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Abstract. Let G be a reductive connected algebraic group over an algebraically closed field
of characteristic exponent p > 1. One of the aims of this paper is to present a picture of
the unipotent elements of G which should apply for arbitrary p and is as close as possible to
the picture for p = 1. Another aim is the study of By, the variety of Borel subgroups of G
containing a unipotent element u. It is known [Sp] that when p is a good prime, the [-adic
cohomology spaces of By are pure. We would like to prove a similar result in the case where p
is a bad prime. We present a method by which this can be achieved in a number of cases.

Introduction

0.1. Let k be an algebraically closed field of characteristic exponent p > 1. Let G be a
reductive connected algebraic group over k. Let U be the variety of unipotent elements
of G. The unipotent classes of G are the orbits of the conjugation action of G on U.
The theory of Dynkin and Kostant [Ko| provides a classification of unipotent classes of
G assuming that p = 1. It is known that this classification remains valid when p > 2
is assumed to be a good prime for G. But the analogous classification problem in the
case where p is a bad prime for GG is more complicated. In every case a classification
of unipotent classes is known: see [W] for classical groups and [E], [Sh], and [M] for
exceptional groups, but from these works it is difficult to see the general features of the
classification.

One of the aims of this paper is to present a picture of the unipotent elements which
should apply for arbitrary p and is as close as possible to the picture for p = 1.

In 1.4 we observe that the set of unipotent classes in G can be parametrized by a
set Sy of irreducible representations of the Weyl group W, which can be described a
priori purely in terms of the root system. This explains clearly why the classification is
different for small p.

In 1.1 we restate in a more precise form an observation of [L2] according to which U
is naturally partitioned into finitely many “unipotent pieces” which are locally closed
subvarieties stable under conjugation by G; the classification of unipotent pieces is in-
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dependent of p. For p = 1 or a good prime, each unipotent piece is a single conjugacy
class. When p is a bad prime, a unipotent piece is in general a union of several con-
jugacy classes. Also, each unipotent piece has some topological properties which are
independent of p (for example, over a finite field, the number of points of a unipotent
piece is given by a formula independent of the characteristic).

Another aim of this paper is the study of B,, the variety of Borel subgroups of G
containing a unipotent element u. It is known [Sp] that when p is a good prime, the
[-adic cohomology spaces of B, are pure. We would like to prove a similar result in the
case where p is a bad prime. We present a method by which this can be achieved in a
number of cases. Our strategy is to extend a technique from [DLP] in which (assuming
that p = 1), B, is analyzed by first partitioning it into finitely many smooth locally
closed subvarieties using relative position of a point in B, with a canonical parabolic
attached to u. Much of our effort is concerned with trying to eliminate reference to
the linearization procedure of Bass—Haboush (available only for p = 1), which was used
in an essential way in [DLP]. Our approach is based on a list of properties J31—Bs of
unipotent elements of which the first five (respectively last three) are expected to hold in
general (respectively in many cases). All these properties are verified for general linear
and symplectic groups (any p) in Sections 2 and 3. In writing Section 3 (on symplectic
groups mostly with p = 2), I found that the treatment in [W] is not sufficient for this
paper’s purposes; I therefore included a treatment which does not rely on [W].

Notation. When p > 1, we denote by k; an algebraic closure of the field with p elements.
Let B the variety of Borel subgroups of G. If I is a subgroup of a group I and x € T,
let Zr/(x) = {z € I | z& = xz}. For a finite set Z, let |Z| be the cardinal of Z. Let [
be a prime number invertible in k. For a,b € Z let [a,b] = {z € Z | a < z < b}.

1. Some properties of unipotent elements

1.1. G acts by conjugation on Hom(k*,G) (homomorphisms of algebraic groups).
The set of orbits Hom(k*,G)/G is naturally in bijection with the analogous set
Hom(C*,G")/G’, where G’ is a connected reductive group over C of the same type
as G. (Both sets may be identified with the set of Weyl group orbits on the group of 1-
parameter subgroups of some maximal torus.) Let EG/ be the set of all w € Hom(C*, G")
such that there exists a homomorphism of algebraic groups w: SLy(C) — G’ with
@l t91] = w(t) for all t € C*. Now D¢ is (/-stable; it has been described explic-
itly by Dynkin. Let EG be the unique G-stable subset of Hom(k*, G) whose image
in Hom(k*,G)/G corresponds under the bijection Hom(k*,G)/G <~ Hom(C*,G")/G’
(as above) to the image of D¢ in Hom(C*, G')/G’. Let Dg be the set of sequences
A= (G D GY D G5 D --+) of closed connected subgroups of G such that for some
w € D¢ we have (for n > 0):

Lie G2 ={z cLie G| lim t'""Adw(t)z =0}.
tek*; t—0

Now G acts on Dg by conjugation, and the obvious map 5@ — D¢ induces a bijection
Da/G = Dg/G on the set of orbits. If A€ Dg and g € G, then GI%9 '=gGg~! for
n > 0. G§ is a parabolic subgroup of G with unipotent radical G¢ and G is normalized
by G§ for any n. Moreover,
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(a) G4/G% is a commutative connected unipotent group;
(b) the conjugation action of G§ on G5/G% factors through an action of 63 =
G§ /G on G5 /GS.
Note also that G5 for n # 0,2 are uniquely determined by G§,G%.
Let A be a G-orbit in Dg. Then HA = UaecaG% is a closed irreducible subset of U
(since for A€ A, G5 is a closed irreducible subset of U stable under conjugation by G§
and G/G§ is projective). Let

~ ~

A __ A ~ ~ A
H*=H UA’GDg/G; H";CtH‘ H

For A€ Dg, let X* = G5 N H*, where A is the G-orbit of A. Then H* is an open
dense subset of HA stable under conjugation by GG, and X* is an open dense subset of

£ stable under conjugation by G§. (We use the fact that Dg/G is finite.) Hence H*
is locally closed in Y. The subsets H*(A € D¢g/Q) are called the unipotent pieces of G.

We state the following properties 1 —Bs5.

PB1. The sets X2(A€ D¢) form a partition of U.

Po. Let A € Dg/G. The sets X2(A€ A) form a partition of H*. More precisely, H*
is a fibration over A with smooth fibers isomorphic to X* (A€ A); in particular,
HA is smooth.

PBs. The locally closed subets H* (A € Dg/G) form a (finite) partition of U.

Pa. Let A€ Dg. We have GEX* = X2G§ = X2,

Ps. Assume that k = k,. Let F': G — G be the Frobenius map corresponding to
a split F,-rational structure with ¢ — 1 sufficiently divisible. Let A€ D¢ be
such that F(G4) = G5 for all n > 0 and let A be the G-orbit of A. Then
|HA(F,)|,|X*(F,)| are polynomials in ¢ with integer coefficients independent
of p.

Assume first that p = 1 or p > 0. By the theory of Dynkin—Kostant, for A€ D¢ there
is a unique open G§-orbit X’# in G5; we then have a bijection of Dg /G with the set of
unipotent classes on GG, which to the G-orbit A of A€ D¢ associates the unique unipotent
class H'* of G that contains X'®. Moreover, if g € X'?, then Zga(9) = Za(g). As
stated by Kawanaka [Ka], the same holds when p is a good prime of G (but his argument
is rather sketchy). To show that 37 — B3 holds when p is a good prime, it then suffices
to show that X4 = X’# for any A. It also suffices to show that X'4 = G4 N H'* for
A€ A as above. (Assume that g € GE N H'* g ¢ X', Let ¢’ € X', By the definition
of X’% and the irreducibility of G&, the dimension of the G§-orbit of g is strictly smaller
than the dimension of the G§-orbit of ¢’. Hence dim Zgs (g) > dim Zga (g9'). We have
dim Zg(g) > dim Zga (g), dim Zga (9') = dim Zg(g'), hence dim Zg(g) > dim Zg(g').
This contradicts the fact that g,¢’ are G-conjugate.) In this case we have HA = H'4
and HA is the closure of H'A.

In 2.9 (respectively 3.13, 3.14) we shall verify that §;—B5 hold for any p when G
is a general linear (respectively symplectic) group. We will show elsewhere that ;-
Bs hold when G is a special orthogonal group (any p). If G is of type E, (any p),
one can deduce PB1—P5 from the various lemmas in [M], or, rather, from the extensive
computations (largely omitted) on which those lemmas are based; it would be desirable
to have an independent verification of these properties.
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We note the following consequence of ;.
(¢) If Aé Dg and u € X*, then Zg(u) C G§.

Let ¢ € G. Then gug~* € X9, Hence if ¢ € Zg(u), we have u € X9%. Thus,
X940 X2 # @. From P; we see that g A=A. In particular gG§g~! = G§ and g € G},
as required.

1.2. Let A€ Dg. We assume that PB1—P4 hold for G. Let 7°: G5 — G5 /G5 be the
obvious homomorphism. By 4 we have X* = (WA)*I(YA), where X is a well defined
open dense subset of G5 /G4 stable under the action of 63 . We wish to consider some

properties of the sets YA, which may or may not hold for G.

Ps. If u e X2, then uG4 = G4 is contained in the G§-conjugacy class of u. Hence
v (m2)71(y) is a bijection between the set of éﬁ—orbits in X° and the set of
G§-conjugacy classes in X 2.

PBr. Let v be a @ﬁ—orbit in X°. Let 4 be the union of all ag—orbits in X* whose
closure contains . Thus, 4 is an open subset of X* and v is a closed subset of 4.
There exist a variety v; and a morphism p: 4 — 7; such that the restriction of
p to ~y is a finite bijective morphism o: v — ~; and the map of sets 0~ 1p: 4 —
is compatible with the actions of @5 .

Ps. There exist a finite set I and a bijection J — ®; between the set of subsets of
I and the set of G§-orbits in X such that for any J C I, the closure of ®; in
X% is Uy, jcgr® . Moreover, if k, g are as in P5, then there exists a function
I — {2,4,6,...},i — ¢; such that |®;(F,)| = [[;c,(¢® — 1)[®x(F,)| for any
JcClI

When p = 1 or p > 0, property Bs can be deduced from the theory of Dynkin-
Kostant; properties Pr, Ps are trivial. In the case where G = GL, (k) (any p), the
validity of B¢ follows from 2.9; properties P, Pg are trivial. In the case where G is a
symplectic group (any p), the validity of Pe—Ps follows from 3.14. P is false for G of
type Ga, p = 3.

1.3. Let V be a finite dimensional Q-vector space. Let R C V* = Hom(V,Q) be a
(reduced) root system, let R C V be the corresponding set of coroots, and let W C
GL(V) be the Weyl group of R. Let 3 < /3 be the canonical bijection R «» R. Let II
be a set of simple roots for R and let IT = {& | a € IT}. Let

O={fcR|B—-—a¢ R forall acll},
O={BecR|B—-a¢R forall acll,
A={J CcTIU® | J linearly independent in V*},
A={JCcIIUBO | J lincarly independent in V*}.
For any prime number r, let A, be the set of all J € A such that
> Za/ > zp
a€ll geJ

is finite of order r* for some k € N.
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For any J € Aor J € .Z, let W ; be the subgroup of W generated by the reflections
with respects to roots in J. For W' = W or W, let Irr(W’) be the set of (isomorphism
classes) of irreducible representations of W’ over Q. For E € Irr(W’), let bg be the
smallest integer > 0 such that E appears with nonzero multiplicity in the bg-th sym-
metric power of V regarded as a W’-module; if this multiplicity is 1, we say that £ is
good. If J is as above and E € Irr(W”’) is good, then there is a unique F € Irr(W) such
that E appears in IndeE and by = bg; moreover, Eis good. We set E= jvv“,’JE.

Let Sw C Irr(W) be the set of special representations of W (see [L1]). Now any
E € Sw is good. Following [L1], let Six; be the set of all E € Irr(W) such that
E = jvv“,’JEl for some J € A and some E;, € Sw,. (Note that W is like W with the
same V and with R replaced by the root system with J as the set of simple roots; hence
Sw, is defined.) Now any F € Sj is good.

For any prime number r, let S3;; be the set of all E € Irr(W) such that E = jXVVK Ey
for some K € A, and some E; € S\lsz- (Note that Wk is like W with the same V
and with R replaced by the root system with K as set of simple roots; hence lesz is
defined.)

We have SY(W) C 8"(W). We have S'(W) = S"(W), if r is a good prime for
W and also in the following cases: W of type Go,7 = 2; W of type Fy, 7 = 3; W of
type Eg; W of type E7, r = 3; W of type Es, r = 5. If W is of type Gy and r = 3,
then S"(W) — S1(W) consists of a single representation of dimension 1 coming under
jw, from a W of type Ay. If W is of type Fy and r = 2, then §"(W) — SH(W)
consists of four representations of dimensions 9/4/4/2 coming under jXVVJ from a W
of type C3A1/C3A1/B4/Bs. If W is of type Ez and r = 2, then S"(W) — S}(W)
consists of a single representation of dimensions 84 coming under jQ,’VVJ from a W of
type DgA;. If W is of type Eg and r = 2, then S"(W) — S1(W) consists of four
representations of dimensions 1050/840/168/972 coming under jvvgj from a W of type
E7A1/DsA3/Ds/E7A;. If W is of type Eg and r = 3, then S"(W) — S} (W) consists of
a single representation of dimensions 175 coming under jQ,’VVJ from a W ; of type EgAs.

1.4. Let W be the Weyl group of G. Let u be a unipotent element in G. Springer’s
correspondence (generalized to arbitrary characteristic) associates to u and to the trivial
representation of Zg(u)/Zg(u)® a representation p, € Irr(W). Moreover u — p,, defines
an injective map from the set of unipotent classes in G to Irr(W). Let X?(W) be the
image of this map (p as in 0.1). We state:

(a) if p=1, we have X1 (W) = SL (W) (see [L1]);
(b) if p > 1, we have XP(W) = St
The proof of (b) follows from the explicit description of the Springer correspondence for

small p given in [LS], [S2].

1.5. In this subsection we assume that G is adjoint and that p > 1. Let G’(p) be the set
of all g € G’ (as in 1.1) such that Zg/(gs)° is semisimple and gfk =1 for some k € N;
here g5 is the semisimple part of g. One can reformulate 1.4(b) as follows: there is a
natural surjective map

®: {G’-conjugacy classes in G'(p)} — {unipotent conjugacy classes in G}

which preserves the dimension of a conjugacy class.
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Indeed, via the Springer correspondence, we may identify the source (respectively
target) of ® with @ ; X' (W ), where J runs over the subsets in .4, modulo the action
of the fundamental group of G (respectively with X?(W)), and then & is given by the

W
maps jyy -

Although the definition of ® is indirect, we can think of ® as a process of “reduction
mod p”.

2. General linear groups

2.1. Let C be the category whose objects are Z-graded k-vector spaces V = @ wcZ Va

such that dim V' < 00; the morphisms are linear maps respecting the grading. Let V_G C.
For j € Z, let End;(V) = {T' € Hom(V, V) | T(V,) C Vuy; for all a}. Let End_g(V) be

the set of all v € Ends(V) that satisfy the Lefschetz condition: v™: V_,, — V,, is an
isomorphism for any n > 0. Let v € EndS(V). Define a graded subspace P* = V'
of Vby PV ={z €V, |vi7% =0} for a <0, PY =0 for a > 0. A standard argument

shows that N(¢—¢)/2. PV — V, is injective if ¢ € a + 2Z, ¢ < a < —c, and we have
(a) Decaroz: ccac—e P — Va, (2¢) = Do ccat2Z; e<a<—c N{e=a)/2,,
We show:
(b) Let j € N, R € End;42(V). Then R=Tv — vT for some T € End;(V).
Let ¢ < 0. Since v!=¢: Vj_c — Vj+c+2 is surjective, the induced map

Hom(P”,, V) — Hom(P” .,V cyo)

—c

is surjective. Hence there exists 7. € Hom(P”_,V;_.) such that

i S,
viTer, = — E V'RV .
i+i'=—c

For k € [0, —c], we define 7. € Hom(PY,V ci2k4j) by Teo = Te and Te g = Ve -1 +
Rv*=! for k € [1,—¢c]. Then v .+ Rv=°¢=0. Let T: V — V be the unique linear
map such that T(v*z) = 7. x(z) for z € P, ¢ < 0,k € [0, —¢]. This T has the required
property.

2.2. Let C be the category whose objects are k-vector spaces of finite dimension; mor-
phisms are linear maps. Let V € C. A collection of subspaces Vi = (V>4)aez of V is
said to be a filtration of V if V5441 C V3, for all a, and Vs, = 0 for some a, V>, =V
for some a. We say that V' is filtered if a filtration V, of V' is given. Assume that this is
the case. We set grV, = @aez gr,Vi € C, where gr, Vi = V5o/Vsui1. For any j € Z,
let E5;V, ={T € End(V) | T(V>q) C Vsq4; for all a}. Any such T induces a linear
map T € End; (grVi).

2.3. Let V € C. Let Nil(V) = {T € End(V) | T nilpotent }. Let N € Nil(V). When
p = 1, the Dynkin-Kostant theory associates to 1 + N a canonical filtration V.V of V;
in terms of a basis of V' of the form
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(a) {N*v, |r e [1,t],k€[0,e, — 1]} with v, € V,e, > 1, N v, =0 for r € [1,1],
V), is the subspace spanned by {N*v, | r € [1,t],k € [0,e, — 1],2k +1 > e, + a}. This

subspace makes sense for any p, and we denote it in general by Vgl; it is independent
of the choice of basis: we have

VI = ) Ni(ker N*—),
j>max(0,a)

The subspaces Vé\g form a filtration V.V of V; thus, V becomes a filtered vector space.
From the definitions we see that

(b) N € ExoVN and N € Endy(grV,N) belongs to End)(grV,N).
Note that for any j > 1,

(c) dim Pij is the number of Jordan blocks of size j of N: V — V.
From 2.1(a) we deduce that for any n > 0:

(d) dim PY, = dimgr_, VY — dimgr_,, V2.
2.4. According to [D2, 1.6.1],

(a) if Vi is a filtration of V and N € Ex3V, induces an element v € End}(grVs),

then V, = VN,

We show that V5, = Vé\; for all a. Let e be the smallest integer > 0 such that N¢ = 0.
We argue by induction on e. If a > e, then v*: gr_, V., — gr, V. is both 0 and an
isomorphism, hence V>_, = V514 and Vo = Vogyr. Thus Voo = Voo = ... =0
and Voy o = Voo =...=V. Similarly, VAL = V&Y | =... =0and VI _, =V =
... = V. Hence V>, = Vgl if a > eorif a <1—-e This already suffices in the
case where e < 1. Thus we may assume that e > 2. Now v*"!:gr; V. — gr._,Vi
is an isomorphism, that is, N°71: V/V55_, — V5.1 is an isomorphism. We see that
Veem1 = N¢ 1V and Veoe = ker(Nefl). Hence if 2 —e < a < e — 1, we have
N7V C Vs, C ker(N¢T1); let VZ, be the image of V3, under the obvious map
p: ker(N“7') — V' := ker(N°")/N“"'V. For a < 1 —e, weset VL, = V', and for
a>eweset Vi, = 0. Now (V,)aez is a filtration of V', satisfying a property like
(a) (with N replaced by the map N’: V/ — V' induced by N). Since N'¢~1 = 0,
the induction hypothesis applies to N'; it shows that VI, 6 = V' ga for all a. Since
for2—e<a<e—1, Voo =p '(14,), it follows that V>, = pfl(V’g;); similarly,
ng = p_l(V'g;), hence Vs, = V>]\{1' This completes the proof.

With notation in the proof above we have:

Vé\; =0 fora>e,

Vgleforagl—e,

Vé\; = p_l(V’g(;),V'g; = p(Vé\(Q) fore>2and2—-e<a<e—1,

VI =NWifex>1,

Vé\g_e =ker(Ne 1) ife > 1.

We have graV*N =0 for a > e and for a < —e.

Note also that the proof above provides an alternative (inductive) definition of Vgl
that does not use a choice of basis.



456 G. LUSZTIG

2.5. Let V,N be as in 2.3. Let Vi, = VN. Let v = N € Endy(grVi). We can find a
grading V = @, 4 Vo of V such that

(a) NV, CVogo and Vsq =V, @ Vor1 @ - -+ for all a.
For example, in terms of a basis of V' as in 2.3(a), we can take V, to be the subspace
spanned by {N*v, | r € [1,t],k € [0,e, — 1],2k + 1 = e, + a}. Taking direct sum of the
obvious isomorphisms V, — gr, Vs, we obtain an isomorphism of graded vector spaces
V' =5 grV, under which N corresponds to v. It follows that:

(b) N € End3(V) (defined in terms of the grading @, V).
We note the following result.
(¢) Let n > 0 and let x € P¥,. There exists a representative & of x in Vs_, such
that N" '@ = 0.

Let V; be as above. There is a unique representative & of  in V> _,, such that z € V_,,.
We have N"t1i € V,,, and the image of N"T'% under the canonical isomorphism
Vy, = gr,, VN is 0; hence N™"*13 = 0.

Let BV, = {S € E> V. | SN = NS}, End/ (grV.) = {0 € End, (grV.) | ov = vo}.
We show:

(d) The obvious map EX,V, — End(grVi), S — S is surjective.

Let o € EndY(grVi). Let V, be as above. In terms of these V,, we define V = grV,
as above. Under this isomorphism, o corresponds to a linear map S:V — V. Clearly,
S e EglV* and S =o.

2.6. Let V,N be as in 2.3. Let V. = V). Now 1+ E>;V, is a subgroup of GL(V)
acting on N + E>3V, by conjugation. We show that

(a) the conjugation action of 1+ Ex1Vi on N + Ex3V, is transitive.
We must show: if § € Ex3V;, then there exists T € E31V, such that (1 + T)N =
(N+S)(1+1T), that is, TN — NT = S + ST. We fix subspaces V, as in 2.5. We have
S=3;>3S5j, where S; € End(V) satisfy S;V, C Voq; for all a. We seek a linear map
T =5 5,T), where T; € End(V) sgtisfy TjVo C Voyjforallaand y_ -, (T;N—NT}) =
Zj)i& Sj + Zj’;i&,j”;l STy, that is,

TiN = NTj = Sji2+ . Sjpo Ty forj=1,2,.... ()

J'€[1,5-1]

We show that this system of equations in 7} has a solution. We take 77 = 0. Assume
that T; has been found for j < jo for some jo > 2 so that (x) holds for j < jo. We set
R = Sjo2+ X jen jo—1y Sj+2—j Tjr. Then R(Vy) C Vayjot2 for any a. The equation
T;,N — NT}, = R can be solved by 2.1(b) (see 2.5(b)). This shows by induction that
the system (%) has a solution. Thus (a) is proved.

We now show:

(b) if N € N + Es3V,, then VN =V,.

Indeed by (a) we can find u € 14+ E>1V; such that N = uNu~'. Since VN is canonically
attached to N, we have Vgé\“fl = u(Vé\g) = Vé\;, and (b) follows. For example,
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(c) if N =c1N + N2+ -+ e, N*, where ¢; € k,c1 # 0, then V*N =VN.

We may assume that ¢; = 1. Since coN% + -+ + ¢t N¥ € Es,Vi C Ex3Vi, (b) is
applicable and (c) follows.

2.7. Let V,N be as in 2.3. Let Vi, = V.N. Let v = N € Enda(grVi). Let r > 2 be
such that N™ =0 on V. Let W be an N-stable subspace of V' such that there exists an
N-stable complement of W in V., N: W — W has no Jordan block of size # r,r—1, and
N™2 =0 on V/W. Then W, = ij is defined. Define a linear map u: grV, — griv,
as follows. Let x € gr, V.. We have uniquely x = Zc€a+2Z; e<a<—c v(@=e)/2x  where

z. € PY; we set
wu(z) = Z va=2g
cca+2Z; c<a<—c,c=1—ror 2—r
Let X be the set of N-stable complements of W in V. Then X # @. For Z € X, define
My: V- W by lz(w+ 2) = w, where w € W,z € Z. Let Ilz: grVi, — griW, be the
map induced by IIz. We show that
(a) Tz (Vsa) C W, for all a and Tz = p.
We have Vg = Woa@ Ze. If 2 € Vag,o0 = w4 2,w € Wae,2 € Z3q, then
IIz(z) = w. Thus Iz(Vs,) C Wx,. We can find direct sum decompositions W =
D, Wi, Z = ®,, Zm such that NW,,, C Wyi2, NZyy, C Zyy2, and N™: W_,, —
W, N™: Z_p = Zp, for m > 0 (see 2.5). Let V, = W, Z,. Define VPrim
yprim Zgri_m as in 2.1 in terms of N. We have VPrim = Jyprim (f zprim = \We must
show that IIz(z) = p(z) for x € gr,Vi. It suffices to show: if w € Wy, 2z € Z,, and
W+ 2= caioz: e<a<—c v(e=e)/2g . where z. € VP™ then

w = Z pe=)/2g

cea+2Z; cLas—c,l—r<LeL2—r

We have z. = w. + 2., where w, € WP 2z, € ZP™" and

w = Z v(a=)/ 2y,

c€a+2Z; c<as—c

Now if chrim #0,then 1 —r < ¢ <2—r. Hence

w = Z p(a= /2.

cea+2Z; c<as—c,l—r<e2—r

Also, ZP™™ = zZP"™ — ( since N: Z — Z has no Jordan blocks of size > r — 1.
Thusifcea+2Z, c<a< —c¢l—r<c<2—r then z. =0 and z. = w.. Thus
w = ZcGaJrQZ; c<as—c,l—r<eL2—r V(a_C)/2xC7 as reqU'ired'

Let Z,Z' € X. By the previous argument, IIz,IIz: V. — W both map V>, into
Ws, and induce the same map grV, — grW,. It follows that IIz — Iz : V — W maps
Voo into Wi 41. In other words,
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(b) ifx € Vag andx = w+ 2z = w' + 2/, where w,w' € W,z € Z,2' € Z', then
w—w € Wxqyr1.
Define ® € GL(V) by ®(z) = z for x € W, ®(x) = 2’ for x € Z where 2’ € Z' is given
Y ) g
by x — 2’ € W. We show:

(¢) (1 =®)Vsq C Vagy for any a.

Let z € V>,. We have x = w + 2z = w’ + 2/, where w,w’ € W,z € Z,z' € Z'. We have
O(z) = w42, hence (1-P)(z) = (w+2)— (w+2') = z— 2’ = w' —w, and this belongs
to Wsas1 by ().

We show:

(d) ®N = N®.

Indeed, for x = x1 + 23,21 € W,z5 € Z, we have Nx = Nz + Nxo with Nz; € W,
Nzy € Z, and 29 — 2, € W with 24, € Z'. We have Nxo — Nab € W with Nz € Z,
Nzb € Z'. Hence ®(Nz) = Nx1 + Nzbh = N(z1 + 24) = N®(x), as required.

2.8. Let V,N be as in 2.3. Let r > 1 be such that N™ = 0. A subspace W of V is
said to be r-special if NW C W, N: W — W has no Jordan blocks of size # r and
N™"! =0 on N/W. We show:

(a) If W, W', are r-special subspaces, then there exists a subspace X of V' such that
NXCcX,WhX=VWPHPX=V.

We argue by induction on 7. If r = 1, the result is obvious; we have W = W' = V.
Assume that » > 2. Let V/ = ker N1, V" = ker N""2. Let E C W,E' C W’ be
such that W = EQNE@ - - @N 'E, W = EPNE' P---PN"LE. Clearly,
EnV' =0,ENV' =0, NECV',NENV" =0, NE' Cc V', NE'NV"” =0. Let E” be
a subspace of V' such that E” is a complement of NE@ V" in V' and a complement of
NE'@ V" in V'. (Such E” exists since dim(NE@P V") =dim(NE' @PV') = dim E +
dim V" = dim E’ 4+ dim V”.) Then

Wy = (E"EPNE)+ N(E"EPNE) +---+ N *(E"PNE),
Wi = (E”@NE’) +N(E”@NE’)+...+NT*2(E//@NE/)

are (r— 1)-special subspaces of V'. By the induction hypothesis we can find an N-stable
subspace X; of V' such that Vi@ X1 =V, V/@P X; =V’. Then X = (B + N(E") +
-4 N""2(E")) + X1 has the required properties.

(b) If W, W’ are r-special subspaces, then there exists g € 1+ E>1Vi such that

g(W)=W', gN = Ng.

Let X be as in (a). Define g € GL(V) by g(z) = = for x € X and g(w) = w’ for
w € W, where w' € W' is given by w — w’ € X. Then g(W) = W/, (g — 1)X = 0,
and (g — 1)W C X. Clearly, gN = Ng. We have V5, = W5, X>,. It suffices to
show that (g — 1)(W>4) C Xsq41. Now X = X>o_,. We have W = Wx1_,, Wso_, =
Wss—p = NW,Wsyp = Wss_, = N2W,.... Now if a < 1—r, then (g — 1)Ws, =
(g—1)W CX=Xs,41.Ifa=2—rora=3—r, then

(9= D)Wsa = (g— DNW = N(g— )W € NX = NXz2_, C Xsarr C Xsur.
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Ifa=4—7rora=5—r,then
(g—1D)Wsa = (g— 1)N?W = N?(g— )W C N?X = N®X59 . C X561, C Xsat1.

Continuing in this way, the result follows.

2.9. Let V € C. Let G = GL(V). For any filtration Vi of V, let
(Vi) = {N eNil(V) | V.Y =V} = {N € E>2Vi | N € Endy(grVi)}

(see 2.3(b), 2.4(a)). The following three conditions are equivalent:

(i) £(Va) # 95
(i) Endy(grVi) # 25
(iii) dimgr, Vi =dimgr_, Vi >dimgr_,,_,Vi for alln > 0.

We have (i)=-(ii) by the definition of &(Vi); we have (ii)=-(iii) by 2.3(d). The fact
that (iii)=-(ii) is easily checked. If (ii) holds, we pick for any a a subspace V, of V>,
complementary to V441 and an element in EndS(V) (defined in terms of the grading
@, V.). This element is in {(V5) and (i) holds.

Let §v be the set of all filtrations Vi of V that satisfy (i)—(iii). From the definitions
we have a bijection

(a) v = Dg, Vi —A

(Dg as in 1.1), where A= (G§ D G{ D G§ D ...) is defined in terms of Vi by
G§ = E>oViNG and G; =1+ E»,V, forn > 1.

The sets (V,) (with Vi € §v) form a partition of Nil(V). (If N € Nil(V'), we have
N € ¢(Vi), where Vi, = V.V).

Let Vi € §v. Let Il = E>oViNG. We show that £(V;) is a single II-conjugacy class.
Let N,N’ € £(V,). Since VN = VN, we see from 2.3(d) that dim PN, = dimPlj\i/j for
any j > 0. Using 2.3(c), we see that for any j > 0, N, N’ have the same number of
Jordan blocks of size j. Hence there exists g € G such that N’ = gNg~—!. For any
a, ngl = Vé\g = Vé\fl, hence gV~ = V>4 We see that g € Exq, hence g € 1II as
required. Taking in the previous argument N’ = N, we see that if N € {(V,) and g € G
satisfies gNg~! = N, then g € II. Now any element in Ex2V, — £(V.) is in the closure
of £(Vi) (since Ex,V; is irreducible and £(V;) is open in it (and nonempty), hence it
is in the closure of the G-conjugacy class containing £(V;)). We show that it is not
contained in that G-conjugacy class. (Assume that it is. Then we can find N € £(V;)
and N’ € E>,V, —&(Vs) that are G-conjugate. Then the IT-orbit II(V) of N in Eo Vi is
&(V4), hence is dense in E>, V., while the II-orbit II(N”) of N’ is contained in the proper
closed subset ExoV, — &(Vi) of ExaVi; hence dimII(N) = dim(E>o Vi) > dim II(N').
It follows that a < a’ where a (respectively a’) is the dimension of the centralizer of N
(respectively N') in II. Let a (respectively @’) be the dimension of the centralizer of N
(respectively N') in G. By an earlier argument we have a = a. Obviously @’ < @’. Since
N, N’ are G-conjugate, we have @ = a@’. Thus, @ = a < @’ < @’ = @, a contradiction.)
We see that 14+&(V*) = X2, where V, —A as in (a) and X2 is as in 1.1. Thus P holds
for G. From this, P, P3 follow; HA* in Py is a single conjugacy class in this case. Also,
PBs is trivial since G§ acts transitively on X2. Now s is easily verified. Pg (hence
PB4) follows from 2.6(a); P is trivial in this case.
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3. Symplectic groups

3.1. In this section any text marked as & ... # applies only in the case p = 2.

For V,V’ € C, let Bil(V,V’) be the space of all bilinear forms V' x V' — k. For
b € Bil(V,V’), define b* € Bil(V',V) by b*(x,y) = b(y,z). We write Bil(V') instead of
Bil(V, V). Let Symp(V') be the set of nondegenerate symplectic forms on V.

Let V € C. We say that ( , )o € Symp(V) is admissible if (z,y)o =0 for z € V4, y €
Va,a+a #0. Assume that ( , )o € Symp(V) is admissible and that v € End3(V) is
skew-adjoint, that is, (v(x),y)o + (x,v(y))o = 0 for 2,y € V. For n > 0 we define a
bilinear form b,,: P¥,, x P* — k by b,(x,y) = (x,v"y)o. We show:

Indeed,

bn(I, y) = <$, Vny>0 = (_1)n<ynx7y>0 = (_1)n+1<y) an>0 = (—1)n+1bn(y7$)7
as required. We show:
(b) by, is nondegenerate.

Let y € P”, be such that (z,v"y)o = 0 for all x € P¥,. If 2’ € P, o,k > 0, we
have (VFx' v"y)o = £{z,v" Fy)g = £(z,0) = 0. Since V_,, = > k>0 vkpPY. ., we
see that (z,v"y)o = 0 for all z € V_,. Since (V,v"y)o = 0 for m # —n, we see
that (V,v"y)o = 0. By the nondegeneracy of ( , )o, it follows that vy = 0. Since
v V_, = V,, it follows that y = 0 as required. We show:

(c) if n >0 is even, then by is a symplectic form. Hence dim P”,, is even.

Indeed, for z € P¥,, we have (x,"x)o = £{v"/ 2z, 1"/%z) = 0.

3.2. Let Ve C and let (, ) € Symp(V). Let

Sp({,)) ={T € GL(V) | T preserves { , )}.

For any subspace W of V., we set Wt = {x € V | (z, W) = 0}. A filtration V, of V is
said to be self-dual if (Vs,)t = Vs1_, for any a. It follows that

(@) (Vza,Vow)=0ifa+d > 1.
It also follows that there is a unique admissible { , )o € Symp(grV;) such that for
x € gr,Vi,y € gr_,Vi we have (x,y)o = (&, 9), where & € V54,9 € V>_, represent z,y.
Moreover,
(b) there exists a direct sum decomposition P,z Va of V' such that Vs = V, P
Va1 @ -+ for all a and (V,,Va) =0 for all a,a’ such that a + o’ # 0.

Let My be the set of N € Nil(V') such that (Nz,y) + (z, Ny) + (Nz, Ny) = 0
for all o,y or, equivalently, 1 + N € Sp({ , )). Define an involution N ~ NT of My
by (z, Ny) = (N'xz,y) for all z,y € V or, equivalently, by NT = (1 + N)™! —1 =
~N+N?2-N34....

Let N € M . Weset Vi = VN, By 2.6(c) we have V*NT = V.. We show:

(c) the filtration V. is self-dual.

We argue by induction on e as in 2.4. If a > e, then V>, = 0,V5;_, =V, and (c) holds.
Ifa <1—e, then V>, =V, V51, =0, and (c) holds. If e < 1, this already suffices.
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Hence we may assume that e > 2 and 2 —e<a<e—1,hence2—e<1—-—a<e—1.
Let V' = ker(N¢~1)/Im(N¢1). Let p: ker(N°~1) — V’ be the canonical map. We
have N*~'V = ker((NT)*= 1)L = ker(N°~1)L since (NT)*~! = (=N)*~!. Hence (, )
induces ( , )’ € Symp(V’). Also N induces a linear map N’: V' — V' such that
N" € M . By the induction hypothesis, V’gi_a is the perpendicular in V' of V’g;.
Hence V5, = p’l(V’g;) is the perpendicular in V of V31—, = p’l(V’giia). This
completes the proof.
Let v € End)(grVi) be the endomorphism induced by N. We show that

(d) v is skew-adjoint (with respect to { , o on gr V.V).

It suffices to show that, if a+a’+2 =0 and z € Vo, y € Vg, then (Nz,y)+(x, Ny) =
0. It suffices to show that (Nx, Ny) = 0. From (a), (b) we see that (V>_1_4, Ny) =0,
hence it suffices to show that Nz € V>_1_,. We have Nz € V>4 40 C V>_1_, since
a’' +2 > —1— a. This proves (c).

3.3. & In this subsection we assume that p = 2. Let V,{, ), N,v,{, )o be as in 3.2.
Let V, = VN. Then b, € Bil(P¥,,) is defined for n > 0, see 3.1. Let £ be the set of
all even integers n > 2 such that b,_1,b,11 are symplectic forms. Let £’ be the set
of all even integers n > 2 such that b,_1,b,41,bn+3,... are symplectic forms or, equi-
valently, (z,v"71(2))g = 0 for all z € gr;_,,Vi. (Assume first that b,_1,bn11,bn43,- -
are symplectic forms. By 2.1(a), any z € gry_,, Vi is of the form >, vk 2., where
2 € Py, o For k >0 we have (VF 21, "1 (* 21))o = O since by, yor_1 is symplectic.
Since 2’ — (2/,v"71(2"))q is additive in 2’ it follows that (z,v""1(2))o = 0. Conversely,
assume that (z,v""1(z))g = 0 for any 2z € gr;_,Vi. In particular, for k¥ > 0 and
2k € PV, o, we have (UF 2, " (1P 21))o = 0, that is, (zx, v 172 2;)) = 0. We see
that b,42x—1 is symplectic.)

Clearly, L' C L.

For n € L, we define g,: P”,, — k by q,(z) = (&, N""'%), where # € V5_,, is a
representative for x € P, such that N"T1i = 0 (see 2.5(c)). We show that g, (z) is well
defined. It suffices to show that if y € Vs1_p,, N"Tly = 0, then (i +y, N"1(i +y)) =
(i, N 1), that is, {y, N"(y))+ (5, N*~(y))+(y, N"~3(2) = 0. Sinee N™+ () = 0,

we have
(@, N" () + (y, N*7H(&)) = (y, (N 7"+ (N 1) (&) = (y, N™(&)).

This is zero, since y € Vs>1_p, N"(&) € V5, and 1 —n +n = 1. It remains to show
that (y, N"~1(y)) = 0. It suffices to show that (z,v""1(z))g = 0 for all z € gr;_, Vi
such that N"*1z = 0. By 2.1(a), any such z is of the form zg + vz1, where 2o €
Py ,,z1 € PY,_,. Now 2’ — (2/,v"1(2))o is additive in 2’, hence it suffices to show
that (z0," (20))o = 0 and (v(z1),v" 1(v(z1)))o = 0 for 2o, 21 as above. This follows
from our assumption that b,_; and b,4; are symplectic.

We show:

(a) For x,y € P”,, we have Qn(x +y) = Qn(x) + Qn(y) + bn(xay)
Let 4,9 € V>_,, be representatives for z,y such that N"*1i = 0, N"*ly = 0. We must
show that

(@49, N (& +9) = (@& N1 &) + @ N @) + @& N"(5)),
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or that
(@, N" 1 (g)) + (g, N" 71 (@) + (&, N"(9)) =0,

or that (i, (NT)"~1 + N*~1 4 N™)g) = 0. Since n is even, (NT)"~1 + N*~1 L N" is a
linear combination of N"*+1 N™+2 and it remains to use the equality N"*1(y) = 0.

For n € L/, we define Q,: gr_,Vi. — k by Qn(z) = (&, N""1%), where & € V5_,
is a representative for x. We show that @Q,(z) is well defined. It suffices to show
that if y € Vs1_p, then (@ 4+ y, N""1(& + y)) = (@, N"~1&), that is, (y, N""!(y)) +
(@, N*~Y(y)) + (y, N"~1(i)) = 0. We have

(@, N""Hy)) + {y, N* 1 (@) = (y, (N1 + (ND)")(@)),

and this is a linear combination of terms (y, N (&)) with n’ > n. Each of these terms

is 0 since y € Va1, N”'(Jb) € Vaon—p and 1 —n+2n"—n > 1. It remains to show that

{y, N*~Y(y)) = 0. This follows from the fact that (z,2""1(2))o = 0 for all z € gr;_,, Vi.
For n € L' we show:

(b) if w,y € gr_, Vs, then Qn(x +y) = Qn(x) + Qn(y) + (z,v"y).
Let &,y € V>_,, be representatives for z,y. We must show that
(@ +g, N""H@ +9)) = (&, N"7H@)) + (5, N1 () + (& N"(3),
or that
(@, N"7H(g)) + (g, N"7H(&)) + (&, N"(9)) = 0,
or that (&, (NT)"~1 + N"~1 4+ N™)g) is 0. Since n is even, this is a linear combination
of terms (&, N™ (y)), with n’ > n. Each of these terms is 0 since N™ (§) € Vsop/—p, & €
Vs_n,and 20’ —n—n > 1.

Now let n € £ and let x € gr_,Vi. We can write x = > ;- vFxy,, where z), €
PY 5. We show that

(c) Qu(z) = 21@0 n-+2k(Tk)-

Let @, be a representative of zy in Vs _,, oy, such that N*+2*+13, =0. Then > k>0 NFg,,
is a representative of = in V> _,, and we must show:

<Z Nkik,Nn_l Z Nkl.fk/> _ Z<I'k,Nn+2k_1ik>-
k>0 k>0 k>0
The left-hand side is ), k,>O<Nka'ck, N=WF 0N Ik > K + 2, we have
<Nkik,N’n71+k;'$kl> _ <$k7 (NT)an71+klik/>,
and this is zero since N2 15, — 0. If k¥’ > k + 2, we have
<Nkik,N’n71+k;'$kl> _ <(N1')n71+k;’Nk$k7$kl>,
and this is zero since N™t2k+14, = 0. It suffices to show that

D (NFaig, N* ) 4 (NFF ey, NP ) 4 (NF i, Ny )
k>0

_ Z<i'k’ Nn+2k71i‘k>.

k>0
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We have

(NFHFLgp g, N kg ) 4 <kak N kg 1)

= (NFF g, (NP (NN )
= (N* i g, (el NP 4 e NHRHL i)
= (v k1 Tt 1, V”+kxk)0 = c1{T11, V”+2k+1xk)o =0.

(Here c1,ca,... € k.) It suffices to show that (N¥ip, N" 71 ki) + (i, NH2E=1g,)
is 0. This equals

<$k; (Nn+2k—1 4 (NT)an_H_k)I'k) _ <$'k7 (Nn+2k 4 CI Nn+2k+1 4. )$k>

n+2kxk>0 < k+n/2 k+n/21,k>0 —0.

= (xk,V
(Here ¢}, ch, ... € k.) This completes the proof of (c).
We say that (¢n)nec are the quadratic forms attached to (N,( , )). We say that
(Qn)nec are the Quadratic forms attached to (N,{ ,)). #

3.4. Let V € C and let V, be a filtration of V. We fix (, )o € Symp(grV,), which is
admissible, and v € End)(grV.), which is skew-adjoint with respect to ( , )o (see 3.1).
Then P¥, are defined in terms of grVi, v, and b, € Bil(P¥,,) are defined as in 3.1 for
any n > 0. Let V =1+ E31V,, a subgroup of GL(V).

& If p = 2, let n be the smallest even integer > 2 such that bp_1,bnt1,bnts, - .-
are symplectic or, equivalently, such that (z,2"71(2))g = 0 for all z € gr;_,Vi. Let
Q: gr_,Vi — k be a quadratic form such that Q(z + y) = Q(z) + Q(y) + {(x,v™y) for
all z,y € gr_, V.. .

Let Z be the set of all pairs (N, (, )), where N € Nil(V), (, ) € Symp(V) are such
that VN = V., (Nz,y) + (z, Ny) + (Nz, Ny) = 0 for 2,5y € V, N induces v on grVi,
(', ) induces ( Yo on grVi; & in the case p = 2, we require in addition that @, defined
in terms of (N, (, )), as in 3.3, is equal to Q. Q

The proofs of Propositions 3.5, 3.6, 3.7 below are intertwined (see 3.11).

Proposition 3.5. In the setup of 3.4, let { , ) € Symp(V') be such that Vi, is self-dual
with respect to (, ) and (, ) induces ( , )o ongrVi. LetY =Y, y={N [ (N,{,)) € Z}.
Let U' =V NSp((,)), a subgroup of Sp({ , )). Then

(a) ¥ £ 2;

(b) if N€Y and z € U’, then zNz~t € Y (thus U’ acts an'Y by conjugation);

(c) the action (b) of U' on'Y is transitive.

The proof of (a) is given in 3.8. Now (b) follows immediately from Proposition 3.7(a).

We show that (c) is a consequence of Proposition 3. 7( ). Assume that Proposition
3.7(c) holds. Let N, N’ € Y. We have (N, (,)) € Z,(N',(,)) € Z, and by Proposition
3.7(c) there exists g € V such that N’ = gNg~—! (g 1:L' L9 Yy) = (z,y) for x,y € V.
Then g € U’ and (c) is proved (assuming Prop051t10n 3.7(c)).

Proposition 3.6. In the setup of 3.4, let N € Nil(V) be such that V)N =V, and N
induces v on grtVi. Let X = Xy ={(, )| (N,(,)) € Z}. LetU=Un ={T €V |
TN = NT}, a subgroup of GL(V). Then:
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(a) X # @;

(b) if {, ) € X and u € U, then the symplectic form { , ) onV given by (x,y) =
(u=tz, u=ty) belongs to X (thus U acts naturally an X);

(c) the action (b) of U on X is transitive.

We show that (a) is a consequence of Proposition 3.7(a). By Proposition 3.7(a) there
exists (N',(,)) € Z. By 2.6(a) there exists g € V such that N = gN’g~!. Define
(,)eSymp(V) by (,)= (g tz,¢g  y). From 3.7(a) we see that (N, (,)) € Z hence
(,) € Xpy. Thus Xy # @, as required.

Now (b) follows immediately from 3.7(b). The proof of (c) is given in 3.9, 3.10.

Proposition 3.7. In the setup of 3.4,
(a) 240
(b) if (N.(,)) € Z, g€V, and (N',(,)") is defined by N' = gNg™', (z,y)" =
(g7 tw, g 1y, then (N',(,)) € Z (thus V acts naturally on Z);
(c) the action (b) of V on Z is transitive.

Clearly (a) is a consequence of Proposition 3.5(a).

We prove (b). We have Vé\g = gV&, = VI = V5. Next we must show that
we have (gNg~'z,y) + (x,gNg ty) + (gNg~'z,gNg~ly) = 0 for x,y € V, that is,
(Ng~'z,g7Yy) + (9712, Ng~ly) + (Ng~lx, Ng~ly) = 0 for z,y € V. This follows
from (Nz/,y") + (', Ny') + (N2/, Ny') = 0 for 2,y € V. Next we must show that
gNg~', N induce the same map grVi — grVi. (We must show that if z € V5, then
gNg= () — Nx € Vs,y3; this follows from g € V.) Next we must show that for
x € Va_g,y € Vaq we have (z,y) = (z,y), that is, (¢7'z,¢g7'y) = (z,y). Set g~! =
1+ S, where S € E>1V,. We must show that (Sz,y) + (x, Sy) + (Sz,Sy) = 0. But
Szt € Vs1_4,y € V5, implies (Sz,y) = 0. Similarly (z, Sy) = 0, (Sz, Sy) = 0.

& In the case where p = 2 we see that the number n defined in terms of N, ( , ) is
the same as that defined in terms of N’, (, )", and we must check that for x € V>_,, we
have (z, (gNg~1)*~12) = (x, N*~12), that is, (¢~ 1o, N*"1g~1a) = (x, N* 1), that is,
(Sx, No o)+ (x, N*~1Sz)+(Sx, N*~1Sz) = 0. We have (Sz, N*~lz)+(x, N*~1Sz) =
(z,(N™=1 4 (NT)»=1)Sz). This is a linear combination of terms (z, N" Sz), where
n' > n; each of these terms is zero since x € Vs _y, NSz € Vaon/—n+1, and —n+2n' —
n+ 1> 1. Next we have (Sz, N*1Sz) = 0 since (y, N*"ly) =0 for all y € V>1_n by
the definition of n. &

This completes the proof of (b).

We show that (c) is a consequence of Proposition 3.6(c). Let (N, (,)) € Z,(N',{,)’)
€ Z. By 2.6(a), since VN = V*N' and N, N’ induce the same v, we can find S € Ex,V,
such that R = 1 + S satisfies N'R = RN. Define ( , )’ € Symp(V) by (x,y)" =
(Rx, Ry)’. From (b) we see that (R™!N'R,{ ,)") € Z, that is, (N,(,)") € Z.
Thus (, ) € Xn,{, )" € Xny. By Proposition 3.6(c) we can find S’ € E>,V, such
that R = 1+ S’ satisfies RN = NR' and (z,y) = (R'z, R'y)"” for all z,y, that is,
(x,y) = (RR'z, RR'y)’. Then RR' € U’ and RR'N = RNR' = N'RR’. Thus under the
action (b), RR' carries (N, (,)) to (N’,{,)"). This proves (c) (assuming Proposition
3.6(c) holds).

3.8. Proof of 3.5(a). We choose a direct sum decomposition P, ., V. of V as in
3.2(b). Define Ny € Ends(V) by the requirement that Ny: V, — V42 corresponds
tov: gr, Vi — gr,,»Vi under the obvious isomorphisms V, = gr, Vi, Vayo — gryioVi.



UNIPOTENT ELEMENTS IN SMALL CHARACTERISTIC 465

& If p =2 we regard @ as a quadratic form on V_,, via the obvious isomorphism
Ve, = gr_,Vi. &

We will construct a linear map N = Zj>1 Nyj, where N3 is as above, and for j > 2,
Ny; € End(V) satisfy Na;V, C Voo, for all a and

<Z Nij’y> + (vaN2jy> + <Z Nojrx, Z Nquy> =0

j=1 j=1 Jj'21 =1

for any a,c and any z € V,,y € V,, that is,

(N2jz,y) + (z, Nojy) + Z (Nojrz, Najry) =0 (a)

33" 215 3 g =g

for any j > 1, any a, c such that a + ¢+ 2j =0, and any z € V,,y € V..

# If p = 2, we require in addition that (x, N®~lz) = Q(x) for all x € V_,,, that is,
S iiiren2 (@, NSNy N 2) = Q(z) for all 2 € Voyy. #

We shall determine N; by induction on j. For j = 1 the equation (a) is just (Nax, y)+
(x, Nay) = 0 for any a,c such that a + ¢+ 2 = 0 and any = € V,,y € V,; this holds
automatically by our choice of Na. For x € V,, with a < —2, we set Ny(z) = 0. Then
the equation (a) for j = 2 becomes:

(b) (Nyz,y) + (x, Nyy) = —(Naz,Nay) for any © € V_g,y € V_o, (Nyx,y) =
—(Nax, Noy) for any a > =2, € V,y € V_,_4.

The second equation in (b) determines uniquely Ny(z) for z € V,,a > —2. Since

(Naz, Noy) is a symplectic form on V_g, we can find [, | € Bil(V_z) such that [z,y] —

[y, ] = —(Nazx, Nay) for any x,y € V_o. There is a unique linear map Ny: Voo — V5

such that (Nsz,y) = [z,y] for any x,y € V_s. Then equation (a) for j = 2 is satisfied.

& If p = 2, the Ny just determined satisfies Zi+i,:n72<x,N§N4N§/x) = Q'(x) for
all z € V_,, for some quadratic form @Q’: V_,, — k not necessarily equal to Q. For
x,y € V_, we have (by the choice of Ny):

Q+y)-Q@ QW= > (&, NsNaNjy)+ > (y, NjNuNj )

i+i/=n—2 i+i’'=n—2

> (Nim, NaNSy)+ Y (NaNjw,Ni'y)

i+i'=n—2 i+i'=n—2
= > (NaNjz, NoNSy)= > (&, N3y) = (x, N3'y)
i+i'=n—2 1+’ =n—2

=Q(z+y) - Qz) — Qy).

It follows that Q'(x) = Q(x)+60(x)?, where € Hom(V_y, k). We try to find ¢ € End(V)
with ((V,) C Vgqa for all a in such a way that (a) (for j = 2) remains true when Ny
is replaced by Ny + ¢ and 32, o(z, N5(Ny + {)Ni ) = Q(z) for 2 € V_y. (Then
Ny + ¢ will be our new Ny.) Thus we are seeking ¢ such that

(C(x),y) + (x,((y)) =0 for any a,c witha+c+4=0and z € V,,y € V,,

Z (z, NiCNE z) = ()2 for z € V.
1+ =n—2
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The first of these two equations can be satisfied for (a, ¢) # (—2, —2) by defining {(x) =0
for x € V,,a # —2. Then in the second equation the terms corresponding to i’ such
that 2¢/ — n # —2 are 0. Thus it remains to find a linear map ¢: V_5 — V5 such that

(), y) + (x,¢(y)) = 0 for any z,y € V_q,
(Nix,(Niz) = 0(x)? for v € V_,,, where t = (n — 2)/2.

Since Ni: V_, — V_, is injective (by the Lefschetz condition), there exists 6; €
Hom(V_3,k) such that 6;(Niz) = 6(z) for all z € V_,. We see that it suffices to
find ¢ € Hom(V_z, V3) such that

{C(z),y) + (x,¢(y)) = 0 for any =,y € V_q,
(', ¢’y = 01 (a))? for 2’ € V.

It also suffices to find by € Bil(V_3) such that by = b} and bo(x, z) = 01 (z)? for z € V_,.
Such by clearly exists. #.

This completes the determination of Ny.

Now assume that j > 3 and that Nj; is already determined for j* < j. For z € V,
with a < —j we set Noj(z) = 0. Then equation (a) for our j determines uniquely No;(z)
for z € V, with a > —j. Next we can find [, ] € Bil(V_,) such that

[z, y] — [y,2] = — > (N2jx, Najry).

33" 2103+ =j

To see this we observe that the right hand side is a symplectic form, that is,
D jrjrsts jragr—j(Noj @, Nojua) = 0. There is a unique Ny; € Hom(V_;, V;) such that
(Nojz,y) = f:c,y] for any x,y € V_;. Then equation (a) for our j is satisfied. This
completes the inductive construction of N. We have V¥ = V, by 2.4(a). We see that
N €Y. This completes the proof.

3.9. In this subsection we prove Proposition 3.6(c) in a special case. Let n € Zsy.
We have [—n,n] = Iy U I, where I. = {i € [-n,n] | i = ¢ mod 2} for € € {0,1}.
For i € [-n,n|, define |[i| € {0,1} by ¢ = [|i| mod 2, that is, by i € I;. Let
Fy,Fy € C. Let V = @ie[inyn]Fi, where F; = Fj;. A typical element of V' is
of the form (z;);c[—pn,n) Where x; € Fj;. Define N: V — V by (z;) — (2}), where
xf =g fori e [2—n,n], 2", =0,27_, =0. Wefix (,)o € Symp(V) such that
(), )0 = Liefonm (=120 (25, y ), where b € Bil(F,) (e € {0,1}) satisfy
b* = (—1)17b¢, b€ is nondegenerate, b° € Symp(Fp). Note that (Nz,y)o+ (2, Ny)o =0
for z,y € V.

We assume: if p # 2, then either Fy = 0 or F; = 0; & if p = 2,b' is symplectic
and n > 2, then we are given a quadratic form @: Fy — k such that Q(z + y) =
Q(z) + Q(y) + b°(z,y) for 2,y € Fy. #

Let X be the set of all {, ) € Symp(V) such that (Nz,y) + (x, Ny) + (Nz, Ny) =0
for z,y € V and (x,y) = (x,y)o if there exists 7 such that z; = 0 for j # i and y; = 0 for
j # —i; & if p = 2,b! is symplectic and n > 2, we require also that (z, Nz) = Q(z_2)
if x € V is such that ; =0 for j # —2. &

Setting (@), (¥i)) = >, ;bij(ws,y;) identifies X with the set of all families
(bij)i,je[—n,n], Where b;; € Bil(Fj;|, F];) are such that
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bi_g,j + biJ‘_Q +b;; =0 ifi,7 € [2 - n, n],
bi—i = (=1)=1D/2pll for all i € [—n,n],
bii € Symp(Fj;)) for all i € [-n,n],
bi; = —bj; for all 4,5 € [-n,n],
b_o0(z,z) =Q(z) for x € Fy if p=2,F; =0 and n is even, > 2.
(We have automatically b;; =0if i +j > 1.)
Let A ={T € GL(V) | TN = NT}, a subgroup of GL(V); equivalently A is the set
of linear maps 7': V' — V of the form

(8) T () > (), 7} = e fniy T2,
where T;>° € Hom(Fy, ) (r € [0,2n],6,6 € {0,1},7 + 4§ = € mod 2) are such that

T, T}t are invertible and T;;ln"lfln‘ = 0. Now A actson X by T: (, ) — (),
where (T'z, Ty)" = (x,y), or equivalently by 7": (bi;) +— (b};), where

bilwy) = 30 W@, W),
i’ €[i,n],j' €[4,n]
Let A, = {T € A| T{° = 1,T}' = 1}, a subgroup of A. We show:

(b) Let k € [1 —n,0] and let (5), (bij) be two points of X such that b;; = Eij for
i+j = 2k. Then there exists T € Ay such that T'(b;;) = (b;;) and bi; = bi; for

i+7>=2k—2.
For e € {0,1} we set a¢ = E-j for i,j € [-n,nl,i+j = —1,i = ¢ mod 2. Then
a® are independent of choices; they are 0 unless p = 2. We have a* = a'~¢. For

h € {2k—2,2k—1} we set ¢§ = (—1)79/2(b;; fb”) wherei,j € [-n,n],i+j=h,i=¢
mod 2. Then cj, is independent of 4,j. We have c§,_ 1= = 0 unless p = 2. We have
Si o= (=1)kccs, 5, c5p = c% 1- Since bg_1,k—1 — [ 1,k—1 Is symplectic, c§;,_, is
symplectic, where ¢ = k — 1 mod 2.

Case 1: p # 2. Let € € {0,1} be such that F;_. = 0. Since c§;_, = (—=1)¥7¢c5, ,, we
can find ¢ € Bil(F,) such that ¢§;, , = ¢+ (—1)¥=<¢*. Since b° is nondegenerate, we can
find 7 € End(F¢) such that ¢(z,y) = b*(z,7(y)) for z,y € F.. For i,j € [-n,n],i +j =
2k —2,i=¢€¢ mod 2 and x,y € F. we have

= bijs2-21(2, 7(y)) — bjita- %(y, (x))
= bijs2-2k(2, 7(y)) + bita—on; (T(2),y).

Let T be as in (a) with T30 = 1,T¢! = 1, T;%,, = 7 and the other components 0.
Define (b};) by T'(bi;) = (bj;). Then (b;;) has the required properties.

& Case 2: p =2,k = 0. Since b" is nondegenerate we can find Tlo’1 € Hom(F1, Fy)
such that @ (z,y) = 0Oz, T (y)) for all z € Fy,y € Fi. Then ¢ (z,y) =
bO(Tlo’l(:c),y) forallz € Fy,y € Fy. Thusfori € Iy,j € I1,i+j=—1landx € Fy,y € F;
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we have b;;(z,y) —l—gij(x,y) = Ei7_i(x,T10’1(y)); fori € I1,j € Ip,i+j = —1 and
x € F1,y € Fy we have
bij(ma y) +gz](x7y) = ’bv*jyj(Tloyl(m)a y)

Since %% = %,,b'* = b, we have ¢ ,(y,y) = 0(y)? for y € Fy, b'(z,x) = 61(x)? for
x € F, where 9 € Hom(Fy, k), 61 € Hom(F, k). If b! is not symplectic7 we have 01 # 0.
Hence there exists T} € Hom(Fy, F}) such that 8(y) = 6, (T} ( )) for all Y € F.
Then ¢, (y,y) + b"(T1°(y), T °(y)) = 0 for all y € Fp. Thus &+ 01T @ T
is symplectic. This also holds if b! is symplectic (in which case we have cfQ(y,y) =
b_20(y,y) — b-2.0(y, %) = Q(y) — Qy) = 0 for y € Fy) and we take T}*° = 0. Now c!,
is also symplectlc

Since a”* = a!, a/(T}° @ 1) +a ( ® T}"°) is symplectic. Similarly a (TO "o1)+

a1 T is symplectlc Hence c°, + bl( T @ T + o (11° ©1) + a®(1 @ T7°)
is symplectic and ¢!, + a (Tlo 'o1)+ad'(1® TlO ') is symplectic. Hence we can find
& € Bil(Fp), ¢! € Bil(Fy) such that

Ly + 0N T @ T + o (T @ 1) + (1@ TY) = & + &,
o+ 1) +at(1@TM) =+t

Since b° and b' are nondegenerate, we can find Ty° € End(F), Ty'' € End(F;) such
that & (z,y) = b2z, TY%(y)) for z,y € Fy, & (z,y) = b'(z, Ty ' (y)) for x,y € F;. For
x,y € Fy we have
) © Ty (@) +a' (11 (2),y) + (2,1 (y)

c(iQ(:c,y) +b1( (
=00z, Ty (y)) + b°(13 (), ).

For z,y € F} we have
cly(a,y) +a (11 (2),y) + a' (2, T (y) = b (2, Ty () + b1 (T3 (@), ).
Thus for ¢,5 € Iy,i +j = —2 and z,y € Fy we have
bij(,y) = bij (2, y) + biy1,5 (T 10( ),y)+bu+1(fﬂ T (y))
+bir1 1 (T10@), T ) + bi i, T30 () + by s (T30 (2), )3
fori,j € I1,i+j = —2 and z,y € F} we have
bij(,y) = bij (€, 9) + bisr,; (T (@), 9) + bi i (2, TV ()
+bi i, Ty (1) + by (Ty (@), ).

Let T be as in (a) with 79 = 1, T¢' = 1, 7%, 70", 1", T30 as above and the other
components 0. Define (b};) by T'(bi;) = (b;;). Then (b};) has the required properties.

Case 3: p =2,k = —1. In this case we have n > 2. We first show that there exists
o € End(F1) such that

bl (z,0(y)) = b (0(),y), cly(z,2) =b"(z,0(x)) +b'(0(z),0(x)) (%)
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for ,y € Fy. The functions F; — k,z — bl(z,2),2 — cl (z,2) are additive and
homogeneous of degree 2, hence are of the form x — 0(z)?,x — 01(z)?, where 0,0, €
Hom(F}, k). We can find a direct sum decomposition Fy = F' @ F”, where b*(2/, 2") =
Oforalla’ € F',2”" € F”, 0|p =0, F/ = F1 if 0 = 0, dim F” € {1,2} if 6 # 0. Define
o’ € End(F’) by 61(z)01(y) = b*(z,0'(y)) for z,y € F'. Then b'(z,0’'(y)) = b (o’ (2),y)
for z,y € F', 61(x)* = b'(z,0'(x)) + 0(c’' (x))? for x € F'.

If dim F” = 1, we have 0|p» # 0 and there is a unique v € F” such that 6(v) = 1.
Let o”: F" — F" be multiplication by a, where a € k satisfies a® + a = 6;(v)?. Then
61 (x)? = bl(z, 0" (x))+0(c"(x))? for x € F" and b(z, 0" (y)) = b(o” (z),y) for =,y € F".

If dim F” = 2, we can find a basis {v,v’'} of F” such that 6(v') = 0,0(v") = 1. We
set b(v',v"”) = f. We have f # 0. Define ¢ € End(F”) by o’ (v') = af ' + av”,
o’ (v") = 61 (v")2f~ 1, where @ € k satisfies @® + @ = 61(v')2. Then b(x,0"(y)) =
b(a"(z),y) for z, yEF” 01 (z)? = b(z, 0" (x)) + 0(c” (x))? for x € F".

If F" =0, let ¢’: F"" — F” be the 0 map.

Define o € End(Fy) by o(x) = o'(z) if x € F/, o(z) = ¢"(x) if © € F”. Then o
satisfies (). Since b° is nondegenerate, we can find 75" € Hom(F}, Fy) such that

s, y) +a(@,0(y) = (2, 75" ()
for z € Fo,y € F1. For any i € Ip,j € [1,i + j = —3, and = € Fj;, y € F}; we have
bij(x,y) = bij (., y) + bij2(2,0(y) + bijys(@, T (1))
It follows that for any ¢ € I1,j € Ip,i +j = —3, and x € F|;,y € Fj;| we have
big (2, ) = bij(2,9) + biya,3 (0(2), y) + bigs 5 (15 (), 9).
Define d; € Bil(F1) by di(,y) = bi j+2(2,0(y)) +bis2 ;(0(x),y), where i,j € I, i+j =

—4. Using the first equality in (%) we see that d; is independent of the choice of i, j.
Define d € Bil(F7) by

d(z,y) = cLy(,y) + di(w,y) + b (o(2), 0 (y)) + (T3 (2),9) + a' (&, T5" (1))
We have d(z,z) = 0 for x € Fi. (We use (*) and the identity Ei,j+2 +Ej,i+2 = b
for i,j € I,i + j = —4.) Thus d is symplectic, hence we can find d’ € Bil(F}) such
that d = d' + d’*. Since b' is nondegenerate we can find T;' € End(F}) such that
d'(x,y) = b (x, T, (y)) for z,y € F;. We have
A, y) = b @, T () + B, T (@) = (2, T () + 6 (T2 (), )-

Hence for i,j € I1,i+ j = —4, and z,y € F; we have

bw(x y) = bw(x y) + b; ,j+2(x a(y)) + bz+2]( o(r),y)
+biso j42(0(@), oY) + bigs s (157 (2),y) + bijia(x, T3 (1))
b jaa(@, Ty () + bia s (T4 (2), ).
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Fori,5 € I1,i+j=—2,and x,y € Fy, we have

bij(w,y) = Eij(xay) +Ei,j+2(xa a(y)) +gi+2,j(o—(m)a y) = bij(z,y).

Define f € Bil(Fp) by f(z,y) = ®4(x,y). Then f is symplectic. (We use the fact
that ¥, is symplectic.) Hence we can find f’ € Bil(Fp) such that f = f’ + f'*. Since

b° is nondegenerate we can find 7" € End(Fp) such that f'(z,y) = b°(z, T\ (y)) for
x,y € Fy. We have

fla,y) =022, T30 (y)) + 0y, Ty 0 () = 00 (2, T () + b°(T) (), ),
hence for i,j € Iy, i+ j = —4, and z,y € Fy we have

bij(x,y) = gij(% y) + bija(z, 70 (y)) + bi+4,j(T£70(x)v Y)-

Fori,5 € Ip,i +j = —2, and x,y € Fy we have
bij(may) :b”(:c,y)

Let T be as in (a) with 790 = 1,731 = 1, T3, 7', T, Ty'' = o as above and
the other components 0. Define (b;) by T(bm) (b;j) Then (b] ) as the required
properties.

Case 4: p =2,k < —1. In this case we have n > 3. Define ¢,6 € {0,1} by e =k — 1
mod 2,8 = 1 —e. Since b’ is nondegenerate, we have 3, 2(30 y) = (z,0(y)) for
z,y € F5, where o € End(Fjs) is well defined. Since b°* = %, ¢3% 2= = c3, ., we have

b (z,0(y)) = b°(o(z),y). Since b¢ is nondegenerate we can find 7, Qk € Hom(Fj, F)
such that

€ € € 66
Cr—1(2,y) + a(z,0(y)) =0 (z, T1 "5, (v))
forxe F,yc Fs. Foranyic I.,j€ls,i+7=2k—1,and x € F, y € Fs we have

bij(z,y) = Zij(m; Y) +Ab'i,j72k(xa a(y)) +5i,j+1—2k(fﬂ, Tffgk(y))-

It follows that for any i € I5,j € I,i+j =2k —1, and = € F5,y € F, we have
bij(z,y) = gij(m; Y) +,bvi72k,j(0(x)7y) Jrgiﬂ—zk,j (Tf’_&%(m), Y).

Define d; € Bil(F5) by di(z,y) = gm-,gk(:c, o(y)) +gi,2k,j (o(x),y), where i,5 € I5,i+

j =2k —2. Using b°(1 ® o) = b°(c ® 1) we see that d; is independent of the choice of
i, j. Define d € Bil(Fs) by

d(z,y) = Sy_s(@,y) + di(z,y) + a(TF (), y) + a® (2, TF (1))

We have d(z,z) = 0 for x € Fs. (This follows from the choice of o and the identity
bij—ok + bji—ok = b for i,j € Is,i+j = 2k —2.) Thus d is symplectic, hence we
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can find d' € Bil(Fs) such that d = d’ + d’*. Since b’ is nondegenerate we can find
TM 5. € End(Fy) such that d'(z,y) = b’ (, TQ‘S 6%( )) for z,y € F5. We have

d(x,y) = 0 (2, Ty () + 6 (1, Ty 2y (@) = b (2, T5 0y (1)) + 1° (T3 (), ).

Hence for ¢,5 € I5,i + j = 2k — 2, and z,y € F5 we have

bij(@,y) = bij (2, y) + bij—2k (2, 0(y)) + bizon j (0(2),y) + bi1—21 (15 9, (2), )
+ bij+1-2k (7, Tfok(y)) + bi jr2—2k(, Tgé’_é%(y))
+ bito_2k,j (Tg&_(sgk(m)a Y).

Fori,j € Is,i+ j =2k, and =,y € F5 we have

bij (2,y) = bij (2, y) + bij—ok (2, 0(y)) + biman,j (0(2), y) = bij(z, y).

Define f € Bil(F,) by f(z,y) = ¢§),_o(z,y). Then f is symplectic. (We use the fact
that ¢, _, is symplectic.) Hence we can find f’ € Bil(F,) such that f = f’ + f'*. Since
b€ is nondegenerate we can find 7%, € End(F;) such that f'(z,y) = b (z,T5 . (v))
for z,y € F.. We have

f(@,y) =092, Ty 5, (y) + b (y, T g (2) = 0% (2, Ty S (y) + (T 5 (%), y),

hence for i,j € I.,i+ j =2k — 2, and =,y € F. we have
7 J€ 8,8
bij(2,y) = bij(2,y) + bijaa—ak (@, Ty 5, (y)) + bita—2n, (T3 5, (2), y)-

For i,j € Is,i+ j = 2k, and z,y € F. we have b;;(z,y) = E-j(x,y). Let T be as
in (a) with 790 = 1,73 = 1, 50, , T, , T, T*2, = o as above and the other
components 0. Define (b;;) by T'(bi; ) (bi;)- Then (b;;) has the required properties. #
This completes the proof of (b).
We now verify the following special case of Proposition 3.6(c).
(c) Let (Eij), (bi;) be two points of X. Then there exists T € A, such that T'(b;;) =
(bij)-
We first prove the following statement by induction on k € [—n, 0].
(Py) Assume in addition that b;; :E-j for any i,j with i + j > 2k. Then there exists
T € Ay, such that T (b;;) = (EU)
If k = —n, the result is obvious. Assume now that k& € [1 —n,0]. By (b) we can find
T" € A, such that T'(b;;) = (b};) and b;; = by; for i +j > 2k — 2. By the induction
hypothesis we can find 7" € A, such that 7" (b;;) = (bi]-). Let T =T"T" € A,. Then
T'(b;;) = (bsj). This completes the proof of (Py) for k € [—n,0]. In particular (Py) holds
and (c) is proved.
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3.10. Proof of Proposition 3.6(c). Let {,),(, )’ be two elements of the set X in 3.6.
We must show that (, ),(, )’ are in the same U-orbit. We argue by induction on e,
the smallest integer > 0 such that N® = 0. If e = 0, we have V' = 0 and the result is
obvious. If e = 1, we have N = 0. Then V = grV, canonically, U = {1}, and both
(,),(,) are the same as ( , )o, hence the result is clear. We now assume that e > 2.

#. Assume first that p = 2. For n € L, let g,: P”,, — k be the quadratic forms
attached to (N, (,)) in 3.3 and let ¢},: P”,, — k be the analogous quadratic forms
defined in terms of (N, (, )’). We show:

(a) there exists T € U such that if { , )" € Symp(V) is given by (x,y)" = (Tz, Ty),
then for n € L the quadratic form ¢ defined as in 3.3 in terms of (N,(,)")
satisfies ql! = ql,.

We are seeking an S € E>1V, such that SN = NS and ((1+ S)z, (1 + S)N""1i) =
(&, N"=13) that is, (1 + S)Z, N* "Y1+ S)z) = (&, N*~13)’, that is,

(Sit, N"~1ir) + (&, N""1Sa) + (S, N"718) = (&, N""1a) + (i, N" ')
for any n € £ and any @ € V5, such that N"*'i = 0. Now
<Si’,Nn71jJ> + <I’,Nn7151'> — <Sl’, (anl + (NT)n71)1'>

is a linear combination of terms (S%, N ”/i), with n’ > n; each of these terms is 0 since
St € V>1_n,N”’3'c € Vaon—n, and 1 —n +2n’ —n > 1. Moreover (Si, N"~'1Si) =
(Sz,v"~1Sx)g, where z € PY, is the image of & and (i, N"~ti) + (&, N""13) =
¢’ (z) + gn(x). By the surjectivity of the map S + S in 2.5(d) we see that it suffices to
show that there exists ¢ € End](grV,) (that is, o € End;(grVi) such that ov = vo),
with (oz,v" lox)g = ¢, (7) + gn(z) for any n € £ and any z € PY,,.

For n € £’ the last equation is automatically satisfied for any o. (The left-hand side
is zero by the definition of £’. The right-hand side is equal by 3.3(c) to Q’, (v("~™)/2z) +
Qn (V" ™™/22) where Qy is the quadratic form attached as in 3.3 to (N, (, )) and @/, is
the analogous quadratic form defined in terms of (N, (, )’). The last sum is zero since

We see that it suffices to show there exists o € EndY (grVi) such that (oz, " lox)g =
¢, (x) + qn(x) for any n € L — L' and any = € P¥,,.

For n € £ — L', the quadratic forms ¢/, g, have the same associated symplectic form
(see 3.3(a)); hence there exists 6,, € Hom(P",,, k) such that ¢/, (x) + ¢, (z) = 0, (x)? for

all z € P¥,. Hence it suffices to show that the linear map

p: Endy(grVi) — @,,c._, Hom(P”, k)

given by o — (6,), where 0,(x) = \/{ox,v"lox)y for & € P”, is surjective. Let

& =D, 5o Hom(P”,,, gr;_, V). We have an isomorphism 7: End{ (grVi) =1, € given by
o+ (op), where o, € Hom(P”, , gr,_,, Vi) is the restriction of o. Define a linear map

pl: 5 - @neﬁfﬁ’ HOI’I](PKT”k)
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by (o) — (0,), where 0, (x) = /{opx, v to,x)g for x € PY,. We have p'm = p.
Hence it suffices to show that p’ is surjective. It also suffices to show that for any
n € L — L', the linear map

pr s Hom(P¥,  er,_, Vi) — Hom(P”

— —n

k)

given by f +— 0, where 0(z) = /(fz,v"1fx)y for x € PY,, is surjective. De-
fine g € Hom(gr,_,,Vi — k) by h — +/(h,v""'h)g. Then p/(f) = go f for f €
Hom(P”,,gr;_,Vi). Hence to show that p/, is surjective, it suffices to show that g # 0.
Since n € £ — L/, there exists m odd such that m > n + 3 and b,, is not symplectic.
Hence there exists v’ € P”, such that (v/,v"u)o # 0. We have m = (n — 1) + 2k,
where k is an integer > 2. Let u = Nky' € gr;_,, Vi and

(u, v" Yo = WFu' v IR g = (W, v ) #£ 0.

Thus g(u) # 0. We see that g # 0 as required. This proves (a).
Note that (, )" in (a) is in X (in fact in the U-orbit of { , )). Replacing if necessary
(,) by (,)”, wesee that

(b) we may assume that { , ),{, ) are such that g, = ¢, for alln € L. &

We now return to a general p. Let r > e. Let F' be a complement of V3o, =
ker N*~1 in Vs1—p =V, and let F’ be a complement of V>3_, = ker N™2 4+ NV in
V5o = ker N"1. Consider the linear map a of FQF PF @ - - PF GF (2r—1
summands) into V' given by

(xl—r; L2—ry. oy Lr—2, x'r‘—l) —

Ty +Nag_p+--+ N o g+ 2oy + Ny + -+ N2z, s,

(Here z; € F,if i =r+1mod 2, and z; € F', if i = r mod 2.) Let W be the image of
«. We show that

(¢) (,) and {,) are nondegenerate on W.

We prove this only for ( , ); the proof for ( , )’ is the same. Assume that w =
Ti—p+Nas_p+--+N"1o, + 290+ Naa_p + -+ N""22,_5 with z; as above
satisfies (w,W) = 0. We show that each z; is 0. We have 0 = (w, N""'F) =
(r1_,, N7"1F) = 0. Using the nondegeneracy of b._1, we see that z1_, = 0 and
w= Nas_,+ - +N"" e, +29 4+ Nzy_p+ -+ N"22,_5. We have 0 =
(w,N"=2F") = (x9_,, N""2F’). Using the nondegeneracy of b,_s, we see that zo_, = 0
andw = Nz3_,+---+N""1z, 1 +Nxy .+ - -+N""22,_5. Wehave 0 = (w, N"72F) =
(Nz3_p, N'72F) = —(w3_,, N""'F). Using the nondegeneracy of b,_1, we see that
23—, = 0. Continuing in this way we see that each x; is 0. This proves (c).

The proof also shows that « is injective.

Let Z={z eV | {(xz,W)=0}2 ={x eV | (x,IW) =0}. From (c) we see that
V=wgz=weZz.

Clearly W is N-stable, hence (1 + N)-stable. Since 1+ N is an isometry of ( , )
it follows that Z is (1 + N)-stable hence N-stable. Similarly Z’ is N-stable. Define
® € GL(V) by ®(z) =z for x € W, ®(z) = 2/ for z € Z, where 2’ € Z' is given by
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x—a € W. We have ® € U (see 2.7(c),(d)). Define '( , ) € Symp(V) by "(x,y) =
(®(x), @(y))’. By Proposition 3.6(a) we have '( , ) € X.

Let 'Z = {&# € V | "(x, W) = 0}. We show that 'Z = Z. Let ¢ = z1 + 2,
where ©1 € Wyaes € Z. We have 23 = w+ 2, w € Wyah € Z'. For v’ € W
we have (®(z),w'Y = (zr1 + 2h,w') = (x1,w’). The condition (®(x), W) = 0 is
that (z1, W) = 0 or that z; = 0 (using (¢)) or that x € Z. Thus 'Z = {z € V |
(O(z), (W) =0} ={x € V | (®(x), W) =0} = Z as required.

& In the case where p = 2 we show that, for any n € L, the quadratic form ¢,
attached to (IV,(, )’) as in 3.3 is equal to the analogous quadratic form attached to
(N,’( ', )). We must show that if x € Vs_,,, N""z = 0, then (®z,dN""lz) =
(x, N"~1x)’ that is, (®z, N""1dz)’ = (z, N""'z)’. Both sides are additive in z. We
can write £ = x1 + x2, where 1 € W,zo € Z satisfy x1,22 € V>, Ntlg, =
0, N"tlgy = 0. We may assume that x = 1 or x = 3. When z = x1, the desired
equality is obvious. Hence we may assume that x € Z. Write z = 2/ + w, 2’ €
Z'\w € W. We must show that (z + w, N" 'z + N*~tw) = (z, N*"lz)/, that is,
(x, N*"lw) + (w, N""'z) + (w, N*"lw) = 0, that is, (z, (N"~! + (NH)"~Dw)’ +
(w, N"~Lw)" = 0, that is, (z, N"w)’ + (w, N""lw)" = 0 (we use N"*lw = 0), that
is, (@' + w, N"w)’ + (w, N"“lw)" = 0, that is, (w, N"w)’ + (w, N*“lw)" = 0. Now
w € Wx1_y (see Proposition 2.7(b)), N"w € Wx,41, hence (w, N"w)’ = 0. It remains
to show (w, N""tw)" = 0. Since w € Wx1_,, and N""w = 0, it suffices to show
{(y,v" 1y)o = 0 for any y € gr,_,, Vi such that v"*1y = 0. This has already been seen
in the proof in 3.3 that ¢, is well defined. &

Replacing ( , ) by ’( , ) (which is in the same U-orbit) we see that condition (b) is
preserved (for p = 2).

Thus we may assume that ( , ), (, ) satisfy Z = Z’ and that for p = 2 condition
(b) holds. Thus V =W @ Z is an othogonal decomposition with respect to either ( , )
or (,). Let (, )w,(, )z be the restrictions of ( , ) to W,Z. Let (, )i, (, )y be
the restrictions of ( , ) to W, Z. Let U (respectively Us) be the analogue of U for W
(respectively Z) defined in terms of N and WX (respectively Z¥). We have naturally
Uy xU; CU.

We consider 5 cases.

Case 1: p # 2. Take r = e+ 1 (thus F = 0). By the induction hypothesis ( , )z is
carried to (, )}, by some uz € Us. By Proposition 3.9 (, )w is carried to (, )} by
some u; € Uy. Then (, ) is carried to {, ) by (u1,us) € U.

& Case2: p=2, e is odd, and be_o is symplectic. Take r = e+ 1 (thus, F' =0). We
have e —1 € £. The sets £ attached to ( , )z, (, ), are the same as £ for (, ),(, ).
The quadratic forms attached to (, )z, (, )%, and n € £ — {e — 1} are the same as
those attached to ( , ), (, )’, and n, hence they coincide. The quadratic forms attached
to (,)z,(,),, and n = e — 1 also coincide: they are both 0. Hence the Quadratic
forms attached to (, )z, (, )% coincide (see 3.3(c)). The quadratic forms attached to
(,Yw, () coincide: for e — 1 they are the same as those attached to (, ),(, ), and
e — 1. For other n they are zero. Hence the Quadratic forms attached to (, )w, (, )iy
coincide. By the induction hypothesis ( , )z is carried to ( , ), by some ug € Us. By
Proposition 3.9, ( , yw is carried to ( , )} by some u; € U;. Then (, ) is carried to
< ) >/ by (u17u2) ev.

Case 3: p=2, e is even, and b._1 is symplectic. Take r = e + 1 (thus, F' =0). The
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sets £ attached to (, )z, (, )% are the same as £ for (, ), (, ). The quadratic forms
attached to (, )z, (, )% and n € £ are the same as those attached to (, ),(, )’, and n,
hence they coincide. Thus the Quadratic forms attached to ( , )z, (, )’ coincide. By
the induction hypothesis ( , )z is carried to (, )}, by some ug € Us. By Proposition 3.9
(, )w is carried to (, )}, by some u; € Uy. Then (, ) is carried to ( , )’ by (u1,u2) € U.

Case 4: p = 2, e is even, and b._1 is not symplectic. Take r = e. The sets L
attached to (, )z, (, )’ are the same as £ for (, ), (, ). The quadratic forms attached
to (,)z,(, )y, and n € L are the same as those attached to (, ),(, )’, and n, hence
they coincide. Thus the Quadratic forms attached to ( , )z,( , )}, coincide. By the
induction hypothesis ( , )z is carried to ( , )%, by some ug € Us. By Proposition 3.9
(, )w is carried to (, )}, by some u; € Uy. Then (, ) is carried to ( , )’ by (u1,u2) € U.

Case 5: p=2, e is odd, > 3, and be_o is not symplectic. Take r = e. By Proposition
3.9 (, )w is carried to (, )} by some u; € U. Replacing ( , )’ by a translate under
(u1,1) € U we see that we may assume in addition that ( , )w = (, )};. Let W =
F4+NF+ - -+ N 7'F. Let W ={weW | (w,W)=0} ={weW]| (wW) =0}
Then W = W @ W', the orthogonal direct sum for both (, ),(, ). Let Z = W' Z,

the orthogonal direct sum for both (, ),(, ). Then V=W Z, the orthogonal direct
sum for both (, ),(,)". Let (, )z, ()% be the restrictions of (, ),(, )" to Z. Let

U, (respectively (72) be the analogue of U for 1% (respectively Z ) defined in terms of
N and Wﬁv (respectively Zﬁv ). We have naturally U, x Uy C U. The sets £ attached
to (, )z (, >IZ are the same as £ for ( , ),{, ). The quadratic forms attached to
(,)z (, >’2, and n € L are the same as those attached to (, ), (, ), and n, hence they
coincide. Thus the Quadratic forms attached to (, )z, (, )’ coincide. By the induction
hypothesis, ( , ) is carried to (, >’2 by some usy € Us. Then (, ) is carried to (, ) by
(Lug) €U. &

This completes the proof of Proposition 3.6(c), hence also those of Propositions 3.5,
3.6, and 3.7.

3.11. Here is the order of the proof of the various assertions in Propositions 3.5-3.7:
3.5(a), see 3.8; 3.7(a), see 3.7; 3.6(a), see 3.6; 3.7(b), see 3.7; 3.6(b), see 3.6; 3.5(b), see
3.5; 3.6(c), see 3.9, 3.10; 3.7(c), see 3.7; 3.5(c), see 3.5.

3.12. Let V € C and let ( , ) € Symp(V). The following result can be deduced from
[S1, T, 2.10].

Let C,Cy be two GL(V)-conjugacy classes in Nil(V') such that C' N M y # &,
CoN M y# @, and C is contained in the closure of Cy in GL(V'). Then C' N M,
is contained in te closure of Co N My in M .

3.13. Let V € Cand let (, ) € Symp(V). Let G = Sp({, )). For any self-dual filtration

V. of V and for n > 1, let E;n >V* = FE>,VaN My, aunipotent algebraic group with
multiplication T« T/ =T +T' +TT'. Let

(Vi) =eVonM y={NeM ,|VN=V}={N¢e E;m | N € End(grV,)}

(see 2.9). The following three conditions are equivalent:
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() EV) # 25

(i) there exists v € End)(grV,) which is skew-adjoint with respect to the symplectic
form on grV; induced by ( , );

(i) dimgr, Vi = dimgr_, Vi > dimgr_, ,Vi for all n > 0, and dimgr_,V, =
dimgr_,_,V. mod 2 for all n > 0 even.

We have (i)=>(ii) by the definition of £(V,); we have (ii)=>(iii) by 2.3(d) and 3.1(c). Now
(iii)=-(ii) is easily checked. We have (ii)=-(iii) by Proposition 3.5(a).

Let § ,y be the set of all self-dual filtrations Vi of V' that satisfy (i)-(iii). From the
definitions we have a bijection

(a) {S’( ) :%DG,V* —=A
(Dg as in 1.1), where A= (G§ D Gf D G5 D ...) is defined in terms of Vi by
G = F>Vi NG and G& = 1+ EL) 'V, for n > 1. The sets £(V4) (with Vi € ()

form a partition of M . (If N € My, we have N € £(V.), where V, = V)
Let Vi € §(, ). Let Cp be the unique GL(V')-conjugacy class in Nil(V') that contains
&(Vi). We have

BV — E(Vi) = (BsaVe — (V) NM( |y = BsaVa 0 (UcC) M

(the last equality follows from 2.9; C' runs over all GL(V)-orbits in Nil(V) such that
C c Cy— Cy). Using 3.12 we see that

BV — (V) = BL Ve (Ue(CnM ),

where C runs over all GL(V)-orbits in Nil(V) such that C " M y # @ and C C
Con M y—=(Con M y). We see that if V. —A (as in (a)) and A is the G-orbit

of A in D¢, then (with the notation of 1.1) HA is the union of G-conjugacy classes in
1+ My contained in 1+ Cy, H* is the union of G-conjugacy classes in 1 + My

contained in 1 + Cp, and X4 = 14+ £(V,) = 1 + (E;2 W, N Cy). We see that P1—Ps
hold.
3.14. We preserve the setup of 3.13. Let Vi € §( | ) and let A€ D¢ be the corresponding

element. Define (, )¢ € Symp(grVi) asin 3.2. The map E;é WV, — End)(grV,), N — N
restricts to a map

7 &(Vi) — E = {v € End(grV,) | v skew-adjoint with respect to ( , Jo}.

We show:

(a) The group E<>3 vV, (see 3.13) acts freely on E(V*) by T,N + T % N (see 3.13)
and the orbit space of this action may be identified with E via .

We show this only at the level of sets. If T' € E<>3 >V*,N € g(V*), then T'x N €
E;é 'V, and T « N, N induce the same map in Enda(grVi); hence T« N € E(V*) Thus
T,N — T« N is an action of E;3 'V, on €(V4). This action is free: it is the restriction
of the action of E<>3 >V* on E;2 >V* by left multiplication for the group structure in
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3.13. If N,N’ € £(V,) induce the same map in End)(grVi), then N' — N € Es3Vi.
Set T = (N'"—N)1+N)*te E>3Vi. Then (1+T)(14+ N) =1+ N’ and we have
automatically T € E<>3 >V* and T'+ N = N’. Thus the orbits of the E<>3 >V*—acti0n

on £(V*) are exactly the nonempty fibers of 7. It remains to show that 7 is surjective.
This follows from Proposition 3.5(a).

Now let N, N’ € £(V4) be such that N = N=ve End)(grV.). We show:
(b) there exists g € ExoVi NG such that N' = gNg~!.

First assume that p = 2. The set £ C 2N defined in 3.3 in terms of N is the same as
that defined in terms of N'. Let ¢,: P¥,, — k be the quadratic form defined in terms of
N (for n € £) as in 3.3 and let ¢},: P¥,, — k be the analogous quadratic form defined
in terms of N’. From 3.3(a) we see that for any n € £ there exists an automorphism
hn: P, — PY_  which preserves the symplectic form z,y — b,(z,y) (see 3.1) and
satisfies ¢/, () = qn(hnx) for any x € P¥, . There is a unique h € Sp({ , )o) such that
h(z) = hyp(z) for x € PY,,,n € L, h(x) =z for x € P¥,,, n € Z — L, and hv = vh. Let
V =&, V. be a direct sum decomposition as in 3.2(b). Then Endo(V) is defined and
we define h € Endy (V) by the requirement that for any a, h: V., — V, corresponds to
h: gr,Vi — gr,V. under the obvious isomorphism V, — gr,V,. Then he ExoVinG
and hNh~1 = N, where N € E;é 'V, satisfies N = v. Moreover, the quadratic form
P, — k defined as in 3.3 in terms of N” (instead of N) for n € £ is  — h,(x), that
is, ¢/,. From 3.3(c) we see that the Quadratic form @, defined for n € £’ in terms of
N" is the same as that defined in terms of N’. From Proposition 3.5(c) we see that
there exists b/ € 1+ E;i 'V, such that ' N"h'~1 = N'. Setting g = Wh e E-oViNG,
we have gNg—! = N'.

Next assume that p # 2. From 3.5(c) we see that there exists g € 1 + E;i 'V, such
that gNg—! = N’. This proves (b).

We see that Pg (hence PB4) holds.

From (a) we see that the G§-action on &(V*) (conjugation) induces an action of
63 = G§ /G on E and from (b) we see that this gives rise to a bijection between the
set of G§-orbits on E(V*) and the set of ég—orbits on E. We describe this last set of
orbits. We identify 6§ with Endo(grVi) N Sp({ , )o) with the action on E given by
g: vV, where v/ (z) = gv(g ') for z € grVi.

Let I = {n € 2N +1 |dimgr_, Vi, —dimgr_, oV, € {2,4,6,...}}. For any subset

—nVx

J C I let E; be the set of all v € E such that for any n € I we have
{xegr_ Vi|v" e =0,(z,v"x) #0} # T > n el

Let E be the set of all direct sum decompositions grV, = @n>0 W where W" €

C (see 2.1) are such that (W™, W")y = 0 for n # n/, and for n > 0, dim W/ is
dimgr_, Vi —dimgr_,_,Vi if a € [-n,n],a = n mod 2 and is 0 for other a. Define

¢: E — E by v (W"), where W" = > k>0 vFPY, . Then ¢ is 6§-equivariant, where
63 acts on E in an obvious way (transitively).
Let w = (W™) € E. Let G* be the stabilizer of w in @é. Let E¥ = ¢~ !(w). Now

E™ may be identified with Hn>0 EY, where EY is the set of all skew-adjoint elements
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in End)(W") with respect to (, Jo|wn. Moreover G* may be identified with [0 G
where G¥ = Endo(W™)NSp({, )o|lwn). Furthermore, we may identify EY = E¥! x B2
where E¥! consists of all sequences of isomorphisms

(€) WIy == W2y == WPy = = W

(§ =0 if nis even and § = 1 if n is odd) and E*? is the set of nondegenerate symmetric
bilinear forms W™ x W, — Kk, if n is odd, and is a point if n is even. (This identification
is obtained by attaching to v € E¥ the isomorphisms (c¢) induced by v and, if n is odd,
the bilinear form z, 2’ — (x,vz')g on W".)

We claim that if p = 2, the subsets E; are precisely the orbits of 63 on E whereas
if p # 2, E is a single orbit of @@. Using the transitivity of the 63 action on E, we
see that it suffices to prove the following: if p = 2, the subsets EY = E; N EY are
precisely the G"-orbits on E, whereas if p # 2, E¥ is a single G¥-orbit. If n ¢ I, G/,
acts transitively on E/,. If n € I, pry: E¥ — E“? induces a bijection between the set of
GY-orbits on EY and the set of GL(W™)-orbits on the set of nondegenerate symmetric
bilinear forms on W”;. The last set of orbits consists of one element if p # 2 and of two
elements (the symplectic forms and the nonsymplectic forms) if p = 2. This verifies our
claim.

We see that the first assertion of s holds.

As above, we identify E with the set of triples (w, a, j), where w € E, « is a collection
of isomorphisms as in (c) (for each n > 0) and j is a sequence (jp)ner, where j, €
Bil(W™,) is symmetric and nondegenerate.

Assume that p = 2. Let J C J’ C I. From the previous discussion we see that the
@3 -orbits on F that contain E; in their closure and are contained in the closure of
Ej are those of the form Ex, where J C K C J'. Let Ej 5 = Uk, jcxco Ex. We
identify F; with the set of (w,a,j) € E such that j, is not symplectic for n € J and
symplectic for n € I — J. We identify E; ;- with the set of (w,a, j) € E such that jy, is
not symplectic for n € J and symplectic for n € I — J'. Let E s be the set of all triples
(w, v, 7), where w, o are as above, and j = (jn)ner, where for n € J Jn € Bil(W™) is a
symmetric nonsymplectic nondegenerate form and, for n € I — J, ]n. wr, x Wi —k
is the square of a symplectic nondegenerate form.

Now Ej, E; 5, and E 7 are naturally algebraic varieties. Define a finite bijective
morphism o: E; — E; by (w,q,j) — (w,a,}), where j, = jn for n € J, j, = j2
for n € I —J. Define p: Ej y — E; by (w,a,j) — (w,a,}), where j, = jn for
n e Jand jn(z,2') = ju(z,2)2 + ju(@,2)jn(2,2') for n € I —J, z,2’ € W",. (To
see that this is well defined, we must check that for n € I — J, the symplectic form
z,2" — ju(2,2") + \/Jn (2, 2)jn(2’,2’) on W is nondegenerate. Let R be the radical
of this symplectic form. Let H = {& € W, | ju(z,2) = 0}. If 2 € RN H, then j,(z,2’)
for all 2/, hence x = 0. Thus RN H = 0. Since H is either W, or a hyperplane in
W™, we see that R N H is either R or a hyperplane in R. It follows that dim R is 0
or 1. Since R = dim W”; mod 2, we see that dim R is even. Hence R = 0, as required.)

Taking here J' = I, we see that P7 holds. We now return to a general J'. We
consider the fiber F of p at (w,« j) € E;. We may identify F with the set of all
collections (jn)ner—.J, where j, € Bil(W",) is symmetric nondegenerate for all n, j, is

symplectic for n € I — J', and jn(z,2") = jn(x,2')2 + jn(z, 2)jn (2, 2) for n € I — J,
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x,x’ € W",. Let F' be the set of all collections (h,)ner—j, where h, is a linear
form W", — k, zero for n € I —J'. We define a map F — F' by (jn)ner—g —

(hn)ner—g, where h,(x) = /jn(z,z) for x € W",. We define a map 7' — F by
(hn)nei—7 — (jn)ner—s, where jn(z,2') = \/jn(z, 2') + hn(2)hn (') for z, 2" € W™,
(We show that this is well defined. We must show that j, given by the last equality is
nondegenerate. Let R’ be the radical of j,. Define v € W, by hn(y) = \/jn(v,y) for

all y € Wfl Itz e R/ay € Wfla we have jn(xay) - hn(z)hn(y) - hn(z) \/ jn(vay)a
hence \/}n(:L' — hp(z)v,y) = 0. Since \/J, is nondegenerate, we have z — hy, (z)v = 0.
Hence z = hy, (2)v = by (b (2)0)0 = hy (2)hy (v)v. This is 0, since hy, (v) = 1/ jn(v,0) =
0. Thus R’ =0.) Clearly, F — F',F' — F are inverse to each other. We see that F is

in natural bijection with a vector space of dimension ) ;. _; ¢, where ¢, = dim W™,.
Hence if k, g are as in 5, we have

> IBk(Fy) =|EsnF)l = [ o

K; JCKCJ’ neJ'—J

E;(Fg)l.

From this we see that |Ex (Fy)| = [[,cx (¢ —1)|Eg(Fy)| for any K C I. Using this
and P we see that the second assertion of Pg holds.
For k, g as in 5 we have

[HA(Fy)| = [ X4 (FIIG(F,)/GE (Bl [X5(F)| = ¢ % E(F,)].

Hence to verify 95, it suffices to show that |E(F,)| is a polynomial in ¢ with integer

coefficients independent of p. Using the 6@ -equivariant fibration ¢: E — E, we see
that |E(F,)| = |[E(F,)||E¥(F,)| for any w € E. Since |E(F,)| is a polynomial in ¢
with integer coefficients independent of p, it suffices to show that for any w € E(Fq),
|E¥(F,)| is a polynomial in ¢ with integer coefficients independent of p, or that |EY (F,)|
is a polynomial in ¢ with integer coefficients independent of p for any w € E(Fq) and
any n > 0. Using the identification E¥ = E¥! x E*? and the fact that |[E¥1(F,)| is a
polynomial in ¢ with integer coefficients independent of p, we see that it suffices to show
that |E¥2(F,)| is a polynomial in ¢ with integer coefficients independent of p. Thus it
suffices to check the following statement.

Let W be an F4-vector space of dimension d. Let b(W) be the set of nondegenerate
symmetric bilinear forms W x W — Fy. Then |b(W)| is a polynomial in q with integer
coefficients independent of p.

We argue by induction on d. For d = 0 the result is obvious. Assume that d > 1.
We write [b(W)| = f(d,q). The set of all symmetric bilinear forms W x W — F,
has cardinal ¢#@t1/2; it is a disjoint union Lixbx (W), where X runs over the linear
subspaces of W and bx (W) is the set of symmetric bilinear forms W x W — F, with
radical equal to X. Thus

gUHDE = T ox (W) =D W/ X) = Y g(d,dq)f(d—d,q),
X

X d’€0,d]
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where g(d,d’,q) = {X C W | dim X = d'}|. We see that

f(d,q) = ¢"D2 - N~ g(d,d'q)f(d—d',q).

d'e[1,d]

Since g(d,d’,q) is a polynomial in ¢ with integer coefficients independent of p and the
same holds for f(d—d’, q), with d’ € [1,d] (by the induction hypothesis), it follows that
f(d, q) is as required.

We see that Bs holds.

4. The group A'(u)

4.1. In this section we assume that p > 2 and that 7 holds. Let u € U. According to
P there is a unique A€ D¢ such that v € X*. Let A'(u) = Zgs (u)/Zgs (u)°, a finite
p-group.

The image of A'(u) in Zg(u)/Za(u)? is a normal subgroup (since Zg(u) = Zga (u) —
see 1.1(c)—and Zgs (u) is normal in Zga (u)).

In this section we describe the finite group A!(u) in some examples assuming that
p =2 and G is a symplectic group.

Let n > 1. Let I = {i € [-n,n] | ¢ = n mod 2}. Let F € C,F # 0. Let
V = @, Fi, where F; = F. Define N: V. — V by (x;) — (), where 2} = x;_» for
i€ I—{-n}z’, =0. Wefix (,)o € Symp(V) such that ((x:), (yi))o = ;s 0(wi, y—i),
where b € Bil(F) satisfies b* = b, b is nondegenerate, and b € Symp(F') if n is even.

Let ( , ) € Symp(V) be such that (Nz,y) + (x, Ny) + (Nz, Ny) = 0 for z,y € V and
(x,y) = (x,y)o if there exists ¢ such that x; = 0 for j # ¢ and y; = 0 for j # —i. We
have ((x;), (y:)) = >2; jer bij (i, y;), where b;; € Bil(F) are such that

bi_g,j + biJ‘_Q + bij =0ifi,jel— {—TL},
bi—i=bforalliel,
bi; € Symp(F) for all ¢ € I,
bi; = —bj; for all i, j € I.
(We automatically have b;; =0if i +j > 1.)

Let A’ ={T € GL(V) | TN = NT, (z,y) = (Tx,Ty) for all z,y € V'}, a subgroup of

Sp({, )); equivalently, A’ is the set of linear maps T': V' — V of the form

T: (2:) = (2}),2 = > Tijaj,

JeI; j<i

where T, € End(F) (r € {0,2,4,...,2n}) are such that

bij(xay) = Z bi'jl (Ti’fi(x),Tj’ij) (EW)

i3l el; i 20,5 2]

fori,jel,i+j<0,andz,y € F. Now (E;;), (Eit2,j—2), with i4+j = 2k, are equivalent
if (Eap) is assumed for a + b = 2k + 2 (the sum of those two equations is E; 19 ;). Thus
the conditions that 7" must satisfy are E;; and E;_5 ;. Setting « = y in these equations,

o ). Note that the equation (EY) is 0 = 0, hence can

we obtain equations (E})), (E?_Qﬂ-
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be omitted; the equation (Ej;) is a consequence of (E}_, ;) (if it is defined). Hence the
equations satisfied by the components of T are as follows:

(Eg2,0)a (E*Q,O)a (E074,72)7 (E*47*2)a X} (Egn,fnJrQ)a (E*n,*nJrQ)v (E*nyfn) (a)

(for n even),

(B_11),(E% 1), (B_3,-1),(E%5 _3),(E_5,3),
PPN (Egn’,nJrQ), (Efn,fnJrQ)a (E*n,*n)

(for n odd). Assume first that n is even. The solutions T} of the first equation in (a)
form an even orthogonal group, a variety with two connected components. For any
such Ty, the solutions T» of the second equation in (a) form an affine space of dimension
independent of Ty. For any Tgy,T> already determined, the solutions Ty of the third
equation in (a) form an affine space of dimension independent of Ty, T>. Continuing in
this way, we see that the solutions of the equations (a) form a variety with two connected
components. Moreover, the solutions in which T is specified to be 1 form a connected
variety.

Next assume that n is odd and b is symplectic. The solutions Ty of the first equation
in (b) form a symplectic group (a connected variety). For any such Tp, the solutions
T5 of the second equation in (b) form an affine space of dimension independent of Tp.
For any Ty, T» already determined, the solutions Ty of the third equation in (b) form an
affine space of dimension independent of Ty, T5. Continuing in this way, we see that the
solutions of equations (b) form a connected variety. Moreover, the solutions in which
Ty is specified to be 1 form a connected variety.

One can show that if n is odd, n > 3, and b is not symplectic, then the solutions of
equations (b) form a variety with two connected components. Moreover, the solutions
in which Tj is specified to be 1 form a disconnected variety.

In solving the equations above, we repeatedly use the statement (c) below. Let 9
be the vector space of quadratic forms F' — k. Define linear maps a1, as, and a3 as
follows:

(b)

ar: End(F) — Q(F) is 7 — q,q(z) = b(z, 7(x));
az: {7 € End(F) | b(r(z),y) = b(x,7(y) for all x,y € F}
— Hom(F,k) is 7 — 0,0(x) = /b(z, 7(x));
az: {b' € Bil(F) | b* = b'} — Hom(F,k) is b’ — 0,0(x) = \/V/(z,z).
Then
(¢c) a1, az, and a3 are surjective.

For ag this is clear. Consider now ag. Let § € Hom(F,k). By (c), for ag we can find
b € Bil(F),b'* =V such that 0(x) = /b (z,z). We can find a unique 7 € End(F)
such that b(x,7(y)) = b'(x,y). Then as(t) = 6. Consider now a;. Let ¢ € Q. Let
b° be a symplectic form on F. We can write b° = d + d*, where d € Bil(F). We can
write d(z,y) = b(x,0(y)) for some o € End(F). Then b(z,0(y)) + b(y, o(x)) = b°(x, y).
Apply this to the symplectic form »°(z,y) = q(z + y) + q(x) + q(y). Then

b(z+y,o(z+y))+b(x,0(x))+b(y,0(y)) = b(z,0(y))+b(y,0(x)) = q(r+y)+q(z)+q(y).
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Hence b(x,0(x)) + g(z) = 6(z)? for some § € Hom(F,k). By (c), for ay we can find
7 € End(F) such that b(x,7(z)) = 0(x)%. Then b(x,o(x)) + b(z,7(z)) = q(x), that is,
b(z, (0 + 7)(z)) = g(x). Thus a; is surjective. This proves (c).

4.2. Let V, (,) beasin 3.2. Let N e M, ,V, = V.N. Let e be as in 2.4. We show:

(a) If W, W’ are e-special subspaces of V (see 2.8), then there exists g € 1+E<>i A%4
such that g(W)=W', gN = Ng.

By 2.8(b) we can find g1 € 1+ E51V; such that ¢g1(W) = W', 1N = Ngi. Then ¢;
carries ( , ) to a symplectic form ( , )’, which induces the same symplectic form as ( , )
on grV, and has the same associated quadratic forms as ( , ) (see Proposition 3.6(b)).
By the proof in 3.10 (cases 2 and 3), we see that there exists g2 € 1 + E>1V, such that
g2(W') =W’ gaN = Nga, and go carries (, )’ to (, ). Then g = g2g1 has the required
properties.

4.3. Let V, (,), N, V,, and e be as in 4.2.

(@) If (x,Nz) = 0 for any x € V>_1, then V = {g € E;l’ v, | gN = Ng} is
connected. Hence A'(1+ N) = {1}.

We argue by induction on e. Let X be the set of all e-special subspaces (see 2.8) of
V. By 2.8(b) the group {g € 1+ E>1V. | gN = Ng} acts transitively on X. This
group is connected (it may be identified as a variety with the vector space {§ € Ex 1V, |
EN = N¢E}); hence X is connected. By 4.2(a), V acts transitively on X. Since X is
connected, it suffices to show that the stabilizer Vi of some W € X in V is connected.
This stabilizer is V' x V", where V', V" are defined like V in terms of W, W instead of
V. By the results of 4.2, V' is connected. By the induction hypothesis applied to W+,
V" is connected. Hence V' x V' is connected. Hence V is connected.

5. Study of the varieties B,

5.1. We assume that k = k,,.

We say that an algebraic variety V over k has the purity property if for some/any Fg-
rational structure on V' (where F is a finite subfield of k) with Frobenius map F': V —
V and any n € Z, any complex absolute value of any eigenvalue of F*: H?(V,Q,;) —
HE(V.Q) is q"/*.

In this section we show that for certain w € U, the varieties B,, (see 0.1) have the
purity property. We assume that properties 1—B4, B¢, L7 hold for G.

Let A€ Dg. Let II# be the (finite) set of orbits for the conjugation action of G§ on
B. Let B={B € B| B C G}}. For any O € II*, define a morphism ¢°: O — B by
B~ (BNG§)GE. We show:

(a) The fibers of €°: O — B are exactly the orbits of G§ acting on O by conjugation.
If B,B' € O, ¢€9(B) = ¢9(B'), then B’ = g~ 'Byg, with ¢ € G}, (B' N G§)G} =
(BNGH)GL = g1 (BNGH)GLg. Hence g € (BNGE)GE. Writing g = ¢'g”, ¢’ € BNG§,
g" € G§, we have B’ = g7 1Bg = ¢ ' Bg". This proves (a).

Let Y2 = {(u,B) € X® x B | u € B}. We have a partition Y* = Upen=Y35, where
Y5 ={(u,B) € X* x O |ue B}. Let O € II*. We show:
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(b) Y4 is smooth.
Let B € O. Let Y/ = {(u,g) € X* x G4 | g'ug € BN X%}. We have a fibration
Y’ — Y4 with smooth fibers isomorphic to G§ N B. Hence it suffices to show that Y is
smooth. Let Y = (BN X%) x G§. Define Y = Y" by (u,g) — (g~ 'ug, g). It suffices

to show that Y is smooth, or that BN X% is smooth. But BN X is open in BN G5
which is smooth, being an algebraic group. This proves (b).

For any 3 € B, let gg = ((BNG5)G4)/GS, where B € O is such that ¢9(B) = 3.
Note that gg is a closed connected subgroup of G5 /G4 independent of the choice of
B. (To verify the last statement it suffices, by (a), to show that, for B as above and
v € G§, we have (vBv~! N G5)G4 = (BN G5)G4. This follows from 1.1(b).) Now G§
acts on B and on G4 /G% by conjugation. From the definitions we see that for g € G§

and § € B, we have GO, 1 = ¢G5 g™".

Let ?(Ag ={(z,p) € X" xB |z € gg} We show:
(c) ?(Ag is a closed smooth subvariety of X' x B.

Let B € O. We have a fibration X% x G4 — X“ xB, (u,g) — (72 (u), 9 (gBg™')) with
smooth fibers. It suffices to show that the inverse image of ?(AQ under this fibration is a
closed smooth subvariety of X2 x G§, or that

{(u,9) € X2 x G4 | g7lug € X2 N ((BNGS)GS)}

is a closed smooth subvariety of X x G§, or that (X% N ((BNG5)G%)) x Gb is a
closed smooth subvariety of X2 x G&, or that X N ((B N G4)G4) is a closed smooth
subvariety of X 2. It is closed since (B N G4)G% is closed in G4. It is smooth since it
is an open subset of (E N G%)G4 which is smooth, being an algebraic group.
We show:
(d) The morphism a: Y5 — ?(Ag, (u, B) — (72 (u), 9 (B)) is a fibration with fibers
isomorphic to an affine space of a fixed dimension.

Clearly a is surjective. Let (u, B) € Y5. Let
Z:=a Y(a(u,B))={(/,B") | u=v'f, B'=vBv~ for some veG,, feGS;u' € B'}.

We show only that Z is isomorphic to an affine space of fixed dimension. Let Z =
{(f,v) € G5 x G | v~ ruf~tv € B}. Then Z = Z /(BN GY{), where BN G4 acts freely
on Z by b: (f,v) — (f,vb™1). Since conjugation by G% acts trivially on G4 /G4, the
map (f,v) — (f',v), f/ =u v~ tuf~ v is an isomorphism

Z— 7' ={(f",v) € G5 x G} | uf’ € B}
={(f,v) €eGE x G4 | f'e B} = (G5NB) x G

(we use u € B) and we have Z = (G§ N B) x G% /(BN G$). Now G4 N B,Gf, and
B N G% are connected unipotent groups of dimension independent of B, for B € O.
(The connectedness follows from the fact that these unipotent groups are normalized
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by a maximal torus of G contained in G§ N B. The fact that the dimension does not
depend on B follows from the fact that G{, G4 are normalized by G§.) We see that Z
is an affine space of constant dimension.

We now fix 2 € X . Let ¥ = (72)~Yz) C X2. Let By = {(u,B) € ¥ x B|u € B}.
We have By, = Upens Os, where Os; = {(u,B) € ¥ x O | u € B}. Let O € ITI*. Let
BY ={peB|xzegg} Weshow:

(e) BY is a closed subvariety of B and a': Os, — BY, (u, B) — £°(B) is a fibration
with fibers isomorphic to an affine space of a fixed dimension.
Let B € O,uy € ¥. We have a locally trivial fibration G§ — B, g §o(g§g_1). To
show that Bf is closed, it suffices to show that its inverse image under this fibration is
closed in G§, or that {g € G& | g~*uog € (BN G5)G4} is closed in G§. This is clear
since (BN G5)G is closed in G4. The second assertion of (e) follows from (d) using
the cartesian diagram

!
a 219
Oy —%— B¢

l L

A a A2
Y8 — Yo

where the left vertical map is the obvious inclusion and the right vertical map is § +—
(@, B).

(f) If the closure of the G -orbit in G§ of some/any u € X is a subgroup T' of G,
then BY is smooth.

Let B € O,up € ©. As in the proof of (e), it suffices to show that {g € G |
g ugg € (BN G5)GS} is smooth. This variety is a fibration over R = (G§ —
conjugacy class of ug) N ((B N G4)G4) with smooth fibers isomorphic to Zags (ug) (via
g+ g tugg). Hence it suffices to show that R is smooth. From our assumption we see
that R is open in I'N ((B N G4)G%) which is smooth, being an algebraic group. This
proves (f).

Note that the hypothesis of (f) holds at least in the case where the G§-conjugacy
class of some/any u € ¥ is open dense in G5. We show:

(g) If the hypothesis of (f) holds, then Bys, has the purity property.

From (e), (f) we see that BY is a smooth projective variety of pure dimension. From
[D1] it then follows that Ef has the purity property. From this and (e), we see that,
for O € I1%, Oy, has the purity property. Using this and the partition By = Upens Os,
we see that (g) holds.

5.2. Let Z(z) = {g € 63 | gz = xg}. Let Z(z) be the inverse image of Z(z) under
Gy — @é. Thus we have G C Z(z) and Z(z)/G% = Z(x). Note that the inverse
image of Z(z) is Z(x)° and that we have Z(z)°/G® = Z(z)°. Now Z(z) acts transi-
tively (by conjugation) on X.. (Indeed, let u,u’ € ¥. By s we can find g € G§ such
that v/ = gug™'. Automatically we have g € Z (z).) Since X is irreducible, it follows

that Z(z)® acts transitively (by conjugation) on .
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Let u € ¥. Recall that B, = {B € B | u € B}. Let Z4(u) = Za(u) N Z(z)°.
Since Zg(u) C Z(x) —see 1.1(c)— we see that ZJ(u) is a normal subgroup of Zg(u)
containing Zg(u)®. Let A’(u) be the image of Z/(u) in A(u) := Zg(u)/Zg(u)?. This
is a normal subgroup of A(u). We have Z(u)/Zgs (u) = Z(z)°. Hence Z4(u) =
Zas () Z(u)? = Zgs (u) Za(u)®. Tt follows that

A'(u) is the image of the obvious homomorphism A'(u) — A(u).

Now Z¢(u) acts by conjugation on B,; this induces an action of A(u) on H"(B,,Q;)
which restricts to an A’(u)-action on H"™(B,, Q).

Assume that the hypothesis of 5.1(f) holds and that A’(u) acts trivially on
H?(B.,Q,) for any n. We show:

(a) B, has the purity property.

Define f: By — ¥ by (g, B) — g. For any n, R"f/(Q,) is an equivariant constructible
sheaf for the transitive Z (7)Y action on X; hence it is a local system on ¥ corresponding
to a representation of A’(u) (the group of components of the isotropy group of u in
Z(x)°) on H?(B.,Q;). This representation is trivial, hence R" f(Q;) is a constant local
system. Since Y. is an affine space of dimension, say d, we see that H*(3, R" f1(Q,)) is
H?(B.,Q,)(—d), if a = 2d, and is zero if a # 2d. It follows that the standard spectral
sequence
ES™ = HO(S, R (@) — HE(Bs, Q)

is degenerate. Hence the purity property of By (see 5.1(g)) implies that any complex
absolute value of any eigenvalue of the Frobenius map on

Ey*" = H(Bu, Q))(—d)

is gdt+n/ 2_ Hence any complex absolute value of any eigenvalue of the Frobenius map on
H?(B.,Q,) is ¢"/2. This proves (a).

C

5.3. Since the hypothesis of 5.1(f) is not satisfied in general, we seek an alternative way
to prove purity.

Let v be the aé—orbit of 7in X°. Let 42 41 << 4 be as in Pr. Let = = p~o(z)).
Let BE = {(2',3) € ?(AQ | ' € 2}, a closed subvariety of ?(Ao. We show:

(a) BE is smooth of pure dimension.
Let By € B. Let Gy = ggo. It suffices to show that the inverse image of BE under the
fibration = x @é — Ex B, (#/,9) — (2,807 ') (with smooth connected fibers) is
smooth of pure dimension, or that & := {(2/,7) € = x §§ | 12’ € Gy} is smooth
of pure dimension. The morphism f: & — 4 N Gy, (2/,7) — g *a'g is smooth with
fibers of pure dimension. (We show only that, for any y € 4 N Gy, the fiber f~1(y) is
isomorphic to {g € @é | grg~! = x} which is smooth of pure dimension. We have

_ Y P I R

) ={("9) €eExGy |7 2a'g=y} ={ge G, |gyg ' €E}

={geGy | pgyg ") =o(2)} ={g € Gy | go  (p(y))g " = 2}
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and it remains to use the transitivity of the @é -action on +.) It suffices to show that
4N Gp is empty or smooth, connected. Now 4 is open in G5 /G%, hence ¥ N Gy is open
in Gy which is connected and smooth (being an algebraic group).

We show:

(b) Assume that for any O € 11, there is a k*-action on BE which is a contraction
to the projective subvariety Bf. Then By, has the purity property.

Consider an Fg-rational structure on G such that G5 is defined over F, for any a, and
that O, z, Z are defined over F,. Let ¢ be an eigenvalue of Frobenius on H"(BY,Q,).
By [D2, 3.3.1], any complex absolute value of ¢ is < ¢"/? (since BY is projective).
Our assumption implies that the inclusion Bf C Bg induces for any n an isomorphism
H™(BE,Q,) = H"(BY,Q,). Hence ( is also an eigenvalue of Frobenius on H"(BE, Q,).
Since BE is smooth of pure dimension, say d, it satisfies Poincaré duality; hence ¢?¢ ™1
is an eigenvalue of Frobenius on H?¢~"(BE,Q,). By [D2, 3.3.1] applied to BE, we see
that any complex absolute value of ¢4¢~! is < ¢(24=")/2 hence any complex absolute
value of ¢ is > ¢™/2. Tt follows that any complex absolute value of ¢ is ¢"/2. We see
that BY has the purity property. (This argument is similar to one of Springer in [Sp].)
From this and 5.1(e), we see that for O € II*, Oy, has the purity property. Using this
and the partition By = Upera Oy, we see that By, has the purity property.

If we assume in addition that A’(u) acts trivially on H*(B,,Q,) for any n, we see,
as in 5.2, that B, has the purity property.

5.4. Let V,(, ) be as in 3.2. Assume that p = 2 and that G = Sp({, )). Let u € U.
We set u =1+ N,V, = VN, Assume that

(a) (x,Nx) =0 for any x € V>_;.

We set
r=1+{N'e€ E;Q’ Wi | (@, N'z) =0 for all z € Vo1 }.

Now T is a subgroup of 1+ E;é V.. (Assume that 1+ N, 1+ N" € Gs. Letz € V>4,
We have (z, N'z) = 0, (x, N"z) = 0. We must show that (z, (N’ + N’ + N'N")z) =0
or that (z, N'N"z) = 0. This follows from N'N"”z € V>3 and 3 —1 > 1.) Clearly, T
is normal in G§. Since I is a closed unipotent subgroup normalized by G, it must be
connected. Now

J:=1+{N'€Gy|N €End)(grV.)}

is open in T since it is the inverse image under I' — Ends(grVi),1 + N’ — N’ of the

open subset Endg(grv*) of Enda(grVi). Also, J # @ since 1 + N € J. Hence J is an

open dense subset of I'. By the results in 3.14, J is the G§-conjugacy class of 1+ N.
We see that the hypothesis of 5.1(f) holds. Using 5.2(a) we see that:

(b) B, has the purity property for any u € G whose conjugacy class is minimal in
the unipotent piece containing it, see 1.1, and such that any Jordan block of even
size appears an even number times.

(For such u, A’(u) is trivial by 4.3(a).)
Alternatively, one can show that, for u as in (b), the method of 5.3 is applicable (the
hypothesis of 5.3(b) holds) and one obtains another proof of (b).
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