+)U(τλ−)−1.

Proof. Let w be a word expressing τλ in terms of the generators of W̃ , and choose vw

accordingly. In particular, we can choose vw to be a dominant weight λ′ for C. We thus
find

Y C
λ = UA0+λ′(τλ) = U(τλτλ′ )U(τλ′)−1.

But since both λ and λ′ are dominant for C, it follows that

`(τλ) + `(τλ′) = `(τλ+λ′),

and thus
U(τλτλ′ ) = U(τλ)U(τλ′);

the result follows. �

In particular, we find that Yλ agrees with the standard construction of a commutative
subgroup of B(W̃ ).
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Theorem 7.6. Let H(W̃ ) be the Hecke algebra corresponding to W̃ , and let Y C
ν denote

the image in H(W̃ ) of the corresponding element of B(W̃ ). Then, for any weight λ ∈ Λ0,

the sum ∑

µ∈λW

Y C
µ

over the W -orbit of λ is a central element of H(W̃ ) independent of the choice of chamber

C.

Proof. If we write C = Cw
0 , then

∑

µ∈λW

Y C
µ = U(w)−1

∑

µ∈λW

YµU(w),

and thus the claim follows from the standard fact that

∑

µ∈λW

Yµ

is central. �

Remark. For general λ ∈ Λ, this element commutes with all of the generators, but might
act nontrivially on scalars.

For each λ in the root lattice of W̃ , we can thus define nonsymmetric Macdonald
polynomials EC

λ by
EC

λ ∝ U(w)−1Ew−1λ,

where C = Cw
0 , and the constant is chosen to make the coefficient of xλ in EC

λ equal
to 1.
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