
Transformation Groups, Vol. 12, No. 1, 2007, pp. 175–202 c©Birkhäuser Boston (2007)
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Abstract. Let (J, g) be a Hermitian structure on a six-dimensional compact nilmanifold
M with invariant complex structure J and compatible metric g, which is not required to be
invariant. We show that, up to equivalence of the complex structure, the strong Kähler with
torsion structures (J, g) on M are parametrized by the points in a subset of the Euclidean space,
in particular, the region inside a certain ovaloid corresponds to such structures on the Iwasawa
manifold and the region outside to strong Kähler with torsion structures with nonabelian J

on the nilmanifold Γ\(H3 × H3), where H3 is the Heisenberg group. A classification of six-
dimensional nilmanifolds admitting balanced Hermitian structures (J, g) is given, and as an
application we classify the nilmanifolds having invariant complex structures which do not admit
Hermitian structure with restricted holonomy of the Bismut connection contained in SU(3). It
is also shown that on the nilmanifold Γ\(H3 ×H3) the balanced condition is not stable under
small deformations. Finally, we prove that a compact quotient of H(2, 1) × R, where H(2, 1)
is the five-dimensional generalized Heisenberg group, is the only six-dimensional nilmanifold
having locally conformal Kähler metrics, and the complex structures underlying such metrics
are all equivalent. Moreover, this nilmanifold is a Vaisman manifold for any invariant locally
conformal Kähler metric.

Introduction

Let (J, g) be a Hermitian structure on a manifold M , with fundamental 2-form Ω
and Lee form θ. The 3-form JdΩ can be identified with the torsion of the Bismut con-
nection, i.e., the unique Hermitian connection with totally skew-symmetric torsion [Bi],
[Ga], and when JdΩ is closed and nonzero (which excludes the Kähler case) the Her-
mitian structure is called strong Kähler with torsion (SKT for short) [AI], [FPS]. Such
structures arise in a natural way in physics in the context of supersymmetric σ-models,
and in general metric connections with totally skew-symmetric torsion have also appli-
cations in type II string theory and black hole moduli spaces (see [P] and references
therein).

When the Lee form θ vanishes identically the Hermitian structure is called balanced,
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and such structures constitute the class W3 in the well known Gray–Hervella classifica-
tion [GH]. A recent result by Fino and Grantcharov [FG] states that for any compact
complex manifold (M, J) with holomorphically trivial canonical bundle, the existence
of a balanced structure (J, g) is a necessary condition for the existence of a J-Hermitian
metric on M with vanishing Ricci tensor of its Bismut connection (see also [AI], [FPS]
for related results).

A Hermitian structure (J, g) is said to be locally conformal Kähler (LCK for short) if
g is conformal to some local Kähler metric in a neighborhood of each point of M . LCK
structures correspond to the Gray–Hervella class W4, and in dimension > 6 they are
characterized by the condition dΩ = θ ∧ Ω.

Let M be a compact Hermitian non-Kähler manifold of dimension 2n > 6. Then the
SKT, balanced, and LCK conditions are complementary to each other. In fact, it is
well known that a Kähler metric can be defined as a Hermitian structure in W3 ∩W4.
Moreover, Alexandrov and Ivanov prove in [AI] that dΩ 6= θ ∧ Ω if the Hermitian
structure is SKT (the compactness of M is only needed here), and a Hermitian structure
can only be SKT if θ 6= 0 (see also [FPS]).

In this paper we study SKT, balanced, and LCK geometries on six-dimensional com-
pact nilmanifolds Γ\G whose underlying complex structure is invariant, that is, G is a
simply connected nilpotent Lie group having a discrete subgroup Γ such that the quo-
tient Γ\G is compact, and the complex structure on Γ\G stems from a left-invariant
one on the Lie group G.

We first observe that such study can be reduced to the particular case when the
metric is also invariant. This is shown in [FG] for balanced structures using the “sym-
metrization” process, which is based on a previous idea of Belgun [Be], and we prove
that it also holds for SKT and LCK structures on nilmanifolds (see Propositions 21
and 34). A second reduction comes from the fact that the study of SKT, balanced,
and LCK structures can be carried out up to equivalence of the complex structure.
Therefore, we can restrict our attention to Hermitian structures at the level of the Lie
algebra of G and consider just one representative in each equivalence class of complex
structures. Moreover, in Section 1 we prove that in dimension six any invariant complex
structure J is equivalent to a complex structure defined by one of two special types of
reduced equations, depending on the “nilpotency” of J in the sense of [CFGU2].

Salamon proves in [S] that, up to isomorphism, there are exactly eighteen nilpotent
Lie algebras of dimension 6 admitting complex structure, which we shall denote here
by hk (1 6 k 6 16), h−19, and h+

26 (see Theorem 8 for details). For instance, the nilpotent
Lie algebra h2 is the Lie algebra of H3 ×H3, where H3 is the Heisenberg group, h3 is
the Lie algebra of H(2, 1)×R, H(2, 1) being the five-dimensional generalized Heisenberg
group, h5 is the Lie algebra underlying the Iwasawa manifold, and h8 is the Lie algebra
of H3 × R3. In Section 1 it is shown that any complex structure on hk is nilpotent
for 1 6 k 6 16, whereas any complex structure on h−19 and h+

26 is of nonnilpotent
type. Since the structure equations of each one of these Lie algebras are rational, their
corresponding simply connected nilpotent Lie groups have a discrete subgroup for which
the quotient is compact [Ma].

Fino, Parton, and Salamon prove in [FPS] that a six-dimensional compact nilmanifold
Γ\G admits an invariant SKT structure if and only if the Lie algebra of G is isomorphic
to h2, h4, h5, or h8. In Section 2 we prove that the same classification is valid if we do
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not require invariance of the metric. We also obtain a more reduced form of the SKT
condition, given in [FPS], which allows us to show that the space of SKT structures on
a six-dimensional nilmanifold can be parametrized, up to equivalence of the complex
structure, by the points in a region of the Euclidean 3-space. More concretely, when the
complex structure is not abelian, there is an ovaloid of revolution in the Euclidean space
such that the region inside corresponds to SKT structures on the Iwasawa manifold, the
region outside to SKT structures on Γ\(H3 × H3), and the points on the ovaloid to
SKT structures on the nilmanifold with underlying Lie algebra h4.

A large class of balanced structures is provided by the compact complex parallelizable
manifolds M . In fact, any invariant compatible metric on M is balanced [AG], and this
property allows us to show in Section 3 that in dimension > 6 such manifolds possess
no SKT metrics. We also prove that a compact nilmanifold Γ\G of dimension 6 admits
a balanced metric compatible with an invariant complex structure if and only if the Lie
algebra of G is isomorphic to h−19 or hk for some 1 6 k 6 6. Fino and Grantcharov
construct in [FG] a family Jt of invariant complex structures on the Iwasawa manifold
not admitting balanced metrics, except for the natural complex structure J0. Using
their above-mentioned result, this family allows them to conclude that for t 6= 0 the
complex structure Jt does not admit a Hermitian metric whose Bismut connection has
restricted holonomy in SU(3), providing counterexamples to a conjecture in [GIP] as
well as the nonstability of this property under small deformations. We show that the
general situation for six-dimensional compact nilmanifolds Γ\G is the following: there
exists an invariant complex structure on Γ\G not admitting a Hermitian metric whose
Bismut connection has restricted holonomy in SU(3) if and only if the Lie algebra of G
is not isomorphic to h1, h6, or h−19. It is also shown that on the nilmanifold Γ\(H3×H3)
the balanced condition is not stable under small deformations.

Section 4 is devoted to LCK geometry on compact nilmanifolds of dimension 6. We
prove that such a nilmanifold Γ\G admits an LCK metric compatible with an invariant
complex structure if and only if the Lie algebra of G is isomorphic to h1 or h3, that is,
apart from the torus, Γ\(H(2, 1)×R) is the only six-dimensional nilmanifold having LCK
structures. It is also shown that the complex structures underlying such LCK metrics
are all equivalent. Moreover, the Lee form of any invariant LCK metric is parallel with
respect to the Levi-Civita connection, so the nilmanifold becomes a Vaisman manifold.
As a consequence, the only nontoral five-dimensional nilmanifold admitting an invariant
Sasakian structure is a compact quotient of H(2, 1).

1. Invariant complex structures on six-dimensional nilmanifolds

In this paper we deal with compact complex nilmanifolds (M = Γ\G, J) endowed
with an invariant complex structure J , that is, G is a simply connected nilpotent Lie
group and Γ a lattice in G of maximal rank, and J stems from a left invariant integrable
almost complex structure on G. Since the structure is invariant, we can restrict our
attention to the level of the nilpotent Lie algebra g of G.

Let g be a Lie algebra. An endomorphism J : g → g such that J2 = −Id is said to
be integrable if it satisfies the “Nijenhuis condition”

[JX, JY ] = J [JX, Y ] + J [X, JY ] + [X, Y ]

for any X, Y ∈ g. In this case we shall say that J is a complex structure on g.
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Let us denote by gC the complexification of g and by g∗
C

its dual, which is canonically
identified to (g∗)C. Given an endomorphism J : g → g such that J2 = −Id, there is a nat-
ural bigraduation induced on the complexified exterior algebra

∧∗
g∗

C
=

⊕
p,q

∧p,q(g∗),

where the spaces
∧1,0

(g∗) and
∧0,1

(g∗), which we shall also denote by g1,0 and g0,1, are
the eigenspaces of the eigenvalues ±i of J as an endomorphism of g∗

C
, respectively.

Let d :
∧∗

g∗
C
→ ∧∗+1

g∗
C

be the extension to the complexified exterior algebra of the
usual Chevalley–Eilenberg differential. It is well known that J is integrable if and only
if π0,2 ◦ d|g1,0 ≡ 0, where πp,q :

∧p+q
g∗

C
→

∧p,q
(g∗) denotes the canonical projection

onto the subspace of forms of type (p, q).
Next we shall focus on nilpotent Lie algebras (NLA for short), that is, the descending

central series {gk}k>0 of g, which is defined inductively by

g0 = g, gk = [gk−1, g], k > 1,

satisfies that gk = 0 for some k. If s is the first positive integer with this property, then
the NLA g is said to be s-step nilpotent.

Salamon proves in [S] the following equivalent condition for the integrability of J on
a 2n-dimensional NLA: J is a complex structure on g if and only if g1,0 has a basis
{ωj}n

j=1 such that dω1 = 0 and

dωj ∈ I(ω1, . . . , ωj−1) for j = 2, . . . , n,

where I(ω1, . . . , ωj−1) is the ideal in
∧
∗ g∗

C
generated by {ω1, . . . , ωj−1}.

In particular, Salamon’s condition in six dimensions is equivalent to the existence of
a basis {ωj}3

j=1 for g1,0 satisfying






dω1 = 0,

dω2 = A12 ω12 + A13 ω13 + A11̄ ω11̄ + A12̄ ω12̄ + A13̄ ω13̄ ,

dω3 = B12 ω12 + B13 ω13 + B11̄ ω11̄ + B12̄ ω12̄ + B13̄ ω13̄

+ B23 ω23 + B21̄ ω21̄ + B22̄ ω22̄ + B23̄ ω23̄ ,

(1)

for some complex coefficients A’s and B’s. Here ωjk (resp. ωjk) means the wedge

product ωj ∧ ωk (resp. ωj ∧ ωk), where ωk indicates the complex conjugation of ωk.
From now on, we shall use a similar abbreviated notation for “basic” forms of arbitrary
bidegree.

1.1. Reduced form of complex structure equations

Next we show that there are two special and disjoint types of complex equations, and
that the generic structure equations (1) can always be reduced to one of them, depending
on the “nilpotency” of the complex structure.

A complex structure J on a 2n-dimensional NLA g is called nilpotent if there is a
basis {ωj}n

j=1 for g1,0 satisfying dω1 = 0 and

dωj ∈
∧

2 〈ω1, . . . , ωj−1, ω1, . . . , ωj−1〉 for j = 2, . . . , n. (2)
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Equivalently [CFGU2], the ascending series {gJ
l }l>0 for g adapted to J , which is defined

inductively by gJ
0 = 0 and

gJ
l = {X ∈ g | [Jk(X), g] ⊆ gJ

l−1, k = 1, 2 } for l > 1,

satisfies that gJ
l = g for some positive integer l.

Equations (1) encode information not only about the complex structure J , but also
about the structure of the nilpotent Lie algebra g itself. Therefore, the coefficients A’s
and B’s in (1) must satisfy those compatibility conditions imposed by the Jacobi identity
of the Lie bracket [ , ] on g (which is equivalent to d◦d ≡ 0), as well as those conditions
ensuring the nilpotency of g. For instance, if {Zj}3

j=1 denotes the dual basis of {ωj}3
j=1,

then iterating the bracket [Z2, Z3] by Z2 it is clear that B23 must vanish in order for the
Lie algebra g be nilpotent. The following result is derived by imposing these necessary
compatibility conditions and it establishes a first reduction of the generic equations.

Lemma 1. Let J be a complex structure on an NLA g of dimension 6.

(a) If J is nonnilpotent, then there is a basis {ωj}3
j=1 for g1,0 satisfying (1) with

A12̄ = B13̄ = B23 = B22̄ = B23̄ = 0, and A13̄ 6= 0.
(b) If J is nilpotent, then there is a basis {ωj}3

j=1 for g1,0 satisfying (1), where the

only nonvanishing coefficients are among A11̄, B12, B11̄, B12̄, B21̄, and B22̄.

The detailed proof of (a) is given in [CFU2, Lemma 2.1, Props. 2.2 and 2.4]. Part
(b) is a direct consequence of (2).

In the following result we give a more reduced form of the equations for nonnilpotent
as well as for nilpotent complex structures.

Proposition 2. Let J be a complex structure on an NLA g of dimension 6.

(a) If J is nonnilpotent, then there is a basis {ωj}3
j=1 for g1,0 such that





dω1 = 0,

dω2 = E ω13 + ω13̄ ,

dω3 = A ω11̄ + ib ω12̄ − ibĒ ω21̄,

(3)

where A, E ∈ C with |E| = 1, and b ∈ R− {0}.
(b) If J is nilpotent, then there is a basis {ωj}3

j=1 for g1,0 satisfying






dω1 = 0,

dω2 = ε ω11̄ ,

dω3 = ρ ω12 + (1− ε)A ω11̄ + B ω12̄ + C ω21̄ + (1− ε)D ω22̄,

(4)

where A, B, C, D ∈ C, and ε, ρ ∈ {0, 1}.
Proof. Let us suppose first that J is nonnilpotent. From Lemma 1(a) we have that
A12̄ = B13̄ = B23 = B22̄ = B23̄ = 0 and A13̄ 6= 0 in Equations (1) for some (1, 0)-basis
{ωj}. The remaining coefficients must guarantee the nilpotency of g and the Jacobi
identity d(dωj) = 0.

Since 0 = d(dω2) ∧ ω233̄ = −A13̄B̄12 ω1231̄2̄3̄, the coefficient B12 must be zero. More-
over, from 0 = d(dω2) ∧ ω232̄ = A13̄B̄13 ω1231̄2̄3̄ it follows that B13 also vanishes. Now,
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the nilpotency of g implies that A12 = 0, because otherwise [Z1,
k· · ·, [Z1, [Z1, Z2]]···] =

(−A12)
kZ2 would be a nonzero element in gk for any k. In addition, if we consider the

new (1, 0)-basis given by τ 1 = ω1, τ2 = ω2, τ3 = Ā11̄ ω1 + Ā13̄ ω3, then we can suppose
A13̄ = 1 and A11̄ = 0.

Therefore, there is a basis {ωj} of g1,0 satisfying (1), where A13̄ = 1 and the remaining
nonvanishing coefficients are among A13, B11̄, B12̄, and B21̄. Now, since

d(dω2)=(B̄12̄−A13B21̄) ω121̄ and d(dω3)=(A13B21̄+B12̄) ω131̄−(Ā13B12̄+B21̄) ω11̄3̄,

the Jacobi identity implies that the following conditions hold:

A13B21̄ = B̄12̄ = −B12̄ and A13B̄12̄ + B̄21̄ = 0.

In particular, B12̄ = ib for some b ∈ R. Notice that b 6= 0 because otherwise B12̄

and B21̄ would be zero and the complex structure J should be nilpotent (it suffices to
interchange ω2 with ω3). Finally, these conditions also imply that |A13| = 1, so part (a)
of the proposition is proved.

In order to prove part (b), if J is a nilpotent complex structure then Lemma 1(b)
implies the existence of a (1, 0)-basis {ωj} satisfying (1), where all the coefficients A’s
vanish except possibly A11̄, and B13 = B13̄ = B23 = B23̄ = 0. Notice that in this case
(d ◦ d)ωj = 0 for j = 1, 2. Since (d ◦ d)ω3 = B22̄(−Ā11̄ω

121̄ + A11̄ω
11̄2̄), the Jacobi

identity of the Lie bracket implies that A11̄B22̄ = 0.
Now, if A11̄ 6= 0, then B22̄ = 0, and we can suppose A11̄ = 1 and B11̄ = 0 after

considering the change of basis τ 1 = ω1, τ2 = (1/A11̄)ω
2, and τ3 = A11̄ω

3 − B11̄ω
2.

Finally, notice that if the coefficient of τ 12 in dτ3 is nonzero, then we can normalize it.
�

For any election of coefficients on the right-hand side of equations (3) (resp., (4)), it is
natural to ask whether the resulting equations are “admissible” in the sense that there
exists a nonnilpotent (resp., nilpotent) complex structure J on some six-dimensional
NLA g having these equations with respect to some (1, 0)-basis. Next we give an
affirmative answer to this question, but first we reformulate it in more precise terms.

Let V be a real vector space of dimension 2n, and denote by V ∗
C

the dual of the

complexification of V . Let us fix a basis {ωj , ωj}n
j=1 for V ∗

C
, where ωj denotes the

complex conjugate of ωj . This is equivalent to give an endomorphism J : V → V such
that J2 = −IdV , with respect to which the space V ∗

C
decomposes as V ∗

C
= V 1,0 ⊕ V 0,1,

where V 1,0 = 〈ωj〉 and V 0,1 = 〈ωj〉 are the eigenspaces of the eigenvalues ±i of the
extended endomorphism J : V ∗

C
→ V ∗

C
, respectively. Notice that if {Xj , Yj} is the basis

of V dual to the basis {αj = 1
2
Reωj , βj = 1

2
Imωj} of V ∗, then the endomorphism J is

given by JXj = Yj for j = 1, . . . , n.

Fixed an n-tuple µ = (µ1, . . . , µn) ∈ ∧2
V ∗

C
× · · · × ∧2

V ∗
C

, we consider the linear

mapping dµ : V ∗
C
→ ∧2

V ∗
C

defined by dµωj = µj and dµωj = µj for j = 1, . . . , n,
and we extend it to the complexified exterior algebra using the formula dµ(α ∧ β) =
dµα ∧ β + (−1)deg αα ∧ dµβ for α, β ∈ ∧∗ V ∗

C
. Let [ , ]µ : V × V → V be the bracket on

V defined by

[X, Y ]µ = −
n∑

j=1

(
µj(X, Y )Zj + µj(X, Y )Z̄j

)
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for X, Y ∈ V , where {Zj , Z̄j} is the dual basis of {ωj , ωj}.
We introduce the following notation: dµ(µ) ≡ (dµµ1, . . . , dµµn) and µ0,2 ≡ (π0,2(µ

1),

. . . , π0,2(µ
n)), where π0,2 :

∧2
V ∗

C
→ ∧0,2

(V ∗) is the canonical projection onto the sub-
space of elements of type (0, 2).

Lemma 3. Let V be a real vector space of dimension 2n, and fix a basis {ωj , ωj}n
j=1

of V ∗
C
. Given an n-tuple µ ∈

∧2
V ∗

C
× · · · ×

∧2
V ∗

C
, we define J , dµ, and [ , ]µ as above.

(a) If dµ(µ) = 0, then gµ = (V, [ , ]µ) is a Lie algebra.

(b) If, in addition, µ0,2 = 0, then J is a complex structure on gµ.

Proof. From the definitions we have ωj([X, Y ]µ) = −dµωj(X, Y ). Now (a) is clear
because the bracket [ , ]µ satisfies the Jacobi identity if and only if dµ(dµωj) = 0 for
j = 1, . . . , n, that is, dµ(µ) = 0. To see (b), just notice that the Nijenhuis condition is
equivalent to the vanishing of the (0, 2)-type component in dµωj = µj for j = 1, . . . , n.
�

In general, the Lie algebra gµ may not be nilpotent. For example, if we consider a
3-tuple µ = (dω1, dω2, dω3) given by (1) and satisfying dµ(µ) = 0, then it determines a
Lie algebra gµ for which the endomorphism J above is a complex structure, however,
gµ cannot be nilpotent if B23 6= 0.

Next we show that for any µ given by (3) or (4), we always obtain a nilpotent Lie
algebra gµ. Thus, the following result can be considered as the converse to Proposition 2.

Proposition 4. In the conditions of Lemma 3 we have:

(a) If µ = (0, E ω13 + ω13̄, A ω11̄ + ib ω12̄ − ibĒ ω21̄) with A, E ∈ C, |E| = 1, and

b ∈ R−{0}, then gµ is an NLA and J is a nonnilpotent complex structure on gµ.

(b) If µ = (0, ε ω11̄, ρ ω12 + (1 − ε)A ω11̄ + B ω12̄ + C ω21̄ + (1 − ε)D ω22̄) with

A, B, C, D ∈ C and ε, ρ ∈ {0, 1}, then gµ is an NLA and J is a nilpotent

complex structure on gµ.

Proof. First, let µ be given as in (a). It is easy to check that dµ(µ) = 0, so the Jacobi
identity holds for the bracket [ , ]µ. In terms of the complex basis {Zj , Z̄j} dual to

{ωj , ωj}, this bracket is given by

[Z1, Z3]µ = −E Z2,

[Z1, Z̄3]µ = −Z2,

[Z1, Z̄2]µ = −ib (Z3 −E Z̄3),

[Z1, Z̄1]µ = −A Z3 + Ā Z̄3,

and their complex conjugates. Therefore, if E 6= 1, then the derived algebra (gµ)1 =
[V, V ]µ is contained in the space 〈Re(Z2), Im(Z2), (1− Ē)(Z3 −E Z̄3), i(A Z3 − Ā Z̄3)〉.
Notice that the element (1−Ē)(Z3−E Z̄3) is in the center of gµ and that it is a multiple
of i(A Z3 − Ā Z̄3) if and only if Ā = AE. Thus,

(gµ)2 = [[V, V ]µ, V ]µ ⊆ 〈Re(Z2), Im(Z2), (1− Ē)(Z3 −E Z̄3)〉,
(gµ)3 = [[[V, V ]µ, V ]µ, V ]µ ⊆ 〈(1− Ē)(Z3 −E Z̄3)〉,

and (gµ)4 = 0, that is, the Lie algebra gµ is nilpotent in step s 6 4.
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When E = 1, the elements i(Z3 − Z̄3) and i(A Z3 − Ā Z̄3) of [V, V ]µ are linearly
dependent if and only if the coefficient A is real. In any case, i(Z3 − Z̄3) is a central
element and, therefore, if A ∈ R, then g1

µ = 〈Re(Z2), Im(Z2), i(Z3− Z̄3)〉, g2
µ = 〈i(Z3−

Z̄3)〉, and g3
µ = 0; if A is not real, then g1

µ = 〈Re(Z2), Im(Z2), Re(Z3), Im(Z3)〉 and gµ

is 4-step nilpotent.
Finally, the bracket relations above imply that any term in the ascending series

{(gµ)J
l }l>0 adapted to J is zero, so the complex structure J is nonnilpotent. This

completes the proof of (a).
Now, suppose that µ is given as in (b). Since dµ(µ) = 0, the bracket [ , ]µ satisfies

the Jacobi identity. The Lie algebra gµ = (V, [ , ]µ) is nilpotent in step s 6 3, because
(gµ)2 = [[V, V ]µ, V ]µ ⊆ 〈Re Z3, Im Z3〉, and Re Z3, Im Z3 are central elements of gµ.

The terms in the ascending series {(gµ)J
l }l>0 adapted to J satisfy: (gµ)J

1 ⊇ 〈Re Z3,
Im Z3 = −J(Re Z3)〉, (gµ)J

2 ⊇ 〈Re Z2, Im Z2 = −J(Re Z2), Re Z3, Im Z3 =−J(Re Z3)〉,
and (gµ)J

3 = gµ. Therefore, J is a nilpotent complex structure, and part (b) of the
proposition is proved. �

Remark 1. Let us consider a family of µ’s such that dµ(µ) and µ0,2 vanish.
(a) From Lemma 3 we get a family of Lie algebras gµ = (V, [ , ]µ) on which the

endomorphism J : V → V (which is independent on µ) is integrable. Let us fix an inner
product 〈 , 〉 on V compatible with J which does not depend on µ. Now, in the case
that gµ is nilpotent for each µ, our construction is related to [L], where it is investigated
the space of all “nilpotent” Lie brackets [ , ]µ for which J is integrable and compatible
with 〈 , 〉, i.e., (J, 〈 , 〉) is a fixed Hermitian structure on each NLA gµ = (V, [ , ]µ).

(b) Notice that the Lie algebras gµ might be nonisomorphic to each other. When gµ

and gµ′ are both isomorphic to a Lie algebra g, we can interpret this situation as having
two complex structures Jµ and Jµ′ on the same Lie algebra g.

As a consequence of Propositions 2 and 4 we have the following result.

Theorem 5. A six-dimensional NLA g admits a nonnilpotent (resp., nilpotent ) com-

plex structure if and only if there is a basis {ωj}3
j=1 for g1,0 satisfying (3) (resp., (4)).

1.2. Classification of NLAs admitting complex structure

Next we show that a six-dimensional NLA cannot support nilpotent and nonnilpotent
complex structures at the same time, and then we classify the NLAs according to the
nilpotency of the complex structures that they admit.

Proposition 6. Let g be an NLA of dimension 6 having a nonnilpotent complex struc-

ture. Then, the center of g is one-dimensional.

Proof. From Proposition 2(a), there is a (1, 0)-basis {ωj}3
j=1 with reduced equations (3).

Then, in terms of its dual basis {Zj}, any central element T of g is expressed as T =∑3

j=1(λjZj + λ̄j Z̄j) for some λ1, λ2, λ3 ∈ C. A direct calculation shows that 0 =

[T, Z3] = −Eλ1Z2 − λ̄1Z̄2, which implies λ1 = 0. Moreover,

0 = [T, Z1] = (Eλ3 + λ̄3)Z2 + ibλ̄2Z3 − ibEλ̄2Z̄3.

Thus λ2 = 0, because b 6= 0, and λ̄3 = −Eλ3. Therefore, T = λ3Z3−Eλ3Z̄3 = λ3(Z3−
EZ̄3). If E = 1, then T = iλ(Z3− Z̄3), λ ∈ R. If E 6= 1, then T = λ(1− Ē)(Z3−E Z̄3),
λ ∈ R, because |E| = 1. Thus, we conclude that in any case the center of g is one-
dimensional. �
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Corollary 7. Let g be a six-dimensional NLA admitting complex structures. Then all

of them are either nilpotent or nonnilpotent.

Proof. If g has a nilpotent complex structure J , then the first term gJ
1 in the ascending

series for g adapted to J is nonzero. By definition, gJ
1 is a J-invariant ideal of g contained

in the center, so if g has a nilpotent J , then its center is at least two-dimensional. From
Proposition 6 it follows that g has no nonnilpotent complex structures. Thus, any
complex structure on g must be nilpotent. �

Remark 2. Proposition 6 and Corollary 7 do not hold in higher dimension. In fact,
in [CFGU2] it is given a ten-dimensional NLA with center of dimension 2 having both
nilpotent and nonnilpotent complex structures.

A complex structure J satisfying [JX, JY ] = [X, Y ] for all X, Y ∈ g, is obviously
nilpotent and is called abelian, because g1,0 is an abelian complex Lie algebra. It is
easily seen that abelian complex structures correspond to the case ρ = 0 in the reduced
equations (4).

The following result gives a classification of six-dimensional NLAs in terms of the
different types of complex structures that they admit.

Theorem 8. Let g be an NLA of dimension 6. Then, g has a complex structure if and

only if it is isomorphic to one of the following Lie algebras:1

h1 = (0, 0, 0, 0, 0, 0),
h2 = (0, 0, 0, 0, 12, 34),
h3 = (0, 0, 0, 0, 0, 12 + 34),
h4 = (0, 0, 0, 0, 12, 14 + 23),
h5 = (0, 0, 0, 0, 13 + 42, 14 + 23),
h6 = (0, 0, 0, 0, 12, 13),
h7 = (0, 0, 0, 12, 13, 23),
h8 = (0, 0, 0, 0, 0, 12),
h9 = (0, 0, 0, 0, 12, 14 + 25),

h10 = (0, 0, 0, 12, 13, 14),
h11 = (0, 0, 0, 12, 13, 14 + 23),
h12 = (0, 0, 0, 12, 13, 24),
h13 = (0, 0, 0, 12, 13 + 14, 24),
h14 = (0, 0, 0, 12, 14, 13 + 42),
h15 = (0, 0, 0, 12, 13 + 42, 14 + 23),
h16 = (0, 0, 0, 12, 14, 24),
h−19 = (0, 0, 0, 12, 23, 14− 35),
h+
26 = (0, 0, 12, 13, 23, 14 + 25).

Moreover:

(a) Any complex structure on h−19 and h+
26 is nonnilpotent.

(b) For 1 6 k 6 16, any complex structure on hk is nilpotent.

(c) Any complex structure on h1, h3, h8, and h9 is abelian.

(d) There exist both abelian and nonabelian nilpotent complex structures on h2, h4,

h5 and h15.

(e) Any complex structure on h6, h7, h10, h11, h12, h13, h14, and h16 is not abelian.

Proof. Salamon proves in [S] that g has a complex structure J if and only if it is isomor-
phic to one of the Lie algebras appearing in the list above. Now, using Proposition 6 we
have that a nonnilpotent J can only live on h−19 or h+

26, because the center of these NLAs
is one-dimensional. Corollary 7 implies that any J on h−19 and h+

26 is nonnilpotent, and
(a) is proved.

1Here we use a mixed notation combining the structure description of the NLAs as it appears
in [S] and the notation hk in [CFGU1]. For instance, h2 = (0, 0, 0, 0, 12, 34) means that there is
a basis {αj}6j=1 such that the Chevalley–Eilenberg differential is given by dα1 = dα2 = dα3 =

dα4 = 0, dα5 = α1 ∧ α2, dα6 = α3 ∧ α4; equivalently, the Lie bracket is given in terms of its
dual basis {Xj}

6
j=1 by [X1, X2] = −X5 and [X3, X4] = −X6.
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In [CFGU1] it is shown that if J is nilpotent, then g must be isomorphic to hk for
some 1 6 k 6 16. By Corollary 7, any complex structure on hk, 1 6 k 6 16, is nilpotent,
so (b) is proved.

In order to prove (c), notice that if ρ 6= 0 in equations (4), then the first Betti number
dim(h/[h, h]) of h is equal to 3 or 4 depending on ε = 1 or ε = 0, respectively. Since
the Lie algebras h3 and h8 have first Betti number equal to 5, any complex structure
must be abelian. On the other hand, since the Lie algebra h9 is 3-step and its complex
structures are all nilpotent, the coefficient ε in (4) must be equal to 1: in fact, ε = 0
implies that the Lie algebra is nilpotent in step 6 2. Therefore, ρ = 0 because the first
Betti number of h9 is equal to 4, so (c) is proved.

In [CFU1] it is proved that a six-dimensional nilpotent Lie algebra admits an abeli-
an J if and only if it is isomorphic to hk for k = 1, 2, 3, 4, 5, 8, 9, or 15. This proves (e).

Finally, to see (d) we observe that the equations

dω1 = dω2 = 0, dω3 = ω12 + ω12̄ + Cω21̄,

define, in the sense of Proposition 4(b), a nilpotent complex structure on h2 for C = 1,
and on h4 for C = 2. On the other hand, the equations

dω1 = 0, dω2 = ε ω11̄, dω3 = ω12,

define a nilpotent complex structure on h5 for ε = 0, and on h15 for ε = 1. Since in each
case the coefficient of ω12 in dω3 is nonzero, the complex structures are not abelian.
This, together with the fact that hk has abelian complex structures for k = 2, 4, 5,
and 15, proves (d) and so the proof of the theorem is complete. �

Remark 3. If g is a complex Lie algebra, then its canonical complex structure J satisfies
[JX, Y ] = J [X, Y ] for all X, Y ∈ g. Any complex structure J on an NLA g satisfying

this condition is obviously nilpotent. Moreover, d(g1,0) ⊂ ∧2,0
(g∗), so in dimension 6

the corresponding equations are of the form (4) with ρ = 0, 1 and all the remaining
coefficients are equal to zero. Therefore, these complex structures only live on the
abelian Lie algebra h1 and on the Lie algebra h5 underlying the Iwasawa manifold.
We shall refer to them as complex parallelizable structures, because the corresponding
complex nilmanifolds possess three holomorphic 1-forms which are linearly independent
at each point.

Remark 4. The deformation of abelian complex structures on 2-step nilmanifolds is
studied in [MPPS], where it is proved that the Kuranishi process preserves the invari-
ance of the deformed complex structures, at least for small deformations. Conditions
under which the deformed structures remain abelian are also investigated there. In
this context, it follows from Theorem 8 that in dimension 6 all the complex structures
obtained by such small deformations are always of nilpotent type. Recently, the re-
sult of [MPPS] has been generalized to any nilmanifold with abelian complex structure
in [CFP], where it is also given an example of an abelian complex structure on a ten-
dimensional 3-step nilmanifold which deforms into nonnilpotent complex structures.

As a consequence of Theorem 8 we find reduced complex structure equations for the
Lie algebras h−19 and h+

26.
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Proposition 9. For any complex structure on h−19 (resp., on h+
26), there is a (1, 0)-basis

satisfying (3) with Ā = AE (resp., Ā 6= AE ).

Proof. Since any complex structure on h−19 and h+
26 is nonnilpotent, there exists a (1, 0)-

basis satisfying (3). But an NLA g defined by (3) is isomorphic to h−19 if and only if
its first Betti number dim(g/[g, g]) is equal to 3, which is equivalent to the closedness
of the real 1-form i(1 − Ē)(Eω3 + ω3̄). This latter condition is satisfied if and only if
Ā = AE. �

1.3. Complex structure equations on 2-step NLAs

Here we shall arrive at more reduced equations which describe any complex structure
on each 2-step NLA.

Proposition 10. Let g be a six-dimensional NLA endowed with a nilpotent complex

structure J . Then, the coefficient ε vanishes in the reduced equations (4) corresponding

to J if and only if the Lie algebra g is nilpotent in step s 6 2 and its first Betti number

is > 4. In this case, g must be isomorphic to h8 or hk for some 1 6 k 6 6.

Proof. Clearly, ε = 0 in (4) implies that g is nilpotent in step 6 2 and dim(g/[g, g]) > 4.
Suppose that the Lie algebra g has first Betti number > 4 and is nilpotent in step

s 6 2. Let (4) be equations corresponding to J on g, and suppose that ε = 1. First,
the coefficient ρ must vanish, because otherwise the first Betti number would be 3.
Moreover, if B and C are not both zero, then BC 6= 0 in order to have the first Betti
number at least 4. Now, if {Zj} is the dual basis of {ωj}, then the element ImZ2 ∈ [g, g]
satisfies [ImZ2, g] 6= 0, that is, the Lie algebra is not nilpotent in step s 6 2. Therefore,
if ε = 1, then B = C = 0, but in such a case we can choose ε = 0 after interchanging
ω2 with ω3.

Finally, if g has first Betti number > 4, then Theorem 8 implies that g cannot be
isomorphic to h7 or hk for any k > 10. On the other hand, h9 is 3-step nilpotent, so g

cannot be isomorphic to h9 if ε = 0. �

The following lemma provides a further reduction of the equations on 2-step NLAs.

Lemma 11. Let J be a complex structure on a 2-step NLA g of dimension 6 with first

Betti number > 4. If J is not complex parallelizable, then there is a basis {ωj}3
j=1 of

g1,0 such that {
dω1 = dω2 = 0,

dω3 = ρ ω12 + ω11̄ + B ω12̄ + D ω22̄,
(5)

where B, D ∈ C, and ρ = 0, 1.

Proof. First, by the preceding proposition we can suppose ε = 0 in the reduced equa-
tions (4) corresponding to J . Next, we distinguish several cases depending on the
vanishing of the coefficients A and D.

If A 6= 0, then we consider the change of basis given by ω1 = ω′1−C ω′2, ω2 = A ω′2,
ω3 = A ω′3. It is easy to check that with respect to the new (1, 0)-basis {ω′j} the
equations become

dω′1 = dω′2 = 0, dω′3 = ρω′12 + ω′11̄ + B′ω′12̄ + D′ω′22̄, (6)
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where B′ = (ĀB −AC̄)/A and D′ = Ā(AD −BC)/A.
The case D 6= 0 is reduced to the previous one if we interchange ω1 with ω2, and

change the sign of ω3. Notice that in this case we get (6) with B′ = (B̄D − CD̄)/D,
and D′ = D̄(AD −BC)/D.

Let us suppose A = D = 0 in equations (4). The change of basis given by ω1 =
ω′′1 + ω′′2, ω2 = ω′′1 − ω′′2, ω3 = −2ω′′3, transforms (4) into equations of the form

dω′′1 = dω′′2 = 0, dω′′3 = ρω′′12 + A′′ω′′11̄ + B′′ω′′12̄ + C ′′ω′′21̄ + D′′ω′′22̄,

where D′′ = −A′′ = (B + C)/2 and B′′ = −C ′′ = (B − C)/2. Therefore, if B + C 6= 0,
then we can again reduce these equations to the form (6) with B ′ = (|B|2−|C|2)/(B+C)
and D′ = −BC(B̄ + C̄)/(B +C). Finally, if A = D = B +C = 0, then using the change
of basis given by ω′1 = ω′′1 + iω′′2, ω′2 = iω′′1 + ω′′2, and ω′3 = 2ω′′3, we arrive at
equations of the form

dω′1 = dω′2 = 0, dω′3 = ρ ω′12 + iB(ω′11̄ − ω′22̄).

Now, if J is not complex parallelizable, then the coefficient B 6= 0 and we can apply the
argument used in the case “A 6= 0” above to get equations of the form (6), with B ′ = 0
and D′ = −|B|2. �

Lemma 12. Let J be a complex structure on an NLA g with reduced equations (5).
Then, the dimension of the center of g is > 3 if and only if |B| = ρ and D = 0.

Proof. Let {Zj} be the dual basis of {ωj}. From equations (5) it is clear that Re Z3 and

Im Z3 belong to the center of g. Now, if T =
∑2

j=1(λjZj + λ̄j Z̄j) is a central element

in g for some (λ1, λ2) ∈ C2, then the condition

0 = [T, Z1] = (ρλ2 + λ̄1 + Bλ̄2)Z3 − λ̄1Z̄3

implies that λ1 must be zero. In addition, there is a solution λ2 6= 0 of the equation
Bλ̄2 + ρλ2 = 0 if and only if |B| = ρ. Moreover, the condition 0 = [T, Z2] = Dλ̄2Z3 −
D̄λ̄2Z̄3 implies that D = 0 if λ2 6= 0. Therefore, there is an element T in the center of g

such that {Re Z3, Im Z3, T} are linearly independent if and only if |B| = ρ and D = 0.
�

We finish this section with a general result showing which are, in the sense of Propo-
sition 4(b), the NLAs underlying the reduced equations (5) in terms of the coefficients
ρ, B, and D.

Proposition 13. Let J be a complex structure on an NLA g given by (5), and let us

denote x = Re D and y = Im D. Then:

(i) If |B| = ρ, then the Lie algebra g is isomorphic to:

(i.1) h2 for y 6= 0;
(i.2) h3 for ρ = y = 0 and x 6= 0;
(i.3) h4 for ρ = 1, y = 0 and x 6= 0;
(i.4) h6 for ρ = 1 and x = y = 0;
(i.5) h8 for ρ = x = y = 0.

(ii) If |B| 6= ρ, then the Lie algebra g is isomorphic to:

(ii.1) h2 for 4y2 > (ρ− |B|2)(4x + ρ− |B|2);
(ii.2) h4 for 4y2 = (ρ− |B|2)(4x + ρ− |B|2);
(ii.3) h5 for 4y2 < (ρ− |B|2)(4x + ρ− |B|2).
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Proof. From Proposition 10, a Lie algebra g underlying (5) must be isomorphic to h2,
h3, h4, h5, h6, or h8. Notice that the dimension of the center is 4 for h8, 3 for h6, and 2
for the rest. The first Betti number is 5 for h3 and h8, and 4 for h2, h4, h5, and h6.

From Lemma 12, g is isomorphic to h6 or h8 if and only if |B| = ρ and D = 0.
Moreover, under these conditions the first Betti number is 4 if ρ = 1, and 5 if ρ = 0.
So, (i.4) and (i.5) are proved.

Notice that g has first Betti number equal to 5 if and only if B = ρ = 0 and D ∈ R

in equations (5). Therefore, g is isomorphic to h3 for B = ρ = y = 0 and x 6= 0, which
proves (i.2).

For the remaining cases |B| 6= ρ, |B| = ρ, and y 6= 0, or |B| = ρ = 1, y = 0, and
x 6= 0, the NLA g has always the two-dimensional center by Lemma 12, and its first
Betti number is equal to 4. Therefore, g ∼= h2, h4, or h5. In order to decide which one is
the corresponding Lie algebra in terms of the coefficients ρ, B, and D, we observe the
following fact. Let α(g) be the number of linearly independent elements τ in

∧2(g∗) such
that τ ∈ d(g∗) and τ ∧ τ = 0. It is straightforward to check that α(hk) for k = 2, 4, 5,
equals the number of linearly independent exact 2-forms which are decomposable, that
is, α(h2) = 2, α(h4) = 1, and α(h5) = 0.

Let τ = λ dω3 + µ dω3̄, where λ, µ ∈ C, be any exact 2-form on g. Since τ is real,
µ = λ̄ and, therefore,

τ = ρλ ω12 + (λ− λ̄)ω11̄ + Bλ ω12̄ − B̄λ̄ ω21̄ + (Dλ− D̄λ̄)ω22̄ + ρλ̄ ω1̄2̄.

A direct calculation shows that

τ ∧ τ = 2
(
(ρ2 − |B|2)|λ|2 − (λ− λ̄)(Dλ − D̄λ̄)

)
ω121̄2̄.

Thus, if we denote p = Re λ and q = Im λ, then τ ∧ τ = 0 if and only if

(ρ− |B|2) p2 + 4ypq + (ρ− |B|2 + 4x) q2 = 0. (7)

If |B| = ρ, then (7) becomes 4q(yp + xq) = 0. Therefore, τ1 = d(Re ω3) is an exact
2-form on g which is nonzero if ρ = 1 or y 6= 0, and it satisfies τ1 ∧ τ1 = 0. Moreover,
when ρ = 1, y = 0, and x 6= 0, it follows from (7) that q = 0 and any exact 2-form τ
satisfying τ ∧ τ = 0 must be a multiple of τ1, thus α(g) = 1 and g is isomorphic to h4,
which proves (i.3). But when y 6= 0, the exact 2-form τ2 = −(x/y)d(Re ω3)− d(Im ω3)
satisfies τ2 ∧ τ2 = 0. Since τ1, τ2 are linearly independent, we have that α(g) = 2 and
g ∼= h2, so (i.1) is proved. This completes the proof of (i).

To prove (ii), we consider (7) as a second-degree equation in the variable p. Notice
that the discriminant is ∆ = 4q2

(
4y2 − (ρ − |B|2)(4x + ρ − |B|2)

)
, and that q 6= 0

because otherwise (7) reduces to p = 0 and therefore λ would be zero. Therefore, if
4y2 > (ρ− |B|2)(4x + ρ− |B|2), then ∆ > 0 and for each q 6= 0 there exist two distinct
solutions p1 and p2 of (7). In this case we have α(g) = 2 and therefore the underlying
Lie algebra is isomorphic to h2, which proves (ii.1). A similar argument gives (ii.2)
and (ii.3). �

1.4. Equivalence of complex structures

Let g be a Lie algebra endowed with two complex structures J and J ′. We recall that J
and J ′ are said to be equivalent if there is an automorphism F : g → g of the Lie algebra
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such that J ′ = F−1 ◦ J ◦ F , that is, F is a linear automorphism such that F ∗ : g∗ → g∗

commutes with the Chevalley–Eilenberg differential d and F commutes with the complex
structures J and J ′. The latter condition is equivalent to saying that F ∗, extended to
the complexified exterior algebra, preserves the bigraduations induced by J and J ′.

It is clear that the nilpotency condition for a complex structure is invariant under
equivalence, that is, if J ′ is equivalent to J , then J is nilpotent if and only if J ′ is.

Proposition 14. Any nilpotent (resp., nonnilpotent ) complex structure on an NLA of

dimension 6 is equivalent to a complex structure defined by (4) (resp., by (3)) in the

sense of Proposition 4.

Proof. Notice that if g
1,0
J and g

1,0
J′ denote the (1, 0)-subspaces of g∗

C
associated to two

complex structures J and J ′, then they are equivalent if and only if there is a C-linear
isomorphism F ∗ : g

1,0
J → g

1,0
J′ such that d ◦ F ∗ = F ∗ ◦ d. Therefore, the result follows

from Proposition 2. �

Lemma 11 states that any complex structure (not complex-parallelizable) on a 2-
step NLA with first Betti number > 4 is equivalent to one defined by (5) in the sense
of Proposition 4. Moreover:

Corollary 15. On the Lie algebras h6 and h8, any two complex structures are equiva-

lent.

Proof. From (i.5) in Proposition 13 we have that any complex structure on h8 is equiv-
alent to the one defined by (5) with ρ = B = D = 0, and (i.4) shows that any complex
structure on h6 is equivalent to one defined by (5) with ρ = |B| = 1 and D = 0. Since
|B| = 1 there exists a nonzero λ satisfying λ̄ B = λ, and the change of basis given by
ω′1 = λω1, ω′2 = λ̄ω2, and ω′3 = |λ|2ω3 allows us to consider the coefficient B = 1. �

Let J+
0 and J−0 be the abelian complex structures on the Lie algebra h3 defined by

dω1 = dω2 = 0, dω3 = ω11̄ ± ω22̄ .

Corollary 16. Any complex structure on h3 is equivalent to J+
0 or J−0 .

Proof. By Proposition 13(i.2) any complex structure on h3 is equivalent to one defined
by (5) with ρ = B = 0 and D ∈ R − {0}, and we can normalize D to be 1 or −1
depending on the sign of D. �

Notice that the orientation induced by J+
0 is opposite to the one induced by the

structure J−0 .

2. Strong Kähler with torsion geometry in six dimensions

Let (J, g) be a Hermitian structure on a 2n-dimensional manifold M , that is, J is a
complex structure on M which is orthogonal relative to the Riemannian metric g. We
denote by Ω the fundamental 2-form of (J, g), which is defined by Ω(X, Y ) = g(JX, Y )
for any differentiable vector fields X, Y on M .

It is well known that the integrability of J produces a decomposition of the exterior
differential d of M as d = ∂ + ∂̄, where ∂ = π∗+1,∗ ◦ d and ∂̄ is the conjugate of ∂. Since
d2 = 0, we have ∂2 = ∂̄2 = 0 and ∂∂̄ = −∂̄∂.
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A Hermitian structure (J, g) is called strong Kähler with torsion (SKT for short)
if ∂Ω is a nonzero ∂̄-closed form. In this case, we shall refer to g as an SKT metric.
Notice that a Hermitian structure (J, g) is SKT if and only if JdΩ is nonzero and closed,
because ∂∂̄ acts as 1

2
i dJd on forms of bidegree (1, 1).

Let J be a complex structure on a Lie algebra g. An inner product g on g such that
g(J ·, J ·) = g(· , ·) will be called a J-Hermitian metric on g, and we shall refer to the
associated Ω as the fundamental form of the Hermitian structure (J, g) on g.

Since J is integrable on g, the extended Chevalley–Eilenberg differential d :
∧∗

g∗
C
→∧∗+1

g∗
C

also decomposes as d = ∂ + ∂̄, where ∂ = πp+1,q ◦ d :
∧p,q(g∗) → ∧p+1,q(g∗)

and ∂̄ is the conjugate of ∂. Any J-Hermitian metric g on g for which ∂Ω is a nonzero
∂̄-closed form will be called an SKT metric on g, and we shall refer to the pair (J, g) as
an SKT structure on g.

If the simply connected nilpotent Lie group G corresponding to an NLA g has a
discrete subgroup Γ such that M = Γ\G is compact, then any Hermitian (resp., SKT)
structure (J, g) on g will pass to a Hermitian (resp., SKT) structure on the nilmani-
fold M . Such a structure on M will also be denoted by (J, g) and we shall refer to it as
an invariant Hermitian (resp., invariant SKT) structure on M .

Suppose that the NLA g has dimension 6 and fix a basis {ωj}3
j=1 for g1,0. Then, in

terms of this basis, any J-Hermitian metric g on g is expressed as

g = r(ω1 ⊗ ω1̄ + ω1̄ ⊗ ω1) + s(ω2 ⊗ ω2̄ + ω2̄ ⊗ ω2) + t(ω3 ⊗ ω3̄ + ω3̄ ⊗ ω3)

− iu(ω1 ⊗ ω2̄ + ω2̄ ⊗ ω1) + iū(ω2 ⊗ ω1̄ + ω1̄ ⊗ ω2)

− iv(ω2 ⊗ ω3̄ + ω3̄ ⊗ ω2) + iv̄(ω3 ⊗ ω2̄ + ω2̄ ⊗ ω3)

− iz(ω1 ⊗ ω3̄ + ω3̄ ⊗ ω1) + iz̄(ω3 ⊗ ω1̄ + ω1̄ ⊗ ω3),

(8)

where r, s, t ∈ R and u, v, z ∈ C must satisfy restrictions that guarantee that g is positive
definite, i.e., g(Z, Z̄) > 0 for any nonzero Z ∈ (g1,0)∗. Therefore, r > 0, s > 0, t > 0,
rs > |u|2, st > |v|2, rt > |z|2, and rst + 2 Re(iūv̄z) > t|u|2 + r|v|2 + s|z|2.

The fundamental 2-form Ω ∈ ∧2
g∗ of the Hermitian structure (J, g) is then given

by
Ω = i(rω11̄ + sω22̄ + tω33̄) + uω12̄ − ūω21̄ + vω23̄ − v̄ω32̄ + zω13̄ − z̄ω31̄. (9)

The following result is proved by a direct calculation, so we omit the proof.

Lemma 17. Let (J, g) be a Hermitian structure on a six-dimensional NLA g, and Ω
its fundamental form.

(i) If J is nonnilpotent, then in terms of the basis {ωj}3
j=1 of g1,0 satisfying (3),

the (2, 1)-form ∂Ω is given by

∂Ω =− (Āv + ibz)ω121̄ − ibEv ω122̄ − (iĀt− u + Eū)ω131̄

+ (is + bt)E ω132̄ + Ev ω133̄ + (is− bt)ω231̄.

(ii) If J is nilpotent, then in terms of the basis {ωj}3
j=1 of g1,0 satisfying (4), the

form ∂Ω is given by

∂Ω =−
(
iεs + ρz̄ + (1− ε)Āv − B̄z

)
ω121̄ −

(
ρv̄ + C̄v − (1− ε)D̄z

)
ω122̄

+ iρt ω123̄+
(
εv̄ − i(1−ε)Āt

)
ω131̄− iC̄t ω132̄− iB̄t ω231̄− i(1−ε)D̄t ω232̄.
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The theorem below is essentially given by Fino, Parton, and Salamon in [FPS, The-
orems 1.2 and 3.2]. Their proof involves a direct but rather long calculation following a
decision tree to eliminate B13, B13̄, B23, B23̄ and the five coefficients A’s in the general
equations (1) under the SKT hypothesis. We give a simple proof based on our previous
study of complex geometry developed in Section 1, together with the fact that the SKT
condition is satisfied up to equivalence of the complex structure. Our proof also illus-
trates a general procedure that is useful to investigate balanced and locally conformal
Kähler geometry, as is shown in the next sections. Notice that part (a) of the following
theorem is a sligthly stronger version of Theorem 1.2 in [FPS].

Lemma 18. Let g be a Lie algebra endowed with a complex structure J having com-

patible SKT metrics. Then, any other complex structure J ′ equivalent to J possesses

compatible SKT metrics.

Proof. Let (J, g) be an SKT structure with fundamental form Ω, and F ∈ Aut(g) an
automorphism such that F ◦ J ′ = J ◦ F . Then, g′ = F ∗g is a J ′-Hermitian metric
on g with fundamental form Ω′ = F ∗Ω. Since F ∗ commutes with d and preserves the
bidegree, we get ∂̄′∂′Ω′ = F ∗(∂̄∂Ω), where d = ∂ ′ + ∂̄′ is the decomposition of d with
respect to J ′. Therefore, ∂Ω is a nonzero ∂̄-closed form if and only if ∂ ′Ω′ is a nonzero
∂̄′-closed form. �

Theorem 19. Let g be a six-dimensional NLA admitting complex structures.

(a) A Hermitian structure (J, g) on g is SKT if and only if the complex structure J
is equivalent to one defined by (5) with

ρ + |B|2 = 2 Re(D). (10)

In particular, if (J, g) is an SKT structure, then J is nilpotent and any other

J-Hermitian metric on g is SKT.

(b) There exists an SKT structure on g if and only if it is isomorphic to h2, h4, h5,

or h8.

Proof. To prove (a), we use Lemma 18 and Proposition 14 to focus on the two special
types of complex structures defined by (3) and (4). If J is a nonnilpotent complex
structure defined by (3), then it follows from Lemma 17(i) that ∂̄∂Ω = 2i(b2tω121̄2̄ +
sω131̄3̄) 6= 0, because g is positive definite and, in particular, s > 0. Thus, J must
necessarily be nilpotent if it has a compatible SKT metric, so it can be expressed by
equations of the form (4). Now, from Lemma 17(ii) we have

∂̄∂Ω = it
(
ρ2 + |B|2 + |C|2 − 2(1− ε)2Re(AD̄)

)
ω121̄2̄.

If ε = 1, then we must have ρ = B = C = 0 because t > 0, so in such a case we can
suppose ε = 0 after interchanging ω2 with ω3. Also notice that a complex parallelizable
structure cannot satisfy the condition ∂̄∂Ω = 0, unless the NLA g be abelian, in which
case Ω would be closed. Therefore, we can apply Proposition 10 and Lemma 11 to get
the equivalent condition (10).

In order to prove (b), we first observe that Proposition 13 implies that the possible
candidates to admit an SKT structure are h2, . . . , h6 and h8. But, from (i.2) and (i.4)
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in Proposition 13, it follows that there is no SKT structure either on h3 or on h6, be-
cause (10) is never satisfied. On the other hand, (i.5) shows that any complex structure
on h8 has compatible SKT metrics. Finally, the condition (10) for ρ = 1 and B = 0 in
equations (5) reduces to D = 1

2
+ iy, so Proposition 13(ii) implies the existence of SKT

structures on h2 for |y| >
√

3/2, on h4 for y = ±
√

3/2, and on h5 for |y| <
√

3/2. �

Next we describe (a parametrization of) the space of SKT structures in dimension 6
up to equivalence of the underlying complex structure. In view of (a) in the theorem
above, we restrict our attention to complex structures J defined by (5) with B =
p+iq, D = x+iy ∈ C, and ρ = 0, 1, and satisfying the SKT condition x = 1

2
(ρ+p2+q2).

Let us fix ρ = 0 or 1, which is equivalent to requiring that J be abelian or not. Then, the
complex structures having compatible SKT metric are parametrized by points (p, q, y)
in the Euclidean space R3. Now, given an NLA g admitting SKT structures, we shall
find which is the region in the Euclidean space that parametrizes the space of complex
structures (up to equivalence) on g satisfying the SKT condition. For that, we make use
of Proposition 13 taking into account that (ρ−|B|2)(4x+ρ−|B|2) = 4ρ− (ρ+p2+q2)2

under the SKT assumption:

• First, let us suppose that J is abelian, that is, ρ = 0. If p = q = 0, then the
corresponding Lie algebra is h8 for y = 0, and h2 for y 6= 0. If p2 + q2 6= 0, then 4y2 +
(p2+q2)2 is strictly positive, so the corresponding Lie algebra is again h2. Therefore, the
SKT structures (J, g) with abelian J are parametrized by the points in the Euclidean
space R3, where the origin corresponds to SKT structures on the Lie algebra h8 and the
points in R

3 − {0} to SKT structures on h2.

• Suppose now that J is nilpotent but nonabelian, i.e., ρ = 1. If p2 + q2 = 1, then
the corresponding Lie algebra is h4 for y = 0, and h2 for y 6= 0. If p2 + q2 6= 1, then
the equation 4y2 − 4 + (1 + p2 + q2)2 = 0 represents an ovaloid of revolution generated
by rotating the curve illustrated in Figure 1 about the y-axis. Therefore, the SKT
structures (J, g) with nonabelian J are parametrized by the points in the Euclidean
3-space, where the region outside the ovaloid corresponds to SKT structures on the Lie
algebra h2, the points on the ovaloid correspond to SKT structures on h4, and the region
inside the ovaloid to SKT structures on h5.
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Figure 1. SKT structures in the nonabelian case.

The Lie algebras h2, h4, h5, and h8 possess abelian complex structures. The following
result is a direct consequence of our study above.
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Corollary 20. Let (J, g) be an SKT structure on a six-dimensional NLA g. If J is

abelian, then g is isomorphic to h2 or h8. Therefore, none of the abelian complex

structures on h4 or h5 admits a compatible SKT metric.

Next we prove that the existence of an SKT structure on a compact nilmanifold Γ\G
implies the existence of an invariant one. The proof is based on the “symmetrization”
process, and we follow the ideas of [Be], [FG].

Let M = Γ\G be a compact nilmanifold and ν = dτ a volume element on M induced
by a bi-invariant one on the Lie group G [Mi]. After rescaling, we can suppose that M
has volume equal to 1.

Given any covariant k-tensor field T : X(M)× · · · ×X(M) → C∞(M) on the nilman-
ifold M , we define a covariant k-tensor Tν : g× · · · × g → R on the NLA g of G by

Tν(X1, . . . , Xk) =

∫

p∈M

Tp(X1 |p, . . . , Xk |p) ν for X1, . . . , Xk ∈ g,

where Xj |p is the value at the point p ∈ M of the projection on M of the left-invariant
vector field Xj on the Lie group G.

Obviously, Tν = T for any tensor field T coming from a left-invariant one. In [Be]
it is proved that if T = α ∈ Ak(M) is a k-form on M , then (dα)ν = dαν . A simple
calculation shows that (αν ∧ β)ν = αν ∧ βν for any α ∈ Ak(M) and β ∈ Al(M).

Remark 5. The symmetrization process defines a linear map ν̃ : Ak(M) →
∧

k g∗, given
by ν̃(α) = αν for any α ∈ Ak(M), which commutes with the differentials. Moreover, it
follows from the Nomizu theorem [N] that ν̃ induces an isomorphism Hk(ν̃) : Hk(M) →
Hk(g) between the kth cohomology groups for each k. In particular, any closed k-form
α on M is cohomologous to the invariant k-form αν obtained by the symmetrization
process.

Let us suppose now that the nilmanifold M = Γ\G is equipped with an invariant
complex structure J . If g is a J-Hermitian metric on M and Ω denotes its fundamental
form, then gν is a J-Hermitian metric on the NLA g with fundamental form Ων .

Proposition 21. Let (M = Γ\G, J) be a compact complex nilmanifold with invari-

ant J , and suppose that the NLA g of G is not abelian. If (J, g) is an SKT structure

on M , then (J, gν) is an SKT structure on g.

Proof. The fundamental form Ω of (J, g) satisfies dJdΩ = 0 but dΩ 6= 0. As it is
observed in [FG], since J is invariant, we have that (Jα)ν = Jαν for any α ∈ Ak(M).
Therefore, dJdΩν = dJ(dΩ)ν = d(JdΩ)ν = (dJdΩ)ν = 0. Moreover, since g is not
abelian, it follows from [BG] that dΩν 6= 0 because M has no Kähler metric. �

Notice that the symmetrization of SKT structures on a torus gives rise to invariant
Kähler metrics.

Corollary 22. A nontoral compact nilmanifold M = Γ\G of dimension 6 admits an

SKT metric compatible with an invariant complex structure if and only if the Lie algebra

of G is isomorphic to h2, h4, h5, or h8.

The result follows directly from Theorem 19(b) and Proposition 21. In particular,
the first Betti number of M must be > 4 in order to admit an SKT structure (J, g) with
invariant J .
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Finally, Corollary 20 implies that M = Γ\G has SKT structures whose underlying
complex structure is abelian if and only if the Lie algebra of G is isomorphic to h2 or h8.

3. Balanced metrics on six-dimensional nilmanifolds

Let (J, g) be a Hermitian structure on a 2n-dimensional manifold M with fundamental
form Ω. According to [GH], the W1 and W2 components in the well known Gray–
Hervella decomposition of ∇Ω are identically zero, that is, ∇Ω ∈ W3 ⊕ W4. In this
section we are interested in Hermitian structures satisfying ∇Ω ∈ W3.

Let θ be the Lee form associated to the Hermitian structure (J, g), that is, θ =(
1/(1− n)

)
JδΩ, where δ denotes the formal adjoint of d with respect to the metric g.

If θ vanishes identically, then the Hermitian structure is called balanced and we shall
say that g is a balanced metric on M . Such structures correspond to the Gray–Hervella
class W3 [GH], and they are also known in the literature as cosymplectic or semi-Kähler.

A large class of balanced structures is provided by the compact complex paralleliz-

able manifolds, that is, compact complex manifolds M for which the holomorphic bundle
T 1,0M is trivial. Wang [W] proved that M is a compact quotient Γ\G of a simply con-
nected complex Lie group G by a discrete subgroup Γ. Therefore, G is unimodular [Mi],
so any Hermitian left-invariant metric on the complex Lie group G is balanced by [AG,
Theorem 2.2] and it descends to M .

Alexandrov and Ivanov prove in [AI, Remark 1] (see also [FPS, Prop. 1.4]) that the
balanced condition is complementary to the SKT condition in dimension > 6. As a
consequence we have:

Proposition 23. A compact complex parallelizable manifold (not a torus ) of dimen-

sion > 6 has no compatible SKT metrics.

Proof. Let M = Γ\G be a compact complex parallelizable manifold and denote by J its
natural complex structure. Any Hermitian left-invariant metric on G does not satisfy
the SKT condition, because it is balanced. So there are no left-invariant SKT metrics
on G compatible with J .

Moreover, since G is unimodular there exists a bi-invariant volume element, and the
symmetrization of an SKT metric on M would be a left-invariant SKT metric on G. In
fact, the proof of Proposition 21 is valid in this context, except that we use Theorem 2.1
in [AG], which states that if G is not abelian then there are no left-invariant Kähler
metrics on G compatible with J , in order to ensure that the symmetrization of the
fundamental form is not closed. �

Let g be a Lie algebra of dimension 2n endowed with a Hermitian structure (J, g), in
the sense of Section 2, with Lee form θ ∈ g∗. We say that (J, g) is a balanced structure,
or that g is a balanced metric, on g if θ = 0.

Fixed a complex structure J on g, we denote by M3(g, J) the set of all balanced
J-Hermitian metrics g on g.

Lemma 24. If J ′ is a complex structure on g equivalent to J , then the metrics in

M3(g, J ′) are in one-to-one correspondence with the metrics in M3(g, J).

Proof. Let F ∈ Aut(g) be an automorphism of the Lie algebra such that F ◦J ′ = J ◦F .
Given g ∈ M3(g, J) with fundamental form Ω, let us consider the J ′-Hermitian metric
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g′ = F ∗g, whose fundamental form is Ω′ = F ∗Ω. If we denote by δ′ the adjoint of d
with respect to the metric g′, then δ′F ∗ = F ∗δ, which implies that the Lee form θ′ of
the Hermitian structure (J ′, g′) is given by θ′ = F ∗θ. Therefore, (J, g) is balanced if
and only if (J ′, g′) is. �

When g is six-dimensional, 2∗Ω = Ω∧Ω, where ∗ denotes the Hodge star with respect
to g. So the Lee form vanishes if and only if Ω2 is closed. But, dΩ2 = 2Ω∧dΩ is a real 5-
form which decomposes as a sum of forms of types (3, 2) and (2, 3), because the bidegree
of Ω is equal to (1, 1). Thus, Ω2 is closed if and only if (dΩ2)3,2 = 2Ω ∧ (dΩ)2,1 = 0.
Therefore, a Hermitian structure is balanced if and only if ∂Ω ∧ Ω = 0.

Fix a complex structure J on an NLA g of dimension 6, the set M3(g, J) is then
given by

M3(g, J) = {J-Hermitian metrics g | ∂Ωg ∧ Ωg = 0},
where Ωg is the fundamental form associated to g. Our first goal is to prove that
M3(g, J) 6= ∅ only for a Lie algebra g isomorphic to h1, . . . , h6 or h−19.

Proposition 25. Let (J, g) be a Hermitian structure on a six-dimensional NLA g.

(a) If J is nonnilpotent, then (J, g) is balanced if and only if the complex structure J
is equivalent to one defined by (3) and the metric coefficients of g in (8) satisfy

z =
−iuv

s
and As + bĒu + bū = 0. (11)

(b) If J is nilpotent but not complex parallelizable, then (J, g) is balanced if and only

if J is equivalent to one defined by (5) and the metric coefficients of g in (8)
satisfy

st− |v|2 + D(rt− |z|2) = B(itū− vz̄). (12)

(c) If J is a complex parallelizable structure, then any J-Hermitian metric is balan-

ced.

Proof. Suppose first that J is nonnilpotent. From Lemma 24 and Proposition 14, we
can restrict our attention to fundamental 2-forms Ω given by (9) in terms of a basis
{ωj}3

j=1 satisfying (3). Using Lemma 17(i), a direct calculation shows that

∂Ω ∧ Ω =
(
Ā(st− |v|2) + b(tu− iv̄z) + bE(tū + ivz̄)

)
ω1231̄2̄ + (uv − isz)ω1231̄3̄.

Therefore, a metric g given by (8) is balanced if and only if z = −iuv/s and

0 = Ā(st− |v|2) + b(tu− iv̄z) + bE(tū + ivz̄) =
st− |v|2

s
(Ās + bu + bEū).

Since g is positive definite, the latter condition is equivalent to As + bĒu + bū = 0
because s and b are real numbers, so part (a) of the proposition is proved.

To prove (b) we can focus, again by Lemma 24 and Proposition 14, on nilpotent
complex structures J defined by equations of the form (4). For any Ω given by (9), from
Lemma 17(ii) we get, by a simple calculation, that

∂Ω ∧ Ω =
(
(1−ε)Ā(st−|v|2) + B̄(itu + v̄z)− C̄(itū− vz̄) + (1−ε)D̄(rt−|z|2)

)
ω1231̄2̄

− ε(st− |v|2)ω1231̄3̄.
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Since g is positive definite, the coefficient of ω1231̄3̄ vanishes if and only if ε = 0. Thus,
if J is not complex parallelizable, then Proposition 10 and Lemma 11 imply that J is
equivalent to one defined by (5), and so the form ∂Ω∧Ω is zero if and only if (12) holds.

Finally, if ε = A = B = C = D = 0, then ∂Ω ∧ Ω vanishes identically, so (c) is clear.
It also follows directly from [AG]. �

Theorem 26. Let g be an NLA of dimension 6. Then, there exists a balanced structure

on g if and only if it is isomorphic to hk for 1 6 k 6 6, or h−19. Moreover:

(a) Any complex structure on h6 and h−19 has compatible metrics which are balanced.

(b) A complex structure on h3 has balanced compatible metrics iff it is equivalent

to J−0 .

(c) On the Lie algebras h2, h4, and h5 there exist complex structures having balanced

compatible metrics, but there also exist complex structures not admitting such

metrics.

Proof. If there exists a balanced structure (J, g) on g such that J is nonnilpotent, then
it follows from (11) by complex conjugation that Ās+bu+bEū = 0. On the other hand,
if we multiply the second equation in (11) by E, then taking into account that |E| = 1
we get AEs + bu + bEū = 0. Therefore, s(Ā − AE) = 0, that is, Ā = AE because g is
positive definite. Now Proposition 9 implies that g cannot be isomorphic to h+

26.
Now suppose that g has a balanced structure (J, g) such that J is nilpotent. Propo-

sitions 10 and 25 imply that, up to isomorphism, the possible candidates for such a Lie
algebra are h1, . . . , h6 and h8. But the Lie algebra h8 is excluded by Proposition 13(i.5),
because (12) reduces to st−|v|2 = 0 for B = D = 0, which contradicts that g is positive
definite. Therefore, g cannot be isomorphic to hk for 7 6 k 6 16.

Notice that for the “canonical” metric g given by r = s = t = 1 and u = v = z = 0,
the balanced condition (12) reduces to D = −1. From Proposition 13 it follows that
there is a balanced structure on h2 for |B| < 1 = ρ, on h4 for ρ = |B| = 1, on h5 for
|B| > 1 = ρ, and on h3 for the complex structure J−0 , i.e., for ρ = B = 0.

To complete the proof it remains to show that any complex structure on h6 and h−19
has a compatible balanced metric, and that there exists a complex structure on each
one of the Lie algebras h2, h3, h4, and h5 admitting no compatible balanced metric.

Let gu be the metric defined by r = 1+|u|2, s = t = 1, and v = z = 0. If u = −Ā/(2b),
then we have a metric gu on h−19 compatible with the complex structure J defined by (3)
with E = Ā/A, according to Proposition 9. Since gu satisfies (11), from Lemma 24 we
conclude that any other complex structure on h−19 has a balanced compatible metric.
Moreover, if u = i, then the metric gu on h6 is J-Hermitian for the complex structure
J defined by (5) with ρ = B = 1 and D = 0, according to Proposition 13(i.4), and it
is clear that (12) holds. From Corollary 15 and Lemma 24 it follows that any other
complex structure on h6 possesses a balanced compatible metric.

On the other hand, for the complex structure J+
0 on h3 given in Corollary 16 the

balanced condition (12) reduces to st − |v|2 + rt − |z|2 = 0, so g cannot be positive
definite. Therefore, there is no balanced compatible metric.

Finally, if ρ = 1 and B = x = 0 in Proposition 13, then (12) reduces to st − |v|2 +
iy(rt− |z|2) = 0, so the metric cannot be positive definite, and depending on the value
of y we get complex structures on the Lie algebras h2, h4, and h5 having no balanced
compatible metric. �
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Remark 6. In [FPS] it is shown that the metric given by r = s = t = 1/2, u = v = z = 0
is balanced with respect to one particular complex structure on hk for 1 6 k 6 6.

By the symmetrization process, Fino and Grantcharov prove in [FG] that if J is an
invariant complex structure on a compact nilmanifold M = Γ\G admitting a balanced
metric g, then there is a balanced structure (J, ĝ) on the Lie algebra g of G. Therefore:

Corollary 27. A compact nilmanifold M = Γ\G of dimension 6 admits a balanced

metric compatible with an invariant complex structure if and only if the Lie algebra of

G is isomorphic to h−19 or hk for some 1 6 k 6 6.

Since h3 is the Lie algebra underlying the compact nilmanifold N(2, 1)× S1, where
N(2, 1) is a quotient of the five-dimensional generalized Heisenberg group H(2, 1), we
have that an invariant complex structure J on N(2, 1) × S1 has compatible balanced
metrics if and only if J is equivalent to J−0 .

Let (J, g) be a Hermitian structure on a manifold M and denote by ∇B its Bismut

connection , i.e., the unique connection for which g and J are parallel and the torsion T B

is given by g(X, T B(Y, Z)) = JdΩ(X, Y, Z). Gutowski, Ivanov, and Papadopoulos pose
in [GIP] the following version of the Calabi conjecture in the non-Kähler setting: on any

2n-dimensional compact complex manifold with vanishing first Chern class there exists
a Hermitian structure with restricted holonomy of the Bismut connection contained
in SU(n). They prove that this property holds for Moishezon manifolds, for compact
complex manifolds with vanishing first Chern class which are cohomologically Kähler,
and for connected sums of k > 2 copies of S3 × S3.

Now, let M = Γ\G be a compact nilmanifold of dimension 6 equipped with an
invariant complex structure J . It follows from (1) that ω123 is a holomorphic non-
vanishing (3, 0)-form. Therefore, Theorem 4.1 in [FG] asserts that if the Ricci tensor
of the Bismut connection of some J-Hermitian metric g on M vanishes, then there is
a metric g̃ conformal to g such that (J, g̃) is a balanced structure on M , so there is an
invariant balanced structure (J, ĝ) on M by the symmetrization process. Conversely,
given an invariant balanced Hermitian structure on M there is a conformal change
of metric such that the Ricci tensor of the Bismut connection of the resulting metric
vanishes (see [FPS, Prop. 6.1]).

Using this result, Fino and Grantcharov provide counterexamples to the above conjec-
ture by showing that there exist invariant complex structures on the Iwasawa manifold
which do not admit compatible invariant balanced metrics. In the following result we
describe the general situation for six-dimensional nilmanifolds.

Corollary 28. Let M = Γ\G be a six-dimensional compact nilmanifold, and g the Lie

algebra of G. Then:

(a) If g is isomorphic to h6 or h−19, then any invariant complex structure on M
has a Hermitian structure with restricted holonomy of the Bismut connection

contained in SU(3).

(b) If g is isomorphic to h2, h3, h4, or h5, then there are invariant complex struc-

tures on M having a Hermitian structure with restricted holonomy of the Bismut

connection contained in SU(3), but there also exist invariant complex structures

on M for which the restricted holonomy of the Bismut connection of any Her-

mitian metric is not contained in SU(3).
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(c) If g is isomorphic to h+
26 or hk for some 7 6 k 6 16, then any invariant complex

structure on M does not possess Hermitian structures with restricted holonomy

of the Bismut connection contained in SU(3).

Observe that on the compact nilmanifold N(2, 1)× S1, an invariant complex struc-
ture J has a Hermitian structure for which the holonomy of its Bismut connection
reduces to SU(3) if and only if J is equivalent to J−0 .

We finish this section with some remarks about the stability of the balanced condition
under small deformations of the complex structure. As a consequence of Theorem 26,
the nilmanifolds corresponding to h6 and h−19 are stable in the sense that given a balanced
structure (J0, g0), with J0 invariant, then along any deformation Jα of J0 consisting of
invariant complex structures, there always exists a balanced Jα-Hermitian metric gα for
each value of α.

However, it is shown in [FG, Theorem 4.2] that such stability does not hold for
the Iwasawa manifold. Next we show that for the compact nilmanifold Γ\(H3 × H3),
where H3 is the Heisenberg group, the balanced condition is not stable under small
deformations.

Since the Lie algebra of H3×H3 is h2, we consider the equations (5) with ρ = 1 and
B = 0, and denote by Jx,y the complex structure on h2 given by

dω1 = dω2 = 0, dω3 = ω12 + ω11̄ + (x + iy)ω22̄,

where x, y ∈ R satisfy 4y2 − 4x − 1 > 0, according to Proposition 13. Observe that
the balanced condition (12) is satisfied for Jx,y if and only if x < − 1

4
and y = 0. In

particular, for x = −1 the family of complex structures J−1,y with y ∈ R only admits
balanced metrics for y = 0.

Corollary 29. The property “vanishing Ricci tensor for the Bismut connection” is not

stable under small deformations on the nilmanifold Γ\(H3 ×H3).

4. Locally conformal Kähler geometry

A Hermitian structure (J, g) on a 2n-dimensional manifold M is called locally con-

formal Kähler (LCK for short) if M has an open cover {Ui} and a family {fi} of dif-
ferentiable functions fi : Ui → R such that each local metric gi = exp fi g|Ui

is Kähler.
If Ω denotes the fundamental form, then the Hermitian structure is LCK if and only if
dΩ = θ∧Ω with closed Lee form θ. Notice that the class of LCK structures corresponds
to the Gray–Hervella class W4 [GH].

An interesting special class of locally conformal Kähler metrics is the one consisting
of those for which θ is a nowhere vanishing parallel form. A manifold endowed with
such a metric is called a Vaisman manifold [DO], [V1], [V2].

Let (J, g) be a Hermitian structure on a Lie algebra g, with fundamental form Ω ∈∧2
g∗ and Lee form θ ∈ g∗. We say that (J, g) is an LCK structure, or that g is an LCK

metric, if dΩ = θ ∧ Ω with closed Lee form θ.
Fixed a complex structure J on g, we denote byM4(g, J) the set of LCK J-Hermitian

metrics on g.

Lemma 30. If J ′ is a complex structure on g equivalent to J , then the metrics in

M4(g, J ′) are in one-to-one correspondence with the metrics in M4(g, J).
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Proof. Following the proof of Lemma 24, we have F ∗(dΩ−θ∧Ω) = dF ∗Ω−F ∗θ∧F ∗Ω =
dΩ′ − θ′ ∧ Ω′. �

Since θ and Ω are real forms, taking into account their bidegrees we have that in
dimension > 6 a Hermitian structure is LCK if and only if ∂Ω = θ1,0 ∧Ω. Therefore, if
dim g > 6, then

M4(g, J) = {J-Hermitian metrics g | ∂Ωg − (θg)
1,0 ∧ Ωg = 0}.

Theorem 31. A six-dimensional NLA g admits an LCK structure if and only if it is

isomorphic to h1 or h3. Moreover, a complex structure on h3 has a compatible LCK

metric if and only if it is equivalent to J+
0 .

Proof. Since the Lee form θ is a real 1-form, there exist λj ∈ C, j = 1, 2, 3, such that

θ = λ1 ω1 + λ2 ω2 + λ3 ω3 + λ̄1 ω1̄ + λ̄2 ω2̄ + λ̄3 ω3̄, (13)

with respect to any basis {ωj}3
j=1 for g1,0. We must find the possible values of λj in (13)

satisfying the equation ∂Ω = θ1,0 ∧ Ω. From (9) it follows that

θ1,0 ∧ Ω = (λ1ω
1 + λ2ω

2 + λ3ω
3) ∧ Ω

=− (ūλ1 + irλ2)ω
121̄ + (isλ1 − uλ2)ω

122̄ + (vλ1 − zλ2)ω
123̄

− (z̄λ1 + irλ3)ω
131̄ − (v̄λ1 + uλ3)ω

132̄ + (itλ1 − zλ3)ω
133̄

− (z̄λ2 − ūλ3)ω
231̄ − (v̄λ2 + isλ3)ω

232̄ + (itλ2 − vλ3)ω
233̄.

(14)

We shall also use the fact that the closedness of θ is equivalent to ∂θ1,0 = 0 and
∂̄θ1,0 + ∂θ0,1 = 0.

By Lemma 30 and Proposition 14 we can restrict our attention to the two special
types of complex structures defined by (3) and (4). If J is a nonnilpotent complex
structure defined by (3), then 0 = ∂θ1,0 = λ2 E ω13, which implies λ2 = 0. Moreover,
comparing the coefficients of ω232̄ in Lemma 17(i) and (14) we get that isλ3 = 0, so
λ3 = 0 because g is positive definite. Now, if we compare the coefficients of ω231̄, then
is − bt = 0, which is a contradiction to the fact that s, b, t are nonzero real numbers.
Therefore, a nonnilpotent complex structure cannot have compatible LCK metrics.

Let us suppose next that J is a nilpotent complex structure defined by (4).
Notice that if the coefficient λ3 in (13) vanishes, then comparing the coefficients of

ω133̄ and ω233̄ in Lemma 17(ii) and (14) we get that λ1 = λ2 = 0, so dΩ = 0 and g must
be the abelian Lie algebra h1 [BG].

On the other hand, if ε = 1 in equations (4) then the coefficients of ω232̄ and ω233̄

in Lemma 17(ii) and (14) imply that λ2 and λ3 satisfy v̄λ2 + isλ3 = itλ2 − vλ3 = 0.

Since g is positive definite, det

(
v̄ is
it −v

)
> 0 and the unique solution is the trivial one,

in particular, λ3 = 0 and so g ∼= h1 again.
Suppose next that the NLA g is not abelian and that it is endowed with a nilpotent

complex structure J given by (4) admitting an LCK metric. From the previous para-
graphs, ε = 0 in (4) and λ3 6= 0 in (13). From (4) we have 0 = ∂θ1,0 = λ3ρω12, therefore
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ρ = 0 and the complex structure J must be abelian. Since ε = ρ = 0, Proposition 10
and Lemma 11 imply that we can suppose J given by equations (5) with ρ = 0. But in
this case one has

0 = ∂̄θ1,0 + ∂θ0,1 = (λ3 − λ̄3)ω
11̄ + Bλ3 ω12̄ − B̄λ̄3 ω21̄ + (Dλ3 − D̄λ̄3)ω

22̄.

In order to have a solution with λ3 6= 0, the coefficient B must be zero and the coefficients
λ3 and D must be real. In this case, we get

∂Ω = vω121̄ + Dzω122̄ − itω131̄ − iDtω232̄.

Now taking into account the coefficients of ω131̄ and ω133̄ in (14), the condition ∂Ω =
θ1,0∧Ω implies that z̄λ1+irλ3 = it and itλ1−zλ3 = 0, so λ3 = t2/(rt−|z|2). Moreover,
from the coefficients of ω232̄ and ω233̄ in (14) we get that λ3 = D t2/(st− |v|2). Since g
is positive definite, necessarily D > 0. Now, Corollary 16 implies that g ∼= h3 and the
complex structure J must be equivalent to J+

0 .
Finally, the existence of a particular LCK structure on h3 follows from [CFL]. In

fact, one solution is obtained for D = 1 and r = s = t = 1, u = v = z = 0, with Lee
form θ = 2 Re ω3. �

Remark 7. According to [BG], M3(g, J) ∩M4(g, J) = ∅ for any complex structure J
on a nonabelian NLA g. From Theorems 26 and 31 we have that for any J on the Lie
algebra h3, either M3(h3, J) = ∅ or M4(h3, J) = ∅, depending on the fact that J be
equivalent to J+

0 or not. Moreover, for the remaining (nonabelian) Lie algebras g of
Theorem 8, one has that M4(g, J) = ∅ for any complex structure J .

Next we prove that the Lee form of any invariant LCK structure is parallel with
respect to the Levi-Civita connection.

Proposition 32. For any invariant LCK metric, the nilmanifold N(2, 1) × S1 is a

Vaisman manifold.

Proof. Since the complex structure must be equivalent to J+
0 , we consider a basis

{ωj}3
j=1 for (h3)

1,0 satisfying dω1 = dω2 = 0 and dω3 = ω11̄ + ω22̄. It is easy to

see that a J+
0 -Hermitian metric g given by (8) is LCK if and only if u = (iv̄z)/t and

|v|2 − st = |z|2 − rt. In this case, the associated Lee form is

θ =
1

|z|2 − rt
(itzω1 + itvω2 − t2ω3 − itz̄ω1̄ − itv̄ω2̄ − t2ω3̄).

Let {Zj}3
j=1 be the dual basis of {ωj}3

j=1. For any U, V ∈ (h3)C, it is easy to check that

θ(∇V U) =
it

|z|2 − rt
g(∇V U, Z3 + Z̄3).

But, g(∇Zk
Zj , Z3 + Z̄3) = g(∇Zk

Z̄j , Z3 + Z̄3) = 0 for 1 6 j 6 k 6 3, because [Z1, Z̄1] =
[Z2, Z̄2] = Z̄3−Z3 are the only brackets which do not vanish. Therefore, g(∇V U, Z3+Z̄3)
vanishes identically, so the Lee form θ is parallel. �

It is well known that the orthogonal leaves to the Lee vector field of a Vaisman man-
ifold bear a Sasakian structure, and that the product by R or S1 of a Sasakian manifold
is an LCK manifold with parallel Lee form [V1]. Thus, as an immediate consequence of
Proposition 32 we have that N(2, 1) is essentially the only five-dimensional nilmanifold
admitting invariant Sasakian structures.
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Corollary 33. Let M = Γ\G be a nontoral compact nilmanifold of dimension 5 en-

dowed with an invariant Sasakian structure. Then, the Lie algebra of G is isomorphic

to (0, 0, 0, 0, 12 + 34).

Following an idea of [Be], next we study the symmetrization of LCK structures on
nilmanifolds.

Proposition 34. Let (M = Γ\G, J) be a compact complex nilmanifold with J invari-

ant. If (J, g) is an LCK structure on M , then there is a metric g̃ globally conformal

to g such that (J, g̃ν) is an LCK structure on the Lie algebra g of G.

Proof. The fundamental form Ω of (J, g) satisfies dΩ = θ ∧ Ω with closed Lee form θ.
From Remark 5 we have that θ is cohomologous to the invariant 1-form θν obtained by
the symmetrization process. Thus, there exists a function f on M such that θν−θ = df .
Since

d(exp fΩ) = exp f df ∧ Ω + exp f(θν − df)Ω = θν ∧ (exp fΩ),

there is an LCK structure (J, g̃ = exp f g) on M with fundamental form Ω̃ = exp f Ω

and Lee form equal to θν . Now, dΩ̃ν = (dΩ̃)ν = (θν ∧ Ω̃)ν = θν ∧ Ω̃ν , that is, (J, g̃ν) is
an LCK structure on the Lie algebra g. �

Corollary 35. Let (M = Γ\G, J) be a nontoral six-dimensional compact nilmanifold

endowed with an invariant complex structure J . Then, M has an LCK metric if and

only if the Lie algebra of G is isomorphic to h3 and J is equivalent to J+
0 .

Recently, Oeljeklaus and Toma [OT] have disproved the well known Vaisman conjec-
ture stating that any compact LCK, but not globally conformal Kähler manifold has
an odd Betti number. However, in the context of nilmanifolds, Corollary 35 leads us to
believe that a 2n-dimensional compact nilmanifold M admitting an LCK structure is
the product of N(n− 1, 1) by S1, where N(n− 1, 1) is the quotient of the generalized
Heisenberg group H(n− 1, 1) by a discrete subgroup, in particular, the first Betti num-
ber of M equals 2n− 1; that is to say, the only LCK nilmanifolds would be essentially
those constructed in [CFL].

The following result shows a large class of complex nilmanifolds not admitting LCK
structures.

Corollary 36. A compact complex parallelizable nilmanifold (not a torus ) has no LCK

metrics.

Proof. Let M be a compact complex parallelizable nilmanifold and denote by J its
complex structure. Since M is not a torus and any invariant J-Hermitian metric is
balanced [AG], there do not exist invariant LCK metrics on M . By Proposition 34
there are no LCK metrics on M compatible with J . �

In [AI, Remark 1] it is proved that the SKT condition is complementary to the
LCK condition. Next we give another proof of this fact for nilmanifolds, based on the
nilpotency of the underlying Lie algebra.

Proposition 37. Let (M = Γ\G, J) be a nontoral compact complex nilmanifold of

dimension 2n > 6, where J is invariant. A J-Hermitian metric g on M cannot be SKT

and LCK at the same time.
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Proof. Let (J, g) be a Hermitian structure on M that is both SKT and LCK. From
Propositions 21 and 34, there is a Hermitian structure on the Lie algebra g of G that
is SKT and LCK at the same time, i.e., its fundamental form Ω satisfies dΩ = θ ∧ Ω
and ∂∂̄Ω = 0. Let us write the Lee form as θ = θ1,0 + θ0,1 where θ0,1 = θ1,0. Since
θ1,0 ∧ Ω = ∂Ω and ∂̄(θ1,0 ∧ Ω) = −∂∂̄Ω = 0, we have that θ1,0 ∧ Ω is a closed form.
Therefore, 0 = d(θ1,0 ∧ Ω) = (dθ1,0 − θ1,0 ∧ θ0,1) ∧ Ω, which implies dθ1,0 = θ1,0 ∧ θ0,1,
because the dimension of g is > 6. Notice that θ1,0 6= 0 because g is not abelian. Now,
the real 1-form η = i(θ1,0 − θ0,1) satisfies dη = η ∧ θ, and a standard argument shows
that this cannot happen because g is nilpotent. �

Remark 8. The proposition above does not hold for nilmanifolds of dimension 4. In fact,
for any complex structure on the Lie algebra Kt = (0, 0, 0, 12) underlying the well known
Kodaira–Thurston manifold [T], there is a basis {ω1, ω2} of Kt1,0 such that dω1 = 0
and dω2 = ω11̄. For any compatible metric

g = r(ω1⊗ω1̄+ω1̄⊗ω1)+s(ω2⊗ω2̄+ω2̄⊗ω2)−iu(ω1⊗ω2̄+ω2̄⊗ω1)+iū(ω2⊗ω1̄+ω1̄⊗ω2),

its fundamental form Ω satisfies ∂∂̄Ω = 0, so g is SKT. Moreover, g is also LCK, because
dΩ = θ ∧ Ω with closed θ =

(
2s/(|u|2 − rs)

)
(Re(iuω1)− s Re ω2).
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