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Abstract. Let G be a reductive connected algebraic group over an algebraically closed field
of characteristic exponent p � 1. One of the aims of this paper is to present a picture of
the unipotent elements of G which should apply for arbitrary p and is as close as possible to
the picture for p = 1. Another aim is the study of Bu, the variety of Borel subgroups of G
containing a unipotent element u. It is known [Sp] that when p is a good prime, the l-adic
cohomology spaces of Bu are pure. We would like to prove a similar result in the case where p
is a bad prime. We present a method by which this can be achieved in a number of cases.

Introduction

0.1. Let k be an algebraically closed field of characteristic exponent p � 1. Let G be a
reductive connected algebraic group over k. Let U be the variety of unipotent elements
of G. The unipotent classes of G are the orbits of the conjugation action of G on U .
The theory of Dynkin and Kostant [Ko] provides a classification of unipotent classes of
G assuming that p = 1. It is known that this classification remains valid when p � 2
is assumed to be a good prime for G. But the analogous classification problem in the
case where p is a bad prime for G is more complicated. In every case a classification
of unipotent classes is known: see [W] for classical groups and [E], [Sh], and [M] for
exceptional groups, but from these works it is difficult to see the general features of the
classification.

One of the aims of this paper is to present a picture of the unipotent elements which
should apply for arbitrary p and is as close as possible to the picture for p = 1.

In 1.4 we observe that the set of unipotent classes in G can be parametrized by a
set Sp

W of irreducible representations of the Weyl group W, which can be described a
priori purely in terms of the root system. This explains clearly why the classification is
different for small p.

In 1.1 we restate in a more precise form an observation of [L2] according to which U
is naturally partitioned into finitely many “unipotent pieces” which are locally closed
subvarieties stable under conjugation by G; the classification of unipotent pieces is in-
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dependent of p. For p = 1 or a good prime, each unipotent piece is a single conjugacy
class. When p is a bad prime, a unipotent piece is in general a union of several con-
jugacy classes. Also, each unipotent piece has some topological properties which are
independent of p (for example, over a finite field, the number of points of a unipotent
piece is given by a formula independent of the characteristic).

Another aim of this paper is the study of Bu, the variety of Borel subgroups of G
containing a unipotent element u. It is known [Sp] that when p is a good prime, the
l-adic cohomology spaces of Bu are pure. We would like to prove a similar result in the
case where p is a bad prime. We present a method by which this can be achieved in a
number of cases. Our strategy is to extend a technique from [DLP] in which (assuming
that p = 1), Bu is analyzed by first partitioning it into finitely many smooth locally
closed subvarieties using relative position of a point in Bu with a canonical parabolic
attached to u. Much of our effort is concerned with trying to eliminate reference to
the linearization procedure of Bass–Haboush (available only for p = 1), which was used
in an essential way in [DLP]. Our approach is based on a list of properties P1–P8 of
unipotent elements of which the first five (respectively last three) are expected to hold in
general (respectively in many cases). All these properties are verified for general linear
and symplectic groups (any p) in Sections 2 and 3. In writing Section 3 (on symplectic
groups mostly with p = 2), I found that the treatment in [W] is not sufficient for this
paper’s purposes; I therefore included a treatment which does not rely on [W].

Notation. When p > 1, we denote by kp an algebraic closure of the field with p elements.
Let B the variety of Borel subgroups of G. If Γ′ is a subgroup of a group Γ and x ∈ Γ,
let ZΓ′(x) = {z ∈ Γ′ | zx = xz}. For a finite set Z, let |Z| be the cardinal of Z. Let l
be a prime number invertible in k. For a, b ∈ Z let [a, b] = {z ∈ Z | a � z � b}.

1. Some properties of unipotent elements

1.1. G acts by conjugation on Hom(k∗, G) (homomorphisms of algebraic groups).
The set of orbits Hom(k∗, G)/G is naturally in bijection with the analogous set
Hom(C∗, G′)/G′, where G′ is a connected reductive group over C of the same type
as G. (Both sets may be identified with the set of Weyl group orbits on the group of 1-
parameter subgroups of some maximal torus.) Let D̃G′ be the set of all ω ∈ Hom(C∗, G′)
such that there exists a homomorphism of algebraic groups ω̃ : SL2(C) → G′ with
ω̃

[
t 0
0 t−1

]
= ω(t) for all t ∈ C∗. Now D̃G′ is G′-stable; it has been described explic-

itly by Dynkin. Let D̃G be the unique G-stable subset of Hom(k∗, G) whose image
in Hom(k∗, G)/G corresponds under the bijection Hom(k∗, G)/G ↔ Hom(C∗, G′)/G′

(as above) to the image of D̃G′ in Hom(C∗, G′)/G′. Let DG be the set of sequences
�= (G�

0 ⊃ G�
1 ⊃ G�

2 ⊃ · · · ) of closed connected subgroups of G such that for some
ω ∈ D̃G we have (for n � 0):

Lie G�
n = {x ∈ Lie G | lim

t∈k∗; t→0
t1−nAdω(t)x = 0}.

Now G acts on DG by conjugation, and the obvious map D̃G → DG induces a bijection
D̃G/G

∼−→ DG/G on the set of orbits. If �∈ DG and g ∈ G, then Gg�g−1

n = gG�
ng−1 for

n � 0. G�
0 is a parabolic subgroup of G with unipotent radical G�

1 and G�
n is normalized

by G�
0 for any n. Moreover,
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(a) G�
2 /G�

3 is a commutative connected unipotent group;
(b) the conjugation action of G�

0 on G�
2 /G�

3 factors through an action of G
�
0 :=

G�
0 /G�

1 on G�
2 /G�

3 .
Note also that G�

n for n �= 0, 2 are uniquely determined by G�
0 , G�

2 .
Let � be a G-orbit in DG. Then H̃� := ∪�∈�G�

2 is a closed irreducible subset of U
(since for �∈ �, G�

2 is a closed irreducible subset of U stable under conjugation by G�
0

and G/G�
0 is projective). Let

H� = H̃� −⋃
�′∈DG/G; H̃�′ �H̃� H̃�′

.

For �∈ DG, let X� = G�
2 ∩ H�, where � is the G-orbit of �. Then H� is an open

dense subset of H̃� stable under conjugation by G, and X� is an open dense subset of
G�

2 stable under conjugation by G�
0 . (We use the fact that DG/G is finite.) Hence H�

is locally closed in U . The subsets H�(� ∈ DG/G) are called the unipotent pieces of G.

We state the following properties P1–P5.

P1. The sets X�(�∈ DG) form a partition of U .
P2. Let � ∈ DG/G. The sets X�(�∈ �) form a partition of H�. More precisely, H�

is a fibration over � with smooth fibers isomorphic to X� (�∈ �); in particular,
H� is smooth.

P3. The locally closed subets H�(� ∈ DG/G) form a (finite) partition of U .
P4. Let �∈ DG. We have G�

3 X� = X�G�
3 = X�.

P5. Assume that k = kp. Let F : G → G be the Frobenius map corresponding to
a split Fq-rational structure with q − 1 sufficiently divisible. Let �∈ DG be
such that F (G�

n) = G�
n for all n � 0 and let � be the G-orbit of �. Then

|H�(Fq)|, |X�(Fq)| are polynomials in q with integer coefficients independent
of p.

Assume first that p = 1 or p	 0. By the theory of Dynkin–Kostant, for �∈ DG there
is a unique open G�

0 -orbit X ′� in G�
2 ; we then have a bijection of DG/G with the set of

unipotent classes on G, which to the G-orbit � of �∈ DG associates the unique unipotent
class H ′� of G that contains X ′�. Moreover, if g ∈ X ′�, then ZG�

0
(g) = ZG(g). As

stated by Kawanaka [Ka], the same holds when p is a good prime of G (but his argument
is rather sketchy). To show that P1−P3 holds when p is a good prime, it then suffices
to show that X� = X ′� for any �. It also suffices to show that X ′� = G�

2 ∩H ′� for
�∈ � as above. (Assume that g ∈ G�

2 ∩H ′�, g /∈ X ′�. Let g′ ∈ X ′�. By the definition
of X ′� and the irreducibility of G�

2 , the dimension of the G�
0 -orbit of g is strictly smaller

than the dimension of the G�
0 -orbit of g′. Hence dim ZG�

0
(g) > dimZG�

0
(g′). We have

dimZG(g) � dim ZG�
0
(g), dim ZG�

0
(g′) = dim ZG(g′), hence dim ZG(g) > dimZG(g′).

This contradicts the fact that g, g′ are G-conjugate.) In this case we have H� = H ′�

and H̃� is the closure of H ′�.
In 2.9 (respectively 3.13, 3.14) we shall verify that P1–P5 hold for any p when G

is a general linear (respectively symplectic) group. We will show elsewhere that P1–
P5 hold when G is a special orthogonal group (any p). If G is of type En (any p),
one can deduce P1–P5 from the various lemmas in [M], or, rather, from the extensive
computations (largely omitted) on which those lemmas are based; it would be desirable
to have an independent verification of these properties.
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We note the following consequence of P1.
(c) If �∈ DG and u ∈ X�, then ZG(u) ⊂ G�

0 .
Let g ∈ G. Then gug−1 ∈ Xg�. Hence if g ∈ ZG(u), we have u ∈ Xg�. Thus,
Xg� ∩X� �= ∅. From P1 we see that g�=�. In particular gG�

0 g−1 = G�
0 and g ∈ G�

0 ,
as required.

1.2. Let �∈ DG. We assume that P1–P4 hold for G. Let π� : G�
2 → G�

2 /G�
3 be the

obvious homomorphism. By P4 we have X� = (π�)−1(X
�
), where X

�
is a well defined

open dense subset of G�
2 /G�

3 stable under the action of G
�
0 . We wish to consider some

properties of the sets X
�
, which may or may not hold for G.

P6. If u ∈ X�, then uG�
3 = G�

3 u is contained in the G�
0 -conjugacy class of u. Hence

γ �→ (π�)−1(γ) is a bijection between the set of G
�
0 -orbits in X

�
and the set of

G�
0 -conjugacy classes in X�.

P7. Let γ be a G
�
0 -orbit in X

�
. Let γ̂ be the union of all G

�
0 -orbits in X

�
whose

closure contains γ. Thus, γ̂ is an open subset of X
�

and γ is a closed subset of γ̂.
There exist a variety γ1 and a morphism ρ : γ̂ → γ1 such that the restriction of
ρ to γ is a finite bijective morphism σ : γ → γ1 and the map of sets σ−1ρ : γ̂ → γ

is compatible with the actions of G
�
0 .

P8. There exist a finite set I and a bijection J �→ ΦJ between the set of subsets of
I and the set of G�

0 -orbits in X� such that for any J ⊂ I, the closure of ΦJ in
X� is ∪J′; J⊂J′ΦJ′ . Moreover, if k, q are as in P5, then there exists a function
I → {2, 4, 6, . . .}, i �→ ci such that |ΦJ (Fq)| =

∏
i∈J (qci − 1)|Φ∅(Fq)| for any

J ⊂ I.

When p = 1 or p 	 0, property P6 can be deduced from the theory of Dynkin–
Kostant; properties P7, P8 are trivial. In the case where G = GLn(k) (any p), the
validity of P6 follows from 2.9; properties P7, P8 are trivial. In the case where G is a
symplectic group (any p), the validity of P6–P8 follows from 3.14. P6 is false for G of
type G2, p = 3.

1.3. Let V be a finite dimensional Q-vector space. Let R ⊂ V∗ = Hom(V,Q) be a
(reduced) root system, let Ř ⊂ V be the corresponding set of coroots, and let W ⊂
GL(V) be the Weyl group of R. Let β ↔ β̌ be the canonical bijection R ↔ Ř. Let Π
be a set of simple roots for R and let Π̌ = {α̌ | α ∈ Π}. Let

Θ = {β ∈ R | β − α /∈ R for all α ∈ Π},
Θ̃ = {β ∈ R | β̌ − α̌ /∈ Ř for all α ∈ Π},

A = {J ⊂ Π ∪Θ | J linearly independent in V∗},
Ã = {J ⊂ Π ∪ Θ̃ | J linearly independent in V∗}.

For any prime number r, let Ar be the set of all J ∈ A such that∑
α∈Π

Zα

/ ∑
β∈J

Zβ

is finite of order rk for some k ∈ N.
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For any J ∈ A or J ∈ Ã, let WJ be the subgroup of W generated by the reflections
with respects to roots in J . For W ′ = W or WJ , let Irr(W ′) be the set of (isomorphism
classes) of irreducible representations of W ′ over Q. For E ∈ Irr(W ′), let bE be the
smallest integer � 0 such that E appears with nonzero multiplicity in the bE-th sym-
metric power of V regarded as a W ′-module; if this multiplicity is 1, we say that E is
good. If J is as above and E ∈ Irr(W ′) is good, then there is a unique Ẽ ∈ Irr(W) such
that Ẽ appears in IndW

WJ
E and bẼ = bE ; moreover, Ẽ is good. We set Ẽ = jW

WJ
E.

Let SW ⊂ Irr(W) be the set of special representations of W (see [L1]). Now any
E ∈ SW is good. Following [L1], let S1

W be the set of all E ∈ Irr(W) such that
E = jW

WJ
E1 for some J ∈ Ã and some E1 ∈ SWJ . (Note that WJ is like W with the

same V and with R replaced by the root system with J as the set of simple roots; hence
SWJ is defined.) Now any E ∈ S1

W is good.
For any prime number r, let Sr

W be the set of all E ∈ Irr(W) such that E = jW
WK

E1

for some K ∈ Ar and some E1 ∈ S1
WK

. (Note that WK is like W with the same V
and with R replaced by the root system with K as set of simple roots; hence S1

WK
is

defined.)
We have S1(W) ⊂ Sr(W). We have S1(W) = Sr(W), if r is a good prime for

W and also in the following cases: W of type G2, r = 2; W of type F4, r = 3; W of
type E6; W of type E7, r = 3; W of type E8, r = 5. If W is of type G2 and r = 3,
then Sr(W) − S1(W) consists of a single representation of dimension 1 coming under
jW
WJ

from a WJ of type A2. If W is of type F4 and r = 2, then Sr(W) − S1(W)
consists of four representations of dimensions 9/4/4/2 coming under jW

WJ
from a WJ

of type C3A1/C3A1/B4/B4. If W is of type E7 and r = 2, then Sr(W) − S1(W)
consists of a single representation of dimensions 84 coming under jW

WJ
from a WJ of

type D6A1. If W is of type E8 and r = 2, then Sr(W) − S1(W) consists of four
representations of dimensions 1050/840/168/972 coming under jW

WJ
from a WJ of type

E7A1/D5A3/D8/E7A1. If W is of type E8 and r = 3, then Sr(W) − S1(W) consists of
a single representation of dimensions 175 coming under jW

WJ
from a WJ of type E6A2.

1.4. Let W be the Weyl group of G. Let u be a unipotent element in G. Springer’s
correspondence (generalized to arbitrary characteristic) associates to u and to the trivial
representation of ZG(u)/ZG(u)0 a representation ρu ∈ Irr(W). Moreover u �→ ρu defines
an injective map from the set of unipotent classes in G to Irr(W). Let X p(W) be the
image of this map (p as in 0.1). We state:

(a) if p = 1, we have X 1(W) = S1(W) (see [L1]);
(b) if p > 1, we have X p(W) = Sp

W.

The proof of (b) follows from the explicit description of the Springer correspondence for
small p given in [LS], [S2].

1.5. In this subsection we assume that G is adjoint and that p > 1. Let G′(p) be the set
of all g ∈ G′ (as in 1.1) such that ZG′(gs)0 is semisimple and gpk

s = 1 for some k ∈ N;
here gs is the semisimple part of g. One can reformulate 1.4(b) as follows: there is a
natural surjective map

Φ: {G′-conjugacy classes in G′(p)} → {unipotent conjugacy classes in G}
which preserves the dimension of a conjugacy class.
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Indeed, via the Springer correspondence, we may identify the source (respectively
target) of Φ with

⊕
J X 1(WJ), where J runs over the subsets in Ap, modulo the action

of the fundamental group of G (respectively with X p(W)), and then Φ is given by the
maps jW

WJ
.

Although the definition of Φ is indirect, we can think of Φ as a process of “reduction
mod p”.

2. General linear groups

2.1. Let C̄ be the category whose objects are Z-graded k-vector spaces V =
⊕

a∈Z V a

such that dimV <∞; the morphisms are linear maps respecting the grading. Let V ∈ C̄.
For j ∈ Z, let Endj(V ) = {T ∈ Hom(V , V ) | T (V a) ⊂ V a+j for all a}. Let End0

2(V ) be
the set of all ν ∈ End2(V ) that satisfy the Lefschetz condition: νn : V −n → V n is an
isomorphism for any n � 0. Let ν ∈ End0

2(V ). Define a graded subspace P ν = V
prim

of V by P ν
a = {x ∈ V a | ν1−ax = 0} for a � 0, P ν

a = 0 for a > 0. A standard argument
shows that N (a−c)/2 : P ν

c → V a is injective if c ∈ a + 2Z, c � a � −c, and we have

(a)
⊕

c∈a+2Z; c�a�−c P ν
c

∼−→ V a, (zc) �→
∑

c∈a+2Z; c�a�−c N (a−c)/2zc.

We show:

(b) Let j ∈ N, R ∈ Endj+2(V ). Then R = Tν − νT for some T ∈ Endj(V ).

Let c � 0. Since ν1−c : V j−c → V j+c+2 is surjective, the induced map

Hom(P ν
−c, V j−c) −→ Hom(P ν

−c, V j+c+2)

is surjective. Hence there exists τc ∈ Hom(P ν−c, V j−c) such that

ν1−cτc = −
∑

i+i′=−c

νiRνi′ .

For k ∈ [0,−c], we define τc,k ∈ Hom(P ν
c , V c+2k+j) by τc,0 = τc and τc,k = ντc,k−1 +

Rνk−1 for k ∈ [1,−c]. Then ντc,−c + Rν−c = 0. Let T : V → V be the unique linear
map such that T (νkx) = τc,k(x) for x ∈ P ν

c , c � 0, k ∈ [0,−c]. This T has the required
property.

2.2. Let C be the category whose objects are k-vector spaces of finite dimension; mor-
phisms are linear maps. Let V ∈ C. A collection of subspaces V∗ = (V�a)a∈Z of V is
said to be a filtration of V if V�a+1 ⊂ V�a for all a, and V�a = 0 for some a, V�a = V
for some a. We say that V is filtered if a filtration V∗ of V is given. Assume that this is
the case. We set grV∗ =

⊕
a∈Z graV∗ ∈ C̄, where graV∗ = V�a/V�a+1. For any j ∈ Z,

let E�jV∗ = {T ∈ End(V ) | T (V�a) ⊂ V�a+j for all a}. Any such T induces a linear
map T ∈ Endj(grV∗).

2.3. Let V ∈ C. Let Nil(V ) = {T ∈ End(V ) | T nilpotent }. Let N ∈ Nil(V ). When
p = 1, the Dynkin–Kostant theory associates to 1 + N a canonical filtration V N∗ of V ;
in terms of a basis of V of the form
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(a) {Nkvr | r ∈ [1, t], k ∈ [0, er − 1]} with vr ∈ V, er � 1, Nervr = 0 for r ∈ [1, t],

V N
�a is the subspace spanned by {Nkvr | r ∈ [1, t], k ∈ [0, er − 1], 2k + 1 � er + a}. This

subspace makes sense for any p, and we denote it in general by V N
�a; it is independent

of the choice of basis: we have

V N
�a =

∑
j�max(0,a)

N j(kerN2j−a+1).

The subspaces V N
�a form a filtration V N

∗ of V ; thus, V becomes a filtered vector space.
From the definitions we see that

(b) N ∈ E�2V
N∗ and N ∈ End2(grV N∗ ) belongs to End0

2(grV N∗ ).

Note that for any j � 1,

(c) dimPN
1−j is the number of Jordan blocks of size j of N : V → V .

From 2.1(a) we deduce that for any n � 0:

(d) dimPN−n = dim gr−nV N∗ − dim gr−n−2V
N∗ .

2.4. According to [D2, 1.6.1],

(a) if V∗ is a filtration of V and N ∈ E�2V∗ induces an element ν ∈ End0
2(grV∗),

then V∗ = V N∗ .

We show that V�a = V N
�a for all a. Let e be the smallest integer � 0 such that Ne = 0.

We argue by induction on e. If a � e, then νa : gr−aV∗ → graV∗ is both 0 and an
isomorphism, hence V�−a = V�1−a and V�a = V�a+1. Thus V�e = V�e+1 = . . . = 0
and V�1−e = V�−e = . . . = V . Similarly, V N

�e = V N
�e+1 = . . . = 0 and V N

�1−e = V N
�−e =

. . . = V . Hence V�a = V N
�a if a � e or if a � 1 − e. This already suffices in the

case where e � 1. Thus we may assume that e � 2. Now νe−1 : gr1−eV∗ → gre−1V∗
is an isomorphism, that is, Ne−1 : V/V�2−e → V�e−1 is an isomorphism. We see that
V�e−1 = Ne−1V and V�2−e = ker(Ne−1). Hence if 2 − e � a � e − 1, we have
Ne−1V ⊂ V�a ⊂ ker(Ne−1); let V ′

�a be the image of V�a under the obvious map
ρ : ker(Ne−1) → V ′ := ker(Ne−1)/Ne−1V . For a � 1 − e, we set V ′

�a = V ′, and for
a � e we set V ′

�a = 0. Now (V ′
�a)a∈Z is a filtration of V ′, satisfying a property like

(a) (with N replaced by the map N ′ : V ′ → V ′ induced by N). Since N ′e−1 = 0,
the induction hypothesis applies to N ′; it shows that V ′

�a = V ′N ′
�a for all a. Since

for 2 − e � a � e − 1, V�a = ρ−1(V ′
�a), it follows that V�a = ρ−1(V ′N ′

�a); similarly,
V N

�a = ρ−1(V ′N ′
�a), hence V�a = V N

�a. This completes the proof.

With notation in the proof above we have:

V N
�a = 0 for a � e,

V N
�a = V for a � 1− e,

V N
�a = ρ−1(V ′N ′

�a), V ′N ′
�a = ρ(V N

�a) for e � 2 and 2− e � a � e− 1,
V N

�e−1 = Ne−1V if e � 1,
V N

�2−e = ker(Ne−1) if e � 1.
We have graV N

∗ = 0 for a � e and for a � −e.

Note also that the proof above provides an alternative (inductive) definition of V N
�a

that does not use a choice of basis.
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2.5. Let V, N be as in 2.3. Let V∗ = V N
∗ . Let ν = N ∈ End2(grV∗). We can find a

grading V =
⊕

a∈Z Va of V such that

(a) NVa ⊂ Va+2 and V�a = Va

⊕
Va+1

⊕ · · · for all a.

For example, in terms of a basis of V as in 2.3(a), we can take Va to be the subspace
spanned by {Nkvr | r ∈ [1, t], k ∈ [0, er − 1], 2k + 1 = er + a}. Taking direct sum of the
obvious isomorphisms Va

∼−→ graV∗, we obtain an isomorphism of graded vector spaces
V

∼−→ grV∗ under which N corresponds to ν. It follows that:

(b) N ∈ End0
2(V ) (defined in terms of the grading

⊕
a Va).

We note the following result.

(c) Let n � 0 and let x ∈ P ν
−n. There exists a representative ẋ of x in V�−n such

that Nn+1ẋ = 0.
Let Va be as above. There is a unique representative ẋ of x in V�−n such that ẋ ∈ V−n.
We have Nn+1ẋ ∈ Vn, and the image of Nn+1ẋ under the canonical isomorphism
Vn

∼−→ grnV N
∗ is 0; hence Nn+1ẋ = 0.

Let EN
�1V∗ = {S ∈ E�1V∗ | SN = NS}, Endν

1(grV∗) = {σ ∈ End1(grV∗) | σν = νσ}.
We show:

(d) The obvious map EN
�1V∗ −→ Endν

1(grV∗), S �→ S is surjective.

Let σ ∈ Endν
1(grV∗). Let Va be as above. In terms of these Va, we define V

∼−→ grV∗
as above. Under this isomorphism, σ corresponds to a linear map S : V → V . Clearly,
S ∈ EN

�1V∗ and S = σ.

2.6. Let V, N be as in 2.3. Let V∗ = V N∗ . Now 1 + E�1V∗ is a subgroup of GL(V )
acting on N + E�3V∗ by conjugation. We show that

(a) the conjugation action of 1 + E�1V∗ on N + E�3V∗ is transitive.

We must show: if S ∈ E�3V∗, then there exists T ∈ E�1V∗ such that (1 + T )N =
(N + S)(1 + T ), that is, TN −NT = S + ST . We fix subspaces Va as in 2.5. We have
S =

∑
j�3 Sj , where Sj ∈ End(V ) satisfy SjVa ⊂ Va+j for all a. We seek a linear map

T =
∑

j�1 Tj , where Tj ∈ End(V ) satisfy TjVa ⊂ Va+j for all a and
∑

j�1(TjN−NTj) =∑
j�3 Sj +

∑
j′�3,j′′�1 Sj′Tj′′ , that is,

TjN −NTj = Sj+2 +
∑

j′∈[1,j−1]

Sj+2−j′Tj′ for j = 1, 2, . . .. (∗)

We show that this system of equations in Tj has a solution. We take T1 = 0. Assume
that Tj has been found for j < j0 for some j0 � 2 so that (∗) holds for j < j0. We set
R = Sj0+2 +

∑
j′∈[1,j0−1] Sj+2−j′Tj′ . Then R(Va) ⊂ Va+j0+2 for any a. The equation

Tj0N − NTj0 = R can be solved by 2.1(b) (see 2.5(b)). This shows by induction that
the system (∗) has a solution. Thus (a) is proved.

We now show:

(b) if Ñ ∈ N + E�3V∗, then V Ñ∗ = V∗.

Indeed by (a) we can find u ∈ 1+E�1V∗ such that Ñ = uNu−1. Since V N∗ is canonically
attached to N , we have V uNu−1

�a = u(V N
�a) = V N

�a, and (b) follows. For example,
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(c) if Ñ = c1N + c2N
2 + · · ·+ ckNk, where ci ∈ k, c1 �= 0, then V Ñ∗ = V N∗ .

We may assume that c1 = 1. Since c2N
2 + · · · + ckNk ∈ E�4V∗ ⊂ E�3V∗, (b) is

applicable and (c) follows.

2.7. Let V, N be as in 2.3. Let V∗ = V N
∗ . Let ν = N ∈ End2(grV∗). Let r � 2 be

such that N r = 0 on V . Let W be an N -stable subspace of V such that there exists an
N -stable complement of W in V , N : W →W has no Jordan block of size �= r, r−1, and
N r−2 = 0 on V/W . Then W∗ = WN∗ is defined. Define a linear map μ : grV∗ → grW∗
as follows. Let x ∈ graV∗. We have uniquely x =

∑
c∈a+2Z; c�a�−c ν(a−c)/2xc, where

xc ∈ P ν
c ; we set

μ(x) =
∑

c∈a+2Z; c�a�−c,c=1−r or 2−r

ν(a−c)/2xc.

Let X be the set of N -stable complements of W in V . Then X �= ∅. For Z ∈ X , define
ΠZ : V → W by ΠZ(w + z) = w, where w ∈ W, z ∈ Z. Let ΠZ : grV∗ → grW∗ be the
map induced by ΠZ . We show that

(a) ΠZ(V�a) ⊂W�a for all a and ΠZ = μ.

We have V�a = W�a

⊕
Z�a. If x ∈ V�a, x = w + z, w ∈ W�a, z ∈ Z�a, then

ΠZ(x) = w. Thus ΠZ(V�a) ⊂ W�a. We can find direct sum decompositions W =⊕
m Wm, Z =

⊕
m Zm such that NWm ⊂ Wm+2, NZm ⊂ Zm+2, and Nm : W−m

∼−→
Wm, Nm : Z−m

∼−→ Zm for m � 0 (see 2.5). Let Va = Wa

⊕
Za. Define V prim

a ,
W prim

a , Zprim
a as in 2.1 in terms of N . We have V prim

a = W prim
a

⊕
Zprim

a . We must
show that ΠZ(x) = μ(x) for x ∈ graV∗. It suffices to show: if w ∈ Wa, z ∈ Za, and
w + z =

∑
c∈a+2Z; c�a�−c ν(a−c)/2xc, where xc ∈ V prim

c , then

w =
∑

c∈a+2Z; c�a�−c,1−r�c�2−r

ν(a−c)/2xc.

We have xc = wc + zc, where wc ∈W prim
c , zc ∈ Zprim

c , and

w =
∑

c∈a+2Z; c�a�−c

ν(a−c)/2wc.

Now if W prim
c �= 0, then 1− r � c � 2− r. Hence

w =
∑

c∈a+2Z; c�a�−c,1−r�c�2−r

ν(a−c)/2wc.

Also, Zprim
1−r = Zprim

2−r = 0 since N : Z → Z has no Jordan blocks of size � r − 1.
Thus if c ∈ a + 2Z, c � a � −c, 1 − r � c � 2 − r, then zc = 0 and xc = wc. Thus
w =

∑
c∈a+2Z; c�a�−c,1−r�c�2−r ν(a−c)/2xc, as required.

Let Z, Z ′ ∈ X . By the previous argument, ΠZ , ΠZ′ : V → W both map V�a into
W�a and induce the same map grV∗ → grW∗. It follows that ΠZ −ΠZ′ : V →W maps
V�a into W�a+1. In other words,
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(b) if x ∈ V�a and x = w + z = w′ + z′, where w, w′ ∈ W, z ∈ Z, z′ ∈ Z ′, then
w − w′ ∈ W�a+1.

Define Φ ∈ GL(V ) by Φ(x) = x for x ∈ W , Φ(x) = x′ for x ∈ Z where x′ ∈ Z ′ is given
by x− x′ ∈W . We show:

(c) (1− Φ)V�a ⊂ V�a+1 for any a.

Let x ∈ V�a. We have x = w + z = w′ + z′, where w, w′ ∈ W, z ∈ Z, z′ ∈ Z ′. We have
Φ(x) = w+z′, hence (1−Φ)(x) = (w+z)− (w+z′) = z−z′ = w′−w, and this belongs
to W�a+1 by (b).

We show:

(d) ΦN = NΦ.

Indeed, for x = x1 + x2, x1 ∈ W, x2 ∈ Z, we have Nx = Nx1 + Nx2 with Nx1 ∈ W ,
Nx2 ∈ Z, and x2 − x′

2 ∈ W with x′
2 ∈ Z ′. We have Nx2 − Nx′

2 ∈ W with Nx2 ∈ Z,
Nx′

2 ∈ Z ′. Hence Φ(Nx) = Nx1 + Nx′
2 = N(x1 + x′

2) = NΦ(x), as required.

2.8. Let V, N be as in 2.3. Let r � 1 be such that N r = 0. A subspace W of V is
said to be r-special if NW ⊂ W , N : W → W has no Jordan blocks of size �= r and
N r−1 = 0 on N/W . We show:

(a) If W, W ′, are r-special subspaces, then there exists a subspace X of V such that
NX ⊂ X, W

⊕
X = V, W ′ ⊕X = V .

We argue by induction on r. If r = 1, the result is obvious; we have W = W ′ = V .
Assume that r � 2. Let V ′ = kerN r−1, V ′′ = kerN r−2. Let E ⊂ W, E′ ⊂ W ′ be
such that W = E

⊕
NE

⊕ · · ·⊕N r−1E, W ′ = E′ ⊕NE′ ⊕ · · ·⊕N r−1E′. Clearly,
E∩V ′ = 0, E′∩V ′ = 0, NE ⊂ V ′, NE∩V ′′ = 0, NE′ ⊂ V ′, NE′∩V ′′ = 0. Let E′′ be
a subspace of V ′ such that E′′ is a complement of NE

⊕
V ′′ in V ′ and a complement of

NE′ ⊕V ′′ in V ′. (Such E′′ exists since dim(NE
⊕

V ′′) = dim(NE′ ⊕V ′) = dimE +
dimV ′′ = dimE′ + dimV ′′.) Then

W1 = (E′′ ⊕NE) + N(E′′ ⊕NE) + · · ·+ N r−2(E′′ ⊕NE),

W ′
1 = (E′′ ⊕NE′) + N(E′′ ⊕NE′) + · · ·+ N r−2(E′′ ⊕NE′)

are (r−1)-special subspaces of V ′. By the induction hypothesis we can find an N -stable
subspace X1 of V ′ such that V1

⊕
X1 = V ′, V ′

1

⊕
X1 = V ′. Then X = (E′′ + N(E′′) +

· · ·+ N r−2(E′′)) + X1 has the required properties.
(b) If W, W ′ are r-special subspaces, then there exists g ∈ 1 + E�1V∗ such that

g(W ) = W ′, gN = Ng.
Let X be as in (a). Define g ∈ GL(V ) by g(x) = x for x ∈ X and g(w) = w′ for
w ∈ W , where w′ ∈ W ′ is given by w − w′ ∈ X . Then g(W ) = W ′, (g − 1)X = 0,
and (g − 1)W ⊂ X . Clearly, gN = Ng. We have V�a = W�a

⊕
X�a. It suffices to

show that (g − 1)(W�a) ⊂ X�a+1. Now X = X�2−r. We have W = W�1−r, W�2−r =
W�3−r = NW, W�4−r = W�5−r = N2W, . . .. Now if a � 1 − r, then (g − 1)W�a =
(g − 1)W ⊂ X = X�a+1. If a = 2− r or a = 3− r, then

(g − 1)W�a = (g − 1)NW = N(g − 1)W ⊂ NX = NX�2−r ⊂ X�4−r ⊂ X�a+1.
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If a = 4− r or a = 5− r, then

(g − 1)W�a = (g − 1)N2W = N2(g − 1)W ⊂ N2X = N2X�2−r ⊂ X�6−r ⊂ X�a+1.

Continuing in this way, the result follows.

2.9. Let V ∈ C̄. Let G = GL(V ). For any filtration V∗ of V , let

ξ(V∗) = {N ∈ Nil(V ) | V N
∗ = V∗} = {N ∈ E�2V∗ | N ∈ End0

2(grV∗)}
(see 2.3(b), 2.4(a)). The following three conditions are equivalent:

(i) ξ(V∗) �= ∅;
(ii) End0

2(grV∗) �= ∅;
(iii) dim grnV∗ = dim gr−nV∗ � dim gr−n−2V∗ for all n � 0.

We have (i)⇒(ii) by the definition of ξ(V∗); we have (ii)⇒(iii) by 2.3(d). The fact
that (iii)⇒(ii) is easily checked. If (ii) holds, we pick for any a a subspace Va of V�a

complementary to V�a+1 and an element in End0
2(V ) (defined in terms of the grading⊕

a Va). This element is in ξ(V∗) and (i) holds.
Let FV be the set of all filtrations V∗ of V that satisfy (i)–(iii). From the definitions

we have a bijection

(a) FV
∼−→ DG, V∗ �→�

(DG as in 1.1), where �= (G�
0 ⊃ G�

1 ⊃ G�
2 ⊃ . . . ) is defined in terms of V∗ by

G�
0 = E�0V∗ ∩G and G�

n = 1 + E�nV∗ for n � 1.
The sets ξ(V∗) (with V∗ ∈ FV ) form a partition of Nil(V ). (If N ∈ Nil(V ), we have

N ∈ ξ(V∗), where V∗ = V N
∗ ).

Let V∗ ∈ FV . Let Π = E�0V∗ ∩G. We show that ξ(V∗) is a single Π-conjugacy class.
Let N, N ′ ∈ ξ(V∗). Since V N∗ = V N ′

∗ , we see from 2.3(d) that dim PN
1−j = dimPN

′
1−j for

any j � 0. Using 2.3(c), we see that for any j � 0, N, N ′ have the same number of
Jordan blocks of size j. Hence there exists g ∈ G such that N ′ = gNg−1. For any
a, gV N

�a = V N ′
�a = V N

�a, hence gV�a = V�a. We see that g ∈ E�0, hence g ∈ Π as
required. Taking in the previous argument N ′ = N , we see that if N ∈ ξ(V∗) and g ∈ G
satisfies gNg−1 = N , then g ∈ Π. Now any element in E�2V∗ − ξ(V∗) is in the closure
of ξ(V∗) (since E�2V∗ is irreducible and ξ(V∗) is open in it (and nonempty), hence it
is in the closure of the G-conjugacy class containing ξ(V∗)). We show that it is not
contained in that G-conjugacy class. (Assume that it is. Then we can find N ∈ ξ(V∗)
and N ′ ∈ E�2V∗−ξ(V∗) that are G-conjugate. Then the Π-orbit Π(N) of N in E�2V∗ is
ξ(V∗), hence is dense in E�2V∗, while the Π-orbit Π(N ′) of N ′ is contained in the proper
closed subset E�2V∗ − ξ(V∗) of E�2V∗; hence dim Π(N) = dim(E�2V∗) > dim Π(N ′).
It follows that a < a′ where a (respectively a′) is the dimension of the centralizer of N
(respectively N ′) in Π. Let ã (respectively ã′) be the dimension of the centralizer of N
(respectively N ′) in G. By an earlier argument we have a = ã. Obviously a′ � ã′. Since
N, N ′ are G-conjugate, we have ã = ã′. Thus, ã = a < a′ � ã′ = ã, a contradiction.)
We see that 1+ξ(V ∗) = X�, where V∗ �→� as in (a) and X� is as in 1.1. Thus P1 holds
for G. From this, P2, P3 follow; H� in P2 is a single conjugacy class in this case. Also,
P8 is trivial since G�

0 acts transitively on X�. Now P5 is easily verified. P6 (hence
P4) follows from 2.6(a); P7 is trivial in this case.
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3. Symplectic groups

3.1. In this section any text marked as ♠ . . .♠ applies only in the case p = 2.
For V, V ′ ∈ C, let Bil(V, V ′) be the space of all bilinear forms V × V ′ → k. For

b ∈ Bil(V, V ′), define b∗ ∈ Bil(V ′, V ) by b∗(x, y) = b(y, x). We write Bil(V ) instead of
Bil(V, V ). Let Symp(V ) be the set of nondegenerate symplectic forms on V .

Let V ∈ C̄. We say that 〈 , 〉0 ∈ Symp(V ) is admissible if 〈x, y〉0 = 0 for x ∈ V a, y ∈
V a′ , a + a′ �= 0. Assume that 〈 , 〉0 ∈ Symp(V ) is admissible and that ν ∈ End0

2(V ) is
skew-adjoint, that is, 〈ν(x), y〉0 + 〈x, ν(y)〉0 = 0 for x, y ∈ V . For n � 0 we define a
bilinear form bn : P ν

−n × P ν
−n → k by bn(x, y) = 〈x, νny〉0. We show:

(a) bn(x, y) = (−1)n+1bn(y, x) for x, y ∈ P ν
−n.

Indeed,

bn(x, y) = 〈x, νny〉0 = (−1)n〈νnx, y〉0 = (−1)n+1〈y, νnx〉0 = (−1)n+1bn(y, x),

as required. We show:

(b) bn is nondegenerate.

Let y ∈ P ν−n be such that 〈x, νny〉0 = 0 for all x ∈ P ν−n. If x′ ∈ P ν
−n−2k, k > 0, we

have 〈νkx′, νny〉0 = ±〈x, νn+ky〉0 = ±〈x, 0〉0 = 0. Since V −n =
∑

k�0 νkP ν
−n−2k, we

see that 〈x, νny〉0 = 0 for all x ∈ V −n. Since 〈V m, νny〉0 = 0 for m �= −n, we see
that 〈V , νny〉0 = 0. By the nondegeneracy of 〈 , 〉0, it follows that νny = 0. Since
νn : V −n

∼−→ V n, it follows that y = 0 as required. We show:

(c) if n � 0 is even, then bn is a symplectic form. Hence dimP ν−n is even.

Indeed, for x ∈ P ν
−n we have 〈x, νnx〉0 = ±〈νn/2x, νn/2x〉0 = 0.

3.2. Let V ∈ C and let 〈 , 〉 ∈ Symp(V ). Let

Sp(〈 , 〉) = {T ∈ GL(V ) | T preserves 〈 , 〉}.
For any subspace W of V , we set W⊥ = {x ∈ V | 〈x, W 〉 = 0}. A filtration V∗ of V is
said to be self-dual if (V�a)⊥ = V�1−a for any a. It follows that

(a) 〈V�a, V�a′〉 = 0 if a + a′ � 1.

It also follows that there is a unique admissible 〈 , 〉0 ∈ Symp(grV∗) such that for
x ∈ graV∗, y ∈ gr−aV∗ we have 〈x, y〉0 = 〈ẋ, ẏ〉, where ẋ ∈ V�a, ẏ ∈ V�−a represent x, y.
Moreover,

(b) there exists a direct sum decomposition
⊕

a∈Z Va of V such that V�a = Va

⊕
Va+1

⊕ · · · for all a and 〈Va, Va′〉 = 0 for all a, a′ such that a + a′ �= 0.
Let M〈 , 〉 be the set of N ∈ Nil(V ) such that 〈Nx, y〉 + 〈x, Ny〉 + 〈Nx, Ny〉 = 0

for all x, y or, equivalently, 1 + N ∈ Sp(〈 , 〉). Define an involution N �→ N † of M〈 , 〉
by 〈x, Ny〉 = 〈N †x, y〉 for all x, y ∈ V or, equivalently, by N † = (1 + N)−1 − 1 =
−N + N2 −N3 + · · · .

Let N ∈ M〈 , 〉. We set V∗ = V N∗ . By 2.6(c) we have V N†
∗ = V∗. We show:

(c) the filtration V∗ is self-dual.

We argue by induction on e as in 2.4. If a � e, then V�a = 0, V�1−a = V , and (c) holds.
If a � 1 − e, then V�a = V , V�1−a = 0, and (c) holds. If e � 1, this already suffices.
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Hence we may assume that e � 2 and 2 − e � a � e− 1, hence 2 − e � 1 − a � e− 1.
Let V ′ = ker(Ne−1)/Im(Ne−1). Let ρ : ker(Ne−1) → V ′ be the canonical map. We
have Ne−1V = ker((N †)e−1)⊥ = ker(Ne−1)⊥ since (N †)e−1 = (−N)e−1. Hence 〈 , 〉
induces 〈 , 〉′ ∈ Symp(V ′). Also N induces a linear map N ′ : V ′ → V ′ such that
N ′ ∈ M〈 , 〉′ . By the induction hypothesis, V ′N ′

�1−a is the perpendicular in V ′ of V ′N ′
�a.

Hence V�a = ρ−1(V ′N ′
�a) is the perpendicular in V of V�1−a = ρ−1(V ′N ′

�1−a). This
completes the proof.

Let ν ∈ End0
2(grV∗) be the endomorphism induced by N . We show that

(d) ν is skew-adjoint (with respect to 〈 , 〉0 on grV N∗ ).

It suffices to show that, if a+a′+2 = 0 and x ∈ V�a′ , y ∈ V�a, then 〈Nx, y〉+〈x, Ny〉 =
0. It suffices to show that 〈Nx, Ny〉 = 0. From (a), (b) we see that 〈V�−1−a, Ny〉 = 0,
hence it suffices to show that Nx ∈ V�−1−a. We have Nx ∈ V�a′+2 ⊂ V�−1−a since
a′ + 2 > −1− a. This proves (c).

3.3. ♠ In this subsection we assume that p = 2. Let V, 〈 , 〉, N, ν, 〈 , 〉0 be as in 3.2.
Let V∗ = V N

∗ . Then bn ∈ Bil(P ν
−n) is defined for n � 0, see 3.1. Let L be the set of

all even integers n � 2 such that bn−1, bn+1 are symplectic forms. Let L′ be the set
of all even integers n � 2 such that bn−1, bn+1, bn+3, . . . are symplectic forms or, equi-
valently, 〈z, νn−1(z)〉0 = 0 for all z ∈ gr1−nV∗. (Assume first that bn−1, bn+1, bn+3, . . .
are symplectic forms. By 2.1(a), any z ∈ gr1−nV∗ is of the form

∑
k�0 νkzk, where

zk ∈ P ν
1−n−2k. For k � 0 we have 〈νkzk, νn−1(νkzk)〉0 = 0 since bn+2k−1 is symplectic.

Since z′ �→ 〈z′, νn−1(z′)〉0 is additive in z′ it follows that 〈z, νn−1(z)〉0 = 0. Conversely,
assume that 〈z, νn−1(z)〉0 = 0 for any z ∈ gr1−nV∗. In particular, for k � 0 and
zk ∈ P ν

1−n−2k, we have 〈νkzk, νn−1(νkzk)〉0 = 0, that is, 〈zk, νn−1+2kzk)〉0 = 0. We see
that bn+2k−1 is symplectic.)

Clearly, L′ ⊂ L.
For n ∈ L, we define qn : P ν

−n → k by qn(x) = 〈ẋ, Nn−1ẋ〉, where ẋ ∈ V�−n is a
representative for x ∈ P ν

−n such that Nn+1ẋ = 0 (see 2.5(c)). We show that qn(x) is well
defined. It suffices to show that if y ∈ V�1−n, Nn+1y = 0, then 〈ẋ + y, Nn−1(ẋ + y)〉 =
〈ẋ, Nn−1ẋ〉, that is, 〈y, Nn−1(y)〉+〈ẋ, Nn−1(y)〉+〈y, Nn−1(ẋ)〉 = 0. Since Nn+1(ẋ) = 0,
we have

〈ẋ, Nn−1(y)〉+ 〈y, Nn−1(ẋ)〉 = 〈y, (Nn−1 + (N †)n−1)(ẋ)〉 = 〈y, Nn(ẋ)〉.

This is zero, since y ∈ V�1−n, Nn(ẋ) ∈ V�n and 1 − n + n = 1. It remains to show
that 〈y, Nn−1(y)〉 = 0. It suffices to show that 〈z, νn−1(z)〉0 = 0 for all z ∈ gr1−nV∗
such that Nn+1z = 0. By 2.1(a), any such z is of the form z0 + νz1, where z0 ∈
P ν

1−n, z1 ∈ P ν
−1−n. Now z′ �→ 〈z′, νn−1(z′)〉0 is additive in z′, hence it suffices to show

that 〈z0, ν
n−1(z0)〉0 = 0 and 〈ν(z1), νn−1(ν(z1))〉0 = 0 for z0, z1 as above. This follows

from our assumption that bn−1 and bn+1 are symplectic.
We show:

(a) For x, y ∈ P ν−n, we have qn(x + y) = qn(x) + qn(y) + bn(x, y).
Let ẋ, ẏ ∈ V�−n be representatives for x, y such that Nn+1ẋ = 0, Nn+1ẏ = 0. We must
show that

〈ẋ + ẏ, Nn−1(ẋ + ẏ)〉 = 〈ẋ, Nn−1(ẋ)〉+ 〈ẏ, Nn−1(ẏ)〉+ 〈ẋ, Nn(ẏ)〉,
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or that
〈ẋ, Nn−1(ẏ)〉+ 〈ẏ, Nn−1(ẋ)〉+ 〈ẋ, Nn(ẏ)〉 = 0,

or that 〈ẋ, ((N †)n−1 + Nn−1 + Nn)ẏ〉 = 0. Since n is even, (N †)n−1 + Nn−1 + Nn is a
linear combination of Nn+1, Nn+2, . . . , and it remains to use the equality Nn+1(ẏ) = 0.

For n ∈ L′, we define Qn : gr−nV∗ → k by Qn(x) = 〈ẋ, Nn−1ẋ〉, where ẋ ∈ V�−n

is a representative for x. We show that Qn(x) is well defined. It suffices to show
that if y ∈ V�1−n, then 〈ẋ + y, Nn−1(ẋ + y)〉 = 〈ẋ, Nn−1ẋ〉, that is, 〈y, Nn−1(y)〉 +
〈ẋ, Nn−1(y)〉+ 〈y, Nn−1(ẋ)〉 = 0. We have

〈ẋ, Nn−1(y)〉+ 〈y, Nn−1(ẋ)〉 = 〈y, (Nn−1 + (N †)n−1)(ẋ)〉,
and this is a linear combination of terms 〈y, Nn′

(ẋ)〉 with n′ � n. Each of these terms
is 0 since y ∈ V�1−n, Nn′

(ẋ) ∈ V�2n′−n and 1−n+2n′−n � 1. It remains to show that
〈y, Nn−1(y)〉 = 0. This follows from the fact that 〈z, νn−1(z)〉0 = 0 for all z ∈ gr1−nV∗.

For n ∈ L′ we show:

(b) if x, y ∈ gr−nV∗, then Qn(x + y) = Qn(x) + Qn(y) + 〈x, νny〉.
Let ẋ, ẏ ∈ V�−n be representatives for x, y. We must show that

〈ẋ + ẏ, Nn−1(ẋ + ẏ)〉 = 〈ẋ, Nn−1(ẋ)〉+ 〈ẏ, Nn−1(ẏ)〉+ 〈ẋ, Nn(ẏ)〉,
or that

〈ẋ, Nn−1(ẏ)〉+ 〈ẏ, Nn−1(ẋ)〉+ 〈ẋ, Nn(ẏ)〉 = 0,

or that 〈ẋ, ((N †)n−1 + Nn−1 + Nn)ẏ〉 is 0. Since n is even, this is a linear combination
of terms 〈ẋ, Nn′

(ẏ)〉, with n′ > n. Each of these terms is 0 since Nn′
(ẏ) ∈ V�2n′−n, ẋ ∈

V�−n, and 2n′ − n− n � 1.
Now let n ∈ L′ and let x ∈ gr−nV∗. We can write x =

∑
k�0 νkxk, where xk ∈

P ν
−n−2k. We show that

(c) Qn(x) =
∑

k�0 qn+2k(xk).

Let ẋk be a representative of xk in V�−n−2k such that Nn+2k+1ẋk =0. Then
∑

k�0 Nkẋk

is a representative of x in V�−n and we must show:

〈
∑
k�0

Nkẋk, Nn−1
∑
k′�0

Nk′
ẋk′〉 =

∑
k�0

〈ẋk, Nn+2k−1ẋk〉.

The left-hand side is
∑

k,k′�0〈Nkẋk, Nn−1+k′
ẋk′ 〉. If k � k′ + 2, we have

〈Nkẋk, Nn−1+k′
ẋk′ 〉 = 〈ẋk, (N †)kNn−1+k′

ẋk′〉,
and this is zero since Nn+2k′+1ẋk′ = 0. If k′ � k + 2, we have

〈Nkẋk, Nn−1+k′
ẋk′ 〉 = 〈(N †)n−1+k′

Nkẋk, ẋk′〉,
and this is zero since Nn+2k+1ẋk = 0. It suffices to show that∑

k�0

(〈Nkẋk, Nn−1+kẋk〉+ 〈Nk+1ẋk+1, N
n−1+kẋk〉+ 〈Nkẋk, Nn+kẋk+1〉)

=
∑
k�0

〈ẋk, Nn+2k−1ẋk〉.
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We have

〈Nk+1ẋk+1, N
n−1+kẋk〉+ 〈Nkẋk, Nn+kẋk+1〉

= 〈Nk+1ẋk+1, (Nn−1+k + (N †)n−1Nk)ẋk〉
= 〈Nk+1ẋk+1, (c1N

n+k + c2N
n+k+1 + · · · )ẋk〉

= c1〈νk+1xk+1, ν
n+kxk〉0 = c1〈xk+1, ν

n+2k+1xk〉0 = 0.

(Here c1, c2, . . . ∈ k.) It suffices to show that 〈Nkẋk, Nn−1+kẋk〉 + 〈ẋk, Nn+2k−1ẋk〉
is 0. This equals

〈ẋk, (Nn+2k−1 + (N †)kNn−1+k)ẋk〉 = 〈ẋk, (Nn+2k + c′1N
n+2k+1 + · · · )ẋk〉

= 〈xk, νn+2kxk〉0 = 〈νk+n/2xk, νk+n/2xk〉0 = 0.

(Here c′1, c′2, . . . ∈ k.) This completes the proof of (c).
We say that (qn)n∈L are the quadratic forms attached to (N, 〈 , 〉). We say that

(Qn)n∈L′ are the Quadratic forms attached to (N, 〈 , 〉). ♠
3.4. Let V ∈ C and let V∗ be a filtration of V . We fix 〈 , 〉0 ∈ Symp(grV∗), which is
admissible, and ν ∈ End0

2(grV∗), which is skew-adjoint with respect to 〈 , 〉0 (see 3.1).
Then P ν−n are defined in terms of grV∗, ν, and bn ∈ Bil(P ν−n) are defined as in 3.1 for
any n � 0. Let V = 1 + E�1V∗, a subgroup of GL(V ).
♠ If p = 2, let n be the smallest even integer � 2 such that bn−1, bn+1, bn+3, . . .

are symplectic or, equivalently, such that 〈z, νn−1(z)〉0 = 0 for all z ∈ gr1−nV∗. Let
Q : gr−nV∗ → k be a quadratic form such that Q(x + y) = Q(x) + Q(y) + 〈x, νny〉 for
all x, y ∈ gr−nV∗. ♠.

Let Z be the set of all pairs (N, 〈 , 〉), where N ∈ Nil(V ), 〈 , 〉 ∈ Symp(V ) are such
that V N

∗ = V∗, 〈Nx, y〉 + 〈x, Ny〉 + 〈Nx, Ny〉 = 0 for x, y ∈ V , N induces ν on grV∗,
〈 , 〉 induces 〈 , 〉0 on grV∗; ♠ in the case p = 2, we require in addition that Qn defined
in terms of (N, 〈 , 〉), as in 3.3, is equal to Q. ♠

The proofs of Propositions 3.5, 3.6, 3.7 below are intertwined (see 3.11).

Proposition 3.5. In the setup of 3.4, let 〈 , 〉 ∈ Symp(V ) be such that V∗ is self-dual
with respect to 〈 , 〉 and 〈 , 〉 induces 〈 , 〉0 on grV∗. Let Y = Y〈 , 〉 = {N | (N, 〈 , 〉) ∈ Z}.
Let U ′ = V ∩ Sp(〈 , 〉), a subgroup of Sp(〈 , 〉). Then

(a) Y �= ∅;
(b) if N ∈ Y and z ∈ U ′, then zNz−1 ∈ Y (thus U ′ acts an Y by conjugation);
(c) the action (b) of U ′ on Y is transitive.

The proof of (a) is given in 3.8. Now (b) follows immediately from Proposition 3.7(a).
We show that (c) is a consequence of Proposition 3.7(c). Assume that Proposition

3.7(c) holds. Let N, N ′ ∈ Y . We have (N, 〈 , 〉) ∈ Z, (N ′, 〈 , 〉) ∈ Z, and by Proposition
3.7(c) there exists g ∈ V such that N ′ = gNg−1, 〈g−1x, g−1y〉 = 〈x, y〉 for x, y ∈ V .
Then g ∈ U ′ and (c) is proved (assuming Proposition 3.7(c)).

Proposition 3.6. In the setup of 3.4, let N ∈ Nil(V ) be such that V N
∗ = V∗ and N

induces ν on grV∗. Let X = XN = {〈 , 〉 | (N, 〈 , 〉) ∈ Z}. Let U = UN = {T ∈ V |
TN = NT }, a subgroup of GL(V ). Then:
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(a) X �= ∅;
(b) if 〈 , 〉 ∈ X and u ∈ U , then the symplectic form 〈 , 〉′ on V given by 〈x, y〉′ =
〈u−1x, u−1y〉 belongs to X (thus U acts naturally an X);

(c) the action (b) of U on X is transitive.

We show that (a) is a consequence of Proposition 3.7(a). By Proposition 3.7(a) there
exists (N ′, 〈 , 〉′) ∈ Z. By 2.6(a) there exists g ∈ V such that N = gN ′g−1. Define
〈 , 〉 ∈ Symp(V ) by 〈 , 〉 = 〈g−1x, g−1y〉′. From 3.7(a) we see that (N, 〈 , 〉) ∈ Z hence
〈 , 〉 ∈ XN . Thus XN �= ∅, as required.

Now (b) follows immediately from 3.7(b). The proof of (c) is given in 3.9, 3.10.

Proposition 3.7. In the setup of 3.4,
(a) Z �= ∅;
(b) if (N, 〈 , 〉) ∈ Z, g ∈ V, and (N ′, 〈 , 〉′) is defined by N ′ = gNg−1, 〈x, y〉′ =
〈g−1x, g−1y〉, then (N ′, 〈 , 〉′) ∈ Z (thus V acts naturally on Z);

(c) the action (b) of V on Z is transitive.

Clearly (a) is a consequence of Proposition 3.5(a).
We prove (b). We have V N ′

�a = gV N
�a = V N

�a = V�a. Next we must show that
we have 〈gNg−1x, y〉′ + 〈x, gNg−1y〉′ + 〈gNg−1x, gNg−1y〉′ = 0 for x, y ∈ V , that is,
〈Ng−1x, g−1y〉 + 〈g−1x, Ng−1y〉 + 〈Ng−1x, Ng−1y〉 = 0 for x, y ∈ V . This follows
from 〈Nx′, y′〉 + 〈x′, Ny′〉 + 〈Nx′, Ny′〉 = 0 for x′, y′ ∈ V . Next we must show that
gNg−1, N induce the same map grV∗ → grV∗. (We must show that if x ∈ V�a, then
gNg−1(x) − Nx ∈ V�a+3; this follows from g ∈ V .) Next we must show that for
x ∈ V�−a, y ∈ V�a we have 〈x, y〉′ = 〈x, y〉, that is, 〈g−1x, g−1y〉 = 〈x, y〉. Set g−1 =
1 + S, where S ∈ E�1V∗. We must show that 〈Sx, y〉 + 〈x, Sy〉 + 〈Sx, Sy〉 = 0. But
Sx ∈ V�1−a, y ∈ V�a implies 〈Sx, y〉 = 0. Similarly 〈x, Sy〉 = 0, 〈Sx, Sy〉 = 0.
♠ In the case where p = 2 we see that the number n defined in terms of N, 〈 , 〉 is

the same as that defined in terms of N ′, 〈 , 〉′, and we must check that for x ∈ V�−n we
have 〈x, (gNg−1)n−1x〉′ = 〈x, Nn−1x〉, that is, 〈g−1x, Nn−1g−1x〉 = 〈x, Nn−1x〉, that is,
〈Sx, Nn−1x〉+〈x, Nn−1Sx〉+〈Sx, Nn−1Sx〉 = 0. We have 〈Sx, Nn−1x〉+〈x, Nn−1Sx〉=
〈x, (Nn−1 + (N †)n−1)Sx〉. This is a linear combination of terms 〈x, Nn′

Sx〉, where
n′ � n; each of these terms is zero since x ∈ V�−n, Nn′

Sx ∈ V�2n′−n+1, and −n+2n′−
n + 1 � 1. Next we have 〈Sx, Nn−1Sx〉 = 0 since 〈y, Nn−1y〉 = 0 for all y ∈ V�1−n by
the definition of n. ♠

This completes the proof of (b).
We show that (c) is a consequence of Proposition 3.6(c). Let (N, 〈 , 〉) ∈ Z, (N ′, 〈 , 〉′)

∈ Z. By 2.6(a), since V N
∗ = V N ′

∗ and N, N ′ induce the same ν, we can find S ∈ E�1V∗
such that R = 1 + S satisfies N ′R = RN . Define 〈 , 〉′′ ∈ Symp(V ) by 〈x, y〉′′ =
〈Rx, Ry〉′. From (b) we see that (R−1N ′R, 〈 , 〉′′) ∈ Z, that is, (N, 〈 , 〉′′) ∈ Z.
Thus 〈 , 〉 ∈ XN , 〈 , 〉′′ ∈ XN . By Proposition 3.6(c) we can find S′ ∈ E�1V∗ such
that R′ = 1 + S′ satisfies R′N = NR′ and 〈x, y〉 = 〈R′x, R′y〉′′ for all x, y, that is,
〈x, y〉 = 〈RR′x, RR′y〉′. Then RR′ ∈ U ′ and RR′N = RNR′ = N ′RR′. Thus under the
action (b), RR′ carries (N, 〈 , 〉) to (N ′, 〈 , 〉′). This proves (c) (assuming Proposition
3.6(c) holds).

3.8. Proof of 3.5(a). We choose a direct sum decomposition
⊕

a∈Z Va of V as in
3.2(b). Define N2 ∈ End2(V ) by the requirement that N2 : Va → Va+2 corresponds
to ν : graV∗ → gra+2V∗ under the obvious isomorphisms Va

∼−→ graV∗, Va+2
∼−→ gra+2V∗.
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♠. If p = 2, we regard Q as a quadratic form on V−n via the obvious isomorphism
V−n

∼−→ gr−nV∗. ♠
We will construct a linear map N =

∑
j�1 N2j , where N2 is as above, and for j � 2,

N2j ∈ End(V ) satisfy N2jVa ⊂ Va+2j for all a and

〈
∑
j�1

N2jx, y〉+ 〈x,
∑
j�1

N2jy〉+ 〈
∑
j′�1

N2j′x,
∑
j′′�1

N2j′′y〉 = 0

for any a, c and any x ∈ Va, y ∈ Vc, that is,

〈N2jx, y〉+ 〈x, N2jy〉+
∑

j′,j′′�1; j′+j′′=j

〈N2j′x, N2j′′y〉 = 0 (a)

for any j � 1, any a, c such that a + c + 2j = 0, and any x ∈ Va, y ∈ Vc.
♠ If p = 2, we require in addition that 〈x, Nn−1x〉 = Q(x) for all x ∈ V−n, that is,∑
i+i′=n−2〈x, N i

2N4N
i′
2 x〉 = Q(x) for all x ∈ V−n. ♠

We shall determine Nj by induction on j. For j = 1 the equation (a) is just 〈N2x, y〉+
〈x, N2y〉 = 0 for any a, c such that a + c + 2 = 0 and any x ∈ Va, y ∈ Vc; this holds
automatically by our choice of N2. For x ∈ Va, with a < −2, we set N4(x) = 0. Then
the equation (a) for j = 2 becomes:

(b) 〈N4x, y〉 + 〈x, N4y〉 = −〈N2x, N2y〉 for any x ∈ V−2, y ∈ V−2, 〈N4x, y〉 =
−〈N2x, N2y〉 for any a > −2, x ∈ Va, y ∈ V−a−4.

The second equation in (b) determines uniquely N4(x) for x ∈ Va, a > −2. Since
〈N2x, N2y〉 is a symplectic form on V−2, we can find [ , ] ∈ Bil(V−2) such that [x, y]−
[y, x] = −〈N2x, N2y〉 for any x, y ∈ V−2. There is a unique linear map N4 : V−2 → V2

such that 〈N4x, y〉 = [x, y] for any x, y ∈ V−2. Then equation (a) for j = 2 is satisfied.
♠ If p = 2, the N4 just determined satisfies

∑
i+i′=n−2〈x, N i

2N4N
i′
2 x〉 = Q′(x) for

all x ∈ V−n, for some quadratic form Q′ : V−n → k not necessarily equal to Q. For
x, y ∈ V−n we have (by the choice of N4):

Q′(x + y)−Q′(x) −Q′(y) =
∑

i+i′=n−2

〈x, N i
2N4N

i′
2 y〉+

∑
i+i′=n−2

〈y, N i
2N4N

i′
2 x〉

=
∑

i+i′=n−2

〈N i
2x, N4N

i′
2 y〉+

∑
i+i′=n−2

〈N4N
i
2x, N i′

2 y〉

=
∑

i+i′=n−2

〈N2N
i
2x, N2N

i′
2 y〉 =

∑
i+i′=n−2

〈x, Nn
2 y〉 = 〈x, Nn

2 y〉

= Q(x + y)−Q(x)−Q(y).

It follows that Q′(x) = Q(x)+θ(x)2, where θ ∈ Hom(V−n,k). We try to find ζ ∈ End(V )
with ζ(Va) ⊂ Va+4 for all a in such a way that (a) (for j = 2) remains true when N4

is replaced by N4 + ζ and
∑

i+i′=n−2〈x, N i
2(N4 + ζ)N i′

2 x〉 = Q(x) for x ∈ V−n. (Then
N4 + ζ will be our new N4.) Thus we are seeking ζ such that

〈ζ(x), y〉 + 〈x, ζ(y)〉 = 0 for any a, c with a + c + 4 = 0 and x ∈ Va, y ∈ Vc,∑
i+i′=n−2

〈x, N i
2ζN i′

2 x〉 = θ(x)2 for x ∈ V−n.
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The first of these two equations can be satisfied for (a, c) �= (−2,−2) by defining ζ(x) = 0
for x ∈ Va, a �= −2. Then in the second equation the terms corresponding to i′ such
that 2i′ − n �= −2 are 0. Thus it remains to find a linear map ζ : V−2 → V2 such that

〈ζ(x), y〉 + 〈x, ζ(y)〉 = 0 for any x, y ∈ V−2,

〈N t
2x, ζN t

2x〉 = θ(x)2 for x ∈ V−n, where t = (n− 2)/2.

Since N t
2 : V−n → V−2 is injective (by the Lefschetz condition), there exists θ1 ∈

Hom(V−2,k) such that θ1(N t
2x) = θ(x) for all x ∈ V−n. We see that it suffices to

find ζ ∈ Hom(V−2, V2) such that

〈ζ(x), y〉 + 〈x, ζ(y)〉 = 0 for any x, y ∈ V−2,

〈x′, ζx′〉 = θ1(x′)2 for x′ ∈ V−2.

It also suffices to find b0 ∈ Bil(V−2) such that b0 = b∗0 and b0(x, x) = θ1(x)2 for x ∈ V−2.
Such b0 clearly exists. ♠.

This completes the determination of N4.
Now assume that j � 3 and that N2j′ is already determined for j′ < j. For x ∈ Va

with a < −j we set N2j(x) = 0. Then equation (a) for our j determines uniquely N2j(x)
for x ∈ Va with a > −j. Next we can find [ , ] ∈ Bil(V−j) such that

[x, y]− [y, x] = −
∑

j′,j′′�1|j′+j′′=j

〈N2j′x, N2j′′y〉.

To see this we observe that the right hand side is a symplectic form, that is,∑
j′,j′′�1; j′+j′′=j〈N2j′x, N2j′′x〉 = 0. There is a unique N2j ∈ Hom(V−j , Vj) such that

〈N2jx, y〉 = [x, y] for any x, y ∈ V−j . Then equation (a) for our j is satisfied. This
completes the inductive construction of N . We have V N∗ = V∗ by 2.4(a). We see that
N ∈ Y . This completes the proof.

3.9. In this subsection we prove Proposition 3.6(c) in a special case. Let n ∈ Z>0.
We have [−n, n] = I0 � I1, where Iε = {i ∈ [−n, n] | i = ε mod 2} for ε ∈ {0, 1}.
For i ∈ [−n, n], define |i| ∈ {0, 1} by i = |i| mod 2, that is, by i ∈ I|i|. Let
F0, F1 ∈ C. Let V =

⊕
i∈[−n,n] Fi, where Fi = F|i|. A typical element of V is

of the form (xi)i∈[−n,n] where xi ∈ F|i|. Define N : V → V by (xi) �→ (x′
i), where

x′
i = xi−2 for i ∈ [2 − n, n], x′

−n = 0, x′
1−n = 0. We fix 〈 , 〉0 ∈ Symp(V ) such that

〈(xi), (yi)〉0 =
∑

i∈[−n,n](−1)(i−|i|)/2b|i|(xi, y−i), where bε ∈ Bil(Fε) (ε ∈ {0, 1}) satisfy
bε∗ = (−1)1−εbε, bε is nondegenerate, b0 ∈ Symp(F0). Note that 〈Nx, y〉0+〈x, Ny〉0 = 0
for x, y ∈ V .

We assume: if p �= 2, then either F0 = 0 or F1 = 0; ♠ if p = 2, b1 is symplectic
and n � 2, then we are given a quadratic form Q : F0 → k such that Q(x + y) =
Q(x) + Q(y) + b0(x, y) for x, y ∈ F0. ♠

Let X be the set of all 〈 , 〉 ∈ Symp(V ) such that 〈Nx, y〉+ 〈x, Ny〉+ 〈Nx, Ny〉 = 0
for x, y ∈ V and 〈x, y〉 = 〈x, y〉0 if there exists i such that xj = 0 for j �= i and yj = 0 for
j �= −i; ♠ if p = 2, b1 is symplectic and n � 2, we require also that 〈x, Nx〉 = Q(x−2)
if x ∈ V is such that xj = 0 for j �= −2. ♠

Setting 〈(xi), (yi)〉 =
∑

i,j bij(xi, yj) identifies X with the set of all families
(bij)i,j∈[−n,n], where bij ∈ Bil(F|i|, F|j|) are such that
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bi−2,j + bi,j−2 + bij = 0 if i, j ∈ [2− n, n],
bi,−i = (−1)(i−|i|)/2b|i| for all i ∈ [−n, n],
bii ∈ Symp(F|i|) for all i ∈ [−n, n],
b∗ij = −bji for all i, j ∈ [−n, n],
b−2,0(x, x) = Q(x) for x ∈ F0 if p = 2, F1 = 0 and n is even, � 2.

(We have automatically bij = 0 if i + j � 1.)
Let Δ = {T ∈ GL(V ) | TN = NT }, a subgroup of GL(V ); equivalently Δ is the set

of linear maps T : V → V of the form

(a) T : (xi) �→ (x′
i), x

′
i =

∑
j∈[−n,i] T

|i|,|j|
i−j xj ,

where T ε,δ
r ∈ Hom(Fδ, Fε) (r ∈ [0, 2n], ε, δ ∈ {0, 1}, r + δ = ε mod 2) are such that

T 00
0 , T 11

0 are invertible and T
1−|n|,1−|n|
2n = 0. Now Δ acts on X by T : 〈 , 〉 �→ 〈 , 〉′,

where 〈Tx, T y〉′ = 〈x, y〉, or equivalently by T : (bij) �→ (b′ij), where

bij(x, y) =
∑

i′∈[i,n],j′∈[j,n]

b′i′j′(T
|i′|,|i|
i′−i (x), T |j′|,|j|

j′−j (y)).

Let Δu = {T ∈ Δ | T 00
0 = 1, T 11

0 = 1}, a subgroup of Δ. We show:

(b) Let k ∈ [1 − n, 0] and let (̃bij), (bij) be two points of X such that bij = b̃ij for
i + j � 2k. Then there exists T ∈ Δu such that T (bij) = (b′ij) and b′ij = b̃ij for
i + j � 2k − 2.

For ε ∈ {0, 1} we set aε = b̃ij for i, j ∈ [−n, n], i + j = −1, i = ε mod 2. Then
aε are independent of choices; they are 0 unless p = 2. We have aε∗ = a1−ε. For
h ∈ {2k−2, 2k−1} we set cε

h = (−1)(i−ε)/2(bij− b̃ij), where i, j ∈ [−n, n], i+j = h, i = ε
mod 2. Then cε

h is independent of i, j. We have cε
2k−1 = 0 unless p = 2. We have

cε∗
2k−2 = (−1)k−εcε

2k−2, cε∗
2k−1 = c1−ε

2k−1. Since bk−1,k−1 − b̃k−1,k−1 is symplectic, cε
2k−2 is

symplectic, where ε = k − 1 mod 2.

Case 1: p �= 2. Let ε ∈ {0, 1} be such that F1−ε = 0. Since cε∗
2k−2 = (−1)k−εcε

2k−2, we
can find c̃ ∈ Bil(Fε) such that cε

2k−2 = c̃ +(−1)k−εc̃∗. Since bε is nondegenerate, we can
find τ ∈ End(Fε) such that c̃(x, y) = bε(x, τ(y)) for x, y ∈ Fε. For i, j ∈ [−n, n], i + j =
2k − 2, i = ε mod 2 and x, y ∈ Fε we have

bij(x, y)− b̃ij(x, y) = (−1)(i−ε)/2(c̃(x, y) + (−1)k−εc̃(y, x))

= b̃i,j+2−2k(x, τ(y)) − b̃j,i+2−2k(y, τ(x))

= b̃i,j+2−2k(x, τ(y)) + b̃i+2−2k,j(τ(x), y).

Let T be as in (a) with T 00
0 = 1, T 11

0 = 1, T ε,ε
2−2k = τ and the other components 0.

Define (b′ij) by T (bij) = (b′ij). Then (b′ij) has the required properties.

♠ Case 2: p = 2, k = 0. Since b0 is nondegenerate we can find T 0,1
1 ∈ Hom(F1, F0)

such that c0−1(x, y) = b̃0(x, T 0,1
1 (y)) for all x ∈ F0, y ∈ F1. Then c1−1(x, y) =

b̃0(T 0,1
1 (x), y) for all x ∈ F1, y ∈ F0. Thus for i ∈ I0, j ∈ I1, i+j = −1 and x ∈ F0, y ∈ F1
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we have bij(x, y) + b̃ij(x, y) = b̃i,−i(x, T 0,1
1 (y)); for i ∈ I1, j ∈ I0, i + j = −1 and

x ∈ F1, y ∈ F0 we have

bij(x, y) + b̃ij(x, y) = b̃−j,j(T
0,1
1 (x), y).

Since c0∗
−2 = c0

−2, b
1∗ = b1, we have c0

−2(y, y) = θ(y)2 for y ∈ F0, b1(x, x) = θ1(x)2 for
x ∈ F1, where θ ∈ Hom(F0,k), θ1 ∈ Hom(F1,k). If b1 is not symplectic, we have θ1 �= 0.
Hence there exists T 1,0

1 ∈ Hom(F0, F1) such that θ(y) = θ1(T
1,0
1 (y)) for all y ∈ F0.

Then c0
−2(y, y) + b1(T 1,0

1 (y), T 1,0
1 (y)) = 0 for all y ∈ F0. Thus c0

−2 + b1(T 1,0
1 ⊗ T 1,0

1 )
is symplectic. This also holds if b1 is symplectic (in which case we have c0−2(y, y) =
b−2,0(y, y)− b̃−2,0(y, y) = Q(y)−Q(y) = 0 for y ∈ F0) and we take T 1,0

1 = 0. Now c1
−2

is also symplectic.
Since a0∗ = a1, a1(T 1,0

1 ⊗ 1) + a0(1 ⊗ T 1,0
1 ) is symplectic. Similarly a0(T 0,1

1 ⊗ 1) +
a1(1 ⊗ T 0,1

1 ) is symplectic. Hence c0
−2 + b1(T 1,0

1 ⊗ T 1,0
1 ) + a1(T 1,0

1 ⊗ 1) + a0(1 ⊗ T 1,0
1 )

is symplectic and c1
−2 + a0(T 0,1

1 ⊗ 1) + a1(1 ⊗ T 0,1
1 ) is symplectic. Hence we can find

c̃0 ∈ Bil(F0), c̃1 ∈ Bil(F1) such that

c0
−2 + b1(T 1,0

1 ⊗ T 1,0
1 ) + a1(T 1,0

1 ⊗ 1) + a0(1⊗ T 1,0
1 ) = c̃0 + c̃0∗,

c1
−2 + a0(T 0,1

1 ⊗ 1) + a1(1 ⊗ T 0,1
1 ) = c̃1 + c̃1∗.

Since b0 and b1 are nondegenerate, we can find T 0,0
2 ∈ End(F0), T 1,1

2 ∈ End(F1) such
that c̃0(x, y) = b0(x, T 0,0

2 (y)) for x, y ∈ F0, c̃1(x, y) = b1(x, T 1,1
2 (y)) for x, y ∈ F1. For

x, y ∈ F0 we have

c0
−2(x, y) + b1(T 1,0

1 (x) ⊗ T 1,0
1 (x)) + a1(T 1,0

1 (x), y) + a0(x, T 1,0
1 (y))

= b0(x, T 0,0
2 (y)) + b0(T 0,0

2 (x), y).

For x, y ∈ F1 we have

c1
−2(x, y) + a0(T 0,1

1 (x), y) + a1(x, T 0,1
1 (y)) = b1(x, T 1,1

2 (y)) + b1(T 1,1
2 (x), y).

Thus for i, j ∈ I0, i + j = −2 and x, y ∈ F0 we have

bij(x, y) = b̃ij(x, y) + b̃i+1,j(T
1,0
1 (x), y) + b̃i,j+1(x, T 1,0

1 (y))

+ b̃i+1,j+1(T
1,0
1 (x), T 1,0

1 (y)) + b̃i,−i(x, T 0,0
2 (y)) + b̃−j,j(T

0,0
2 (x), y);

for i, j ∈ I1, i + j = −2 and x, y ∈ F1 we have

bij(x, y) = b̃ij(x, y) + b̃i+1,j(T
0,1
1 (x), y) + b̃i,j+1(x, T 0,1

1 (y))

+ b̃i,−i(x, T 1,1
2 (y)) + b̃−j,j(T

1,1
2 (x), y).

Let T be as in (a) with T 00
0 = 1, T 11

0 = 1, T 1,0
1 , T 0,1

1 , T 1,1
2 , T 0,0

2 as above and the other
components 0. Define (b′ij) by T (bij) = (b′ij). Then (b′ij) has the required properties.

Case 3: p = 2, k = −1. In this case we have n � 2. We first show that there exists
σ ∈ End(F1) such that

b1(x, σ(y)) = b1(σ(x), y), c1
−4(x, x) = b1(x, σ(x)) + b1(σ(x), σ(x)) (∗)
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for x, y ∈ F1. The functions F1 → k, x �→ b1(x, x), x �→ c1
−4(x, x) are additive and

homogeneous of degree 2, hence are of the form x �→ θ(x)2, x �→ θ1(x)2, where θ, θ1 ∈
Hom(F1,k). We can find a direct sum decomposition F1 = F ′ ⊕F ′′, where b1(x′, x′′) =
0 for all x′ ∈ F ′, x′′ ∈ F ′′, θ|F ′ = 0, F ′ = F1 if θ = 0, dimF ′′ ∈ {1, 2} if θ �= 0. Define
σ′ ∈ End(F ′) by θ1(x)θ1(y) = b1(x, σ′(y)) for x, y ∈ F ′. Then b1(x, σ′(y)) = b1(σ′(x), y)
for x, y ∈ F ′, θ1(x)2 = b1(x, σ′(x)) + θ(σ′(x))2 for x ∈ F ′.

If dimF ′′ = 1, we have θ|F ′′ �= 0 and there is a unique v ∈ F ′′ such that θ(v) = 1.
Let σ′′ : F ′′ → F ′′ be multiplication by a, where a ∈ k satisfies a2 + a = θ1(v)2. Then
θ1(x)2 = b1(x, σ′′(x))+θ(σ′′(x))2 for x ∈ F ′′ and b(x, σ′′(y)) = b(σ′′(x), y) for x, y ∈ F ′′.

If dimF ′′ = 2, we can find a basis {v, v′} of F ′′ such that θ(v′) = 0, θ(v′′) = 1. We
set b(v′, v′′) = f . We have f �= 0. Define σ′′ ∈ End(F ′′) by σ′′(v′) = ãf−1v′ + ãv′′,
σ′′(v′′) = θ1(v′′)2f−1v′, where ã ∈ k satisfies ã2 + ã = θ1(v′)2. Then b(x, σ′′(y)) =
b(σ′′(x), y) for x, y ∈ F ′′, θ1(x)2 = b(x, σ′′(x)) + θ(σ′′(x))2 for x ∈ F ′′.

If F ′′ = 0, let σ′′ : F ′′ → F ′′ be the 0 map.
Define σ ∈ End(F1) by σ(x) = σ′(x) if x ∈ F ′, σ(x) = σ′′(x) if x ∈ F ′′. Then σ

satisfies (∗). Since b0 is nondegenerate, we can find T 0,1
3 ∈ Hom(F1, F0) such that

c0
−3(x, y) + a0(x, σ(y)) = b0(x, T 0,1

3 (y))

for x ∈ F0, y ∈ F1. For any i ∈ I0, j ∈ I1, i + j = −3, and x ∈ F|i|, y ∈ F|j| we have

bij(x, y) = b̃ij(x, y) + b̃i,j+2(x, σ(y)) + b̃i,j+3(x, T 0,1
3 (y)).

It follows that for any i ∈ I1, j ∈ I0, i + j = −3, and x ∈ F|i|, y ∈ F|j| we have

bij(x, y) = b̃ij(x, y) + b̃i+2,j(σ(x), y) + b̃i+3,j(T
0,1
3 (x), y).

Define d1 ∈ Bil(F1) by d1(x, y) = b̃i,j+2(x, σ(y))+ b̃i+2,j(σ(x), y), where i, j ∈ I1, i+ j =
−4. Using the first equality in (∗) we see that d1 is independent of the choice of i, j.
Define d ∈ Bil(F1) by

d(x, y) = c1
−4(x, y) + d1(x, y) + b1(σ(x), σ(y)) + a0(T 0,1

3 (x), y) + a1(x, T 0,1
3 (y)).

We have d(x, x) = 0 for x ∈ F1. (We use (∗) and the identity b̃i,j+2 + b̃j,i+2 = b1

for i, j ∈ I1, i + j = −4.) Thus d is symplectic, hence we can find d′ ∈ Bil(F1) such
that d = d′ + d′∗. Since b1 is nondegenerate we can find T 1,1

4 ∈ End(F1) such that
d′(x, y) = b1(x, T 1,1

4 (y)) for x, y ∈ F1. We have

d(x, y) = b1(x, T 1,1
4 (y)) + b1(y, T 1,1

4 (x)) = b1(x, T 1,1
4 (y)) + b1(T 1,1

4 (x), y).

Hence for i, j ∈ I1, i + j = −4, and x, y ∈ F1 we have

bij(x, y) = b̃ij(x, y) + b̃i,j+2(x, σ(y)) + b̃i+2,j(σ(x), y)

+ b̃i+2,j+2(σ(x), σ(y)) + b̃i+3,j(T
0,1
3 (x), y) + b̃i,j+3(x, T 0,1

3 (y))

+ bi,j+4(x, T 1,1
4 (y)) + bi+4,j(T

1,1
4 (x), y).
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For i, j ∈ I1, i + j = −2, and x, y ∈ F1, we have

bij(x, y) = b̃ij(x, y) + b̃i,j+2(x, σ(y)) + b̃i+2,j(σ(x), y) = b̃ij(x, y).

Define f ∈ Bil(F0) by f(x, y) = c0
−4(x, y). Then f is symplectic. (We use the fact

that c0−4 is symplectic.) Hence we can find f ′ ∈ Bil(F0) such that f = f ′ + f ′∗. Since
b0 is nondegenerate we can find T 0,0

4 ∈ End(F0) such that f ′(x, y) = b0(x, T 0,0
4 (y)) for

x, y ∈ F0. We have

f(x, y) = b0(x, T 0,0
4 (y)) + b0(y, T 0,0

4 (x)) = b0(x, T 0,0
4 (y)) + b0(T 0,0

4 (x), y),

hence for i, j ∈ I0, i + j = −4, and x, y ∈ F0 we have

bij(x, y) = b̃ij(x, y) + bi,j+4(x, T 0,0
4 (y)) + bi+4,j(T

0,0
4 (x), y).

For i, j ∈ I0, i + j = −2, and x, y ∈ F0 we have

bij(x, y) = b̃ij(x, y).

Let T be as in (a) with T 00
0 = 1, T 11

0 = 1, T 0,1
3 , T 1,1

4 , T 0,0
4 , T 1,1

2 = σ as above and
the other components 0. Define (b′ij) by T (bij) = (b′ij). Then (b′ij) has the required
properties.

Case 4: p = 2, k < −1. In this case we have n � 3. Define ε, δ ∈ {0, 1} by ε = k − 1
mod 2, δ = 1 − ε. Since bδ is nondegenerate, we have cδ

2k−2(x, y) = bδ(x, σ(y)) for
x, y ∈ Fδ, where σ ∈ End(Fδ) is well defined. Since bδ∗ = bδ, cδ∗

2k−2 = cδ
2k−2, we have

bδ(x, σ(y)) = bδ(σ(x), y). Since bε is nondegenerate we can find T ε,δ
1−2k ∈ Hom(Fδ , Fε)

such that
cε
2k−1(x, y) + aε(x, σ(y)) = bε(x, T ε,δ

1−2k(y))

for x ∈ Fε, y ∈ Fδ. For any i ∈ Iε, j ∈ Iδ, i + j = 2k − 1, and x ∈ Fε, y ∈ Fδ we have

bij(x, y) = b̃ij(x, y) + b̃i,j−2k(x, σ(y)) + b̃i,j+1−2k(x, T ε,δ
1−2k(y)).

It follows that for any i ∈ Iδ, j ∈ Iε, i + j = 2k − 1, and x ∈ Fδ, y ∈ Fε we have

bij(x, y) = b̃ij(x, y) + b̃i−2k,j(σ(x), y) + b̃i+1−2k,j(T
ε,δ
1−2k(x), y).

Define d1 ∈ Bil(Fδ) by d1(x, y) = b̃i,j−2k(x, σ(y)) + b̃i−2k,j(σ(x), y), where i, j ∈ Iδ, i +
j = 2k − 2. Using bδ(1 ⊗ σ) = bδ(σ ⊗ 1) we see that d1 is independent of the choice of
i, j. Define d ∈ Bil(Fδ) by

d(x, y) = cδ
2k−2(x, y) + d1(x, y) + aε(T ε,δ

1−2k(x), y) + aδ(x, T ε,δ
1−2k(y)).

We have d(x, x) = 0 for x ∈ Fδ. (This follows from the choice of σ and the identity
b̃i,j−2k + b̃j,i−2k = bδ for i, j ∈ Iδ, i + j = 2k − 2.) Thus d is symplectic, hence we
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can find d′ ∈ Bil(Fδ) such that d = d′ + d′∗. Since bδ is nondegenerate we can find
T δ,δ

2−2k ∈ End(Fδ) such that d′(x, y) = bδ(x, T δ,δ
2−2k(y)) for x, y ∈ Fδ. We have

d(x, y) = bδ(x, T δ,δ
2−2k(y)) + bδ(y, T δ,δ

2−2k(x)) = bδ(x, T δ,δ
2−2k(y)) + bδ(T δ,δ

2−2k(x), y).

Hence for i, j ∈ Iδ, i + j = 2k − 2, and x, y ∈ Fδ we have

bij(x, y) = b̃ij(x, y) + b̃i,j−2k(x, σ(y)) + b̃i−2k,j(σ(x), y) + b̃i+1−2k,j(T
ε,δ
1−2k(x), y)

+ b̃i,j+1−2k(x, T ε,δ
1−2k(y)) + bi,j+2−2k(x, T δ,δ

2−2k(y))

+ bi+2−2k,j(T
δ,δ
2−2k(x), y).

For i, j ∈ Iδ, i + j = 2k, and x, y ∈ Fδ we have

bij(x, y) = b̃ij(x, y) + b̃i,j−2k(x, σ(y)) + b̃i−2k,j(σ(x), y) = b̃ij(x, y).

Define f ∈ Bil(Fε) by f(x, y) = cε
2k−2(x, y). Then f is symplectic. (We use the fact

that cε
2k−2 is symplectic.) Hence we can find f ′ ∈ Bil(Fε) such that f = f ′ + f ′∗. Since

bε is nondegenerate we can find T ε,ε
2−2k ∈ End(Fε) such that f ′(x, y) = bε(x, T ε,ε

2−2k(y))
for x, y ∈ Fε. We have

f(x, y) = bε(x, T ε,ε
2−2k(y)) + bε(y, T ε,ε

2−2k(x)) = bε(x, T ε,ε
2−2k(y)) + bε(T ε,ε

2−2k(x), y),

hence for i, j ∈ Iε, i + j = 2k − 2, and x, y ∈ Fε we have

bij(x, y) = b̃ij(x, y) + bi,j+2−2k(x, T ε,ε
2−2k(y)) + bi+2−2k,j(T

δ,δ
2−2k(x), y).

For i, j ∈ Iδ, i + j = 2k, and x, y ∈ Fε we have bij(x, y) = b̃ij(x, y). Let T be as
in (a) with T 00

0 = 1, T 11
0 = 1, T ε,δ

1−2k, T ε,ε
2−2k, T δ,δ

2−2k, T δ,δ
−2k = σ as above and the other

components 0. Define (b′ij) by T (bij) = (b′ij). Then (b′ij) has the required properties. ♠
This completes the proof of (b).

We now verify the following special case of Proposition 3.6(c).

(c) Let (̃bij), (bij) be two points of X. Then there exists T ∈ Δu such that T (bij) =
(̃bij).

We first prove the following statement by induction on k ∈ [−n, 0].

(Pk) Assume in addition that bij = b̃ij for any i, j with i + j � 2k. Then there exists
T ∈ Δu such that T (bij) = (̃bij).

If k = −n, the result is obvious. Assume now that k ∈ [1 − n, 0]. By (b) we can find
T ′ ∈ Δu such that T ′(bij) = (b′ij) and b′ij = b̃ij for i + j � 2k − 2. By the induction
hypothesis we can find T ′′ ∈ Δu such that T ′′(b′ij) = (̃bij). Let T = T ′′T ′ ∈ Δu. Then
T (bij) = (̃bij). This completes the proof of (Pk) for k ∈ [−n, 0]. In particular (P0) holds
and (c) is proved.
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3.10. Proof of Proposition 3.6(c). Let 〈 , 〉, 〈 , 〉′ be two elements of the set X in 3.6.
We must show that 〈 , 〉, 〈 , 〉′ are in the same U -orbit. We argue by induction on e,
the smallest integer � 0 such that Ne = 0. If e = 0, we have V = 0 and the result is
obvious. If e = 1, we have N = 0. Then V = grV∗ canonically, U = {1}, and both
〈 , 〉, 〈 , 〉′ are the same as 〈 , 〉0, hence the result is clear. We now assume that e � 2.
♠. Assume first that p = 2. For n ∈ L, let qn : P ν

−n → k be the quadratic forms
attached to (N, 〈 , 〉) in 3.3 and let q′n : P ν

−n → k be the analogous quadratic forms
defined in terms of (N, 〈 , 〉′). We show:

(a) there exists T ∈ U such that if 〈 , 〉′′ ∈ Symp(V ) is given by 〈x, y〉′′ = 〈Tx, T y〉,
then for n ∈ L the quadratic form q′′n defined as in 3.3 in terms of (N, 〈 , 〉′′)
satisfies q′′n = q′n.

We are seeking an S ∈ E�1V∗ such that SN = NS and 〈(1 + S)ẋ, (1 + S)Nn−1ẋ〉 =
〈ẋ, Nn−1ẋ〉′, that is, 〈(1 + S)ẋ, Nn−1(1 + S)ẋ〉 = 〈ẋ, Nn−1ẋ〉′, that is,

〈Sẋ, Nn−1ẋ〉+ 〈ẋ, Nn−1Sẋ〉+ 〈Sẋ, Nn−1Sẋ〉 = 〈ẋ, Nn−1ẋ〉′ + 〈ẋ, Nn−1ẋ〉

for any n ∈ L and any ẋ ∈ V�−n such that Nn+1ẋ = 0. Now

〈Sẋ, Nn−1ẋ〉+ 〈ẋ, Nn−1Sẋ〉 = 〈Sẋ, (Nn−1 + (N †)n−1)ẋ〉

is a linear combination of terms 〈Sẋ, Nn′
ẋ〉, with n′ � n; each of these terms is 0 since

Sẋ ∈ V�1−n, Nn′
ẋ ∈ V�2n′−n, and 1 − n + 2n′ − n � 1. Moreover 〈Sẋ, Nn−1Sẋ〉 =

〈Sx, νn−1Sx〉0, where x ∈ P ν
−n is the image of ẋ and 〈ẋ, Nn−1ẋ〉′ + 〈ẋ, Nn−1ẋ〉 =

q′n(x) + qn(x). By the surjectivity of the map S �→ S in 2.5(d) we see that it suffices to
show that there exists σ ∈ Endν

1(grV∗) (that is, σ ∈ End1(grV∗) such that σν = νσ),
with 〈σx, νn−1σx〉0 = q′n(x) + qn(x) for any n ∈ L and any x ∈ P ν

−n.
For n ∈ L′ the last equation is automatically satisfied for any σ. (The left-hand side

is zero by the definition of L′. The right-hand side is equal by 3.3(c) to Q′
n(ν(n−n)/2x)+

Qn(ν(n−n)/2x), where Qn is the quadratic form attached as in 3.3 to (N, 〈 , 〉) and Q′
n is

the analogous quadratic form defined in terms of (N, 〈 , 〉′). The last sum is zero since
Qn = Q′

n = Q.)
We see that it suffices to show there exists σ ∈ Endν

1(grV∗) such that 〈σx, νn−1σx〉0 =
q′n(x) + qn(x) for any n ∈ L − L′ and any x ∈ P ν

−n.
For n ∈ L−L′, the quadratic forms q′n, qn have the same associated symplectic form

(see 3.3(a)); hence there exists θn ∈ Hom(P ν
−n,k) such that q′n(x) + qn(x) = θn(x)2 for

all x ∈ P ν−n. Hence it suffices to show that the linear map

ρ : Endν
1(grV∗) −→

⊕
n∈L−L′ Hom(P ν−n,k)

given by σ �→ (θn), where θn(x) =
√〈σx, νn−1σx〉0 for x ∈ P ν

−n is surjective. Let

E =
⊕

n�0 Hom(P ν−n, gr1−nV∗). We have an isomorphism π : Endν
1(grV∗)

si−→ E given by
σ �→ (σn), where σn ∈ Hom(P ν

−n, gr1−nV∗) is the restriction of σ. Define a linear map

ρ′ : E →⊕
n∈L−L′ Hom(P ν

−n,k)
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by (σn) �→ (θn), where θn(x) =
√〈σnx, νn−1σnx〉0 for x ∈ P ν

−n. We have ρ′π = ρ.
Hence it suffices to show that ρ′ is surjective. It also suffices to show that for any
n ∈ L − L′, the linear map

ρ′n : Hom(P ν
−n, gr1−nV∗)→ Hom(P ν

−n,k)

given by f �→ θ, where θ(x) =
√〈fx, νn−1fx〉0 for x ∈ P ν

−n, is surjective. De-
fine g ∈ Hom(gr1−nV∗ → k) by h �→ √〈h, νn−1h〉0. Then ρ′n(f) = g ◦ f for f ∈
Hom(P ν

−n, gr1−nV∗). Hence to show that ρ′n is surjective, it suffices to show that g �= 0.
Since n ∈ L − L′, there exists m odd such that m � n + 3 and bm is not symplectic.
Hence there exists u′ ∈ P ν

−m such that 〈u′, νmu′〉0 �= 0. We have m = (n − 1) + 2k,
where k is an integer � 2. Let u = Nku′ ∈ gr1−nV∗ and

〈u, νn−1u〉0 = 〈νku′, νn−1+ku′〉0 = 〈u′, νmu′〉0 �= 0.

Thus g(u) �= 0. We see that g �= 0 as required. This proves (a).
Note that 〈 , 〉′′ in (a) is in X (in fact in the U -orbit of 〈 , 〉). Replacing if necessary

〈 , 〉 by 〈 , 〉′′, we see that
(b) we may assume that 〈 , 〉, 〈 , 〉′ are such that qn = q′n for all n ∈ L. ♠
We now return to a general p. Let r � e. Let F be a complement of V�2−r =

kerN r−1 in V�1−r = V , and let F ′ be a complement of V�3−r = kerN r−2 + NV in
V�2−r = kerN r−1. Consider the linear map α of F

⊕
F ′ ⊕F

⊕ · · ·⊕F ′ ⊕F (2r − 1
summands) into V given by

(x1−r , x2−r, . . . , xr−2, xr−1) �→
x1−r + Nx3−r + · · ·+ N r−1xr−1 + x2−r + Nx4−r + · · ·+ N r−2xr−2.

(Here xi ∈ F , if i = r + 1 mod 2, and xi ∈ F ′, if i = r mod 2.) Let W be the image of
α. We show that

(c) 〈 , 〉 and 〈 , 〉′ are nondegenerate on W .
We prove this only for 〈 , 〉; the proof for 〈 , 〉′ is the same. Assume that w =
x1−r + Nx3−r + · · · + N r−1xr−1 + x2−r + Nx4−r + · · · + N r−2xr−2 with xi as above
satisfies 〈w, W 〉 = 0. We show that each xi is 0. We have 0 = 〈w, N r−1F 〉 =
〈x1−r, N

r−1F 〉 = 0. Using the nondegeneracy of br−1, we see that x1−r = 0 and
w = Nx3−r + · · · + N r−1xr−1 + x2−r + Nx4−r + · · · + N r−2xr−2. We have 0 =
〈w, N r−2F ′〉 = 〈x2−r, N

r−2F ′〉. Using the nondegeneracy of br−2, we see that x2−r = 0
and w = Nx3−r+· · ·+N r−1xr−1+Nx4−r+· · ·+N r−2xr−2. We have 0 = 〈w, N r−2F 〉 =
〈Nx3−r, N

r−2F 〉 = −〈x3−r, N
r−1F 〉. Using the nondegeneracy of br−1, we see that

x3−r = 0. Continuing in this way we see that each xi is 0. This proves (c).

The proof also shows that α is injective.
Let Z = {x ∈ V | 〈x, W 〉 = 0}, Z ′ = {x ∈ V | 〈x, W 〉′ = 0}. From (c) we see that

V = W
⊕

Z = W
⊕

Z ′.
Clearly W is N -stable, hence (1 + N)-stable. Since 1 + N is an isometry of 〈 , 〉

it follows that Z is (1 + N)-stable hence N -stable. Similarly Z ′ is N -stable. Define
Φ ∈ GL(V ) by Φ(x) = x for x ∈ W , Φ(x) = x′ for x ∈ Z, where x′ ∈ Z ′ is given by



474 G. LUSZTIG

x − x′ ∈ W . We have Φ ∈ U (see 2.7(c),(d)). Define ′〈 , 〉 ∈ Symp(V ) by ′〈x, y〉 =
〈Φ(x), Φ(y)〉′. By Proposition 3.6(a) we have ′〈 , 〉 ∈ X .

Let ′Z = {x ∈ V | ′〈x, W 〉 = 0}. We show that ′Z = Z. Let x = x1 + x2,
where x1 ∈ W, x2 ∈ Z. We have x2 = w + x′

2, w ∈ W, x′
2 ∈ Z ′. For w′ ∈ W

we have 〈Φ(x), w′〉′ = 〈x1 + x′
2, w

′〉′ = 〈x1, w
′〉′. The condition 〈Φ(x), W 〉′ = 0 is

that 〈x1, W 〉′ = 0 or that x1 = 0 (using (c)) or that x ∈ Z. Thus ′Z = {x ∈ V |
〈Φ(x), Φ(W )〉′ = 0} = {x ∈ V | 〈Φ(x), W 〉′ = 0} = Z as required.
♠ In the case where p = 2 we show that, for any n ∈ L, the quadratic form q′n

attached to (N, 〈 , 〉′) as in 3.3 is equal to the analogous quadratic form attached to
(N, ′〈 , 〉). We must show that if x ∈ V�−n, Nn+1x = 0, then 〈Φx, ΦNn−1x〉′ =
〈x, Nn−1x〉′ that is, 〈Φx, Nn−1Φx〉′ = 〈x, Nn−1x〉′. Both sides are additive in x. We
can write x = x1 + x2, where x1 ∈ W, x2 ∈ Z satisfy x1, x2 ∈ V�−n, Nn+1x1 =
0, Nn+1x2 = 0. We may assume that x = x1 or x = x2. When x = x1, the desired
equality is obvious. Hence we may assume that x ∈ Z. Write x = x′ + w, x′ ∈
Z ′, w ∈ W . We must show that 〈x + w, Nn−1x + Nn−1w〉′ = 〈x, Nn−1x〉′, that is,
〈x, Nn−1w〉′ + 〈w, Nn−1x〉′ + 〈w, Nn−1w〉′ = 0, that is, 〈x, (Nn−1 + (N †)n−1)w〉′ +
〈w, Nn−1w〉′ = 0, that is, 〈x, Nnw〉′ + 〈w, Nn−1w〉′ = 0 (we use Nn+1w = 0), that
is, 〈x′ + w, Nnw〉′ + 〈w, Nn−1w〉′ = 0, that is, 〈w, Nnw〉′ + 〈w, Nn−1w〉′ = 0. Now
w ∈ W�1−n (see Proposition 2.7(b)), Nnw ∈ W�n+1, hence 〈w, Nnw〉′ = 0. It remains
to show 〈w, Nn−1w〉′ = 0. Since w ∈ W�1−n and Nn+1w = 0, it suffices to show
〈y, νn−1y〉0 = 0 for any y ∈ gr1−nV∗ such that νn+1y = 0. This has already been seen
in the proof in 3.3 that qn is well defined. ♠

Replacing 〈 , 〉′ by ′〈 , 〉 (which is in the same U -orbit) we see that condition (b) is
preserved (for p = 2).

Thus we may assume that 〈 , 〉, 〈 , 〉′ satisfy Z = Z ′ and that for p = 2 condition
(b) holds. Thus V = W

⊕
Z is an othogonal decomposition with respect to either 〈 , 〉

or 〈 , 〉′. Let 〈 , 〉W , 〈 , 〉Z be the restrictions of 〈 , 〉 to W, Z. Let 〈 , 〉′W , 〈 , 〉′Z be
the restrictions of 〈 , 〉′ to W, Z. Let U1 (respectively U2) be the analogue of U for W
(respectively Z) defined in terms of N and WN

∗ (respectively ZN
∗ ). We have naturally

U1 × U2 ⊂ U .
We consider 5 cases.
Case 1: p �= 2. Take r = e + 1 (thus F = 0). By the induction hypothesis 〈 , 〉Z is

carried to 〈 , 〉′Z by some u2 ∈ U2. By Proposition 3.9 〈 , 〉W is carried to 〈 , 〉′W by
some u1 ∈ U1. Then 〈 , 〉 is carried to 〈 , 〉′ by (u1, u2) ∈ U .
♠ Case 2: p = 2, e is odd, and be−2 is symplectic. Take r = e + 1 (thus, F = 0). We

have e − 1 ∈ L. The sets L attached to 〈 , 〉Z , 〈 , 〉′Z are the same as L for 〈 , 〉, 〈 , 〉′.
The quadratic forms attached to 〈 , 〉Z , 〈 , 〉′Z , and n ∈ L − {e − 1} are the same as
those attached to 〈 , 〉, 〈 , 〉′, and n, hence they coincide. The quadratic forms attached
to 〈 , 〉Z , 〈 , 〉′Z , and n = e − 1 also coincide: they are both 0. Hence the Quadratic
forms attached to 〈 , 〉Z , 〈 , 〉′Z coincide (see 3.3(c)). The quadratic forms attached to
〈 , 〉W , 〈 , 〉′W coincide: for e− 1 they are the same as those attached to 〈 , 〉, 〈 , 〉′, and
e− 1. For other n they are zero. Hence the Quadratic forms attached to 〈 , 〉W , 〈 , 〉′W
coincide. By the induction hypothesis 〈 , 〉Z is carried to 〈 , 〉′Z by some u2 ∈ U2. By
Proposition 3.9, 〈 , 〉W is carried to 〈 , 〉′W by some u1 ∈ U1. Then 〈 , 〉 is carried to
〈 , 〉′ by (u1, u2) ∈ U .

Case 3: p = 2, e is even, and be−1 is symplectic. Take r = e + 1 (thus, F = 0). The
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sets L attached to 〈 , 〉Z , 〈 , 〉′Z are the same as L for 〈 , 〉, 〈 , 〉′. The quadratic forms
attached to 〈 , 〉Z , 〈 , 〉′Z and n ∈ L are the same as those attached to 〈 , 〉, 〈 , 〉′, and n,
hence they coincide. Thus the Quadratic forms attached to 〈 , 〉Z , 〈 , 〉′Z coincide. By
the induction hypothesis 〈 , 〉Z is carried to 〈 , 〉′Z by some u2 ∈ U2. By Proposition 3.9
〈 , 〉W is carried to 〈 , 〉′W by some u1 ∈ U1. Then 〈 , 〉 is carried to 〈 , 〉′ by (u1, u2) ∈ U .

Case 4: p = 2, e is even, and be−1 is not symplectic. Take r = e. The sets L
attached to 〈 , 〉Z , 〈 , 〉′Z are the same as L for 〈 , 〉, 〈 , 〉′. The quadratic forms attached
to 〈 , 〉Z , 〈 , 〉′Z , and n ∈ L are the same as those attached to 〈 , 〉, 〈 , 〉′, and n, hence
they coincide. Thus the Quadratic forms attached to 〈 , 〉Z , 〈 , 〉′Z coincide. By the
induction hypothesis 〈 , 〉Z is carried to 〈 , 〉′Z by some u2 ∈ U2. By Proposition 3.9
〈 , 〉W is carried to 〈 , 〉′W by some u1 ∈ U1. Then 〈 , 〉 is carried to 〈 , 〉′ by (u1, u2) ∈ U .

Case 5: p = 2, e is odd, � 3, and be−2 is not symplectic. Take r = e. By Proposition
3.9 〈 , 〉W is carried to 〈 , 〉′W by some u1 ∈ U1. Replacing 〈 , 〉′ by a translate under
(u1, 1) ∈ U we see that we may assume in addition that 〈 , 〉W = 〈 , 〉′W . Let W̃ =
F + NF + · · · + N r−1F . Let W ′ = {w ∈ W | 〈w, W̃ 〉 = 0} = {w ∈ W | 〈w, W̃ 〉′ = 0}.
Then W = W̃

⊕
W ′, the orthogonal direct sum for both 〈 , 〉, 〈 , 〉′. Let Z̃ = W ′ ⊕Z,

the orthogonal direct sum for both 〈 , 〉, 〈 , 〉′. Then V = W̃
⊕

Z̃, the orthogonal direct
sum for both 〈 , 〉, 〈 , 〉′. Let 〈 , 〉Z̃ , 〈 , 〉′

Z̃
be the restrictions of 〈 , 〉, 〈 , 〉′ to Z̃. Let

Ũ1 (respectively Ũ2) be the analogue of U for W̃ (respectively Z̃) defined in terms of
N and W̃N∗ (respectively Z̃N∗ ). We have naturally Ũ1 × Ũ2 ⊂ U . The sets L attached
to 〈 , 〉Z̃ , 〈 , 〉′

Z̃
are the same as L for 〈 , 〉, 〈 , 〉′. The quadratic forms attached to

〈 , 〉Z̃ , 〈 , 〉′
Z̃
, and n ∈ L are the same as those attached to 〈 , 〉, 〈 , 〉′, and n, hence they

coincide. Thus the Quadratic forms attached to 〈 , 〉Z̃ , 〈 , 〉′
Z̃

coincide. By the induction

hypothesis, 〈 , 〉Z̃ is carried to 〈 , 〉′
Z̃

by some ũ2 ∈ Ũ2. Then 〈 , 〉 is carried to 〈 , 〉′ by
(1, ũ2) ∈ U . ♠

This completes the proof of Proposition 3.6(c), hence also those of Propositions 3.5,
3.6, and 3.7.

3.11. Here is the order of the proof of the various assertions in Propositions 3.5–3.7:
3.5(a), see 3.8; 3.7(a), see 3.7; 3.6(a), see 3.6; 3.7(b), see 3.7; 3.6(b), see 3.6; 3.5(b), see
3.5; 3.6(c), see 3.9, 3.10; 3.7(c), see 3.7; 3.5(c), see 3.5.

3.12. Let V ∈ C and let 〈 , 〉 ∈ Symp(V ). The following result can be deduced from
[S1, I, 2.10].

Let C, C0 be two GL(V )-conjugacy classes in Nil(V ) such that C ∩ M〈 , 〉 �= ∅,
C0 ∩M〈 , 〉 �= ∅, and C is contained in the closure of C0 in GL(V ). Then C ∩M〈 , 〉
is contained in te closure of C0 ∩M〈 , 〉 in M〈 , 〉.

3.13. Let V ∈ C and let 〈 , 〉 ∈ Symp(V ). Let G = Sp(〈 , 〉). For any self-dual filtration
V∗ of V and for n � 1, let E

〈 , 〉
�n V∗ = E�nV∗ ∩M〈 , 〉, a unipotent algebraic group with

multiplication T ∗ T ′ = T + T ′ + TT ′. Let

ξ̃(V∗) = ξ(V∗) ∩M〈 , 〉 = {N ∈M〈 , 〉 | V N
∗ = V∗} = {N ∈ E

〈 , 〉
�2 V∗ | N ∈ End0

2(grV∗)}

(see 2.9). The following three conditions are equivalent:
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(i) ξ̃(V∗) �= ∅;
(ii) there exists ν ∈ End0

2(grV∗) which is skew-adjoint with respect to the symplectic
form on grV∗ induced by 〈 , 〉;

(iii) dim grnV∗ = dim gr−nV∗ � dim gr−n−2V∗ for all n � 0, and dim gr−nV∗ =
dim gr−n−2V∗ mod 2 for all n � 0 even.

We have (i)⇒(ii) by the definition of ξ̃(V∗); we have (ii)⇒(iii) by 2.3(d) and 3.1(c). Now
(iii)⇒(ii) is easily checked. We have (ii)⇒(iii) by Proposition 3.5(a).

Let F〈 , 〉 be the set of all self-dual filtrations V∗ of V that satisfy (i)–(iii). From the
definitions we have a bijection

(a) F〈 , 〉
∼−→ DG, V∗ �→�

(DG as in 1.1), where �= (G�
0 ⊃ G�

1 ⊃ G�
2 ⊃ . . . ) is defined in terms of V∗ by

G�
0 = E�0V∗ ∩ G and G�

n = 1 + E
〈 , 〉
�n V∗ for n � 1. The sets ξ̃(V∗) (with V∗ ∈ F〈 , 〉)

form a partition ofM〈 , 〉. (If N ∈M〈 , 〉, we have N ∈ ξ̃(V∗), where V∗ = V N
∗ .)

Let V∗ ∈ F〈 , 〉. Let C0 be the unique GL(V )-conjugacy class in Nil(V ) that contains
ξ(V∗). We have

E
〈 , 〉
�2 V∗ − ξ̃(V∗) = (E�2V∗ − ξ(V∗)) ∩M〈 , 〉 = E�2V∗ ∩ (∪CC) ∩M〈 , 〉

(the last equality follows from 2.9; C runs over all GL(V )-orbits in Nil(V ) such that
C ⊂ C0 − C0). Using 3.12 we see that

E
〈 , 〉
�2 V∗ − ξ̃(V∗) = E

〈 , 〉
�2 V∗ ∩ (∪C(C ∩M〈 , 〉)),

where C runs over all GL(V )-orbits in Nil(V ) such that C ∩ M〈 , 〉 �= ∅ and C ⊂
C0 ∩M〈 , 〉 − (C0 ∩ M〈 , 〉). We see that if V∗ �→� (as in (a)) and � is the G-orbit
of � in DG, then (with the notation of 1.1) H̃� is the union of G-conjugacy classes in
1 +M〈 , 〉 contained in 1 + C0, H� is the union of G-conjugacy classes in 1 +M〈 , 〉
contained in 1 + C0, and X� = 1 + ξ̃(V∗) = 1 + (E〈 , 〉

�2 V∗ ∩ C0). We see that P1–P3

hold.

3.14. We preserve the setup of 3.13. Let V∗ ∈ F〈 , 〉 and let �∈ DG be the corresponding
element. Define 〈 , 〉0 ∈ Symp(grV∗) as in 3.2. The map E

〈 , 〉
�2 V∗ → End0

2(grV∗), N �→ N
restricts to a map

π : ξ̃(V∗)→ E := {ν ∈ End0
2(grV∗) | ν skew-adjoint with respect to 〈 , 〉0}.

We show:
(a) The group E

〈 , 〉
�3 V∗ (see 3.13) acts freely on ξ̃(V ∗) by T, N �→ T ∗ N (see 3.13)

and the orbit space of this action may be identified with E via π.

We show this only at the level of sets. If T ∈ E
〈 , 〉
�3 V∗, N ∈ ξ̃(V∗), then T ∗ N ∈

E
〈 , 〉
�2 V∗ and T ∗N, N induce the same map in End2(grV∗); hence T ∗N ∈ ξ̃(V∗). Thus

T, N �→ T ∗N is an action of E
〈 , 〉
�3 V∗ on ξ̃(V∗). This action is free: it is the restriction

of the action of E
〈 , 〉
�3 V∗ on E

〈 , 〉
�2 V∗ by left multiplication for the group structure in
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3.13. If N, N ′ ∈ ξ̃(V∗) induce the same map in End0
2(grV∗), then N ′ − N ∈ E�3V∗.

Set T = (N ′ − N)(1 + N)−1 ∈ E�3V∗. Then (1 + T )(1 + N) = 1 + N ′ and we have
automatically T ∈ E

〈 , 〉
�3 V∗ and T + N = N ′. Thus the orbits of the E

〈 , 〉
�3 V∗-action

on ξ̃(V ∗) are exactly the nonempty fibers of π. It remains to show that π is surjective.
This follows from Proposition 3.5(a).

Now let N, N ′ ∈ ξ̃(V∗) be such that N = N
′
= ν ∈ End0

2(grV∗). We show:

(b) there exists g ∈ E�0V∗ ∩G such that N ′ = gNg−1.

First assume that p = 2. The set L ⊂ 2N defined in 3.3 in terms of N is the same as
that defined in terms of N ′. Let qn : P ν−n → k be the quadratic form defined in terms of
N (for n ∈ L) as in 3.3 and let q′n : P ν

−n → k be the analogous quadratic form defined
in terms of N ′. From 3.3(a) we see that for any n ∈ L there exists an automorphism
hn : P ν−n → P ν−n which preserves the symplectic form x, y �→ bn(x, y) (see 3.1) and
satisfies q′n(x) = qn(hnx) for any x ∈ P ν

−n. There is a unique h ∈ Sp(〈 , 〉0) such that
h(x) = hn(x) for x ∈ P ν−n, n ∈ L, h(x) = x for x ∈ P ν−n, n ∈ Z− L, and hν = νh. Let
V =

⊕
a Va be a direct sum decomposition as in 3.2(b). Then End0(V ) is defined and

we define h̃ ∈ End0(V ) by the requirement that for any a, h̃ : Va → Va corresponds to
h : graV∗ → graV∗ under the obvious isomorphism Va

∼−→ graV∗. Then h̃ ∈ E�0V∗ ∩ G

and h̃Nh̃−1 = N ′′, where N ′′ ∈ E
〈 , 〉
�2 V∗ satisfies N

′′
= ν. Moreover, the quadratic form

P ν−n → k defined as in 3.3 in terms of N ′′ (instead of N) for n ∈ L is x �→ hn(x), that
is, q′n. From 3.3(c) we see that the Quadratic form Qn defined for n ∈ L′ in terms of
N ′′ is the same as that defined in terms of N ′. From Proposition 3.5(c) we see that
there exists h′ ∈ 1 + E

〈 , 〉
�1 V∗ such that h′N ′′h′−1 = N ′. Setting g = h′h̃ ∈ E�0V∗ ∩ G,

we have gNg−1 = N ′.
Next assume that p �= 2. From 3.5(c) we see that there exists g ∈ 1 + E

〈 , 〉
�1 V∗ such

that gNg−1 = N ′. This proves (b).
We see that P6 (hence P4) holds.
From (a) we see that the G�

0 -action on ξ̃(V ∗) (conjugation) induces an action of
G

�
0 = G�

0 /G�
1 on E and from (b) we see that this gives rise to a bijection between the

set of G�
0 -orbits on ξ̃(V ∗) and the set of G

�
0 -orbits on E. We describe this last set of

orbits. We identify G
�
0 with End0(grV∗) ∩ Sp(〈 , 〉0) with the action on E given by

g : ν �→ ν′, where ν′(x) = gν(g−1x) for x ∈ grV∗.
Let I = {n ∈ 2N + 1 | dim gr−nV∗ − dim gr−n−2V∗ ∈ {2, 4, 6, . . .}}. For any subset

J ⊂ I let EJ be the set of all ν ∈ E such that for any n ∈ I we have

{x ∈ gr−nV∗ | νn+1x = 0, 〈x, νnx〉0 �= 0} �= ∅↔ n ∈ J.

Let E be the set of all direct sum decompositions grV∗ =
⊕

n�0 Wn, where Wn ∈
C̄ (see 2.1) are such that 〈Wn, Wn′〉0 = 0 for n �= n′, and for n � 0, dim Wn

a is
dim gr−nV∗ − dim gr−n−2V∗ if a ∈ [−n, n], a = n mod 2 and is 0 for other a. Define
φ : E → E by ν �→ (Wn), where Wn =

∑
k�0 νkP ν

−n. Then φ is G
�
0 -equivariant, where

G
�
0 acts on E in an obvious way (transitively).
Let w = (Wn) ∈ E. Let Gw be the stabilizer of w in G

�
0 . Let Ew = φ−1(w). Now

Ew may be identified with
∏

n�0 Ew
n , where Ew

n is the set of all skew-adjoint elements



478 G. LUSZTIG

in End0
2(W

n) with respect to 〈 , 〉0|W n . Moreover Gw may be identified with
∏

n�0 Gw
n ,

where Gw
n = End0(Wn)∩Sp(〈 , 〉0|W n). Furthermore, we may identify Ew

n = Ew1
n ×Ew2

n

where Ew1
n consists of all sequences of isomorphisms

(c) Wn−n
∼−→Wn−n+2

∼−→Wn−n+4
∼−→ · · · ∼−→Wn

−δ

(δ = 0 if n is even and δ = 1 if n is odd) and Ew2
n is the set of nondegenerate symmetric

bilinear forms Wn−1×Wn−1 → k, if n is odd, and is a point if n is even. (This identification
is obtained by attaching to ν ∈ Ew

n the isomorphisms (c) induced by ν and, if n is odd,
the bilinear form x, x′ �→ 〈x, νx′〉0 on Wn

−1.)

We claim that if p = 2, the subsets EJ are precisely the orbits of G
�
0 on E whereas

if p �= 2, E is a single orbit of G
�
0 . Using the transitivity of the G

�
0 action on E, we

see that it suffices to prove the following: if p = 2, the subsets Ew
J = EJ ∩ Ew are

precisely the Gw-orbits on E, whereas if p �= 2, Ew is a single Gw-orbit. If n /∈ I, G′
n

acts transitively on E′
n. If n ∈ I, pr2 : Ew

n → Ew2
n induces a bijection between the set of

Gw
n -orbits on Ew

n and the set of GL(Wn
−1)-orbits on the set of nondegenerate symmetric

bilinear forms on Wn
−1. The last set of orbits consists of one element if p �= 2 and of two

elements (the symplectic forms and the nonsymplectic forms) if p = 2. This verifies our
claim.

We see that the first assertion of P8 holds.
As above, we identify E with the set of triples (w, α, j), where w ∈ E, α is a collection

of isomorphisms as in (c) (for each n � 0) and j is a sequence (jn)n∈I , where jn ∈
Bil(Wn

−1) is symmetric and nondegenerate.
Assume that p = 2. Let J ⊂ J ′ ⊂ I. From the previous discussion we see that the

G
�
0 -orbits on E that contain EJ in their closure and are contained in the closure of

EJ′ are those of the form EK , where J ⊂ K ⊂ J ′. Let EJ,J′ = ∪K; J⊂K⊂J′EK . We
identify EJ with the set of (w, α, j) ∈ E such that jn is not symplectic for n ∈ J and
symplectic for n ∈ I − J . We identify EJ,J′ with the set of (w, α, j) ∈ E such that jn is
not symplectic for n ∈ J and symplectic for n ∈ I − J ′. Let ẼJ be the set of all triples
(w, α, j̃), where w, α are as above, and j̃ = (j̃n)n∈I , where for n ∈ J , j̃n ∈ Bil(Wn−1) is a
symmetric nonsymplectic nondegenerate form and, for n ∈ I − J , j̃n : Wn

−1 ×Wn
−1 → k

is the square of a symplectic nondegenerate form.
Now EJ , EJ,J′ , and ẼJ are naturally algebraic varieties. Define a finite bijective

morphism σ : EJ → ẼJ by (w, α, j) �→ (w, α, j̃), where j̃n = jn for n ∈ J , j̃n = j2
n

for n ∈ I − J . Define ρ : EJ,J′ → ẼJ by (w, α, j) �→ (w, α, j̃), where j̃n = jn for
n ∈ J and j̃n(x, x′) = jn(x, x′)2 + jn(x, x)jn(x′, x′) for n ∈ I − J , x, x′ ∈ Wn

−1. (To
see that this is well defined, we must check that for n ∈ I − J , the symplectic form
x, x′ �→ jn(x, x′) +

√
jn(x, x)jn(x′, x′) on Wn

−1 is nondegenerate. Let R be the radical
of this symplectic form. Let H = {x ∈Wn−1 | jn(x, x) = 0}. If x ∈ R∩H , then jn(x, x′)
for all x′, hence x = 0. Thus R ∩ H = 0. Since H is either Wn

−1 or a hyperplane in
Wn

−1, we see that R ∩H is either R or a hyperplane in R. It follows that dimR is 0
or 1. Since R = dim Wn−1mod 2, we see that dimR is even. Hence R = 0, as required.)

Taking here J ′ = I, we see that P7 holds. We now return to a general J ′. We
consider the fiber F of ρ at (w, α, j̃) ∈ ẼJ . We may identify F with the set of all
collections (jn)n∈I−J , where jn ∈ Bil(Wn−1) is symmetric nondegenerate for all n, jn is
symplectic for n ∈ I − J ′, and j̃n(x, x′) = jn(x, x′)2 + jn(x, x)jn(x′, x′) for n ∈ I − J ,
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x, x′ ∈ Wn
−1. Let F ′ be the set of all collections (hn)n∈I−J , where hn is a linear

form Wn−1 → k, zero for n ∈ I − J ′. We define a map F → F ′ by (jn)n∈I−J �→
(hn)n∈I−J , where hn(x) =

√
jn(x, x) for x ∈ Wn

−1. We define a map F ′ → F by

(hn)n∈I−J �→ (jn)n∈I−J , where jn(x, x′) =
√

j̃n(x, x′) + hn(x)hn(x′) for x, x′ ∈ Wn
−1.

(We show that this is well defined. We must show that jn given by the last equality is

nondegenerate. Let R′ be the radical of jn. Define v ∈ Wn
−1 by hn(y) =

√
j̃n(v, y) for

all y ∈ Wn
−1. If x ∈ R′, y ∈ Wn

−1, we have
√

j̃n(x, y) = hn(x)hn(y) = hn(x)
√

j̃n(v, y),

hence
√

j̃n(x− hn(x)v, y) = 0. Since
√

j̃n is nondegenerate, we have x − hn(x)v = 0.

Hence x = hn(x)v = hn(hn(x)v)v = hn(x)hn(v)v. This is 0, since hn(v) =
√

j̃n(v, v) =
0. Thus R′ = 0.) Clearly, F → F ′,F ′ → F are inverse to each other. We see that F is
in natural bijection with a vector space of dimension

∑
n∈J′−J cn, where cn = dimWn

−1.
Hence if k, q are as in P5, we have∑

K; J⊂K⊂J′
|EK(Fq)| = |EJ,J′(Fq)| =

∏
n∈J′−J

qcn |EJ (Fq)|.

From this we see that |EK(Fq)| =
∏

n∈K(qcn − 1)|E∅(Fq)| for any K ⊂ I. Using this
and P6 we see that the second assertion of P8 holds.

For k, q as in P5 we have

|H�(Fq)| = |X�(Fq)||G(Fq)/G�
0 (Fq)|, |X�(Fq)| = qdim G�

3 |E(Fq)|.

Hence to verify P5, it suffices to show that |E(Fq)| is a polynomial in q with integer
coefficients independent of p. Using the G

�
0 -equivariant fibration φ : E → E, we see

that |E(Fq)| = |E(Fq)||Ew(Fq)| for any w ∈ E. Since |E(Fq)| is a polynomial in q
with integer coefficients independent of p, it suffices to show that for any w ∈ E(Fq),
|Ew(Fq)| is a polynomial in q with integer coefficients independent of p, or that |Ew

n (Fq)|
is a polynomial in q with integer coefficients independent of p for any w ∈ E(Fq) and
any n � 0. Using the identification Ew

n = Ew1
n × Ew2

n and the fact that |Ew1
n (Fq)| is a

polynomial in q with integer coefficients independent of p, we see that it suffices to show
that |Ew2

n (Fq)| is a polynomial in q with integer coefficients independent of p. Thus it
suffices to check the following statement.

Let W be an Fq-vector space of dimension d. Let b(W ) be the set of nondegenerate
symmetric bilinear forms W ×W → Fq. Then |b(W )| is a polynomial in q with integer
coefficients independent of p.

We argue by induction on d. For d = 0 the result is obvious. Assume that d � 1.
We write |b(W )| = f(d, q). The set of all symmetric bilinear forms W × W → Fq

has cardinal qd(d+1)/2; it is a disjoint union �XbX(W ), where X runs over the linear
subspaces of W and bX(W ) is the set of symmetric bilinear forms W ×W → Fq, with
radical equal to X . Thus

qd(d+1)/2 =
∑
X

|bX(W )| =
∑
X

|b(W/X)| =
∑

d′∈[0,d]

g(d, d′, q)f(d− d′, q),
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where g(d, d′, q) = |{X ⊂W | dimX = d′}|. We see that

f(d, q) = qd(d+1)/2 −
∑

d′∈[1,d]

g(d, d′, q)f(d− d′, q).

Since g(d, d′, q) is a polynomial in q with integer coefficients independent of p and the
same holds for f(d− d′, q), with d′ ∈ [1, d] (by the induction hypothesis), it follows that
f(d, q) is as required.

We see that P5 holds.

4. The group A1(u)

4.1. In this section we assume that p � 2 and that P1 holds. Let u ∈ U . According to
P1 there is a unique �∈ DG such that u ∈ X�. Let A1(u) = ZG�

1
(u)/ZG�

1
(u)0, a finite

p-group.
The image of A1(u) in ZG(u)/ZG(u)0 is a normal subgroup (since ZG(u) = ZG�

0
(u)—

see 1.1(c)—and ZG�
1
(u) is normal in ZG�

0
(u)).

In this section we describe the finite group A1(u) in some examples assuming that
p = 2 and G is a symplectic group.

Let n � 1. Let I = {i ∈ [−n, n] | i = n mod 2}. Let F ∈ C, F �= 0. Let
V =

⊕
i∈I Fi, where Fi = F . Define N : V → V by (xi) �→ (x′

i), where x′
i = xi−2 for

i ∈ I−{−n}, x′
−n = 0. We fix 〈 , 〉0 ∈ Symp(V ) such that 〈(xi), (yi)〉0 =

∑
i∈I b(xi, y−i),

where b ∈ Bil(F ) satisfies b∗ = b, b is nondegenerate, and b ∈ Symp(F ) if n is even.
Let 〈 , 〉 ∈ Symp(V ) be such that 〈Nx, y〉+ 〈x, Ny〉+ 〈Nx, Ny〉 = 0 for x, y ∈ V and

〈x, y〉 = 〈x, y〉0 if there exists i such that xj = 0 for j �= i and yj = 0 for j �= −i. We
have 〈(xi), (yi)〉 =

∑
i,j∈I bij(xi, yj), where bij ∈ Bil(F ) are such that

bi−2,j + bi,j−2 + bij = 0 if i, j ∈ I − {−n},
bi,−i = b for all i ∈ I,
bii ∈ Symp(F ) for all i ∈ I,
b∗ij = −bji for all i, j ∈ I.

(We automatically have bij = 0 if i + j � 1.)
Let Δ′ = {T ∈ GL(V ) | TN = NT, 〈x, y〉 = 〈Tx, T y〉 for all x, y ∈ V }, a subgroup of

Sp(〈 , 〉); equivalently, Δ′ is the set of linear maps T : V → V of the form

T : (xi) �→ (x′
i), x

′
i =

∑
j∈I; j�i

Ti−jxj ,

where Tr ∈ End(F ) (r ∈ {0, 2, 4, . . . , 2n}) are such that

bij(x, y) =
∑

i′,j′∈I; i′�i,j′�j

bi′j′ (Ti′−i(x), Tj′−jy) (Eij)

for i, j ∈ I, i+j � 0, and x, y ∈ F . Now (Eij), (Ei+2,j−2), with i+j = 2k, are equivalent
if (Eab) is assumed for a + b = 2k + 2 (the sum of those two equations is Ei+2,j). Thus
the conditions that T must satisfy are Eii and Ei−2,i. Setting x = y in these equations,
we obtain equations (E0

ii), (E0
i−2,i). Note that the equation (E0

ii) is 0 = 0, hence can
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be omitted; the equation (Eii) is a consequence of (E0
i−2,i) (if it is defined). Hence the

equations satisfied by the components of T are as follows:

(E0
−2,0), (E−2,0), (E0

−4,−2), (E−4,−2), . . . , (E0
−n,−n+2), (E−n,−n+2), (E−n,−n) (a)

(for n even),

(E−1,1), (E0
−3,−1), (E−3,−1), (E0

−5,−3), (E−5,−3),

. . . , (E0
−n,−n+2), (E−n,−n+2), (E−n,−n)

(b)

(for n odd). Assume first that n is even. The solutions T0 of the first equation in (a)
form an even orthogonal group, a variety with two connected components. For any
such T0, the solutions T2 of the second equation in (a) form an affine space of dimension
independent of T0. For any T0, T2 already determined, the solutions T4 of the third
equation in (a) form an affine space of dimension independent of T0, T2. Continuing in
this way, we see that the solutions of the equations (a) form a variety with two connected
components. Moreover, the solutions in which T0 is specified to be 1 form a connected
variety.

Next assume that n is odd and b is symplectic. The solutions T0 of the first equation
in (b) form a symplectic group (a connected variety). For any such T0, the solutions
T2 of the second equation in (b) form an affine space of dimension independent of T0.
For any T0, T2 already determined, the solutions T4 of the third equation in (b) form an
affine space of dimension independent of T0, T2. Continuing in this way, we see that the
solutions of equations (b) form a connected variety. Moreover, the solutions in which
T0 is specified to be 1 form a connected variety.

One can show that if n is odd, n � 3, and b is not symplectic, then the solutions of
equations (b) form a variety with two connected components. Moreover, the solutions
in which T0 is specified to be 1 form a disconnected variety.

In solving the equations above, we repeatedly use the statement (c) below. Let Q
be the vector space of quadratic forms F → k. Define linear maps a1, a2, and a3 as
follows:

a1 : End(F ) −→ Q(F ) is τ �→ q, q(x) = b(x, τ(x));

a2 : {τ ∈ End(F ) | b(τ(x), y) = b(x, τ(y) for all x, y ∈ F}
−→ Hom(F,k) is τ �→ θ, θ(x) =

√
b(x, τ(x));

a3 : {b′ ∈ Bil(F ) | b′∗ = b′} −→ Hom(F,k) is b′ �→ θ, θ(x) =
√

b′(x, x).

Then

(c) a1, a2, and a3 are surjective.

For a3 this is clear. Consider now a2. Let θ ∈ Hom(F,k). By (c), for a3 we can find
b′ ∈ Bil(F ), b′∗ = b′ such that θ(x) =

√
b′(x, x). We can find a unique τ ∈ End(F )

such that b(x, τ(y)) = b′(x, y). Then a2(t) = θ. Consider now a1. Let q ∈ Q. Let
b0 be a symplectic form on F . We can write b0 = d + d∗, where d ∈ Bil(F ). We can
write d(x, y) = b(x, σ(y)) for some σ ∈ End(F ). Then b(x, σ(y)) + b(y, σ(x)) = b0(x, y).
Apply this to the symplectic form b0(x, y) = q(x + y) + q(x) + q(y). Then

b(x+y, σ(x+y))+b(x, σ(x))+b(y, σ(y)) = b(x, σ(y))+b(y, σ(x)) = q(x+y)+q(x)+q(y).
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Hence b(x, σ(x)) + q(x) = θ(x)2 for some θ ∈ Hom(F,k). By (c), for a2 we can find
τ ∈ End(F ) such that b(x, τ(x)) = θ(x)2. Then b(x, σ(x)) + b(x, τ(x)) = q(x), that is,
b(x, (σ + τ)(x)) = q(x). Thus a1 is surjective. This proves (c).

4.2. Let V, 〈 , 〉 be as in 3.2. Let N ∈M〈 , 〉, V∗ = V N
∗ . Let e be as in 2.4. We show:

(a) If W, W ′ are e-special subspaces of V (see 2.8), then there exists g ∈ 1+E
〈 , 〉
�1 V∗

such that g(W ) = W ′, gN = Ng.

By 2.8(b) we can find g1 ∈ 1 + E�1V∗ such that g1(W ) = W ′, g1N = Ng1. Then g1

carries 〈 , 〉 to a symplectic form 〈 , 〉′, which induces the same symplectic form as 〈 , 〉
on grV∗ and has the same associated quadratic forms as 〈 , 〉 (see Proposition 3.6(b)).
By the proof in 3.10 (cases 2 and 3), we see that there exists g2 ∈ 1 + E�1V∗ such that
g2(W ′) = W ′, g2N = Ng2, and g2 carries 〈 , 〉′ to 〈 , 〉. Then g = g2g1 has the required
properties.

4.3. Let V , 〈 , 〉, N , V∗, and e be as in 4.2.

(a) If 〈x, Nx〉 = 0 for any x ∈ V�−1, then V := {g ∈ E
〈 , 〉
�1 V∗ | gN = Ng} is

connected. Hence A1(1 + N) = {1}.
We argue by induction on e. Let X be the set of all e-special subspaces (see 2.8) of
V . By 2.8(b) the group {g ∈ 1 + E�1V∗ | gN = Ng} acts transitively on X . This
group is connected (it may be identified as a variety with the vector space {ξ ∈ E�1V∗ |
ξN = Nξ}); hence X is connected. By 4.2(a), V acts transitively on X . Since X is
connected, it suffices to show that the stabilizer VW of some W ∈ X in V is connected.
This stabilizer is V ′ ×V ′′, where V ′,V ′′ are defined like V in terms of W, W⊥ instead of
V . By the results of 4.2, V ′ is connected. By the induction hypothesis applied to W⊥,
V ′′ is connected. Hence V ′ × V ′′ is connected. Hence V is connected.

5. Study of the varieties Bu

5.1. We assume that k = kp.
We say that an algebraic variety V over k has the purity property if for some/any Fq-

rational structure on V (where Fq is a finite subfield of k) with Frobenius map F : V →
V and any n ∈ Z, any complex absolute value of any eigenvalue of F ∗ : Hn

c (V,Ql) →
Hn

c (V,Ql) is qn/2.
In this section we show that for certain u ∈ U , the varieties Bu (see 0.1) have the

purity property. We assume that properties P1–P4, P6, P7 hold for G.
Let �∈ DG. Let Π� be the (finite) set of orbits for the conjugation action of G�

0 on
B. Let B̄ = {B ∈ B | B ⊂ G�

0 }. For any O ∈ Π�, define a morphism ξO : O → B̄ by
B �→ (B ∩G�

0 )G�
1 . We show:

(a) The fibers of ξO : O → B̄ are exactly the orbits of G�
1 acting on O by conjugation.

If B, B′ ∈ O, ξO(B) = ξO(B′), then B′ = g−1Bg, with g ∈ G�
0 , (B′ ∩ G�

0 )G�
1 =

(B∩G�
0 )G�

1 = g−1(B∩G�
0 )G�

1 g. Hence g ∈ (B∩G�
0 )G�

1 . Writing g = g′g′′, g′ ∈ B∩G�
0 ,

g′′ ∈ G�
1 , we have B′ = g−1Bg = g′′−1Bg′′. This proves (a).

Let Y � = {(u, B) ∈ X� × B | u ∈ B}. We have a partition Y � = ∪O∈Π�Y �
O , where

Y �
O = {(u, B) ∈ X� ×O | u ∈ B}. Let O ∈ Π�. We show:
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(b) Y �
O is smooth.

Let B̃ ∈ O. Let Y ′ = {(u, g) ∈ X� × G�
0 | g−1ug ∈ B̃ ∩ X�}. We have a fibration

Y ′ → Y �
O with smooth fibers isomorphic to G�

0 ∩ B̃. Hence it suffices to show that Y ′ is
smooth. Let Y ′′ = (B̃ ∩X�)×G�

0 . Define Y ′ ∼−→ Y ′′ by (u, g) �→ (g−1ug, g). It suffices
to show that Y ′′ is smooth, or that B̃ ∩X� is smooth. But B̃ ∩X� is open in B̃ ∩G�

2

which is smooth, being an algebraic group. This proves (b).
For any β ∈ B̄, let GOβ = ((B ∩ G�

2 )G�
3 )/G�

3 , where B ∈ O is such that ξO(B) = β.
Note that GOβ is a closed connected subgroup of G�

2 /G�
3 independent of the choice of

B. (To verify the last statement it suffices, by (a), to show that, for B as above and
v ∈ G�

1 , we have (vBv−1 ∩G�
2 )G�

3 = (B ∩G�
2 )G�

3 . This follows from 1.1(b).) Now G�
0

acts on B̄ and on G�
2 /G�

3 by conjugation. From the definitions we see that for g ∈ G�
0

and β ∈ B̄, we have GOgβg−1 = gGOβ g−1.

Let Y
�
O = {(x, β) ∈ X

� × B̄ | x ∈ GOβ }. We show:

(c) Y
�
O is a closed smooth subvariety of X

� × B̄.
Let B̃ ∈ O. We have a fibration X�×G�

0 → X
�×B̄, (u, g) �→ (π�(u), ξO(gB̃g−1)) with

smooth fibers. It suffices to show that the inverse image of Y
�
O under this fibration is a

closed smooth subvariety of X� ×G�
0 , or that

{(u, g) ∈ X� ×G�
0 | g−1ug ∈ X� ∩ ((B̃ ∩G�

2 )G�
3 )}

is a closed smooth subvariety of X� × G�
0 , or that (X� ∩ ((B̃ ∩ G�

2 )G�
3 )) × G�

0 is a
closed smooth subvariety of X� ×G�

0 , or that X� ∩ ((B̃ ∩ G�
2 )G�

3 ) is a closed smooth
subvariety of X�. It is closed since (B̃ ∩ G�

2 )G�
3 is closed in G�

2 . It is smooth since it
is an open subset of (B̃ ∩G�

2 )G�
3 which is smooth, being an algebraic group.

We show:

(d) The morphism a : Y �
O → Y

�
O, (u, B) �→ (π�(u), ξO(B)) is a fibration with fibers

isomorphic to an affine space of a fixed dimension.

Clearly a is surjective. Let (u, B) ∈ Y �
O . Let

Z :=a−1(a(u, B))={(u′, B′) | u=u′f, B′=vBv−1 for some v∈G�
1 , f ∈G�

3 ; u′∈B′}.

We show only that Z is isomorphic to an affine space of fixed dimension. Let Z̃ =
{(f, v) ∈ G�

3 ×G�
1 | v−1uf−1v ∈ B}. Then Z = Z̃/(B ∩G�

1 ), where B ∩G�
1 acts freely

on Z̃ by b : (f, v) �→ (f, vb−1). Since conjugation by G�
1 acts trivially on G�

2 /G�
3 , the

map (f, v) �→ (f ′, v), f ′ = u−1v−1uf−1v is an isomorphism

Z̃ −→ Z̃ ′ = {(f ′, v) ∈ G�
3 ×G�

1 | uf ′ ∈ B}
= {(f ′, v) ∈ G�

3 ×G�
1 | f ′ ∈ B} = (G�

3 ∩B)×G�
1

(we use u ∈ B) and we have Z = (G�
3 ∩ B) × G�

1 /(B ∩ G�
1 ). Now G�

3 ∩ B, G�
1 , and

B ∩ G�
1 are connected unipotent groups of dimension independent of B, for B ∈ O.

(The connectedness follows from the fact that these unipotent groups are normalized
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by a maximal torus of G contained in G�
0 ∩ B. The fact that the dimension does not

depend on B follows from the fact that G�
1 , G�

3 are normalized by G�
0 .) We see that Z

is an affine space of constant dimension.
We now fix x ∈ X

�
. Let Σ = (π�)−1(x) ⊂ X�. Let BΣ = {(u, B) ∈ Σ× B | u ∈ B}.

We have BΣ = �O∈Π�OΣ, where OΣ = {(u, B) ∈ Σ × O | u ∈ B}. Let O ∈ Π�. Let
B̄O

x = {β ∈ B̄ | x ∈ GOβ }. We show:

(e) B̄O
x is a closed subvariety of B̄ and a′ : OΣ → B̄O

x , (u, B) �→ ξO(B) is a fibration
with fibers isomorphic to an affine space of a fixed dimension.

Let B̃ ∈ O, u0 ∈ Σ. We have a locally trivial fibration G�
0 → B̄, g �→ ξO(gB̃g−1). To

show that B̄O
x is closed, it suffices to show that its inverse image under this fibration is

closed in G�
0 , or that {g ∈ G�

0 | g−1u0g ∈ (B̃ ∩ G�
2 )G�

3 } is closed in G�
0 . This is clear

since (B̃ ∩ G�
2 )G�

3 is closed in G�
2 . The second assertion of (e) follows from (d) using

the cartesian diagram

OΣ
a′−−−−→ B̄O

x⏐⏐� ⏐⏐�
Y �
O

a−−−−→ Y
�
O

,

where the left vertical map is the obvious inclusion and the right vertical map is β �→
(x, β).

(f) If the closure of the G�
0 -orbit in G�

2 of some/any u ∈ Σ is a subgroup Γ of G�
2 ,

then B̄O
x is smooth.

Let B̃ ∈ O, u0 ∈ Σ. As in the proof of (e), it suffices to show that {g ∈ G�
0 |

g−1u0g ∈ (B̃ ∩ G�
2 )G�

3 } is smooth. This variety is a fibration over R = (G�
0 −

conjugacy class of u0) ∩ ((B̃ ∩ G�
2 )G�

3 ) with smooth fibers isomorphic to ZG�
0
(u0) (via

g �→ g−1u0g). Hence it suffices to show that R is smooth. From our assumption we see
that R is open in Γ ∩ ((B̃ ∩ G�

2 )G�
3 ) which is smooth, being an algebraic group. This

proves (f).
Note that the hypothesis of (f) holds at least in the case where the G�

0 -conjugacy
class of some/any u ∈ Σ is open dense in G�

2 . We show:

(g) If the hypothesis of (f) holds, then BΣ has the purity property.

From (e), (f) we see that B̄O
x is a smooth projective variety of pure dimension. From

[D1] it then follows that B̄O
x has the purity property. From this and (e), we see that,

for O ∈ Π�, OΣ has the purity property. Using this and the partition BΣ = �O∈Π�OΣ,
we see that (g) holds.

5.2. Let Z(x) = {g ∈ G
�
0 | gx = xg}. Let Z̃(x) be the inverse image of Z(x) under

G�
0 → G

�
0 . Thus we have G�

1 ⊂ Z̃(x) and Z̃(x)/G�
1

∼−→ Z(x). Note that the inverse
image of Z(x)0 is Z̃(x)0 and that we have Z̃(x)0/G�

1
∼−→ Z(x)0. Now Z̃(x) acts transi-

tively (by conjugation) on Σ. (Indeed, let u, u′ ∈ Σ. By P6 we can find g ∈ G�
0 such

that u′ = gug−1. Automatically we have g ∈ Z̃(x).) Since Σ is irreducible, it follows
that Z̃(x)0 acts transitively (by conjugation) on Σ.
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Let u ∈ Σ. Recall that Bu = {B ∈ B | u ∈ B}. Let Z ′
G(u) = ZG(u) ∩ Z̃(x)0.

Since ZG(u) ⊂ Z̃(x) — see 1.1(c)— we see that Z ′
G(u) is a normal subgroup of ZG(u)

containing ZG(u)0. Let A′(u) be the image of Z ′
G(u) in A(u) := ZG(u)/ZG(u)0. This

is a normal subgroup of A(u). We have Z ′
G(u)/ZG�

1
(u) ∼−→ Z(x)0. Hence Z ′

G(u) =
ZG�

1
(u)Z ′

G(u)0 = ZG�
1
(u)ZG(u)0. It follows that

A′(u) is the image of the obvious homomorphism A1(u) −→ A(u).

Now ZG(u) acts by conjugation on Bu; this induces an action of A(u) on Hn(Bu,Ql)
which restricts to an A′(u)-action on Hn(Bu,Ql).

Assume that the hypothesis of 5.1(f) holds and that A′(u) acts trivially on
Hn

c (Bu,Ql) for any n. We show:

(a) Bu has the purity property.

Define f : BΣ → Σ by (g, B) �→ g. For any n, Rnf!(Ql) is an equivariant constructible
sheaf for the transitive Z̃(x)0 action on Σ; hence it is a local system on Σ corresponding
to a representation of A′(u) (the group of components of the isotropy group of u in
Z̃(x)0) on Hn

c (Bu,Ql). This representation is trivial, hence Rnf!(Ql) is a constant local
system. Since Σ is an affine space of dimension, say d, we see that Ha

c (Σ, Rnf!(Ql)) is
Hn

c (Bu,Ql)(−d), if a = 2d, and is zero if a �= 2d. It follows that the standard spectral
sequence

Ea,n
2 = Ha

c (Σ, Rnf!(Ql)) =⇒ Ha+n
c (BΣ,Ql)

is degenerate. Hence the purity property of BΣ (see 5.1(g)) implies that any complex
absolute value of any eigenvalue of the Frobenius map on

E2d,n
2 = Hn

c (Bu,Ql)(−d)

is qd+n/2. Hence any complex absolute value of any eigenvalue of the Frobenius map on
Hn

c (Bu,Ql) is qn/2. This proves (a).

5.3. Since the hypothesis of 5.1(f) is not satisfied in general, we seek an alternative way
to prove purity.

Let γ be the G
�
0 -orbit of x in X

�
. Let γ̂

ρ−→ γ1
σ←− γ be as in P7. Let Ξ = ρ−1(σ(x)).

Let B̄O
Ξ = {(x′, β) ∈ Y

�
O | x′ ∈ Ξ}, a closed subvariety of Y

�
O. We show:

(a) B̄O
Ξ is smooth of pure dimension.

Let β0 ∈ B̄. Let G0 = GOβ0
. It suffices to show that the inverse image of B̄O

Ξ under the

fibration Ξ × G
�
0 → Ξ × B̄, (x′, g) �→ (x′, gβ0g

−1) (with smooth connected fibers) is
smooth of pure dimension, or that S := {(x′, g) ∈ Ξ × G

�
0 | g−1x′g ∈ G0} is smooth

of pure dimension. The morphism f : S → γ̂ ∩ G0, (x′, g) �→ g−1x′g is smooth with
fibers of pure dimension. (We show only that, for any y ∈ γ̂ ∩ G0, the fiber f−1(y) is
isomorphic to {g ∈ G

�
0 | gxg−1 = x} which is smooth of pure dimension. We have

f−1(y) = {(x′, g) ∈ Ξ×G
�
0 | g−1x′g = y} ∼= {g ∈ G

�
0 | gyg−1 ∈ Ξ}

= {g ∈ G
�
0 | ρ(gyg−1) = σ(x)} = {g ∈ G

�
0 | gσ−1(ρ(y))g−1 = x}
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and it remains to use the transitivity of the G
�
0 -action on γ.) It suffices to show that

γ̂ ∩ G0 is empty or smooth, connected. Now γ̂ is open in G�
2 /G�

3 , hence γ̂ ∩ G0 is open
in G0 which is connected and smooth (being an algebraic group).

We show:

(b) Assume that for any O ∈ Π�, there is a k∗-action on B̄O
Ξ which is a contraction

to the projective subvariety B̄O
x . Then BΣ has the purity property.

Consider an Fq-rational structure on G such that G�
a is defined over Fq for any a, and

that O, x, Ξ are defined over Fq. Let ζ be an eigenvalue of Frobenius on Hn(B̄O
x ,Ql).

By [D2, 3.3.1], any complex absolute value of ζ is � qn/2 (since B̄O
x is projective).

Our assumption implies that the inclusion B̄O
x ⊂ B̄O

Ξ induces for any n an isomorphism
Hn(B̄O

Ξ ,Ql)
∼−→ Hn(B̄O

x ,Ql). Hence ζ is also an eigenvalue of Frobenius on Hn(B̄O
Ξ ,Ql).

Since B̄O
Ξ is smooth of pure dimension, say d, it satisfies Poincaré duality; hence qdζ−1

is an eigenvalue of Frobenius on H2d−n
c (B̄O

Ξ ,Ql). By [D2, 3.3.1] applied to B̄O
Ξ , we see

that any complex absolute value of qdζ−1 is � q(2d−n)/2, hence any complex absolute
value of ζ is � qn/2. It follows that any complex absolute value of ζ is qn/2. We see
that B̄O

x has the purity property. (This argument is similar to one of Springer in [Sp].)
From this and 5.1(e), we see that for O ∈ Π�, OΣ has the purity property. Using this
and the partition BΣ = �O∈Π�OΣ, we see that BΣ has the purity property.

If we assume in addition that A′(u) acts trivially on Hn
c (Bu,Ql) for any n, we see,

as in 5.2, that Bu has the purity property.

5.4. Let V, 〈 , 〉 be as in 3.2. Assume that p = 2 and that G = Sp(〈 , 〉). Let u ∈ U .
We set u = 1 + N, V∗ = V N

∗ . Assume that

(a) 〈x, Nx〉 = 0 for any x ∈ V�−1.

We set
Γ = 1 + {N ′ ∈ E

〈 , 〉
�2 V∗ | 〈x, N ′x〉 = 0 for all x ∈ V�−1}.

Now Γ is a subgroup of 1+ E
〈 , 〉
�2 V∗. (Assume that 1+ N ′, 1+ N ′′ ∈ G̃2. Let x ∈ V�−1.

We have 〈x, N ′x〉 = 0, 〈x, N ′′x〉 = 0. We must show that 〈x, (N ′ + N ′′ + N ′N ′′)x〉 = 0
or that 〈x, N ′N ′′x〉 = 0. This follows from N ′N ′′x ∈ V�3 and 3 − 1 � 1.) Clearly, Γ
is normal in G�

0 . Since Γ is a closed unipotent subgroup normalized by G�
0 , it must be

connected. Now
J := 1 + {N ′ ∈ G̃2 | N ′ ∈ End0

2(grV∗)}

is open in Γ since it is the inverse image under Γ → End2(grV∗), 1 + N ′ �→ N
′
of the

open subset End0
2(grV∗) of End2(grV∗). Also, J �= ∅ since 1 + N ∈ J . Hence J is an

open dense subset of Γ. By the results in 3.14, J is the G�
0 -conjugacy class of 1 + N .

We see that the hypothesis of 5.1(f) holds. Using 5.2(a) we see that:

(b) Bu has the purity property for any u ∈ G whose conjugacy class is minimal in
the unipotent piece containing it, see 1.1, and such that any Jordan block of even
size appears an even number times.

(For such u, A′(u) is trivial by 4.3(a).)
Alternatively, one can show that, for u as in (b), the method of 5.3 is applicable (the

hypothesis of 5.3(b) holds) and one obtains another proof of (b).
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