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École Normale Supérieure–DMA
45, Rue d’Ulm

F-75230 Paris, Cedex 05 France
David.Hernandez@ens.fr

Abstract. In this paper we study general quantum affinizations Uq(ĝ) of symmetrizable quan-
tum Kac–Moody algebras and we develop their representation theory. We prove a triangular
decomposition and we give a classication of (type 1) highest weight simple integrable represen-
tations analog to Drinfel’d–Chari–Presley one. A generalization of the q-characters morphism,
introduced by Frenkel–Reshetikhin for quantum affine algebras, appears to be a powerful tool
for this investigation. For a large class of quantum affinizations (including quantum affine al-
gebras and quantum toroidal algebras), the combinatorics of q-characters give a ring structure
∗ on the Grothendieck group Rep(Uq(ĝ)) of the integrable representations that we classified.
We propose a new construction of tensor products in a larger category by using the Drinfel’d
new coproduct (it cannot directly be used for Rep(Uq(ĝ)) because it involves infinite sums). In
particular, we prove that ∗ is a fusion product (a product of representations is a representation).

1. Introduction

In this paper, q ∈ C∗ is not a root of unity.
V. G. Drinfel’d [Dr1] and M. Jimbo [Jim] associated, independently, to any sym-

metrizable Kac–Moody algebra g and q ∈ C∗ a Hopf algebra Uq(g) called quantum
Kac–Moody algebra. The structure of the Grothendieck ring of integrable representa-
tions is well understood: it is analogous to the classical case q = 1.

The quantum algebras of finite type Uq(g) (g of finite type) have been intensively
studied (see for example [CP4], [L], [R] and references therein). The quantum affine
algebras Uq(ĝ) (ĝ affine algebra) are also of particular interest: they have two realiza-
tions, the usual Drinfel’d–Jimbo realization and a new realization (see [Dr2], [Be]) as
a quantum affinization of a quantum algebra of finite type Uq(g). The finite dimen-
sional representations of quantum affine algebras are the subject of intense research
(see, among the others, [AK], [CP1], [CP3], [CP4], [EM], [FR], [FM], [N1], [N2], [VV2]
and references therein). In particular, they were classified by Chari–Pressley [CP3],
[CP4], and Frenkel–Reshetikhin [FR] introduced the q-characters morphism, which is a
powerful tool for the study of these representations (see also [Kn], [FM]).

The quantum affinization process (that Drinfel’d [Dr2] described for constructing the
second realization of a quantum affine algebra) can be extended to all symmetrizable
quantum Kac–Moody algebras Uq(g) (see [Jin], [N1]). One obtains a new class of al-
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gebras called quantum affinizations: the quantum affinization of Uq(g) is denoted by
Uq(ĝ). The quantum affine algebras are the simplest examples and are very special
because they are also quantum Kac–Moody algebras. When C is affine, the quantum
affinization Uq(ĝ) is called a quantum toroidal algebra. It is known not to be a quantum
Kac–Moody algebra, but it is also of particular interest (see, for example, [GKV], [M1],
[M2], [N1], [N3], [Sa], [Sc], [STU], [TU], [VV1] and references therein).

In [N1] Nakajima gave a classification of (type 1) simple integrable highest weight
modules of Uq(ĝ) when g is symmetric. The case C of type A(1)

n (toroidal ŝln-case) was
also studied by Miki in [M1] (a coproduct is also used with an approach specific to the
A

(1)
n -case; but it is technically different from the general construction proposed in this

paper). In [H3] we proposed a combinatorial construction of q-characters (and also of
their t-deformations) for generalized Cartan matrix C such that i �= j ⇒ Ci,jCj,i � 3
(it includes finite and affine types except A

(1)
1 , A

(2)
2 ). We conjectured that they were

linked with a general representation theory, but in general little is known about the
representation theory outside the case of quantum affine algebras.

In this paper we study general quantum affinizations and we develop their repre-
sentation theory. First we prove a triangular decomposition of Uq(ĝ). We classify the
(type 1) simple highest weight integrable representations, and we define and study a
generalization of the morphism of q-characters χq which appears to be a natural tool for
this investigation (the approach is different from [H3] because q-characters are obtained
from the representation theory and not from purely combinatorial constructions). If the
quantized Cartan matrix C(z) is invertible (it includes all quantum affine algebras and
quantum toroidal algebras), a symmetry property of those q-characters with respect to
the action of screening operators is proved (analog of the invariance for the action of
the Weyl group in classical finite cases; the result is proved in [FM] for quantum affine
algebras). In particular, those q-characters are the combinatorial objects considered
in [H3]. Moreover, we get that the image of χq is a ring and we can define a formal
ring structure on the Grothendieck group. Although quantum affine algebras are Hopf
algebras, in general no coproduct has been defined for quantum affinizations (this point
was also raised by Nakajima in [N3]). Drinfel’d gave formulas for a new coproduct which
can be written for all quantum affinizations. They cannot directly be used to define a
tensor product of representations because they involve infinite sums. We propose a new
construction of tensor products in a larger category with a generalization of the new
Drinfel’d coproduct. We define a specialization process which allows us to interpret the
ring structure that we defined on the Grothendieck group: we prove that it is a fusion
product, that is to say that a product of representations is a representation (see [F] for
generalities on fusion rings and physical motivations).

We hope that this fusion procedure will lead to the construction of new tensor cate-
gories. But we shall address further developments on this point in a separate publication.

In more details, this paper is organized as follows.
In Section 2 we recall backgrounds on quantum Kac–Moody algebras. In Section 3 we

recall the definition of quantum affinizations and we prove a triangular decomposition
(Theorem 2). Some computations are needed to prove the compatibility with affine
quantum Serre relations (Section 3.3). Note that we get a new proof of a combinatorial
identity discovered by Jing (consequence of Lemma 9). The triangular decomposition
is used in Section 4.2 to define the Verma modules of Uq(ĝ).
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In Section 4 we recall the classification of (type 1) simple integrable highest weight
representations of quantum Kac–Moody algebras, and we prove such a classification
for quantum affinizations (Theorem 13; the proof is analogous to the proof given by
Chari–Pressley for quantum affine algebras). The point is to give an adapted definition
of a weight which we call an l-weight: we need a more precise definition than in the case
of quantum affine algebras (an l-weight must be characterized by the action of Uq(ĥ) ⊂
Uq(ĝ) on an l-weight space). We also give the definition of the category O(Uq(ĝ)).

In Section 5 we construct q-characters of integrable modules in the category O(Uq(ĝ)).
New technical points are to be considered (in comparison to quantum affine algebra
cases): we have to add terms of the form kλ (λ coweight of Uq(g)) for the well-definedness
in the general case. The original definition of q-characters ([FR]) was based on an explicit
formula for the universal R-matrix. In general no universal R-matrix has been defined
for a quantum affinization. However, q-characters can be obtained with a piece of the
formula of an “R-matrix” in the same spirit as the original approach (Theorem 18). In
Section 5.5 we prove that the image of χq is the intersection of the kernels of screening
operators (Theorem 26) in the same spirit as Frenkel–Mukhin [FM] did for quantum
affine algebras. New technical points are involved because of the kλ (we suppose that
the quantized Cartan matrix C(z) is invertible). In particular, it unifies this approach
with [H3] and enables us to prove some results announced in [H3]. We prove that the
image of χq is a ring. As χq is injective, we get an induced ring structure ∗ on the
Grothendieck group.

In Section 6 we prove that ∗ is a fusion product (Theorem 28), that is to say that
there is a product of modules. We use the new Drinfel’d coproduct (Proposition 29);
as it involves infinite sums, we have to work in a larger category where the tensor
product is well defined (Theorem 30). To conclude the proof of Theorem 28, we de-
fine specializations of certain forms which allow us to go from the larger category to
O(Uq(ĝ)) (Section 6.5). We also give some concrete examples of explicit computations
in Section 6.6.

Acknowledgments. The author would like to thank Marc Rosso for his continued
support and Olivier Schiffmann for his accurate remarks.

2. Background

2.1. Cartan matrix

In this section we give some general backgrounds about Cartan matrices (for more
details see [Ka]). A generalized Cartan matrix is C = (Ci,j)1�i,j�n such that Ci,j ∈ Z,
Ci,i = 2, i �= j ⇒ Ci,j � 0, Ci,j = 0 ⇔ Cj,i = 0. We denote I = {1, . . . , n} and
l = rank(C).

In the following discussion we suppose that C is symmetrizable, that is to say there is
a matrix D = diag(r1, . . . , rn) (ri ∈ N∗) such that B = DC is symmetric. In particular,
if C is symmetric, then it is symmetrizable with D = In. For example:

C is said to be of finite type if all its principal minors are in N∗ (see [Bo] for a
classification). C is said to be of affine type if all its proper principal minor are in N∗

and det(C) = 0 (see [Ka] for a classification).

Let z be an indeterminate. We put zi = zri , and for l ∈ Z we set [l]z = zl−z−l

z−z−1 ∈
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Z[z±]. Let C(z) be the quantized Cartan matrix defined by (i �= j ∈ I):

Ci,i(z) = zi + z−1
i , Ci,j(z) = [Ci,j ]z.

In Sections 5.5 and 6 we suppose that C(z) is invertible. We have seen in [H3, Lemma
6.9] that the condition (Ci,j < −1 ⇒ −Cj,i � ri) implies that det(C(z)) �= 0. In
particular, finite and affine Cartan matrices (where we impose r1 = r2 = 2 for A

(1)
1 )

satisfy this condition, and so the quantum affine algebras and quantum toroidal algebra
are included in our study. We denote by C̃(z) the inverse matrix of C(z) and by D(z)
the diagonal matrix such that for i, j ∈ I, Di,j(z) = δi,j [ri]z.

We consider a realization (h, Π, Π∨) of C (see [Ka]): h is a 2n−l dimensional Q-vector
space, Π = {α1, . . . , αn} ⊂ h∗ (set of the simple roots), Π∨ = {α∨

1 , . . . , α∨
n} ⊂ h (set of

simple coroots), and for 1 � i, j � n,

αj(α∨
i ) = Ci,j .

Denote by ω1, . . . , ωn ∈ h∗ (respectively the ω∨
1 , . . . , ω∨

n ∈ h) the fundamental weights
(respectively coweights): we have αi(ω∨

j ) = ωi(α∨
j ) = δi,j .

Consider a symmetric bilinear form ( , ) : h∗ × h∗ → Q such that for i ∈ I, h ∈ h∗,
we have (αi, h) = h(riα

∨
i ). It is nondegenerate and gives an isomorphism ν : h∗ → h.

In particular, for i ∈ I we have ν(αi) = riα
∨
i and for λ, μ ∈ h∗, λ(ν(μ)) = μ(ν(λ)).

Denote P = {λ ∈ h∗ | ∀i ∈ I, λ(α∨
i ) ∈ Z}, the set of weights, and P+ = {λ ∈ P | ∀i ∈

I, λ(α∨
i ) � 0}, the set of dominant weights. For example, we have α1, . . . , αn ∈ P and

ω1, . . . , ωn ∈ P+. Denote Q =
⊕

i∈IZαi ⊂ P , the root lattice, and Q+ =
∑

i∈INαi ⊂ Q.
For λ, μ ∈ h∗, write λ � μ if λ − μ ∈ Q+.

If C is finite, we have n = l = dim(h) and for λ ∈ h∗, λ =
∑

i∈Iα
∨
i (λ)ωi. In

particular, αi =
∑

j∈ICj,iωj. In general the simple roots cannot be expressed in terms
of the fundamental weights.

2.2. Quantum Kac–Moody algebra
Definition 1. The quantum Kac–Moody algebra Uq(g) is the C-algebra with generators
kh (h ∈ h), x±

i (i ∈ I) and relations:

khkh′ = kh+h′ , k0 = 1, (1)

khx±
j k−h = q±αj(h)x±

j , (2)

[x+
i , x−

j ] = δi,j

kriα∨
i
−k−riα∨

i

qi−q−1
i

, (3)∑
r=0,...,1−Ci,j

(−1)r
[

1−Ci,j
r

]
qi

(x±
i )1−Ci,j−rx±

j (x±
i )r = 0 (for i �= j). (4)

This algebra was introduced independently by Jimbo [Jim] and Drinfel’d [Dr1] and
is also called a quantum group. It is remarkable that one can define a Hopf algebra
structure on Uq(g) by setting:

Δ(kh) = kh ⊗ kh,

Δ(x+
i ) = x+

i ⊗ 1 + k+
i ⊗ x+

i , Δ(x−
i ) = x−

i ⊗ k−
i + 1 ⊗ x−

i ,

S(kh) = k−h, S(x+
i ) = −x+

i k−1
i , S(x−

i ) = −k+
i x−

i ,

ε(kh) = 1, ε(x+
i ) = ε(x−

i ) = 0,



QUANTUM AFFINIZATIONS AND FUSION PRODUCT 167

where we use the notation k±
i = k±riα∨

i
.

For i ∈ I let Ui be the subalgebra of Uq(g) generated by the x±
i , kpα∨

i
(p ∈ Q). Then

Ui is isomorphic to Uqi(sl2), and so a Uq(g)-module also has a structure of Uqi(sl2)-
module.

Definition 2. A triangular decomposition of an algebra A is the data of three subal-
gebras (A−, H, A+) of A such that the multiplication x− ⊗ h⊗ x+ �→ x−hx+ defines an
isomorphism of C-vector space A− ⊗ H ⊗ A+ � A.

Let Uq(g)+ (respectively Uq(g)−, Uq(h)) be the subalgebra of Uq(g) generated by the
x+

i (respectively the x−
i , respectively the kh). We have (see [L]):

Theorem 1. (Uq(g)−,Uq(h),Uq(g)+) is a triangular decomposition of Uq(g). More-
over, Uq(h) (respectively Uq(g)+, Uq(g)−) is isomorphic to the algebra with generators
kh (respectively x+

i , x−
i ) and relations (1) (respectively relations (4) with +, relations (4)

with −).

3. Quantum affinization Uq(ĝ) and triangular decomposition

In this section we define general quantum affinizations (without central charge), we
give the relations between the currents (Section 3.2), and we prove a triangular decom-
position (Theorem 2).

3.1. Definition
Definition 3. The quantum affinization of Uq(g) is the C-algebra Uq(ĝ) with generators
x±

i,r (i ∈ I, r ∈ Z), kh (h ∈ h), hi,m (i ∈ I, m ∈ Z − {0}), and the following relations
(i, j ∈ I, r, r′ ∈ Z, m ∈ Z − {0}):

khkh′ = kh+h′ , k0 = 1, [kh, hj,m] = 0 , [hi,m, hj,m′ ] = 0, (5)

khx±
j,rk−h = q±αj(h)x±

j,r, (6)

[hi,m, x±
j,r ] = ± 1

m [mBi,j ]qx±
j,m+r, (7)

[x+
i,r, x

−
j,r′ ] = δij

φ+
i,r+r′−φ−

i,r+r′
qi−q−1

i

, (8)

x±
i,r+1x

±
j,r′ − q±Bij x±

j,r′x
±
i,r+1 = q±Bij x±

i,rx
±
j,r′+1 − x±

j,r′+1x
±
i,r, (9)∑

π∈Σs

∑
k=0,...,s(−1)k

[
s
k

]
qi

x±
i,rπ(1)

. . . x±
i,rπ(k)

x±
j,r′x

±
i,rπ(k+1)

. . . x±
i,rπ(s)

= 0, (10)

where the last relation holds for all i �= j, s = 1 − Cij , and all sequences of integers
r1, . . . , rs. Σs is the symmetric group on s letters. For i ∈ I and m ∈ Z, φ±

i,m ∈ Uq(ĝ)
is determined by the formal power series in Uq(ĝ)[[z]] (respectively in Uq(ĝ)[[z−1]]):

∑
m�0 φ±

i,±mz±m = k±riα∨
i
exp

(±(q − q−1)
∑

m′�1 hi,±m′z±m′)
and φ+

i,m = 0 for m < 0, φ−
i,m = 0 for m > 0.

Relation (10) is called affine quantum Serre relations. The notation k±
i = k±riα∨

i
is

also used. We have kik
−1
i = k−1

i ki = 1, kix
±
j,mk−1

i = q±Bij x±
j,m.

There is an algebra morphism Uq(g) → Uq(ĝ) defined by (h ∈ h, i ∈ I) kh �→ kh,
x±

i �→ x±
i,0. In particular, a Uq(ĝ)-module also has a structure of a Uq(g)-module.
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3.2. Relations between the currents
For i ∈ I, consider the series (also called currents):

x±
i (w) =

∑
r∈Z

x±
i,rw

r, φ+
i (z) =

∑
m�0 φ+

i,mzm, φ−
i (z) =

∑
m�0 φ−

i,−mz−m.

The defining relations of Uq(ĝ) can be written with currents (h, h′ ∈ h, i, j ∈ I):

khkh′ = kh+h′ , k0 = 1, [kh, φ±
i (z)] = [φ±

i (z), φ±
j (w)] = [φ±

i (z), φ∓
j (w)] = 0, (11)

khx±
j (z) = q±αj(h)x±

j (z)kh, (12)

φ+
i (z)x±

j (w) = q±Bi,j w−z

w−q±Bi,j z
x±

j (w)φ+
i (z), (13)

φ−
i (z)x±

j (w) = q±Bi,j w−z

w−q±Bi,j z
x±

j (w)φ−
i (z), (14)

[x+
i (z), x−

j (w)] = δi,j

qi−q−1
i

[δ(w
z )φ+

i (w) − δ( z
w )φ−

i (z)], (15)

(w − q±Bi,j z)x±
i (z)x±

j (w) = (q±Bi,j w − z)x±
j (w)x±

i (z), (16)∑
π∈Σs

∑
k=0,...,s

(−1)k
[
s
k

]
qix

±
i (wπ(1)) . . . x±

i (wπ(k))x
±
j (z)x±

i (wπ(k+1)) . . . x±
i (wπ(s)) = 0, (17)

where δ(z) =
∑

r∈Z
zr. Equation (13) (respectively Equation (14)) is expanded for

|z| < |w| (respectively |w| < |z|).
Remark 1. In relation (16), the terms cannot be divided by w−q±Bi,j z: it would involve
infinite sums and make no sense.

The following equivalences are clear: (relations (5) ⇔ relations (11)); (relations (6)
⇔ relations (12)); (relations (9) ⇔ relations (16)); (relations (8) ⇔ relations (15));
(relations (10) ⇔ relations (17)).

We suppose that relations (6) are verified and we prove the equivalence (relations (7)
with m � 1 ⇔ relations (13)) ((relations (7) with m � −1 ⇔ relations (14)) is proved
in a similar way): consider h+

i (z) =
∑

m�1 mhi,mzm−1. Relation (7) with m � 1 is
equivalent to (expanded for |z| < |w|):

[h+
i (z), x±

j (w)] = ±[Bi,j ]q
w−1x±

j (w)(
1− z

w qBi,j

)(
1− z

w q−Bi,j

) .

It is equivalent to the data of a α±(z, w) ∈ (C[w, w−1])[[z]] such that φ+
i (z)x±

j (w) =

α±(z, w)x±
j (w)φ+

i (z). So it suffices to prove that this term is the q±Bi,j w−z

w−q±Bi,j z
of rela-

tion (13). Let us compute this term. We have ∂φ+
i (z)

∂z = (q − q−1)h+
i (z)φ+

i (z), and so
the relations (7) imply

(q − q−1)φ+
i (z)[h+

i (z), x±
j (w)] = ∂α±(z,w)

∂z x±
j (w)φ+

i (z),(
±[Bi,j ]q w−1(

1− z
w qBi,j

)(
1− z

w q−Bi,j

)α±(z, w) − 1
q−q−1

∂α±(z,w)
∂z

)
x±

j (w)φ+
i (z) = 0,

∂α±(z,w)
∂z = ±(

qBi,j − q−Bi,j
)

w−1(
1− z

w qBi,j

)(
1− z

w q−Bi,j

)α±(z, w).

As q±Bi,j w−z

w−q±Bi,j z
is a solution, we have α±(z, w) = λ(w) q±Bi,j w−z

w−q±Bi,j z
. But at z = 0 we know

α±(0, w) = q±Bi,j (relations (6)), and so λ(w) = 1.
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3.3. Triangular decomposition

Statement. Let Uq(ĝ)+ (respectively Uq(ĝ)−, Uq(ĥ)) be the subalgebra of Uq(ĝ) generated
by x+

i,r (respectively x−
i,r , respectively kh, hi,r).

Theorem 2. (Uq(ĝ)−,Uq(ĥ),Uq(ĝ)+) is a triangular decomposition of Uq(ĝ). Moreover,
Uq(ĥ) (respectively Uq(ĝ)+, Uq(ĝ)−) is isomorphic to the algebra with generators kh, hi,m

(respectively x+
i,r, x−

i,r) and relations (5) (respectively relations (9) and (10) with +,
relations (9) and (10) with −).

For a quantum affine algebra (C finite) it is proved in [Be]. In this section we prove
this theorem in general. We will use the algebras U l

q(ĝ), Ũq(ĝ) defined by the following
definition.

Definition 4. U l
q(ĝ) is the C-algebra with generators x±

i,r , hi,m, kh (i ∈ I, r ∈ Z,
m ∈ Z − {0}, h ∈ h) and relations (5), (6), (7), and (8) (or relations (11), (12), (13),
(14), and (15)). Ũq(ĝ) is the quotient of U l

q(ĝ) by relations (9) (or relations (16)).

Note that Uq(ĝ) is a quotient of U l
q(ĝ) and that (U l,−

q (ĝ),Uq(ĥ),U l,+
q (ĝ)) is a triangular

decomposition of U l
q(ĝ), where U l,±

q (ĝ) is generated by the x±
i,r without relations. In the

sl2-case we have Ũq(ŝl2) = Uq(ŝl2).
Let us sketch the proof of Theorem 2. We use a method analogous to the proof of

classic cases or quantum Kac–Moody algebras (see, for example, [Ja, Chapter 4]): we
have to check a compatibility condition between the relations and the product. After
some preliminary technical lemmas about polynomials, the heart of the proof is given
by the following: properties of U l

q(ĝ) (Lemma 8) lead to a triangular decomposition of
Ũq(ĝ). Properties of Ũq(ĝ) proved in Lemmas 9 and 10 imply Theorem 2. Note that the
intermediate algebra Ũq(ĝ) is also studied because it will be used in the last section of
this paper.

Remark 2. Lemma 9 gives a new proof of a combinatorial identity discovered by Jing.

Theorem 2 is used in Section 4.2 to define the Verma modules of Uq(ĝ). Let us
give another consequence of Theorem 2. For i ∈ I, let Ûi be the subalgebra of Uq(ĝ)
generated by the x±

i,r, kpα∨
i
, hi,m (r ∈ Z, m ∈ Z − {0}, p ∈ Q). We have a morphism

Uqi(ŝl2) → Ûi (in particular, any Uq(ĝ)-module also has a structure of Uqi(ŝl2)-module).
Moreover, Theorem 2 implies the following corollary.

Corollary 3. Ûi is isomorphic to Uqi(ŝl2).

General proof of triangular decompositions. Let A be an algebra with a triangular de-
composition (A−, H, A+). Let B+ (respectively B−) be a two-sided ideal of A+ (re-
spectively A−). Let C = A/(A.(B+ + B−).A) and denote by C± the image of B±

in C.

Lemma 4. If B+.A ⊂ A.B+ and A.B− ⊂ B−.A, then (C−, H, C+) is a triangular
decomposition of C and the algebra C± is isomorphic to A±/B±.

Proof. We use the proof of [Ja, Section 4.21]. Indeed, the product gives an isomorphism
of C-vector space A.(B+ + B−).A � B+ ⊗ H ⊗ A− + A+ ⊗ H ⊗ B−. �
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Technical lemmas. Let i �= j and s = 1−Ci,j . Define P±(w1,. . . ,ws, z)∈C[w1,. . . ,ws, z]
equal to

∑
k=0,...,s(−1)k

[
s
k

]
qi

(w1 − q±Bi,j z) . . . (wk − q±Bi,j z)(wk+1q
±Bi,j − z) . . . (wsq

±Bi,j − z).

Lemma 5. There are polynomials (f±,r)r=1,...,s−1 of s − 1 variables such that

P±(w1, . . . , ws, z) =
∑

1�r�s−1(wr+1 − q±2
i wr)f±,r(w1, . . . , wr−1, wr+2, . . . , ws, z).

Proof. It suffices to prove this for P+ since P− is obtained from P+ by q �→ q−1. First
we prove that P+(q−2(s−1)

i w, q
−2(s−2)
i w, . . . , q−2

i w, w, z) = 0. Indeed it is equal to

ws
∑

k=0,...,s

(−1)k
[

s
k

]
qi

q
k(1−s)
i

(
q
−2(s−1)
i qs−1

i − z
w

)

. . .
(
q
−2(s−k)
i qs−1

i − z
w

)(
q
−2(s−k−1)
i q1−s

i − z
w

)
. . .

(
q1−s
i − z

w

)
= zs

(
q1−s
i − z

w

)
q−3s+3Mqi

(
z
wq3s−3

)
,

where

Mq(u) =
∑

k=0,...,s(−1)k
[

s
k

]
q
qk(1−s)(q2k − u)(q2(k+1) − u) . . . (q2(k+s−2) − u).

Let α0(q), . . . , αs−1(q) ∈ Z[q] such that (a−u)(a−uq2) . . . (a−uq2(s−2)) = us−1αs−1(q)+
us−2aαs−2(q) + . . . + as−1α0(q). So

Mq(u) =
∑

p=0,...,s−1 αs−p(q)us−p
∑

k=0,...,s(−1)k
[

s
k

]
q
qk(1−s+2p).

And thus Mq(u) = 0 because of the q-binomial identity for p′ = 1 − s, 3 − s, . . . , s − 1
(see [L]): ∑

k=0,...,s(−1)k
[

s
k

]
q
qrp′

= 0.

As a consequence P+ is in the kernel of the projection

φ : C[w1, . . . , ws, z] → C[w1, . . . , ws, z]/((w2 − q2
i w1), . . . , (ws − q2

i ws−1)),

that is to say P+(w1, . . . , ws, z) =
∑

1�r�s−1(wr+1 − qBi,j wr)fr(w1, . . . , ws, z), where
fr ∈ C[w1, . . . , ws, z].

Let us prove that we can choose the (fr)1�r�s−1 so that for all 1 � s � r−1, fr does
not depend on wr, wr+1. Let A ⊂ Ker(φ) be the subspace of polynomials which are at
most of degree 1 in each variable w1, . . . , ws. In particular, P ∈ A. We can decompose in
a unique way P = α+w2β+w1γ, where α, γ ∈ C[w3, . . . , ws, z], β ∈ C[w1, w3, . . . , ws, z].
Consider λ(1) = −q−2

i γ(w2 − q2
i w1) ∈ A and P (1) = P − λ(1) ∈ A. We have in

particular P (1) = μ
(1)
3 + w2μ

(1)
2 + w2w1μ

(1)
1 , where μ

(1)
1 , μ

(1)
2 , μ

(1)
3 ∈ C[w3, . . . , ws, z]. In

the same way we define by induction on r (1 � r � s − 1) the λ(r) ∈ A such that
P (r) = P (r−1) − λ(r) ∈ A is of the form

P (r) = μ
(r)
r+2 + wr+1μ

(r)
r+1 + wr+1wrμ

(r)
r + . . . + wr+1wr . . . w1μ

(r)
1 ,
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where for 1 � r′ � r + 2, μ
(r)
r′ ∈C[wr+2, . . . , ws, z]. Indeed in the part of P (r) without

wr+2 we can change the terms wr+1λ(wr+3, . . . , ws, z) to q−2
i wr+2λ(wr+3, . . . , ws, z) by

adding q−2
i (wr+2−q2

i wr+1)λ∈A, we can change the terms wr+1wrλ
′(wr+3, . . . , ws, z) to

q−4
i wr+2wr+1λ

′(wr+3, . . . , ws, z) by adding q−4
i (wr+2−q2

i wr+1)λ+q−2
i (wr+2−q2

i wr+1)λ
∈ A, and so on. In particular, for r = s − 1,

P (s−1) = μ
(s−1)
s+1 + μ(s−1)

s ws + μ
(s−1)
s−1 wsws−1 + . . . + μ

(s−1)
1 wsws−1 . . . w1,

where μ
(s−1)
s+1 , . . . , μ

(s−1)
1 ∈ C[z]. But

0 = φ(P (s−1)) = μ
(s−1)
s+1 + μ(s−1)

s ws + μ
(s−1)
s−1 q−2

i w2
s + . . . + μ

(s−1)
1 q

−2−4−...−2(s−1)
i ws

s.

So for all 1 � r′ � s+1, μ
(s−1)
r′ = 0, and so P (s−1) = 0. In particular, P = λ(1) +λ(2) +

. . . + λ(s−1). �
For 1 � k � s consider P

(k)
± (w1, w2, . . . , ws, z) ∈ C[w1, . . . , ws, z] equal to

(−1)k
[

s
k

]
qi

∑
k′=1,...,k(zq

±(1−s)
i − w1)(w2 − q±2

i w1) . . . (wk′ − q±2
i w1)

(wk′+1q
±2
i − w1) . . . (wsq

±2
i − w1) + (−1)k−1

[ s
k−1

]
qi

∑
k′=k,...,s(z − w1q

±(1−s)
i )

(w2 − q±2
i w1) . . . (wk′ − q±2

i w1)(wk′+1q
±2
i − w1) . . . (wsq

±2
i − w1).

Lemma 6. (i) For 2 � k � s − 1, there are polynomials (f (k)
±,r)r=1,...,s−1 of s − 1

variables, of degree at most 1 in each variable, such that P
(k)
± (w1, . . . , ws, z) is

equal to

(z − q
±(1−s)
i wk)f (k)

±,k−1(w1, . . . , wk−1, wk+1, . . . , ws, z)

+ (wk+1 − q
±(1−s)
i z)f (k)

±,s−1(w1, . . . , wk, wk+2, . . . , ws, z)

+
∑

1�r�s−2,r �=k−1(wr+2 − q±2
i wr+1)f

(k)
±,r(w1, . . . , wr−1, wr+2, . . . , ws, z).

(ii) There are polynomials (f (1)
±,r)r=1,...,s−1 of s − 1 variables, of degree at most 1 in

each variable, such that P
(1)
± (w1, . . . , ws, z) is equal to

(w2 − q
±(1−s)
i z)f (1)

±,s(w3, . . . , ws, z)

+
∑

1�r�s−2(wr+2 − q±2
i wr+1)f

(k)
±,r(w1, . . . , wr−1, wr+2, . . . , ws, z).

(iii) There are polynomials (f (s)
±,r)r=1,...,s−1 of s − 1 variables, of degree at most 1 in

each variable, such that P
(s)
± (w1, . . . , ws, z) is equal to

(z − q
±(1−s)
i ws)f

(s)
±,s−1(w1, . . . , ws−1, z)

+
∑

1�r�s−2(wr+2 − q±2
i wr+1)f

(s)
±,r(w1, . . . , wr−1, wr+2, . . . , ws, z).
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Proof. It suffices to prove this for P
(k)
+ since P

(k)
− is obtained from P

(k)
+ by q �→ q−1.

For (i): we see as in Lemma 5 that it suffices to check that P
(k)
+ (w1, . . . , ws, z) = 0

if w3 = q2
i w2, . . . , wk = q2

i wk−1, wk+2 = q2
i wk+1, . . . , ws = q2

i ws−1, z = q1−s
i wk, and

wk+1 = q1−s
i z. It means w3 = q2

i w2, . . . , wk = q
2(k−2)
i w2, wk+1 = q2k−2−2sw2, . . . ,

ws = q−4w2, z = q2k−3−sw2. So if we set u = w1/w2, we find for P
(k)
+ w−s

2 :

(−1)k
[

s
k

]
qi

∑
k′=1...k q

2(k′−1)
i (q2k−2−2s

i − u)(q2k−2s
i − u)

. . . (q2k′−6
i − u)(q2k′

i − u) . . . (q2k−2
i − u)(q−2

i − u)

+ (−1)k−1
[ s

k−1

]
qi

∑
k′=k...s q2k′−s−1

i (q2k−2s−4
i − u)

. . . (q2k′−2s−6
i − u)(q2k′−2s

i − u) . . . (q2k−4
i − u)(q−2

i − u).

It is a multiple of

[s−k+1]qi

q2k−2s−4
i −u

[ ∑
k′=1,...,k

q2k′−1
i

(q2k′−2
i −u)(q2k′−4

i −u)

]

− [k]qi

q2k−2
i − u

qs
i

[ ∑
k′=k,...,s

q2k′−1−s
i

(q2k′−2s−2
i − u)(q2k′−2s−4

i − u)

]

= q2
i [s−k+1]qi

(1−q2
i )(q2k−2s−4

i −u)

[ ∑
k′=1,...,k

1

q2k′−2
i −u

− 1

q2k′−4
i −u

]

− q2
i [k]qi

(1−q2
i )q2k−2

i −u
qs
i

[ ∑
k′=k,...,s

1

q2k′−2s−2
i −u

− 1

q2k′−2s−4
i −u

]

= q2
i [s−k+1]qi

(1−q2
i )(q2k−2s−4

i −u)

[
1

q2k−2
i −u

− 1
q−2

i −u

]

− q2
i [k]qi

(1 − q2
i )(q2k−2

i − u)
qs
i

[ 1
q−2
i − u

− 1
q2k−2s−4
i − u

]
= 0.

For (ii): as for (i) we check that P
(1)
+ (w1, . . . , ws, z) = 0 if w3 = q2

i w2, . . . , ws =

q2
i ws−1, z = qs−1

i w2. It means wk′ = q
2(k′−2)
i w2 for 2 � k′ � s. So if we set u = w1/w2,

we find for P
(1)
+ w−s

2 :

− [s]qi(1 − u)(q2
i − u) . . . (q2s−2

i − u) + q1−s
i

∑
k′=1...s q2k′−2

i (q2s−2
i − u)(q−2

i − u)

. . . (q2k′−6
i − u)(q2k′

i − u) . . . (q2s−2
i − u).

It is a multiple of

− q2
i [s]qi

q2s
i −1

(
1

q−2
i −u

− 1
q2s−2

i −u

)
+ q1−s

i

1−q−2
i

(
1

q−2
i −u

− 1
q2s−2

i −u

)
= 0.

For (iii): as for i) we check that P
(k)
+ (w1, . . . , ws, z) = 0 if w3 = q2

i w2, . . . , ws =

q2
i ws−1, z = q1−s

i ws. It means wk′ = q
2(k′−2)
i w2 for 2 � k′ � s and z = qs−3

i w2. The
computation is analogous to (i). �
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Lemma 7. For all choices of polynomials (f (k′)
±,r )1�k′�s,1�r�s−1 in Lemma 6 and each

2 � k � s, there are polynomials (g(k)
±,r)r=1,...,s−2 of s − 1 variables such that

f
(k)
±,k−1 − f

(k−1)
±,s−1 =

∑
1�r�s−2(wr+2 − q±2

i wr+1)g
(k)
±,r(w1, . . . , wr−1, wr+2, . . . , ws, z).

Proof. We see as in Lemma 5 that it suffices to check that f
(k)
+,k−1 + f

(k−1)
+,s−1 = 0 if

w3 = q2
i w2, . . . , ws = q2

i ws−1. So we suppose that wk′ = q
2(k′−2)
i for all 2 � k′ � s.

Let Q = ws−1
1 (w2q

−2
i − 1)(w2 − 1) . . . (w2q

2s−2
i )/(q2

i − 1). It suffices to prove that for
2 � k � s, we have

(q2
i − q2−2s

i )f (k)
+,k−1(Q(−1)k

[
s
k

]
qi

[k]qi(qi − q−1
i ))−1

= (qk+1+s
i + q−s−k+3

i − q−s+k+1
i − q3−k+s

i )/(vq−2
i − 1)(vq2k−4

i − 1)(vq2s−2
i − 1)

(18)

and

(q2
i − q2−2s

i )f (k−1)
+,s−1(Q(−1)k−1

[ s
k−1

]
qi

[k − 1]qi(qi − q−1
i ))−1

= (qk+1
i + q−k+3

i − q−2s+k+1
i − q3−k+2s

i )/(vq−2
i − 1)(vq2k−4

i − 1)(vq2s−2
i − 1)

(19)

because we have the relation
[

s
k

]
qi

[k]qi(q
k+1+s
i + q−s−k+3

i − q−s+k+1
i − q3−k+s

i )

= −[ s
k−1

]
qi

[k − 1]qi(q
k+1
i + q−k+3

i − q−2s+k+1
i − q3−k+2s

i ).

First suppose that 3 � k � s − 1. We have P
(k)
+ = (z − q1−s

i wk)f (k)
+,k−1 + (q2

i wk −
q1−s
i z)f (k)

+,s−1. So for αk, βk such that P
(k)
+ = zαk +wkβk, we have f

(k)
+,k−1 = q2

i αk+q1−s
i βk

q2
i −q2−2s

i

and f
(k)
+,s−1 = q1−s

i αk+βk

q2
i −q2−2s

i

. But we have P
(k)
+ = z(q1−s

i λk + μk)−w1(λk + q1−s
i μk), where

(we put v = w2/w1) λk is

(−1)kws−1
1

[
s
k

]
qi

∑
k′=1,...,k(v − q2

i )(vq2
i − q2

i ) . . . (vq
2(k′−2)
i − q2

i )(vq2k′
i − 1)

. . . (vq
2(s−2)+2
i − 1) = Q(−1)k

[
s
k

]
qi

[ 1
vq−2

i −1
− q2k

i

vq2k−2
i −1

],

and μk is

(−1)k−1ws−1
1

[ s
k−1

]
qi

∑
k′=k,...,s

(v − q2
i )(vq2

i − q2
i ) . . . (vq

2(k′−2)
i − q2

i )(vq2k′
i − 1)

. . . (vq
2(s−2)+2
i − 1) = Q(−1)k−1

[ s
k−1

]
qi

[
q2k−2

i

vq2k−4
i −1

− q2s
i

vq2s−2
i −1

]
.

As αk = q1−sλk + μk and βk = −(λk + q1−s
i )/(qk−2

i w2), we have

αk = Q
(−1)k

[
s
k

]
qi

[k]qi
(qi−q−1

i )

(vq−2
i −1)(vq2k−2

i −1)(vq2k−4
i −1)(vq2s−2

i −1)

·((qk+1−s
i − qs+k−1

i ) + v(qs+k−3
i + qs+3k−3

i − q3k−3−s
i − qs+k−1

i )),

βk = Q
(−1)k

[
s
k

]
qi

[k]qi
(qi−q−1

i )((qk
i +q2s−k+2

i −q−k+2
i −qk+2

i )+v(−qk+2s−2
i +qk

i ))

(vq−2
i −1)(vq2k−2

i −1)(vq2k−4
i −1)(vq2s−2

i −1)
.
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In particular, (q2
i − q2−2s

i )f (k)
+,k−1(Q(−1)k

[
s
k

]
qi

[k]qi(qi − q−1
i ))−1 is

(qk+1−s
i +qs−k+3

i −qs+k+1
i −q3−k−s

i )+v(qs+3k−1
i +qk+1−s

i −q3k−1−s
i −qs+k+1

i )

(vq−2
i −1)(vq2k−2

i −1)(vq2k−4
i −1)(vq2s−2

i −1)

and we get formula (18) for k. Moreover, (q2
i − q2−2s

i )f (k)
+,s−1(Q(−1)k

[
s
k

]
qi

[k]qi(qi −
q−1
i ))−1 is

(qk+2−2s
i +q2s−k+2

i −q−k+2
i −qk+2

i )+v(qk−2
i +q3k−2

i −q3k−2s−2
i −qk+2s−2

i )

(vq−2
i −1)(vq2k−2

i −1)(vq2k−4
i −1)(vq2s−2

i −1)

and we get formula (19) for k + 1.
So it remains to prove formula 19 with k = 2 and formula 18 with k = s.

P
(1)
+ = (w2 − q

(1−s)
i z)f (1)

+,s−1 = −[s]qi(zq1−s
i − w1)(q2

i w2 − w1) . . . (q2s−2
i w2 − w1)

+(z − w1q
1−s
i )

∑
k′=1,...,s q2k′−2

i (q−2
i w2 − w1)

. . . (q2k′−6
i w2 − w1)(q2k′

i w2 − w1) . . . (q2s−2
i w2 − w1)

⇒ f
(1)
+,s−1 = −q1−s

i Q
[−[s]qi

q1−s
i (q2

i −1)

(vq−2
i −1)(v−1)

+
∑

k′=1...s
q2k′−2

i

(q2k′−4
i v−1)(q2k′−2

i v−1)

]
.

And so we have for f
(1)
+,s−1(q

2
i − q2−2s

i )(−Q[s]qi(qi − q−1
i ))−1:

qi+q3
i −q2s+1

i −qi−2s+3

(vq−2
i −1)(v−1)(vq2s−2

i v−1)
,

that it to say formula (19) with k = 2.

P
(s)
+ = (z − q

(1−s)
i q

2(s−2)
i w2)f

(s)
+,s−1 = (−1)s−1[s]qi(z − w1q

1−s
i )q2(s−1)

i (q−2
i w2 − w1)

. . . (q2s−6
i w2 − w1) + (−1)s(zq1−s

i − w1)
∑

k′=1,...,s q2k′−2
i (q−2

i w2 − w1)

. . . (q2k′−6
i w2 − w1)(q2k′

i w2 − w1) . . . (q2s−2
i w2 − w1)

and so

f
(s)
+,s−1 = Q

[
(−1)s−1[s]qi

q
2(s−1)
i (q2

i −1)

(vq2s−4
i −1)(vq2s−2

i −1)
+ (−1)sq1−s

i

∑
k′=1,...,s

q2k′−2
i

(q2k′−4
i v−1)(q2k′−2

i v−1)

]
.

And thus we have for f
(s)
+,s−1(q

2
i − q2−2s

i )((−1)sQ[s]qi(qi − q−1
i ))−1:

q2s+1
i +q3−2s

i −qi−q3
i

(vq−2
i −1)(vq2s−4

i −1)(vq2s−2
i v−1)

,

that is to say formula (18) with k = s. �

Proof of Theorem 2. The algebras U l
q(ĝ), Ũq(ĝ),U l,±

q (ĝ) are defined in Section 3.3. Let
Ũ±

q (ĝ) ⊂ Ũq(ĝ) be the subalgebra generated by the x±
i,r . Let τ± be the two-sided ideal

of U l,±
q (ĝ) generated by the left terms of relations (9) (with the x±

i,r).
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Lemma 8. The following inclusions hold: τ+U l
q(ĝ) ⊂ U l

q(ĝ)τ+ and U l
q(ĝ)τ− ⊂ τ−U l

q(ĝ).
In particular, (Ũ−

q (ĝ),Uq(ĥ), Ũ+
q (ĝ)) is a triangular decomposition of Ũq(ĝ).

Proof. First τ+Uq(ĥ) ⊂ Uq(ĥ)τ+, Uq(ĥ)τ− ⊂ τ−Uq(ĥ) are direct consequences of relations
(12), (13), and (14). We also have (we use relations (15), (13), and (14)):

[(w − q±Bi,j z)x±
i (z)x±

j (w) − (q±Bi,j w − z)x±
j (w)x±

i (z), x∓
k (u)]

= (w − q±Bi,j z)x±
i (z)[x±

j (w), x∓
k (u)] − (q±Bi,j w − z)[x±

j (w), x∓
k (u)]x±

i (z)

− (q±Bi,j w − z)x±
j (w)[x±

i (z), x∓
k (u)] + (w − q±Bi,j z)[x±

i (z), x∓
k (u)]x±

j (w) = 0,

and so τ+U l,−
q (ĝ) ⊂ U l

q(ĝ)τ+, U l,+
q (ĝ)τ− ⊂ τ−U l

q(ĝ).
The last point follows from Ũq(ĝ) = U l

q(ĝ)/(U l
q(ĝ).(τ+ + τ−).U l

q(ĝ)), the triangular
decomposition of U l

q(ĝ) and Lemma 4. �

Lemma 9. Let i �= j, s = 1 − Ci,j, μ = 1 or μ = −1. We have in Ũq(ĝ):
∑

π∈Σs

∑
k=0,...,s

(−1)k
[

s
k

]
qi
x±

i (wπ(1)) . . . x±
i (wπ(k))φ

μ
j (z)x±

i (wπ(k+1)) . . . x±
i (wπ(s)) = 0, (20)

∑
π∈Σs

∑
k=0,...,s

(−1)k
[

s
k

]
qi

ξi(wπ(1)) . . . ξi(wπ(k))x±
j (z)ξi(wπ(k+1)) . . . ξi(wπ(s)) = 0, (21)

where ξi(wp) = x±
i (wp) if p �= 1 and ξi(w1) = φμ

i (w1).

Remark 3. In particular, if we multiply equation (20) by
(∏

r=1,...,s(wr − qs−1
i z)

)(∏
1�r′<r�s(wr − q2

i wr′)
)

and we project it on x+
i (w1) . . . x+

i (ws)φ+
j (z) (we can use relations (16) thanks to the

multiplied polynomial), we get the combinatorial identity discovered by Jing in [Jin],
which was also proved in a combinatorial way in [DJ]. For π ∈ Σs, denote by ε(π) ∈
{1,−1} the signature of π (we have replaced z �→ z−1, wk′ �→ w−1

k′ to get the formula
in the same form as in [Jin]):

0 =
∑

π∈Σs
ε(π)

∑
k=0,...,s

[
s
k

]
q
(z − qs−1wπ(1)) . . . (z − qs−1wπ(k))

(wπ(k+1) − qs−1z) . . . (wπ(s) − qs−1z)
∏

1�r<r′�s(wπ(r) − q2wπ(r′)).

Proof. First we prove equation (20) with μ = 1 (μ = −1 is analog). The left term is
(relations (13))

φ+
j (z)

(w1q±Bi,j −z)...(wsq±Bi,j −z)

∑
π∈Σs

P±(wπ(1), . . . , wπ(s), z)x±
i (wπ(1)) . . . x±

i (wπ(s)).

The sum is (see Lemma 5)

∑
π∈Σs

∑
1�r�s−1(wπ(r+1) − q±2

i wπ(r))

fr,±(wπ(1), . . . , wπ(r−1), wπ(r+2), . . . , wπ(s), z)x±
i (wπ(1)) . . . x±

i (wπ(s)).
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For each r, we put together the π, π′ ∈ Σs such that π(r) = π′(r + 1), π(r + 1) = π′(r),
and π(r′′) = π′(r′′) for all r′′ �= r, r + 1. So we get a sum of terms

fr,±(wπ(1), . . . , wπ(r−1), wπ(r+2), . . . , wπ(s), z)x±
i (wπ(1)) . . . x±

i (wπ(r−1))

· A±
{π(r),π(r+1)}x

±
i (wπ(r+2) . . . x±

i (wπ(s)),

where A±
{k,k′} = (wk − q±2

i wk′)x±
i (wk′ )x±

i (wk) + (wk′ − q±2
i wk)x±

i (wk)x±
i (wk′ ). But

A±
{k,k′} = 0 in Ũq(g).
Let us prove equation (21) with μ = 1 (μ = −1 is analog). The left term is

φ+
i (w1)/(w2q

±2
i − w1) . . . (wsq

±2
i − w1)(zq

±(1−s)
i − w1)∑

π∈Σs−1,k=1,...,s P
(k)
± (w1, wπ(2), . . . , wπ(s), z)

x±
i (wπ(2)) . . . x±

i (wπ(k))x±
j (z)x±

i (wπ(k+1)) . . . x±
i (wπ(s)),

where Σs−1 acts on {2, . . . , s}. With the help of Lemma 6 and in analogy to the
previous case, for each 1 � k � s and each r �= k, we put together the π, π′ ∈ Σs such
that π(r) = π′(r + 1), π(r + 1) = π′(r), and π(r′′) = π′(r′′) for all r′′ �= r, r + 1. So the
terms with polynomials f

(k)
±,k′ with k′ �= s, k − 1 are erased. We get

φ+
i (w1)/(w2q

±2
i − w1) . . . (wsq

±2
i − w1)(zq

±(1−s)
i − w1)∑

π∈Σs−1,k=1,...,s((z − q
±(1−s)
i wπ(k))f

(k)
±,k−1 + (wπ(k+1) − q

±(1−s)
i z)f (k)

±,s−1)

x±
i (wπ(2)) . . . x±

i (wπ(k))x
±
j (z)x±

i (wπ(k+1)) . . . x±
i (wπ(s)).

But this last sum is equal to

∑
π∈Σs−1,k=2,...,s(z − q

±(1−s)
i wπ(k))(f

(k)
±,k−1 − f

(k−1)
±,s−1)

x±
i (wπ(2)) . . . x±

i (wπ(k))x
±
j (z)x±

i (wπ(k+1)) . . . x±
i (wπ(s)),

where we can replace

(z − q
±(1−s)
i wπ(k))x±

i (wπ(k))x±
j (z) by (−wπ(k) + q

±(1−s)
i z)x±

j (z)x±
i (wπ(k))

(relations (16) in Ũq(ĝ)). As in the previous cases it follows from Lemma 7 that this
term is equal to 0. �

Let τ̃± be the two-sided ideal of Ũ±
q (ĝ) generated by the left terms of relations (10)

with the x±
i,r .

Lemma 10. We have τ̃+Ũq(ĝ) ⊂ Ũq(ĝ)τ̃+ and Ũq(ĝ)τ̃− ⊂ τ̃−Ũq(ĝ).

In particular, as Uq(ĝ) = Ũ l
q(ĝ)/(Ũ l

q(ĝ).(τ̃+ + τ̃−).Ũ l
q(ĝ)), the result of Theorem 2

follows from Lemma 4 and the triangular decomposition of Ũq(ĝ) proved in Lemma 8.
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Proof. First τ̃+Uq(ĥ) ⊂ Uq(ĥ)τ+, Uq(ĥ)τ̃− ⊂ τ̃−Uq(ĥ) are direct consequences of relations
(12), (13), and (14). Let us show that

[∑
π∈Σs

∑
k=0,...,s(−1)k

[
s
k

]
qi

x±
i (wπ(1))

. . . x±
i (wπ(k))x±

j (z)x±
i (wπ(k+1)) . . . x±

i (wπ(s)), x∓
l (u)

]
= 0, (22)

where i, j, l ∈ I, i �= j. If l �= j and l �= i, equation (22) follows from relations (15). If
l = j, equation (22) follows from identity (20) of Lemma 9 because the left term is

∑
π∈Σs

∑
k=0,...,s(−1)k

[
s
k

]
qi

x±
i (wπ(1)) . . . x±

i (wπ(k))(
δ
(

z
u

)
φ±

j (z) − δ
(

z
u

)
φ∓

j (z)
)
x±

i (wπ(k+1)) . . . x±
i (wπ(s)).

If l = i, equation (22) follows from identity (21) of Lemma 9 because the left term is:

∑
π∈Σs

∑
k=0,...,s(−1)k

[
s
k

]
qi

(∑
k′=1,...,k x±

i (wπ(1)) . . . x±
i (wπ(k′−1)

)
δ
(wk′

u

)
(φ±

i (wk′ ) − φ∓
i (wk′ ))x±

i (wπ(k′+1)) . . . x±
i (wπ(k))x±

j (z)x±
i (wπ(k+1)) . . . x±

i (wπ(s))

+
∑

k′=k+1,...,s x±
i (wπ(1)) . . . x±

i (wπ(k))x±
j (z)x±

i (wπ(k+1)) . . . x±
i (wπ(k′−1))

δ
(wk′

u

)
(φ±

i (wk′ ) − φ∓
i (wk′ ))x±

i (wπ(k′+1)) . . . x±
i (wπ(s))).

So we have proved equation (22) and, in particular, τ̃+Ũ−
q (ĝ) ⊂ Ũq(ĝ)τ̃+, Ũ+

q (ĝ)τ̃− ⊂
τ̃−Ũq(ĝ). �

4. Integrable representations and category O(Uq(ĝ))

In this section we study highest weight representations of Uq(ĝ). In particular, Theo-
rem 13 is a generalization of a result of Chari–Pressley about integrable representations.

4.1. Reminder: integrable representations of quantum Kac–Moody algebras
In this section we review some known properties of integrable representations of Uq(g).

For V a Uq(h)-module and ω ∈ h∗ we denote by Vω the weight space of weight ω,

Vω = {v ∈ V | ∀h ∈ h, kh.v = qω(h)v}.

In particular, for v ∈ Vω we have ki.v = q
ω(α∨

i )
i v and for i ∈ I we have x±

i .Vω ⊂ Vω±αi .
We say that V is Uq(h)-diagonalizable if V =

⊕
ω∈h∗ Vω (in particular, V is of type 1).

Definition 5. A Uq(g)-module V is said to be integrable if V is Uq(h)-diagonalizable,
for all ω ∈ h∗, Vω is finite dimensional, and for μ ∈ h∗, i ∈ I there is R � 0 such that
r � R ⇒ Vμ±rαi = {0}.

In particular, for all v ∈ V there is mv � 0 such that for all i ∈ I, m � mv,
(x+

i )m.v = (x−
i )m.v = 0, and Ui.v is finite dimensional.

Definition 6. A Uq(g)-module V is said to be of highest weight ω ∈ h∗ if there is
v ∈ Vω such that V is generated by v and for all i ∈ I, x+

i .v = 0.

In particular, V = Uq(g)−.v (Theorem 1), V is Uq(h)-diagonalizable, and V =⊕
λ�ω Vλ. We have (see [L]) the following theorem.
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Theorem 11. For any ω ∈ h∗ there is a unique up-to-isomorphism simple highest
weight module L(ω) of highest weight ω. The highest weight module L(ω) is integrable
if and only ω ∈ P+.

4.2. Integrable representations of quantum affinizations

In this section we generalize results of Chari–Pressley [CP3, CP4] to all quantum affiniza-
tions.

l-highest weight modules. We introduce the following notion of l-weight:

Definition 7. A couple (λ, Ψ) such that λ ∈ h∗, Ψ = (Ψ±
i,±m)i∈I,m�0, Ψ±

i,±m ∈ C,

Ψ±
i,0 = q

±λ(α∨
i )

i is called an l-weight.

The condition Ψ±
i,0 =q

±λ(α∨
i )

i is a compatibility condition which comes from φ±
i,0 = k±

i .
We denote by Pl the set of l-weights. Note that in the finite case λ is uniquely

determined by Ψ because λ =
∑

i∈I λ(α∨
i )ωi. Analogs of those l-weights were also used

in [M1] for toroidal ŝln-cases.

Definition 8. A Uq(ĝ)-module V is said to be of l-highest weight (λ, Ψ) ∈ Pl if there
is v ∈ V such that (i ∈ I, r ∈ Z, m � 0, h ∈ h)

x+
i,r.v = 0, V = Uq(ĝ).v, φ±

i,±m.v = Ψ±
i,±mv, kh.v = qλ(h).v.

In particular, Uq(ĝ)−.v=V (Theorem 2), V is Uq(h)-diagonalizable, and V =
⊕

λ�ωVλ.
Note that the l-weight (λ, Ψ) ∈ Pl is uniquely determined by V . It is called the l-highest
weight of V .

The notion of l-highest weight is different from the notion of highest weight for
quantum affine algebras. The term “pseudo highest weight” is also used in the literature.

Example 1. For any (λ, Ψ) ∈ Pl, define the Verma module M(λ, Ψ) as the quotient of
Uq(ĝ) by the left ideal generated by x+

i,r (i ∈ I, r ∈ Z), kh−qλ(h) (h ∈ h), φ±
i,±m−Ψ±

i,±m

(i ∈ I, m � 0). It follows from Theorem 2 that M(λ, Ψ) is a free U−
q (ĝ)-module of rank 1.

In particular, it is nontrivial and it is an l-highest weight module of highest weight (λ, Ψ).
Moreover, it has a unique proper submodule (mimic the classical argument in [Ka]), and
the following property holds:

Proposition 12. For any (λ, Ψ) ∈ Pl there is a unique up to isomorphism simple l-
highest weight module L(λ, Ψ) of l-highest weight (λ, Ψ).

Integrable Uq(ĝ)-modules.

Definition 9. A Uq(ĝ)-module V is said to be integrable if V is integrable as a Uq(g)-
module.

Note that in the case of a quantum affine algebra, the two notions of integrability
do not coincide. Throughout the paper only the notion of integrability of definition 9
is used.

For i ∈ I, r ∈ Z and ω ∈ h∗ we have x±
i,r .Vω ⊂ Vω±αi . So if V is integrable, for all

v ∈ V , Ûi.v is finite dimensional and there is m0 � 1 such that for all i ∈ I, r ∈ Z,
m � m0 ⇒ (x+

i,r)
m.v = (x−

i,r)
m.v = 0.
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Definition 10. The set P+
l of dominant l-weights is the set of (λ, Ψ) ∈ Pl such that

there exist (Drinfel’d)-polynomials Pi(z) ∈ C[z] (i ∈ I) of constant term 1 such that in
C[[z]] (respectively in C[[z−1]]):

∑
m�0Ψ±

i,±mz±m = q
deg(Pi)
i

Pi(zq−1
i )

Pi(zqi)
.

In particular, for all i ∈ I, λ(α∨
i ) = deg(Pi) � 0, and so λ ∈ P+ is a dominant

weight.

Theorem 13. For (λ, Ψ) ∈ Pl, L(λ, Ψ) is integrable if and only if (λ, Ψ) ∈ P+
l .

If g is finite (the case of a quantum affine algebra), it is a result of Chari–Pressley in
[CP3] (“if” part) and in [CP4] (“only if” part). Moreover, in this case the integrable
L(λ, Ψ) are finite dimensional. If g is symmetric, the result is geometrically proved by
Nakajima in [N1]. If C is of type A

(1)
n (toroidal ŝln-case), the result is algebraically

proved by Miki in [M1].
For the general case we propose a proof similar to the proof given by Chari–Pressley

in the finite case. For λ ∈ h∗ denote D(λ) = {ω ∈ h∗ | ω � λ}.
Proof. The proof uses the result for Uq(ŝl2) which is proved in [CP1] and [CP3].

First suppose that L = L(λ, Ψ) is integrable, and for i ∈ I let Li be the Ûi-submodule
of L generated by the highest weight vector v. It is an l-highest weight Uqi(ŝl2)-module
of highest weight (λ(α∨

i ), Ψ±
i ). As L is integrable, Li is finite dimensional. So the result

for Uqi(ŝl2) gives Pi(z) ∈ C[z] such that

∑
m�0 Ψ±

i,±mz±m = q
deg(Pi)
i

Pi(zq−1
i )

Pi(zqi)
, λ(α∨

i ) = deg(Pi) � 0.

Now we prove that L = L(λ, Ψ) = Uq(ĝ).v is integrable where (λ, Ψ) ∈ P+
l . It suffices

to prove that

(1) for all μ � λ, if Lμ �= {0}, then there exists M > 0 such that m > M ⇒
Lμ−mαi = Lμ+mαi = 0 for all i ∈ I;

(2) for all μ � λ, dim(Lμ) < ∞.

The proof goes roughly as in [CP3, Section 5], with the following modifications.
For (1): the existence of M for Lμ+mαi = 0 is clear because the weights of L are

in D(λ). Put r∨ = max{−Ci,j | i �= j}. In particular, if C is finite, we have r∨ � 3.
First we prove that for m > 0, the space Lμ−mαi is spanned by vectors of the form
X−

1 x−
i1,k1

. . . X−
h x−

ih,kh
X−

h+1.v, where λ − μ = αi1 + . . . + αih
, k1, . . . , kh ∈ Z, X−

p is of
the form X−

p = x−
i,l1,p

. . . x−
i,lmp,p

where m1 + . . . + mh+1 = m and m1, . . . , mh � r∨

(which is the crucial condition). It is proved by induction on h (see [CP3, Section 5(e)])
with the help of relations (10). Note that in [CP3], r∨ = 3. Now it suffices to prove that
Ûi.v is finite dimensional: indeed, if m > r∨h + dim(Ûi.v), we have mh+1 > dim(Ûi.v)
and X−

h+1.v = 0. It is shown exactly as in [CP2, Lemma 2.3] that Ûi.v is irreducible as
Ûi-module, and so is finite dimensional.

For (2): let us write λ − μ = αi1 + . . . + αih
. The result is proved by induction on

h. We have seen that Ûi.v is finite dimensional. The induction is shown exactly as in
[CP3, Section 5(b)] by considering the Lλ−μ+αij

and with the help of relation (9). �
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4.3. Category O(Uq(ĝ))

In the following discussion, by subcategory we mean full subcategory.

Definition 11. A Uq(h)-module V is said to be in the category O(Uq(h)) if

(i) V is Uq(h)-diagonalizable;
(ii) for all ω ∈ h∗, dim(Vω) < ∞;
(iii) there is a finite number of element λ1, . . . , λs ∈ h∗ such that the weights of V

are in
⋃

j=1,...,s D(λj).

A Uq(g)-module (respectively a Uq(ĝ)-module) is said to be in the category O(Uq(g))
(respectively O(Uq(ĝ))) if it is in the category O(Uq(h)) as a Uq(h)-module.

In particular, we have a restriction functor res : O(Uq(ĝ)) → O(Uq(g)).
For example a highest weight Uq(g)-module is in the category O(Uq(g)) and the

product ⊗ is well defined on O(Uq(g)). An integrable l-highest weight module is in the
category O(Uq(ĝ)). But in general an l-highest weight module is not in the category
O(Uq(ĝ)). Indeed (Cr[z] is the space of polynomials of degree lower than r), we have
the following lemma.

Lemma 14. Consider an l-weight (ω, Ψ) ∈ Pl and i ∈ I. If dim(L(ω, Ψ)ω−αi) = r ∈ N,
then there is P (z) ∈ Cr[z] such that P (z)Ψi(z) = 0, where Ψi(z) =

∑
r�0(Ψ

+
i,rz

r −
Ψ−

i,−rz
−r).

In particular, the existence of P (z) ∈ C[z] such that P (z)Ψi(z) = 0, for all i ∈ I, is
a necessary condition for L(ω, Ψ) ∈ O(Uq(ĝ)).

Proof. Let v0, v1, . . . , vr ∈ L(ω, Ψ) such that

L(ω, Ψ)ω = Cv0, L(ω, Ψ)ω−αi = Cv1 ⊕ . . . ⊕ Cvr.

For m ∈ Z let Ψi,m = Ψ+
i,m − Ψ−

i,m. As x+
i.m.v0 = 0, we have:

x+
i,mx−

i,m′ .v0 = 1
qi−q−1

i

Ψi,m+m′v0.

As x−
i,m.v0 ∈ L(ω, Ψ)ω−αi and x+

i,m.vj ∈ L(ω, Ψ)ω, there are λj
m, μj

m ∈ C (m ∈ Z, 1 �
j � r) such that

x−
i,m.v0 = λ1

mv1 + . . . + λr
mvr, x+

i,m.vj = μj
mv0.

In particular, we have Ψi,m+m′ = (qi − q−1
i )

∑
j=1,...,r λj

m′μj
m. We set

λj(z) =
∑

m′∈Z
λj

m′zm′
, Ψi(z) =

∑
r�0 Ψ+

i,rz
r − Ψ−

i,−rz
−r

and we have
z−mΨi(z) = (qi − q−1

i )
∑

j=1,...,r μj
mλj(z).

So Ψi(z), zΨi(z), . . . , zrΨi(z) are not linearly independent. �
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5. q-characters

For a quantum Kac–Moody algebra, one can define a character morphism as in the
classical case. For quantum affine algebras a more precise morphism, called morphism of
q-characters, was introduced by Frenkel–Reshetikhin [FR] (in particular, to distinguish
finite dimensional representations). In this section we generalize the construction of q-
characters to quantum affinizations. The technical point is to add terms kλ (λ ∈ h∗) to
make it well defined in the general case. We prove a symmetry property of q-characters
that generalizes a result of Frenkel–Mukhin: the image of χq is the intersection of the
kernels of screening operators (Theorem 26).

5.1. Reminder: classical character
Let Uq(g) be a quantum Kac–Moody algebra. Let E ⊂ (h∗)Z be the subset of c : h∗ → Z

such that c(λ) = 0 for λ outside the union of a finite number of sets of the form D(μ).
For λ ∈ h∗ denote e(λ) ∈ E such that e(λ)(μ) = δλ,μ. E has a natural structure of
commutative Z-algebra such that e(λ)e(μ) = e(λ + μ) (see [Ka]).

The classical character is the map ch : O(Uq(g)) → E such that for V ∈ O(Uq(g)),

ch(V ) =
∑

ω∈h∗ dim(Vω)e(ω).

The map ch is a ring morphism and ch(L(ω1)) = ch(L(ω2)) ⇒ ω1 = ω2.

5.2. Formal character
Let Uq(ĝ) be a quantum affinization. In general the map ch◦res does not distinguish the
simple integrable representations in O(Uq(ĝ)). That is why Frenkel–Reshetikhin [FR]
introduced the theory of q-characters for quantum affine algebras. We generalize the
construction for quantum affinizations.

Let V be in O(Uq(ĝ)). For ω ∈ h∗, the subspace Vω ⊂ V is stable by the operators
φ±

i,±m (i ∈ I, m � 0). Moreover, they commute, and [φ±
i,m, kh] = 0, so we have a

pseudo-weight space decomposition

Vω =
⊕

γ/(ω,γ)∈Pl
Vω,γ ,

where Vω,γ is a simultaneous generalized eigenspace:

Vω,γ = {x ∈ Vω | ∃p ∈ N, ∀i ∈ {1, . . . , n}, ∀m � 0, (φ±
i,±m − γ±

i,±m)p.x = 0}.
As Vω is finite dimensional the Vω,γ are finite dimensional.

Let El ⊂ P Z

l be the ring of maps c : Pl → Z such that c(λ, Ψ) = 0 for λ outside the
union of a finite number of sets of the form D(μ).

Definition 12. The formal character of a module V in the category O(Uq(ĝ)) is chq(V )
∈ El defined by

chq(V ) =
∑

(μ,Γ)∈Pl
dim(Vμ,Γ)e(μ, Γ).

We have the following commutative diagram

O(Uq(ĝ))
chq−−−−→ El

res

⏐⏐� ⏐⏐�β

O(Uq(g)) ch−−−−→ E

,

where β : El → E is constructed from the first projection π1 : Pl → P .
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5.3. Morphism of q-characters

Show that the combinatorics of formal characters can be studied with a morphism of
q-characters χq which is defined on a category Oint(Uq(ĝ)).

The category Oint(Uq(ĝ)). Denote by Oint(Uq(g)) (respectively Oint(Uq(ĝ))) the category
of integrable representations in the category O(Uq(g)) (respectively O(Uq(ĝ))). For
example a simple integrable l-highest weight Uq(ĝ)-modules is in Oint(Uq(ĝ)). Moreover,
we have the following statement.

Proposition 15. For V , a module in Oint(Uq(ĝ)), there are P(λ,Ψ) � 0 ((λ, Ψ) ∈ P+
l )

such that:
chq(V ) =

∑
(λ,Ψ)∈P+

l
P(λ,Ψ)chq(L(λ, Ψ)).

Proof. We have two preliminary points:

(1) a submodule and a quotient of an integrable module is integrable;
(2) if V ∈ Oint(Uq(ĝ)) and μ is a maximal weight of V , then there is v ∈ Vμ such

that Uq(ĝ).v is an l-highest weight module: indeed, for (μ, γ) ∈ Pl such that
Vμ,γ �= {0}, there is v ∈ Vμ,γ −{0} such that for all i ∈ I, r � 0, φ±

i,±r.v = γ±
i,±rv

(because for all i ∈ I, r � 0, Ker(φ±
i,±r − γ±

i,±r) ∩ Vμ,γ �= {0}).
The end of the proof is essentially made in [Ka, Proposition 9.7]. First we prove

that for λ ∈ h∗ there exists a filtration V = Vt ⊃ Vt−1 ⊃ . . . ⊃ V1 ⊃ V0 = 0 by a
sequence of submodules in Oint(Uq(ĝ)) and J ⊂ {1, . . . , t} such that: (i) if j ∈ J , then
Vj/Vj−1 � L(λj , Ψj) for some (λj , Ψj) ∈ P+

l such that λj � λ; (ii) if j /∈ J , then
(Vj/Vj−1)μ = 0 for every μ � λ (see [Ka, Lemma 9.6]). Next, for (μ, Ψ) ∈ P+

l , fix λ
such that μ � λ and introduce P(μ,Ψ) the number of times (μ, Ψ) appears among the
(λj , Ψj) (it is independent of the choice of the filtration and of μ). We conclude as in
[Ka, Proposition 9.7]. �

Definition 13. QP+
l is the set of (μ, γ) ∈ Pl satisfying the following conditions:

(i) there exist polynomials Qi(z), Ri(z) ∈ C[z] (i ∈ I) of constant term 1 such that
in C[[z]] (respectively in C[[z−1]]):

∑
m�0 γ±

i,±mz±m = q
deg(Qi)−deg(Ri)
i

Qi(zq−1
i )Ri(zqi)

Qi(zqi)Ri(zq−1
i )

;

(ii) there exist ω ∈ P+, α ∈ Q+ satisfying μ = ω − α.

In particular, P+
l ⊂ QP+

l .

Proposition 16. Let V be a module in Oint(Uq(ĝ)) and (μ, γ) ∈ Pl. If dim(Vμ,γ) > 0,
then (μ, γ) ∈ QP+

l .

Proof. The existence of the polynomials is shown as in [FR, Proposition 1]: it reduces
to the sl2-case because for v ∈ V , Ûi.v is finite dimensional. The existence of ω ∈ P
and α ∈ Q+ is a consequence of Proposition 15 and Theorem 13. �
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Construction of q-characters. Consider formal variables Y ±
i,a (i ∈ I, a ∈ C∗) and kω

(ω ∈ h). Let Ã be the commutative group of monomials of the form

m =
∏

i∈I,a∈C∗ Y
ui,a(m)
i,a kω(m),

(k0 = 1), where only a finite number of ui,a(m) ∈ Z are nonzero, ω(m) ∈ h (the coweight
of m), and such that for i ∈ I,

αi(ω(m)) = riui(m) = ri

∑
a∈C∗ ui,a(m).

The product is given by ui,a(m1m2) = ui,a(m1) + ui,a(m2) and ω(m1m2) = ω(m1) +
ω(m2).

For example, for i ∈ I, a ∈ C∗, we have kν(ωi)Yi,a ∈ Ã because for j ∈ I, αj(ν(ωi)) =
ωi(ν(αj)) = rjωi(α∨

j ) = rjδi,j . For (μ, Γ) ∈ QP+
l we define Yμ,Γ ∈ Ã by

Yμ,Γ = kν(μ)

∏
i∈I,a∈C∗ Y

βi,a−γi,a

i,a ,

where βi,a, γi,a ∈ Z are defined by Qi(u) =
∏

a∈C∗(1 − ua)βi,a , Ri(u) =
∏

a∈C∗(1 −
ua)γi,a . We have Yμ,Γ ∈ Ã because for i ∈ I,

αi(ν(μ)) = μ(ν(αi)) = riμ(α∨
i ) = ri(deg(Qi) − deg(Ri)) = riui(Yμ,Γ).

For χ ∈ ÃZ we say χ ∈ Y if there is a finite number of element λ1, . . . , λs ∈ h∗ such
that the coweights of monomials of χ are in

⋃
j=1,...,s ν(D(λj)). In particular, Y has a

structure of h-graded Z-algebra.

Definition 14. The q-character of a module V ∈ Oint(Uq(ĝ)) is

χq(V ) =
∑

(μ,Γ)∈QP+
l

d(μ, Γ)Yμ,Γ ∈ Y,

where d(μ, Γ) ∈ Z is defined by chq(V ) =
∑

(μ,Γ)∈QP+
l

d(μ, Γ)e(μ, Γ).

We have a commutative diagram

Oint(Uq(ĝ))
χq−−−−→ Y

res

⏐⏐� ⏐⏐�β

Oint(Uq(g)) ch−−−−→ E

,

where for m ∈ Ã, β(m) = e(ω(m)).
If C is of finite type, then the weight of a monomial m ∈ Y is ω(m)=

∑
i∈I ui(m)ν(ωi).

So we can forget the kh, and we get the q-characters defined in [FR]. In this case the
integrable simple modules are finite dimensional.

Note that in the same way one can define the q-character of a finite dimensional
Uq(ĥ)-module.
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Morphism of q-characters. Denote by Rep(Uq(g)) (respectively Rep(Uq(ĝ))) the Gro-
thendieck group generated by the modules V in Oint(Uq(g)) (respectively Oint(Uq(ĝ)))
which have a composition series (a sequence of modules V ⊃ V1 ⊃ V2 ⊃ . . . such that
Vi/Vi+1 is irreducible).

The tensor product defines a ring structure on Rep(Uq(g)) and ch gives a ring mor-
phism χ : Rep(Uq(g)) → E . The q-characters are compatible with exact sequences
and so we get a group morphism χq : Rep(Uq(ĝ)) → Y which is called morphism of
q-characters.

Proposition 17. The morphism χq is injective and the following diagram is commu-
tative:

Rep(Uq(ĝ))
χq−−−−→ Y

res

⏐⏐� ⏐⏐�β

Rep(Uq(g))
χ−−−−→ E

.

The commutativity of the diagram follows from the definition. To see that χq is
injective, let us give some definitions.

A monomial m ∈ Ã is said to be dominant if ui,a(m) � 0 for all i ∈ I, a ∈ C∗. If an l-
weight (ω, Ψ) belongs to P+

l , then Y(ω,Ψ) ∈ Ã is dominant. Moreover, the map (ω, Ψ) �→
Y(ω,Ψ) defines a bijection between P+

l and dominant monomials. For m ∈ Ã, a dominant
monomial, we denote by L(m) ∈ Y the q-character of L(ω, Ψ), where (ω, Ψ) is the
corresponding dominant l-weight. In particular, L(m) = m+monomials of lower weight
(in the sense of the ordering on P ), and so the L(m) are linearly independent.

A module with composition series is determined in the Grothendieck group by the
multiplicity of the simple modules, and we have seen that χq(L(λ, Ψ)) ((λ, Ψ) ∈ P+

l )
are linearly independent in Y. So χq is injective.

5.4. q-characters and universal R-matrix
The original definition of q-characters ([FR]) was based on an explicit formula for the
universal R-matrix established in [KT], [LSS], and [Da]. In general no universal R-
matrix has been defined for a quantum affinization. However q-characters can be ob-
tained with a piece of the formula of an “R-matrix” in the same spirit as the original
approach.

We refer to [Gu, Chapter 3] for general background on h-formal deformations. Con-
sider Uh(ĝ) the C[[h]]-algebra, which is h-topologically generated by h and the x±

i,r

(i ∈ I, r ∈ Z), hi,m (i ∈ I, m ∈ Z − {0}) and with the relations of Uq(ĝ) (where we set
for ω ∈ h, kω = exp(hω)). The subalgebra Uh(ĥ) ⊂ Uh(ĝ) is h-topologically generated
by h and hi,m (i ∈ I, m ∈ Z − {0}).

If V is a Uq(ĝ)-module (respectively Uq(ĥ)-module) which is Uq(h)-diagonalizable,
then we have an algebra morphism πV (h) : Uh(ĝ) → End(V )[[h]] (respectively πV (h) :
Uh(ĥ) → End(V )[[h]]). (Remark: for λ ∈ h∗, ω ∈ h, v ∈ Vλ we set ω.v = λ(ω)v).

Define R0 and T in Uh(ĥ)⊗̂Uh(ĥ) ⊂ Uh(ĝ)⊗̂Uh(ĝ) (h-topological completion of the
tensor product) by the formula

R0 = exp
(−(q − q−1)

∑
i,j∈I,m>0

m
[m]q

B̃i,j(qm)hmhi,m ⊗ hj,−m

)
,

T = exp
(−h

∑
1�i�2n−l ω∨

i ⊗ ν(αi)
)
.
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Remark 4. We have the usual property of T (see [FR]): for λ, μ ∈ h∗, x ∈ Vλ, y ∈ Vμ,
we have T.(x ⊗ y) = q−(λ,μ)(x ⊗ y). Indeed,∑

1�i�2n−l λ(ω∨
i )μ(ν(αi)) =

(
μ,

∑
1�i�2n−l λ(ω∨

i )αi

)
= (μ, λ).

For i ∈ I, m ∈ Z − {0} denote h̃i,m =
∑

j∈I C̃j,i(qm)hj,m. We have an inclusion Ã ⊂
Uh(ĥ) because the elements Y ±

i,a = k∓ν(ωi)exp
(∓(q − q−1)

∑
m�1 hma−mh̃i,m

) ∈ Uh(ĝ)
(i ∈ I, a ∈ C∗) are algebraically independent.

Theorem 18. For V , a finite dimensional Uq(ĥ)-module, ((TrV ◦πV (h))⊗Id)(R0T )) ∈
Uh(ĥ) is equal to χq(V ).

Proof. For (λ, Ψ) ∈ Pl consider V(λ,Ψ) and ((TrV(λ,Ψ) ◦ πV(λ,Ψ)(h)) ⊗ Id)(R0T ). First we

see as in [FR] that the term R0 gives
∏

i∈I,a∈C∗ Y
ui,a(Yλ,Ψ)
i,a . But we have

∑
1�i�2n−l λ(ω∨

i )ν(αi) = ν
(∑

1�i�2n−l λ(ω∨
i )αi

)
= ν(λ),

and so T gives k−ν(λ). �
In general for V ∈ Oint(Uq(ĝ)) we can consider a filtration (Vr)r�0 of finite dimen-

sional sub Uq(ĥ)-modules of V such that
⊕

r�0 Vr = V ; so χq(V ) is the “limit” of the
((TrVr ◦ πVr (h)) ⊗ Id)(R0T ) in Y.

5.5. Combinatorics of q-characters
In this section we prove a symmetry property of general q-characters: the image of χq

is the intersection of the kernels of screening operators (Theorem 26). Our proof is
analog to the proof used by Frenkel–Mukhin [FM] for quantum affine algebras; however
new technical points are involved because of the kλ and infinite sums. In particular, it
shows that those q-characters are the combinatorial objects considered in [H3] (which
were constructed in the kernel of screening operators).

In Sections 5.5 and 6 we suppose that C(z) is invertible (it includes the cases of
quantum affine algebras and quantum toroidal algebras, see Section 2). We write C̃(z) =
C̃′(z)
d(z) where d(z), C̃ ′

i,j(z) ∈ Z[z±]. For r ∈ Z let pi,j(r) = [(D(z)C̃ ′(z))i,j ]r, where for a
Laurent polynomial P (z) ∈ Z[z±] we put P (z) =

∑
r∈Z

[P (z)]rzr.

Construction of screening operators. Let Y int ⊂ Y be the subset consisting of those
χ ∈ Y satisfying the following property: if λ is the coweight of a monomial of χ, there
is K � 0 such that k � K implies that for all i ∈ I, λ ± kriα

∨
i is not the coweight of a

monomial of χ.

Lemma 19. Y int is a subalgebra of Y and Im(χq) ⊂ Y int.

Consider the free Y int-module Ỹi =
∏

a∈C∗ Y intSi,a and the linear map S̃i : Y int → Ỹi

such that, for a monomial m,

S̃i(m) = m
∑

a∈C∗ ui,a(m)Si,a.

In particular, S̃i is a derivation. Let us choose a representative a for each class of C∗/q2Z
i

and consider
Yi =

∏
a∈C∗/q2Z

i
Y intSi,a.
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For i ∈ I and a ∈ C∗ we set

Ai,a = kiYi,aq−1
i

Yi,aqi

∏
j/Cj,i<0, r=Cj,i+1,Cj,i+3,...,−Cj,i−1 Y −1

j,aqr ∈ Ã.

We have Ai,a ∈ Ã because for j ∈ I, αj(riα
∨
i ) = riCi,j = rjCj,i = rjuj(Ai,a).

We would like to see Yi as a quotient of Ỹi by the relations Si,aqi = Ai,aSi,aq−1
i

.

But the projection is not defined for all elements of Ỹi because there are infinite sums.
However if χ ∈ Y int and m is a monomial of χ, there is a finite number of monomials
in χ of the form mA−1

i,aqi
A−1

i,aq3
i
. . . A−1

i,aqr
i

or of the form mAi,aq−1
i

A−1

i,aq−3
i

. . . A−1

i,aq−r
i

. So

the projection on Yi is well defined on S̃i(Y int) ⊂ Ỹi. In particular, we can define by
projection of S̃i the ith screening operator Si : Y int → Yi.

The original definition for the finite case is in [FR].

The morphism τi. Some operators τi (i ∈ I) were defined for the finite case in [FM]. We
generalize the construction and the properties of the operators τi (Lemma 20 and 21).

Let i ∈ I. Denote h⊥i = {ω ∈ h/αi(ω) = 0}. Consider formal variables k
(i)
r (r ∈ Z),

kω (ω ∈ h), Y ±
i,a (a ∈ C∗), Zj,c (j ∈ I −{i}, c ∈ C∗). Let Ã(i) be the commutative group

of monomials

m = k
(i)
r(m)kω(m)

∏
a∈C∗ Y

ui,a(m)
i,a

∏
j∈I,j �=i,c∈C∗ Z

zj,c(m)
j,c ,

where only a finite number of ui,a(m), zj,c(m), r(m) ∈ Z are nonzero, ω(m) ∈ h⊥i and
such that r(m) = riui(m) = ri

∑
a ∈ C∗ui,a(m). The product is defined as for Ã. We

call (r(m), ω(m)) ∈ Z × h⊥
i the coweight of the monomial m.

Let τi : Ã → Ã(i) be the group morphism defined by (j ∈ I, a ∈ C∗, λ ∈ h)

τi(Yj,a) = Y
δi,j

i,a

∏
k �=i, r∈Z

Z
pj,k(r)
k,aqr , τi(kλ) = k

(i)
αi(λ)kλ−αi(λ)

α∨
i
2

.

(Note that it is a formal definition because Yj,akν(ωj) ∈ Ã but Yj,a /∈ Ã). It is well

defined because for m ∈ Ã, αi(ω(m)) = riui(m) and αi(ω(m) − αi(ω(m))α∨
i

2 ) = 0.

Lemma 20. The morphism τi is injective and for a ∈ C∗ we have

τi(Ai,a) = k
(i)
2ri

Yi,aq−1
i

Yi,aqi .

Proof. Let m ∈ Ã such that τi(m) = 1. For a ∈ C∗ we have ui,a(m) = ui,a(τi(m)) = 0.
For k ∈ I, a ∈ C∗ denote uk,a(m)(z) =

∑
r∈Z

uk,aqr (m)zr ∈ Z[z±]. For j ∈ I − {i}, we
have

0 = zj,aqR(τi(m)) =
∑

k∈I,r+r′=R pk,j(r′)uk,aqr (m) =
[∑

k∈I C̃′
k,j(z)uk,a(m)(z)

]
R
.

As C̃(z) is invertible, we get uk,a(m) = 0 for all a ∈ C∗. In particular, for j ∈ I we have
αj(ω(m)) = rjuj(m) = 0. But ω(m) − αi(ω(m))α∨

i

2 = 0 = ω(m), and so m = 1.
For the second point let M = τi(Ai,a). First for b ∈ C∗, ui,b(M) = ui,b(Ai,a) =

δa/b,qi
+ δa/b,q−1

i
. For R ∈ Z and j �= i we have zj,aqR(M) = [(C̃′(z)C(z))i,j ]R =

[(d(z)D(z))i,j ]R = 0. Finally we have r(M) = riαi(α∨
i ) = −2ri and ω(M) = riα

∨
i −

riαi(α∨
i )α∨

i

2 = 0. �



QUANTUM AFFINIZATIONS AND FUSION PRODUCT 187

Formally we have τi(ki) = k
(i)
2ri

, and for j ∈ I − {i}, τi(kj) = k
(i)
Bj,i

k
α

(i)
j

, where

α
(i)
j = rjα

∨
j − Bj,i

2 α∨
i . This motivates the following definition: for (r, ω) ∈ Z × h⊥i

denote by D(r, ω) the set

{(r′, ω′) ∈ Z×h⊥i | ω′ = ω−∑
j∈I,j �=i mjα

(i)
j , r′ = r−∑

j∈I,j �=i Bj,imj−2rik/mj, k � 0}.

Define Y int,(i) ⊂ (Ã(i))Z as the set of χ such that
(i) there is a finite number of elements (r1, ω1), . . . , (rs, ωs) ∈ Z× h⊥i such that the

coweights of monomials of χ are in
⋃

j=1...s D(rj , ωj);
(ii) for (r, λ) the coweight of a monomial of χ there is K � 0 such that k � K

implies that for all j ∈ I, j �= i, (r ± Bj,ik, λ ± kα
(i)
j ) and (r ± 2kri, λ) are not

the coweight of a monomial of χ.
In particular, Y int,(i) has a structure of Z × h⊥i -graded Z-algebra.
The morphism τi can be extended to a unique morphism of Z-algebra τi : Y int →

Y int,(i). Denote by χi
q the morphism of q-characters for the algebra Uqi(ŝl2).

Lemma 21. Consider V ∈ Oint(Uq(ĝ)) and a decomposition τi(χq(V )) =
∑

k PkQk,
where Pk ∈ Z[Y ±

i,ak
(i)
±ri

]a∈C∗, Qk is a monomial in Z[Z±
j,c, kh]j �=i,a∈C∗,h∈h⊥

i
and all mono-

mials Qk are distinct. Then there exists a Ûi-module
⊕

k Vk isomorphic to the restriction
of V to Ûi and such that χi

q(Vk) = Pk.

Proof. Let Uq(ĥ)⊥i the subalgebra of Uq(ĝ) generated by the kh (h ∈ h⊥i ), hj,m (j �= i,
m ∈ Z−{0}). We can apply the proof of [FM, Lemma 3.4] with Ûi and Uq(ĥ)⊥i because

(i) Ûi and Uq(ĥ)⊥i commute in Uq(ĝ);
(ii) the image ω − αi(ω)α∨

i

2 in h⊥i of ω ∈ h suffices to encode the action of the kh

(h ∈ h⊥i ) on a vector of weight ν−1(ω) = λ. Indeed for h ∈ h⊥i , we have

λ(h) = (ν−1(h), ν−1(ω)) = ν−1(h)(ω) = ν−1(h)(ω − ω(αi)
α∨

i

2 )

because αi(h) = 0 ⇒ ν−1(α∨
i ) = 0. �

τi and screening operators. In this section we prove that Im(χq) ⊂ Ker(Si) (Proposi-
tion 23) with a generalization of the proof of Frenkel–Mukhin [FM].

Consider the Y int,(i)-module Ỹ(i)
i =

∏
a∈C∗Y int,(i)Si,a and the linear map Si :Y int,(i)→

Ỹ(i)
i such that, for a monomial m,

Si(m) = m
∑

a∈C∗ ui,a(m)Si,a.

In particular, Si is a derivation. Consider Y(i)
i =

∏
a∈C∗/q2Z

i
Y int,(i)Si,a. By the relations

Si,aqi = Yi,aqiYi,aq−1
i

k
(i)
2ri

Si,aq−1
i

,

Si(Y int,(i)) ⊂ Ỹ(i)
i can be projected in Y(i)

i , and we get a derivation that we denote also
by Si : Y int,(i) → Y(i)

i .
We also define a map τi : Yi → Y(i)

i in an obvious way (with the help of Lemma 20).
We see as in [FM, Lemma 5.4] that the following lemma holds.
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Lemma 22. We have a commutative diagram

Y int Si−−−−→ Yi

τi

⏐⏐� ⏐⏐�τi

Y int,(i) Si−−−−→ Y(i)
i

.

With the help of Lemmas 20, 21, and 22 we obtain as in [FM, Corollary 5.5] the
following statement.

Lemma 23. We have Im(χq) ⊂
⋂
i∈I

Ker(Si).

In the following we denote Ki = Ker(Si) and K =
⋂

i∈I Ki.

Lemma 24. An element χ ∈ Y int is in Ki if and only if it can be written in the
form χ =

∑
k PkQk where Pk ∈ Z[kν(ωi)Yi,a(1 + A−1

i,aqi
)]a∈C∗ , Qk is a monomial in

Z[Y ±
j,a, kh]j �=i,a∈C∗,h∈P∗,⊥

i
, and all monomials Qk are distinct.

Proof. We use the result for the sl2-case which is proved in [FR]. First an element of
this form is in Ki. Consider χ ∈ Ki and write τi(χ) =

∑
k P ′

kQ′
k as in Lemma 21. From

Lemma 22 we have 0 = Si(χ) =
∑

k Si(P ′
k)Qk. So all Si(P ′

k) = 0 and it follows from
the sl2-case that P ′

k ∈ Z[Yi,ak
(i)
ri +Y −1

i,aq2
i
k

(i)
−ri

]a∈C∗ . Lemma 20 leads us to the conclusion.
�
Description of Im(χq). Dominant monomials are defined in Section 5.3. We have the
following lemma.

Lemma 25. An element χ ∈ K has at least one dominant monomial.

With the help of Lemma 24 we can use the proof of [FM, Lemma 5.6] (see also the
proof of [H1, Theorem 4.9] at t = 1).

Theorem 26. We have Im(χq) = K. Moreover, the elements of K are the sums:∑
m dominant λmL(m),

where λm = 0 for ω(m) outside the union of a finite number of sets of the form D(μ).

Proof. The inclusion Im(χq) ⊂ K is proved in Lemma 23. For the other one, consider
χ ∈ K. We can suppose that the weights of χ are in a set D(λ) (because the weights of
each L(m) are in a set D(μ)). We define by induction L(k)(m) ∈ Im(χq) (k � 0) in the
following way: we set L(0) =

∑
ω(m)=λ[χ]mL(m). If L(k) is defined, we consider the set

Ãk+1 of monomials m′ which appear in χ−L(k) such that λ−ω(m′) = m1r1α
∨
1 + . . . +

mnrnα∨
n , where m1, . . . , mn � 0 and m1 + . . . + mn = k. We set

L(k+1) = L(k) +
∑

m′∈Ãk+1
[χ − L(k)]m′L(m′).

Then we set L∞ =
∑

k�0/m∈Ãk
[L(k)]mL(m) ∈ Im(χq), and it follows from Lemma 25

that L∞ = χ. �
Note that Proposition 15 provides that for χq(V ) (V module in Oint(Uq(ĝ))) the λm

are nonnegative.
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Remark 5. For m ∈ Ã, a dominant monomial, we prove in the same way that there is a
unique F (m) ∈ K such that m has coefficient 1 in F (m) and m is the unique dominant
monomial in F (m). In the finite case an algorithm was given by Frenkel–Mukhin [FM] to
compute the F (m). In [H3] we extended the definition of the algorithm for generalized
Cartan matrix and showed that it is well defined if i �= j ⇒ Ci,jCj,i � 3 (see also [H2]
for the detailed description of this algorithm at t = 1). Theorem 26 allows us to prove
two results announced in [H3]: the algorithm is well defined for

A
(1)
1 (with r1 = r2 = 2) because det(C(z)) = z4 − z2 − z−2 + z−4 �= 0, and

A
(2)
2 (with r1 = 4, r2 = 1) because det(C(z)) = z5 − z − z−1 + z−5 �= 0.

But for A
(1)
1 (with r1 = r2 = 1) we have det(C(z)) = 0; we observed in [H3] that the

algorithm is not well defined in this case.

6. Drinfel’d new coproduct and fusion product

Our study of combinatorics of q-characters gives a ring structure on Im(χq) (Corol-
lary 27). As χq is injective, we get an induced ring structure on the Grothendieck
group. In this section we prove that it is a fusion product (Theorem 28), that is to
say that the product of two modules is a module. We use the Drinfel’d new coproduct
(Proposition 29); as it involves infinite sums, we have to work in a larger category where
the tensor product is well defined (Theorem 30). To end the proof of Theorem 28 we
define specializations of certain forms which allow us to go from the larger category to
O(Uq(ĝ)). Note that in our construction we do not assume that C(z) is invertible.

6.1. Fusion product
As the Si are derivations, Theorem 26 gives the following corollary.

Corollary 27. Im(χq) is a subring of Y.

Since χq is injective on Rep(Uq(ĝ)), the product of Y gives an induced commutative
product ∗ on Rep(Uq(ĝ)). For (λ, Ψ), (λ′, Ψ′) ∈ P+

l there are Qλ,Ψ,λ′,Ψ′(μ, Φ) ∈ Z such
that

L(λ, Ψ) ∗ L(λ′, Ψ′) = L(λ + λ′, ΨΨ′) +
∑

(μ,Φ)∈P+
l /μ<λ+λ′ Qλ,Ψ,λ′,Ψ′(μ, Φ)L(μ, Φ).

We will interpret this product as a fusion product related to the basis of simple modules,
that is to say we will show that a product of modules is a module (see [F] for generalities
on fusion rings and physical motivations). Let us explain it in more detail. Consider

Rep+(Uq(ĝ)) =
⊕

(λ,Ψ)∈P+
l

N.L(λ, Ψ) ⊂ Rep(Uq(ĝ)) =
⊕

(λ,Ψ)∈P+
l

Z.L(λ, Ψ).

Theorem 28. The subset Rep+(Uq(ĝ)) ⊂ Rep(Uq(ĝ)) is stable by ∗.
In this section we prove this theorem by interpreting ∗ with the help of a gene-

ralization of the new Drinfel’d coproduct. Note that Theorem 28 means that for
(λ, Ψ), (λ′, Ψ′) ∈ P+

l we have Qλ,Ψ,λ′,Ψ′(μ, Φ) � 0.

6.2. Coproduct
Reminder: case of a quantum affine algebra and Drinfel’d–Jimbo coproduct. As said
before, the case of a quantum affine algebra is a very special one because there are two
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realizations (if we add a central charge); in particular, there is a coproduct on Uq(ĝ),
a tensor product on Oint(Uq(ĝ)), and Rep(Uq(ĝ)) is a ring. It is the product ∗ because
it is shown in [FR] that χq is a ring morphism. In particular, the tensor product is
commutative. So Theorem 28 is proved in this case.

General case: new Drinfel’d coproduct. In general we have a coproduct Δĥ : Uq(ĥ) →
Uq(ĥ) ⊗ Uq(ĥ) for the commutative algebra Uq(ĥ) defined by (h ∈ P ∗, i ∈ I, m �= 0):

Δĥ(kh) = kh ⊗ kh, Δĥ(hi,m) = 1 ⊗ hi,m + hi,m ⊗ 1.

In particular, we have (i ∈ I, m � 0): Δĥ(φ±
i,±m) =

∑
0�l�m φ±

i,±(m−l) ⊗ φ±
i,±l.

No coproduct has been defined for the entire Uq(ĝ). However Drinfel’d (unpublished
note, see also [DI] and [DF]) defined for Uq(ŝln) a map which behaves as a new coproduct
adapted to the affinization realization. In this section we use those formulas for general
quantum affinizations; as infinite sums are involved, we use a formal parameter u so
that it makes sense.

Let C = C((u)) be the field of Laurent series
∑

r�R λru
r (R ∈ Z, λr ∈ C). The

algebra Ũq(ĝ) is defined in Section 3.3. Consider the C-algebra Ũ ′
q(ĝ) = C ⊗ Ũq(ĝ)

(respectively U ′
q(ĝ) = C ⊗ Uq(ĝ)). Let Ũ ′

q(ĝ)⊗̂Ũ ′
q(ĝ) = (Ũq(ĝ) ⊗C Ũq(ĝ))((u)) be the

u-topological completion of Ũ ′
q(ĝ) ⊗C Ũ ′

q(ĝ). It is also a C-algebra.

Proposition 29. There is a unique morphism of C-algebra Δu : Ũ ′
q(ĝ) → Ũ ′

q(ĝ)⊗̂Ũ ′
q(ĝ)

such that for i ∈ I, r ∈ Z, m � 0, h ∈ h,

Δu(x+
i,r) = x+

i,r ⊗ 1 +
∑

l�0 ur+l(φ−
i,−l ⊗ x+

i,r+l),

Δu(x−
i,r) = ur(1 ⊗ x−

i,r) +
∑

l�0 ul(x−
i,r−l ⊗ φ+

i,l),

Δu(φ±
i,±m) =

∑
0�l�m u±l(φ±

i,±(m−l) ⊗ φ±
i,±l), Δu(kh) = kh ⊗ kh.

Proof. We can easily check the compatibility with relations (11), (12), (13), (14), (15),
and (16) because Δu can also be given in terms of the currents considered in Section 3.2:
we have in (Ũ ′

q(ĝ) ⊗C Ũ ′
q(ĝ))[[z, z−1]]

Δu(x+
i (z))=x+

i (z) ⊗ 1 + φ−
i (z) ⊗ x+

i (zu), Δu(x−
i (z))=1 ⊗ x−

i (zu) + x−
i (z) ⊗ φ+

i (zu),

Δu(φ±
i (z)) = φ±

i (z) ⊗ φ±
i (zu). �

Remark 6. If C is finite or simply laced, then Δu is compatible with the affine quantum
Serre relations (relations (10)) and can be defined for U ′

q(ĝ) (see [DI] for finite symmetric
cases and [E], [Gr] for other finite cases). We conjecture that it is also true for general
C, but we do not need it for our purposes.

Remark 7. Let T : Ũq(ĝ) → Ũ ′
q(ĝ) be the Z-gradation morphism defined by T (x±

i,r) =
urx±

i,r , T (φ±
i,m) = umφ±

i,m, T (kh) = kh. The u is put in such a way that Δu = (Id⊗T )◦Δ,
where Δ is the usual new Drinfel’d coproduct (without u).
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Remark 8. The map Δu is not coassociative. Indeed, in (Ũ ′
q(ĝ) ⊗C Ũ ′

q(ĝ) ⊗C Ũ ′
q(ĝ))[z]

we have

((Δu ⊗ Id) ◦ Δu)(φ+
i (z)) = φ+

i (z) ⊗ φ+
i (uz) ⊗ φ+

i (uz),

((Id ⊗ Δu) ◦ Δu)(φ+
i (z)) = φ+

i (z) ⊗ φ+
i (uz) ⊗ φ+

i (u2z).

Remark 9. Although is is not defined in a strict sense, the “limit” of Δu at u = 1 is
coassociative. On Uq(ĥ), the limit at u = 1 makes sense and is Δĥ.

6.3. Tensor products of representations of Ũ ′
q(ĝ)

As the coproduct involves infinite sums, we have to introduce a category larger than
O(Uq(ĝ)) in order to define tensor products.

The category O(Ũ ′
q(ĝ)).

Definition 15. The set of l, u-weights Pl,u is the set of couple (λ, Ψ(u)) such that
λ ∈ h∗, Ψ(u) = (Ψ±

i,±m(u))i∈I,m�0, Ψ±
i,±m(u) ∈ C[u, u−1], and Ψ±

i,0(u) = q
±λ(α∨

i )
i .

Definition 16. An object V of the category O(Ũ ′
q(ĝ)) is a C-vector space with a struc-

ture of Ũ ′
q(ĝ)-module such that

(i) V is Uq(h)-diagonalizable;
(ii) for all λ ∈ h∗, the sub C-vector space Vλ ⊂ V is finite dimensional;
(iii) there are a finite number of elements λ1, . . . , λs ∈ h∗ such that the weights of V

are in
⋃

j=1...s D(λj);
(iv) for λ ∈ h∗, Vλ =

⊕
(λ,Ψ(u))∈Pl,u

V(λ,Ψ(u)), where

Vλ,Ψ(u) = {x ∈ Vλ | ∃p ∈ N, ∀i ∈ {1, . . . , n}, ∀r � 0, (φ±
i,±r − Ψ±

i,±r(u))p.x = 0}.

The property (iv) is added because C is not algebraically closed.
The scalar extension and the projection Ũq(ĝ)→Uq(ĝ) gives an injection i :O(Uq(ĝ))→

O(Ũ ′
q(ĝ)) such that for V ∈ O(Uq(ĝ)), i(V ) = V ⊗ C.

Let El,u ⊂ P Z

l,u be defined as El. The formal character of a module V in the category
O(Ũ ′

q(ĝ)) is

chq,u(V ) =
∑

(μ,Γ(u))∈Pl,u
dimC(Vμ,Γ(u))e(μ, Γ(u)) ∈ El,u.

We have a map iE : El → El,u such that iE((λ, Ψ)) = (λ, (Ψ±m
i,±m)), and a commutative

diagram

O(Uq(ĝ))
chq−−−−→ El

i

⏐⏐� ⏐⏐�iE

O(Ũ ′
q(ĝ))

chq,u−−−−→ El,u

.

In an analogous way one defines the category O(U ′
q(ĝ)) and a formal character chq,u on

O(U ′
q(ĝ)).
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Tensor products. We consider subcategories of O(Ũ ′
q(ĝ)). Let R ∈ Z, R � 0.

Definition 17. OR(Ũ ′
q(ĝ)) is the category of modules V ∈ O(Ũ ′

q(ĝ)) such that for all
λ ∈ h∗, there is a C-basis (vλ

α)α of Vλ satisfying the properties:

(i) for all m ∈ Z, α, β, the coefficient of x+
i,m.vλ

α on vλ+αi

β (respectively of x−
i,m.vλ

α

on vλ−αi

β ) is in C[[u]] if m � 0, in uRmC[[u]] if m � 0;
(ii) for all m � 0, α, β the coefficient of φ−

i,−m.vλ
α on vλ

β is in u−mRC[[u]];
(iii) for all m � 0, α, β the coefficient of φ+

i,m.vλ
α on vλ

β is in C[[u]].

Example 2. For V ∈ O(Uq(ĝ)), we have i(V ) ∈ O0(Ũq(ĝ)).

Theorem 30. Let V1 ∈ O(Ũq(ĝ)) and V2 ∈ OR(Ũ ′
q(ĝ)). Then Δu defines a structure

of Ũ ′
q(ĝ)-module on i(V1) ⊗C V2 which is in OR+1(Ũ ′

q(ĝ)). Moreover, the l, u-weights of
i(V1)⊗C V2 are of the form (λ1 + λ2, γ1(z)γ2(uz)) where (λ1, γ1) is a l-weight of V1 and
(λ2, γ2) is a l, u-weight of V2.

Remark 10. γ(u)(z) = γ1(z)γ2(uz) means that for i ∈ I, m � 0,

γ±
i,±m(u) =

∑
0�l�m(γ1)i,±l(u)(γ2)i,±(m−l)(u)u±(m−l).

Proof. As the definition of Δu involves infinite sums, we have to prove that the action
formally defined by Δu makes sense on V ′

1 ⊗C V2 where we denote V ′
1 = i(V1). Indeed

the weight spaces of V ′
1 and V2 are finite dimensional and for λ, μ ∈ h∗ we can use a

C-base (v1,λ
α )α of (V1)λ as a C-base of (V ′

1)λ and the C-basis (v2,μ
α′ ) of (V2)μ given by

the definition of OR(Ũ ′
q(ĝ)). So consider λ, μ ∈ h∗, i ∈ I and let us investigate the

coefficients (r ∈ Z, m � 0).
We have x+

i,r.((V
′
1 )λ ⊗ (V2)μ) ⊂ (V ′

1 )λ+αi ⊗ (V2)μ ⊕ (V ′
1)λ ⊗ (V2)μ+αi :

on (V ′
1 )λ ⊗ (V2)μ+αi : the coefficient of x+

i,m.(v1,λ
α ⊗ v2,μ

α′ ) on v1,λ
β ⊗ v2,μ+αi

β′ is in∑
l�0 ur+lC[[u]] ⊂ C[[u]] if r � 0, in

∑
l�0 ur+luR(r+l)C[[u]] ⊂ u(R+1)rC[[u]] if

r � 0;
on (V ′

1)λ+αi ⊗ (V2)μ: the coefficient of x+
i,r .(v

1,λ
α ⊗ v2,λ

α′ ) on v1,λ+αi

β ⊗ v2,μ
β′ is in C.

We have x−
i,r.((V

′
1 )λ ⊗ (V2)μ) ⊂ (V ′

1 )λ−αi ⊗ (V2)μ ⊕ (V ′
1)λ ⊗ (V2)μ−αi :

on (V ′
1)λ ⊗ (V2)μ−αi : the coefficient of x−

i,r .(v
1,λ
α ⊗ v2,μ

α′ ) on v1,λ
β ⊗ v2,μ−αi

β′ is in
urC[[u]] ⊂ C[[u]] if r � 0, in uruRrC[[u]] if r � 0;
on (V ′

1)λ−αi ⊗ (V2)μ: the coefficient of x−
i,r .(v

1,λ
α ⊗ v2,μ

α′ ) on v1,λ−αi

β ⊗ v2,μ
β′′ is in∑

l�0 ulC[[u]] ⊂ C[[u]].

We have φ±
i,±m.((V ′

1)λ ⊗ (V2)μ) ⊂ ((V ′
1 )λ ⊗ (V2)μ):

the coefficient of φ+
i,m.(v1,λ

α ⊗v2,μ
α′ ) on v1,λ

β ⊗v2,μ
β′ is in 0 � l � mulC[[u]] ⊂ C[[u]];

the coefficient of φ−
i,−m.(v1,λ

α ⊗v2,μ
α′ ) on v1,λ

β ⊗v2,μ
β′ is in

∑
0�l�m u−lu−lRC[[u]] ⊂

u−m(R+1)C[[u]].
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So we have a structure of Ũ ′
q(ĝ)-module on V ′

1 ⊗C V2. Let us prove that it is in
O(Ũ ′

q(ĝ)). We verify the properties of Definition 16: (i), (ii), and (iii) are clear be-
cause the restriction of Δu to Uq(ĥ) is the restriction of Δĥ. For (iv) we note that
for (λ1, γ1), (λ2, γ2) ∈ Pl,u, the (V ′

1)λ1,γ1 ⊗ (V2)λ2,γ2 is in the pseudo weight space of
l, u-weight (λ1 + λ2, γ1(z)γ2(zu)) because Δu(φ±

i (z)) = φ±
i (z) ⊗ φ±

i (zu) (it also proves
the last point of the proposition).

Finally we see in the above computations that the coefficients verify the property of
OR+1(Ũ ′

q(ĝ)), so V ′
1 ⊗C V2 is in OR+1(Ũ ′

q(ĝ)). �

Definition 18. For R � 0, we denote ⊗R : O(Uq(ĝ)) ×OR(Ũ ′
q(ĝ)) → OR+1(Ũ ′

q(ĝ)) the
bilinear map constructed in Theorem 30.

See Section 6.6 for explicit examples. For R � 2 and V1, V2, . . . , VR ∈ O(Uq(ĝ)), one
can define the iterated tensor product V1 ⊗R−2 (V2 ⊗R−3 (. . . ⊗0 VR)) . . .) which is in
OR−1(Ũ ′

q(ĝ)).

6.4. Simple modules of Ũ ′
q(ĝ)

l, u-highest weight modules. For (λ, Ψ(u)) ∈ Pl,u, let M̃(λ, Ψ(u)) be the Verma Ũ ′
q(ĝ)

module of highest weight (λ, Ψ(u)) (it is nontrivial thanks to the triangular decomposi-
tion of Ũq(ĝ) in Lemma 9). So we have an analog of Proposition 12: for (λ, Ψ(u)) ∈ Pl,u,
there is a unique up to isomorphism simple Ũ ′

q(ĝ)-module L̃(λ, Ψ(u)) of l, u-highest
weight (λ, Ψ(u)), that is to say that there is v ∈ L̃(λ, Ψ(u)) such that (i ∈ I, r ∈ Z, m �
0, h ∈ h)

x+
i,r.v = 0, L̃(λ, Ψ(u)) = Ũ ′

q(ĝ).v, φ±
i,±m.v = Ψ±

i,±m(u)v, kh.v = qλ(h).v.

In a similar way one defines the simple U ′
q(ĝ)-module L(λ, Ψ(u)) of l, u-highest weight

(λ, Ψ(u)) (it is nontrivial thanks to Theorem 2).

Lemma 31. For (λ, Ψ(u)) ∈ Pl,u we have an isomorphism of Uq(ĥ)-modules L̃(λ, Ψ(u))
� L(λ, Ψ(u)).

Proof. Let M̃ ′(λ, Ψ(u)) ⊂ M̃(λ, Ψ(u)) be the maximal proper Ũ ′
q(ĝ)-submodule of

M̃ ′(λ, Ψ(u)). It suffices to prove that τ̃−.1 is included in M̃ ′(λ, Ψ(u)) (see Section 3.3;
it implies that L̃(λ, Ψ(u)) is also a U ′

q(ĝ)-modules). It is a consequence of Lemma 10.
�

In particular, L̃(λ, Ψ(u)) ∈ O(Ũ ′
q(ĝ)) ⇔ L(λ, Ψ(u)) ∈ O(U ′

q(ĝ)), and in this case
chq,u(L̃(λ, Ψ(u))) = chq,u(L(λ, Ψ(u))).

The category Oint(Ũ ′
q(ĝ)).

Definition 19. QP+
l,u is the set of (λ, Ψ(u)) ∈ Pl,u satifying the following conditions:

(i) for i ∈ I there exist polynomials Qi,u(z) = (1 − zai,1u
bi,1) . . . (1 − zai,Niu

bi,Ni ),
Ri,u(z) = (1 − zci,1u

di,1) . . . (1 − zci,N ′
i
u

di,N′
i ) (ai,j , ci,j ∈ C∗, bi,j , di,j � 0) such

that in C[u, u−1][[z]] (respectively in C[u, u−1][[z−1]]),

∑
r�0 Ψ±

i,±r(u)z±r = q
deg(Qi,u)−deg(Ri,u)
i

Qi,u(zq−1
i )Ri,u(zqi)

Qi,u(zqi)Ri,u(zq−1
i )

;
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(ii) there exist ω ∈ P+, α ∈ Q+ satisfying λ = ω − α.

P+
l,u is the set of (λ, Ψ(u)) ∈ QP+

l,u such that one can choose Ri,u = 1 (in this case
we denote Pi,u = Qi,u).

Lemma 32. If (λ, Ψ(u)) ∈ P+
l,u then L̃(λ, Ψ(u)) ∈ O(Ũ ′

q(ĝ)). Moreover, for (μ, γ(u)) ∈
Pl,u we have dim(L̃(λ, Ψ(u))μ,γ(u)) �= 0 ⇒ (μ, γ(u)) ∈ QP+

l,u.

Remark 11. It follows from Lemma 31 that we have the same results for L(λ, Ψ(u)) ∈
O(U ′

q(ĝ)).

Proof. Let (λ, Ψ(u)) ∈ P+
l,u and decompose Pi,u(z) in the form

Pi,u(z) = P
(0)
i (z)P (1)

i (uz) . . . P
(R)
i (uRz),

where R � 0, P
(k)
i (z) ∈ C[z], P

(k)
i (0) = 1 for 0 � k � R (R can be taken large enough so

that we have this form for all i ∈ I). For 0 � k � R, set Ψ(k)
i (z) = q

deg(P
(k)
i )

i
P

(k)
i (zq−1

i )

Pi(zqi)
.

For 1 � k � R define λk =
∑

i∈I deg(P (k)
i )ωi ∈ h∗. Set λ0 = λ − ∑

k=1,...,R λk. Then
for 0 � k � R the (λk, Ψ(k)) ∈ P+

l and we can consider L(λk, Ψ(k)) ∈ O(Uq(ĝ)). Let
V ∈ OR(Ũ ′

q(ĝ)) be defined by

V = i(L(λ0, Ψ(0))) ⊗R−1 (i(L(λ1, Ψ(1))) ⊗R−2 . . . ⊗0 i(L(λR, Ψ(R)))) . . .).

Consider the Ũ ′
q(ĝ) submodule L of V generated by the tensor product of the highest

weight vectors. It is a highest weight module of highest weight (λ, Ψ(u)). So L̃(λ, Ψ(u))
is a quotient of L and so is in O(Ũ ′

q(ĝ)).
For the second point it follows from Proposition 16 that the l, u-weight of i(L(λk,Ψ(k)))

are in QP+
l,u. So with the help of the last point of Theorem 30, we see that the l, u-

weights of V are in QP+
l,u and we have the property for L̃(λ, Ψ(u)). �

Definition 20. Let Oint(Ũ ′
q(ĝ)) be the subcategory of modules V ∈ O(Ũ ′

q(ĝ)) whose
l, u-weights are in QP+

l,u.

Lemma 33. For a module V ∈ Oint(Ũ ′
q(ĝ)) there are P(λ,Ψ(u)) � 0 ((λ, Ψ(u)) ∈ P+

l,u)
such that

chq,u(V ) =
∑

(λ,Ψ(u))∈P+
l,u

P(λ,Ψ(u))chq,u(L̃(λ, Ψ(u)))

=
∑

(λ,Ψ(u))∈P+
l,u

P(λ,Ψ(u))chq,u(L(λ, Ψ(u))).

Proof. Analogous to the proof of Proposition 15 (the second identity follows from
Lemma 31). �

6.5. C[u±]-forms and specialization

C[u±]-forms. Let Uu
q (ĝ) = Uq(ĝ) ⊗C C[u±] ⊂ U ′

q(ĝ).
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Definition 21. A C[u±]-form of a U ′
q(ĝ)-module V is a sub-Uu

q (ĝ)-module L of V such
that the map C ⊗C[u±] L → V is an isomorphism of U ′

q(ĝ)-module.

Note that it means that L generates V as C-vector space and that some vectors which
are C[u±]-linearly independent in L are C-linearly independent in V .

Let us look at some examples.

Proposition 34. For (λ, Ψ(u)) ∈ Pl,u and v a highest weight vector of the Verma mod-
ule M(λ, Ψ(u)) (respectively the simple module L(λ, Ψ(u))), the Uu

q (ĝ)-module Uu
q (ĝ).v

is a C[u±]-form of M(λ, Ψ(u)) (respectively of L(λ, Ψ(u))) which is isomorphic to the
Verma (respectively the simple) Uu

q (ĝ)-module of l,u-highest weight (λ, Ψ(u)).

Proof. As (λ, Ψ(u)) is fixed, we omit it. M is the quotient of C⊗CUq(ĝ) by the relations
generated by x±

i,r = φ±
i,±m − Ψ±

i,±m(u) = kh − qλ(h) = 0. So the relations between
monomials are in C[u±], and Uu

q (ĝ).1 ⊂ M is a C[u±]-form of M . Moreover, those
relations are the same as in the construction of the Verma Uu

q (ĝ)-module Mu as a
quotient of C[u±] ⊗C Uq(ĝ), and so Uu

q (ĝ).1 � Mu.
Let us look at L. Denote by Lu the simple Uu

q (ĝ)-module of highest weight (λ, Ψ(u)).
We have L = M/M ′ (respectively Lu = Mu/M ′u) where M ′ (respectively M ′u) in the
maximal proper submodule of M (respectively Mu).

The C-subspace M ′′ of M generated by M ′u is isomorphic to C ⊗C[u±] M
′u (because

Mu is a C[u±]-form of M). As M ′′ has no vector of weight λ, it is a proper submodule of
M and M ′′ ⊂ M ′. Suppose that M ′ �= M ′′ and consider M ′/M ′′ ⊂ M/M ′′. Mu/M ′u is
a C[u±]-form of M/M ′′. Let v be a nonzero highest weight vector of M ′/M ′′ and let us
write v =

∑
α fα(u)vα, where vα ∈ Mu/M ′u and fα(u) ∈ C (as there is a finite number

of fα(u), we can suppose that they are C[u±]-linearly independent). For all i ∈ I, r ∈ Z,
we have x+

i,r.v = 0 and so for all α, x+
i,r.vα = 0. Fix wα ∈ Mu, whose image in Mu/M ′u

is vα. As for all i ∈ I, r ∈ Z, x+
i,r.wα ∈ M ′u, Uu

q (ĝ).wα is a proper submodule of Mu and
wα ∈ M ′u. So v = 0, a contradiction. So M ′ = M ′′. In particular, M ′ � M ′u ⊗C[u±] C,
M ′ ∩ Mu = M ′u.

For v, a highest weight vector of L, the Uu
q (ĝ).v � Uu

q (ĝ).1 = Mu/(Mu ∩ M ′) =
Mu/M ′u = Lu is a C[u±]-form of L. �

Specializations. Consider p : El,u → El the surjection such that p((λ, Ψ(u))) = (λ, Ψ(1)).

Lemma 35. Let V be in O(U ′
q(ĝ)). If L is a C[u±]-form of V then the specialization

L′ = L/(1 − u)L of L is in O(Uq(ĝ)) and chq(L′) = p(chq,u(V )).

Proof. Indeed for (μ, γ(u)) ∈ QPl,u consider Lμ,γ(u) = L∩Vμ,γ(u). As p : L⊗C[u]C → V is
an isomorphism, we have Vμ,γ(u) � p−1(Vμ,γ(u)) = Lμ,γ(u) ⊗C[u] C. In particular, Lμ,γ(u)

is a free C[u±] of rank dimC(Vμ,γ(u)). So dimC(L′
μ) = dimC(Vμ), and L′ ∈ O(Uq(ĝ)).

We can conclude because:

L′
λ,γ =

⊕
(λ,γ(u))∈p−1((λ,γ))(Lλ,γ(u)/(u − 1)Lλ,γ(u)). �

Proof of Theorem 28. For (λ, Ψ(u)) ∈ P+
l,u, it follows from Proposition 34 and Lemma 35

that p(chq,u(L(λ, Ψ(u)))) is of the form chq(L), where L ∈ Oint(Uq(ĝ)), that is to say
p(chq,u(L(λ, Ψ(u)))) ∈ chq(Rep+(Uq(ĝ))). So (Lemma 33) for V ∈ Oint(Ũ ′

q(ĝ)) we have
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p(chq,u(V )) ∈ chq(Rep+(Uq(ĝ))). Consider V1, V2 ∈ Oint(Uq(ĝ)). We have seen that
p(chq,u(i(V1) ⊗0 i(V2))) ∈ chq(Rep+(Uq(ĝ))). But

p(chq,u(i(V1) ⊗0 i(V2)) = chq(V1)chq(V2),

because the specialization of Δu on Uq(ĥ) at u = 1 is Δĥ. This ends the proof of
Theorem 28. �
6.6. Example
We study in detail an example in the case g = sl2 where everything is computable thanks
to Jimbo’s evaluation morphism (see [CP3], [CP4]). In this case we have Uq(ŝl2) =
Ũq(ŝl2).

For a ∈ C∗ consider V = L(1 − za) ∈ Oint(Uq(ŝl2)). V is two dimensional V =
Cv0 ⊕ Cv1, and for r ∈ Z, m � 1 the action of Uq(ŝl2) is given in the following table

v0 v1

x+
r 0 arv0

x−
r arv1 0

φ±
±m ±(q − q−1)a±mv0 ∓(q − q−1)a±mv1

k± q±v0 q∓v1

φ±(z) q 1−q−2az
1−az v0 q−1 1−q2az

1−az v1

.

Remark 12. In this table φ±(z) ∈ Uq(ĝ)[[z±]] acts on V [[z±]].

For a, b ∈ C∗, let V = L(1 − za), W = L(1 − zb) ∈ Oint(Uq(ĝ)). Consider basis
V = Cv0 ⊕ Cv1, W = Cw0 ⊕ Cw1 as in the previous table. The tensor product ⊗0

defines an action of U ′
q(ŝl2) on X = i(V )⊗C i(W ) (see Theorem 30). X is a 4 dimensional

C-vector space of base {v0⊗w0, v1⊗w0, v0⊗w1, v1⊗w1}. The action of U ′
q(ŝl2) is given

by the following tables (r ∈ Z)

v0 ⊗ w0 v1 ⊗ w0

x+
r 0 ar(v0 ⊗ w0)

x−
r urbr(v0 ⊗ w1) + arq 1−q−2a−1ub

1−a−1ub (v1 ⊗ w0) urbr(v1 ⊗ w1)

φ±(z) q2 (1−q−2az)(1−q−2buz)
(1−az)(1−buz) (v0 ⊗ w0)

(1−q2az)(1−q−2buz)
(1−az)(1−buz) (v1 ⊗ w0)

,

v0 ⊗ w1 v1 ⊗ w1

x+
r q−1brur 1−q2a−1bu

1−uba−1 (v0 ⊗ w0) ar(v0 ⊗ w1) + brurq 1−q−2a−1bu
1−uba−1 (v1 ⊗ w0)

x−
r arq−1 1−q2ua−1b

1−a−1ub (v1 ⊗ w1) 0

φ±(z) (1−q−2az)(1−q2buz)
(1−az)(1−buz) (v0 ⊗ w1) q−2 (1−q2az)(1−q2buz)

(1−az)(1−buz) (v1 ⊗ w1)

.
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Remark 13. In these tables φ±(z) ∈ Uq(ĝ)[[z±]] acts on X [[z±]].

Consider the l-weights γa, γ′
a, γb, γ

′
b ∈ Pl (λ ∈ h∗ can be omitted because sl2 is finite):

γ±
a (z) = q 1−q−2az

1−az , γ′
a
±(z) = q−1 1−q2az

1−az ,

γ±
b (z) = q 1−q−2bz

1−bz , γ′
b
±(z) = q−1 1−q2bz

1−bz .

Consider also γa(z)γb(uz), γ′
a(z)γb(uz), γa(z)γ′

b(uz), γ′
a(z)γ′

b(uz) ∈ Pl,u. We see that

chq,u(X) = e(γa(z)γb(uz)) + e(γ′
a(z)γb(uz)) + e(γa(z)γ′

b(uz)) + e(γa(z)γ′
b(uz)).

Those l, u-weights are distinct, the l, u-weights spaces are 1 dimensional

X = (X)γa(z)γb(uz) ⊕ (X)γ′
a(z)γb(uz) ⊕ (X)γa(z)γ′

b(uz) ⊕ (X)γ′
a(z)γ′

b(uz).

We see that X is of highest weight γa(z)γb(uz) ∈ Pl,u. Let us prove that it is simple.
Indeed, X has no proper submodule: if for all r ∈ Z, x+

r .(α(v1 ⊗w0) + β(v0 ⊗w1)) = 0,
then for all r ∈ Z, αar + βbrur 1−q2a−1bu

1−uba−1 = 0. In particular, α + β 1−q2a−1bu
1−uba−1 = 0 and

ar − brur = 0 for all r ∈ Z, which is impossible. So X � L(γa(z)γb(uz)) as a U ′
q(ŝl2)-

module. It follows from Proposition 34 that X̃ = Uu
q (ĝ).(v0 ⊗ w0) ⊂ X is a C[u±]-form

of X .
Let us look explicitly at this C[u±]-form. Consider e1, e2, e3, e4 ∈ X̃ defined by

e1 = v0 ⊗ w0, e2 = x−
0 .e1, e3 = −a−1x−

1 .e1 + e2, e4 = qx−
0 .e2.

We have the following formulas

e1 = v0 ⊗ w0, e2 = (v0 ⊗ w1) + q 1−q−2a−1bu
1−a−1ub (v1 ⊗ w0),

e3 = (1 − uba−1)(v0 ⊗ w1), e4 = (v1 ⊗ w1).

Moreover, the action of Uu
q (ĝ) is given by the following tables(r ∈ Z)

e1 e2

x+
r 0 (qar 1−(a−1ub)r+1

1−a−1ub − q−1buar−1 1−(a−1ub)r−1

1−a−1ub )e1

x−
r ar(e2 − 1−(a−1ub)r

1−a−1ub e3) (q−1ar 1−(a−1ub)r+1

1−a−1ub − qbuar−1 1−(a−1ub)r−1

1−a−1ub )e4

φ±(z) q2 (1−q−2az)(1−q−2buz)
(1−az)(1−buz) e1

(1−q2az)(1−q−2buz)
(1−az)(1−buz) e2 + az(q2−q−2)

(1−az)(1−buz)e3

,

e3 e4

x+
r brurq−1(1 − q2a−1bu)e1 brure2 + ar 1−(uba−1)r

1−uba−1 e3

x−
r arq−1(1 − q2ua−1b)e4 0

φ±(z) (1−q−2az)(1−q2buz)
(1−az)(1−buz) e3 q−2 (1−q2az)(1−q2buz)

(1−az)(1−buz) e4

.
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In particular, we see that C[u±]e1⊕C[u±]e2⊕C[u±]e3⊕C[u±]e4 is stable by the action
of Uu

q (ĝ), and thus is equal to X̃ . So we have verified that X � X̃ ⊗C[u±] C.
Let us describe the specialization of X̃ at u = 1. Let X̃ ′ = Ce1 ⊕ Ce2 ⊕ Ce3 ⊕ Ce4.

The action of Uq(ĝ) on X̃ ′ is given by (for z ∈ C, r ∈ Z, we denote [z]′r = 1−zr

1−z ∈ Z[z±]
(z �= 1) and [1]′r = r)

e1 e2

x+
r 0 (qar[a−1b]′r+1 − q−1bar−1[a−1b]′r−1)e1

x−
r ar(e2 − [a−1b]′re3) (q−1ar[a−1b]′r+1 − qbar−1[a−1b]′r−1)e4

φ±(z) q2 (1−q−2az)(1−q−2bz)
(1−az)(1−bz) e1

(1−q2az)(1−q−2bz)
(1−az)(1−bz) e2 + az(q2−q−2)

(1−az)(1−bz)e3

,

e3 e4

x+
r brq−1(1 − q2a−1b)e1 bre2 + ar[a−1b]′re3

x−
r amq−1(1 − q2a−1b)e4 0

φ±(z) (1−q−2az)(1−q2bz)
(1−az)(1−bz) e3 q−2 (1−q2az)(1−q2bz)

(1−az)(1−bz) e4

.

We see that X̃ ′ = Uq(ĝ).e1. Moreover, if ab−1 /∈ {q2, q−2}, then X̃ ′ has no proper
submodule, because the formula x+

m(αe2 + βe3) = 0 means that for all r ∈ Z,

α(qar[a−1b]r+1 − q−1bar−1[a−1b]r) + βbrq−1(1 − q2a−1b) = 0,

which is possible only if ab−1 ∈ {q2, q−2} or α = β = 0. So

— if ab−1 /∈ {q2, q−2}, then X̃ ′ � L(γaγb) is simple and chq(V )chq(W ) =
chq(X̃ ′) = chq(L(γaγb));
— if ab−1 = q2 (respectively ab−1 = q−2), then Ce3 ⊂ X̃ ′ (respectively C((q2 −
1)e2 + e3) ⊂ X̃ ′) is a submodule of X̃ ′ isomorphic to L(1) and chq(V )chq(W ) =
chq(X̃ ′) = chq(L(γaγb)) + chq(L(1)).
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