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Abstract. In this paper we study general quantum affinizations U (g) of symmetrizable quan-
tum Kac—Moody algebras and we develop their representation theory. We prove a triangular
decomposition and we give a classication of (type 1) highest weight simple integrable represen-
tations analog to Drinfel’d—Chari—Presley one. A generalization of the g-characters morphism,
introduced by Frenkel-Reshetikhin for quantum affine algebras, appears to be a powerful tool
for this investigation. For a large class of quantum affinizations (including quantum affine al-
gebras and quantum toroidal algebras), the combinatorics of g-characters give a ring structure
* on the Grothendieck group Rep(Uy(g)) of the integrable representations that we classified.
We propose a new construction of tensor products in a larger category by using the Drinfel’d
new coproduct (it cannot directly be used for Rep(Uy(g)) because it involves infinite sums). In
particular, we prove that * is a fusion product (a product of representations is a representation).

1. Introduction

In this paper, ¢ € C* is not a root of unity.

V. G. Drinfel’d [Drl] and M. Jimbo [Jim] associated, independently, to any sym-
metrizable Kac-Moody algebra g and ¢ € C* a Hopf algebra U,(g) called quantum
Kac—Moody algebra. The structure of the Grothendieck ring of integrable representa-
tions is well understood: it is analogous to the classical case ¢ = 1.

The quantum algebras of finite type Uy (g) (g of finite type) have been intensively
studied (see for example [CP4], [L], [R] and references therein). The quantum affine
algebras U, (g) (g affine algebra) are also of particular interest: they have two realiza-
tions, the usual Drinfel’d-Jimbo realization and a new realization (see [Dr2], [Be]) as
a quantum affinization of a quantum algebra of finite type U,(g). The finite dimen-
sional representations of quantum affine algebras are the subject of intense research
(see, among the others, [AK], [CP1], [CP3], [CP4], [EM], [FR], [FM], [N1], [N2], [VV2]
and references therein). In particular, they were classified by Chari—Pressley [CP3],
[CP4], and Frenkel-Reshetikhin [FR] introduced the g-characters morphism, which is a
powerful tool for the study of these representations (see also [Kn], [FM]).

The quantum affinization process (that Drinfel’d [Dr2] described for constructing the
second realization of a quantum affine algebra) can be extended to all symmetrizable
quantum Kac-Moody algebras U,(g) (see [Jin], [N1]). One obtains a new class of al-
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gebras called quantum affinizations: the quantum affinization of U,(g) is denoted by
Uy(g). The quantum affine algebras are the simplest examples and are very special
because they are also quantum Kac-Moody algebras. When C' is affine, the quantum
affinization U, (g) is called a quantum toroidal algebra. It is known not to be a quantum
Kac—Moody algebra, but it is also of particular interest (see, for example, [GKV], [M1],
[M2], [N1], [N3], [Sal, [Sc], [STU], [TU], [VV1] and references therein).

In [N1] Nakajima gave a classification of (type 1) simple integrable highest weight
modules of U,(g) when g is symmetric. The case C of type AWM (toroidal s/l;—case) was
also studied by Miki in [M1] (a coproduct is also used with an approach specific to the
A%l)—case; but it is technically different from the general construction proposed in this
paper). In [H3] we proposed a combinatorial construction of g-characters (and also of
their ¢-deformations) for generalized Cartan matrix C such that ¢ # j = C; ;C;; < 3

(it includes finite and affine types except Agl), Ag)). We conjectured that they were
linked with a general representation theory, but in general little is known about the
representation theory outside the case of quantum affine algebras.

In this paper we study general quantum affinizations and we develop their repre-
sentation theory. First we prove a triangular decomposition of U,(g). We classify the
(type 1) simple highest weight integrable representations, and we define and study a
generalization of the morphism of g-characters x, which appears to be a natural tool for
this investigation (the approach is different from [H3] because g-characters are obtained
from the representation theory and not from purely combinatorial constructions). If the
quantized Cartan matrix C(z) is invertible (it includes all quantum affine algebras and
quantum toroidal algebras), a symmetry property of those g-characters with respect to
the action of screening operators is proved (analog of the invariance for the action of
the Weyl group in classical finite cases; the result is proved in [FM] for quantum affine
algebras). In particular, those g-characters are the combinatorial objects considered
in [H3]. Moreover, we get that the image of x, is a ring and we can define a formal
ring structure on the Grothendieck group. Although quantum affine algebras are Hopf
algebras, in general no coproduct has been defined for quantum affinizations (this point
was also raised by Nakajima in [N3]). Drinfel’d gave formulas for a new coproduct which
can be written for all quantum affinizations. They cannot directly be used to define a
tensor product of representations because they involve infinite sums. We propose a new
construction of tensor products in a larger category with a generalization of the new
Drinfel’d coproduct. We define a specialization process which allows us to interpret the
ring structure that we defined on the Grothendieck group: we prove that it is a fusion
product, that is to say that a product of representations is a representation (see [F] for
generalities on fusion rings and physical motivations).

We hope that this fusion procedure will lead to the construction of new tensor cate-
gories. But we shall address further developments on this point in a separate publication.

In more details, this paper is organized as follows.

In Section 2 we recall backgrounds on quantum Kac-Moody algebras. In Section 3 we
recall the definition of quantum affinizations and we prove a triangular decomposition
(Theorem 2). Some computations are needed to prove the compatibility with affine
quantum Serre relations (Section 3.3). Note that we get a new proof of a combinatorial
identity discovered by Jing (consequence of Lemma 9). The triangular decomposition
is used in Section 4.2 to define the Verma modules of U, (g).
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In Section 4 we recall the classification of (type 1) simple integrable highest weight
representations of quantum Kac—Moody algebras, and we prove such a classification
for quantum affinizations (Theorem 13; the proof is analogous to the proof given by
Chari—Pressley for quantum affine algebras). The point is to give an adapted definition
of a weight which we call an [-weight: we need a more precise definition than in the case
of quantum affine algebras (an [-weight must be characterized by the action of U, (h) C
U, (g) on an l-weight space). We also give the definition of the category O(U,(g)).

In Section 5 we construct g-characters of integrable modules in the category O(U,(g)).
New technical points are to be considered (in comparison to quantum affine algebra
cases): we have to add terms of the form ky (A coweight of U, (g)) for the well-definedness
in the general case. The original definition of g-characters ([FR]) was based on an explicit
formula for the universal R-matrix. In general no universal R-matrix has been defined
for a quantum affinization. However, g-characters can be obtained with a piece of the
formula of an “R-matrix” in the same spirit as the original approach (Theorem 18). In
Section 5.5 we prove that the image of x4 is the intersection of the kernels of screening
operators (Theorem 26) in the same spirit as Frenkel-Mukhin [FM] did for quantum
affine algebras. New technical points are involved because of the ky (we suppose that
the quantized Cartan matrix C(z) is invertible). In particular, it unifies this approach
with [H3] and enables us to prove some results announced in [H3]. We prove that the
image of x4 is a ring. As x, is injective, we get an induced ring structure * on the
Grothendieck group.

In Section 6 we prove that * is a fusion product (Theorem 28), that is to say that
there is a product of modules. We use the new Drinfel’d coproduct (Proposition 29);
as it involves infinite sums, we have to work in a larger category where the tensor
product is well defined (Theorem 30). To conclude the proof of Theorem 28, we de-
fine specializations of certain forms which allow us to go from the larger category to
O(Uy(g)) (Section 6.5). We also give some concrete examples of explicit computations
in Section 6.6.

Acknowledgments. The author would like to thank Marc Rosso for his continued
support and Olivier Schiffmann for his accurate remarks.

2. Background
2.1. Cartan matrix

In this section we give some general backgrounds about Cartan matrices (for more
details see [Ka]). A generalized Cartan matrix is C' = (C; j)1<i,j<n such that C; ; € Z,
Cii =2,1#j=0C; <0,C;; =0« Cj; =0. We denote I = {1,...,n} and
[ = rank(C).

In the following discussion we suppose that C' is symmetrizable, that is to say there is
a matrix D = diag(ry,...,r,) (r; € N*) such that B = DC is symmetric. In particular,
if C' is symmetric, then it is symmetrizable with D = I,,. For example:

C is said to be of finite type if all its principal minors are in N* (see [Bo| for a
classification). C is said to be of affine type if all its proper principal minor are in N*
and det(C) = 0 (see [Ka] for a classification).

ZL—Z

Let z be an indeterminate. We put z; = 2", and for [ € Z we set [I], = :

z—z"
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Z[z*]. Let O(2) be the quantized Cartan matrix defined by (i # j € I):
Cii(z) =2+, Cij(2) =[Cijl.

In Sections 5.5 and 6 we suppose that C(z) is invertible. We have seen in [H3, Lemma
6.9] that the condition (C;; < —1 = —Cj; < r;) implies that det(C(z)) # 0. In
particular, finite and affine Cartan matrices (where we impose 11 = ry = 2 for Agl))
satisfy this condition, and so the quantum affine algebras and quantum toroidal algebra
are included in our study. We denote by C(z) the inverse matrix of C(z) and by D(z)
the diagonal matrix such that for ¢,j € I, D; j(2) = 6; j[r:].-

We consider a realization (h, II, ITV) of C (see [Ka]): b is a 2n—1 dimensional Q-vector
space, I1 = {a1,...,a,} C b* (set of the simple roots), IV = {a,...,a’} C b (set of
simple coroots), and for 1 < 7,5 < n,

aj(ey) = Cyj.

Denote by wi,...,wn € b* (respectively the wY,...,w, € b) the fundamental weights
(respectively coweights): we have a;(w)) = wi(a)) = d; ;.

Consider a symmetric bilinear form ( , ) : b* x h* — Q such that for i € I, h € bh*,
we have (a;, h) = h(r;)). Tt is nondegenerate and gives an isomorphism v : h* — b.
In particular, for i € I we have v(a;) = 7, and for A\, u € h*, AM(v(u)) = p(r(N)).

Denote P = {\ € b* | Vi € I, \(a)') € Z}, the set of weights, and PT = {\ € P | Vi €
I, M) > 0}, the set of dominant weights. For example, we have aq,...,a, € P and
Wi,...,wy € PT. Denote Q = @, ;Za; C P, theroot lattice, and Q* = 3./ Noy; C Q.
For \,u € b*, write A\ > pif \—p e QT.

If C is finite, we have n = | = dim(h) and for A € h*, A = >, ;0/(Nw;. In
particular, a; =Y je ;Cjiw;. In general the simple roots cannot be expressed in terms
of the fundamental weights.

2.2. Quantum Kac—Moody algebra

Definition 1. The quantum Kac-Moody algebra l{,(g) is the C-algebra with generators
kn (h € ), zF (i € I) and relations:

knkp = kpyn, ko =1, (1)

khxfk_h = qio‘j(h)xf, (2)

o ] = iyt (3)
0,1, (CDT [P ] (@) O e (27) = 0 (for i # j). (4)

This algebra was introduced independently by Jimbo [Jim] and Drinfel’d [Drl] and
is also called a quantum group. It is remarkable that one can define a Hopf algebra
structure on U, (g) by setting:

A(kr) = kp ® kn,
A(x*)zxj‘@l—i—kj‘@xj, Az )==z; k] +1®@z;,

3

S(kn) =kon, S(zf)=—afk ', S(z;)=—kfa;,

K2

e(kn) =1, e(z) =e(a;) =0,
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where we use the notation kzjIE = kinaﬁ-

For i € I let U; be the subalgebra of U, (g) generated by the :czi, kpay (p € Q). Then
U; is isomorphic to Uy, (sl2), and so a U,(g)-module also has a structure of Uy, (sla)-
module.

Definition 2. A triangular decomposition of an algebra A is the data of three subal-
gebras (A™, H, AT) of A such that the multiplication = ® h ® 1 + x~hz™ defines an
isomorphism of C-vector space A~ @ H ® AT ~ A.

Let Uy (g)t (respectively Uy(g)~, Uy(h)) be the subalgebra of Uy(g) generated by the

T (respectively the z;, respectively the k). We have (see [L]):

Ty

Theorem 1. (Uy(g)~,Uy(h),Uy(g)h) is a triangular decomposition of Uy(g). More-
over, Uy () (respectively Uy(g)t, Uy (g)~) is isomorphic to the algebra with generators
kn (respectively x, x7) and relations (1) (respectively relations (4) with +, relations (4)
with —).

3. Quantum affinization U, (g) and triangular decomposition

In this section we define general quantum affinizations (without central charge), we
give the relations between the currents (Section 3.2), and we prove a triangular decom-
position (Theorem 2).

3.1. Definition

Definition 3. The quantum affinization of ¢, (g) is the C-algebra U, (g) with generators
et (iel,reZ), ky (heh), him (i € I,m e Z—{0}), and the following relations

1,7

(i,jel,r,r € Z,meZ—{0}):

knkn = knyn, ko =1, [kn,hjm] =0, [Rim, hjm] =0, (5)
khmi_k,h = qiai(h)mﬁ, (6)
+ +
[hi7m7xj,r] = i%[mBi,j]qxj,erw (7)
— ¢j, ,.1_¢;7, v
[x:rr,x.r,]:&j b (8)
s 7s qi—q;
+ + +By,+ .+ _  +By .+ + +
Tipp1% =G Ty ey = @G X T X 1 X 9)
k + + +  + + _
ZT(EES Zk:O,...,s(il) [/Sf]qixi,rw(l) te mi,rﬂ(k)xj,r’xi,r,r(kJrl) e xi,r,r(s) - 07 (10)
where the last relation holds for all ¢ # j, s = 1 — C};, and all sequences of integers
r1,...,Ts. Lg is the symmetric group on s letters. For i € I and m € Z, qbfm € U,(9)

is determined by the formal power series in U, (g)[[2]] (respectively in U, (g)[[z~1]]):
Ym0 Oiitm ™ = kriay exp(£(0 = 47 Lz b )

andqbzfm:Oform<O,¢;’m:()form>0.

Relation (10) is called affine quantum Serre relations. The notation kzi =kiray is

also used. We have kziki_l = ki_lki =1, klmjtmkz_l = quijx;%m.

There is an algebra morphism U,(g) — Mq(ﬁ) defined by (h € b,i € I) ky — kp,
zE :cfo. In particular, a Uy (g)-module also has a structure of a U,(g)-module.
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3.2. Relations between the currents

For i € I, consider the series (also called currents):

xit (w) = ZTEZ I;trw @Jr(z) = Zm>o ¢;,rmzma ¢; (2) = Zm>o @'T—mz_m'
The defining relations of Uy (g) can be written with currents (h,h' € b, i,j € I):

Bk = ks ko =1, [k, 0F(2)] = [6F (2), 6F (w)] = [6F (), 67 (w)] =0, (11)
I (2) = ¢ 2 (2, (12)

o (2)a% (w) = Tog=2at (w)o] (2), (13)

07 ()0 (w) = 220 (w)e; (2), (14)

(2 (2),27 ()] = 2 [5(2)67 (w) = 3(5)67 (2)], (15)

<w - qﬂwzmﬂz)x;t(w) = (*Bw - 2)af (w)af (2), (16)

Z Z —DF [Pl (we() - 2 (W) 27 (2)27 (Wa(hgn)) - - 27 (Wr(s)) = 0, (17)

where 0(z) = ) .5 2". Equation (13) (respectively Equation (14)) is expanded for
|z| < |w]| (respectively |w| < |z|).

Remark 1. In relation (16), the terms cannot be divided by w— ¢4 2: it would involve
infinite sums and make no sense.

The following equivalences are clear: (relations (5) < relations (11)); (relations (6)
< relations (12)); (relations (9) < relations (16)); (relations (8) < relations (15));
(relations (10) < relations (17)).

We suppose that relations (6) are verified and we prove the equivalence (relations (7)
with m > 1 & relations (13)) ((relations (7) with m < —1 < relations (14)) is proved
in a similar way): consider hj (z) = Zm>1mhi7mzm’1. Relation (7) with m > 1 is
equivalent to (expanded for |z| < |w|):

[hf (2), 25 (w)] = i[Bi,j]q( — 5 z(j
]

It is equivalent to the data of a ax(z,w) € (Clw,w™1])[[2]] such that ¢] (z)x i(w) =
ax (2, w)T; £(w)¢; (2). So it suffices to prove that this term is the @ of rela-

. . 98 (z) _ 1yt +
tion (13). Let us compute this term. We have —5-= = (¢ — ¢~ ")h; (2)¢; (2), and so

the relations (7) imply

(a—q NoF (2)[h] (2),2F (w)] = 2290 E () (2),

” w ! _ 1 dax(zw) +
(i[Bm]q (17%(13”)(17%‘1,5%].)0&(2,10) T 0s ) (w)o; (2) =
d B, -1
aia(zz ’LU) i(qu,g —q Bz,g) (173(137,,]'1)1}(173(1*51',]') a4 (Z, 'LU)
j:B,L-j _ :(:B,_-’j,w
As 1 qT is a solution, we have oy (z,w) = A(w )qT But at z = 0 we know

a4 (0,w) = gtP4i (relations (6)), and so A\(w) = 1.
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3.3. Triangular decomposition

Statement. Let Uy(§)T (respectively Uy (§)~, Uy (b)) be the subalgebra of U, (§) generated
by :ci'r (respectively x; ., respectively kp, hir).

7,17

o~

Theorem 2. (Uy,(g)",U, (E),uq(ﬁ)ﬂ is a triangular decomposition of Uy (g). Moreover,
U, (D) (respectively Uy (g)", Uy (8) ™) is isomorphic to the algebra with generators ky, him
(respectively =, x; ) and relations (5) (respectively relations (9) and (10) with -+,

7,77 2,7

relations (9) and (10) with —).

For a quantum affine algebra (C finite) it is proved in [Be]. In this section we prove

this theorem in general. We will use the algebras Z/lé (8), Uy(g) defined by the following
definition.

s Rim, kn (1€ I, 7 € Z,

Definition 4. U.(g) is the C-algebra with generators :L'i r
m € Z — {0}, h € h) and relations (5), (6), (7), and (8) (or relations (11), (12), (13),
)

o~

(14), and (15)). Uy(g) is the quotient of U} (g) by relations (9) (or relations (16)).

Note that U, (g) is a quotient of ¢} (g) and that (U}~ (@), U, (h), ULT(g)) is a triangular
decomposition of U.(g), where L{évi (g) is generated by the a:l?fr without relations. In the
sly-case we have L~{q (5/1\2) = Uq(s/l\g).

Let us sketch the proof of Theorem 2. We use a method analogous to the proof of
classic cases or quantum Kac—Moody algebras (see, for example, [Ja, Chapter 4]): we
have to check a compatibility condition between the relations and the product. After
some preliminary technical lemmas about polynomials, the heart of the proof is given
by the following: properties of Z/{é (9) (Lemma 8) lead to a triangular decomposition of

U,(§). Properties of U,(§) proved in Lemmas 9 and 10 imply Theorem 2. Note that the
intermediate algebra U, (g) is also studied because it will be used in the last section of
this paper.

Remark 2. Lemma 9 gives a new proof of a combinatorial identity discovered by Jing.

Theorem 2 is used in Section 4.2 to define the Verma modules of U,(g). Let us

give another consequence of Theorem 2. For i € I, let (A]l be the subalgebra of U, (g)
generated by the x5 kpov,him (r € Z, m € Z — {0}, p € Q). We have a morphism

i,ro Vpa s
Uy, (sla) — U; (in particular, any U, (g)-module also has a structure of Uy, (slz)-module).
Moreover, Theorem 2 implies the following corollary.

Corollary 3. U; is isomorphic to Z/lqi(s/l\g).

General proof of triangular decompositions. Let A be an algebra with a triangular de-
composition (A7, H, A"). Let Bt (respectively B~) be a two-sided ideal of AT (re-
spectively A7). Let C = A/(A.(BT + B7).A) and denote by C* the image of B*
in C.

Lemma 4. If BT.A C A.B™ and A.B~ C B™.A, then (C~,H,C") is a triangular
decomposition of C' and the algebra C* is isomorphic to A*/B*.

Proof. We use the proof of [Ja, Section 4.21]. Indeed, the product gives an isomorphism
of C-vector space A.(Bt + B ) A~BT@H® A~ +AT@H®B~. U
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Technical lemmas. Let ¢ # j and s = 1 —C; ;. Define Py (w1,. .. ,ws, 2) € Clwy,. .. ,ws, 2]
equal to

Zk=o,_,,s(_1)k [Z]Qi (wy —qFPiiz) . (wy, — qFB9 2) (wiy 1P — 2) L (weqtPii — 2).
Lemma 5. There are polynomials (fi r)r=1,..s—1 of s — 1 variables such that
Pr(wi, . ws, 2) = D g (Wrg1 — qzﬂwr)fi,r(wl, e Wp 1, Wy 2y v oy Wy, Z).

Proof. Tt suffices to prove this for P, since P_ is obtained from Py by ¢ — ¢~ !. First

—2(s—1)w q.—2(s—2)w

we prove that P, (g; ,4; yenn ,q[Qw, w, z) = 0. Indeed it is equal to

w B MR @ e - 3)

k=0,...,s
e [ N V)
S

(DH[E], @~ 0@ — ) (R ),

.....

Let ao(q), ..., as_1(q) € Z[q] such that (a—u)(a—ug?) ... (a—ug*>®=2) = u*tas_1(q)+
u*"2aas_o(q) + ...+ a* tao(q). So

My(u) = szo,...,sﬂ as—p(q)u®~P Zkzoms(_l)k[i]qqk(1_s+2p).
And thus M,(u) = 0 because of the ¢-binomial identity for p’ =1—-5,3—s,...,s -1

(see [L)): ,
2 k=0 s(*l)k[i]qu =0.

As a consequence Py is in the kernel of the projection

yeeny

¢ : Clwy, ... ,ws, 2] — Clw,. .., ws, 2]/((we — GFwi), ..., (ws — Gws—_1)),

that is to say Py(wi,...,ws,2) = Zlgrgsfl(w,«ﬂ — qBiiw,) fr(w, ..., ws, 2), where
fr € Clwn,...,ws, 2]

Let us prove that we can choose the (f;)1<r<s—1 so that for all 1 < s <r—1, f, does
not depend on w,, w,y1. Let A C Ker(¢) be the subspace of polynomials which are at

most of degree 1 in each variable wy, ..., ws. In particular, P € A. We can decompose in
a unique way P = a+ws+w1y, where a,y € Clws, ..., ws, z], B € Clwy,ws, ..., ws, z].
Consider AV = —¢ ?y(ws — ¢?w1) € A and PV = P — A1 € A We have in

particular PO = ugl) + 'UJQ/J/(QI) + walp?), where ,ugl), ,uél), ,uél) € Clws,...,ws, z]. In

the same way we define by induction on r (1 < 7 < s — 1) the A(") € A such that
P = Pr=1) — (") € A'is of the form

P = N§22 + wr+1,LL7(LZl + wTJrleNy) Tt W W w1MY),
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where for 1<’ < r+ 2, ,uff) € Clwrya, ..., ws, z]. Indeed in the part of P(") without

wy4o wWe can change the terms w1 A(wy43, ..., ws, 2) to qi_2wr+2)\(wr+3, .., Ws, 2) by
adding qi_Q(ng —q?w,11)AE€ A, we can change the terms wy 1w, N (Wy43, . .., ws, 2) to
4 “wrg2wr 1 N (Wrys, ..., Wy, 2) by adding ¢; *(Wry2 — Gwry1)A+q; 2 (Wr g2 — 2w 1)\

€ A, and so on. In particular, for r = s — 1,

( (s—1)

pG—1 — ugi_ll) + ugsfl)ws + us‘:l)wsws,l + o WsWs—_1 - - . W1,

where ,uifll), oY eClz]. But
0= (P = uCoY 4l Vw, + i Vg 2w 4 g P R e,

Soforall 1 <7’ <s+1, ug‘f_l) =0, and so P~ = 0. In particular, P = \() 4 \(2) 4
L AETD O

For 1 < k < s consider Pf)(wl,wg, .oy ws, 2) € Clws, ..., ws, 2] equal to

+t(1-s)

(*1)16[1?]% Zk’:l,...,k(zqi
(w417 —w1) . (weg —wi) + (P[00, S —wig )

(wg — qzﬂwl) oo (w — qiﬂwl)(wkurlqiiQ —wy)... (wsqijE2 —wi).

wy)(wy — g;7wy) .. (e — g wy)

(k)

Lemma 6. (i) For 2 < k < s — 1, there are polynomials ( j:,'f)""zlywwsfl of s —1
variables, of degree at most 1 in each variable, such that Pik) (w1, ..., ws,2) is
equal to

(z — qii(l_s)wk) fi_l(wl, ey Wh—1, Whp 1y - -+, W, Z)
+ (W1 — qj[(l_s)z)fi]flfl(wl, ey Wy Wt 2y« vy Wy Z)
+ Zlgrgs_Q,r¢k—1(wr+2 - qf2wT+1)fﬂ(f)T(w1, ey W1, Wy 2y - ey W,y Z).

(ii) There are polynomials ( ﬁl)r:l,...,sq of s — 1 variables, of degree at most 1 in

each variable, such that Pil)(wl, ey Ws, 2) 08 equal to
+(1-s 1
(wa — q; ( é)Z)f(i,l(wg, e Wy Z)
k
+ 2 icrcso(Wri2 — quwTH)fj([}(wl, e Wy 1, Wiy 2y e ey W,y 2).

(iii) There are polynomials ( (;)7.%:17”,,5,1 of s — 1 variables, of degree at most 1 in

each variable, such that Pf) (w,...,ws,2) is equal to
(Z - Qii(l_S)ws)f:(l:s’)sfl(wla ceey Ws—1, Z)

+2
+ 21<r§5—2(w7”+2 —q; wTJrl)f:(l:S,zﬂ(wla vy Wr—1, Wr4-2, - .+, Ws, Z)
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Proof. Tt suffices to prove this for PJ(rk) since P is obtained from PJ(rk) by ¢ — ¢~ 1.

For (i): we see as in Lemma 5 that it suffices to check that PJ(r )(wl, ceWs,2) =0
. _ 2 _ 2 _ 2 _ 2 _ 1-s
if ws = g wa, ..., Wp = GWr—1, Wky2 = Whit1, ..., Ws = ¢ Ws—1, Z = q; Wk, and
_ 1-s _ 2 _ 2(k-2) _ 2k—2-2
Wet1 = ¢; “z. It means wy = giws, ..., Wy = q; Wo, Wkl = ¢ Swa, ...,

ws = ¢ *wa, z = ¢ 3 5w,. So if we set u = w1 /wa, we find for Pik)wgs:

s 2(k'—1 _9_9s 9
(71)k[k]qi Zk’:lmk%‘( )(qi% 22 fu)(qfk %)
(@ =)@ =) (@22 =) (g — )
+ (71)k_1|:k'i1:|qi Zk":k““s q?k 7571(q1.2k72574 — u)

T )@ ) @ - ) ),

[ 7

It is a multiple of

[s—k+1]g [ @t }
Qizk72574_u k,zlz’“wk(q?k,72—u)(qfk,74—u)
2k'—1—s
(K qs{ 3 a; }
2k—2 i 2k —25—2 2k —25—4
9 —u k/:k,,..,s(qi —u)(q; —u)
__ @[s—k+1]y, [ > | }
(A=a))(@* >l 47 e
_ q?[k]qi s 1 _ 1
(l_q?)q?k—2_uqz o sq?k/725727“ q?k’725747u
_ _ @[s—kA+llg |
(=a) (@ ) L —u ¢ 7w
2
_ q; [klg: qs[ o 1 ] —0
2 (2k—2 i| 2 2k—25—4 -
(1 —ai)(g —u) lg u g~
. . 1 .
For (ii): as for (i) we check that Pj_)(wl,...,ws,z) =0 if wy = wa, ..., ws =

1 (K'—2)

Cws—1, z = ¢ 'wy. It means wy = qi2 wy for 2 < k' < s. So if we set u = wy /wa,

we find for PJ(rl)w; 5

~[sle (L= w)(@f — ). (@72 =)+ 0 Ny @ (6T - w6 )

(@ ) (@2 ). (P ).

It is a multiple of

27 1—s
g[8l 1 1 4+ 4 1 1 -0
-1 \q 2—u q1.2572—u l—qu @ 2—u q?572—u .

7 i

For (iii): as for i) we check that Pik)(wl, coows,2) = 0if wy = ¢wa, ..., ws =
Pws_1, 2 = ¢ Sws. Tt means wy = qf(k 72)1112 for 2 < k' <sand z = qff3w2. The

computation is analogous to (i). O
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Lemma 7. For all choices of polynomials (f:(t]f;))lgk’gs,lgrgs—l in Lemma 6 and each
2 < k < s, there are polynomials (ggj)r)rzl,ws,g of s — 1 variables such that

k k—1 +2 k
f:(l:,;cfl - i,s—)l = ZI<T<572(U}T+2 —4q; w?“-l—l)gg:,)r(wla sy Wr—1, Wr42, .- ., Ws, Z)
Proof. We see as in Lemma 5 that it suffices to check that f4(-k,3c—1 + fJ(rk;li = 0 if

wsg = q?wg, ceey Wg = q?ws,l. So we suppose that wy = qf(k 2 for all 2 <K <s.

Let Q = w; *(wagq; 2 — 1)(wa — 1) ... (waq?* ?)/(¢? — 1). Tt suffices to prove that for
2 < k < s, we have

(62 = &) F 4 QD[] a0 — a7)

, , (18)
— (qszrlJrs + q;skarS _ q;erkJrl _ q;ifk+5)/(vq;2 _ 1)(,0%21974 _ 1)(vqi2572 o 1)
and
—2s k— — S — —
(7 = ¢ AN Q- k2] T = (g — 7)) (19)

— (qurl + q;k+3 . q;2s+k+1 . q?7k+25)/(vq;2 o 1)(,qu2k274 o 1)(,0(]7;2572 o 1)
because we have the relation

[Iﬂqi [klq: (Qfﬂﬂ + q;*’“” _ qi—s+k+1 _ q?—kJrS)

= [0, k= g (@ g " =g g,

(2

First suppose that 3 < k < s — 1. We have Pik) = (z — qil_swk)f_(fi_l + (Pwy —

2 1—s
qil_sz)fﬁ)sfl. So for ag, B such that Pik) = zag +wi P, we have fi]f?g_l = %

1—s
and fJ(rk;,l = (szigifk. But we have PJ(rk) = 2(q; "M+ px) — w1 (Mg + g *ux), where

(we put v = U}Q}U}l) A is

L=} (vgt —q?)... (02" =P — ) (g2 — 1)

2(s—2)+2 s 2k
B AR | g Q(_1)k[k}qi[vq;1271 — quzZ;Q_l],

(~Dkwi |

Eal
Q
S
X
|
—-

,,,,

and py is
1, s—1[ s 2K —2 /
e ], B (v —a?)(va? —3)... (vq]" 72 = g?)(vg? — 1)
'=k,...,s
2(s—2)+2 _ s 1_2k—2 1_25
(@I 1) = Q1) 1[k71}q7’ [vq‘%k7471 — vq?iz_l )

As o = ¢" "N + ik and B = — (A + g} )/ (gfw2), we have

1
D*[F], ey (ai—a )
% = @ T e D P D D)
'((Qf—i_l_s _ qf+k_1) + ’U(qf+k_3 + q;_9+3k—3 _ q:z’zk—B—s _ qf+k_1)),
OF[2] s (@i—a; ) ((aF+a2 2 =g, M2 b 2) fo(— g 20 24 gh))
e =@ T e D e D e D) '
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In particular, (¢? — q? 25)f§rk3€ Q- 1)k[2]qi [klq: (gi — qi_l))_1 is

k+1—s s —k+3 s+k+1 3—k— 3k—1 k+1— 3k—1—s s+k+1
R P T M Rl C R P S—git

(vg; > =) (vg;* 2 = 1) (vg?* 1 =1) (vg7* % 1)

and we get formula (18) for k. Moreover, (¢? — qi2_2s)f4(_]2_1(Q(—1)k[Z]q_[k]q% (¢: —
—1\\—1 -
q ) s

(qf+2725+q?57k+2—q;k+2 k+2)+v(q +q3k 2 qfk72572_q§+2572)

(vg; =) (vg;* 2 =1 (vg;* = 1) (vg}* 7 —1)

and we get formula (19) for k + 1.
So it remains to prove formula 19 with & = 2 and formula 18 with k = s.

P = (wy — ¢ ) f ) = sl (20l 70— wi)(@Pwz — wn) - (62 2ws — wy)

+(z — wlqi )2 k=1 renyS quk 72(%72“’2 —wi)

(ka “Owy — w1) (@ w2 — w1) .. (¢FPwa — wy)
1 5(q ~1) qvk _2
<11 7 7
= o = —0 QLSS + D

And so we have for f+ (@ =) (-Qls)g (s — g M)l

gitdd—q; T —qi—2543

9

(vg; 2 =1)(v—1)(vg;* v—1)’

that it to say formula (19) with k = 2.

Pf’=<z—q£“>qf<s Pa) s = (1) el (= g G 6 s — )

)
,S5—
25—6 _ 1 S s _ 2k’ — —2 _
(qz w2 U}l) ( ) (Zqz wl)Zk’zl sqi (qz w2 wl)
25—2

(@ Ows —w1) (¢ wo —wn) . (g Pwz — wi)

,,,,

and so
2(s—=1) 2 2k’ —2
(s) (=1)°""[slg; 4 (g; -1 )°q 1 s a
f—l,-s 1 — Q vqfs 1 1)(7”129 2 —1) +( Zk '=1,...,s (qfk’—47j71)(q?k’—2v71) .

And thus we have for f+ (@ = @) ((-1)°Qs)g, (@i — g M)

25+1+q3 28— g?

(vg; ?=1)(vg}** =1) (vg}* Pv—1)’

that is to say formula (18) with k =s. O

o~

Proof of Theorem 2. The algebras U], (ﬁ),qu (g),ué’i(ﬁ) are defined in Section 3.3. Let
Z:{qi (8) C Uy(§) be the subalgebra generated by the a7,. Let 7+ be the two-sided ideal

~ . . +
of Z/lé’i(g) generated by the left terms of relations (9) (with the ;7).
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Lemma 8. The following inclusions hold: T UL(g) C UL(G)my and UL(g)T- C T_UL(g).
In particular, (Zjlq_ (8), U, (6),17{; (8)) is a triangular decomposition of Uy ().

Proof. First T U, (h) c Uy ()7, Uy (h)r_ T_U, (h) are direct consequences of relations
(12), (13), and (14). We also have (we use relations (15), (13), and (14)):

[(w — g™ P2z (2)af (w) — (6P w — 2)af (w)af (2), 2 (u)]
= (w — ¢* P ) (2)[af (w), o (W)] = (¢ w — 2)[27 (w), 2 (u)]a ()

— (P w — 2)a5 (w)[af (2), af ()] + (w — 759 2) (a7 (2), 2 (w)]a5 (w) = 0,

and so T UL (@) C UL(@)y, ULT (@) C T UL(G).
The last point follows from U, (g) = UL(@)/(UL(@). (4 + 7-)UL(G)), the triangular
decomposition of U} (g) and Lemma 4. [

Lemma 9. Leti# j, s=1—-C;;, p=1 or p=—1. We have in Zj{q(ﬁ)

Z Z & (Wr(n)) - @ (wr (k)9 ()2} F(Wr(er1)) - 2 (wr(s)) = 0, (20)

TEXk=0,.

Z Z €z(w7r 1) - &i(Wr ()25 (2)& (Wa(ry1)) - - - &i(wr(sy) =0, (21)

TeXs k=0,...,s

where & (wp) = a7 (wp) if p # 1 and &(w1) = ¢ (wy).
Remark 3. In particular, if we multiply equation (20) by

(Hr=1,...,5( —q;" ! )) (H1<r'<r<s(wr quwr/))

and we project it on z; (wq).. ac:r(ws)(bj(z) (we can use relations (16) thanks to the
multiplied polynomial), we get the combinatorial identity discovered by Jing in [Jin],
which was also proved in a combinatorial way in [DJ]. For m € X, denote by €(7) €
{1, —1} the signature of 7 (we have replaced z +— 2~1, wy + w,,' to get the formula
in the same form as in [Jin]):

0= Zwezs e(m) Zk:o,...,s[ﬂq(z - qsflwﬂ(l)) oz = qsflww(k))
(ww(k-i-l) - q57lz) ce (ww(s) - q57lz) H1§r<7“§s(ww(7‘) - q2w7r(7'/))'

Proof. First we prove equation (20) with g = 1 (u = —1 is analog). The left term is
(relations (13))

7 (2)

(w1 Pid —2)..(wsqT i —2

) ZWEES P:t (w,r(l), e ,ww(s), Z)Q’JZ:t (ww(l)) v l‘li (ww(s)).

The sum is (see Lemma 5)

+2
ZWEZS Zlgrgsfl(wﬂ'UH’l) —q; ww(r))

+ +
fT,:I:(wﬂ'(l)a co Wa(r—1) Wr(r42) - - - 7w7r(s)az)xi (wﬂ'(l)) cee Ty (ww(s))
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For each r, we put together the 7,7’ € ¥, such that 7(r) = 7'(r + 1), w(r + 1) = 7'(r),
and w(r”) =« (r") for all ¥ # r,r + 1. So we get a sum of terms

fT,:I:(wﬂ'(l)a sy Wr(r—1) Wr(r42)y - -+ ww(s),z)x;t (wﬂ'(l)) cee :L'rLi (wﬂ'('r—l))

+ + +
’ A{ﬂ'(’!‘),ﬂ(’!‘-‘rl)}l‘i (wﬂ'(TJrQ) - Ty (wﬂ'(s))7
where A{ikyk,} = (wy — ¢PPwp)aE (wp)aE (wy) + (w — ¢F2wg) 2 (wi)zE (wy). But
ALy = 0 in Uy(g).
Let us prove equation (21) with p =1 (1 = —1 is analog). The left term is

O (w1)/(wagF? — wr) ... (g2 —wi)(2¢7 7Y —wy)

k
ZweZs,l,k=1,...,s Pi )(wla Wr(2)s - -+ Wr(s), Z)

x?(wﬂ(g)) . ch?t(w,r(k))ac?E (Z)x;t(wﬂ(k+1)) .. x;t (Wr(s)),

where Y1 acts on {2,...,s}. With the help of Lemma 6 and in analogy to the
previous case, for each 1 < k < s and each r # k, we put together the 7w, 7’ € X, such
that w(r) = 7'(r+ 1), #(r + 1) = «'(r), and 7 (") = #'(r") for all v’ # r,r + 1. So the
terms with polynomials fiki, with k' # s,k — 1 are erased. We get

+(1-s)

¢ (w1)/ (w24 —w1) .. (weg;” — w1)(2g; wi)

+(1—s k +(1—s k
Sres it s (2= @ w9 (e — 7TV )

xf(wﬂ(g)) . xf(ww(k))mf(z)x;ft(wﬂ(kﬂ)) .. .xzi(wﬂ(s)).
But this last sum is equal to

+(1—s k k—1
Swesyiezs(Z = @ T w9 - £

xf(wﬂ(g)) . xf(ww(k))mf(z)x;ft(wﬂ(kﬂ)) .. .xf(ww(s)),

where we can replace

(1-s9) (1=s) %

+ +
(z—q W) )T (Wa(y))2; (2) bY (—wr() + 6 2)2} (2)7 (Wrr))

(relations (16) in qu (g)). As in the previous cases it follows from Lemma 7 that this
term is equal to 0. O

Let 7+ be the two-sided ideal of Z:{qi (9) generated by the left terms of relations (10)
with the :vzir
Lemma 10. We have 71U, (§) C Uy (§)7: and U,(§)7- C 7_U,(g).

In particular, as Uy (g) = L?é(ﬁ) / (Z]é(ﬁ)(%r + ?,).Zjé(/g\)), the result of Theorem 2

follows from Lemma 4 and the triangular decomposition of L~{q (9) proved in Lemma 8.
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Proof. First 7, U, (b) (b)7'+7 U (6)?_ CT-U, (6) are direct consequences of relations
(12), (13), and (14). Let us show that

[ZWGZS Zk:o,m,s(_ )k[l‘:]qI ?:(wﬂ‘(l))
zi( w(k)) ( ):Cii(ww(k-‘rl))'"x?(ww(s))axlq:(u)] =0, (22)
where i,5,l € I, i # j. If | # j and [ # i, equation (22) follows from relations (15). If
I = j, equation (22) follows from identity (20) of Lemma 9 because the left term is
k[s + +
Dores, 2hmo,.s(CDF[R] @ (Wr1)) - 27 (war)
(0(2)67 (2) = 6(2) T (2))2F (Wr(s1)) - - - T (Wr(s))-

If | = i, equation (22) follows from identity (21) of Lemma 9 because the left term is:

Yres, Dm0, D[R] (ot 77 (Wr) -2 (W) 5 (72)
(65 (wrr) — &F (Wi )2 (waogn)) - 2 (w w<k>>xf () (w ”<’f+”) o (10nt0)
+Zk’:k+1,m,sx’?:(w7r(1)) xi(ww(k)) (Z)x;t(w (k+1)) mi(ww(k’*l))
S (6 ) — 6 ) 1) )

So we have proved equation (22) and, in particular, 7~'+L~{q_ (@) C U, ()74, U+( )7— C
F 4. O

4. Integrable representations and category O(Uq,(g))

In this section we study highest weight representations of U, (g). In particular, Theo-
rem 13 is a generalization of a result of Chari—Pressley about integrable representations.

4.1. Reminder: integrable representations of quantum Kac—Moody algebras

In this section we review some known properties of integrable representations of U, (g).
For V' a U,(h)-module and w € h* we denote by V,, the weight space of weight w,

Vo, ={veV|VYhebk,v=qgMu}.

In particular, for v € V, we have k;.v = qw(a'v)v and for i € I we have aci Vo € Vita,-
We say that V' is U, (h)-diagonalizable if V = Gaweb* (in particular, V is of type 1).

Definition 5. A U,(g)-module V is said to be integrable if V' is U, (h)-diagonalizable,
for all w € h*, V,, is finite dimensional, and for p € h*, i € I there is R > 0 such that
r2R=Vitra, = {0}

In particular, for all v € V there is m,, > 0 such that for all ¢ € I, m > m,,
T)™w = (z;)™v =0, and U,.v is finite dimensional.

Definition 6. A U,(g)-module V is said to be of highest weight w € h* if there is
v € V,, such that V is generated by v and for all i € I, ac;-".v = 0.

In particular, V' = Uy(g) .v (Theorem 1), V is U,(h)-diagonalizable, and V =
@Di<., VA We have (see [L]) the following theorem.

(x



178 DAVID HERNANDEZ

Theorem 11. For any w € bh* there is a unique up-to-isomorphism simple highest
weight module L(w) of highest weight w. The highest weight module L(w) is integrable
if and only w € PT.

4.2. Integrable representations of quantum affinizations

In this section we generalize results of Chari-—Pressley [CP3, CP4] to all quantum affiniza-
tions.

l-highest weight modules. We introduce the following notion of I[-weight:

Definition 7. A couple (A, ¥) such that A € h*, ¥ = (Wfim)iel,m>o, \I/Z +m € C,

\I/z 0= qzi/\(a ) is called an l-weight.

+ _ ik(av) +
The condition W7, = is a compatibility condition which comes from gf) 0=Fk;

We denote by Pl the set of [- Welghts Note that in the finite case A\ is umquely
determined by W because A =}, _; (e )w;. Analogs of those I-weights were also used

in [M1] for toroidal sl,-cases.

Definition 8. A U,(g)-module V is said to be of [-highest weight (A, V) € P if there
isv € V such that (i € I,r € Z,m > 0,h €b)

xi‘r.v =0, V =Uyg), d)i[im.v = \I/i[imv, kpv = q¢*™ .
In particular, U, (g) ~.v=V (Theorem 2), V is U, (h)-diagonalizable, and V =P, ., Vx
Note that the [-weight (A, ¥) € P, is uniquely determined by V. Tt is called the I-highest
weight of V.
The notion of [-highest weight is different from the notion of highest weight for
quantum affine algebras. The term “pseudo highest weight” is also used in the literature.

Example 1. For any (A, V) € P}, define the Verma module M (A, ¥) as the quotlent of
U, (g) by the left ideal generated by ach (iel,reZ), k,—g* M (hep), qbz e — V5 .
(t€I,m > 0). It follows from Theorem 2 that M(X\ ¥)isa free U, (g)-module of rank 1.

In particular, it is nontrivial and it is an [-highest weight module of highest weight (A, U).
Moreover, it has a unique proper submodule (mimic the classical argument in [Ka]), and
the following property holds:

Proposition 12. For any (\, V) € P, there is a unique up to isomorphism simple I-
highest weight module L(\, ) of I-highest weight (A, V).

Integrable Uy (g)-modules.

Definition 9. A U,(g)-module V is said to be integrable if V is integrable as a Uy(g)-
module.

Note that in the case of a quantum affine algebra, the two notions of integrability
do not coincide. Throughout the paper only the notion of integrability of definition 9
is used.

Forit e I,r € Z and w € h* we have :c Vo C Viyta,. So if V is integrable, for all

v eV, Ui.v is finite dimensional and there is mg = 1 such that for all i € I, r € Z,
m = my = (xlfr)m.v = (z;,)"v=0.
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Definition 10. The set P;" of dominant [-weights is the set of (A, V) € P, such that
there exist (Drinfel’d)-polynomials P;(z) € C[z] (i € I) of constant term 1 such that in
C|[[2]] (respectively in C[[z71]]):
deg(P;) Pi(zq;
Dm0 Wiy 2 = g L),
In particular, for all ¢ € I, A(ay) = deg(P;) > 0, and so A € PT is a dominant
weight.

Theorem 13. For (A, V) € P,, L(\, V) is integrable if and only if (\,¥) € P;*.

If g is finite (the case of a quantum affine algebra), it is a result of Chari—Pressley in
[CP3] (“if” part) and in [CP4] (“only if” part). Moreover, in this case the integrable
L(A, U) are finite dimensional. If g is symmetric, the result is geometrically proved by
Nakajima in [N1]. If C is of type Asll) (toroidal s/l;—case), the result is algebraically
proved by Miki in [M1].

For the general case we propose a proof similar to the proof given by Chari—Pressley
in the finite case. For A € h* denote D(A\) = {w € h* | w < A}

Proof. The proof uses the result for Uq(s/l\g) which is proved in [CP1] and [CP3].

First suppose that L = L(\, ¥) is integrable, and for i € I let L; be the ﬁi—submodule
of L generated by the highest weight vector v. It is an [-highest weight U, (s/l\g)-module
of highest weight (A(ev)), ‘Ilzi) As L is integrable, L; is finite dimensional. So the result
for Uy, (S/l\g) gives P;(z) € C[z] such that

+ m deg(P;) Pi(z ;1 .
Zm>0 \Ili,imzi =gq el )% s M) = deg(P;) = 0.

Now we prove that L = L(\, ¥) = U, (g).v is integrable where (\, ¥) € P;". It suffices
to prove that

(1) for all p < A, if L, # {0}, then there exists M > 0 such that m > M =
Ly—ma; = Lytyma, =0 for all i € I;
(2) for all u < A, dim(L,) < oo.

The proof goes roughly as in [CP3, Section 5|, with the following modifications.

For (1): the existence of M for L, {ma, = 0 is clear because the weights of L are
in D(A). Put r¥ = max{—C,; | i # j}. In particular, if C' is finite, we have r¥ < 3.
First we prove that for m > 0, the space L, ., is spanned by vectors of the form
Xl_:ci_hk1 .. .X,L_:Ei_}“thh_H.v, where A — u = o, + ...+, ki,...,kn € Z, X is of
the form X; = :ci_’ll’p .. 'xi_,lmp,p where m1 + ... + mp1 = m and mq,...,my < 1V
(which is the crucial condition). It is proved by induction on h (see [CP3, Section 5(e)])
with the help of relations (10). Note that in [CP3], ¥ = 3. Now it suffices to prove that
Tj}-.v is finite dimensional: indeed, if m > rVh + dim((A]i.v), we have mp41 > dim((A]i.v)
and X, ;.v = 0. It is shown exactly as in [CP2, Lemma 2.3] that Us.v is irreducible as
ﬁi—module, and so is finite dimensional.

For (2): let us write A — u = a;, + ...+ a;,. The result is proved by induction on
h. We have seen that (71-.1) is finite dimensional. The induction is shown exactly as in
[CP3, Section 5(b)] by considering the Ly, +q, and with the help of relation (9). O
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4.3. Category O(U,(g))

In the following discussion, by subcategory we mean full subcategory.

Definition 11. A U,(h)-module V is said to be in the category O(Uy(h)) if
(i) V is Uy(h)-diagonalizable;
(ii) for all w € h*, dim(V,,) < oc;
(iii) there is a finite number of element A1,...,As € h* such that the weights of V'
are in U,_; D).

A U, (g)-module (respectively a U, (g)-module) is said to be in the category O(Uy(g))
(respectively O(U,(g))) if it is in the category O(Uy(h)) as a Uy (h)-module.

In particular, we have a restriction functor res : O(U,(g)) — O(Uy(g)).

For example a highest weight U, (g)-module is in the category O(U,(g)) and the
product ® is well defined on O(U,(g)). An integrable I-highest weight module is in the
category O(Uy(g)). But in general an [-highest weight module is not in the category
O(U,(g)). Indeed (C,[z] is the space of polynomials of degree lower than r), we have
the following lemma.

Lemma 14. Consider an l-weight (w,¥) € P, andi € I. If dim(L(w, ¥)y_q,;) =7 € N,
then there is P(z) € C,[z] such that P(z)¥;(z) = 0, where U;(z) = Zr>0(\IIZT_z’“ -
U 277,

In particular, the existence of P(z) € C[z] such that P(2)¥;(z) =0, for all i € I, is
a necessary condition for L(w, ¥) € O(U,(g)).

Proof. Let vg,v1,...,0, € L(w, ¥) such that
L(w,¥), =Cvy, Lw,V)y—o, =Cu1®...®Co,.

Form e Zlet ¥, ,,, = ‘Il;-"’m — W7 . Asxf .vg =0, we have:

i,m"

+

xi,m

1
—T \Ili,erm’UO-

Lims-Vo = qi—4q;

As z;,,.v0 € L(w,¥)y—q, and mZm.Uj € L(w, V), there are M, u?, € C (m € Z,1 <
j < r) such that

— a1 r + o
Ty V0 = A 01+ o+ A Uy T, V5 = i, V0.

J

In particular, we have W, pim/ = (¢ — q[l) ijl oA We set

N(z) = Zm/EZ )\fn,zm/, U,(2) = 27,20 \I/Z,,,ZT S TR

and we have
2T(2) = (g — 4 ) X jer e BN (2)-

So U;(2),2%,(2),...,2"¥;(z) are not linearly independent. O
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5. g-characters

For a quantum Kac—Moody algebra, one can define a character morphism as in the
classical case. For quantum affine algebras a more precise morphism, called morphism of
g-characters, was introduced by Frenkel-Reshetikhin [FR] (in particular, to distinguish
finite dimensional representations). In this section we generalize the construction of g-
characters to quantum affinizations. The technical point is to add terms ky (A € h*) to
make it well defined in the general case. We prove a symmetry property of g-characters
that generalizes a result of Frenkel-Mukhin: the image of x4 is the intersection of the
kernels of screening operators (Theorem 26).

5.1. Reminder: classical character

Let Uy(g) be a quantum Kac-Moody algebra. Let £ C (h*)% be the subset of ¢ : h* — Z
such that ¢(\) = 0 for A outside the union of a finite number of sets of the form D(u).
For A € h* denote e(\) € &£ such that e(A)(u) = dx,. € has a natural structure of
commutative Z-algebra such that e(A)e(u) = e(A + p) (see [Ka]).

The classical character is the map ch : O(U,(g)) — € such that for V e OU,(g)),

ch(V) =3, cp- dim(Ve )e(w).
The map ch is a ring morphism and ch(L(w1)) = ch(L(w2)) = w1 = wa.
5.2. Formal character

Let U,(g) be a quantum affinization. In general the map chores does not distinguish the
snnple integrable representations in O(U,(g)). That is why Frenkel-Reshetikhin [FR]
introduced the theory of g-characters for quantum affine algebras. We generalize the
construction for quantum affinizations.
Let V be in O(Uy(g)). For w € bh*, the subspace V,, C V is stable by the operators
i[im (i € I, m > 0). Moreover, they commute, and [¢: k] = 0, so we have a
pseudo-weight space decomposition

Vo =®ywmen Vo

where V,, ,, is a simultaneous generalized eigenspace:
Vs ={zeV,|IpeNVie{l,....n},Vm > 0,(6; 4, — ¥ipm)-2 =0}

As V,, is finite dimensional the V,, ,, are finite dimensional.
Let & C PP be the ring of maps ¢ : P, — Z such that ¢(\, ) = 0 for X outside the
union of a finite number of sets of the form D(u).

Definition 12. The formal character of a module V in the category O(U,(g)) is chy(V)
€ & defined by

i,m?

chy(V) =22 umep dim(Vyr)e(p, T).
We have the following commutative diagram

OU,(3) — &

-| o

OWUy(g)) —2— €

where 3 : £ — £ is constructed from the first projection m : P, — P.



182 DAVID HERNANDEZ

5.3. Morphism of ¢g-characters

Show that the combinatorics of formal characters can be studied with a morphism of
g-characters x, which is defined on a category Oing(Uy())-

The category Ot (Uy(8)). Denote by Oine(Uy(g)) (respectively Oing(Uy(g))) the category
of integrable representations in the category O(U,(g)) (respectively O(U,(g))). For
example a simple integrable [-highest weight U, (g)-modules is in Oy (Uy(g)). Moreover,
we have the following statement.

Proposition 15. For V, a module in Oin(Uy(g)), there are P\ gy = 0 (A, ¥) € P")
such that:

Chq(V) = Z(A,@)GPﬁ P()\,\I;)Chq(L(A, \I/))
Proof. We have two preliminary points:

(1) a submodule and a quotient of an integrable module is integrable;

(2) if V € Oine(Uy(g)) and g is a maximal weight of V, then there is v € V}, such
that U,(g).v is an [-highest weight module: indeed, for (u,7y) € P, such that
Viuy # {0}, there is v € V), , — {0} such that for alli € I,r > 0, qﬁfﬂ.v = %?’tirv
(because for all i € I,r >0, Ker(qﬁfﬂ - vf’tir) NV #{0}).

The end of the proof is essentially made in [Ka, Proposition 9.7]. First we prove
that for A € h* there exists a filtration V=V, D V,_1 D ... D Vi1 D Vy =0bya
sequence of submodules in Oing(Uy(g)) and J C {1,...,¢} such that: (i) if j € J, then
Vj/Vi—1 =~ L(\;, ;) for some (A\;,¥;) € P such that \; > X; (ii) if j ¢ J, then
(Vj/Vi—1)u = 0 for every u > A (see [Ka, Lemma 9.6]). Next, for (u, ¥) € P, fix A
such that 4 > A and introduce P, g) the number of times (u, V') appears among the
(Aj, ;) (it is independent of the choice of the filtration and of p). We conclude as in
[Ka, Proposition 9.7]. O

Definition 13. QP is the set of (u,7) € P, satisfying the following conditions:
(i) there exist polynomials Q;(z), R;(z) € C[z] (i € I) of constant term 1 such that
in C[[2]] (respectively in C[[z71]]):

+ +m _ deg(Qi)—deg(R;) Qi(zq; ) Ril(2a:) .
Zm)O Vi, +m?® =4 Qi(2q:)Ri(2q; )’

(i) there exist w € P*, a € QT satisfying = w — a.
In particular, Pfr C QPZJF.

Proposition 16. Let V be a module in Oin(Uy(8)) and (u,7) € P,. If dim(V,, ) > 0,
then (u,7) € QB

Proof. The existence of the polynomials is shown as in [FR, Proposition 1]: it reduces
to the sls-case because for v € V, U;.v is finite dimensional. The existence of w € P
and a € Q7 is a consequence of Proposition 15 and Theorem 13. O



QUANTUM AFFINIZATIONS AND FUSION PRODUCT 183

Construction of q-characters. Consider formal variables Yﬁa (i € I,a € C*) and k,

(web). Let A be the commutative group of monomials of the form

um,a( )
m = licraec Yia " Ko(m),

(ko = 1), where only a finite number of u; ,(m) € Z are nonzero, w(m) € § (the coweight
of m), and such that for i € I,

ai(w(m)) = riui(m) =1 3 ,cc Wia(m).

The product is given by w; q(mime) = u; q(M1) + wiq(m2) and w(mims) = w(my) +
w(ma).

For example, for i € I,a € C*, we have k,,,)Yi . € A because forj eI, aj(v(w;)) =
wi(v(ay)) = rjwi(e) = rjdi ;. For (u,T) € QP we define Y, r € A by

_ ﬁi,a_’)’i,a
YMF = kl/(;t) HieI,ae(C* Yi,a )

where ;4,70 € Z are defined by Q;(u) = []
ua)¥+. We have Y, r € A because for i € 1,

ae({j*(l - ua)ﬁi’a ; Rl(u) = Haec*(l -

ai(v(p) = p(v(aq)) = rip(ay’) = ri(deg(Q:) — deg(R;)) = riui(Yur)-

For x € AZ we say x € Y if there is a finite number of element A{,...,As € b* such
that the coweights of monomials of x are in ;_, _,v(D(};)). In particular, Y has a
structure of h-graded Z-algebra.

Definition 14. The g-character of a module V' € Oin(Uy(9)) is
Xq(V) = Z(#,F)erﬁ d(p, F)YM,F €D,

where d(u,I") € Z is defined by chy(V) = Z(M,F)GQPﬁ d(p,T)e(p, I).

We have a commutative diagram

O Uy(g) —2— €

where for m € A, B(m) = e(w(m)).

If C'is of finite type, then the weight of a monomial m € YVisw(m)=>_,; ui(m)v(w;).
So we can forget the kj, and we get the g-characters defined in [FR]. In this case the
integrable simple modules are finite dimensional.

Note that in the same way one can define the g-character of a finite dimensional
Uy (h)-module.
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Morphism of q-characters. Denote by Rep(Uy(g)) (respectively Rep(U,(g))) the Gro-
thendieck group generated by the modules V' in Oing(Uy(g)) (respectively Oing(Uy(9)))
which have a composition series (a sequence of modules V2 Vi D V5 D ... such that
Vi / Vit is irreducible).

The tensor product defines a ring structure on Rep(U,(g)) and ch gives a ring mor-
phism x : Rep(U,(g)) — €. The g-characters are compatible with exact sequences
and so we get a group morphism y, : Rep(U,(g)) — Y which is called morphism of
g-characters.

Proposition 17. The morphism x4 is injective and the following diagram is commu-
tative: N
Rep(Uy(9)) —— Y

l lg

Rep(Uy () ——

The commutativity of the diagram follows from the definition. To see that x4 is
injective, let us give some definitions.

A monomial m € A is said to be dominant if u; o(m) > 0 for alli € I,a € C*. If an I-
weight (w, ¥) belongs to Pl+, then Y, ¢) € A is dominant. Moreover, the map (w, ¥) —
Y(,, v defines a bijection between PZJr and dominant monomials. For m € E, a dominant
monomial, we denote by L(m) € ) the g-character of L(w, V), where (w, V) is the
corresponding dominant I-weight. In particular, L(m) = m+monomials of lower weight
(in the sense of the ordering on P), and so the L(m) are linearly independent.

A module with composition series is determined in the Grothendieck group by the
multiplicity of the simple modules, and we have seen that yq(L(A, ¥)) (A, ¥) € P)
are linearly independent in Y. So x4 is injective.

5.4. g-characters and universal R-matrix

The original definition of ¢g-characters ([FR]) was based on an explicit formula for the
universal R-matrix established in [KT], [LSS], and [Da]. In general no universal R-
matrix has been defined for a quantum affinization. However g-characters can be ob-
tained with a piece of the formula of an “R-matrix” in the same spirit as the original
approach.

We refer to [Gu, Chapter 3] for general background on h-formal deformations. Con-
sider Uy (g) the C[[h]]-algebra, which is h-topologically generated by h and the :cfr
(iel,reZ), him (i €I,meZ—{0})and with the relations of U,(g) (where we set

-~

for w € b, k, = exp(hw)). The subalgebra U, (h) C Un(g) is h-topologically generated
by b and him (i € I,m € Z —{0}).

If V is a Uy(g)-module (respectively Uq(a)—module) which is U, (h)-diagonalizable,
then we have an algebra morphism my (h) : Up(g) — End(V)[[h]] (respectively my (h) :

-~

Un(h) — End(V)[[R]]). (Remark: for A € h*, w € h, v € Vi we set w.v = A(w)v).

-~

Define R® and T' in Uy, (h)&U(h) C Un(§)@UR(G) (h-topological completion of the
tensor product) by the formula

RO — exp(—(q —qY Zi,jel,m>0 ﬁém (@R @ hj,—m);
T = eXp(fh Zl§i<2n—l wz\/ ® I/(al))
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Remark 4. We have the usual property of T' (see [FR]): for \,u € b*, z € V), y € V,,
we have T.(z ® y) = ¢~ M (2 ® y). Indeed,

21@'@”—1 Mw )p(v(ei)) = (N,Z1<ig2n_z A(W'E/)ai) = (1, A).

For i € I,m € Z — {0} denote h; ,, = djer C;.i(¢™)hj.m. We have an inclusion A C
Up(H) because the elements Yﬁa = kzu(w)exp(Fg — ) X sa hma_mﬁi7m) € Un(9)
(i € I,a € C*) are algebraically independent.

Theorem 18. ForV, a finite dimensional L{q(a)—module, ((Tryomy (h))®Id)(R°T)) €

~

Un(h) is equal to xq(V).
Proof. For (X, ¥) € Py consider V(, y) and ((Try,, ,, 0 7y, 4, (h)) @ Id)(R°T). First we

see as in [FR] that the term Ro gives [[;c; sec- Y;;’“(Y*‘q'). But we have

Z1<i<2n_l AMw v(a;) = V(Z1gi<2n_l )‘(W;/)O‘i) =v(}),

and so T gives k_,y). U

In general for V' € O (Uy(8)) we can consider a filtration (V;);>o of finite dimen-

sional sub U, (h)-modules of V' such that P, -,V = V; so x4(V) is the “limit” of the
((Try, o my. (k) ® Id)(ROT) in Y.

5.5. Combinatorics of g-characters

In this section we prove a symmetry property of general g-characters: the image of x,
is the intersection of the kernels of screening operators (Theorem 26). Our proof is
analog to the proof used by Frenkel-Mukhin [FM] for quantum affine algebras; however
new technical points are involved because of the k) and infinite sums. In particular, it
shows that those g-characters are the combinatorial objects considered in [H3] (which
were constructed in the kernel of screening operators).

In Sections 5.5 and 6 we suppose that C(z) is invertible (it includes the cases of
quantum affine algebras and quantum toroidal algebras, see Section 2). We write C () =

2’((5)) where d(z), @'J(z) € Z[z%]. For r € Z let p; ;(r) = [(D(2)C"(2))i;)r, Where for a

Laurent polynomial P(z) € Z[z%] we put P(z) =Y, ,[P(2)],2".

Construction of screening operators. Let Y™ C ) be the subset consisting of those
X € Y satisfying the following property: if A is the coweight of a monomial of y, there
is K > 0 such that k > K implies that for all i € I, A + kr;a; is not the coweight of a
monomial of x.

Lemma 19. Y™ is a subalgebra of ¥ and Im(x,) C Y.

Consider the free Y'"-module Y; = [locc- YintS; , and the linear map S, yint .,y
such that, for a monomial m,

§Z(m) =m Zae(c* Ui,a(m)si,a-

In particular, gl is a derivation. Let us choose a representative a for each class of C* /g~
and consider

yz’ = HaGC*/q?Z ylmSi,a-
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For i € I and a € C* we set
1
Aia = ki 00 Yiaa [1j/0, <0, r=c;. 41,0548, —Cpi=1 Yiagr €A

We have A; , € A because for j € I, o (ria) = r:Cij = r;Cj.i = rju;(Asa).
We would like to see ); as a quotient of }; by the relations S; aq, = AiaS;

i,aq;
But the projection is not defined for all elements of ); because there are infinite sums.
However if x € Y™™ and m is a monomial of , there is a finite number of monomials
in x of the form mA; ! A~! CA7L or of the form mA SATE AT L So

i,aq; aq i,aq] q; i,aq; i,aq;
the projection on Y; is well defined on S’i(y“‘“) C yz-. In partlcular, we can define by
projection of S’VZ the i screening operator S; : Y™™ — ).

The original definition for the finite case is in [FR].

The morphism 7;. Some operators 7; (i € I) were defined for the finite case in [FM]. We
generalize the construction and the properties of the operators 7; (Lemma 20 and 21).
Let i € I. Denote b+ = {w € h/a;(w) = 0}. Consider formal variables A (rez),
ko (w € ), Yi (a€C*), Zj. (j € I-{i}, c € C*). Let A be the commutative group
of monomlals
(1) u7 a(m) z C(m)
m= kr(m) w(m) HaeC* HJEI,];ﬁz ceCx J ’
where only a finite number of u; ,(m), zj,c(m), r(m) € Z are nonzero, w(m) € hi- and
such that r(m) = rju;(m) = r; > a € C*u; o(m). The product is defined as for A. We
call (r(m),w(m)) € Z x h;- the coweight of the monomial m.
Let 7; : A — A® Dbe the group morphism defined by (j € I, a € C*, A € h)
Ti(Via) = Yiu Mg, ven Ziy s Tilka) = k)

k,aq" ()\)k _

(Note that it is a formal definition because Yj .k, ;) € Abut Y, ¢ A). It is well
defined because for m € A, a;(w(m)) = riui(m) and a;(w(m) — a (w(m))%) = 0.

Lemma 20. The morphism 7; is injective and for a € C* we have

Ti(Aia) = kDY, o1 Yiag,-

i,aq;

Proof. Let m € A such that 7;(m) =
For k € I, a € C* denote uy,q(m)(2)
have

0= 2j.0qn (7 (M) = Ce 1, rrmi P (7 Vttaqr (m) = [Cer Gy (2)un,a(m)(2)] .

As 5(2) is invertible, we get uy o(m) = 0 for all a € C*. In particular, for j € I we have

1. For a € C* we have u; a(m) = U; o(1i(Mm)) = 0.
= ez Ukaqr(Mm)z" € Lz £]. For j € I — {i}, we

a;(w(m)) = rjuj(m) = 0. But w(m) — ozi(cu(m))agV =0=w(m), and so m = 1.

For the second point let M = 7;(A4;4). First for b € C*, u; py(M) = u;p(Aia)
Safvgi + 0gpq1- For R € Z and j # i we have zjq4n r(M) = [(C"(2)C(2))ij]r
[(d(z)D(z)v)i,j]R = 0. Finally we have r(M) = rai()) = —2r; and w(M) = r;a)f —

rioi(oy )5 =0. O
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Formally we have 7;(k;) = ké?q, and for j € I — {i}, n(k;) = kzg]) k @y, where

i iy
oV = rjo — %OLLV This motivates the following definition: for (r,w) € Z x bi-
denote by D(r,w) the set

(", W) € Zxb} | W' = w0y mjal), 1! = =3y oy Bygmg—2rik/mj, k > 0},

Define Y < (A@D)Z as the set of x such that
(i) there is a finite number of elements (r1,w1),. .., (rs,ws) € Z x h;i- such that the

coweights of monomials of x are in (J;_; ,D(rj,w;);

(ii) for (r,\) the coweight of a monomial of x there is K > 0 such that k > K
implies that for all j € I, j # ¢, (r £ Bk, A+ k;ozg-i)) and (r &+ 2kr;, \) are not
the coweight of a monomial of y.

In particular, Y™ has a structure of Z x hi-graded Z-algebra.

The morphism 7; can be extended to a unique morphism of Z-algebra 7; : Y™t —

Yirt:() - Denote by Xfl the morphism of g-characters for the algebra Uy, (S/l\g)

A~

Lemma 21. Consider V. € Oin(Uy(g)) and a decomposition 7;(xq(V)) = >, PeQk;
where Py, € Z[Y;’iakgi]aec*, Qy. is a monomial in Z[ZE

j,c? kh]j#i,ae@*,hehf and all mono-
mials Q. are distinct. Then there exists a Uy-module @, Vi, isomorphic to the restriction

of V to U; and such that X4 (Vi) = P

Proof. Let U, (i)\)lL the subalgebra of U, (g) generated by the ky (h € bi), hjm (j # i,
m € Z—{0}). We can apply the proof of [FM, Lemma 3.4] with U; and U,(h); because

(i) Ui and U, ()+ commute in U, (9);
(ii) the image w — a;(w)%- in b of w € b suffices to encode the action of the kj,
(h € b}) on a vector of weight v~ (w) = \. Indeed for h € b3, we have

4

A(h) = (v=H(h), v Hw)) = v (M)(w) = v H(h)(w — w(e)F)

because a;(h) =0 = v~ (o)) =0. O

7; and screening operators. In this section we prove that Im(x,) C Ker(S;) (Proposi-
tion 23) with a generalization of the proof of Frenkel-Mukhin [FM].

Consider the Y% _module )71(2) = Haec*)}int’(i)&,a and the linear map S; : Yt —

)71@ such that, for a monomial m,
Si(m) =m Zaec* Uj 0 (M)Siq-
In particular, S; is a derivation. Consider yi(“ = HaeC*/q”‘ yint’@siya. By the relations

Siaq = YiaaY; g 1ksi S, 0o

9 " d,aq; i,aq;

E—(yint’(i)) C 371(2) can be projected in yi“), and we get a derivation that we denote also
by S; : yint:(i) yf“.

We also define a map 7; : V; — y§“ in an obvious way (with the help of Lemma 20).
We see as in [FM, Lemma 5.4] that the following lemma holds.
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Lemma 22. We have a commutative diagram

ym 2y,

| I

yint,(i) Si y(")

With the help of Lemmas 20, 21, and 22 we obtain as in [FM, Corollary 5.5] the
following statement.

Lemma 23. We have Im(x4) C () Ker(S;).
iel

In the following we denote R&; = Ker(S;) and & = (,¢; &i.

Lemma 24. An element x € Y™ is in & if and only if it can be written in the
form x = >, PeQr where Py € Zky,,)Yia(l + A7l Vaccs, Qr is a monomial in

1,aq;
1 . A
Z[Yjﬂ7 kzh]j#’aec*,heP;,L, and all monomials Q) are distinct.

Proof. We use the result for the slp-case which is proved in [FR]. First an element of
this form is in &;. Consider x € &; and write 7,(x) = Y, P{Q), as in Lemma 21. From
Lemma 22 we have 0 = S;(x) = >, Si(P{)Qk. So all S;(P}) = 0 and it follows from
the sly-case that P}, € Z[Yi,ak,(nf) +Yijat? k(j)m]aec*. Lemma 20 leads us to the conclusion.
O

Description of Im(x,). Dominant monomials are defined in Section 5.3. We have the
following lemma.

Lemma 25. An element x € R has at least one dominant monomial.

With the help of Lemma 24 we can use the proof of [FM, Lemma 5.6] (see also the
proof of [H1, Theorem 4.9] at ¢ = 1).

Theorem 26. We have Im(xq) = 8. Moreover, the elements of & are the sums:

Zm dominant )‘mL(m)a

where Ay, = 0 for w(m) outside the union of a finite number of sets of the form D(u).

Proof. The inclusion Im(x,) C £ is proved in Lemma 23. For the other one, consider
X € R We can suppose that the weights of x are in a set D(\) (because the weights of
each L(m) are in a set D(u)). We define by induction L¥)(m) € Im(x,) (k = 0) in the
following way: we set L(®) = 2 w(my=rX]mL(m). If L™ is defined, we consider the set
gk+1 of monomials m’ which appear in xy — L™ such that A — w(m') =miriay +...+
MpTpa, , where my,...,my, >0 and my + ... +m, = k. We set

LD = L®) 4 3 [x = LO]y L(m).

m’Ezzk+1
Then we set L
that L>* =y. O

Note that Proposition 15 provides that for x4(V) (V module in Oin(Uy(8))) the Ay,
are nonnegative.

= Zkgo/meﬁk[L(k)]mL(m) € Im(xq), and it follows from Lemma 25
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Remark 5. For m € Z, a dominant monomial, we prove in the same way that there is a
unique F(m) € & such that m has coefficient 1 in F(m) and m is the unique dominant
monomial in F'(m). In the finite case an algorithm was given by Frenkel-Mukhin [FM] to
compute the F(m). In [H3] we extended the definition of the algorithm for generalized
Cartan matrix and showed that it is well defined if ¢ # j = C; ;C;; < 3 (see also [H2]
for the detailed description of this algorithm at ¢ = 1). Theorem 26 allows us to prove
two results announced in [H3]: the algorithm is well defined for

Agl) (with 71 = ro = 2) because det(C(z)) = 2 — 2% — 272+ 271 £ 0, and

AY) (with ry =4, ry = 1) because det(C(z)) = 2° — 2 — 2~ 1 4+ 275 £ 0.
But for Agl) (with r; = ro = 1) we have det(C(z)) = 0; we observed in [H3] that the
algorithm is not well defined in this case.

6. Drinfel’d new coproduct and fusion product

Our study of combinatorics of g-characters gives a ring structure on Im(y,) (Corol-
lary 27). As x4 is injective, we get an induced ring structure on the Grothendieck
group. In this section we prove that it is a fusion product (Theorem 28), that is to
say that the product of two modules is a module. We use the Drinfel’d new coproduct
(Proposition 29); as it involves infinite sums, we have to work in a larger category where
the tensor product is well defined (Theorem 30). To end the proof of Theorem 28 we
define specializations of certain forms which allow us to go from the larger category to
O(U,(g)). Note that in our construction we do not assume that C(z) is invertible.

6.1. Fusion product

As the S; are derivations, Theorem 26 gives the following corollary.
Corollary 27. Im(x,) is a subring of Y.

Since x4 is injective on Rep(Uy,(g)), the product of Y gives an induced commutative
product * on Rep(Uy(g)). For (A, ¥), (N, ¥’) € P there are Qx w,x v (1, ®) € Z such
that

L)« LN, W) = LA+ N, 00 + Z(lt7‘I’)EPl+/;t<)\+)\' Qx,w )\, (t, @)L (s, D).

We will interpret this product as a fusion product related to the basis of simple modules,
that is to say we will show that a product of modules is a module (see [F] for generalities
on fusion rings and physical motivations). Let us explain it in more detail. Consider

RePJr(uq(ﬁ)) = 69(>\,‘11)GPL+ N.L(A\, W) C Rep(Uy(a)) = GB(A,‘I!)GPL+ Z.L(A, ).

Theorem 28. The subset Rep™t (U, (§)) C Rep(U,(q)) is stable by *.

In this section we prove this theorem by interpreting * with the help of a gene-
ralization of the new Drinfel’d coproduct. Note that Theorem 28 means that for
()\, \I/), ()\/, \I//) S ]DlJr we have Qx v\, v (ILL, (I)) > 0.

6.2. Coproduct

Reminder: case of a quantum affine algebra and Drinfel’d—Jimbo coproduct. As said
before, the case of a quantum affine algebra is a very special one because there are two
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realizations (if we add a central charge); in particular, there is a coproduct on U,(g),
a tensor product on Oin(Uy(9)), and Rep(U,(g)) is a ring. It is the product x because
it is shown in [FR] that x4 is a ring morphism. In particular, the tensor product is
commutative. So Theorem 28 is proved in this case.

General case: new Drinfel’d coproduct. In general we have a coproduct AB t Uy (E) —
U, (E) ® Uy (E) for the commutative algebra Z/lq(a) defined by (h € P*, i€ I, m #0):

Aﬁ(kh) = kh®kha Ag(hz,m) - 1®hz,m+hz,m®]—

In particular, we have (i € I,m > 0): A (¢;; £ )= ZO<l<m it (m—t) © (;51 10
No coproduct has been defined for the entire U, (g). However Drinfel’d (unpublished

note, see also [DI] and [DF]) defined for Z/lq(s/l;) a map which behaves as a new coproduct
adapted to the affinization realization. In this section we use those formulas for general
quantum affinizations; as infinite sums are involved, we use a formal parameter u so
that it makes sense.

Let C = C((u)) be the field of Laurent series »- - pA-u” (R € Z, Ay € C). The

algebra U, (g) is defined in Section 3.3. Consider the C-algebra U/ (@) =C® U, ()
(respectively U, (g) = C ® Uy(g)). Let Z/l’( )®Z/l’( ) = (L{ (g )®CZ/1 (9))((u)) be the
u-topological completion of LZ; (9) ®c L[é( ). Tt is also a C-algebra.

Proposition 29. There is a unique morphism of C-algebra A, :Zjlé( ) — U o (g )®U (9)
such that forie I, reZ, m >0, he€bh,

(mj_r) = ‘r'-ii,_r ®L+3 5 “TH(‘bi—,fz ® x:wrz)a
Ay(z;,) =u"(1@z;,)+ > 50 ul(x;,r—l ® ¢:,rl)v
Au(‘ﬁﬂ:m) = Zoglgm “il(qf,i(m—l) ® Qﬁ,[:tl)? Au(kh) = kn ® k.

Proof. We can easily check the compatibility with relations (11), (12), (13), (14), (15),
and (16) because A,, can also be given in terms of the currents considered in Section 3.2:

we have in (ﬁé(ﬁ) Qc Zjlé@))[[za 1]

Au(zf ()= (2) @ 1+ ¢; (2) @ 2] (2u), Au(zy (2))=1® a7 (2u) + 27 (2) ® ¢ (2u),
Au(97(2)) = 67 (2) @ 67 (zu). O

Remark 6. If C is finite or simply laced, then A, is compatible with the affine quantum
Serre relations (relations (10)) and can be defined for ¢ (g) (see [DI] for finite symmetric
cases and [E], [Gr] for other finite cases). We conjecture that it is also true for general
C, but we do not need it for our purposes.

Remark 7. Let T : U (A) — L?; (@) be the Z-gradation morphism defined by T'(z7,) =
T} :, (¢> ) = umqbl s L' (kp) = kp. The uis put in such a way that A, = (Id®T)oA,
Where A is the usual new Drinfel’d coproduct (without u).
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Remark 8. The map A, is not coassociative. Indeed, in (1/7; (8) ®c LZ; (9) ®c Lz; (9))[2]
we have

(Au ®1Id) 0 Ay)(¢7 () = ¢ (2) ® &7 (uz) @ ¢y (uz),
([d® Au) 0 Au)(9 (2)) = ¢7 (2) ® 7 (uz) ® ¢ (u?2).

Remark 9. Although is is not defined in a strict sense, the “limit” of A, at u = 1 is

coassociative. On Uq(a), the limit at u = 1 makes sense and is Ag.
6.3. Tensor products of representations of a; (9)

As the coproduct involves infinite sums, we have to introduce a category larger than
O(Uy(g)) in order to define tensor products.

The category O(Zjl; (9)).

Definition 15. The set of I, u-weights P, is the set of couple (A, ¥(u)) such that
€D, W) = (W, ()iermso, Wiy (u) € Clu,u™], and U(w) = .

i,tm
Definition 16. An object V of the category (’)(1/7; (9)) is a C-vector space with a struc-
ture of LN{; (g)-module such that
(i) V is Uy(h)-diagonalizable;
(ii) for all A € h*, the sub C-vector space V) C V is finite dimensional;
(iii) there are a finite number of elements A1, ..., As € h* such that the weights of V'
are in {J;_; D(N\));
(iv) for A e p*, V) = @(/\7\1,(@)6131,” Vir,w(u)), Where

View ={z €Va|IpeNVie {l,....n},Vr 20, (¢7s, — Uiy, (u)’ .z =0}

The property (iv) is added because C is not algebraically closed.

The scalar extension and the projection Uy (g) — Uy, (g) gives an injection i: O(Uy,(g)) —
O(U,(@)) such that for V€ OU,(g)), i(V) =V @C.

Let &, C PlZu be defined as &;. The formal character of a module V' in the category
OUy(9)) is

chgu(V) = Z(,t,r(u))epl,u dime (Vi r () Je(p, I'(w)) € Eu-

We have a map ig : & — &, such that ig((A, ¥)) = (A, (\I/f;nm)), and a commutative
diagram

OUy(8) —— &
O @) 2 &,

In an analogous way one defines the category O(Uj(g)) and a formal character ch, ,, on

OUy(9))-
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Tensor products. We consider subcategories of O(Zj{é (9)). Let ReZ, R>0

Definition 17. (’)R(Zj{' (9)) is the category of modules V € (’)(ZZ; (9)) such that for all
A € b*, there is a C-basis (v)), of Vy satisfying the properties:

(i) for all m € Z, a, B, the coefficient of z; v} on ’Unga’ (respectively of z; . .v}
on vg %) is in C[[u]] if m > 0, in uRm(C[[ ]] it m < 0;
ii) for all m >0, o, § the coefficient of ¢; _,, .v; on v} is in u”™EC[[u][;
B

P
(iii) for all m > 0, a, 3 the coefficient of ¢; on vg‘ is in C[[u]].

1,m" a

Example 2. For V € OU,(3)), we have i(V) € O°U,(§)).

Theorem 30. Let Vi € OU,(G)) and Vi € OR(ZZ;(E)). Then A, defines a structure
of Zj{(;(ﬁ)—module on (V1) ®c Vo which is in ORH(ZZQ(E)). Moreover, the I, u-weights of
i(V1) ®c Va are of the form (A1 + Ao, v1(2)v2(uz)) where (A1,71) is a l-weight of Vi and
(A2,72) is a l, u-weight of Vs.

Remark 10. v(u)(z) = v1(2)y2(uz) means that for i € I,m > 0,

%‘j,tim(“) = Zogzgm(’ﬂ)i,il(u)(’h)i,i(mfl)(U)Ui(m_l)-

Proof. As the definition of A, involves infinite sums, we have to prove that the action
formally defined by A, makes sense on V{ ®¢ V2 where we denote V{ = i(V;). Indeed
the weight spaces of V} and V4 are finite dimensional and for A\, u € h* we can use a
C-base (v1*)o of (V1) as a C-base of (V) and the C-basis (v a’,”) of (V3), given by

the definition of OR(ZZ;(E)). So consider A, u € h*, i € I and let us investigate the
coefficients (7’ €Z,m > 0).

We have :U (VO ® (V2)w) € (V)aa: @ (V2) @ (VA ® (V2) gt

on (V{)x ® (Va)uta:: the coefficient of z;, .(v1* @ v>/) on ’Uﬁ *® ’Uﬁ,lH_a’ is in

Yz HCl[u]] € C[[u]] if r > 0, in Zl>o uHuFCHCu]] € wFHITC[u]] if
r<0;
on (V{)ata; ® (Va)u: the coefficient of 7, (v3* @v>) on ’ué At ®v§}“ isin C.

We have z; ,.(V)x ® (V2)u) C (V{)a—a: ® (V2)u ® (VA @ (V2)pu—a.:

(V )x @ (Va)—a,: the coefficient of z,.(vi* ® v 21 on v & U2 B e i
"Cllu]] € Cllu]] if > 0, in w"u""C[[u]] if r < 0;
on (V1) —a; ® (V2)y: the coefficient of z; (v LA vi’,“) on ’ué Amai g vﬁ/, is in
[

2120 u'C[[u]] € C[[u]].
We have ¢fim.((V1')>\ ® (Va)u) C (V)a ® (Va)):

the coefficient of ¢, .(v,* ®v>/") on U ®Uﬁ’“ isin 0 < I < mu!C[[u]] € C[[u]];

the coefficient of ¢; _, .(v4* ®v>/) on v ®Uﬁ’“ is i Y gciem uuTBC[u]] ©
u”EFDC[u]).
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So we have a structure of Zj{é(ﬁ)-module on V/ ®c Va. Let us prove that it is in
O(ﬁ;(ﬁ)) We verify the properties of Definition 16: (i), (ii), and (iii) are clear be-
cause the restriction of A, to Uq(a) is the restriction of Ag. For (iv) we note that
for (A1,711), (A2,72) € Pru, the (V)4 @ (V2)a,,4, 18 in the pseudo weight space of
1, u-weight (A + Az, 71 (2)72(2u)) because A, (¢ (2)) = ¢ (2) @ ¢E(zu) (it also proves
the last point of the proposition).

Finally we see in the above computations that the coefficients verify the property of
OFTLU!(9)), so V] ®@c Va is in OF (1) (g)). O

Definition 18. For R > 0, we denote @ : O(Uy(g)) x OR(L?;(ﬁ)) — OR“(Z;{;@)) the
bilinear map constructed in Theorem 30.
See Section 6.6 for explicit examples. For R > 2 and Vi, Va,..., Vg € O(U,(g)), one
can define the iterated tensor product V4 ® g2 (V2 ®pg—3 (... ®9 Vg))...) which is in
R—1(771 (&
O™ Uy (9))-
6.4. Simple modules of LNII’I(ﬁ)

1, u-highest weight modules. For (A, ¥(u)) € Py, let M()\,\Il(u)) be the Verma Z];(/g\)
module of highest weight (A, ¥(u)) (it is nontrivial thanks to the triangular decomposi-
tion of ﬁq(ﬁ) in Lemma 9). So we have an analog of Proposition 12: for (A, U(u)) € P, ,,
there is a unique up to isomorphism simple Zj{(;(ﬁ)-module LA, U (u)) of I, u-highest
weight (X, ¥(u)), that is to say that there is v € L(X, ¥(u)) such that (i € I,r € Z,m >
0,h €b)

zh v =0, E()\, U(u)) = L?;(ﬁ).v, d)i[im.v = ‘I/i[im(u)v, knov = g™ .

7,7

In a similar way one defines the simple ¢, (g)-module L(X, ¥(u)) of I, u-highest weight
(A, ¥ (u)) (it is nontrivial thanks to Theorem 2).

Lemma 31. For (A, ¥(u)) € P, we have an isomorphism on/lq(H) -modules L(\, ¥(u))
~ L\, U(u)).

Proof. Let M'(A\,U(u)) C M(X, ¥(u)) be the maximal proper Z/N{;(ﬁ)—submodule of
M’()\, U(u)). It suffices to prove that 7_.1 is included in M’()\, U(u)) (see Section 3.3;
it implies that L(\, ¥(u)) is also a U, (g)-modules). It is a consequence of Lemma 10.

O
In particular, L(\, ¥(u)) € OU.(@)) < L\, ¥(u)) € OU,(G)), and in this case

chg,u (L(A, W(u))) = chgu (LA, ¥(u))).

o~

The category Ot (Uy(9))-
Definition 19. QPIJ; is the set of (A, ¥(u)) € B, satifying the following conditions:
(i) for i € I there exist polynomials Q; ,(2) = (1 — za; 1u®1) ... (1 — za; y,ubiN:),
Riw(2) = (1 —zciqudin) ... (1 - zcz-,Ni/ud""N{) (@i j,ci; € C* b j,d;; > 0) such
that in Clu,u™[[z]] (respectively in Clu,u~[[z7]]),

+ +r deg(Qi,u)—deg(Ri w) Q%,U(ZQ;I)Ri,u(ZQi) .
Zr}O lI/i,:l:r (U)Z =4q; Qi,u(zqi)Ri,u(qul) )
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(i) there exist w € P*, o € QT satisfying A = w — a.

PlJru is the set of (A, ¥(u)) € QPljfu such that one can choose R;, =1 (in this case
we denote P, = Qs u)-
Lemma 32. If (A, ¥(u)) € P, then L\, ¥(u)) € (’)(Z/N{;(ﬁ)) Moreover, for (u,y(u)) €
P, we have dim(L(A, U(u))pyywy) 7 0= (p,y(uw) € QPIZ
Remark 11. Tt follows from Lemma 31 that we have the same results for L(\, U(u)) €
OUy(9))-
Proof. Let (A, ¥(u)) € Pfru and decompose P; ,(z) in the form

Piu(z) = PO P (uz) ... PP (uB2),

where R > 0, Pi(k)(z) € Clz], Pi(k)(O) = 1for 0 < k < R (R can be taken large enough so
that we have this form for all i € I). For 0 < k < R, set \I/,Ek)(z) = q?eg(Pi(k))%
For 1 < k < R define A, = Y, deg(P")w; € h*. Set Ag = A— Y, _;  pAs. Then
for 0 < k < R the (A, ¥®) e Pt and we can consider L(\,, ¥) € OU,(3)). Let
V e OF(U](g)) be defined by

V =i(Lo, ¥ ) @p_1 (LA, TD)) @p_s ... D0 i(L(Ag, TE))) ...

Consider the Z]; (g) submodule L of V generated by the tensor product of the highest
weight vectors. It is a highest weight module of highest weight (A, ¥(u)). So L(\, ¥(u))
is a quotient of L and so is in (’)(Zj{; (9))-

For the second point it follows from Proposition 16 that the I, u-weight of 4 (L (A, ¥ *)))
are in QPIJ; So with the help of the last point of Theorem 30, we see that the [, u-

weights of V' are in QP[Z and we have the property for L(\, ¥(u)). O

Definition 20. Let (’)int(ljlé(ﬁ)) be the subcategory of modules V' € (9(?7{,; (g)) whose
[, u-weights are in QPl+u

Lemma 33. For a module V € Oy (U,

7 (9)) there are Py wew)) = 0 (A, ¥(u)) € Pl+u)
such that

chg,u(V) = Z()\’qj(u))epﬁru Pox,w(w))Chyu (LA, ¥(u)))
= S onwtunery, Povhou(LOL (@),
Proof. Analogous to the proof of Proposition 15 (the second identity follows from
Lemma 31). O

6.5. C[u*]-forms and specialization
Clu®]-forms. Let U () = Uy (8) ®c Clu™] C U)(g).
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Definition 21. A Clu*]-form of a U] (g)-module V is a sub-U{(g)-module L of V such
that the map C ®c[,+] L — V is an isomorphism of U (g)-module.

Note that it means that L generates V' as C-vector space and that some vectors which
are C[u®]-linearly independent in L are C-linearly independent in V.
Let us look at some examples.

Proposition 34. For (A, ¥(u)) € P, and v a highest weight vector of the Verma mod-
ule M(X\, W(u)) (respectively the simple module L(\, ¥ (u))), the U, (g)-module U (g).v
is a CluT]-form of M(\, ¥ (u)) (respectively of L(\, W(u))) which is isomorphic to the
Verma (respectively the simple) Uy (g)-module of l,u-highest weight (A, ¥(u)).

Proof. As (A, ¥(u)) is fixed, we omit it. M is the quotient of C @cU,(g) by the relations
generated by :cl?fr = gf)i[im — \Ilziim(u) = kp — ¢ = 0. So the relations between
monomials are in Clu®], and U¥(§).1 C M is a Clu*]-form of M. Moreover, those
relations are the same as in the construction of the Verma U} (g)-module M" as a
quotient of Clu®] ®c U,(g), and so U (g).1 ~ M*.

Let us look at L. Denote by L" the simple U,/ (g)-module of highest weight (X, ¥ (u)).
We have L = M /M’ (respectively L* = M“/M") where M’ (respectively M'") in the
maximal proper submodule of M (respectively M™).

The C-subspace M"" of M generated by M'" is isomorphic to C ®cp,+) M'" (because
M* is a C[u*]-form of M). As M" has no vector of weight ), it is a proper submodule of
M and M" C M'. Suppose that M’ # M" and consider M'/M" c M/M". M*/M"" is
a Clu*]-form of M/M". Let v be a nonzero highest weight vector of M’/M" and let us
write v = Y fa(u)va, where vy, € M*/M' and fu(u) € C (as there is a finite number
of fo(u), we can suppose that they are C[u*]-linearly independent). For alli € I,r € Z,
we have x;{’r.v = 0 and so for all «, xi‘r.va = 0. Fix w, € M*, whose image in M*/M""
isvy. Asforallie I,r € Z, x;fr.wa eM'™, Ug(ﬁ).wa is a proper submodule of M* and
we € M'™. So v =0, a contradiction. So M’ = M”. In particular, M’ ~ M"™ ®clu] C,
M NMY=M".

For v, a highest weight vector of L, the U/ (g).v ~ Uy'(g).1 = M"/(M"“ N M') =
MY/M"™ = L* is a C[u*]-form of L. O

Specializations. Consider p : £, — & the surjection such that p((A, ¥(u))) = (A, ¥(1)).
Lemma 35. Let V be in OU,(g)). If L is a CluF]-form of V then the specialization
L'=L/(1—u)L of L is in O(Uy(g)) and chy(L’) = p(chq (V).

Proof. Indeed for (p1,v(u)) € QP consider L, o)y = LNV, yu). Asp: L&cp)C — Vis
an isomorphism, we have V, -, =~ p_l(VMW(u)) = L, ~(u) @y C. In particular, L, -,
is a free C[u®] of rank dime(V,, (). So dime(L},) = dime(V,,), and L' € OUy(g)).
We can conclude because:

Ly = Qomvwner1m) Ernw/ (@ =1Ly yw). U

Proof of Theorem 28. For (\, ¥ (u)) € Pl"’u, it follows from Proposition 34 and Lemma 35
that p(chy (LA, ¥(u)))) is of the form chy(L), where L € Oy (Uy(8)), that is to say
p(chgu(L(A, ¥ (w)))) € chy(Rep™ (Uy(8))). So (Lemma 33) for V € Oint(U,(g)) we have
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p(chy.(V)) € chy(Rep™ (U, (g))). Consider Vi, Vo € Oine(Uy(g)). We have seen that
Plchg,u(i(V1) ®0i(V2))) € chg(Rep” (Uy())). But

p(chq,u(i(V1) ®0i(V2)) = chq(V1)chy(V2),

because the specialization of A, on Uq(a) at u = 1 is AE' This ends the proof of
Theorem 28. [
6.6. Example
We study in detail an example in the case g = sly where everything is computable thanks
to Jimbo’s evaluation morphism (see [CP3], [CP4]). In this case we have Uq(s/l\g)
Uy (512).

For a € C* consider V = L(1 — za) € (’)int(Uq(S/l\g)). V is two dimensional V'
Cuvo ® Cuy, and for r € Z, m > 1 the action of U, (s/l\g) is given in the following table

Vo U1
xt 0 a”vo
T, a" v, 0
¢%m | (g — g vy | F(g— g Vat ™o
k= qivo gty
(bi (Z) q171q:a2zaz'l}0 q—l %Ul

Remark 12. In this table ¢*(2) € U,(g)[[2*]] acts on V[[zF]].

For a,b € C*, let V = L(1 — za),W = L(1 — 2b) € Oin(Uy(g)). Consider basis
V = Cvg ® Cvy, W = Cwg ® Cw; as in the previous table. The tensor product ®q
defines an action of U (slz) on X = i(V)®ci(W) (see Theorem 30). X is a 4 dimensional

C-vector space of base {vo ® wo, v1 ® wp, v @ w1, v1 @wi }. The action of L{;(s/l\g) is given
by the following tables (r € Z)

Vo ® wo V1 @ wo
xt 0 a”(vo ® wo)
—2 1,
x| u"b" (v @ wy) + arql_lTﬂub“b(vl ® wo) u"b" (v1 @ wy) ’
1—q~2 1—q—%b 1—¢° 1—q—%b
(z)i (Z) q2 { glfzzgglfguz) = (UO ® ’wo) ( (({j;,z))((ljbuz)uZ) (Ul ® wo)
Vo @ Wy V1 @ Wy
2 —1 —2 -1
zf | g e A (v @ wo) | a7 (vo ® wi) + b g (v1 ® wp)
2. 1
v | e T 0w w) 0
1—q~2 1—q°bn _2(1=¢° 1—q°bn
(z)i (Z) { ([ifaazz))((lfbiz)UZ) (UO ® wl) q 2 (1%22172%[)“) (Ul ® wl)
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Remark 13. In these tables ¢*(z) € U, (g)[[2%]] acts on X [[zF]].
Consider the [-weights va,7,, 7, v, € Pi (A € h* can be omitted because sls is finite):

1—q—2 +
Ta(2) = 555 e (2) =a T ERE,

+ —q 2 + —11—¢°b
% () =T % () 1=,

Consider also vq(2)7s(uz), 74 (2)76(uz), va(2)7; (uz), Vo (2)7; (uz) € Py . We see that

chgu(X) = e(va(2)7(w2)) + €(va ()7 (12)) + e(va ()7 (u2)) + e(va(2) 75 (uz)).

Those [, u-weights are distinct, the [, u-weights spaces are 1 dimensional

X = (X)qu)mz) © (X)yz )9 (uz) B (X)ya(2)7g(uz) @ (X)ys (2)v (un)-

We see that X is of highest weight v, (2)7s(uz) € Py ,. Let us prove that it is simple.
Indeed, X has no proper submodule: if for all r € Z, ;7 .(a(v1 @ wo) + B(vo @ w1)) = 0,
then for all r € Z, aa”™ + ﬁb’“u”;qi#i?“ = 0. In particular, o + ﬁ% =0 and
a” —b"u" = 0 for all 7 € Z, which is impossible. So X ~ L(v,(2)v(uz)) as a L[é(s/l\g)—
module. It follows from Proposition 34 that X = U (G)-(vo ® wo) C X is a Clu*]-form
of X.

Let us look explicitly at this C[uT]-form. Consider ey, es,e3,e4 € X defined by

— -1 — —
e] =1 Qwy, €2 =1=x,.1, €3=—a Ty.el+ €2, €4 =(qr;.es.
We have the following formulas
_ _ 17q72a’1bu
e1 =vy ®wo, ez = (vo®@w1)+ gty (V1 ® wo),

es = (1—uba ) (vo®@w1), es=(v1®wr).

Moreover, the action of U (g) is given by the following tables(r € Z)

€1 e
() | PR e | SR e + s

€3 €4

b | buTg (1 — ¢Patbu)er | bTu"es + ar%eg

T, a”q (1 — ¢Pua=b)ey 0
4 (1— ’2az)(17 2buz) —2 (1= 2az)(17 2buz)
¢=(2) (C{—az)(l—b(iz) €3 q (1q—az)(1—guz)
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In particular, we see that C[u®]e; @ CluT]es @ C[ut]es @ Clut]ey is stable by the action
of U;'(g), and thus is equal to X. So we have verified that X ~ X ®¢[,=+C.

Let us describe the specialization of Xatu=1. Let X' = Ce; & Ces P (Ce;; @ Cey.
The action of Uy(g) on X' is given by (for z € C,r € Z, we denote [z], = 1= € Z[z%]
(z# 1) and [1];. = 7)

€1 €2
)t 0 (ga"la= 0]}y — g tba" " Ha ] )es
T, a"(ea —[abres) | (¢ 'a"[a7 by — gba" a0l y)es
+ (1—¢ %az)(1—q %bz2) (1—¢?az)(1—q2b2) az(¢>—q2)
¢ (2) | T hsa e e g €2t a0 €3

€3 €4

x| g (1 —q?a"tb)er | bTea +a”la"1b)les

x| amg (1 — q?a"th)ey 0
1—q 2az)(1—q¢%bz _2(1=¢?%az)(1—¢°bz
0% (2) | BHEEES e | e UL e

We see that X/ = U,(g).e1. Moreover, if ab=! ¢ {q¢? ¢~2}, then X' has no proper
submodule, because the formula z;} (es + Bes) = 0 means that for all r € Z,

a(ga’la™ blr1 — g~ ba” a7 B,) + B0 (1 = ¢*a”h) = 0,

which is possible only if ab=! € {¢?, ¢ 2} or a = 8= 0. So
— if ab™ ¢ {¢2,q72}, then X’ ~ L(y.y) is simple and chy(V)chy (W) =

ey (X7) = chy (L(ra7)): i
— if ab~! = ¢? (respectively ab—! = ¢2), then Cez C X' (respectively C((q? —
1)es +e3) C X') is a submodule of X’ isomorphic to L(1) and chy(V)chy(W) =

)
chy(X") = chy(L(ya7)) + chg(L(1)).
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