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Introduction

0.1. Motivation

Let G be a reductive group. The purpose of this paper is to show that a certain remark-
able abelian category A can be realized in (at least) three seemingly different contexts
as a category of representations of some sort. This abelian category has a significance,
since it can be thought of as a “local geometric Langlands” category, corresponding
to an unramified local system. Let us try to explain this point, even though the local
geometric Langlands correspondence has not yet been properly formulated. As a result,
the discussion in this subsection will not be rigorous.

Let us recall that the global geometric Langlands correspondence aims to attach to a
local system σ : π1(X)→ Ǧ (here X is a smooth and complete curve) a perverse sheaf
Fσ on the stack BunG, classifying principal G-bundles on X ; one requires Fσ to satisfy
the Hecke eigenproperty with respect to Ǧ.

The perverse sheaf Fσ should be thought of as a “higher” analogue of an unramified
automorphic function fσ with Langlands paramaters given by σ (the latter makes sense,
of course, only when the ground field is finite). To simplify the discussion, let us assume
that the unramified automorphic representation πσ, containing fσ, lies discretely in the
corresponding L2 space and, moreover, that all of its local components are irreducible
unramified principal series representations.

Let us now fix a point x ∈ X , and instead of just one automorphic function fσ let
us consider the subspace (πσ)x ⊂ πσ, consisting of vectors invariant with respect to∏
x′ �=xG(Ox′). This is a representation of the locally compact group G(Kx) (here for

a place x′ ∈ X , Ox′ and Kx′ denote the local ring and the local field at this point,
respectively).

According to the Langlands philosophy, (πσ)x should be completely determined by
the local Galois representation σx. Since σ was assumed unramified, σx boils down
simply to the conjugacy class of the image of the Frobenius element in Ǧ.

Let us now try to guess what a geometric analogue of the vector space (πσ)x might
be. Let ∞BunG be the moduli stack of principal G-bundles on X with a full level
structure at x. We propose that there should exist an (abelian) category A, acted on by
G(Kx) by functors (here G(Kx) is understood as the corresponding group ind-scheme),
and a functor from A to the category of perverse sheaves on ∞BunG, whose image
consists of perverse sheaves that satisfy the Hecke eigenproperty with respect to σ on
X − x.1 Let us note that in the geometric situation we lose the Frobenius conjugacy
class σx; instead, as we shall see, the category A carries an action of the group Ǧ by
autoequivalences.

The above considerations on the function-theoretic level suggest the following candi-
date for A. Namely, this should be the category of perverse sheaves on the affine Grass-
mannian GrG = G(Kx)/G(Ox) that satisfy the Hecke eigenproperty (cf. Section 1.3.6
for the precise definition).

Recall now that (πσ)x could also be realized as an (irreducible, spherical) principal
series representation. Therefore, it is tempting to realize the category A in terms of

1This, rather crude, form of the guess for what the local geometric Langlands correspondence
might be, has been voiced independently by many people, and we by no means claim primacy
in this matter.
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perverse sheaves on the semi-infinite flag manifold G(Kx)/N(Kx) · T (Ox). This is the
point of departure for the present paper.

Before we proceed to the description of the concrete problem that is posed and solved
here, let us mention one more incarnation of the category A. Namely, the Beilinson–
Drinfeld construction of Hecke eigensheaves, via quantization of the Hitchin integrable
system, suggests that the category A should also be equivalent to the category of mod-
ules over the affine algebra at the critical level, with a fixed central character, corre-
sponding to some oper on the formal disk around x.

This category of representations can indeed be connected to A. In the forthcoming
work [FG] a functor is defined from the D-module version of category A to a certain
category of modules over the affine Kac–Moody algebra at the critical level with a
fixed central character. It is conjectured in [FG] that this functor is an equivalence of
categories. Moreover, it is proved that it is fully faithful, and in the next paper the
authors of [FG] will show that it is indeed an equivalence of categories when resricted
to the Iwahori equivariant subcategories.

What is unfortunately unavailable at the moment, is a direct link between critical
level representations and the category of sheaves on G(Kx)/N(Kx) · T (Ox). Such a
link, which was foreseen by Feigin and Frenkel in [FF] as a localization-type theorem
for sheaves on G(Kx)/N(Kx) · T (Ox), was the source of many people’s interest in the
study of both categories.

0.2. The present work

The goal of this paper is to connect the category of Hecke eigensheaves on the affine
Grassmannian, denoted Hecke(GrG, Ǧ) (or rather its graded version, denoted
•
Hecke(GrG, Ǧ)), to the category of perverse sheaves on the semi-infinite flag manifold.
An immediate problem that one runs into is that the latter category does not a priori
makes sense.

The semi-infinite flag manifold, thought of as G(Kx)/N(Kx) · T (Ox), does not carry
an algebro-geometric structure that would allow for the theory of perverse sheaves, or
D-modules, in the way that it is known today.

We get around this difficulty as follows. We define an “artificial” category Perv
(
Fl
∞
2
)

that possesses the natural properties that one expects from the yet nonexisting cate-
gory of perverse sheaves on G(Kx)/N(Kx) · T (Ox). The approach to the definition of
Perv

(
Fl
∞
2
)
, developed in this paper, was initiated in [FM], and it uses a geometric

object, denoted BunN− , introduced by Drinfled.
The space BunN− is a finite-dimensional (or, rather, ind-finite-dimensional) approx-

imation to G(Kx)/N(Kx) · T (Ox), and it has as an input a global curve X . By defi-
nition, BunN− classifies principal G-bundles on X endowed with a possibly degenerate
reduction to the maximal unipotent subgroup N−, and it contains the stack BunN− ,
classifying N−-bundles on X as an open substack.

The realization of Perv
(
Fl
∞
2
)

via BunN− is natural from the geometric Langlands
perspective as well: the space BunN− is used to define geometric Eisenstein series
by taking the direct image under the natural projection to BunG (cf. [BG]). Therefore,
such incarnation of Perv

(
Fl
∞
2
)

implies the existence of a functor from A to the (derived)
category of perverse sheaves on ∞ BunG.
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Having defined the category Perv
(
Fl
∞
2
)
, we have at our disposal a naturally defined

functor from
•
Hecke(GrG, Ǧ) to it. However, we do not have any real evidence as to

whether this functor should be an equivalence. Quite possibly, to make this functor
an equivalence, one has to modify both categories by imposing some Noetherianness

condions on the
•
Hecke(GrG, Ǧ) side, and restrictions on the behaviour “at the boundary”

on the Perv
(
Fl
∞
2
)

side.

The problem arising here is similar to the one in the definition of the Schwarz space
on G(Kx)/N(Kx) in the function-theoretic context in [BK]. Identifying the image of
•
Hecke(GrG, Ǧ) inside Perv

(
Fl
∞
2
)

appears to be an interesting problem, and it is closely
related to giving a geometric definition of Fourier-transform functors of [BK].

However, if instead of the entire
•
Hecke(GrG, Ǧ) and Perv

(
Fl
∞
2
)

we work with the

subcategories, denoted
•
Hecke(GrG, Ǧ)I

0
and Perv

(
Fl
∞
2
)
I0 , respectively, consisting of

Iwahori-monodromic objects, the required Noetherian and boundary conditions are easy
to spell out, simply by requiring that our objects have finite length.

Thus, the main result of this paper, Theorem 6.1.6, states that the category, de-

noted
•
Hecke(GrG, Ǧ)I

0

Art, consisting of Artinian and Iwahori-monodromic objects in
•
Hecke(GrG, Ǧ), is equivalent to the subcategory of Artinian objects in Perv

(
Fl
∞
2
)
I0 .

The method of proof of Theorem 6.1.6 relies rather heavily on the specifics of the
Iwahori-monodromic situation. Namely, we use the fact that both categories are hered-
itary (i.e., in many ways similar to the usual category O). In particular, they both have
standard and costandard objects, numbered by elements of the extended affine Weyl
group Waff , etc.

The hereditary structure on Perv
(
Fl
∞
2
)
I0 is evident basically from the stratification of

G(Kx)/N(Kx) · T (Ox) by Iwahori orbits. However, for
•
Hecke(GrG, Ǧ)I

0

Art this structure
is not so evident, and it comes from another crucial ingredient of this paper, namely,

the equivalence between
•
Hecke(GrG, Ǧ)I

0

Art and the regular block of the category of
representations of the small quantum group, corresponding to G, at an even root of
unity.

The latter equivalence results by combining the main result of [ABG] that links
representations of the big quantum group and perverse sheaves on GrG, and [AG],
where an explicit relation between the categories of representations of the big and small
quantum group is established.

We should point out, however, that the present paper relies formally on neither
[ABG], nor [AG]. We supply purely geometric proofs for all the statements needed to

establish the hereditary property of
•
Hecke(GrG, Ǧ)I

0

Art. But these statements would be
rather hard to guess, had we not had the equivalence with the quantum group as a
guide.

As a result, we also obtain that the category of Artinian objects in Perv
(
Fl
∞
2
)
I0 is

equivalent to the category
•
u� -mod0–the above mentioned regular block in the category

of
•
u�-modules. This is our Theorem 6.1.7, which concludes the project of proving such
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an equivalence, initiated and advanced almost to the end by M. Finkelberg.2

0.3. Contents

Let us now discuss the organization and contents of the present paper.
Section 1 reviews the theory of modules over the big and small quantum groups.

In Section 1.1 we recall the basic definitions related to corresponding categories of rep-
resentations, and the quantum Frobenius homomorphism. In Section 1.2 we recall the
realization of the category of representations of the small quantum group as represen-
tations of the big quantum group, satisfying the Hecke eigenproperty. In Section 1.3
we recall the [ABG] equivalence between the regular block of the category of repre-
sentations of the big quantum group and the Iwahori-monodromic perverse sheaves on
the affine Grassmannian; we also introduce the category of Hecke eigensheaves on the
Grassmannian and discuss its relation to the category of representations of the small
quantum group.

Section 2 reviews some basic properties of Iwahori-equivariant perverse sheaves on
the affine Grassmannian. In Section 2.1 we give a geometric proof of an irreducibility
result on convolution of certain perverse sheaves, which translates by means of [ABG] to
the Steinberg-type theorem for representations of the quantum group; some ingredients
of the proof will be used later on for a crucial irreducibility result in Section 5.3. In
Section 2.2 we discuss the baby Whittaker category on the affine Grassmannian and its
relation to a certain Serre quotient category of Perv(GrG)I

0
; the discussion here largely

repeats the one in [AB]. In Section 2.3 we apply the results of the previous subsection
to establish a crucial result about cosocles of some costandard objects in Perv(GrG)I

0
;

this result will be essential for the proof of the main theorem.
Section 3 is devoted to the study of baby (co)Verma modules over the small quantum

group, which are the building blocks of the category of its representations. In Section
3.1 we translate the properties of baby co-Verma modules into properties of the cor-
responding modules over the big quantum group, satisfying the Hecke eigenproperty.
In Section 3.2 we reprove the corresponding facts (often by different methods) in the
context of Iwahori-monodromic perverse sheaves on GrG.

In Section 4 we discuss the main object of study of this paper, namely, the category
Perv

(
Fl
∞
2
)
, which is a surrogate for the nonexisting category of perverse sheaves on

G(Kx)/N(Kx) · T (Ox).
In Section 4.1 we discuss the underlying geometric object— the stack BunN− — along

with its numerous variants. In Section 4.2 we finally introduce the category Perv
(
Fl
∞
2
)
,

the main technical ingredient being the factorizability property, observed in [FFKM]; we
show that Perv

(
Fl
∞
2
)

by and large behaves in the way one expects from the analogy with
G(Kx)/N(Kx) · T (Ox). In Section 4.3 we study the most basic objects in Perv

(
Fl
∞
2
)
,

namely, the spherical ones, and show that the resulting category is semisimple. Finally,
in Section 4.4 we discuss the Iwahori-monodromic subcategory of Perv

(
Fl
∞
2
)
, and prove

2An equivalence between
•
u� -mod0 and the would-be category of Iwahori-monodromic per-

verse sheaves on G(Kx)/N(Kx) ·T (Ox) has also been guessed independently by several people,
among them, Lusztig and Feigin–Frenkel, but we could not find a precisely formulated con-
jecture in the literature. Our formulation as well as the strategy of the proof are due to
Finkelberg.
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some results that are parallel to the corresponding assertions about Iwahori-monodromic
sheaves on GrG.

As was mentioned above, the category Perv
(
Fl
∞
2
)

must be acted on by the group
ind-scheme G(Kx) by autofunctors. A rigorous incarnation of this phenomenon is the
action of perverse sheaves on G(Kx) by Hecke functors (the latter are defined on the
level of the corresponding derived category). In Section 5 we study this convolution
action in our realization of Perv

(
Fl
∞
2
)

via BunN− .
In Section 5.1 we define the convolution action and show that it indeed respects the

category Perv
(
Fl
∞
2
)
. In Section 5.2 we establish a crucial semismallness result that

allows us to pass from perverse sheaves on GrG to Perv
(
Fl
∞
2
)

(this is largely borrowed
from [FM] and [BG]). In Section 5.3 we refine the discussion of the previous subsection
and show that certain convolution diagrams give rise to small (vs. semismall) maps,
thereby implying certain irreducibility properties. In Section 5.4 we establish another
important technical result that describes the convolution of standard objects.

Finally, in Section 6 we state and prove the equivalence between the subcategories

of Artinian objects in
•
Hecke(GrG, Ǧ)I

0
and Perv

(
Fl
∞
2
)
I0 . In Section 6.1 we define the

required functor. In Section 6.2 we show that this functor is exact, and reduce the
equivalence assertion to a computation of the image of baby co-Verma modules. In
Section 6.3 we perform the required calculation using some information on cosocles of
costandard objects in both categories.

The conventions adopted in this paper regarding the quantum group follow those
of [AG]. Conventions and notation concerning the affine Grasmannian and Drinfeld’s
compactifications follow those of [BG]. To fix the context we will work with varieties
and stacks over the ground field C, and holonomic D-modules (but we will still call
them perverse sheaves). If Y is a smooth variety, CY will denote the (cohomologically
shifted) D-module, corresponding to the constant sheaf on it.

Acknowledgments. As was mentioned earlier, the problem solved in this paper was
posed (and the method of solution was suggested) by M. Finkelberg back in 1998, when
the authors were at IAS, Princeton, for the special year on geometric representation
theory. We are grateful to him for permission to publish many of his results and ideas.

We would also like to thank A. Beilinson, V. Drinfeld, B. Feigin, E. Frenkel, and
D. Kazhdan for sharing their ideas and stimulating discussions.

It is an honor for us to dedicate this paper to Vladimir Drinfeld. Along with numerous
other things in modern mathematics, the three main objects of study in this paper—
quantum groups, Hecke eigensheaves, and BunN− — were invented by him.

1. Background: modules over the big and small quantum groups

1.1. Basics of quantum groups

1.1.1. Root data. Let G be a reductive group with connected center. Let Ǧ be its
Langlands dual; by assumption the derived group of Ǧ is simply connected.3

We will denote by T (respectively, Ť ) the Cartan group of G (respectively, Ǧ), and
by W the Weyl group. We fix Borel subgroups B,B− ⊂ G (respectively, B̌, B̌− ⊂ Ǧ)

3For what follows we could replace G by an isogenous group such that [G, G] is simply
connected. In this case Ǧ also has connected center.
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and think of T (respectively, Ť ) as a subgroup of G (respectively, Ǧ) equal to their
intersection.

We will denote by Λ̌ (respectively, Λ) the coweight (respectively, weight lattice) of G;
by Λ̌+ (respectively, Λ+) we will denote the subset of dominant coweights (respectively,
weights). We will denote by 〈 · , · 〉 the pairing between the two. We will denote by Waff

the extended Weyl group W � Λ̌.
Let I be the set of vertices of the Dynkin graph of G; for ı ∈ I we will denote by

α̌ı ∈ Λ̌ (respectively, αı ∈ Λ) the corresponding simple coroot (respectively, root). We
will denote by Λ̌pos (respectively, Λpos) the subsemigroup spanned by positive coroots
(respectively, roots).

Let ( · , · ) : Span{αı} ⊗ Span{αı} → Z be the canonical inner form. In other words,
||αı||2 = 2dı, where dı ∈ {1, 2, 3} is the minimal set of integers such that the matrix
(αı, αj) := dı · 〈αı, α̌j〉 is symmetric.

We choose a symmetric W -invariant form ( · , · )� : Λ̌⊗ Λ̌→ Z, such that there exists
a sufficiently large positive even integer �, divisible by all dı, such that

(α̌ı, λ̌)� = �ı · 〈αı, λ̌〉,

for all λ̌ ∈ Λ̌, where �ı = �/dı.
We will denote by φ� the resulting map Λ̌→ Λ, and also the map T → Ť .

1.1.2. The big quantum group. As was mentioned earlier, our conventions regarding
representations of the big quantum group follow those of [AG]. Let U� -mod be the
category of representations of the big quantum group, corresponding to G and �. By
definition, objects of this category are finite-dimensional vector spaces, acted on by the
algebraic group T , and the operators Eı, Fı, E

(�ı)
ı , F (�ı)

ı , that satisfy the well known
relations. The category U� -mod has a natural monoidal structure.

We will denote by U� - mod the ind-completion of U� -mod. In other words, this is
the category of infinite-dimensional vector spaces, acted on by the same set of operators,
which can be represented as unions of finite-dimensional subrepresentations.

Let B−� -mod be the category of representations of the “negative quantum Borel”.
That is, objects of this category are finite-dimensional vector spaces, acted on by the
algebraic group T , and the operators Fı, F

(�ı)
ı , which satisfy the same relations. This

is also a monoidal category and there exists a natural forgetful monoidal functor

ResU�

B−�
: U� -mod −→ B−� -mod .

This functor admits a right adjoint, denoted by IndU�

B−�
.

In addition there exists a natural functor Rep(T ) → B−� -mod, where we let the
operators Fı, F

(�ı)
ı act trivially on the corresponding vector space.

For λ ∈ Λ we let Wλ ∈ U� -mod be the dual Weyl module defined as IndU�

B−�
(Cλ),

where Cλ is the one-dimensional representation of T , corresponding to λ. It is known
that Wλ �= 0 if and only if λ ∈ Λ+. It is also known that Wλ admits a unique
irreducible submodule, denoted Lλ, and this establishes a bijection between Λ+ and the
set of irreducibles in U� -mod.
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As every Artinian category, U� -mod splits into a direct sum of indecomposable Ar-
tinian categories, called blocks. Slightly deviating from the accepted conventions, we
will denote by U� -mod0 the direct summand of U� -mod that contains the irreducibles
Lλ for λ of the form

w(ρ)− ρ+ φ�(λ̌),

w ∈W , λ̌ ∈ Λ̌.
We will denote by U� - mod0 the ind-completion of U� -mod0, which is a direct sum-

mand in U� -mod.

1.1.3. Quantum Frobenius homomorphism. Let Rep(Ǧ) denote the category of finite-
dimensional representations of Ǧ. Following [Lu1] there exists a monoidal functor

Fr : Rep(Ǧ) −→ U� -mod,

defined as follows. For V ∈ Rep(Ǧ), the representation Fr(V ) occurs on the same
underlying vector space, denoted V , and the action of T is given via φ� : T → Ť . The
operators Eı, Fı act trivially, and E(�ı)

ı , F
(�ı)
ı act via the Chevalley generators eı, fı ∈ ǧ.

It is known that the functor Fr is fully faithful. Moreover, for λ̌ ∈ Λ̌+,

Fr(V λ̌) 	 Lφ�(λ̌),

where V λ̌ denotes the corresponding irreducible representation of Ǧ.
Let us recall that a dominant weight λ is called restricted if for all ı ∈ I

〈λ, α̌ı〉 < �ı.

We have the following fundamental result:

Theorem 1.1.4. If λ̌ ∈ Λ+ is restricted, then for every μ̌ ∈ Λ̌+,

Fr(V μ̌)⊗ Lλ 	 Lλ+φ�(μ̌).

Since every λ ∈ Λ+ can be written as λ̌1 + λ̌2 with λ̌1 restricted and λ̌2 in the
image of Λ̌+, the above theorem describes all irreducibles in U� -mod. (Note that the
decomposition of a weight as above is unique modulo elements ν ∈ Λ, orthogonal to all
roots, i.e., those for which Lν is one-dimensional.)

Corollary 1.1.5. The functor M 
→ Fr(V ) ⊗ M : U� -mod −→ U� -mod preserves
U� -mod0.

1.1.6. The graded small quantum group. We define the category of representations of
the graded small quantum group

•
u� -mod to consist of finite-dimensional vector spaces,

acted on by the algebraic group T and the operatorsEı, Fı, satisfying the usual relations.
This is also a monoidal category, and we have a monoidal forgetful functor

ResU�
•
u�

: U� -mod −→ •
u� -mod .
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In addition, we have a fully-faithful functor Rep(Ť )→ •
u� -mod. By a slight abuse of

notation we will denote by Cμ̌ the one-dimensional module over
•
u�, corresponding to

μ̌ ∈ Λ̌.

Let
•
b−� -mod be the category of representations of the corresponding “graded small

negative Borel subgroup”. That is, this is the category of finite dimensional vector
spaces, acted on by T and the Fı’s, satisfying the same relations. We will denote by

Res
•
u�
•
b−�

the forgetful functor
•
u� -mod →

•
b−� -mod and by Ind

•
u�
•
b−�

(respectively, Coind
•
u�
•
b−�

)

its right (respectively, left) adjoint. We also have a functor Rep(T )→
•
b−� -mod.

Lemma 1.1.7. Both functors Ind
•
u�
•
b−�

and Coind
•
u�
•
b−�

are exact and faithful and for a char-

acter λ of T ,

Ind
•
u�
•
b−�

(Cλ) 	 Coind
•
u�
•
b−�

(Cλ−φ�(2ρ̌)+2ρ).

We will denote the module Ind
•
u�
•
b−�

(Cλ) by
•
Mλ and call it the baby co-Verma module

of highest weight λ. One easily shows that the socle of each
•
Mλ is simple. We will

denote the corresponding irreducible by
•
Lλ. Thus we obtain a bijection between Λ and

the set of irreducibles in
•
u� -mod.

For μ̌ ∈ Λ̌, we have

•
Mλ+φ�(μ̌) 	 Cμ̌ ⊗

•
Mλ and

•
Lλ+φ�(μ̌) 	 Cμ̌ ⊗

•
Lλ.

In addition, we have the following result.

Proposition 1.1.8. If λ is dominant and restricted,

•
Lλ 	 ResU�

•
u�

(Lλ).

Being Artinian, the category
•
u� -mod also admits a decomposition into blocks. We

will denote by
•
u� -mod0 the direct summand of

•
u� -mod that contains the irreducibles

•
Lλ for λ of the form w(ρ)− ρ+ φ�(λ̌), w ∈W , λ̌ ∈ Λ̌.

Lemma 1.1.9. The subcategory U� -mod0 ⊂ U� -mod is the preimage of
•
u� -mod0 ⊂•

u� -mod0 under the forgetful functor ResU�
•
u�

.

Finally, we will denote by
•
u� -mod (respectively,

•
u� - mod0) the ind-completion of

•
u� -mod (respectively,

•
u� -mod0).

1.1.10. The nongraded small quantum group. We define the category u� -mod to consist
of finite-dimensional vector spaces, acted on by the group

T� := ker(φ� : T → Ť ),
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and the operators Kı · Eı, Fı, subject to the usual relations. Note that u� -mod is not
a monoidal category; however, we have a well defined functor of tensor product on the
right by an object of

•
u� -mod:

N ∈ u� -mod, M ∈ •u� -mod 
→ N ⊗ Res
•
u�
u�(M).

The following proposition describes the relation between the small quantum group
and the quantum Frobenius homomorphism.

Proposition 1.1.11.

(1) For M ∈ •u� -mod and λ̌ ∈ Λ̌,

Res
•
u�
u�

(
Cλ̌ ⊗M) 	 Res

•
u�
u�

(M).

(2) For M as above the maximal trivial sub- (respectively, quotient-) object N ′ of

Res
•
u�
u�(M) comes from a sub- (respectively, quotient-) object M ′ of M , which is

in the image of the functor Rep(Ť )→ •
u� -mod.

(3) For M ∈ U� -mod, V ∈ Rep(Ǧ),

ResU�
•
u�

(
Fr(V )⊗M) 	 ⊕̌

ν
Cν̌ ⊗ ResU�

•
u�

(M)⊗ V (ν̌),

where V (ν̌) denotes the ν̌-weight space of V , and Cν̌ denotes the corresponding
one-dimensional representation of

•
u�.

(4) For an object M ∈ U� -mod the maximal trivial sub- (respectively, quotient-)
object N ′ of ResU�

u�
(M), comes from a sub- (respectively, quotient-) object M ′ of

M , which is in the image of the functor Fr.

Let b−� -mod be the category consisting of finite-dimensional vector spaces, acted
on by the group T� and the operators Fı, satisfying the usual relations. We have the
evident functor Rep(T�)→ b−� -mod, such that the analogue of Lemma 1.1.7 holds. For
a character λ : T� → C∗ we will denote by Mλ the module Indu�

b−�
(Cλ).

We have

Lemma 1.1.12. For a character λ ∈ Λ we have:

(1) Res
•
u�
u�

(
•
Mλ) 	Mλ, where λ is the restriction of λ to T�.

(2) The module Lλ := Res
•
u�
u�

(
•
Lλ) depends only on the class of λ modulo φ�(Λ̌), and

is irreducible. Moreover, these are all the irreducibles in u� -mod.

Let u� -mod0 be the direct summand of u� -mod, that contains the trivial representa-
tion.

Lemma 1.1.13. The subcategory
•
u� -mod0 ⊂ •

u� -mod is the preimage of u� -mod0 ⊂
u� -mod under the forgetful functor.

We will denote by u� - mod (respectively, u� -mod0) the ind-completion of u� -mod
(respectively, u� -mod0).

In the sequel we will need the following assertion:
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Proposition 1.1.14. There exists a fully-faithful functor FrB− : Rep(B̌−)→B−� -mod,
such that:

(1) We have a commutative diagram of functors,

Rep(Ǧ) Fr−−−−→ U� -mod

ResǦ
B̌−

⏐⏐� Res
U�

B
−
�

⏐⏐�
Rep(B̌−) FrB−−−−→ B−� -mod�⏐⏐ �⏐⏐
Rep(Ť )

φ�−−−−→ Rep(T )

.

(2) For N ∈ B−� -mod the maximal sub- (respectively, quotient-) space of N , on
which b−� acts trivially, is a sub- (respectively, quotient-) module, which lies in
the image of the functor FrB.

1.1.15. Weyl group action. Following Lusztig, to every element w of the Weyl group
we can attach an invertible operator acting functorially on the vector space underlying
every object of U� -mod, or which is the same, an automorphism of the forgetful functor
U� -mod→ Vect. This automorphism is well defined modulo elements of T .

This construction can be reformulated as follows. To every w ∈ W we attach a
self-functor

Fw : U� -mod→ U� -mod,

that commutes with the forgetful functor to vector spaces, and an isomorphism

w� : IdU� -mod =⇒ Fw.

Restricting these data to the subcategory Rep(Ǧ) ⊂ U� -mod we obtain that the pair
(Fw, w�) gives rise to an element wǦ ∈ Ǧ that normalizes Ť .

Lemma 1.1.16.
(1) There exists a monoidal self-equivalence Fw :

•
u� -mod→ •

u� -mod that commutes
with the restriction functor U� -mod→ •

u� -mod.
(2) There exists a self-equivalence Fw : u� -mod→ u� -mod, compatible with the func-

tor tensor product functor u� -mod× •u� -mod→ u� -mod.

We will return to the discussion of functors Fw in Section 1.2.5.

For an element w ∈W let
•
bw,−� be the corresponding subalgebra of

•
u�. Let us denote

by w
•
Mλ the

•
u�-module induced from the

•
bw,−� -character Cλ. For w = 1 we recover

•
Mλ.

We have
w
•
Mw(λ) 	 Fw(

•
Mλ).

As in Lemma 1.1.7,

w
•
Mλ 	 Coind

•
u�
•
bw,−�

(Cλ−w(φ�(2ρ̌)−2ρ)).
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In particular, the module w0
•
Mλ−φ�(2ρ̌)+2ρ is isomorphic to what is usually called

the baby Verma module with highest weight λ. Since all Coind
•
u�
•
bw,−�

(Cλ) have simple

cosocles, we deduce that all twisted baby co-Verma modules also have simple cosocles.

1.2. Modules over u� as Hecke eigenmodules over U�

1.2.1. The Hecke categories. Following [AG], we introduce the category Hecke(U�, Ǧ)
to consist of pairs

(M ∈ U� -mod, {αV , ∀V ∈ Rep(Ǧ)}),
where each αV is a map of U�-modules

αV : Fr(V )⊗M →M ⊗ V

(for V ∈ Rep(Ǧ), the notation V stands for the underlying vector space), such that:
• For V = C, αV : M →M is the identity map.
• For a map V1 → V2, the diagram

Fr(V1)⊗M αV1−−−−→ M ⊗ V1⏐⏐� ⏐⏐�
Fr(V2)⊗M

αV2−−−−→ M ⊗ V2

commutes.
• A compatibility with tensor products holds in the sense that the map

Fr(V1)⊗Fr(V2)⊗M −→ Fr(V1⊗V2)⊗M
αV1⊗V2−−−−→M ⊗V1 ⊗ V2 −→M ⊗V1⊗V2

equals

Fr(V1)⊗ Fr(V2)⊗M
id⊗αV2−−−−→ Fr(V1)⊗M ⊗ V2

αV1	 M ⊗ V1 ⊗ V2.

It was shown in [AG] that the maps αV are necessarily isomorphisms.
Morphisms in this category between (M,αV ) and (M ′, α′V ) are U�-module maps

M → M ′ preserving the above structures. Evidently, Hecke(U�, Ǧ) is an abelian cate-
gory.

The main result of [AG] is the following theorem:

Theorem 1.2.2. The category Hecke(U�, Ǧ) is naturally equivalent to u� - mod.

We recall that the functors Hecke(U�, Ǧ) � u� - mod are defined as follows. To
N ∈ u� - mod we attach the object in U� -mod by taking IndU�

u� (N). This satisfies the
Hecke eigencondition due to Proposition 1.1.11.

Vice versa, given an object M of Hecke(U�, Ǧ), the restriction ResU�
u�

(M) is acted on
by the algebra OǦ, and the corresponding object of u� - mod is by definition the tensor
product ResU�

u� (M) ⊗
OǦ

C1, where C1 is the skyscraper at 1 ∈ Ǧ.
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A typical example of an object of Hecke(U�, Ǧ) is obtained by taking Fr(RǦ) ⊗M ,
where RǦ is the algebra of functions on Ǧ, regarded as a representation of Ǧ, and
M ∈ U� - mod.

We say that an object of Hecke(U�, Ǧ) is finitely generated if it admits a surjection
from an object of the above form for M ∈ U� -mod. Evidently, the subcategory of
finitely generated objects of Hecke(U�, Ǧ), denoted Hecke(U�, Ǧ)f.g., transforms under
the equivalence of Theorem 1.2.2 to u� -mod. In particular, this subcategory is Artinian,
and Hecke(U�, Ǧ) is the ind-completion of Hecke(U�, Ǧ)f.g..

Consider the subcategory Hecke(U�, Ǧ)0 of Hecke(U�, Ǧ), equal to the preimage of
U� -mod0 under the forgetful functor. According to [AG], the equivalence of Theo-
rem 1.2.2 induces an equivalence between Hecke(U�, Ǧ)0 and u� - mod0. We will denote
by Hecke(U�, Ǧ)0,f.g. the intersection of Hecke(U�, Ǧ)0 with Hecke(U�, Ǧ)f.g.; this cat-
egory is equivalent to u� -mod0.

1.2.3. Hecke categories, graded version. We define the category
•
Hecke(U�, Ǧ) as follows.

Its objects are Λ̌-graded objects
•
M =

⊕
Mν̌ of U� -mod, each endowed with a collection

of grading-preserving maps αV , ∀ V ∈ Rep(Ǧ)

Fr(V )⊗
•
M 	

•
M ⊗ V

(where the grading on the left-hand side is induced from that on M , and on the right-
hand side is diagonal with respect to the action of Ť on V ), which satisfy the same
conditions as in the definition of Hecke(U�, Ǧ).

Maps in this category are grading preserving maps in U� -mod that intertwine the
corresponding αV ’s. We have the following graded version of Theorem 1.2.2.

Theorem 1.2.4. The category
•
Hecke(U�, Ǧ) is equivalent to

•
u� -mod. The forgetful

functor
•
Hecke(U�, Ǧ)→ Hecke(U�, Ǧ) identifies under this equivalence with Res

•
u�
u� .

We will denote by
•
M 
→

•
M{μ̌} the functor on

•
Hecke(U�, Ǧ) given by the shift of

grading by μ̌ ∈ Λ̌. Under the equivalence of Theorem 1.2.4 this functor transforms to
the functor N 
→ Cμ̌ ⊗N .

Let
•
Hecke(U�, Ǧ)0 be the preimage in

•
Hecke(U�, Ǧ) of U� -mod0 under the obvious

forgetful functor. This subcategory goes over under the equivalence of Theorem 1.2.4
to
•
u� - mod0.

Let
•
RǦ be the algebra of functions of Ǧ, regarded as a Λ̌-graded representation of Ǧ

(the grading comes from the action of Ǧ on itself on the right). A typical example of

an object of
•
Hecke(U�, Ǧ) is Fr(

•
RǦ)⊗M for M being a Λ̌-graded object of U� -mod.

We will denote by
•
Hecke(U�, Ǧ)f.g. (respectively,

•
Hecke(U�, Ǧ)0,f.g.) the correspond-

ing subcategories of finitely generated objects. These subcategories transform under the
equivalence of Theorem 1.2.4 to

•
u� -mod and

•
u� -mod0, respectively.

1.2.5. Action of the dual group. Note that the equivalence of Theorem 1.2.2 makes it
explicit that the category u� -mod carries an action of the dual group by autoequiv-
alences. The latter means that to every N ∈ u� - mod we can attach a family ǦN of
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objects of u� -mod, parametrized by Ǧ, such that the natural associativity condition
holds.

The corresponding family is defined in the language of Hecke(U�, Ǧ) as follows. For
(M, {αV }) ∈ Hecke(U�, Ǧ) its fiber at g ∈ Ǧ is (M, {g · αV }), where each g · αV is the
composition of α with the automorphism induced by g on V . We will use the notation
N 
→ gN for these functors.

Consider now the case of
•
u� - mod 	

•
Hecke(U�, Ǧ). In this case we do not have

an action of the entire Ǧ on the category, but rather of the normalizer of the Cartan
subgroup Ť , due to the grading condition.

Lemma 1.2.6. For a pair (Fw, w�) as above, the functors Fw,

u� - mod→ u� - mod and
•
u� -mod→ •

u� - mod,

are naturally isomorphic to the functors N 
→ wǦN , where wǦ is the corresponding
element in the normalizer of Ť in Ǧ.

1.2.7. Compatibility with duality. Recall that both categories U� -mod and
•
u� -mod carry

a canonical self-anti-equivalence (contragredient duality), M 
→ M∨, compatible with
the forgetful functor ResU�

•
u�

. We would like to express the duality functor on
•
u� -mod in

terms of
•
Hecke(U�, Ǧ)f.g..

Thus, let N be an object of
•
u� -mod and

•
M ∈

•
Hecke(U�, Ǧ) the object corresponding

to it under Theorem 1.2.4. Since
•
M ∈

•
Hecke(U�, Ǧ)f.g., it can be represented as the

cokernel of an arrow

⊕
i

Fr(
•
RG)⊗M1

i {μ̌1
i } −→

⊕
j

Fr(
•
RG)⊗M2

j {μ̌2
j},

where the indices i and j run over some finite sets, and M1
i ,M

2
j are objects of U� -mod.

An arrow as above comes from a system of maps in U� -mod

M1
i −→ Fr(V i,j)⊗M2

j ⊗ (V i,j)∗(μ̌2
j − μ̌1

i ),

where V i,j are some finite-dimensional representations of Ǧ. By adjunction, we obtain
a system of maps

Fr
(
(V i,j)∗

)⊗M1
i ⊗ V i,j(μ̌1

j − μ̌2
i ) −→M2

j ,

and applying the duality,

(
M2
j

)∨ −→ Fr
((

(V i,j)∗
)∨)⊗ (M1

j

)∨ ⊗ (V i,j)∗(μ̌2
j − μ̌1

i ).

Note that for a representation V of Ǧ,

V ∨(μ̌) 	 V ∗(−μ̌).
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Hence, if we set U i,j =
(
(V i,j)∗

)∨, we obtain a system of maps map(
M2
j

)∨ → Fr(U i,j)⊗ (M1
j

)∨ ⊗ (U i,j)∗(μ̌1 − μ̌2),

which in turn gives rise to a map in
•
Hecke(U�, Ǧ):

⊕
j

Fr(
•
RG)⊗ (M2

j

)∨{μ̌2
j} →

⊕
i

Fr(
•
RG)⊗ (M1

i

)∨{μ̌1
i }.

Then N∨ corresponds to the object in
•
Hecke(U�, Ǧ) equal to the kernel of the latter

map.

1.3. Realization via the affine Grassmannian
1.3.1.. Let GrG 	 G((t))/G[[t]] be the affine Grassmannian corresponding to G, and let
Perv(GrG) denote the category of perverse sheaves on it.

Let SphG denote the category of G[[t]]-equivariant perverse sheaves on GrG. We
recall that SphG is naturally a monoidal category that acts on Perv(GrG) by convolution
functors:

F ∈ Perv(GrG), S ∈ SphG 
→ F 
 S.

Moreover, SphG possesses a natural commutativity constraint, and as a tensor cat-
egory it is equivalent to Rep(Ǧ). We will denote this equivalence by V ∈ Rep(Ǧ) 
→
V ∈ SphG. Under this equivalence, the irreducible representation V λ̌ goes over to
Vλ̌ = ICλ̌,GrG

, where the latter is the IC sheaf on the closure of the orbit Grλ̌G = G[[t]]·λ̌.

1.3.2.. For k ∈ N we will denote by Gk the corresponding congruence subgroup in
G[[t]], and by Perv(GrG)G

k

the category of Gk-equivariant perverse sheaves on GrG.
For k = 0 we recover SphG; for k > 0 this is a full subcategory of Perv(GrG), stable
under extensions, since Gk is pro-unipotent.

Let I (respectively, I0) be the Iwahori subgroup of G (respectively, its unipotent
radical). We will denote by Perv(GrG)I , Perv(GrG)I

0
, D(GrG)I , D(GrG)I

0
the corre-

sponding categories of equivariant perverse sheaves and triangulated categories.
Recall that I-orbits on GrG are parametrized by Waff/W , which we will identify with

the set of elements in Waff , right-minimal with respect to W . Any such element w̃ can
be uniquely written as

w̃ = w · λ̌,
where w ∈ W , λ̌ ∈ Λ̌+. The condition of being right-minimal with respect to W implies
that whenever for some ı ∈ I, we have 〈αı, λ̌〉 = 0, then w(αı) ∈ Λpos.

For w̃ as above we will denote by ICw̃,GrG the IC sheaf on the closure of the cor-
responding I-orbit. By W∗,w̃ (respectively, W!,w̃) we will denote the corresponding
costandard (respectively, standard) objects corresponding to the extension by * (re-
spectively, !) of the constant perverse sheaf on this orbit.

Since I-orbits and I0-orbits on GrG coincide, the irreducibles in Perv(GrG)I are the
same as in Perv(GrG)I

0
.

In the sequel we will also need some notation pertaining to the affine flag variety
FlG = G((t))/I. We will denote by Perv(FlG) (respectively, Perv(FlG)I) the category



294 S. ARKHIPOV ET AL.

of perverse (respectively, I-equivariant) sheaves on FlG, and by D(FlG) (respectively,
D(FlG)I) the corresponding triangulated category.

The category D(FlG)I has a natural monoidal structure, and it acts by convolution
on D(FlG). In addition, we have a natural convolution functor

D(FlG)× D(GrG)I −→ D(GrG).

For w̃ ∈ Waff we will denote by j∗,w̃ (respectively, j!,w̃) the costandard (respectively,
standard) object in Perv(FlG)I attached to the corresponding I-orbit on FlG. We have

j∗,w̃1 
 j∗,w̃2 = j∗,w̃1·w̃2 and j!,w̃1 
 j!,w̃2 = j!,w̃1·w̃2 ,

whenever l(w̃1)+ l(w̃2) = l(w̃1 · w̃2), where l(·) is the length function on Waff . Morover,
if w̃ is right W -minimal,

j∗,w̃ 
 δ1,GrG 	W∗,w̃ and j!,w̃ 
 δ1,GrG 	W!,w̃.

1.3.3.. According to [KT] combined with [KL] (or, alternatively, by [ABG], adapted to
the even root of unity case), we have the following:

Theorem 1.3.4. There exists an equivalence of categories

Loc: U� -mod0 −→ Perv(GrG)I
0
,

such that the functor

U� -mod0×Rep(Ǧ) −→ U� -mod0 : M,V 
→ Fr(V )⊗M
identifies with

Perv(GrG)I
0 × SphG −→ Perv(GrG)I

0
: S, V 
→ S 
 V.

Moreover, the contragredient duality functor on U� -mod goes over to Verdier duality
on Perv(GrG)I

0
.

Let us describe the image of irreducibles under this equivalence. If λ ∈ Λ+ is such
that Lλ ∈ U� -mod0, we can uniquely write

λ = φ�(λ̌) + w−1(ρ)− ρ,
where λ̌ ∈ Λ̌. In this case w̃ := w · λ̌ ∈Waff is right W -minimal. Then

Loc(Lλ) 	 ICw̃,GrG and Loc(Wλ) 	W∗,w̃.

Note also that a weight λ as above is restricted if and only if the pair (λ̌, w) satisfies
the following: {

〈αi, λ̌〉 = 0 if w(αi) ∈ Λ̌pos,

〈αi, λ̌〉 = 1 if − w(αi) ∈ Λ̌pos.

Hence, for each w, the corresponding element λ̌ is well defined modulo characters of
Ǧ/[Ǧ, Ǧ] (which are the same as cocharacters of Z(G)). We will make such a choice
and denote the corresponding irreducible in Perv(GrG)I by Lw. We will assume that
for w = 1, Lw = δ1,GrG . Note that Lw0 	 ICw0·ρ̌′,GrG , where ρ̌′ is some element of Λ̌,
for which 〈αı, ρ̌′〉 = 1 for ∀ı ∈ I. Such ρ̌′ exists due to the assumption that the center
of G is connected. Note that 2ρ̌′ is not in general equal to 2ρ̌, the latter being the sum
of positive coroots.

The following is a corollary of Theorem 1.1.4 combined with the equivalence of The-
orem 1.3.4.
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Theorem 1.3.5.

(1) For any w and μ̌ ∈ Λ̌+, the convolution Lw 
 ICμ̌,GrG is irreducible and isomor-
phic to ICw·(λ̌+μ̌),GrG

, if Lw = ICw·λ̌,GrG
.

(2) Any irreducible object of Perv(GrG)I has the form Lw 
 ICμ̌,GrG for unique w
and μ̌.

For completeness, in the next section we will give a purely geometric proof of this
result.

1.3.6. Hecke categories. Let Perv(GrG) denote the ind-completion of Perv(GrG). Let
Hecke(GrG, Ǧ) denote the category, whose objects are pairs

(S ∈ Perv(GrG), {αV | ∀ V ∈ Rep(Ǧ)}),

where each αV is a map
S 
 V −→ V ⊗ S,

such that the collection {αV } satisfies the same compatibility conditions as in the defi-
nition of Hecke(U�, Ǧ). As in the case of the quantum group, one shows that the maps
αV are then automatically isomorphisms.

Morphisms between (S1, {α1
V }) and (S2, {α2

V }) are maps S1 → S2 that intertwine the
data of αV . The category Hecke(GrG, Ǧ) is evidently abelian.

Let RǦ be an ind-object of SphG, corresponding under the equivalence Rep(Ǧ) 	
SphG to RǦ. A typical example of an object of Hecke(GrG, Ǧ) is obtained by setting

S := S1 
 RǦ

for S1 ∈ Perv(GrG), where the Hecke eigenproperty isomorphisms come from the cano-
nical isomorphisms

RǦ 
 V 	 V ⊗ RǦ.

As in the case of Hecke(U�, Ǧ), the category Hecke(GrG, Ǧ) is naturally acted on by
the group Ǧ.

We say that an object of Hecke(GrG, Ǧ) is finitely generated if it admits a surjection
from an object of the form S1 
 RǦ with S1 ∈ Perv(GrG). This condition is equivalent
to the fact that the functor of Hom from this object commutes with direct sums.

Conjecture 1.3.7. A sub-object of a finitely generated object of Hecke(GrG, Ǧ) is fini-
tely generated.

We will denote by Hecke(GrG, Ǧ)G
k

(respectively, Hecke(GrG, Ǧ)I
0
, Hecke(GrG, Ǧ)I)

a version of the above category, where S is assumed to be an object of the ind-completion
of the corresponding category Perv(GrG)G

k

(respectively, Perv(GrG)I
0
, Perv(GrG)I).

As we shall see shortly, a particular case of Conjecture 1.3.7, concerning Perv(GrG)I
0
,

follows easily from Theorem 1.3.5.

We introduce a graded version
•
Hecke(GrG, Ǧ) of Hecke(GrG, Ǧ) analogously to the

definition of
•
Hecke(U�, Ǧ): its objects are pairs (

•
S, {αV }), where

•
S is a Λ̌-graded object
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of Perv(GrG), and the maps αV preserve the gradings on both sides. Similarly, we

introduce the categories
•
Hecke(GrG, Ǧ)G

k

,
•
Hecke(GrG, Ǧ)I

0
, and

•
Hecke(GrG, Ǧ)I .

All of these categories are acted on naturally by the normalizer of Ť in Ǧ.

Let
•
RǦ denote the same thing as RǦ, where we regard it as graded via the right-action

of Ǧ on RǦ. A typical example of an object of
•
Hecke(GrG, Ǧ) is obtained by taking

S1 

•
RǦ{μ̌} for S1 ∈ Perv(GrG), where {μ̌} denotes the shift of the grading functor.

In what follows we will state the results explicitly for
•
Hecke(GrG, Ǧ) and its versions;

the transcription to the case of Hecke(GrG, Ǧ) is straightforward.

1.3.8.. Consider now the category
•
Hecke(GrG, Ǧ)I

0
. Combining Theorem 1.3.4 with

Theorem 1.2.4 we obtain

Theorem 1.3.9. The category
•
Hecke(GrG, Ǧ)I

0
is equivalent to

•
u� -mod0.

In particular, we obtain

Corollary 1.3.10.

(1) The irreducibles in
•
Hecke(GrG, Ǧ)I

0
are of the form Lw


•
RǦ{μ̌} for some w ∈W

and μ̌ ∈ Λ̌.

(2) Every finitely generated object in
•
Hecke(GrG, Ǧ)I

0
is Artinian.

We will now give a geometric proof of this fact, using Theorem 1.3.5.

Proof. Let us first see that any map
•
S→ Lw 


•
RǦ{μ̌} is necessarily a surjection. (This

would imply that Lw 

•
RǦ{μ̌} is irreducible.)

With no restriction of generality, we can assume that
•
S has the form S′ 


•
RǦ{μ̌′} for

some S′ ∈ Perv(GrG)I
0
, μ̌′ ∈ Λ̌. Moreover, we can assume that S′ is itself irreducible.

Then, by Theorem 1.3.5, S′ 	 Lw
′

 ICλ̌,GrG

for some w′ ∈W , λ̌ ∈ Λ̌pos. Hence,

S′ 

•
RǦ{μ̌′} 	

⊕̌
ν

Lw
′


•
RǦ{μ̌′ + ν̌} ⊗ V λ̌(ν̌). (1)

Again, by Theorem 1.3.5, the existence of a map

Lw
′


•
RǦ{μ̌′ + ν̌} ⊗ V λ̌(ν̌) −→ Lw 


•
RǦ{μ̌}

forces w′ = w and μ̌′ + ν̌ = μ̌, and the map in question corresponds to a functional
V λ̌(ν̌)→ C. Such a map is clearly surjective.

The same argument shows that any irreducible object of
•
Hecke(GrG, Ǧ)I

0
admits a

map from some Lw 

•
RǦ{μ̌}. This establishes the first point of the corollary.

To prove the second point, it suffices to show that the objects of the form S′ 

•
RǦ{μ̌},

S′ ∈ Perv(GrG)I
0

have finite lengths. For that we can assume that S′ is irreducible, and
our assertion follows from (1). �
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Let
•
Hecke(GrG, Ǧ)I

0

Art denote the subcategory of Artinian (or, equivalently, finitely

generated) objects of
•
Hecke(GrG, Ǧ)I

0
. By Theorem 1.3.9, it is equivalent to the cate-

gory
•
u� -mod0. Hence, it also carries a duality functor, denoted D.

Explicitly, this functor is determined by the fact that it is exact;

D(S′ 

•
RǦ{μ̌}) 	 D(S′) 


•
RǦ{μ̌};

it is extended to the entire
•
Hecke(GrG, Ǧ)I

0

Art by the procedure described in Section 1.2.7.
This functor goes over to the functor N 
→ N∨ on

•
u� -mod0, since the equivalence of

Theorem 1.3.4 transforms contragredient duality to Verdier duality.

2. Some results on Perv(GrG)

2.1. A geometric proof of Theorem 1.3.5
2.1.1.. It clear that point (1) of the theorem implies point (2). Indeed, for any
ICw·ν̌,GrG ∈ Perv(GrG)I define J ⊂ I to be the subset of simple roots, for which
w(αı) ∈ Λ̌pos. Define

λ̌′ := ν̌ −
∑
j∈J

〈αj, ν̌〉 · ω̌j −
∑
ı∈I−J

(〈αı, ν̌〉 − 1) · ω̌ı,

where ω̌ı are (some choice of) fundamental coweights.
Then w · λ̌′ is left-minimal with respect to W , and

ICw·λ̌′,GrG
	 Lw 
 δη̌,GrG ,

where η̌ is a co-character of Z(G) and δη̌,GrG is the δ-function at the corresponding
point of GrG.

By point (1),
Lw 
 (ICν̌−λ̌′,GrG


δ−η̌,GrG) 	 ICw·ν̌,GrG .

2.1.2.. The assertion of point (1) is equivalent to the fact that End(Lw 
 ICμ̌,GrG) 	 C.
By adjunction, this is equivalent to the fact that if Lw = ICw·λ̌,GrG

, then

Hom
(
ICw·λ̌,GrG

, ICw·λ̌,GrG

 ICμ̌,GrG 
 IC−w0(μ̌),GrG

) 	 C.

By decomposing ICμ̌,GrG 
 IC−w0(μ̌),GrG as a sum of irreducibles, we arrive to the con-
clusion that it is enough to show that

Hom
(
ICw·ν̌,GrG , ICw·λ̌,GrG


 ICμ̌,GrG

) �= 0 =⇒ ν̌ = λ̌+ μ̌. (2)

Note that this would automatically imply that

Hom
(
ICw′·ν̌,GrG , ICw·λ̌,GrG


 ICμ̌,GrG

)
= 0 for w′ �= w, (3)

a fact that will be used later on.
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2.1.3.. We will establish (2) by analyzing the convolution diagram. First, we need to
recall why the convolution functor Perv(GrG)× SphG → Perv(GrG) is exact.

Let
GrG 
GrG 	 G((t)) ×

G[[t]]
GrG

be the convolution diagram, which we think of as fibered over GrG by means of pro-
jection to the first factor, with typical fiber GrG, and which we think of as the second
factor. We will denote by π the map GrG 
GrG → GrG given by multiplication. This
ind-scheme is acted on by G((t)), and the map π is evidently G((t))-equivariant.

For G[[t]]-orbits Grμ̌1
G ,Grμ̌2

G ⊂ GrG we will denote by Grμ̌1
G 
Grμ̌2

G the corresponding
locally closed subset in GrG 
GrG, which is fibered over Grμ̌1

G with typical fiber Grμ̌2
G .

We will denote by
(
GrG 
GrG

)μ̌ (respectively,
(
Grμ̌1

G 
Grμ̌2
G

)μ̌) the preimage of Grμ̌G in
GrG 
GrG (respectively, Grμ̌1

G 
Grμ̌2
G ) under the map π.

We recall the following dimension estimates:

dim(Grμ̌G) = 〈2ρ, μ̌〉, dim
((

Grμ̌1
G 
Grμ̌2

G

)μ̌) = 〈ρ, μ̌1 + μ̌2 + μ̌〉. (4)

Hence, the dimension of the fibers of the map

πμ̌μ̌1,μ̌2
:
(
Grμ̌1

G 
Grμ̌2
G

)μ̌ −→ Grμ̌G
is � 〈ρ, μ̌1 + μ̌2 − μ̌〉.

For S ∈ Perv(GrG), F ∈ SphG, we will denote by S �̃ F the corresponding perverse
sheaf on GrG 
GrG, and by definition,

S 
 F = π!(S �̃ F).

To prove the exactness of convolution, by Verdier duality, it suffices to show that
the ∗-restriction of S �̃ F to every

(
Grμ̌1

G 
Grμ̌2
G

)μ̌ lives in the cohomological degrees
− � 〈ρ, μ̌1 + μ̌2 − μ̌〉.

It is evident that the ∗-restriction of S �̃F to Grμ̌1
G 
Grμ̌2

G lives in the cohomological
degrees � 0. Moreover, S �̃F|

Gr
μ̌1
G �Gr

μ̌2
G

is a pull-back of a complex on the base Grμ̌1
G .

Observe now that the constant sheaf C(
Gr
μ̌1
G �Gr

μ̌2
G

)μ̌ , thought of as a complex on

Grμ̌1
G 
Grμ̌2

G , is universally locally acyclic (ULA) with respect to π. Indeed, it is G[[t]]-
equivariant, and this group acts transitively on the base. Hence,

S �̃ F|(
Gr
μ̌1
G �Gr

μ̌2
G

)μ̌ 	 S �̃F|Gr
μ̌1
G �Gr

μ̌2
G
⊗ C(

Gr
μ̌1
G �Gr

μ̌2
G

)μ̌
lives in the cohomological degrees

� − codim
((

Grμ̌1
G 
Grμ̌2

G

)μ̌
,Grμ̌1

G 
Grμ̌2
G

)
� −〈ρ, μ̌1 + μ̌2 − μ̌〉,

which is what we needed.
The same argument also proves the following. Let Y ⊂ Grμ̌G be a locally closed

subscheme. In order for S 
 F|Y to have a nonzero 0th perverse cohomology, it is
necessary that there exist μ̌1 and μ̌2, such that the fibers of the map

supp
(
h0(S|

Gr
μ̌1
G

) �̃h0(F|
Gr

μ̌2
G

)
)
∩ (πμ̌μ̌1,μ̌2

)−1(Y)→ Y

are of dimension equal to 〈ρ, μ̌1 + μ̌2− μ̌〉, i.e., saturating the upper bound given above.
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2.1.4.. Thus, to prove (2), we must show that the fibers of the map

π−1
(
(I · (w · ν̌))) ∩ ((I · (w · λ̌)) 
Grμ̌G

) −→ (
I · (w · ν̌))

have dimensions < 〈ρ, λ̌ + μ̌ − ν̌〉 unless ν̌ = λ̌ + μ̌. (In the latter case the map in
question is clearly one-to-one.)

Consider the orbit of the group Adw·w0 (N((t))) in GrG passing through the point
w · ν̌. Its preimage in (

I · (w · λ̌)
)

Grμ̌G ⊂ GrG 
GrG

is the union over the parameters ν̌′ of schemes((
Adw·w0 N((t)) · w(ν̌′)

) ∩ (I · (w · λ̌)
))


((

Adw·w0 N((t)) · (w · (ν̌ − ν̌′))) ∩Grμ̌G
)
,

each of which is fibered over(
N((t)) · w0(ν̌′)

) ∩ (Ad(w·w0)−1(I) · w0(λ̌)
) ⊂ Grλ̌G, (5)

with the typical fiber Adw·w0 N((t)) · (w · (ν̌ − ν̌′)) ∩Grμ̌G.
Since the intersection Adw·w0 N((t)) · (w · ν̌) ∩ I · (w · ν̌) consists of a single point,

namely, w · λ̌, the preimage of this point in
(
I · (w · λ̌)

)

Grμ̌G injects into the variety (5).

The dimension of this variety is a priori less than or equal to

〈ρ,−ν̌′ + λ̌〉 = 〈ρ, λ̌+ μ̌− ν̌〉 − 〈ρ, μ̌− ν̌ + ν̌′〉.

The nonemptiness condition on
(
Adw·w0 N((t)) · (w · (ν̌ − ν̌′))) ∩ Grμ̌G implies that

〈ρ, μ̌− ν̌+ ν̌′〉 � 0, and the equality is achieved only for ν̌− ν̌′ = μ̌. Hence, it is sufficient
to prove that the variety in (5) has dimension equal to 〈ρ,−ν̌′ + λ̌〉 only for ν̌′ = λ̌.

Note that the condition on λ̌ implies that

Ad(w·w0)−1(I) · w0(λ̌) ⊂ N−[[t]]′ · w0(λ̌),

where N−[[t]]′ is the preimage under N−[[t]] → N− of [N−, N−] ⊂ N−. Let Ψ0 be a
nondegenerate character on N−((t)) with conductor 0. Again, by the condition on λ̌,

Ad−w0(λ̌)(N
−[[t]]′) ⊂ ker(Ψ0).

Hence, the required assertion follows from the next result.

Proposition 2.1.5. The intersection(
N((t)) · μ̌) ∩ (ker(Ψ0) · 1GrG

)⊂(N((t)) · μ̌)∩(N−((t)) · 1GrG

)⊂GrG

has dimension < 〈ρ, μ̌〉 unless μ̌ = 0.
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2.1.6. Proof of Proposition 2.1.5. The assertion of the proposition is equivalent to the
fact that the character Ψ0 is nontrivial on every connected component of the intersection(

N((t)) · μ̌) ∩ (N−((t)) · 1GrG

)
.

Let λ̌ ∈ Λ̌+ be large. Then, then it is well known that(
N((t)) · (λ̌+ μ̌)

) ∩ (N−((t)) · λ̌) = Grλ̌+μ̌
G ∩(N−((t)) · λ̌).

Hence, it is sufficient to show that a character Ψλ̌ on N−((t)) with conductor λ̌ is
nonconstant on every connected component of the intersection Grλ̌+μ̌

G ∩ (N−((t)) · λ̌).
But the latter readily follows from the top cohomology part of the Casselman–Shalika
formula, [FGV, Section 7.1.7].

2.2. The baby Whittaker category
2.2.1.. Let us denote by I− the group Adw0(I0) ⊂ G[[t]], and let ψ : I− → Ga be a
nondegenerate character. We introduce the (baby Whittaker) category Perv(GrG)I

−,ψ

as that of (I−, ψ)-equivariant perverse sheaves on GrG.4

If S ∈ Perv(GrG)I
−,ψ and λ̌ ∈ Λ̌+, both ∗- and !- restrictions of S|Grλ̌G

can be nonzero

only if λ̌ is regular. Moreover, in this case, these restrictions are supported on the
I−-orbit of the point w0(λ̌) ∈ GrG.

For λ̌ ∈ Λ̌+ we will denote by ICψ
λ̌,GrG

the Goresky–MacPherson extension of the

(I−, ψ)-character sheaf on the I−-orbit of w0(λ̌ + ρ̌′) ∈ GrG. It is easy to see that the
ICψ

λ̌,GrG
’s are the irreducibles of Perv(GrG)I

−,ψ.

We will denote ICψ0,GrG
simply by ICψGrG

. It is easy to see that ICψ0,GrG
is in fact

a clean extension of the corresponding character sheaf on I− · w0(ρ̌′) (the latter is,
by definition, the unique up to isomorphism, one-dimensional (I−, ψ)-equivariant local
system on this orbit). Indeed, all G[[t]]-orbits in the closure of Grρ̌

′
G correspond to

non-regular coweights.
Using the same argument as in the proof of Theorem 1.3.5, one shows:

Theorem 2.2.2. ICψGrG

 ICλ̌,GrG

	 ICψ
λ̌,GrG

.

The same argument as in [FGV, Section 6], then implies the following:

Corollary 2.2.3.
(1) The category Perv(GrG)I

−,ψ is semisimple and equivalent to SphG by means of
F 
→ ICψGrG


F.
(2) ICψ

λ̌,GrG
equals both the !- and ∗-extension of the corresponding character sheaf

on I− · w0(λ̌ + ρ̌′).

2.2.4.. Let D(GrG)I
−,ψ denote the (I−, ψ)-equivariant derived category on GrG. The

forgetful functor Perv(GrG)I
−,ψ → Perv(GrG) admits natural left and right adjoints,

denoted Av!,I−,ψ and Av∗,I−,ψ, respectively.

4The term “baby Whittaker” refers to the fact that we are imposing equivariance with
respect to I−, rather than with respect to the group ind-scheme N−((t)).
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Proposition 2.2.5. The functors Av!,I−,ψ[−dim(n)] and Av∗,I−,ψ[dim(n)], when re-
stricted to D(GrG)I

0
, are isomorphic. Both these functors are exact.

Proof. Note that the character ψ factors through the map I− → N−; we will denote by
the same symbol ψ the resulting character of N−. Let ψN− denote the corresponding
character sheaf on N−.

It is clear that the restrictions of Av!,I−,ψ and Av∗,I−,ψ to D(GrG)G
1

are the functors

S 
→ ψN−
!

 S[dim(n)] and S 
→ ψN−

∗

 S[− dim(n)],

respectively, where
!

 and

∗

 are the two convolution functors

D(G)× D(GrG)G
1 −→ D(GrG)G

1
.

In particular, we have a map of functors

Av!,I−,ψ[−dim(n)]|D(GrG)G1 −→ Av∗,I−,ψ[dim(n)]|D(GrG)G1 .

To show that the above map of functors is an isomorphism, when restricted further
to D(GrG)I

0
, it is sufficient to prove the corresponding fact for D(GrG)I .5

Let Perv(G/B)N
−,ψ (respectively, D(G/B)N

−,ψ) be the corresponding (N−, ψ)-equi-
variant category on G/B. We will denote by ψG/B its only irreducible, i.e., the clean
extension of the (N−, ψ)-character perverse sheaf on N− · 1G/B.

For S ∈ D(GrG)I we have

ψN−
!

 S 	 ψG/B !


 S and ψN−
∗

 S 	 ψG/B ∗
 S,

but the map

ψG/B
!

 S −→ ψG/B

∗

 S

is an isomorphism, since the convolution map πI : G[[t]] ×
I
GrG → GrG is proper.

The exactness assertion follows as well, since the functor S 
→ ψN−
!

 S is left-exact,

and S 
→ ψN−
∗

 S is right-exact. �

Henceforth, we will denote the functor

Av!,I−,ψ[−dim(n)]|D(GrG)I0 	 Av∗,I−,ψ[dim(n)]|D(GrG)I0

simply by AvI−,ψ.

2.2.6. Partial integrability. We say that an object of Perv(GrG)I
0

(respectively,
Perv(GrG)I , Perv(FlG)I

0
, Perv(FlG)I) is partially integrable if it admits a filtration,

such that each subquotient is equivariant with respect to some parahoric, contained
in G[[t]], and strictly containing I. (The latter condition is equivalent to demand-
ing that this subquotient is equivariant with respect to some subminimal parabolic

5A more efficient proof of this fact is given in [BBM].
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Pı ⊂ G ⊂ G[[t]].) Let us denote the resulting Serre subcategories by PIPerv(GrG)I
0

(respectively, PIPerv(GrG)I , PIPerv(FlG)I
0
, PIPerv(FlG)I).

Note that an irreducible ICw·λ̌,GrG
∈ Perv(GrG)I

0
is nonpartially integrable if and

only if w = w0. Similarly, ICw,G/B ∈ Perv(G/B) is partially integrable unless w = 1.
Let fPerv(GrG)I

0
(respectively, fPerv(GrG)I , fPerv(FlG)I

0
, fPerv(FlG)I) be the re-

sulting quotient abelian category of Perv(GrG)I
0

(respectively, Perv(GrG)I , Perv(FlG)I
0
,

Perv(FlG)I), and let fD(GrG)I
0

(respectively, fD(GrG)I , fD(FlG)I
0
, fD(FlG)I) be the

corresponding quotient triangulated category.
The convolution functor descends to functors

fD(FlG)I
0 × D(GrG)I −→ fD(GrG)I

0
and fD(FlG)I × D(GrG)I −→ fD(GrG)I .

Proposition 2.2.7. The functor

AvI−,ψ : Perv(GrG)I
0 −→ Perv(GrG)I

−,ψ

factors through fPerv(GrG)I
0
, and the resulting functor fPerv(GrG)I

0 → Perv(GrG)I
−,ψ

is exact and faithful.

Proof. The fact that AvI−,ψ annihilates all partially integrable objects follows from the
observation that the direct image of ψG/B to any partial flag variety G/Pı is zero.

The fact that fPerv(GrG)I
0 → Perv(GrG)I

−,ψ is exact follows from the exactness
statement of Proposition 2.2.5. To show that it is faithful, it is enough to prove the
corresponding fact for fPerv(GrG)I . We argue as follows.

Let Av!,I0 : D(GrG)→ D(GrG)I
0

(respectively, D(G/B)→ D(G/B)N ) be the functor,
left adjoint to the tautological embedding. Let us denote by Ξ the object

Ξ := Av!,I0 [−dim(n)](ψG/B) ∈ D(G/B)N . (6)

We have, tautologically,

Lemma 2.2.8. The composition

Perv(GrG)I
AvI−,ψ−−−−−→ Perv(GrG)I

−,ψ −→ Perv(GrG)
Av!,I0 [−dim(n)]

−−−−−−−−−−−−→ Perv(GrG)I
0

is isomorphic to the convolution functor

F 
→ Ξ 
 F.

It is known that Ξ is the longest indecomposable projective in Perv(G/B)N . (This can
be seen by noting that the functor HomPerv(G/B)N (Ξ, ·) is exact, and that it annihilates
all the irreducibles in Perv(G/B)N but δ1,GrG .) Therefore it is tilting [BBM], i.e., it
admits two filtrations: one whose subquotients are the standard objects j!,w, w ∈ W ,
and another, whose subquotients are the costandard objects j∗,w.

Note, however, that the arrows j∗,w → j∗,1 and j!,1 → j!,w become isomorphisms in
fPerv(G/B)B ⊂ fPerv(FlG)I . Hence, the image of Ξ in fPerv(G/B)N is isomorphic to
the extension of |W |-many copies of δ1,G/B. Hence, the convolution with Ξ, viewed as
a functor fPerv(GrG)I → fPerv(GrG)I

0
, is faithful. �
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Remark 2.2.9. One can strengthen Proposition 2.2.7 and prove the following more pre-
cise assertion:

Let h0 be the algebra of functions on the scheme-theoretic preimage of 0 under
h∗ → h∗/W . It is known that h0 is isomorphic to the algebra of endomorphisms of Ξ.

For an abelian category C we will denote by C ⊗ h0 the category of objects of C,
endowed with an action of h0.

Then the category fPerv(GrG)I
0

is equivalent to Perv(GrG)I
−,ψ ⊗ h0 	 SphG ⊗ h0.

2.3. Cosocles of costandard objects
2.3.1.. In this subsection we will prove the following assertion.

Proposition 2.3.2.
(1) For a regular dominant element λ̌ ∈ Λ̌, the cosocle of W∗,λ̌ ∈ Perv(GrG)I is

simple and is isomorphic to ICw0·λ̌,GrG
.

(2) The kernel of W∗,λ̌ → ICw0·λ̌,GrG
is partially integrable.

Proof. First, we claim that if we have a surjection from W∗,λ̌ to an irreducible S, then
this S must be nonpartially integrable. Suppose the contrary, and let ı ∈ I be such
that S is equivariant with respect to the corresponding subminimal parahoric. Then the
convolution j!,sı 
 S lives in the cohomological degree +1. However, jsı,!
W∗,λ̌ 	W∗,sı·λ

is still perverse. Hence, HomD(GrG)I (jsı,! 
W∗,λ̌, j!,sı 
 S) = 0, which is a contradiction,
since the convolution with jsı,! is an autoequivalence of D(GrG)I .

To finish the proof of the proposition, it suffices to show that ICw0·λ̌,GrG
is the only

nonpartially integrable irreducible that appears in the Jordan–Hölder series of W∗,λ̌.
Since the natural map

W∗,λ̌ 	 j∗,λ 
 δ1,GrG −→ j!,w0 
 j∗,λ 
 δ1,GrG 	W∗,w0·λ̌

becomes an isomorphism in fPerv(GrG)I , by Proposition 2.2.7, it suffices to show that
the map

AvI−,ψ(W∗,w0·λ̌) −→ AvI−,ψ(ICw0·λ̌,GrG)

is an isomorphism.
By Proposition 2.2.5, it would be sufficient to show that AvI−,ψ(W∗,w0·λ̌) is an irre-

ducible object of Perv(GrG)I
−,ψ. However, evidently,

Av∗,I−,ψ(W∗,w0·λ̌)[dim(n)]

is the ∗-extension of the corresponding character sheaf on I− · λ̌. Hence, we are done,
by Theorem 2.2.2(2). �
2.3.3.. We will now prove the following:

Proposition 2.3.4. If λ̌ ∈ Λ̌+ is large, the object W∗,w0·λ̌ admits ICλ̌−2ρ̌,GrG
as a

quotient.

The rest of this subsection is devoted to the proof of this result. Let Av!,G[[t]]/I be
the functor Perv(GrG)I → Perv(GrG)G[[t]] 	 SphG left adjoint to the forgetful func-
tor Perv(GrG)G[[t]] → Perv(GrG)I . Note that since G[[t]]/I = G/B is compact, the
corresponding right adjoint Av∗,G[[t]]/I is isomorphic to Av!,G[[t]]/I [2 dim(n)].
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For a regular λ̌ ∈ Λ̌+, let us denote by embλ̌!,GrG , embλ̌∗,GrG the natural functors
D(G/B) → D(GrG), along with its I- and I0-equivariant versions. Evidently, these
functors commute with Av!,G[[t]]/I in the natural sense. Therefore,

Av!,G[[t]]/I(W∗,w0·λ̌) 	 embλ̌∗,GrG(CG/B[2 dim(n)]). (7)

In particular, we obtain that the object embλ̌∗,GrG(ICG/B) lives in the cohomological
degrees � dim(n). Therefore, HomPerv(GrG)I (W∗,w0·λ̌, ICλ̌−2ρ̌,GrG

) identifies with

HomPerv(GrG)G[[t]]

(
hdim(n)

(
embλ̌∗,GrG(ICG/B)

)
, ICλ̌−2ρ̌,GrG

)
.

Thus, we have to show that the top =dim(n)-degree cohomology of embλ̌∗,GrG(ICG/B)
has a quotient (or, which in this case is the same, a direct summand) isomorphic to
ICλ̌−2ρ̌,GrG

. Set μ̌ = λ̌− 2ρ̌.
Consider the cohomology

Hc

(
N((t)) · w0(μ̌′), embλ̌!,GrG(ICG/B)|N((t))·w0(μ̌′)

)
,

where, as usual, we regard N((t)) · w0(μ̌) as a sub-indscheme in GrG. By [MV] (and
duality) it would suffice to show that the above cohomology in degree −dim(n)−〈2ρ, μ̌′〉
is one-dimensional if μ̌′ = μ̌, and is 0 for μ̌ < μ̌′ � λ̌.

By base change, the above cohomology can be rewritten as

H〈2ρ,λ̌−μ̌
′〉−dim(n)

c

((
N((t)) · w0(μ̌′)

) ∩Grλ̌G,C
)
.

Since λ̌ was assumed large, the intersection (N((t)) · w0(μ̌′)) ∩Grλ̌G equals

(N((t)) · w0(μ̌′)) ∩
(
N−((t)) · w0(λ̌)

)
) 	 (N((t)) · 1GrG) ∩ (N−((t)) · w0(λ̌− μ̌′)

)
).

Hence, our assertion follows from Corollary 4.3.8.

Corollary 2.3.5. For λ̌ large, the map W∗,λ̌ → ICw0·λ̌,GrG
lifts to a map W∗,λ̌ →

W!,w0·ρ̌′ 
 ICλ̌−ρ̌′,GrG
.

Proof. The existence of the map in question is equivalent, by adjunction, to the existence
of a map j∗,w0·(−w0(ρ̌′)) 
W∗,λ̌ → ICλ̌−ρ̌′,GrG

. Note that −w0(ρ̌′) = 2ρ̌− ρ̌′. Hence, the
assertion follows from the above proposition, since

j∗,w0·(2ρ̌−ρ̌′)
W
∗,λ̌ 	 j∗,w0·(2ρ̌−ρ̌′)
j∗,λ̌
δ1,GrG 	 j∗,w0·(λ̌+2ρ̌−ρ̌′)
δ1,GrG 	W∗,λ̌+2ρ̌−ρ̌′ . �

3. A study of baby Verma and co-Verma modules

3.1. Baby co-Verma modules via U�

3.1.1.. Let
•
Mλ be the object of

•
Hecke(U�, Ǧ), corresponding to

•
Mλ. Our present goal

is to describe it explicitly. First, we will describe
•
Mλ as an object of U� -mod. By

definition, Mλ =
⊕

μ̌∈Λ̌ Mλ
μ̌, where each Mλ

μ̌ is given by

IndU�
•
u�

(C−μ̌ ⊗
•
Mλ) 	 IndU�

•
u�

(
•
Mλ−φ�(μ̌)).
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Hence, it is sufficient to describe the modules of the form IndU�
•
u�

(
•
Mλ).

By construction,

IndU�
•
u�

(
•
Mλ) 	 IndU�

•
b−
�

(Cλ),

which, in turn, is isomorphic to

IndU�

B−�

(
IndB−�

•
b−�

(Cλ)
)
	 IndU�

B−�

(
Cλ ⊗ IndB−�

•
b−�

(C)
)
. (8)

By Proposition 1.1.14, IndB−�
•
b−�

(C) 	 FrB−(OB̌−/Ť ).

Proposition–Construction 3.1.2. As a B̌−-module, OB̌−/Ť is isomorphic to the di-
rect limit

lim−→
λ̌∈Λ̌+

ResǦB̌−
(
(V λ̌)∗

)⊗ lλ̌,

where lλ̌ denotes the highest weight line of V λ̌, regarded as a one-dimensional represen-
tation of Ť (and, hence, also of B̌−).

Proof. By adjunction, to specify a map of B̌−-modules

ResǦB̌−
(
(V λ̌)∗

)⊗ lλ̌ −→ OB̌−/Ť , (9)

is equivalent to giving a map (V λ̌)∗ → (lλ̌)∗, compatible with the T -action. The latter
corresponds to the natural embedding of lλ̌ into V λ̌.

To define the inductive system, we choose a compatible system of isomorphisms
lλ̌ ⊗ lμ̌ 	 lλ̌+μ̌. Such a system fixes the maps V λ̌ ⊗ V μ̌ → V λ̌+μ̌ (which are otherwise
defined up to a scalar).

Suppose that μ̌ ∈ Λ̌+ is another dominant weight of Ǧ. We define the map

ResǦB̌−
(
(V λ̌)∗

)⊗ lλ̌ −→ ResǦB̌−
(
(V λ̌+μ̌)∗

)⊗ lλ̌+μ̌

as the composition

ResǦB̌−
(
(V λ̌)∗

)⊗ lλ̌ → ResǦB̌−
(
(V λ̌ ⊗ V μ̌)∗)⊗ lμ̌ ⊗ lλ̌ → ResǦB̌−

(
(V λ̌+μ̌)∗

)⊗ lλ̌+μ̌, (10)

where the first arrow comes from the map of B̌−-modules (lμ̌)∗ → ResǦB̌−
(
(V μ̌)∗

)
, and

the second arrow comes from the map (V λ̌ ⊗ V μ̌)∗ → (V λ̌+μ̌)∗. These maps define the
inductive system stated in the Proposition–Construction.

By construction, the map of (10) is compatible with the maps of (9) for λ̌ and μ̌.
Hence, the resulting inductive limit maps to OB̌−/Ť . The fact that this map is an
isomorphism is an easy verification. �

3.1.3.. From the above proposition we obtain the following description of Mλ
ν̌ .
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Corollary 3.1.4. Choose a trivialization of the Ť -torsor given by {lλ̌}. Then

Mλ
ν̌ 	 lim−→

λ̌∈Λ̌+

Fr
(
(V λ̌)∗

)⊗Wλ+φ�(λ̌−ν̌),

where the maps in the inductive system are given by

Fr(V λ̌)∗ ⊗Wλ+φ�(λ̌−ν̌) −→ Fr(V λ̌)∗ ⊗ Fr(V μ̌)∗ ⊗Wλ+φ�(λ̌+μ̌−ν̌)

−→ Fr(V λ̌+μ̌)∗ ⊗Wλ+φ�(λ̌+μ̌−ν̌),

where the first arrow comes from the canonical map

Fr(V μ̌)⊗Wλ+φ�(λ̌−ν̌) −→Wλ+φ�(λ̌+μ̌−ν̌).

3.1.5. Hecke eigenproperty. Let us now describe how the Hecke eigenproperty isomor-
phisms

Fr(V )⊗Mλ
μ̌ −→

⊕
ν̌∈Λ̌+

Mλ
μ̌−ν̌ ⊗ V (ν̌)

look like in terms of the identification of Corollary 3.1.4.
For a coweight λ̌ ∈ Λ̌+, large with respect to the weights of V , we have a canonical

isomorphism of Ǧ-modules

V ⊗ V λ̌ 	 ⊕̌
ν
V λ̌+ν̌ ⊗ V (ν̌).

Hence, we obtain a map of B̌−-modules

V −→ ⊕̌
ν
V λ̌+ν̌ ⊗ (V λ̌)∗ ⊗ V (ν̌) −→ (V λ̌)∗ ⊗ lλ̌+ν̌ ⊗ V (ν̌).

Applying the functor IndU�

B−�
, for λ ∈ Λ+, we obtain a map in U� -mod,

Fr(V )⊗Wλ −→ ⊕̌
ν

Fr
(
(V λ̌)∗

)⊗Wλ+φ�(λ̌+ν̌) ⊗ V (ν̌).

Proposition 3.1.6. The Hecke eigenproperty morphisms for
•
Mλ are equal in terms of

the inductive system to

Fr(V )⊗ Fr
(
(V λ̌

′
)∗
)
⊗Wλ+φ�(λ̌

′−μ̌)

−→ ⊕̌
ν

Fr
(
(V λ̌

′
)∗ ⊗ (V λ̌)∗

)
⊗Wλ+φ�(λ̌+λ̌′−μ̌+ν̌) ⊗ V (ν̌)

−→ ⊕̌
ν

Fr
(
(V λ̌+λ̌′)∗

)
⊗Wλ+φ�(λ̌+λ̌′−μ̌+ν̌) ⊗ V (ν̌).
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Proof. By the construction of the isomorphism in Corollary 3.1.4, it suffices to show
that the isomorphism

ResǦB̌−(V )⊗ OB̌−/Ť −→
⊕
ν

OB̌−/Ť ⊗ V (ν̌)

looks like, in terms of the identification given by Proposition–Construction 3.1.2, a
system of morphisms

ResǦB̌−(V )⊗ (V λ̌′)∗)⊗ lλ̌
′ −→ ⊕̌

ν
ResǦB̌−

(
(V λ̌

′
)∗ ⊗ (V λ̌)∗

)⊗ lλ̌+λ̌′+ν̌ ⊗ V (ν̌)

−→ ⊕̌
ν

ResǦB̌−
(
(V λ̌+λ̌′)∗

)⊗ lλ̌+λ̌′+ν̌ ⊗ V (ν̌).

The latter is a straightforward verification. �

3.1.7. Baby co-Verma as a quotient. Let us briefly discuss another realization of
•
Mλ

(or, equivalently,
•
Mλ) in terms of the big quantum group.

For an element μ̌ ∈ Λ̌∗, let
◦
V μ̌ be the hyperplane in V μ̌ orthogonal to l−μ̌ ⊂ (V μ̌)∗.

This subspace is preserved by B̌− and, in particular, it admits a well defined weight
decomposition with respect to Ť .

For λ ∈ Λ+ consider the canonical map of U�-modules: Fr(V μ̌) ⊗Wλ →Wλ+φ�(μ̌)

After the restriction to
•
u�, it gives rise to a map⊕̌

ν
Cν̌ ⊗ ResU�

•
u�

(Wλ)⊗ V μ̌(ν̌) −→ ResU�
•
u�

(Wλ+φ�(μ̌)).

For λ̌ ∈ Λ̌+ consider the canonical map ResU�
•
u�

(Wλ+φ�(μ))→
•
Mλ+φ�(μ).

Proposition 3.1.8. The composition

⊕̌
ν

Cν̌ ⊗ ResU�
•
u�

(Wλ)⊗
◦
V μ̌(ν̌) −→ ResU�

•
u�

(Wλ+φ�(μ̌)) −→
•
Mλ+φ�(μ)

vanishes. For a fixed λ and all sufficiently large μ̌ the complex

⊕̌
ν

Cν̌ ⊗ ResU�
•
u�

(Wλ+φ�(λ̌))⊗
◦
V μ̌(ν̌) −→ ResU�

•
u�

(Wλ+φ�(μ̌+λ̌))

−→
•
Mλ+φ�(μ+λ̌) −→ 0

(11)

is exact for all sufficiently dominant λ̌.

Proof. The first assertion of the proposition is evident. To prove the second one we
proceed as follows. Let CB̌− be the skyscraper coherent sheaf at the point B̌− in the
flag variety Ǧ/B̌−. It admits a left resolution of the form

0 −→ Pdim(Ǧ/B̌−)+1 −→ Pdim(Ǧ/B̌−) −→ Pdim(Ǧ/B̌−)−1 −→ · · ·
−→ P1 −→ P0 −→ CB̌− −→ 0,
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where P0 	 OǦ/B̌− , and the sheaves Pi for i = 1, . . . ,dim(Ǧ/B̌−) are isomorphic to
O(−μ̌i)⊗ V i for μ̌i ∈ Λ̌+; V i are some vector spaces. Moreover, the weight μ̌1 may be

chosen arbitrarily large; and the vector space V 1 surjects by construction onto
◦
V μ̌1 .

By pulling back this complex from Ǧ/B̌− to Ǧ, this gives rise to a complex

P −→ C−μ̌dim(Ǧ/B̌−) ⊗ ResǦB̌−(RǦ)⊗ V dim(Ǧ/B̌−) −→ · · ·
−→ C−μ̌i ⊗ ResǦB̌−(RǦ)⊗ V i −→ · · ·
−→ C−μ̌1 ⊗ ResǦB̌−(RǦ)⊗ V 1 −→ ResǦB̌−(RǦ) −→ RB̌− −→ 0

of B̌−-modules, where RB̌− denotes the regular representation of B̌−. By construction,

the arising element in Extdim(Ǧ/B̌−)+1

B̌− (RB̌− , P ) vanishes.

Let us tensor this complex with the B−� -module Cλ+φ�(μ̌1+λ̌), where λ̌ is such that
all the weights of the form λ+ φ�(μ̌1 + λ̌− μ̌i) become dominant. Then,

Ri IndU�

B−�

(
Cλ+φ�(λ̌+μ̌1−μ̌i) ⊗ FrB̌−

(
ResǦB̌−(RǦ)

))
	 Fr(RǦ)⊗ Ri IndU�

B−
�

(
Cλ+φ�(λ̌+μ̌1−μ̌i)) = 0

for i > 0.
Hence, we obtain that the sequence of U�-modules

Fr(RǦ)⊗Wλ+φ�(λ̌) ⊗
◦
V μ1 −→ Fr(RǦ)⊗Wλ+φ�(μ̌1+λ̌)

−→ IndU�

B−�
(Cλ+φ�(μ̌1+λ̌) ⊗RB̌−) −→ 0

is exact. However, the above sequence of maps is obtained from (11) for μ̌ = μ̌1 by

applying the functor IndU�
•
u�
◦Res

•
u�
u� , which is exact and faithful. �

3.1.9. The case of twisted baby co-Verma modules. For w ∈ W let Fw, w�, wǦ be as in
Section 1.1.15. From Section 1.2.5 we obtain the following description of the object
w
•
Mw(λ) of the category

•
Hecke(U�, Ǧ), corresponding to w

•
Mw(λ):

Corollary 3.1.10. As an object of U� -mod, w
•
Mw(λ)

μ̌ is isomorphic to
•
Mλ

w(μ̌). The
Hecke eigenproperty morphisms

Fr(V )⊗ w
•
Mw(λ)

μ̌ −→ ⊕̌
ν

w
•
Mw(λ)

μ̌ ⊗ V (ν)

are obtained from those of
•
Mλ

w(μ̌) by applying the element wǦ : V (ν)→ V (w(ν)).

In addition, we have an analogue of Proposition 3.1.8. Let w
◦
V μ̌ be the subspace of

V μ̌ obtained by translating
◦
V μ̌ by means of wǦ.
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Corollary 3.1.11. We have a complex⊕̌
ν

Cν̌ ⊗ ResU�
•
u�

(Wλ+φ�(λ̌))⊗ w
◦
V μ̌(ν̌)→ ResU�

•
u�

(Wλ+φ�(μ̌+λ̌))→ w
•
Mw(λ+φ�(μ+λ̌)) → 0,

which is exact when, for a fixed λ, the coweights μ̌ and λ̌ are large enough.

3.1.12. The nongraded version. For λ ∈ Λ recall that Mλ denotes the restriction of
•
Mλ to u� (the small, nongraded quantum group). Let Mλ be the corresponding object
of Hecke(U�, Ǧ). From Corollary 3.1.4 we obtain a description of Mλ as an object of
U� -mod. Namely,

Mλ 	 ⊕̌
μ

lim−→
λ̌∈Λ̌+

Fr
(
(V λ̌)∗

)
⊗Wλ+φ�(λ̌)+φ�(μ̌). (12)

The Hecke eigenproperty isomorphisms for Mλ are given by disregarding the grading

in the isomorphisms for
•
Mλ, given by Proposition 3.1.6.

In addition, we can realize Mλ as a quotient of modules, restricted from U�, using
Proposition 3.1.8,

Mλ 	 coker
(
ResU�

•
u�

(Wλ+φ�(λ̌))⊗
◦
V μ̌ −→ ResU�

•
u�

(Wλ+φ�(μ̌+λ̌))
)
. (13)

3.1.13. Ǧ-action on baby co-Verma modules. By Section 1.2.5, to any g ∈ Ǧ we can
attach a module gMλ ∈ u� -mod. Explicitly, gMλ corresponds to the object gMλ ∈
Hecke(U�, Ǧ), where the latter is obtained from Mλ by modifying the Hecke eigen-
property isomorphism using g acting on V for V ∈ Ǧ -mod. Equivalently, gMλ can be
realized as

coker
(
ResU�

•
u�

(Wλ+φ�(λ̌))⊗ g
◦
V μ̌ −→ ResU�

•
u�

(Wλ+φ�(μ̌+λ̌))
)
, (14)

where g
◦
V μ̌ is the g-translate of

◦
V μ̌ inside V μ̌.

By Section 1.2.5 if g belongs to the normalizer of the torus Ť ⊂ Ǧ, gMλ is isomorphic

to Res
•
u�
u�

(w
•
Mw(λ)) for the corresponding w ∈ W .

Proposition 3.1.14. If g ∈ B̌−, then gMλ is isomorphic to Mλ. For λ = 0 the above
condition is “if and only if”.

Proof. The description of gMλ given by (14) makes it clear that if g ∈ B̌−, then
gMλ 	Mλ. To show the inclusion in the opposite direction we argue as follows.

It is easy to see that the subset of elements of Ǧ, which stabilize the isomorphism
class of Mλ, is a Zariski-closed subgroup of Ǧ. Hence, we must show that this subgroup
does not contain any parabolic strictly containing B̌−. Therefore, it is enough to show

that none of the modules Res
•
u�
u�(

w
•
M0) for w �= 1 is isomorphic to M0. This is equivalent

to
•
M0 being nonisomorphic to w

•
Mφ�(μ̌) for μ̌ ∈ Λ̌, 1 �= w ∈W .

Note that the socle of w
•
Mφ�(μ̌) is isomorphic to Cφ�(μ̌). Hence, if w

•
Mφ�(μ̌) 	

•
M0,

then μ̌ = 0. However, it is clear that w
•
M0 is nonisomorphic to

•
M0, because, for example,

−φ�(2ρ̌)+2ρ, which appears as a weight of
•
M0, is not among the weights of w

•
M0. �
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One can show that the condition of the proposition is in fact “if and only if” for any
λ belonging to the regular block. This is because, as we shall see later, baby co-Verma
modules with the same w, but different parameters λ, can be obtained from one another
by (invertible) convolution functors.

3.2. Baby co-Verma modules via perverse sheaves on the affine Grassmannian

3.2.1.. For an element w̃ ∈ Waff , let λ ∈ Λ be the corresponding weight in the regular
block. That is, if w̃ = w · λ̌, then λ = φ�(λ̌) + w−1(ρ)− ρ.

Let
•
Mw̃ =

⊕
μ̌

•
Mw̃
μ̌ be the object of

•
Hecke(GrG, Ǧ)I

0
, corresponding to the object

•
Mλ ∈

•
Hecke(U�, Ǧ). By Corollary 3.1.4, as an object of Perv(GrG)I

0
,

•
Mw·λ̌
μ̌ := lim−→

λ̌′∈Λ̌+

W∗,w·(λ̌+λ̌′−μ̌) 
 IC−w0(λ̌′),GrG
. (15)

The maps in this inductive system come from the canonical maps

W∗,w·μ̌
′

 ICλ̌′,GrG

	 j∗,w·μ̌′ 
 ICλ̌′,GrG
−→ j∗,w·μ̌′ 
W∗λ̌

′

	 j∗,w·μ̌′ 
 j∗,λ̌′ 
 δ1,GrG 	 j∗,w·(μ̌′+λ̌′) 
 δ1,GrG 	W∗,w·(μ̌
′+λ̌′).

The Hecke eigenproperty morphisms,
•
Mw̃
μ̌ 
 V→⊕

ν̌ V (ν̌) ⊗
•
Mw̃
μ̌−ν̌ for V ∈ Ǧ -mod,

are given by translating the morphisms of Proposition 3.1.6 into the geometric context.
Namely, let λ̌ be a weight large compared to V . Then the sought-for morphism is

W∗,w·(λ̌
′−μ̌) 
 IC−w0(λ̌′),GrG


V

−→W∗,w·(λ̌
′−μ̌) 


(
ICλ̌,GrG


V
)


(
IC−w0(λ̌),GrG


 IC−w0(λ̌′),GrG

)
	W∗,w·(λ̌

′−μ̌) 

(⊕̌
ν
V (ν̌)⊗ ICλ̌+ν̌,GrG

)


(
IC−w0(λ̌),GrG


 IC−w0(λ̌′),GrG

)
−→ ⊕̌

ν
V (ν̌)⊗W∗,w(λ̌+λ̌′−μ̌+ν̌) 


(
IC−w0(λ),GrG 
 IC−w0(λ̌′),GrG

)
−→ ⊕̌

ν
V (ν̌)⊗W∗,w(λ̌+λ̌′−μ̌+ν̌) 
 IC−w0(λ̌+λ̌′),GrG

.

Evidently, if w̃ = w ·λ is such that for some w′ ∈ W , l(w′)+ l(w) = l(w′ ·w), we have

j!,w′ 

•
Mw̃ 	

•
Mw′·w̃, (16)

that is, the objects
•
Mw̃ for different w̃ are obtained from one-another by convolution.

Note also that for λ̌, μ̌ ∈ Λ̌ with μ̌ dominant and λ̌ dominant and regular,

l(w · μ̌ · w−1) + l(w · λ) = l(w · (μ̌+ λ̌)).

Hence, we obtain
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Corollary 3.2.2. For μ̌ ∈ Λ̌+ there are canonical isomorphisms

j∗,w·μ̌·w−1 

•
Mw·λ̌ 	

•
Mw·(λ̌+μ̌) 	

•
Mw·λ̌{−μ̌},

respecting the Hecke eigenproperty isomorphisms.

Assume now that w ∈W , λ̌, μ̌ ∈ Λ̌ are such that w · (λ̌+ μ̌) is right W -minimal, i.e.,
W∗,w·(λ̌+μ̌) is well defined. By (15), we have a map

W∗,w·(λ̌+μ̌) −→
•
Mw·λ̌
−μ̌ , (17)

such that, for μ̌′ ∈ Λ̌+, the diagram

j∗,w−1·μ̌′·w 
W∗,w·(λ̌+μ̌) −−−−→ j∗,w−1·μ̌′·w 

•
Mw·λ̌
−μ̌

∼
⏐⏐� ∼

⏐⏐�
W∗,w·(λ̌+μ̌+μ̌′) −−−−→

•
Mw·λ̌
−μ̌−μ̌′

commutes.
Convolving (17) on the right with ICμ′,GrG we obtain the map

W∗,w·(λ̌+μ̌) 
 ICμ̌′,GrG −→
•
Mw·λ̌
−μ̌ 
 ICμ̌′,GrG 	

⊕
ν̌ V

μ̌′(ν̌)⊗
•
Mw·λ̌
−ν̌−μ̌.

The above description of the Hecke eigenproperty morphisms also implies the follow-
ing:

Corollary 3.2.3.

(1) The diagram
W∗,w·(λ̌+μ̌) 
 ICμ̌′,GrG −−−−→ W∗,w·(μ̌+μ̌′+λ̌)⏐⏐� ⏐⏐�⊕̌
ν
V μ̌
′
(ν̌)⊗

•
Mw·λ̌−ν̌−μ̌ −−−−→

•
Mw·λ̌
−μ̌′−μ̌

commutes, where the bottom horizontal arrow is the projection on the direct
summand, corresponding to ν̌ = μ̌′.

(2) The object
•
Mw·λ̌ ∈

•
Hecke(GrG, Ǧ)I

0
is universal with respect to the properties

that:
(a) it satisfies Corollary 3.2.2,
(b) it receives a map as in (17) for some μ̌,

such that (a) and (b) render that the above diagram is commutative.

If we put w = 1 and μ̌ = −λ̌, the map in (17) identifies with

δ1,GrG −→
•
Mλ̌
−λ̌. (18)
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Thus, we obtain a characterization of
•
Mλ̌ in terms of δ1,GrG .

Finally, we note that the normalizer of the torus Ť ⊂ Ǧ acts on
•
Hecke(GrG, Ǧ)I

0
by

self-equivalences, modifying the Hecke eigenproperty morphisms. The functors, corre-
sponding to elements of Ť are (noncanonically) isomorphic to identity. For w ∈ W we

will denote by w
•
Mw̃ the object of

•
Hecke(GrG, Ǧ)I

0
obtained in this way from

•
Mw̃; this

corresponds to the object w
•
Mw(λ) ∈ •u� -mod.

3.2.4.. We will now list several facts about the objects
•
Mw̃, most of which are formal

consequences of the corresponding properties of
•
Mλ, but we will give geometric proofs

for completeness.
Let w̃ = w · μ̌ be an element of Waff , and let λ̌ be such that Lw 	 ICw·λ̌,GrG

, in
particular, w · λ̌ is restricted. Then we have

Proposition 3.2.5. The socle of
•
Mw̃ is isomorphic to Lw 


•
RǦ{λ̌− μ̌}.

Proof. By Section 1.3.8, every irreducible in
•
Hecke(GrG, Ǧ)I

0
is of the form Lw

′


•
RǦ{μ̌′}

for some w′ ∈ W and μ̌′ ∈ Λ̌. Suppose that such an irreducible maps to
•
Mw·μ̌. By

adjunction, this means that we have a map

Lw
′ −→W∗,w·(λ̌

′+μ̌+μ̌′) 
 IC−w0(λ̌′),GrG

in Perv(GrG)I
0

for some λ̌′ ∈ Λ̌+.
The latter can be rewritten as an element in

Hom(Lw
′

 ICλ̌′,GrG

,W∗,w·(λ̌
′+μ̌+μ̌′)).

By Theorem 1.3.5, and taking into account that the socle of W∗,w·(λ̌
′+μ̌+μ̌′) is isomorphic

to ICw·(λ̌′+μ̌+μ̌′),GrG
, this implies w′ = w and μ̌′ = λ̌− μ̌.

We also obtain that the above Hom is one-dimensional. That is, Lw 

•
RǦ{λ̌− μ̌} is

the only irreducible that can map to
•
Mw̃, and it appears in the socle with multiplicity 1.

�

Proposition 3.2.6.

(1) The object
•
M1 ∈

•
Hecke(GrG, Ǧ)I is finitely generated.6 Its cosocle is isomorphic

to Lw0 

•
RǦ{ρ̌′}. Moreover, all the constituents in ker(

•
M1 → Lw0 


•
RǦ{ρ̌′}) are

partially integrable.

(2) There exists a surjection
•
Mw0 �

•
RǦ{2ρ̌}.

Using (16), from part (1) of Proposition 3.2.6 we obtain

6Here and in the sequel, the superscript “1” in
•
M1 stands for the unit element in Waff .
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Corollary 3.2.7. Every
•
Mw̃ is finitely generated (as an object of

•
Hecke(GrG, Ǧ)I).

Before giving the proof of Proposition 3.2.6, we need to introduce the following
construction. Consider a Λ̌-graded object of Perv(GrG)I

0
given by

•
RǦ
′ :=

⊕̌
μ

lim−→
λ̌∈Λ̌+

ICλ̌−μ̌,GrG

 IC−w0(λ̌),GrG

,

where the maps in the inductive system are given as follows. If λ̌′ = λ̌+ ν̌, ν̌ ∈ Λ̌+,

ICλ̌−μ̌,GrG

 IC−w0(λ̌),GrG

−→ (
ICλ̌−μ̌,GrG


 ICν̌,GrG

)


(
IC−w0(ν̌),GrG 
 IC−w0(λ̌),GrG

)
−→ ICλ̌−μ̌+ν̌,GrG


 IC−w0(ν̌+λ̌),GrG
.

Proposition–Construction 3.2.8. The object
•
RǦ
′ is a Hecke eigensheaf and, as such,

it is canonically isomorphic to
•
RǦ.

Proof. Since all the appearing perverse sheaves are spherical, we can work in the tensor
category of Rep(Ǧ) instead of Perv(GrG)I

0
. The Hecke eigenproperty morphisms are

given as follows. Let λ̌ ∈ Λ̌+ be large compared to V . Then the sought-for map is the
composition

V ⊗ V λ̌′−μ̌ ⊗ (V λ̌
′
)∗ −→ V ⊗ V λ̌ ⊗ V λ̌′−μ̌ ⊗ (V λ̌

′
)∗ ⊗ (V λ̌)∗

−→ ⊕̌
ν

(
V λ̌
′−μ̌ ⊗ V λ̌+ν̌

)⊗ ((V λ̌′)∗ ⊗ (V λ̌)∗
)⊗ V (ν)

−→ ⊕̌
ν
V λ̌+λ′+ν̌−μ̌ ⊗ (V λ̌+ν̌)∗ ⊗ V (ν).

To see that
•
RǦ
′ is isomorphic to

•
RǦ, it is enough to notice that

Hom
(
V, lim−→

λ̌∈Λ̌+

V λ̌−μ̌ ⊗ (V λ̌)∗
) 	 lim−→ Hom(V ⊗ V λ̌, V λ̌−μ̌).

When λ̌ is large with respect to V , the latter inductive system stabilizes to (V )∗(μ̌).
�

Now we are ready to prove Proposition 3.2.6.

Proof. First, we claim that
•
M1 cannot map to any partially integrable object of the

category
•
Hecke(GrG, Ǧ)I

0
. Indeed, if

•
S were partially integrable and we had a nonzero

map
•
M1 →

•
S, we would have a nonzero map in Perv(GrG)I :

W∗,λ 
 ICμ̌,GrG −→ S′
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for some λ̌, μ̌ ∈ Λ̌+ and S′ ∈ PIPerv(GrG)I . By adjunction we would then have a map

W∗,λ −→ S′ 
 IC−w0(μ̌),GrG =: S′′,

with S′′ being also partially integrable. But the latter is impossible by Proposition
2.3.2(1).

Let us now construct a map
•
M1 → Lw0 


•
RǦ{ρ̌′}. According to Proposition 2.3.2(1)

and Theorem 1.3.5, for every dominant and regular λ̌ we have a canonical map

W∗,λ̌ −→ ICw0·λ̌ 	 ICw0·ρ̌′ 
 ICλ̌−ρ̌′,GrG
.

In addition, for μ̌ ∈ Λ̌+, the diagram

W∗,λ̌ 
 ICμ̌,GrG −−−−→ W∗,λ̌+μ̌⏐⏐� ⏐⏐�
ICw0·ρ̌′ 
 (ICλ̌−ρ̌′,GrG


 ICμ̌,GrG) −−−−→ ICw0·ρ̌′ 
 ICλ̌+μ̌−ρ̌′,GrG

is easily seen to commute.
This defines the map between the inductive systems:

•
M1
μ̌ 	 lim−→

λ̌

W∗,λ̌−μ̌ 
 IC−w0(λ̌),GrG
−→ lim−→

λ̌

Lw0 
 (ICλ̌−μ̌−ρ̌′ 
 IC−w0(λ̌),GrG
),

and the latter identifies with Lw0 

•
RǦ{ρ̌′}, by Proposition–Construction 3.2.8.

It is straightforward to check that the above map respects the Hecke eigenproperty

morphisms, i.e., we obtained the desired map in
•
Hecke(GrG, Ǧ)I

0
. Moreover, from

Proposition 2.3.2(2) it follows that the kernel of the map
•
M1 → Lw0 


•
RǦ{ρ̌′} is partially

integrable.
To finish the proof of the first part of the proposition, it remains to show that the

map

W∗,λ 

•
RǦ{λ̌} −→

•
M1 (19)

is surjective for some (and, in fact, every) regular λ̌. By construction, the composition

W∗,λ 

•
RǦ{λ̌} −→

•
M1 −→ Lw0 


•
RǦ{ρ̌′}

is surjective. Hence, by the above, the cokernel of (19) is partially integrable and, hence,
is zero.

To prove the second assertion of the proposition, recall from Proposition 2.3.4 that,
for λ̌ large, we have a map

W∗,w0·λ̌ −→ ICλ̌−2ρ̌ (20)
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defined up to a scalar. Moreover, from the construction of this map one deduces that
the square

W∗,w0·λ̌ 
 ICμ̌,GrG −−−−→ W∗,w0·(λ̌+μ̌)⏐⏐� ⏐⏐�
ICλ̌−2ρ̌ 
 ICμ̌,GrG −−−−→ ICλ̌+μ̌−2ρ̌,GrG

commutes (up to a scalar). We can normalize the maps in (20) to make such diagrams
commutative.

This gives us a map of inductive systems

•
Mw0
μ̌ 	 lim−→

λ̌

W∗,w0·(λ̌−μ̌) 
 IC−w0(λ̌),GrG
−→ lim−→

λ̌

ICλ̌−μ̌−2ρ̌ 
 IC−w0(λ̌),GrG
,

and the latter identifies with
•
RǦ{2ρ̌}. �

3.2.9. A dual description. Recall that over the small quantum group, the baby Verma
modules can be expressed through the baby co-Verma modules and a twist by elements
of the Weyl group. We would like to establish this fact geometrically as well. By (16),

it suffices to consider the case of just
•
M1.

Proposition 3.2.10. We have an isomorphism

D(
•
M1) 	 (w0

•
Mw0){2ρ̌}.

Since the convolution functors commute with Verdier duality, from (16), we obtain

Corollary 3.2.11.

D(
•
Mw·μ̌) 	 w0

•
Mw·w0·(w0(μ̌)+2ρ̌).

Combining this with Proposition 3.2.5, we also obtain

Corollary 3.2.12. The cosocle of every
•
Mw·μ̌ is simple and isomorphic to

ICw·w0·λ̌,GrG


•
RǦ{w0(λ̌)− μ̌+ 2ρ̌},

where λ̌ ∈ Λ̌+ is such that w · w0 · λ̌ is restricted.

Proof. By Proposition 3.2.6(1) and Proposition 3.2.5, it is enough to construct a map

•
M1 −→ D

(
(w0

•
Mw0){2ρ̌}), (21)

such that the composition

•
RǦ −→

•
M1 −→ D

(
(w0

•
Mw0){2ρ̌}) (22)
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equals (up to a scalar) the map, obtained by duality from Proposition 3.2.6(2), and such
that the composition

•
M1 −→ D

(
(w0

•
Mw0){2ρ̌}) −→ Lw0{ρ̌′} 


•
RǦ (23)

equals the map of Proposition 3.2.6(1).
By Corollary 3.2.2 and duality

j!,w0(λ̌) 
 D
(
(w0

•
Mw0){2ρ̌}) 	 D

(
(w0

•
Mw0){2ρ̌}){w0(λ̌)}.

Hence, by Corollary 3.2.3, to construct a map as in (21), we must construct a map
•
RǦ → D

(
(w0

•
Mw0){2ρ̌}) and check the commutativity of the corresponding diagram.

By duality, the above amounts to a map (w0
•
Mw0){2ρ̌} →

•
RǦ. By the definition of the

twisting functors, the existence of the latter map follows from Proposition 3.2.6(2). We
need to check the commutativity of the following diagram:

(w0
•
Mw0){2ρ̌+ λ̌} ∼−−−−→ j!,λ̌ 


(
(w0

•
Mw0){2ρ̌}) −−−−→ j!,λ̌ 


•
RǦ⏐⏐� ⏐⏐�⊕̌

ν
V λ̌(ν̌)⊗ (w0

•
Mw0){2ρ̌+ ν̌} ∼−−−−→ (w0

•
Mw0){2ρ̌} 
 ICλ̌,GrG

−−−−→
•
RǦ 
 ICλ̌,GrG

.

Recalling the definition of the arrows, we arrive to the following diagram, defined for μ̌
large:

j!,λ̌ 
W∗,w0·μ̌ −−−−→ j!,λ̌ 
 ICμ̌−2ρ̌,GrG

∼
⏐⏐� ⏐⏐�

W∗,w0·(μ̌+w0(λ̌)) −−−−→ ICμ̌+w0(λ̌)−2ρ̌,GrG
,

where the right vertical arrow is the composition

j!,λ̌ 
 ICμ̌−2ρ̌,GrG −→ ICλ̌,GrG

 ICμ̌−2ρ̌,GrG −→ ICμ̌+w0(λ̌)−2ρ̌,GrG

,

where the second arrow is obtained by adjunction from

ICμ̌−2ρ̌,GrG −→ IC−w0(λ̌),GrG

 ICμ̌+w0(λ̌)−2ρ̌,GrG

.

The commutativity of the latter diagram follows from the construction of the arrow in
Proposition 2.3.4.

By construction, the condition on the composed map from (22) is satisfied. It remains
to verify the condition in (23). The latter amounts to showing that the arrow

ICw0·(μ̌+w0(λ̌)),GrG
−→W∗,w0·(μ̌+w0(λ̌)) 	 j!,λ̌ 
 W∗,w0·μ̌ −→ j!,λ̌ 
 ICμ̌−2ρ̌,GrG
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equals (up to a scalar) the map

ICw0·(μ̌+w0(λ̌)),GrG
	 ICw0·ρ̌′,GrG 
 ICμ̌+w0(λ̌)−ρ̌′,GrG

−→ ICw0·ρ̌′,GrG 

(
ICλ̌−ρ̌′,GrG


 ICμ̌−2ρ̌,GrG

)
	 ICw0·λ̌,GrG


 ICμ̌−2ρ̌,GrG −→ j!,λ̌ 
 ICμ̌−2ρ̌,GrG ,

where the last arrow comes by duality from Proposition 2.3.2, and the second arrow is
obtained by adjunction from

ICμ̌+w0(λ̌)−ρ̌′,GrG

 IC−w0(λ̌)+w0(ρ̌′),GrG

−→ ICμ̌−2ρ̌,GrG .

By construction, both these maps are nonzero. Now our assertion follows from the
fact that ICw0·λ̌,GrG

is the only nonpartially integrable constituent of W!,λ̌, which implies
that ICw0·(μ̌+w0(λ̌)),GrG

appears with multiplicity one in the Jordan–Hölder series of
j!,λ̌ 
 ICμ̌−2ρ̌,GrG . �
3.2.13. Nongraded version and presentation as a quotient. Our present goal is to prove

geometrically that
•
Mw̃ can be presented as a quotient, as in Section 3.1.7. For that it will

be convenient to consider the corresponding nongraded version, Mw̃ ∈ Hecke(GrG, Ǧ)I .
If w̃ = w · λ̌ and w̃′ = w · λ̌′, then, evidently, Mw̃ 	Mw̃′ .

For g ∈ Ǧ we will denote by gMw̃ the corresponding twist of Mw̃; for g = w ∈W we
recover the objects wMw̃. We will denote by ǦMw̃ the universal family of gMw̃ over OǦ.

Lemma 3.2.14.
(1) As an object of Perv(GrG)I , Mw̃ admits a unique action of the algebraic group

B̌−, such that:
• If w̃ = w · λ̌, in terms of (15), the image of W∗,λ̌+λ̌′ in Mw̃ transforms

according to the B̌−-character −λ̌′.
• The Hecke eigenproperty isomorphisms

Mw̃ 
 V 	 V ⊗Mw̃

intertwine the action of B̌− on the left-hand side, obtained by the trans-
port of structure and the diagonal action of B̌− on the right-hand side.

(2) The following isomorphism holds

HomB̌−
(
C−μ̌ ⊗ ResǦB̌−(V λ̌

′
),Mw̃

) 	Ww·(λ̌+μ̌) 
 IC−w0(λ̌′),GrG

if w · (λ̌+ μ̌) ∈Waff is right W -minimal, and 0 otherwise.

Note that the action of Ť ⊂ B̌− on Mw̃ as an object of Perv(GrG)I comes from the

grading on
•
Mw̃.

The first assertion of the lemma means that, as an object of Hecke(GrG, Ǧ)I , Mw̃ is
B̌−-equivariant, i.e., that the OǦ-family ǦMw̃ acquires a B̌−-action, covering that on
OǦ. Alternatively, a structure of a B̌−-equivariant object on some N ∈ Hecke(GrG, Ǧ)I

is a B̌−-action on N as an object of Perv(GrG)I , which is compatible with the Hecke
eigenproperty morphisms in the natural sense.



318 S. ARKHIPOV ET AL.

Let us denote this category by Hecke(GrG, Ǧ)I
B̌− . Let us also consider the category

Hecke(GrG, Ǧ)I
Ǧ

of Ǧ-equivariant objects of Hecke(GrG, Ǧ)I ; this is canonically equiva-
lent to Perv(GrG)I .

Let us now recall the following general construction. Let N be an object of
Hecke(GrG, Ǧ)I

B̌− . We claim that this gives rise to a functor

QCoh(Ǧ/B̌−) −→ Hecke(GrG, Ǧ)I .

Indeed, given K ∈ QCoh(Ǧ/B̌−), which we will view as a B̌−-equivariant OǦ-module,
consider the tensor product K⊗OǦ

ǦN. This is an object of Hecke(GrG, Ǧ)I , endowed
with an action of B̌−, and we set

K ∗N :=
(
K⊗OǦ N

)B̌−
.

The underlying object of Perv(GrG)I is given by (K ⊗N)B̌
−
.

Suppose now that K is an object of QCoh(Ǧ/B̌−)Ǧ. Then, by construction K ∗ N

belongs to Hecke(GrG, Ǧ)I
Ǧ
	 Perv(GrG)I .

Lemma 3.2.15. The functor N 
→ OǦ/B̌− ∗N : Hecke(GrG, Ǧ)I
B̌− → Perv(GrG)I is the

right adjoint of the forgetful functor

Perv(GrG)I 	 Hecke(GrG, Ǧ)I
Ǧ
−→ Hecke(GrG, Ǧ)I

B̌− .

Note that the functor N 
→ OǦ/B̌− ∗ N : Hecke(GrG, Ǧ)I
B̌− → Perv(GrG)I can be

tautologically rewritten as N 
→ NB̌− . The following is a translation of the Borel–Bott–
Weil theorem:

Proposition 3.2.16. Assume that w̃ is right W -minimal. Then OǦ/B̌− ∗Mw̃ 	W∗,w̃,
and for i > 0,

Ri
(
B̌−,Mw̃

)
= 0.

Proof. The first assertion of the proposition is immediate from Lemma 3.2.14(2). To
prove the second assertion, note that if N is any Artinian B̌−-equivariant object of
Hecke(GrG, Ǧ)I , there exists μ̌ ∈ Λ̌+ large enough so that Ri

(
B̌−,Cμ̌ ⊗ N

)
= 0 for

i > 0. This follows from the fact that the functor of derived B̌−-invariants has a finite
cohomological dimension, and any Artinian object of Hecke(GrG, Ǧ)I

B̌− admits a left
resolution, whose terms are of the form F 
 RǦ ⊗ U where F ∈ Perv(GrG)I , and U is a
finite-dimensional representation of B̌−.

Hence, for a given w ∈ W and λ̌′ ∈ Λ̌+ large enough,

RInv(B̌−,Mw·λ̌′) 	W∗,w·λ̌
′
.

Note that the functor RInv(B̌−, ·) : D(Hecke(GrG, Ǧ)I
B̌−)→ D(GrG)I commutes with

the action of D(FlG)I by convolutions. It suffices to remark that if λ̌′ − λ̌ ∈ Λ̌+, then
Mw·λ̌ 	 j!,w·(λ̌−λ̌′)·w−1 
 Mw·λ̌′ , and if w · λ̌ is right W -minimal, then also Ww·λ̌ 	
j!,w·(λ̌−λ̌′)·w−1 
Ww·λ̌′ . �
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Corollary 3.2.17. Let w̃ ∈ Waff be right maximal with respect to W . Then for i �=
dim(n), Hi(B̌−,Mw̃) = 0, and

Hdim(n)(B̌−,Mw̃) 	W!,w̃·w0 .

Proof. Let w̃ = w · λ̌, and let μ̌ ∈ Λ̌+ be such that w ·(λ̌+ μ̌) is left minimal with respect
to W . Then

H•(B̌−,Mw̃) 	 j!,w·(−μ̌)·w−1 
 H•(B̌−,Mw·(λ̌+μ̌)) 	 j!,w·(−μ̌)·w−1 
W∗,w·(λ̌+μ̌).

The latter is isomorphic to

j!,w̃ 
 δ1,GrG 	W!,w̃·w0 [−dim(n)]. �
Now let · · · → P1 → P0 → CB̌− be a left resolution of the skyscraper on Ǧ/B̌−, as

in Section 3.1.7, where each Pi has the form O(−μ̌i)⊗ U i, where U i are vector spaces.
Let w̃ be w · λ̌. Tensoring by the line bundle O(λ̌′), we can ensure that λ̌ + λ̌′ − μ̌i

are such that w · (λ̌+ λ̌′− μ̌i) is right W -minimal for i = 0, . . . ,dim(n). We obtain that
the complex(

P1 ⊗ O(λ̌′)
) ∗Mw̃ −→ (

P0 ⊗ O(λ̌′)
) ∗Mw̃ −→ CB̌− ∗Mw̃ −→ 0

is exact. However, CB̌− ∗Mw̃ 	Mw̃, and

O(μ̌) ∗Mw·λ̌ 	W∗,w·(μ̌+λ̌),

by Proposition 3.2.16, provided that w · (μ̌+ λ̌) is right W -minimal. Thus, we arrive to
the same conclusion as in Proposition 3.1.8.

3.2.18. Hereditary property. In this subsection we will prove the following:

Theorem 3.2.19. Exti
Hecke(GrG,Ǧ)I0

(D(
•
Mw̃),

•
Mw̃′) = 0 for i > 0 and any w̃, w̃′ ∈ Waff ,

and Hom(D(
•
Mw̃),

•
Mw̃′) is zero if w̃ �= w̃′, and one-dimensional otherwise.

This theorem follows immediately from Theorem 1.3.9 due to the corresponding prop-
erty of baby co-Verma modules over the small quantum group. Here we will discuss a
geometric proof of this fact, which the rest of this subsection is devoted to. In the course
of the proof we will introduce another important object— the Wakimoto sheaf.

Let Hecke(GrG, Ǧ)I
0

B̌
be the category of B̌-equivariant objects in Hecke(GrG, Ǧ)I

0
.

By Proposition 3.2.10, D(Mw̃) is naturally an object of Hecke(GrG, Ǧ)I
0

B̌
.

For w̃ = w · μ̌ consider the following object Wakw̃ of Hecke(GrG, Ǧ)I
0

B̌
. It is defined

as
lim−→
ν̌∈Λ̌

W∗,w·(ν̌+μ̌) 
 RǦ{ν̌},

where the maps in the inductive system, defined for ν̌′ − ν̌ = λ̌ ∈ Λ̌+, are given by

W∗,w·(ν̌+μ̌) 
 RǦ{ν̌} −→W∗,w·(ν̌+μ̌) 
 RǦ{ν̌ + λ̌} ⊗ V λ̌(λ̌)

−→W∗,w·(ν̌+μ̌) 
 Vλ̌ 
 RǦ{ν̌ + λ̌} −→W∗,w·(ν̌+μ̌+λ̌) 
 RǦ{ν̌ + λ̌}.
Note that the forgetful functor Hecke(GrG, Ǧ)I

0

B̌
→ Hecke(GrG, Ǧ)I

0
admits a natural

right adjoint given by N 
→ OB̌ ⊗OǦ
ǦN. Similarly, the functor Hecke(GrG, Ǧ)I

0

B̌
→

•
Hecke(GrG, Ǧ)I

0
admits a right adjoint N 
→ OŇ ⊗OǦ

ǦN.
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Lemma 3.2.20.
Wakw̃ 	 OŇ ⊗OǦ

Ǧ(
•
Mw̃).

Hence, we obtain

Exti•
Hecke(GrG,Ǧ)I0

(D(
•
Mw̃),

•
Mw̃′) 	 Exti

Hecke(GrG,Ǧ)I
0
B̌

(D(Mw̃),Wakw̃
′
).

By the Artinian property and taking into account Corollary 3.2.11, to prove Theo-
rem 3.2.19, it is sufficient to show that

Exti
Hecke(GrG,Ǧ)I

0
B̌

(w0Mw·μ̌,Ww′·(λ̌+μ̌′) 
 RǦ{λ̌}) = 0, (24)

unless i = 0, w′ = w · w0 and μ̌′ = w0(μ̌) + 2ρ̌, whenever λ̌ is deep in Λ̌+.

Lemma 3.2.21. For N ∈ Hecke(GrG, Ǧ)I
0

B̌
and F ∈ Hecke(GrG, Ǧ)I

0
,

RHom
Hecke(GrG,Ǧ)I

0
B̌

(N,F 
 RǦ) 	 RHomHecke(GrG,Ǧ)I0
(
RCoinv(B̌,N),F

)
.

Proof. It is sufficient to prove the assertion in the case when N 	 F1 

•
R⊗U , where U

is a representation of B̌. In this case, it amounts to the following adjunction, which is
a corollary of the Serre duality on Ǧ/B̌:

RHomB̌(U,ResǦB̌(V )) 	 RHomǦ

(
RCoinv(B̌,OǦ ⊗ U), V

)
. �

Lemma 3.2.22. For λ̌ deep in the dominant chamber,

RCoinv
(
B̌, (w0Mw·μ̌){−λ̌}) 	W!,w·w0(λ̌−w0(μ̌)+2ρ̌).

Proof. First,

RCoinv
(
B̌, (w0Mw·μ̌){−λ̌}) 	 RCoinv

(
B̌−,Mw·μ̌{−w0(λ̌)}).

Note that for N ∈ Hecke(GrG, Ǧ)I
0

B̌− ,

RCoinv(B̌−,N) 	 RInv(B̌−,N){2ρ̌}[dim(n)].

Hence, the expression in the lemma is isomorphic to

RInv(B̌−,Mw·μ̌{−w0(λ̌) + 2ρ̌})[dim(n)] 	W!,w·w0·(w0(μ̌)+λ̌+2ρ̌),

by Corollary 3.2.17. �
Thus, we obtain that the expression in (24) is isomorphic to

Exti
Hecke(GrG,Ǧ)I0

(W!,w·w0(λ̌+w0(μ̌)+2ρ̌),W∗,w
′·(μ̌′+λ̌)),

for which the vanishing assertion is manifest.
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3.2.23. An application: two-sided BGG resolution. We will use the geometric interpre-
tation of baby co-Verma modules to prove the following result:

Theorem 3.2.24. There exists an exact complex B∞
2

of objects of
•
Hecke(GrG, Ǧ)I ,

whose nth term is ⊕
w̃∈Waff ,l

∞
2 (w̃)=n

•
Mw̃.

We recall that for w̃ = w · λ̌ ∈ Waff , its semi-infinite length l
∞
2 (w̃) is defined as

l(w · (λ̌+ μ̌))− l(μ̌) for some (or all) large μ̌ ∈ Λ̌+.

Of course, using the equivalence between
•
Hecke(GrG, Ǧ)I and

•
u� - mod, we obtain the

corresponding exact complex consisting of baby co-Verma modules over
•
u�. The rest of

this subsection is devoted to the proof of this theorem.
Let BGrG be the Cousin complex on GrG. That is, this is an exact complex of perverse

sheaves on GrG, living in positive degrees, whose nth term is given by⊕
w̃∈Waff/W,l(w̃)=n

W∗,w̃.

For μ̌ ∈ Λ̌+ consider the complex BGrG 
 IC−w0(μ̌),GrG [l(μ̌)]. This complex is acyclic,
since convolution with IC−w0(μ̌),GrG is an exact functor.

We claim that for μ̌′ = μ̌+ ν̌ with ν̌ ∈ Λ̌+ we have a map of complexes

BGrG 
 IC−w0(μ̌),GrG [l(μ̌)] −→ BGrG 
 IC−w0(μ̌′),GrG [l(μ̌′)].

For w · λ̌ ∈Waff/W , the map

W∗,w·(λ̌+μ̌) 
 IC−w0(μ̌),GrG −→W∗,w·(λ̌+μ̌′) 
 IC−w0(μ̌′),GrG

has been constructed in the definition of the inductive system that defines Mw·λ̌.
To check that this map respects the differential, we must show the following. Let

w̃ = w · λ̌ and w̃′ = w′ · λ̌′ be such that l(w̃′) = l(w̃) + 1, and the orbit I · w̃ is in the
closure of I · w̃′. Then we claim that for μ̌ ∈ Λ̌+, the orbit I · (w · (λ̌ + μ̌)) is in the
closure of I · (w · (λ̌′ + μ̌)), and the square

W∗,w·λ̌ 
 ICμ̌,GrG −−−−→ W∗,w
′·λ̌′ 
 ICμ̌,GrG⏐⏐� ⏐⏐�

W∗,w·(λ̌+μ̌) −−−−→ W∗,w
′·(λ̌′+μ̌)

commutes, where the horizontal arrows are the canonical maps, corresponding to ad-
joining orbits.

Lemma 3.2.25. If I · w̃ ⊂ I · w̃′, then, as elements of Waff , w̃ � w̃′.
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Proof. We need to show that I · w̃FlG ⊂ I · w̃′FlG
, where the subscript FlG means that

we are dealing with an orbit in FlG (vs. GrG).
Since the projection FlG → GrG is proper, there exists some w̃1 ∈ Waff , such that

w̃1 < w̃′, and w̃1 = w̃mod W . We have

l(w̃) � l(w̃1) � l(w̃′)− 1.

Since l(w̃) = l(w̃′)− 1, we obtain that w̃1 = w̃. �
Note that by the lemma, we obtain that w · (λ̌+ μ̌) � w′ · (λ̌′ + μ̌), and hence we do

have a containment
I · (w · (λ̌+ μ̌)) ⊂ I · (w′ · (λ̌′ + μ̌)).

Also, by the lemma, the map W∗,w·λ̌ →W∗,w
′·λ̌′ is obtained from the map

j∗,w·λ̌ → j∗,w′·λ̌′ (25)

by convolving with δ1,GrG . Note that the map j∗,w·(λ̌+μ̌) → j∗,w′·(λ̌′+μ̌) is obtained from
(25) by convolving on the right with j∗,μ̌.

To prove the commutativity of the above diagram, it suffices to notice that the left
vertical arrow is equal to the composition

W∗,w·λ̌ 
 ICμ̌,GrG 	 j∗,w·λ̌ 
 ICμ̌,GrG −→ j∗,w·λ̌ 
W∗,μ̌

	 j∗,w·λ̌ 
 j∗,μ̌ 
 δ1,GrG 	 j∗,w·(λ̌+μ̌) 
 δ1,GrG 	W∗,w·(λ̌+μ̌),

and similarly for the right vertical arrow.

4. Sheaves on semi-infinite flags

4.1. Drinfeld’s spaces and factorization
4.1.1.. Let X be a global curve. Let BunG denote the moduli stack of principal G-
bundles on X . Let us recall the definition of the Drinfeld space BunN− .7

First we define a bigger space Bun
′
N− that classifies the data of a G-bundle PG on

X , and its generalized reduction to N−, i.e., a collection of nonzero maps defined for
each λ ∈ Λ+,

κλ : V λPG −→ OX ,

where V λ is the corresponding Weyl module over G and V λPG is the associated vector
bundle. The collection κλ is required to satisfy the Plücker relations, cf. [FM], [BG].
We will denote by p the tautological projection Bun

′
N− → BunG.

We have a natural action of T on BunN− : an element t ∈ T multiplies each κλ by
λ(t). It is easy to see that the map Bun

′
N−/T → BunG is proper.

If [G,G] is simply-connected, then Bun
′
N− is the sought-for Drinfeld space BunN− .

Otherwise we proceed as follows:

7The exposition in this section substantially relies on the results of [BG], [BFGM], and
[FGV], and a certain familiarity with these papers will be assumed.
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Lemma 4.1.2. Let G1 → G2 be an isogeny, i.e., a homomorphism, whose kernel
is contained in Z(G1) and whose image contains [G2, G2]. Then the natural map
Bun

′
N−(G1)→ Bun

′
N−(G2) is a closed embedding.

Proof. First, it is easy to see that if we have a short exact sequence

1 −→ G′ −→ G −→ T ′ −→ 1,

where T ′ is a torus, then Bun
′
N−(G′) → Bun

′
N−(G) is an isomorphism. This reduces

the assertion of the lemma to the case when G1 → G2 is surjective with finite kernel.
Let k be the index if Λ̌1 in Λ̌2.

Since each of Bun
′
N−(Gi)/Ti, i = 1, 2, is proper over BunGi , the map

Bun
′
N−(G1)/T1 −→ Bun

′
N−(G2)/T2

is proper. Hence, it remains to see that the map Bun
′
N−(G1)→ Bun

′
N−(G2) is injective

on the level of S-points for any base S.
Let (PG2 , {κλ2}) be an S-point of Bun

′
N−(G2), and let (PG1 , {κλ1}) be its lift to a

point of Bun
′
N−(G1). Then the image of κλ1 in V λPG1

is fixed by the condition that

(κλ1 )⊗k = κk·λ2 : V k·λPG1
	 V k·λPG2

−→ OX .

Hence, when PG1 is fixed, any two choices of systems {κλ1} differ by an element of
T1,2 := ker(T1 → T2) 	 ker(G1 → G2). However, two such lifts are isomorphic as points
of Bun

′
N−(G1), via the automorphism of PG1 given by the same element of T1,2.

Finally, if P′G1
is another principal G1-bundle that reduces to G2, there exists a

principal T1,2-bundle PT1,2 , such that P′G1
	 PG1

T1,2× PT1,2 . Then, for every λ as above,

V λP′G1
	 V λPG1

⊗ Pλ̌T1,2
,

where Pλ̌T1,2
is the line bundle associated with PT1,2 and the character λ.

However, the data of κλ1 for V λP′G1
identifies the line subsheaf

(Pλ̌T1,2
)−1 ⊂ (V λ)∗PG1

⊗ (Pλ̌T1,2
)−1

with OX , thereby giving a trivialization of PT1,2 . �
For an arbitrary group G we can find a group G′ with a surjective isogeny G′ → G,

such that (a) ker(G′ → G) is connected, and (b) [G′, G′] is simply connected.
We define BunN− as the image of BunN−(G′) = Bun

′
N−(G′) in Bun

′
N− under

Bun
′
N−(G′) −→ Bun

′
N−(G).

By the above lemma, this is a closed substack of Bun
′
N− , and it is easy to see that it

does not depend on the choice of G′.
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4.1.3. Variants. We fix a point x ∈ X . For a coweight ν̌, let �ν̌Bun
′
N− denote a version

of Bun
′
N− , where we allow each κλ to have a pole at x of order � 〈λ, ν̌〉.

For G′ as above, due to the fact that the kernel of G′ → G is connected, we can find
a preimage ν̌′ of ν̌ in the coweight lattice Λ̌′ of G′, and we define �ν̌BunN− ⊂ �ν̌Bun

′
N−

as the image of �ν̌′Bun
′
N−(G′) under

�ν̌′Bun
′
N−(G′) −→ �ν̌Bun

′
N− . (26)

As in Lemma 4.1.2 one shows that the map in (26) is a closed embedding. Moreover,
its image is easily seen to be independent of the choice of ν̌′ for a fixed G′, and of G′

itself.
If ν̌1 − ν̌2 ∈ Λ̌pos we have a natural closed embedding �ν̌2BunN− ↪→ �ν̌1BunN− . We

define ∞BunN− as
lim−→
ν̌∈Λ̌

(
�ν̌BunN−

)
with respect to the natural ordering on Λ̌ and the above closed embeddings.

By definition, ∞BunN− splits into connected components, numbered by the quotient
of Λ̌ by the coroot lattice.

Let ν̌Bun
′
N− is an open substack of �ν̌Bun

′
N− corresponding to the condition that

each κλ has a pole of order exactly 〈λ, ν̌〉 at x. Set

ν̌BunN− := ν̌Bun
′
N−
⋂

�ν̌BunN− .

One easily shows that ν̌BunN− equals the image of ν̌′Bun
′
N−(G′) under the map of (26).

According to [FGV], a point of ν̌BunN− gives rise to a well defined N−-torsor over
the formal neighborhood of x in X . By considering trivializations of this torsor, we
obtain that over ν̌BunN− there exists a canonical N−[[t]]-torsor, which we will denote
by ν̌N. We will denote by k

ν̌N the induced N−([t]/tk)-torsor.
We will denote by i�ν̌ (respectively, iν̌) the closed (respectively, locally closed) em-

bedding of �ν̌BunN− (respectively, ν̌BunN−) into ∞BunN− . We have

ν̌BunN− = �ν̌BunN− −
⋃
ν̌1<ν̌

�ν̌1BunN− .

We let ν̌ BunN− denote the open substack of ν̌BunN− , where we demand that the
maps κλ have no zeros away from x. This substack is isomorphic to BunB− ×

BunT
pt,

where the map pt → BunT corresponds to the point P0
T (ν̌ · x). We will denote by iν

the locally closed embedding of ν̌ BunN− into ∞BunN− ; by [FGV, Section 3.3], the
morphism iν is affine.

Let x′ := x′1, . . . , x
′
m be a collection of points onX , distinct from x. Let∞Bun

n.z.x′

N− be
the open substack of ∞BunN− defined by the condition that the maps κλ have no zeros
at x′1, . . . , x

′
m. As in [FGV, Section 3.2], one shows that over ∞Bun

n.z.x′

N− there exists a
natural torsor with respect to the group-scheme

∏
j=1,...,mN

−[[t′j ]], denoted Nx′ , where
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t′j is a local coordinate at x′j . Moreover, Nx′ carries an action of the group-indscheme∏
j=1,...,mN

−((t′j)).
For an integer k let k BunG denote the principal Gk-bundle over BunG corresponding

to choosing a structure of level k at x in a G-bundle. We will denote by k
∞BunN− the

Cartesian product ∞BunN− ×BunG
k BunG.

We will denote by k
�ν̌BunN− , kν̌BunN− , kν̌ BunN− the corresponding stacks obtained

by base change. By a slight abuse of notation, we will use the symbols i�ν̌ , iν̌ and iν̌
for the embeddings of these stacks into k

∞BunN− . Similary, we introduce the stacks
k
∞Bun

n.z.x′

N− , kNx′ as Cartesian products.
Note that there is a natural isomorphism

k
ν̌BunN− 	 G([t]/tk)

N−([t]/tk)× k
ν̌N. (27)

In particular, we obtain a natural map

evν̌ : kν̌BunN− →
(
G/N−

)
([t]/tk)→ (

G/B−
)
([t]/tk).

The restriction of this map to k
ν̌ BunN , denoted evν̌ , is smooth.

4.1.4.. For μ̌ ∈ Λ̌ let Bunμ̌B be the corresponding connected component of BunB. We
recall that Bunμ̌B can be interpreted as the stack classifying the data of a principal G-
bundle PG on X , a T -bundle PT , such that each associated line bundle PλT has degree
−〈λ, μ̌〉, and a collection of bundle maps

κλ,− : PλT −→ V λPG ,

defined for λ ∈ Λ+, which satisfy the Plücker relations. (Here PλT denoted the line
bundle associated with PT and the character λ : T → Gm.)

Note that if μ̌ is such that 〈α, μ̌〉 > (2g − 2) for all positive roots α, then the map
pμ̌,− : Bunμ̌B− → BunG is smooth.

Consider the Cartesian product ∞BunN− ×BunG Bunμ̌B. We will denote by ∞Zμ̌ the
corresponding Zastava space, i.e., the open substack of the above Cartesian product,
defined by the condition that the reductions to N− and B are transversal at the generic
point of the curve. This means that the composed maps

PλT
κλ,−−→ V λPG

κλ−→ OX

are nonzero for all λ ∈ Λ+.
We will denote by k

∞Zμ̌ the stack obtained by adding a structure of level k to the
G-bundle PG at x. All of the above stacks are acted on by the group T .

Let us denote by k
�ν̌Z

μ̌ (respectively, kν̌Z
μ̌, kZμ̌) the preimage in k

∞Zμ̌ of the substack
k
�ν̌BunN− (respectively, kν̌BunN− , kBunN− = k

�0BunN−) of k∞BunN− . Note that k
�ν̌Z

μ̌

is empty unless ν̌ + μ̌ ∈ Λ̌pos. By k
ν̌

◦
Zμ̌ we will denote the open substack of kν̌Zμ̌ equal to

the preimage of kν̌ BunN− .



326 S. ARKHIPOV ET AL.

For μ̌ ∈ Λ̌pos, let X μ̌ be the corresponding partially symmetrized power of the curve.
By definition, X μ̌ classifies the data of a principal T -bundle PT and its generic trivi-
alization, such that for λ ∈ Λ+ the resulting maps PλT → OX are all regular and the
divisor of zeros has degree 〈λ, μ̌〉.

For ν̌ ∈ Λ̌, let �ν̌X μ̌ be a version of X μ̌, where the maps PλT → OX are allowed to
have poles at x of order � 〈λ, ν̌〉 for λ ∈ Λ+. This space is empty unless μ̌+ ν̌ ∈ Λ̌pos.
If ν̌1 − ν̌2 ∈ Λpos we have a natural closed embedding

�ν̌2X
μ̌ ↪→ �ν̌2X

μ̌.

We define ∞X μ̌ as the ind-scheme

∞X μ̌ = lim−→
ν̌∈Λ̌

(
�ν̌X μ̌

)
with respect to the usual ordering on Λ̌ and the above closed embeddings. This space
also splits into connected components numbered by the quotient of Λ̌ by the coroot
lattice.

By construction, we have a natural map

∞sμ̌ : ∞Zμ̌ −→ ∞X μ̌.

We will denote the restriction of ∞sμ̌ to �ν̌Zμ̌ (respectively, Zμ̌ = �0Z
μ̌) by �ν̌sμ̌

(respectively, sμ̌). Note that �ν̌sμ̌ maps to �ν̌X μ̌.
We will denote by k

∞sμ̌ the composition of ∞sμ̌ and the forgetful map k
∞Zμ̌ → ∞Zμ̌,

and similarly for k�ν̌s
μ̌, ksμ̌.

Let
◦
X denote the open curve X − x, and let

◦
X μ̌ be the corresponding open subset

of X μ̌. For μ̌1, μ̌2 we will denote by
( ◦
X μ̌1 ×∞X μ̌2

)
disj

the open subset in the product
◦
X μ̌1×∞X μ̌2 , corresponding to the condition that the two divisors have disjoint support.

As in [BFGM], we have

Lemma 4.1.5. For μ̌1 + μ̌2 = μ̌ there exist natural isomorphisms

k
∞Zμ̌ ×

∞Xμ̌

( ◦
X μ̌1 ×∞X μ̌2

)
disj
	 (Zμ̌1 × k

∞Zμ̌2
) ×
Xμ̌1×∞Xμ̌2

( ◦
X μ̌1 ×∞X μ̌2

)
disj
.

Let x′ be any point of the curve, and for μ̌ ∈ Λ̌pos, let μ̌ · x′ be the corresponding

element of
◦
X μ̌. Then, by [BFGM], we have

(sμ̌)−1(μ̌ · x′) 	 (N((t′)) · μ̌) ∩ (N−((t′)) · 1GrG), (28)

where t′ is a local coordinate at x′.
In the same way we obtain that for an arbitrary element μ̌ ∈ Λ̌ and the point

μ̌ · x ∈ ∞X μ̌,

k
∞Fμ̌ := (k∞sμ̌)−1(μ̌ · x) 	 (N((t)) · μ̌) ×

GrG
G((t))/Gk. (29)
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4.1.6.. For an integer m, let Jets+(T )m be the group-scheme over X(m), whose fiber
over a divisor

∑
mj · xj , where the points xj are distinct, is

∏
j T [[t′j]]. More precisely,

for a test-scheme S and an S-point ϕ of X(m) its lift to an S-point of Jets+(T )m is an
X(m)-map

Γ̂ϕ −→ T,

where Γ̂ϕ ⊂ S × X is the formal neighborhood of the preimage Γϕ of the incidence
divisor in X(m) ×X under ϕ× id.

If μ̌, ν̌ ∈ Λ̌ are two elements with μ̌+ ν̌ ∈ Λ̌pos, we have a natural map �ν̌X μ̌ → X(m),
where m = l(μ̌+ ν̌), and let �ν̌ Jets+(T )μ̌ be the resulting group-scheme on �ν̌X μ̌.

Proposition–Construction 4.1.7. The group-scheme �ν̌ Jets+(T )μ̌ acts naturally on
�ν̌Zμ̌.

Proof. To simplify the notation, we will assume that ν̌ = 0, and we will work with the
“usual” Zastava space Zμ̌.

According to [BFGM, Section 2], given an S-point of Zμ̌, the resulting G-bundle PG
on S × X acquires a trivialization on S ×X − Γϕ, where ϕ is the composition of the
initial map to Zμ̌ and

Zμ̌ −→ X μ̌ −→ X(m).

As usual in this situation, given a map gS : Γ̂ϕ → G, we can produce a new G-bundle
P′G, by declaring it to be the same as PG on S×X−Γϕ and Γ̂ϕ and changing the gluing
data on the formal punctured neighborhood of Γϕ by means of gS .

If gS was a map Γ̂ϕ → T , then the data of κλ and κλ,− for PG give rise to well defined
data of (κλ)′ and (κλ,−)′ for P′G. Thus, we obtain a new point of Zμ̌. �

Note that �ν̌ Jets+(T )μ̌ contains as a direct factor, the constant group-subscheme
with fiber T . Its action on �ν̌Zμ̌ coincides with the “global” one, mentioned above.

Let us consider now k
�ν̌Z

μ̌. One can show that the above action of �ν̌ Jets+(T )μ̌

on �ν̌Zμ̌ does not lift to an action of k�ν̌Z
μ̌. However, we do have an action fiberwise

over each point of �ν̌X μ̌. For example, the action of T [[t]] on k
μ̌F

μ̌ is given in terms of
isomorphism

k
μ̌F

μ̌ 	 (N((t)) · μ̌ ∩ (N−((t′)) · (−ν̌))) ×
GrG

G((t))/Gk,

by the natural action of T ((t)) on G((t)) by left multiplication.
We will use the following construction. Let us choose an identification T 	 Gr

m, and
a point y ∈ X − x. For a string of positive integers m = m1, . . . ,mr, consider the
affine space consisting of r-tuples of functions (X − y) → A1, whose value at x is 1,
and the pole of the ith function at y is of order � mi. We will denote this space by
Maps(X,T )m.

The Abel–Jacobi map gives rise to a morphism Maps(X,T )m →
◦
Xm :=

∏
i

◦
X(mi),

and we have a natural morphism

(
Maps(X,T )m ×X) ×

◦
Xm×X

( ◦
Xm ×X)

disj
−→ T,
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where
( ◦
Xm×X)

disj
⊂
◦
Xm×X has the same meaning as before–the complement to the

incidence divisor. (This morphism explains the notation Maps(X,T )m for the above
scheme.)

Proposition–Construction 4.1.8. We have a natural map

actT :
(
Maps(X,T )m × k

�ν̌Z
μ̌
) ×
◦
Xm×�ν̌Xμ̌

( ◦
Xm × �ν̌X μ̌

)
disj
−→ k

�ν̌Z
μ̌.

Proof. We retain the notation from the proof of the previous proposition–construction.
The difference now is that the map gS is defined on a Zariski-open of S×X that contains
Γϕ and S × x. In particular, the restrictions of PG and P′G to the formal neighborhood
of x are identified. Hence, P′G is also equipped with a structure of level k at x. �

4.2. A category of perverse sheaves

4.2.1.. For an integer k we define the category Perv
(
Fl
∞
2
)
Gk to be the full subcategory

of the category of T -equivariant perverse sheaves on k
∞BunN− , consisting of objects

satisfying the following three properties:

(1) For a finite collection x = x′1, . . . , x
′
m of points on X distinct from x, the pull-back

of F to kNx′ is equivariant with respect to the group-indscheme
∏
j=1,...,mN

−((t′j)).
(2) The factorization property.
We say that a perverse sheaf F on k

∞BunN− is factorizable if for any μ̌1, μ̌2, satisfying
〈α, μ̌i〉 > (2g − 2) and μ̌2 − μ̌1 ∈ Λ̌pos, the retsriction of the pull-back p−,μ̌2∗(F) onto
the left-hand side of

k
∞Zμ̌2 ×

∞Xμ̌2

( ◦
X μ̌2−μ̌1×∞X μ̌1

)
disj
	 (Zμ̌2−μ̌1×k∞Zμ̌1

) ×
Xμ̌2−μ̌1×∞Xμ̌1

( ◦
X μ̌2−μ̌1×∞X μ̌1

)
disj

is isomorphic (up to a cohomological shift by the corresponding relative dimensions) to
the restriction onto the right-hand side of the external product

ICZμ̌2−μ̌1 � p−,μ̌1∗(F).

(Note that both complexes in question are perverse sheaves, since the maps p−,μ̌i ,
i = 1, 2, are smooth by assumption.)

(3) If F is supported on k
�ν̌BunN− , then for μ̌ ∈ Λ, satisfying 〈α, μ̌〉 > (2g − 2), the

pull-back of F on k
�ν̌Z

μ̌ is Maps(X,T )m-equivariant for any m. The latter means that
there exists an isomorphism between two pull-backs of (pμ̌,−)∗(F)|k

�ν̌Zμ̌ to

(
Maps(X,T )m × k

�ν̌Z
μ̌
) ×
◦
Xm×�ν̌Xμ̌

( ◦
Xm × �ν̌X μ̌

)
disj
,

which induces the identity map on the further restriction of both sides to the unit point
of Maps(X,T )m.
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Remark 4.2.2. As we shall see, imposing property (1) is in fact superfluous, i.e., it fol-
lows formally from the factorization property (2). In addition, some portion of property
(2) follows from (1).

In addition, if k = 1 (which is the main case of interest for this paper), property (3)
follows automatically.8

In general, we shall see that property (3) is equivalent to imposing the condition that
either the ∗- or !-restriction of pμ̌,−∗(F)|k

�ν̌Zμ̌ to k
μ̌F

μ̌ is T [[t]]-equivariant.

In the sequel we will formulate a conjecture, from which it follows that the category
Perv

(
Fl
∞
2
)
Gk is independent of the curve X , and possesses the symmetries expected

from “the category of Gk-equivariant sheaves on Fl
∞
2 := G((t))/N−((t)) · T [[t]]”, in

particular, it will carry an action of the lattice Λ̌ 	 T ((t))/T [[t]] by translation functors.

4.2.3.. Our present goal is to describe the irreducibles in Perv
(
Fl
∞
2
)
Gk . Recall the

isomorphism (27), which realizes kν̌BunN− as a fibration over the base G/N−([t]/tk) with
typical fiber k

ν̌N. (In fact, kν̌BunN− is a principal N−([t]/tk)-bundle over the product
G/N−([t]/tk)× ν̌BunN− .)

In particular, for a perverse sheaf F′ on
(
G/N−

)
([t]/tk), we can form the twisted

external product
F′ �̃ ICk

ν̌N ∈ Perv(kν̌BunN−).

Up to a cohomological shift, it is isomorphic to the pull-back of

F′ � IC
ν̌BunN−

∈ Perv(G/N−([t]/tk)× ν̌BunN−).

Proposition 4.2.4.

(1) For F ∈ Perv
(
Fl
∞
2
)
Gk , all perverse cohomologies of the restriction i

∗
ν̌(F) are of

the form F′ �̃ ICk
ν̌N, where F′ is a perverse sheaf on

(
G/N−

)
([t]/tk), that comes

as a pull-back from a perverse sheaf on
(
G/B−

)
([t]/tk).

(2) The perverse sheaf (respectively, each perverse cohomology of) (iν̌)!∗(F′ �̃ ICk
ν̌N)

(respectively, (iν̌)!(F′ �̃ ICk
ν̌N)) for F′ as above is an object of Perv

(
Fl
∞
2
)
Gk .

(3) The irreducible objects of Perv
(
Fl
∞
2
)
Gk are in bijection with perverse sheaves of

the form (iν̌)!∗(F′ �̃ ICk
ν̌N) for those F′ as above that are irreducible.

The rest of this subsection is devoted to the proof of the proposition. Note, however,
that point (3) is a formal corollary of points (1) and (2).

The factorization isomorphisms of Lemma 4.1.5 respect the substacks kν̌
◦
Zμ̌, kν̌Zμ̌, k�ν̌Z

μ̌

of k∞Zμ̌. Hence, it makes sense to introduce the category ′ν̌Perv
(
Fl
∞
2
)
Gk , which is a full

subcategory of Perv
(
k
ν̌BunN−

)
, consisting of objects satisfying the same conditions (1),

(2), and (3) as in the definition of Perv
(
Fl
∞
2
)
Gk .

It is clear that for F1 ∈ Perv
(
Fl
∞
2
)
Gk , the perverse cohomologies of the restric-

tion i
∗
ν̌(F1) are objects of ′ν̌Perv

(
Fl
∞
2
)
Gk , and vice versa: for F2 ∈ ′νPerv

(
Fl
∞
2
)
Gk ,

8We remark also that property (3) has to do with the fact that our category Perv
(
Fl
∞
2
)Gk

models perverse sheaves on G((t))/N−((t)) · T [[t]] rather than on G((t))/N−((t)).
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the perverse sheaf (respectively, each perverse cohomology of) (iν̌)!∗(F2) (respectively,
(iν̌)!(F′2)) belongs to Perv

(
Fl
∞
2
)
Gk .

Therefore, the assertion of the proposition reduces to showing that the functor F′ 
→
F′ �̃ IC

ν̌BunN−
defines an equivalence

Perv
(
(G/B−)([t]/tk)

) −→ ′
νPerv

(
Fl
∞
2
)
Gk .

First, we claim that every object of ′νPerv
(
Fl
∞
2
)
Gk is the Goresky–MacPherson ex-

tension of its restriction to the open substack ν̌ BunN . Indeed, if it were not, we would
be able to find μ̌1 and μ̌2 large enough, so that either the !- or ∗-restriction of F to the
closed substack ((

Zμ̌1 −
◦
Zμ̌1

)× k
∞Zμ̌2

) ×
Xμ̌1×∞Xμ̌1

( ◦
X μ̌2 ×∞X μ̌2

)
disj

would have nonzero perverse cohomologies in positive (respectively, negative) degrees.
However, this contradicts the factorizability property (2).

Let us denote by ν̌Perv
(
Fl
∞
2
)
Gk the corresponding full subcategory of Perv

(
k
ν̌ BunN−

)
consisting of perverse sheaves, satisfying (1) and (3). We are reduced to showing that

F′ 
→ F′ �̃ IC
ν̌Nk : Perv

(
(G/B−)([t]/tk)

) −→ νPerv
(
Fl
∞
2
)
Gk

is an equivalence. Note that the latter functor is isomorphic, up to a cohomological
shift, to the pull-back functor under the smooth map

k
ν̌ BunN−

evν̌−→ (
G/N−

)
([t]/tk) −→ (

G/B−
)
([t]/tk). (30)

The fact that the functor in question is fully faithful is clear, since the map in (30)
has connected fibers. Hence, it remains to show the essential surjectivity.

First, let us show that any F ∈ Perv
(
k
ν̌ BunN−

)
is the pull-back under evν̌ of some

perverse sheaf F′ on
(
G/N

)
([t]/tk).

For any nonempty collection of points x′, distinct from x, consider the pull-back
of F to k

ν̌ BunN− ×
k
ν̌BunN−

kNx′ . By property (1), it is equivariant with respect to the

group-indscheme
∏
j=1,...,mN

−((t′j)).
This implies our assertion, since the above group-indscheme acts transitively along

the fibers of the composed map

k
ν̌ BunN− ×

k
ν̌BunN−

kNx′ −→ (
G/N−

)
([t]/tk). (31)

Thus, it remains to show that condition (3) on F implies that the perverse sheaf F′

on
(
G/N−

)
([t]/tk) comes as a pull-back from a perverse sheaf on

(
G/B−

)
([t]/tk). That

is, we have to show that F′ is equivariant with respect to T ([t]/tk). Note that the equiv-
ariance with respect to the subgroup T ⊂ T ([t]/tk) follows from the assumption that
F on k

ν̌ BunN− was T -equivariant. Thus, it remains to check the equivarince property
with respect to the unipotent subgroup ker

(
T ([t]/tk)→ T

)
.
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For μ̌ such that μ̌+ ν̌ ∈ Λ̌pos, consider the composed map

k
ν̌

◦
Fμ̌ −→ (

G/N−
)
([t]/tk), (32)

where k
ν̌

◦
Fμ̌ is the fiber of kν̌

◦
Zμ̌ over μ̌ · x ∈ ∞X μ̌. The above map is equivariant with

respect to T [[t]] acting on the two sides. Moreover, it is surjective if μ̌ was chosen large
enough.

Let k′ � k be such that the action of T [[t]] on k
ν̌

◦
Fμ̌ factors through T ([t]/tk

′
). Let m

be large enough, so that the map Maps(X,T )m → T ([t]/tk
′
), given by Taylor expansion

at x, is surjective.

Property (3) for this m implies then that the restriction of F to k
ν̌

◦
Fμ̌ is T ([t]/tk

′
)-

equivariant. This implies that F′ is also equivariant with respect to this group.

4.2.5.. We will now investigate the mutual dependence of conditions (1) and (2). For a

natural number m consider the product
◦
Xm × k

∞BunN− , and let
( ◦
Xm × k

∞BunN−
)n.z.

denote the open subset, corresponding to the condition that the zeros of the maps κλ

are away from the m marked points of Xm. In other words, the fiber of this space over

a given x′ ∈
◦
Xm is the stack that we denoted by k

∞Bun
n.z.x′

N− .
Over Xm we have a group-scheme, denoted Jets+(N−)m, whose fiver over x′ =

{x′1, . . . , x′m} is
∏
N−[[t′j ]], where the product is taken over distinct points among the

x′i’s. In addition, we have a group-indscheme, denoted Jets(N−)m, whose fiber over the
same collection of points is

∏
N−((t′j)). Since N− is unipotent, this group-indscheme

can be represented as a union of its closed group-subschemes.
Finally, over

(
Xm×k∞BunN−

)n.z. there exists a canonical Jets+(N−)m-torsor, which
we will denote by kNm. The action of Jets+(N−)m on kNm extends to an action of
Jets(N−)m.

Lemma 4.2.6. Let F be a perverse sheaf on k
∞BunN− , which satisfies property (1) of

Section 4.2.1. Then the pull-back of F to kNm is equivariant with respect to Jets(N−)m.

This follows from the fact “fiberwise equivariance” implies “equivariance” for a unipo-
tent group-scheme.

Remark 4.2.7. Arguing as in [FGV, Section 6.2], one can show that condition (1) is
equivalent to the following, seemingly weaker, condition. Namely, it is sufficient to
impose the N−((t′))-equivariance condition for just one fixed point x′ distinct from x.

Let us say that a perverse sheaf F on k∞BunN− has a weak factorization proper-
ty if, in the notation of Section 4.2.1, the isomorphism between p−,μ̌2∗(F) and
ICZμ̌2−μ̌1 � p−,μ̌1∗(F) holds over the open subset

(◦
Zμ̌2−μ̌1 × k

∞Zμ̌1
) ×
Xμ̌2−μ̌1×∞Xμ̌1

( ◦
X μ̌2−μ̌1 ×∞X μ̌1

)
disj
.

Since
◦
Zμ̌2−μ̌1 is smooth, this condition is equivalent to the restriction of p−,μ̌2∗(F) to

the above open subset being constant along the first factor.
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Proposition 4.2.8. For a perverse sheaf F on k
∞BunN− , property (1) is equivalent to

the weak factorization property.

Before giving a proof let us make the following observation: we have two maps

←
hN− ,

→
hN− : Jets(N−)m

Jets+(N−)m× kNm −→ k
∞BunN− ,

the first being the tautological projection, and the second is given by the action of
Jets(N−)m on kNm. If μ̌1, μ̌2 ∈ Λ̌ are two elements, with μ̌2 − μ̌1 ∈ Λ̌pos such that

m = l(μ̌2 − μ̌1) there is a natural projection
◦
Xm →

◦
X μ̌2−μ̌1 and a map

(◦
Zμ̌2−μ̌1 × k

∞Zμ̌1
) ×
Xμ̌2−μ̌1×∞Xμ̌1

( ◦
X μ̌2−μ̌1 ×∞X μ̌1

)
disj

×
◦
Xμ̌2−μ̌1

◦
Xm

−→ Jets(N)m
Jets+(N)m× kNm, (33)

such that its composition with
←
hN is the projection( ◦

Zμ̌2−μ̌1×k∞Zμ̌1

)
×

Xμ̌2−μ̌1×∞Xμ̌1

( ◦
X μ̌2−μ̌1×∞X μ̌1

)
disj

×
◦
Xμ̌2−μ̌1

◦
Xm → k

∞Zμ̌1 −→ k
∞BunN− ,

and its composition with
→
hN identifies via Lemma 4.1.5 with

k
∞Zμ̌2 ×

∞Xμ̌2

( ◦
X μ̌2−μ̌1 ×∞X μ̌1

)
disj

×
◦
Xμ̌2−μ̌1

◦
Xm → k

∞Zμ̌2 −→ k
∞BunN− .

Now let us prove the proposition.

Proof. Assume first that F satisfies property (1) and, hence, by Proposition 4.2.6, its

pull-back to kNm is Jets(N−)m-equivariant. We obtain that the restrictions of
←
h∗N−(F)

and
→
h∗N−(F) to any finite-dimensional subscheme of Jets(N−)m

Jets+(N−)m× kNm are
isomorphic. Then the weak factorizability of F follows from the properties of the map
from (33) above.

To prove the implication in the opposite direction, we reverse the steps. We have
to show that for a given finite collection of distinct points x′ = {x′1, . . . , x′m}, the

restrictions of
←
hN− and

→
hN− to the fiber of Jets(N−)m

Jets+(N−)m× kNm over x′ ∈
Xm are isomorphic over every finite-dimensional subscheme of this ind-scheme. Since
each N−((t′j)) is a union of pro-unipotent subgroups, it is sufficient to show that the
isomorphism holds after the base change with respect to(

k
∞Zμ̌ ×

∞Xμ̌
∞(X − x′)μ̌

)
−→ k

∞BunN−

for μ̌ large enough.
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Note that the above fiber, base-changed to k
∞Zμ̌, is isomorphic to(

k
∞Zμ̌ ×

∞Xμ̌
∞(X − x′)μ̌)×∏

j

(
N−((t′j)) · 1GrG

)
.

Our assertion follows now from (28), since N−((t′j)) ·1GrG can be exhausted by affine
subspaces, each of which contains as a dense subset the intersection(

N((t′j)) · μ̌′
) ∩ (N−((t′j)) · 1GrG

)
for some μ̌′. �

As a corollary of the first assertion of the proposition, we obtain the following:

Corollary 4.2.9. Let 0 → F1 → F → F2 → 0 be a short exact sequence of objects
of Perv(k∞BunN−)T , with F1,F2 satisfying properties (1) and (2) of the definition of
Perv

(
Fl
∞
2
)
Gk . Then F also satisfies properties (1) and (2).

Proof. Since the group N−((t′)) is (ind)-pro-unipotent, the only non-trivial condition
to check is the factorizability property. For F as above, its pull-back to

k
∞Zμ̌2 ×

∞Xμ̌2

( ◦
X μ̌2−μ̌1×∞X μ̌1

)
disj
	 (Zμ̌2−μ̌1×k∞Zμ̌1

) ×
Xμ̌2−μ̌1×∞Xμ̌1

( ◦
X μ̌2−μ̌1×∞X μ̌1

)
disj

is the Goresky–MacPherson extension from the open subspace

(◦
Zμ̌2−μ̌1 × k

∞Zμ̌1
) ×
Xμ̌2−μ̌1×∞Xμ̌1

( ◦
X μ̌2−μ̌1 ×∞X μ̌1

)
disj
.

However, the latter is constant along the
◦
Zμ̌2−μ̌1 -factor because of property (1),

Lemma 4.2.6, and Proposition 4.2.8. Along the k∞Zμ̌1 factor it is isomorphic to p−,μ̌1∗(F)
as follows from the existence of the map in (33). �
4.2.10.. Our present goal is to establish the following:

Proposition 4.2.11. The category Perv
(
Fl
∞
2
)
Gk , as a subcategory of the category of

T -equivariant perverse sheaves on k∞BunN− , is stable under extensions.

The rest of the present subsection is devoted to this proposition. In view of Corol-
lary 4.2.9, we have to show that if 0→ F1 → F → F2 → 0 is a short exact sequence in
Perv(k∞BunN−)T with F1,F2 ∈ Perv

(
Fl
∞
2
)
Gk , then F satisfies property (3).

Consider the pull-back

act∗T
(
(p−,μ̌)∗(F)

) ∈ Perv

((
Maps(X,T )m × k

�ν̌Z
μ̌
) ×
◦
Xm×�ν̌Xμ̌

( ◦
Xm × �ν̌X μ̌

)
disj

)
.

Since Maps(X,T )m is isomorphic to the affine space, it is sufficient to show that
the restriction of the above pull-back to the fiber over every geometric point z :=
(PG, {κλ}, {κλ,−}) ∈ k

∞Zμ̌ is a complex with constant cohomologies.
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By the factorization property, it is sufficient to consider the case when the point
k∞sμ̌(z) ∈ ∞X μ̌ equals μ̌ · x. In this case, the map act∗T factors through the action of
ker(T [[t]]→ T ) on k

∞Fμ̌.
Hence, it is sufficient to check that the restriction of F to k∞Fμ̌ is ker(T [[t]] → T )-

equivariant. But the above restriction is an extension of the restrictions of F1 and
F2. Since for m′ large enough the map Maps(X,T )m

′ → ker(T [[t]] → T ) is surjective
with connected fibers, the fact that F1 and F2 satisfy property (3) implies that their
restrictions to k

∞Fμ̌ are ker(T [[t]] → T )-equivariant. This proves our assertion, since
ker(T [[t]] → T ) is pro-unipotent, and hence the equivariance property is stable under
extensions.

Thus, Proposition 4.2.11 is proved. As a by-product we obtain the following alterna-
tive way to spell out condition (3):

Corollary 4.2.12. Let F ∈ Perv(k∞BunN−)T be a perverse sheaf, satisfying properties
(1) and (2) from the definition of Perv

(
Fl
∞
2
)
Gk . Then following are equivalent:

(1) F also satisfies property (3);
(2) the ∗- (or !-) restrictions of F to every k

ν̌ BunN− are such that their perverse
cohomologies are pull-backs from T ([t]/tk)-equivariant perverse sheaves on
G/N−([t]/tk);

(3) the ∗- (or !-) restrictions of (pμ̌,−)∗(F) to every k
∞Fμ̌ are T [[t]]-equivariant.

4.2.13.. Recall that for ν̌ ∈ Λ̌, we have introduced the category

′
ν̌Perv

(
Fl
∞
2
)
Gk ⊂ Perv(kν̌BunN−),

which is equivalent to
ν̌Perv

(
Fl
∞
2
)
Gk ⊂ Perv(kν̌ BunN ).

Proposition 4.2.14. Let F′ ∈ ′ν̌Perv
(
Fl
∞
2
)
Gk be such that (iν̌)!(F′) is a perverse sheaf.

Then, for F ∈ Perv
(
Fl
∞
2
)
Gk , the canonical map

Ext1k∞BunN−

(
(iν̌)!(F′),F

)→ Ext1k∞BunN−

(
(iν̌)!(F′),F

)
is an isomorphism.

Note that due to Proposition 4.2.11, the above proposition can be reformulated as
follows:

Ext1
Perv
(
Fl
∞
2
)
Gk

(
(iν̌)!(F′),F

) 	 R1 Homk
ν̌ BunN

(
F′, i!ν̌(F)

)
.

Proof. The fact that the map in question is injective is evident, since (iν̌)!(F′) surjects
onto (iν̌)!(F′), and F has no sub-objects supported on k

ν̌BunN− − k
ν̌ BunN− .

To prove the surjectivity we can replace k∞BunN− by its open substack k
�ν̌BunN− ,

which is obtained by removing from k∞BunN− all k�ν̌′BunN− for ν̌′ < ν̌. Evidently,
k
ν̌BunN− is closed in k

�ν̌BunN− .
Let

0 −→ F −→ F1 −→ (iν̌)!(F′) −→ 0
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be an extension. We have to show that it is induced from an extension of (iν̌)!(F′)
by F. Let F̃1 be the perverse sheaf on k

�ν̌BunN− obtained as a Goresky–MacPherson
extension of the restriction of F1 to the open substack

k
�ν̌BunN− − (kν̌BunN− − k

ν̌ BunN−).

We claim that F̃1 is the desired extension. Namely, we have the maps

F ↪→ F̃1 � (iν̌)!(F′),

and we claim that this is a short exact sequence.
To check this, by Proposition 4.2.4(3), it is enough to show that F̃1 is an object

of the corresponding category �ν̌Perv
(
Fl
∞
2
)
Gk . However, properties (1) and (3) are

automatic, and the factorization property (2) follows by combining Proposition 4.2.8
and the definition of the Goresky–MacPherson extension. �

The 5-lemma yields

Corollary 4.2.15. For F as in the proposition, the natural map

Ext2
Perv
(
Fl
∞
2
)
Gk

(
(iν̌)!(F′),F

) −→ R2 Homk
ν̌ BunN

(
F′, i!ν̌(F)

)
is injective.

Remark 4.2.16. From Proposition 4.2.14 one can formally deduce that the maps

Exti
Perv
(
Fl
∞
2
)
Gk

(
(iν̌)!(F′),F

) −→ RiHomk
ν̌ BunN

(
F′, i!ν̌(F)

)
are isomorphisms for all i.

4.3. The spherical case

4.3.1.. Let Perv
(
Fl
∞
2
)
G[[t]] denote Perv

(
Fl
∞
2
)
Gk for k = 0; this is a full subcategory in

∞BunN− . For ν̌ ∈ Λ̌ we will denote by ICν̌ the corresponding irreducible, i.e.,

ICν̌ 	 (iν̌)!∗(ICν̌ BunN ) 	 (iν̌)!∗(IC
ν̌BunN−

).

These are the irreducible objects of Perv
(
Fl
∞
2
)
G[[t]].

Proposition 4.3.2. The category Perv
(
Fl
∞
2
)
G[[t]] is semisimple.

Proof. It would be enough to show that if ICν̌1 and ICν̌2 are two simple objects of
Perv

(
Fl
∞
2
)
G[[t]], whose support is contained in some �ν̌BunN− , then over some open

substack of �ν̌BunN− , Ext1(ICν̌1 , ICν̌2) is zero.
Let ν̌1, ν̌2 be two elements of Λ̌. In order for Ext1(ICν̌1 , ICν̌2) to be nontrivial , the

support of one sheaf must be contained in the closure of the support of the other. This
means that either ν̌1 � ν̌2 or ν̌2 � ν̌1. By Verdier duality we can assume that ν̌1 � ν̌2.

Consider the open substack of �ν̌2BunN− obtained by removing the closed substack
�ν̌1BunN− − ν̌1 BunN . As in [FGV, Section 6.1.4],

Ext1
�ν̌2BunN−

(ICν̌1 , ICν̌2) ↪→ Ext1
�ν̌2BunN−−(�ν̌1BunN−−ν̌1 BunN )

(ICν̌1 , ICν̌2),
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so it is enough to show that the latter is 0. Since

ν̌1 BunN ⊂ �ν̌2BunN− − (�ν̌1BunN− − ν̌1 BunN )

is closed, the latter Ext1 is isomorphic to

R1 Hom
ν̌1 BunN

(
IC

ν̌1 BunN , i
!
ν̌1(IC ν̌2 BunN )

)
.

There are two cases: if ν̌1 < ν̌2, then we are done by [BFGM], since i!ν̌1(ICν̌2 BunN )
lives in the cohomological degrees � 2.

If ν̌ = ν̌1 = ν̌2, then the assertion follows from the fact that ν̌ BunN is simply-
connected, cf. [FGV, Section 6]. �
4.3.3.. Consider the object of D(∞BunN−) equal to (iν̌)!(IC

ν̌BunN−
). This is a complex

that lives in nonpositive cohomological degrees, and each of its perverse cohomologies
is an object of Perv

(
Fl
∞
2
)
G[[t]], by Proposition 4.2.4.

Theorem 4.3.4. The −kth perverse cohomology of (iν̌)!(IC
ν̌BunN−

) is isomorphic to
the direct sum over collections of k distinct positive roots {β1, . . . , βk} of

ICν̌−∑
j
βj .

Corollary 4.3.5. The complex (iν̌)!(IC
ν̌BunN−

) (respectively, (iν̌)∗(IC
ν̌BunN−

)) lives
in the cohomological degrees [−dim(n), 0] (respectively, [0, dim(n)]) and its −dim(n)-
(dim(n)-) degree cohomology is isomorphic to ICν̌−2ρ̌.

The rest of this subsection is devoted to the proof of the above theorem. For μ̌ ∈ Λ̌pos

consider the stack �ν̌Bun
�μ̌
N− , fibered over X μ̌, classifying pairs (D ∈ X μ̌, {κλ}) such

that each κλ factors as

V λPG −→ OX
(
λ(ν̌ · x−D)

) −→ OX .

Let ν̌ Bunμ̌N− be the open substack of �ν̌Bun
�μ̌
N− , corresponding to the condition that

the maps V λPG → OX
(
λ(ν̌ · x−D)

)
above are bundle maps.

It is easy to see that ν̌ Bunμ̌N− is smooth over X μ̌. The projection �ν̌Bun
�μ̌
N− → X μ̌

is ULA (universally locally acyclic) with respect to the IC sheaf on this stack, by [BG,
Section 5.2].

We let i�μ̌ (respectively, iμ̌) denote the natural maps from the above stacks to

�ν̌BunN− . By [BG], i
�μ̌

is finite (and, in particular, proper), and iμ̌ is a locally
closed embedding. Moreover, by [FGV, Section 3.3], iμ̌ is affine. In particular, ev-
ery iμ̌! (IC

ν̌ Bunμ̌
N−

) is a perverse sheaf.

The following is a reformulation of the main result of [FFKM] and [BFGM]:

Theorem 4.3.6. The kth cohomology of (iμ̌)∗(ICν̌) is isomorphic to the direct sum over
the set of partitions P,

μ̌ =
∑

mj · βj , βj �= βj
′
,
∑

mj = k,
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where βi’s are positive roots of the direct images of the shifted by [k] constant perverse
sheaves on each

XP ×
Xμ̌

ν̌ Bunμ̌N− ,

where XP 	∏j X
(mj), that maps naturally to X μ̌.

For each partition P as above let EP be the perverse sheaf on X μ̌, equal to the
direct image under XP → X μ̌ of the irreducible perverse sheaf obtained by taking the
external product over j of the one-dimensional local systems on each X(mj)−Diag with
monodromy −1 around the diagonal. By the ULA property of �ν̌Bun

�μ̌
N− over X μ̌, the

tensor product IC
�ν̌Bun

�μ̌
N−
⊗EP[−k] is a perverse sheaf.

The usual Koszul complex argument yields the following:

Corollary 4.3.7. Irreducible constituents of (iν)!(ICν̌ BunN ) are the perverse sheaves
i
�μ̌
∗
(
IC

�ν̌Bun
�μ̌
N−
⊗EP[−k]

)
for all μ̌ ∈ Λ̌ and partitions P, each appearing once.

Recall that �ν̌Fμ̌ denotes the fiber of �ν̌Zμ̌ over μ̌ · x ∈ ∞X μ̌. By [BFGM], we have

Hc

(
�ν̌Fμ̌, IC�ν̌Zμ̌ |�ν̌Fμ̌

) 	 U(ň)μ̌+ν̌ , (34)

in particular, the above cohomology is concentrated in cohomological degree 0.
Combining this result with Corollary 4.3.7, and taking into account that the restric-

tion of EP to the diagonal divisor is 0 unless all mj = 1, we obtain the following:

Corollary 4.3.8. The cohomology group

H−kc
(
�ν̌Fμ̌, (iν)!(IC

ν̌

◦
Zμ̌

)|�ν̌Fμ̌
)

is the direct sum over λ̌ ∈ Λ̌pos of U(ň)μ̌+ν̌−λ̌, each appearing the same number of times
equal to the number of partitions of λ̌ as a sum of k distinct positive roots.

Let us note that the intersection ν̌

◦
Fμ̌ := ∞Fμ̌ ∩ ν̌

◦
Zμ̌ is isomorphic to

(N((t)) · (ν̌ + μ̌)) ∩ (N−((t)) · 1GrG

)
.

Thus, Corollary 4.3.8 gives an expression for

H−k+〈2ρ,μ̌+ν̌〉
c

(
(N((t)) · ν̌) ∩ (N−((t)) · (−μ̌)),C

)
	 H−kc

(
�ν̌Fμ̌, (iν)!(ICν̌Zμ̌)|�ν̌Fμ̌

)
. (35)

Now we can finish the proof of Theorem 4.3.4, essentially by reversing the logic. We
have to show that the multiplicity mk(λ̌) of ICν̌−λ̌ in the −kth perverse cohomology
of (iν̌)!(IC

ν̌BunN−
) equals the number of partitions of λ̌ as a sum of k distinct positive

roots, i.e., dim(Λk(n)λ̌).
We will argue by induction on λ̌, so we can assume that the assertion is known for

all λ̌′ < λ̌. Consider the cohomology in (35) for μ̌ = λ̌− ν̌. By (34), the contributions
of different constituents do not cancel out, and we obtain an equality:∑
λ̌′∈Λpos

dim(Λk(n)λ̌′) · dim(U(n)λ̌−λ̌′) =
∑
λ̌′<λ

dim(Λk(n)λ̌′) · dim(U(n)λ̌−λ̌′) +mk(λ).

This implies the desired equality.
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4.4. The Iwahori case

4.4.1.. Note that the stack k
∞BunN− is acted on by the group G([t]/tk). In particular,

we have the convolution functors:

D(G([t]/tk))× D(k∞BunN−) −→ D(k∞BunN−) : S,F 
→ S
∗

 F and S,F 
→ S

!

 F.

Moreover, these functors are defined on each of the subcategories

D(k�ν̌BunN−),D(kν̌BunN−), and D(kν̌ BunN−),

so that the ∗-convolution commutes in the natural sense with the functors

(i�ν̌)∗, (iν̌)∗, (iν̌)∗, (i�ν̌)!, (iν̌)!, (iν̌)!, (evν̌)!,

and the !-convolution commutes with the functors

(i�ν̌)! = (i�ν̌)∗, (iν̌)!, (iν̌)!, (i�ν̌)∗, (iν̌)∗, (iν̌)∗, (evν̌)∗

Lemma 4.4.2. For F ∈ Perv
(
Fl
∞
2
)
Gk and any S ∈ D(G([t]/tk)), the perverse coho-

mologies of both S
∗

 F and S

!

 F belong to Perv

(
Fl
∞
2
)
Gk .

Proof. This follows immediately, since the action of G([t]/tk) extends to k∞Zμ̌, respects
the factorization isomorphisms, and commutes with the action of the group-schemes
involved in the definition of Perv

(
Fl
∞
2
)
Gk . �

In what follows we will be interested in the case k = 1.

4.4.3.. Let us denote by I
∞BunN− (respectively, I0

∞BunN−) the quotient stack of
1∞BunN− by B ⊂ G (respectively, N ⊂ G).

We will denote by

Perv
(
Fl
∞
2
)
I ⊂ Perv(I∞BunN−) and Perv

(
Fl
∞
2
)
I0 ⊂ Perv(I

0

∞BunN−)

the full subcategories, consisting of objects, whose pull-back to 1
∞BunN− belongs to

Perv
(
Fl
∞
2
)
Gk , k = 1.

For ν̌ ∈ Λ̌, let us denote by I
ν̌BunN− (respectively, I0

ν̌ BunN−) the corresponding
locally closed substack of I∞BunN− (respectively, I

0

∞BunN−), and by evν̌ the map from
it to B\G/N− (respectively, N\G/N−).

For an element w̃ ∈ Waff , written as w · ν̌ with w ∈ W , we will denote by I
w̃BunN−

(respectively, I
0

w̃ BunN−) the preimage under evν̌ of the Schubert cell

B\(B · w ·N−)/N− ⊂ B\G/N−.

Let Iw̃ BunN− (respectively, I
0

w̃ BunN−) be the preimage of the same Schubert cell under
the map evν̌ : Iν̌ BunN → B\G/N−. We will denote by iw̃ and iw̃ the corresponding
locally closed embeddings.
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We will denote by ICw̃ ∈ Perv(I∞BunN−) the intersection cohomology sheaf on
I
w̃BunN− . In other words,

ICw̃ 	 (iν̌)!∗
(
ICw,G/B− �̃ ICI

ν̌N

)
,

in the notation of Proposition 4.2.4. In particular, we see that ICw̃ is an object of
Perv

(
Fl
∞
2
)
I , and these sheaves are all the irreducibles of the categories Perv

(
Fl
∞
2
)
I

and Perv
(
Fl
∞
2
)
I0 .

For w̃ = w · μ̌ as above, let us denote by ∇w̃ and Δw̃ the complexes

(iν̌)!
(
j!,w·w0 �̃ ICI

ν̌N

)
and (iν̌)∗

(
j∗,w·w0 �̃ ICI

ν̌N

)
,

respectively, where j!,w·w0 (respectively, j∗,w·w0) is the perverse sheaf on G/B− cor-
responding to the same-named perverse sheaf under the isomorphism G/B− → G/B,
given by the right multiplication by w0.

According to the above, we can act by objects of D(G/B)B (respectively, D(G/B)N )
on objects of Perv

(
Fl
∞
2
)
I and obtain complexes, whose cohomologies belong to

Perv
(
Fl
∞
2
)
I (respectively, Perv

(
Fl
∞
2
)
I0). Evidently, we have

j!,w1 
∇w2 	 ∇w1·w2 and j∗,w1 
Δw2 	 Δw1·w2 , (36)

provided that l(w1 · w2) = l(w1) + l(w2).

Proposition 4.4.4. Both ∇w̃ and Δw̃ are perverse sheaves.

From Proposition 4.2.4 we obtain

Corollary 4.4.5. Both ∇w̃ and Δw̃ are objects of Perv
(
Fl
∞
2
)
I .

Proof. Evidently, we have
∇w̃ 	 (iw̃)!(ICI

w̃BunN−
).

We claim that the morphism iw̃ is affine. Clearly, this would imply the proposition. To
simplify the notation we will assume that ν̌ = 0; the proof in the general case is the
same.

For an element w ∈ W we can find a weight λ and B-stable subspaces

′V λw ⊂ V λw ⊂ V λ,

with dim(V λw /
′V λw ) = 1, such that a point of G/B−, thought of as a quotient line

�λ � V λ, belongs to B · w · B−/B− if and only if the composition

′V λw −→ V λ −→ �λ

is zero, and V λw → V λ → �λ is nonzero.
Then, Iw̃BunN− , as a substack of I�0BunN− , corresponds to those κλ, for which the

map
(′V λw )PG,x −→ (V λPG)x −→ Ox 	 C (37)
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is zero, and
(V λw )PG,x −→ (V λPG )x −→ Ox 	 C (38)

is nonzero. Note that (V λw )PG,x and (′V λw )PG,x make sense as subspaces of (V λPG)x, since
a part of the data of a point of I∞BunN− is the reduction of the fiber PG,x of PG at x
to B.

Hence, the closure of I
w̃BunN− is contained in the closed substack of I

�0BunN− ,
consisting of all those points, for which the composition in (37) vanishes. The locus of
the nonvanishing of (38) is the complement to a Cartier divisor in this closed substack.
�
4.4.6.. We will work with the abelian category Perv

(
Fl
∞
2
)
I0 and its derived category,

denoted D
(
Fl
∞
2
)
I0 .

By Proposition 4.2.11, for F1,F2 ∈ Perv
(
Fl
∞
2
)
I0 ,

Ext1
Perv
(
Fl
∞
2
)
I0

(F1,F2) 	 Ext1I0∞BunN−
(F1,F2)T ,

where the subscript T stands for the T -equivariant category. Hence, the map

Ext2
Perv
(
Fl
∞
2
)
I0

(F1,F2) −→ Ext2I0∞BunN−
(F1,F2)T

in injective.
From Corollary 4.2.15, and using the fact that each I0

w̃ BunN is contractible, we obtain

Corollary 4.4.7. Exti
Perv
(
Fl
∞
2
)
I0

(∇w̃,Δw̃′) = 0 for i = 1, 2 and any w̃, w̃′ ∈ Waff .

Remark 4.4.8. From Corollary 4.4.7 one can formally deduce that

Exti
Perv
(
Fl
∞
2
)
I0

(∇w̃,Δw̃′)

vanishes for all i > 0 and any w̃, w̃′ ∈Waff . More generally, for F ∈ Perv
(
Fl
∞
2
)
I0 ,

Exti
Perv
(
Fl
∞
2
)
I0

(∇w̃ ,F) 	 Hi(I
0

w̃ BunN ,F|I0
w̃ BunN

).

Note that by Proposition 4.2.4, the !-restriction of any F ∈ Perv
(
Fl
∞
2
)
I0 to I0

w̃ BunN is
a complex with constant cohomologies. Since I

0

w̃ BunN is contractible,H•(I
0

w̃ BunN ,C) 	
C, so the above expression for Exti amounts to taking stalks of F on the stratum
I0

w̃ BunN .

4.4.9. The baby Whittaker case. Let Perv(1∞BunN−)N
−,ψ be the category of (N−, ψ)-

equivariant perverse sheaves on 1
∞BunN− . We introduce the category

Perv
(
Fl
∞
2
)
I−,ψ ⊂ Perv(1∞BunN−)N−,ψ

as the full subcategory, consisting of objects which belong to Perv
(
Fl
∞
2
)
Gk , k = 1, when

regarded merely as objects of Perv(1∞BunN−). This category is stable under extensions
by Proposition 4.2.11.
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By Proposition 4.2.4 we can produce objects in Perv
(
Fl
∞
2
)
I−,ψ, starting from objects

of Perv(G/B−)N
−,ψ. We will denote by ψG/B− the unique irreducible in the latter

category, which corresponds to ψG/B under

Perv(G/B−)N
−,ψ 	 Perv(G/B)N

−,ψ.

For ν̌ ∈ Λ̌, set
ICψν̌ := (iν̌)!∗(ψG/B− �̃ IC1

ν̌N),

and
∇ψν̌ := (iν̌)!(ψG/B− �̃ IC1

ν̌N), Δψ
ν̌ := (iν̌)∗(ψG/B− �̃ IC1

ν̌N).

Since the embedding of the corresponding locally closed subset into 1
ν̌BunN− is affine

(cf. the proof of Proposition 4.4.4), both ∇ψν̌ and Δψ
ν̌ are perverse sheaves and, hence,

by Proposition 4.2.4, are objects of Perv
(
Fl
∞
2
)
I−,ψ. In Section 5.3.4 we will prove the

following:

Theorem 4.4.10. The canonical maps ∇ψν̌ → ICψν̌ → Δψ
ν̌ are isomorphisms.

Thus, the extension of ψG/B �̃ IC
ν̌BunN−

under iν̌ is clean and ∇ψν̌ 	 Δψ
ν̌ is irre-

ducible. Hence, the category Perv
(
Fl
∞
2
)
I−,ψ is semisimple and equivalent to Ť -mod.

4.4.11.. Let us denote by

Av!,N−,ψ,Av!,N−,ψ : D(1∞BunN−) −→ D(1∞BunN−)I
−,ψ

the functors which are left and right adjoint, respectively, to D(1∞BunN−)I
−,ψ →

D(k∞BunN−). As in Proposition 2.2.5 we obtain

Lemma 4.4.12. There exists an isomorphism of functors

Av!,N−,ψ[−dim(n)]|D(I0∞BunN−) −→ Av∗,N−,ψ[dim(n)]|D(I0∞BunN−).

Moreover, the resulting functor AvN−,ψ : D(I
0

∞BunN−)→ D(1∞BunN−)I
−,ψ is exact.

Let us call an object of Perv
(
Fl
∞
2
)
I0 partially integrable if all of its irreducible sub-

quotients are of the form ICw·ν̌, w �= w0. Thus, the only irreducibles that are not
partially integrable are ICw0·ν̌ . Let us denote by fPerv

(
Fl
∞
2
)
I0 the resulting quotient

abelian category.
The following is parallel to Proposition 2.2.7.

Proposition 4.4.13.
(1) The functor

AvI−,ψ : Perv
(
Fl
∞
2
)
I0 −→ Perv

(
Fl
∞
2
)
I−,ψ

factors through fPerv
(
Fl
∞
2
)
I0 .

(2) The resulting functor

fPerv
(
Fl
∞
2
)
I0 −→ Perv

(
Fl
∞
2
)
I−,ψ

is faithful.
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Proof. To prove the first statement we have to show that AvI−,ψ(ICw·ν̌) = 0 for w �=
w0. This is nearly evident: such an irreducible is a pull-back from the quotient stack
Pı\1∞BunN− , where Pı is some subminimal parabolic in G. Our assertion follows from
the fact that the direct image of ψG/B under G/B → G/Pı vanishes.

To prove the second statement, it suffices to show that

AvI−,ψ(ICw0·ν̌) 	 ICψν̌ .

We know that the left-hand side is a perverse sheaf, and the isomorphism over the open
part of the support, namely 1

ν̌BunN− , is evident. The fact that the left-hand side is
a Goresky–MacPherson extension from this substack follows from the exactness of the
functor AvI−,ψ, and the fact that it commutes with all i

∗
ν̌′ and i

!
ν̌′ . �

Corollary 4.4.14.

(1) The kernel of ∇w0·ν̌ → ICw0·ν̌ is partially integrable.
(2) ICw0·ν̌ is the cosocle of Δν̌ and socle of ∇ν̌ .
(3) For any w ∈W , ICw0·ν̌ is the only nonpartially integrable constituent of ∇w·ν̌ .

Proof. Evidently, we have
AvI−,ψ(∇w0·ν̌) 	 ∇ψν̌ .

Combining this with Proposition 4.4.13 and Theorem 4.4.10, we arrive at the assertion
of point (1). Point (3) follows from point (1) by (36). Finally, point (2) follows from
point (1) in the same way as in the proof of Proposition 2.3.2. �

We will now introduce one more object of Perv
(
Fl
∞
2
)
I0 . For ν̌ ∈ Λ̌ set

Π!,ν̌ := (iν̌)!
(
Ξ �̃ ICI

ν̌BunN−

)
and Π∗,ν̌ := (iν̌)∗

(
Ξ �̃ ICI

ν̌BunN−

)
,

where Ξ is the perverse sheaf on N\G/B−, corresponding to the same-named perverse
sheaf on G/B.

Theorem 4.4.15. The canonical map Π!,ν̌ → Π∗,ν̌ is an isomorphism.

Proof. Consider the convolution with Ξ as a functor Perv
(
Fl
∞
2
)
I → Perv

(
Fl
∞
2
)
I0 . As

usual, this functor annihilates all partially integrable objects.
Evidently,

Π!,ν̌ 	 Ξ 
∇w0,ν̌ and Π!∗ν̌ 	 Ξ 
Δw0,ν̌ .

Our assertion now follows from Corollary 4.4.14, which implies that the cone of the
map ∇w0,ν̌ → Δw0,ν̌ is partially integrable. �

4.4.16.. We will now establish the following fact, parallel to Proposition 3.2.6(2).

Proposition 4.4.17. For ν̌ ∈ Λ̌ there exists a nonzero map

Δw0·ν̌ −→ ICν̌−2ρ̌,

where ICν̌−2ρ̌ ∈ Perv
(
Fl
∞
2
)
G[[t]] is thought of as an object of Perv

(
Fl
∞
2
)
I .
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Proof. As in the proof of Proposition 2.3.4, we have the functor

Av!,G/B : D(I∞BunN−) −→ D(∞BunN−)

left adjoint to the forgetful functor. By definition,

Hom
Perv
(
Fl
∞
2
)
I
(Δw0·ν̌ , ICν̌−2ρ̌) 	 HomD(∞BunN− )(Av!,G/B(Δw0·ν̌), ICν̌−2ρ̌). (39)

However, since G/B is proper,

Av!,G/B(Δw0·ν̌) 	 (iν̌)∗(IC
ν̌BunN−

)[dim(n)].

Hence, the assertion of the proposition follows from Corollary 4.3.5. �

5. Convolution

5.1. Definition of convolution
5.1.1.. Consider the Hecke stack for G at x:

BunG
←
hG←− HG,x

→
hG−→ BunG,

and for two integers k1, k2 let k1,k2HG,x denote its base change with respect to

k1 BunG×k2 BunG −→ BunG×BunG .

By a slight abuse of notation we will continue to denote by
←
hG,

→
hG the projections of

k1,k2HG,x on k1 BunG and k2 BunG, respectively.
We can regard k1,k2HG,x over k2 BunG as the space associated with the canonical

Gk2 -torsor Gk2x over k2 BunG and the Gk2 -space G((t))/Gk1 :

k1,k2HG,x 	 G((t))/Gk1
Gk2× Gk2x .

We also have a symmetric picture:

k1,k2HG,x 	 G((t))/Gk2
Gk1× Gk1x .

Recall now that there exists a canonical equivalence of derived categories

S 
→ Sop : DGk1 (G((t))/Gk2 ) 	 DGk2 (G((t))/Gk1 ).

This is defined as follows.
First of all, it is clear that Gk1 -invariant subschemes of G((t))/Gk2 are in bijection

with Gk2 -invariant subschemes in Gk1\G((t)). For S ∈ DGk1 (G((t))/Gk2 ), let Y be
the corresponding finite-dimensional subscheme of Gk1\G((t)). There exists an integer
k′1>> 0, such that if we denote by Y′ the preimage of Y in Gk

′
1\G((t)), the map Y′ →

G((t))/Gk2 is well defined. The pull-back S′ of S to Y′ is a Gk1/Gk
′
1-equivariant, and,

hence, descends to a well defined Gk2 -equivariant object of D(Gk1\G((t))).
Finally, the desired functor is obtained by applying the inversion on G((t)).
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5.1.2.. As in [BG] we have a commutative diagram, in which both squares are Cartesian

k1∞BunN−
←
h ′G←−−−− k1,k2HG,N−,x

→
h ′G−−−−→ k2∞BunN−

p

⏐⏐� ⏐⏐� p

⏐⏐�
k1 BunG

←
hG←−−−− k1,k2HG,x

→
hG−−−−→ k2 BunG .

For a complex F on k2∞BunN− and a Gk1 -equivariant complex S on G((t))/Gk2 let
Sop �̃F be the corresponding complex on k1,k2HG,N−,x. We set

S
∗

 F := (

←
h ′G)∗(Sop �̃ F), S

!

 F := (

←
h ′G)!(Sop �̃F) ∈ D(k1∞BunN−).

Evidently, when k1 = k2 = k, and S is supported on G[[t]]/Gk ⊂ G((t))/Gk, we
arrive to the functors discussed in Section 4.4.1.

The following is straightforward from the definitions:

Lemma 5.1.3. For S ∈ DGk1 (G((t))/Gk2 ) the functor

F 
→ S
!

 F : D(k2∞BunN−) −→ D(k1∞BunN−)

is the left adjoint of

F′ 
→ D(Sop)
∗

 F′ : D(k1∞BunN−) −→ D(k2∞BunN−).

The above picture admits the following variants. First, we can replace the equivari-
ance condition on S ∈ D

(
G((t))/Gk2

)
with respect to Gk1 by that of I0, I, or (I−, ψ).

In this case the target will be the corresponding category D(I
0

∞BunN−), D(I∞BunN−),
or D(1∞BunN−)N

−,ψ.
Second, instead of D

(
G((t))/Gk2

)
we can consider D(FlG) or D(GrG). We obtain the

convolution functors

D(FlG)G
k×D(I∞BunN−)→ D(k∞BunN−) and D(GrG)G

k×D(∞BunN−)→ D(k∞BunN−).

In both these cases, the ∗-convolution coincides with the !-convolution, since FlG
and GrG are ind-proper. We will denote the resulting functor simply by 
. Here again
the equivariance condition with respect to Gk can be replaced by any of I0-, I-, or
(I−, ψ)-equivariance conditions.

5.1.4.. We will now show that the convolution functors essentially preserve our category
Perv

(
Fl
∞
2
)
.

Proposition 5.1.5. If F ∈ Perv
(
Fl
∞
2
)
Gk2 , then the perverse cohomologies of both S

∗

F

and S
!

 F belong to Perv

(
Fl
∞
2
)
Gk1 .

The rest of this subsection is devoted to the proof of this proposition. First, let us

notice that if F satisfies condition (1), then so do the complexes (
←
h ′G)∗(Sop �̃F) and
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(
←
h ′G)!(Sop �̃F). Hence, by Lemma 4.2.6 and Proposition 4.2.8, these complexes satisfy

the weak factorization property. Hence, to show that their perverse cohomologies satisfy
the full factorization property, it is enough to show that their pull-backs to(

Zμ̌2−μ̌1 × k1∞Zμ̌1
) ×
◦
Xμ̌2−μ̌1×∞Xμ̌1

( ◦
X μ̌2−μ̌1 ×∞X μ̌1

)
disj

can be written as extensions of complexes, each of which has the form ICZμ̌2−μ̌1 � F′,
where F′ is some complex on k1∞Zμ̌1 .

Let us denote by Yμ̌ the Cartesian product

k1∞Zμ̌ ×
k1∞BunN−

k1,k2HG,N,x.

As in Lemma 4.1.5, we have a canonical isomorphism

Yμ̌2 ×
∞Xμ̌2

( ◦
X μ̌2−μ̌1 ×∞X μ̌1

)
disj
	 (Zμ̌2−μ̌1 × Yμ̌1

) ×
◦
Xμ̌2−μ̌1×∞Xμ̌1

( ◦
X μ̌2−μ̌1 ×∞X μ̌1

)
disj
.

We claim that the pull-back under

Yμ̌2 ×
∞Xμ̌2

( ◦
X μ̌2−μ̌1 ×∞X μ̌1

)
disj
−→ Yμ̌2 −→ k1,k2HG,N,x

of Sop �̃F is an extension of complexes, each of which has the form ICZμ̌2−μ̌1 � F′′,
where F′′ is some complex on Yμ̌1 . This would clearly imply our assertion.

Note that Yμ̌ can be represented as a union of locally closed substacks ν̌Yμ̌ for ν̌ ∈ Λ̌,
where a point (PG, {κλ}, {κλ,−}) belongs to ν̌Y

μ̌ if and only if each κλ,− has a pole of
order 〈λ, ν̌〉 at x.

Note that we have a natural map ν̌Y
μ̌ → k2∞Zμ̌+ν̌ that covers the map

→
h ′G : k1,k2HG,N,x −→ k2∞BunN− .

Moreover, the diagram

ν̌Y
μ̌2 ×
∞Xμ̌2

( ◦
X μ̌2−μ̌1 ×∞X μ̌1

)
disj

−−−−→ Zμ̌2−μ̌1 × ν̌Y
μ̌1⏐⏐� ⏐⏐�

k2∞Zμ̌2+ν̌ ×
∞Xμ̌2+ν̌

( ◦
X μ̌2−μ̌1 ×∞X μ̌1+ν̌

)
disj
−−−−→ Zμ̌2−μ̌1 × k2∞Zμ̌1+ν̌

is commutative. Hence, our assertion follows from condition (2) imposed on F.

It remains to show that the perverse cohomologies of S
∗

F and S

!

F satisfy condition

(3) of Corollary 4.2.12. Since we have to check an equivariance condition with respect
to a unipotent group-scheme, it is enough to show that their pull-backs to k1∞Zμ̌ can be
written as extensions of complxes satisfying this equivariance condition. This follows in
the same way as above, by subdividing the stack Yμ̌ into the locally closed substacks
ν̌Y

μ̌.
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5.2. Exactness and smallness

5.2.1.. Consider the convolution functor

D(GrG)G
k × Perv

(
Fl
∞
2
)
G[[t]] −→ D(k∞BunN−).

Since Perv
(
Fl
∞
2
)
G[[t]] is semisimple, it is enough to evaluate the above functor on the

objects of the form ICν̌ , ν̌ ∈ Λ̌.

Theorem 5.2.2. The functor

S 
→ S 
 ICν̌ : D(GrG)G
k −→ D(k∞BunN−)

is exact.

Proof. Since the situation is self-dual with respect to the Verdier duality, it is sufficient
to show that, for S ∈ Perv(GrG)G

k

, the convolution S 
 ICν̌ is supported in nonpositive
cohomological degrees. For this it is sufficient to show that i

∗
μ̌(S 
 ICν̌) is supported in

nonpositive cohomological degrees for every μ̌ ∈ Λ̌.

Consider the preimage (
←
h ′G)−1

(
k
μ̌BunN−

) ⊂ k,0HG,N,x. This admits a decomposition
into locally closed pieces

(
←
h ′G)−1

(
k
μ̌BunN−

) ∩ (
→
h ′G)−1

(
μ̌′BunN−

) ∩ k,0Hλ̌
G,N,x (40)

for μ̌′ ∈ Λ̌ and λ̌ ∈ Λ̌+, where k,0Hλ̌
G,N,x is the preimage of the corresponding locally

closed substack in HG,x.
The statement of the theorem would follow once we prove the following:

(1) The dimension of fibers of the map

←
h ′G : (

←
h ′G)−1

(
k
μ̌BunN−

) ∩ (
→
h ′G)−1

(
μ̌′BunN−

) ∩ k,0Hλ̌
G,N,x −→ k

μ̌BunN−

is � 〈μ̌′ − μ̌+ λ̌, ρ〉.
(2) The ∗-restriction of Sop �̃ ICν̌ to

(
←
h ′G)−1

(
k
μ̌BunN−

) ∩ (
→
h ′G)−1

(
μ̌′BunN−

) ∩ k,0Hλ̌
G,N,x

lives in the cohomological degrees � −〈μ̌′ − μ̌+ λ̌, ρ〉.
The first assertion follows from the identification of the locally closed substack from

(40), projecting to k
μ̌BunN− by means of

←
h ′G, with

(
Grλ̌G ∩N−((t)) · (μ̌− μ̌′)) N−[[t]]× k

μ̌N, (41)

where k
μ̌N is the N−[[t]]-torsor over kμ̌BunN− introduced above.
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To prove the second assertion let us view the locally closed substack of (40) projecting

to μ̌′BunN− by means of
→
h ′G; it identifies with

p−1
k

(
Gr−w0(λ̌)

G ∩N−((t)) · (μ̌′ − μ̌)
) N−[[t]]× μ̌′ N,

where pk is the projection G((t))/Gk → GrG.
The ∗-restriction of Sop �̃ ICν̌ to it identifies with

Sop|
p−1
k

(
Gr
−w0(λ̌)
G ∩N−((t))·(μ̌′−μ̌)

) �̃ ICν̌ |
μ̌′BunN−

.

Hence, it is enough to show that the ∗-restriction of Sop to

p−1
k

(
Gr−w0(λ̌)

G ∩N−((t)) · (μ̌′ − μ̌)
)

lives in the cohomological degrees � −〈μ̌′ − μ̌+ λ̌, ρ〉.
First, the restriction to p−1

k (Gr−w0(λ̌)
G ) lives in nonpositive degrees, since S was as-

sumed perverse. By assumption, this complex is G[[t]]-equivariant and, hence, uni-
versally locally acyclic over Gr−w0(λ̌)

G , since the latter is a G[[t]]-homogeneous space.
Since

codim
(
Gr−w0(λ̌)

G ∩N−((t)) · (μ̌′ − μ̌),Gr−w0(λ̌)
G

)
� 〈μ̌′ − μ̌+ λ̌, ρ〉,

our assertion follows. �
5.2.3. Convolution in the spherical case. We will now study a particular case of the
above situation, when the functor we consider is

SphG × Perv
(
Fl
∞
2
)
G[[t]] −→ Perv

(
Fl
∞
2
)
G[[t]].

Proposition 5.2.4. For V ∈ Rep(Ǧ) and ν̌ ∈ Λ̌, there exists a canonical isomorphism

V 
 ICν̌ 	
⊕̌
μ

ICν̌+μ̌ ⊗ V (μ̌).

Moreover, for V, U ∈ Rep(Ǧ), the diagram

(U 
 V) 
 ICν̌
∼−−−−→ ⊕̌

μ′
(U 
 ICν̌+μ̌′)⊗ V (μ̌′)

∼
⏐⏐� ∼

⏐⏐�⊕̌
μ

ICν̌+μ̌ ⊗ (U ⊗ V )(μ̌) ∼−−−−→ ⊕
μ̌′,μ̌′′

ICν̌+μ̌′+μ̌′′ ⊗ U(μ̌′′)⊗ V (μ̌′)

commutes.

Before giving the proof let us recall that, for V ∈ Rep(Ǧ) and the corresponding
object V ∈ SphG, we have a canonical isomorphism

V (μ̌) 	 H−〈2ρ,μ̌〉c

(
N−((t)) · μ̌,V|N−((t))·μ̌

)
. (42)
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Proof. Note first that the result of the convolution V
ICν̌ is an object of Perv
(
Fl
∞
2
)
G[[t]],

and hence, is semisimple. (Alternatively, semisimplicity follows from the decomposition
theorem, since every V ∈ SphG is a direct sum of intersection cohomology sheaves.)

By the proof of Theorem 5.2.2,

Hom(ICν̌+μ̌,V 
 ICν̌) 	 H−〈2ρ,μ̌〉c

(
N−((t)) · μ̌,V|N−((t))·μ̌

)
,

which is exactly the expression that appears in (42).
The second assertion of the proposition follows from the definition of the structure

of the tensor functor on V 
→ V : Rep(Ǧ)→ SphG, cf. [MV] or [BG1]. �
The commutativity of the following two diagrams also follows from (42):

ICλ̌,GrG

 ICν̌ −−−−→ ICλ̌,GrG


 ICμ̌,GrG 
 IC−w0(μ̌),GrG 
 ICν̌⏐⏐� ⏐⏐�
ICν̌+λ̌ ←−−−− ICλ̌,GrG


 ICμ̌,GrG 
 ICν̌−μ̌,

(43)

where the left vertical arrow comes from taking the direct summand corresponding to
V λ̌(λ̌), and the right vertical arrow comes from taking the summand corresponding to
V −w0(μ̌)(−μ̌).

For the following diagram, V is an object of Rep(Ǧ) and λ̌ is a coweight large com-
pared to V :

V 
 ICν̌ −−−−→ (IC−w0(λ̌),GrG

 ICλ̌,GrG


V) 
 ICν̌⏐⏐� ∼
⏐⏐�⊕̌

μ
ICν̌+μ̌ ⊗ V (μ̌)

⊕̌
μ

IC−w0(λ̌),GrG

 ICλ̌+μ̌,GrG


 ICν̌ ⊗ V (μ̌)

id

⏐⏐� ⏐⏐�⊕̌
μ

ICν̌+μ̌ ⊗ V (μ̌) ←−−−− ⊕̌
μ

IC−w0(λ̌),GrG

 ICλ̌+ν̌+μ̌ ⊗ V (μ̌).

(44)

5.3. Convolution with Perv(GrG)I

5.3.1.. We will now consider the convolution functor

PervG[[t]](FlG)× Perv
(
Fl
∞
2
)
G[[t]] −→ Perv

(
Fl
∞
2
)
I .

Recall the objects Lw ∈ Perv(GrG)I defined for w ∈W . We will prove

Theorem 5.3.2. If Lw = ICw·λ̌,GrG
, then

Lw 
 ICν̌ 	 ICw·(λ̌+ν̌)

The rest of this subsection is devoted to the proof of this theorem. We will retrace
the argument proving Theorem 5.2.2 and show that the map defining Lw 
 ICν̌ is small
(vs. semismall).
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First, to calculate the top (= 0th ) cohomology of Lw 
 ICν̌ we only need to consider
the locally closed substack of I,0HG,N−,x isomorphic to

Ow

N−[[t]]× ν̌
IN,

and the constant perverse sheaf on it, where Ow̃ is the open G[[t]]-orbit in the support

of (Lw)op on FlG. Its intersection with the preimage of Iw′·μ̌BunN− under
←
h ′G can be

described as follows.
Note that the pull-back I

w′·μ̌BunN− ×
I
μ̌BunN−

μ̌N of the N−[[t]]-torsor μ̌N to I
w′·μ̌BunN−

admits a reduction to the subgroup N−[[t]] ∩Ad(w′)−1(I). Then the above intersection
identifies with the total space of the bundle associated with the N−[[t]] ∩ Ad(w′)−1(I)-
space

N−((t)) · (μ̌− ν̌) ∩ (Ad(w′)−1(I) · ((w′)−1 · w(λ̌))
) ⊂ N−((t)) · (μ̌− ν̌) ∩Grλ̌G . (45)

Evidently, when μ̌ = λ̌ + ν̌ and w′ = w the above intersection is the point-scheme.
This means that ICw·(λ̌+ν̌) indeed appears as a direct summand in the convolution
Lw 
 ICν̌ . It remains to show that if μ̌ �= λ̌+ ν̌ or w′ �= w, then the scheme in (45) is of
dimension strictly less than 〈ν̌ − μ̌+ λ̌, ρ〉.

We will deduce this from Theorem 1.3.5. Let us take μ̌1 to be a large dominant
coweight and set ν̌1 = μ̌1 + μ̌− ν̌. We will show that if the dimension of (45) violated
the above inequality, the perverse sheaf ICw′·ν̌1,GrG would appear as a direct summand
of ICw·λ̌,GrG


 ICμ̌1,GrG . To that end, it is sufficient to show that the fiber of(
I · (w · λ̌)

)

Grμ̌1

G

over the point w′ · ν̌1 is of dimension � 〈ν̌ − μ̌ + λ̌, ρ〉. We claim that the above fiber
contains a subscheme isomorphic to scheme (45).

Consider the orbit of the group Adw′ N−((t)) passing through w′ · ν̌1 ∈ GrG. Its
preimage in

(
I · (w · λ̌)

)

Grμ̌1

G is the union over parameters ν̌′1 of the schemes

((
Adw′ N−((t)) · (w′ · ν̌′1)

) ∩ (I · (w · λ̌)
))



((

Adw′ N−((t)) · (w′ · (ν̌1 − ν̌′1))
) ∩Grμ̌1

G

)
, (46)

each of which is fibered over(
Adw′ N−((t)) · (w′ · ν̌′1)

) ∩ (I · (w · λ̌)
)

(47)

with a typical fiber (
Adw′ N−((t)) · (w′ · (ν̌1 − ν̌′1))

) ∩Grμ̌1
G .

Let us take ν̌′1 = ν̌1 − μ̌1. We claim that the intersection of (46) with the preimage
of the point w′ · ν̌1 in

(
I · (w · λ̌)

)

Grμ̌1

G surjects onto the scheme in (47). This would



350 S. ARKHIPOV ET AL.

imply our assertion, since schemes (45) and (47) are isomorphic for the above choice of
ν̌′1.

This amounts to showing that the subscheme

(−ν̌1 · (w′)−1) · ((Adw′ N−((t)) · (w′ · (μ̌− ν̌))) ∩ (I · (w · λ̌)
))

is contained in Gr−w0(μ̌1)
G .

Let N? be the group-subscheme of N−((t)), such that(
Adw′ N−((t)) · (w′ · (μ̌− ν̌))) ∩ (I · (w · λ̌)

)
is contained in (

Adw′(N?) · (w′ · (μ̌− ν̌))) ∩ (I · (w · λ̌)
)
.

We have to show that

(−ν̌1) ·N? · (μ̌− ν̌) ⊂ Gr−w0(μ̌1)
G ,

which is equivalent to
Ad−ν̌1 N

? · (−μ̌1) ⊂ Gr−w0(μ̌1)
G .

However, the latter containment is valid, whenever ν̌1 is dominant enough so that
Ad−ν̌1(N?) ⊂ N−[[t]].

Remark 5.3.3. Let us note that the fiber of
(
I · (w · λ̌)

)

 Grμ̌1

G over w′ · ν̌1 is in fact
entirely contained in the subscheme (46) with ν̌′1 = ν̌1− μ̌1, and it maps to scheme (47)
isomorphically.

To prove the first assertion note that there are only finitely many ν̌′1’s, for which the
base (47) is nonempty. For any ν̌′1 other than ν̌1 − μ̌1 the subscheme

(−ν̌1 · (w′)−1) · ((Adw′ N−((t)) · (w′ · ν̌′1)
) ∩ (I · (w · λ̌)

))
will have an empty intersection with Gr−w0(μ̌1)

G , because eventually(
Ad−ν̌1(N

?) · (ν̌′1 − ν̌1)
)∩Gr−w0(μ̌

′
1)

G = ∅.

The second assertion is evident, since every fiber of π : GrG 
GrG → GrG embeds
into the base GrG.

5.3.4. The baby Whittaker case. Our present goal is to prove Theorem 4.4.10. By Verdier
duality, it is sufficient to show that the map

∇ψν̌ −→ ICψν̌

is an isomorphism. Suppose it is not, and let us look at the quotient perverse sheaf;
let ν̌′ be the maximal element of Λ̌, such that this quotient is nonzero when restricted
to 1

ν̌′BunN− . Then this restriction (either ∗- or !-) is a perverse sheaf, and its further
restriction onto the locally closed substack of 1

ν̌′ BunN− , equal to (evν̌′)−1(N− · w0), is
a local system.
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Hence, we deduce that the Euler characteristic of the ∗-restriction of ICψν̌ to some
(evν̌′)−1(N− ·w0) with ν̌′ �= ν̌ is nonzero. We are going to show that this is impossible
by comparing the present situation with the one for Perv(GrG)I

−,ψ.
Let us recall that for any μ̌ ∈ Λ̌+, the perverse sheaf ICψGrG


 ICμ̌,GrG is irreducible
and is isomorphic to the clean extension of the character sheaf on the I−-orbit of the
point w0 · (μ̌+ ρ̌′) ∈ GrG, by Theorem 2.2.2.

We have the convolution functor

Perv(GrG)I
−,ψ × Perv

(
Fl
∞
2
)
G[[t]] −→ Perv

(
Fl
∞
2
)
I−,ψ.

Theorem 5.3.5. ICψGrG

 ICν̌ = ICψν̌+ρ̌′ .

We omit the proof, since it essentially repeats the proof of Theorem 5.3.2, where
instead of the fact that Lw 
 ICμ̌,GrG is irreducible for μ̌ ∈ Λ̌+, we use the above
mentioned fact about ICψGrG


 ICμ̌,GrG ∈ Perv(GrG)I
−,ψ.

We claim that the fiber of ICψGrG

 ICν̌ at a point of (evν̌′)−1(N− ·w0) can be written

as an extension of certain complexes Kν̌′′ , and the fiber of ICψGrG

 ICμ̌,GrG at a point

of I− · (w0 · (μ̌′ + ρ̌′)) for ν̌ − ν̌′ = μ̌ − μ̌′ can be written as an extension of the same
complexes.

This would imply our assertion about Euler characteristics, since the fibers of the
convolution ICψGrG


 ICμ̌,GrG over I− · (w0 · (μ̌′+ ρ̌′)) are zero unless μ̌′ = μ̌ by cleanness.

For ν̌′′ the complex Kν̌′′ is defined as the fiber of the direct image under
←
h ′G : (

←
h ′G)−1

(
1
ν̌′BunN−

) ∩ (
→
h ′G)−1

(
ν̌′′BunN−

) ∩ 1,0H
ρ̌′

G,N−,x −→ k
ν̌′BunN−

of the ∗-restriction of ICψGrG
�̃ ICν̌ to the above substack.

Hence, Kν̌′′ is the cohomology with compact supports along the scheme

N((t)) · w0 · (ν̌′ − ν̌′′) ∩ I− · (w0 · ρ̌′) ⊂ Grρ̌
′
G

of the complex equal to the tensor product of the character sheaf along I− · (w0 · ρ̌′) and
the constant complex equal to the stalk of ICν̌ on ν̌′′ BunN− .

Let us now calculate the fiber of ICψGrG

 ICμ̌,GrG at a point of I− · (w0 · μ̌′) for μ̌ large

and ν̌ − ν̌′ = μ̌− μ̌′. For this we will intersect the fiber of the convolution diagram over
w0 · μ̌′ with the subschemes of the form(

I− · (w0 · ρ̌)
)

Grμ̌

′′
G .

As we saw above, each of these intersections is isomorphic to

N((t)) · w0 · (μ̌′ − μ̌′′) ∩ I− · (w0 · ρ̌) ⊂ Grρ̌
′
G .

For each such μ̌′′ the complex that we have to integrate is the tensor product of the
character sheaf along I− · (w0 · ρ̌′) and the stalk of ICμ̌,GrG at Grμ̌

′′
G .

We set up the bijection between ν̌′′ and μ̌′′ so that ν̌′′−ν̌′ = μ̌′′−μ̌′. Our assertion fol-
lows from the fact that for λ̌ small comared with μ̌ and ν̌ the stalk of ICν̌ on ν̌−λ̌BunN−
is isomorphic to the stalk of ICμ̌,GrG on ICμ̌−λ̌,GrG

. This follows by combining [FFKM],
[BFGM] with [Lu], [Soe].
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5.4. Action of convolution on standard objects
5.4.1.. We will now prove the following assertion, parallel to Corollary 3.2.2.

Proposition 5.4.2. If λ̌ is dominant there is a canonical isomorphism

j!,λ̌ 
∇ν̌ 	 ∇ν̌+λ̌.
Proof. Using Proposition 5.1.5, it is sufficient to show that the stalk of j!,λ̌ 
∇ν̌ is 0 on
any I

w̃′ BunN for w̃′ �= λ̌+ ν̌, and that it is canonically C in the latter case. This follows
in a rather straightforward way from the definition of convolution.

Consider the stack

(
←
h ′G)−1

(
I
w′·ν̌′BunN−

) ∩ (
→
h ′G)−1

(
I
w·ν̌BunN−

) ∩ I,IHλ̌
G,N−,x,

projecting to I
w′·ν̌′BunN− by means of

←
h ′G. In the above formula, Hλ̌

G,N,x is the locally
closed substack of I,IHλ̌

G,N−,x, corresponding to the I-orbit I · λ̌ ⊂ FlG.
The fiber of the above stack over a point of Iw′·ν̌′BunN− is isomorphic to(

N−((t)) · (ν̌′ − ν̌) · w−1
) ∩ ((w′)−1 · I · λ̌) ⊂ FlG . (48)

Set w = 1, and we claim that the above intersection is empty unless ν̌′ = ν̌ + λ̌ and
w′ = 1, and that in the latter case, this is a point-scheme.

The latter assertion is evident. To prove the first one, we will use the following:

Lemma 5.4.3. For λ̌ dominant,

N−((t)) · B[[t]] ⊃ Adλ̌(I) ⊂ B[[t]] ·N−((t)).

Using the lemma, it is enough to show that(
w′ · (ν̌′ − ν̌) ·N−((t))

) ∩ (N+((t)) · λ̌) ⊂ G((t))

is nonempty only if w′ = 1 and ν̌′ − ν̌ = λ̌, which is evident from the Bruhat decompo-
sition. �
5.4.4.. Let us now exhibit a compatibility relation between the isomorphisms of Propo-
sitions 5.4.2 and 5.2.4. Namely, we claim that, for λ̌ ∈ Λ̌+, the diagrams

ICGrG,λ̌

 ICν̌ −−−−→ j∗,λ̌ 
 ICν̌ −−−−→ j∗,λ̌ 
Δν̌

∼
⏐⏐� ∼

⏐⏐�⊕̌
μ

ICν̌+μ̌ ⊗ V λ̌(μ̌) −−−−→ ICν̌+λ̌ −−−−→ Δν̌+λ̌

(49)

and
j∗,λ̌ 
 ICν̌ −−−−→ j∗,λ̌ 
 ICμ̌,GrG 
 IC−w0(μ̌),GrG 
 ICν̌⏐⏐� ⏐⏐�
j∗,λ̌ 
 Δν̌ j∗,λ̌ 
 ICμ̌,GrG 
 ICν̌−μ̌

∼
⏐⏐� ⏐⏐�

Δν̌+λ̌ ←−−−− j∗,λ̌+μ̌ 
 ICν̌−μ̌

(50)
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are commutative. This follows from the definition of the isomorphisms in both cases.
Note that Proposition 5.4.2 implies that, for ν̌ dominant,

j!,−ν̌ 
∇w0·ν̌′ 	 ∇w0·(ν̌′−w0(ν̌))

and, hence,
j∗,ν̌ 
∇w0·ν̌′ 	 ∇w0·(ν̌′+w0(ν̌)). (51)

Consider now the morphism

ICν̌ → ∇w0·(ν̌+2ρ̌), (52)

obtained by Verdier duality from Section 4.4.16. By construction, the space of such
morphisms for every ν̌ is a one-dimensional vector space, canonically independent of ν̌.

From the construction one infers the following:

Lemma 5.4.5. For ν̌ ∈ Λ̌, λ̌, μ̌ ∈ Λ̌+, the diagrams

ICλ̌,GrG

 ICν̌ −−−−→ j∗,λ̌ 
 ICν̌ −−−−→ j∗,λ̌ 
 ∇w0·(ν̌+2ρ̌)

∼
⏐⏐� ∼

⏐⏐�⊕̌
ν′

ICν̌+ν̌′ ⊗ V λ̌(ν̌′) −−−−→ ICν̌+w0(λ̌) −−−−→ ∇w0·(ν̌+2ρ̌+w0(λ̌))

and
j∗,λ̌ 
 ICν̌ −−−−→ j∗,λ̌ 
 ICμ̌,GrG 
 IC−w0(μ̌),GrG 
 ICν̌⏐⏐� ⏐⏐�

j∗,λ̌ 
 ∇w0·(ν̌+2ρ̌) j∗,λ̌ 
 ICμ̌,GrG 
 ICν̌−w0(μ̌)

∼
⏐⏐� ⏐⏐�

∇w0·(ν̌+2ρ̌+w0(λ̌)) ←−−−− j∗,λ̌+μ̌ 
 ICν̌−w0(μ̌)

are commutative.

6. The equivalence

6.1. The functor

6.1.1.. Let
•
S be an object of

•
Hecke(GrG, Ǧ)G

k

. We attach to it a covariant functor on
Perv

(
Fl
∞
2
)
Gk as follows (here Perv

(
Fl
∞
2
)
Gk denotes the ind-completion of the category

Perv(Fl
∞
2 )G

k

). To an object F ∈ Perv
(
Fl
∞
2
)
Gk we assign the set of collections of

morphisms
•
Sλ̌ 
 ICλ̌ → F, such that for any V ∈ Rep(Ǧ) and μ̌ ∈ Λ̌, the diagram
•
Sλ̌ 
 V 
 ICλ̌−μ̌ ⊗ (V (μ̌))∗ −−−−→ (•

Sλ̌−μ̌ ⊗ V (μ̌)
)

 ICλ̌−μ̌ ⊗ (V (μ̌))∗⏐⏐� ⏐⏐�

•
Sλ̌ 
 ICλ̌ ⊗ V (μ̌)⊗ (V (μ̌))∗

•
Sλ̌−μ̌ 
 ICλ̌−μ̌⏐⏐� ⏐⏐�

•
Sλ̌ 
 ICλ̌ −−−−→ F
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commutes, where the upper horizontal arrow is given by the Hecke eigenproperty mor-

phism for
•
S, and the left vertical arrow by Proposition 5.2.4.

It is easy to see that the above functor is representable by

co-eq
( ⊕
λ̌,μ̌,V

•
Sλ̌ 
 V 
 ICλ̌−μ̌ ⊗ (V (μ̌))∗ ⇒

⊕̌
ν

•
Sν̌ 
 ICν̌

)
,

where the two arrows correspond to the two circuits of the above commutative diagram.

We denote the resulting functor
•
Hecke(GrG, Ǧ)G

k → Perv
(
Fl
∞
2
)
Gk by ConvHecke. By

construction, ConvHecke is right-exact.

Proposition 6.1.2. For
•
S = S 


•
RǦ{μ̌} ∈

•
Hecke(GrG, Ǧ)G

k

the object ConvHecke(
•
S) is

canonically isomorphic to S 
 IC−μ̌.

Proof. For a morphism ConvHecke(
•
S) → F, by taking its component

•
S−μ̌ 
 IC−μ̌ → F,

we obtain a map S 
 IC−μ̌ → F, since
•
S−μ̌ 	 S 


•
RǦ{μ̌}−μ̌ 	 S 
 (

•
RǦ)0,

and it contains S as a direct summand.
Vice versa, having a map S 
 IC−μ̌ → F, for every V ∈ Rep(Ǧ) and λ̌, we define a

map (
S 
 V⊗ V ∗(λ̌+ μ̌)

)

 ICλ̌ −→ F

by(
S 
 V⊗ V ∗(λ̌+ μ̌)

)

 ICλ̌ −→ S 
 IC−μ̌ ⊗ V (−λ̌− μ̌)⊗ V ∗(λ̌+ μ̌) −→ S 
 IC−μ̌ −→ F.

The fact that the resulting system of maps satisfies the defining condition follows
from the second assertion in Proposition 5.2.4. �

We also have the following assertion that follows from Proposition 5.2.4(2):

Lemma 6.1.3. For
•
S ∈

•
Hecke(GrG, Ǧ)G

k

and μ̌ ∈ Λ̌,

ConvHecke(
•
S) 	 co-eq

(⊕
V

•
Sμ̌ 
 V 
 ICμ̌ ⊗ V (0)∗ ⇒

•
Sμ̌ 
 ICμ̌

)
.

6.1.4.. We propose the following:

Conjecture 6.1.5. The functor

ConvHecke :
•
Hecke(GrG, Ǧ)G

k −→ Perv
(
Fl
∞
2
)
Gk

is exact and fully-faithful.

In fact, we think that ConvHecke is very close to be an equivalence of categories. Un-
fortunately, we cannot formulate a precise conjecture, due to our lack of understanding
of Noetherian properties of both categories. In any case, we think that one can express

Perv
(
Fl
∞
2
)
Gk completely in terms of

•
Hecke(GrG, Ǧ)G

k

, which would then supply a local
(in particular, independent of the global curve X) description of Perv

(
Fl
∞
2
)
Gk .

In what follows we are going to discuss a version of the above conjecture, where
instead of the level Gk we take I0. In this case it would be possible to formulate and
prove a more precise result.
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Theorem 6.1.6. The functor

ConvHecke :
•
Hecke(GrG, Ǧ)I

0 −→ Perv
(
Fl
∞
2
)
I0

is exact, and it defines an equivalence between the subcategories of Artinian objects on
both sides.

Since the subcategory
•
Hecke(GrG, Ǧ)I

0

Art of Artinian objects in
•
Hecke(GrG, Ǧ)I

0
is

equivalent to
•
u� -mod0, as a corollary, we obtain

Theorem 6.1.7. The category
•
u� -mod0 is equivalent to the category of Artinian objects

in Perv
(
Fl
∞
2
)
I0 .

6.1.8.. Here we would like to add the following observation.

As we saw above, the category
•
Hecke(GrG, Ǧ)I

0
is acted on by the group Waff by

self-equivalences: the elements of Λ̌ act by shifting the grading, and w ∈ W by the

twisting functors
•
S 
→ w

•
S (which on the level of

•
u� -mod correspond to the functors Fw).

Evidently, these functors preserve the subcategory
•
Hecke(GrG, Ǧ)I

0

Art, and, hence, they
carry over to the category of Artinian objects in Perv

(
Fl
∞
2
)
I0 .

Let us describe how these functors act on the irreducibles of Perv
(
Fl
∞
2
)
I0 . For

w ∈W let Lw = ICw·λ̌,GrG
be the corresponding “restricted” irreducible in Perv(GrG)I .

By Theorem 5.3.2 and Proposition 6.1.2,

ConvHecke(Lw 

•
RǦ{μ̌}) 	 ICw·(λ̌−μ̌). (53)

Hence, (
ICw·ν̌

){μ̌} 	 ICw·(ν̌−μ̌)

and
Fw′
(
ICw·(λ̌−μ̌)

) 	 ICw·(λ̌−w′(μ̌)). (54)

Recall that the C-linearized Grothendieck group of the category of Artinian objects in
Perv

(
Fl
∞
2
)
I0 identifies with Lusztig’s periodic module over the affine Hecke algebra (cf.

[FFKM]),9 and hence, also with the space of Iwahori-invariant functions in the Schwarz
space of [BK]. Equation (54) implies that the maps on the Grothendieck group, induced
by the functors Fw, are equal to the Fourier transform operators introduced in [BK].

The rest of this paper is devoted to the proof of Theorem 6.1.6.

6.2. Proof of the equivalence

6.2.1.. As a first step we prove the following:

9For this to be formally true we have to pass to the category of mixed D-modules of Hodge–

Tate type in Perv
(
Fl
∞
2
)I0 .
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Proposition 6.2.2. The functor

ConvHecke :
•
Hecke(GrG, Ǧ)I

0 −→ Perv
(
Fl
∞
2
)
I0

is exact.

By combining this with Proposition 6.1.2 and Theorem 5.3.2 and Corollary 1.3.10,

we obtain that the functor ConvHecke indeed maps Artinian objects in
•
Hecke(GrG, Ǧ)I

0

to the subcategory of Perv(Fl
∞
2 )I

0
, consisting of Artinian objects.

The present subsection is devoted to the proof of this proposition.

Since
•
Hecke(GrG, Ǧ)I

0
is the ind-completion of the subcategory of its Artinian ob-

jects, it is sufficient to prove that ConvHecke restricted to
•
Hecke(GrG, Ǧ)I

0

Art is exact.
Let

0 −→
•
S1 −→

•
S2 −→

•
S −→ 0

be a short exact sequence of objects of
•
Hecke(GrG, Ǧ)I

0

Art. We have to show that

ConvHecke(
•
S1) → ConvHecke(

•
S2) is injective. For that we may assume that

•
S is sim-

ple. By Section 1.3.8,
•
S is then isomorphic to S 


•
RǦ{μ̌} for S ∈ Perv(GrG)I

0
.

We can find an object S′ ∈ Perv(GrG)I
0

with a surjection S′ � S, and a map

S′ → (
•
S2)−μ̌ in Perv(GrG)I

0
, such that the diagram

(
•
S2)−μ̌ −−−−→ (

•
S)−μ̌�⏐⏐ �⏐⏐

S′ −−−−→ S

is commutative. Hence, we obtain a map S′ 

•
RǦ{μ̌} →

•
S2. Let

•
S′2 be the Cartesian

product of
•
S2 and S′ 


•
RǦ{μ̌} over S 


•
RǦ{μ̌}. We have a commutative diagram:

0 0�⏐⏐ �⏐⏐
0 −−−−→

•
S1 −−−−→

•
S2 −−−−→ S 


•
RǦ{μ̌} −−−−→ 0

id

�⏐⏐ �⏐⏐ �⏐⏐
0 −−−−→

•
S1 −−−−→

•
S′2 −−−−→ S′ 


•
RǦ{μ̌} −−−−→ 0�⏐⏐ �⏐⏐

S′′ 

•
RǦ{μ̌} id−−−−→ S′′ 


•
RǦ{μ̌}�⏐⏐ �⏐⏐

0 0.

.
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It is enough to show that the map

ConvHecke
(•
S1 ⊕ S′′ 


•
RǦ{μ̌}

) −→ ConvHecke
(•
S′2
)

is injective. However, by construction,
•
S′2 splits as a direct sum

•
S1⊕ S′ 


•
RǦ{μ̌}. Hence

it is enough to show that the map

ConvHecke(S′′ 

•
RǦ{μ̌}) −→ ConvHecke(S′ 


•
RǦ{μ̌})

is injective. But the latter results from Proposition 6.1.2 combined with Theorem 5.2.2,
since the map in question comes from a map S′′ → S′ in Perv(GrG)I

0
.

6.2.3.. Recall that the Verdier duality functor D is defined on
•
Hecke(GrG, Ǧ)I

0

Art. In
this subsection we will prove the following:

Proposition 6.2.4. The functor ConvHecke commutes with the Verdier duality.

Recall that if
•
S ∈

•
Hecke(GrG, Ǧ)I

0

Art is an object represented as

coker
(
S1 


•
RǦ{μ̌1} −→ S2 


•
RǦ{μ̌2}

)
,

then D(
•
S) is described as follows.

The map S1

•
RǦ{μ̌1} → S2 


•
RǦ{μ̌2} comes from a map α : S1 → S2 
V⊗V ∗(μ̌2− μ̌1)

defined for some V ∈ Rep(Ǧ). By adjunction, we have a map

S1 
 D(Vop)⊗ V (μ̌1 − μ̌2) −→ S2,

and applying the Verdier duality we obtain a map

D(α) : D(S2) −→ D(S1) 
 Vop ⊗ V ∗(μ̌2 − μ̌1).

Recall that the functor V 
→ D(Vop) corresponds on the level of Rep(Ǧ) to the
dualization functor V 
→ V ∗, whereas V 
→ D(V) corresponds to the contragredient
duality V 
→ V ∨. In particular, V (μ̌) 	 V op(−μ̌).

We then obtain a morphism

D(S2) 

•
RǦ{μ̌2} −→ D(S1) 


•
RǦ{μ̌1},

whose kernel is D(
•
S).

For
•
S as above, by Proposition 6.1.2, ConvHecke(

•
S) 	 coker(β), where β is the map

S1 
 IC−μ̌1 −→ (S2 
 V 
 IC−μ̌1)⊗ V ∗(μ̌2 − μ̌1)
−→ S2 
 IC−μ̌2 ⊗ V (μ̌1 − μ̌2)⊗ V ∗(μ̌2 − μ̌1) −→ S2 
 IC−μ̌2 .
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By Proposition 6.2.2, ConvHecke(D(
•
S)) 	 ker(γ), where γ is the map

D(S2) 
 IC−μ̌2 −→ (D(S1) 
 Vop 
 IC−μ̌2)⊗ V ∗(μ̌2 − μ̌1)
−→ D(S1) 
 IC−μ̌1 ⊗ V op(μ̌2 − μ̌1)⊗ V ∗(μ̌2 − μ̌1) −→ D(S1) 
 IC−μ̌1 .

To prove the proposition it remains to see that the morphisms β and γ are trans-
formed into one-another by Verdier duality. This is evident when V is the trivial
representation. By transitivity, this reduces the assertion to the case when S1 	
S2 
 V⊗ V ∗(μ̌2 − μ̌1).

In the latter case, both arrows D(β) and γ are obtained from the corresponding
arrows for S2 replaced by δ1,GrG by convolution with S2. The case S2 = δ1,GrG is a
straightforward verification.

6.2.5.. We will now state a crucial result, from which we will deduce Theorem 6.1.6.

Theorem 6.2.6. For w ∈ W and μ̌ ∈ Λ̌,

ConvHecke
( •
Mw·μ̌) 	 Δw·μ̌.

We will now deduce Theorem 6.1.6 from Theorem 6.2.6. Consider now the following
general set-up:

Let C be an abelian Artinian category; let A be the set parametrizing its irreducibles;
for a ∈ A we will denote by La the corresponding object. Assume also that for each
a ∈ A there exist objects ∇a and Δa, such that La is the cosocle of ∇a and the socle of
Δa. Assume, moreover, that Exti(∇a′ ,Δa′′) = 0 for i = 1, 2, and Hom(∇a′ ,Δa′′) = 0
unless a′ = a′′, and in the latter case it is one-dimensional (which implies that any
element in Hom(∇1,Δa) factors through La).

Let now C1 and C2 be two such categories with the same set of irreducibles A. Let
G : C1 → C2 be an exact functor, such that G(La1) 	 La2 , G(∇a1) 	 ∇a2 , G(Δa

1) 	 Δa
2 .

Lemma 6.2.7. Under the above circumstances, G is an equivalence of categories.

Theorem 6.1.6 follows from this lemma, using Corollary 4.4.7, Lemma 3.2.19, Propo-
sition 6.2.2, equation (53), and Propositions 6.2.6 and 6.2.4.

6.2.8. Proof of Lemma 6.2.7. Note first of all that the assumption implies that G is
faithful.

Step 1. For a, a′ ∈ A consider the long exact sequences

0→ Hom(Lai ,Δ
a′
i ) −→ Hom(∇ai ,Δa′

i ) −→ Hom(ker(∇ai → Lai ),Δ
a′
i )

−→ Ext1(Lai ,Δ
a′
i ) −→ Ext1(∇ai ,Δa′

i ) = 0

for i = 1, 2. Since Hom(∇a1 ,Δa′
1 ) → Hom(∇a2 ,Δa′

2 ) is an isomorphism, comparing the
two, we infer that Ext1(La1 ,Δ

a′
1 )→ Ext1(La2 ,Δ

a′
2 ) is injective.

Step 2. Consider now the long exact sequence

0 −→ Hom(La1 ,L
a′
1 ) −→ Hom(La1 ,Δ

a′
1 ) −→ Hom(La1 ,Δ

a′
1 /L

a′
1 )

−→ Ext1(La1 ,L
a′
1 ) −→ Ext1(La1 ,Δ

a′
1 ) −→ Ext1(La1 ,Δ

a′
1 /L

a′
1 )
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for i = 1, 2. Hom(La1 ,Δ
a′
1 ) → Hom(La2 ,Δ

a′
2 ) is an isomorphism and, using Step 1, we

find that Ext1(La1 ,La
′

1 )→ Ext1(La2 ,La
′

2 ) is injective.

Step 3. Let F′ be any object of C1. Using Step 2, by induction on the length of F′,
we find that the map Hom(La1 ,F′)→ Hom(La2 ,G(F′)) is an isomorphism.

Step 4. Returning to the long exact sequence of Step 1, we find that the map
Ext1(La1 ,Δa′

1 )→ Ext1(La2 ,Δa′
2 ) is an isomorphism.

Step 5. Again, by induction on the length, using Steps 2 and 3, we show that the
map Ext1(La1 ,F′)→ Ext1(La2 ,G(F′)) is injective.

Step 6. By the exact sequence of Step 2, from Steps 4 and 5 we find that Ext1(La1 ,L
a′
1 )

→ Ext1(La2 ,La
′

2 ) is an isomorphism.

Step 7. Let F be an object of C1, and F′ some other object. By induction on
the length of F, from Step 5 we obtain that Hom(F,F′) → Hom(G(F),G(F′)) is an
isomorphism.

Hence, G is fully-faithful. To finish the proof of the lemma, we have to show that G
induces isomorphsims on the level of Ext1(·, ·).

Step 8. By induction on the length of F, from Steps 5 and 7 we obtain that
Ext1(F,F′)→ Ext1(G(F),G(F′)) is injective.

Step 9. For a, a′ ∈ A consider the long exact sequences

. . . 0 = Ext1(∇ai ,Δa′
i ) −→ Ext1(ker(∇ai → Lai ),Δ

a′
i )

−→ Ext2(Lai ,Δ
a′
i ) −→ Ext2(∇ai ,Δa′

i ) = 0

for i = 1, 2. From Step 8 we infer that Ext2(La1 ,Δ
a′
1 )→ Ext2(La2 ,Δ

a′
2 ) is injective.

Step 10. Consider the long exact sequence

Ext1(La1 ,L
a′
1 ) −→ Ext1(La1 ,Δ

a′
1 ) −→ Ext1(La1 ,Δ

a′
1 /L

a′
1 )

−→ Ext2(La1 ,L
a′
1 ) −→ Ext2(La1 ,Δ

a′
1 ) −→ Ext2(La1 ,Δ

a′
1 /L

a′
1 ).

By Steps 4, 8, and 9, the map Ext2(La1 ,L
a′
1 )→ Ext2(La2 ,L

a′
2 ) is injective.

Step 11. By induction on the length, from Step 6, we obtain that Ext1(La1 ,F
′) →

Ext1(La2 ,G(F′)) is an isomorphism.

Step 12. Again, by induction on the length, from Steps 10 and 6, we obtain that the
map Ext2(La1 ,F

′)→ Ext2(La2 ,G(F′)) is injective.

Step 13. Finally, by induction on the length of F, from Steps 11 and 12 we infer that
the map Ext1(F,F′)→ Ext1(G(F),G(F′)) is an isomorphism.

6.3. Identification of the image of baby co-Verma modules
6.3.1.. In this subsection we will prove Theorem 6.2.6. Note that it suffices to show
that

ConvHecke(
•
M1) 	 Δ0,
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since all other isomorphisms will then hold by equation (16), Corollary 3.2.2, and Propo-
sition 5.4.2.

We construct a map

ConvHecke(
•
M1) −→ Δ0 (55)

as follows. We need to construct the maps

lim−→
λ̌

j∗,λ̌+μ̌ 
 IC−w0(λ̌),GrG

 IC−μ̌ −→ Δ0

for every μ̌.
For λ̌ ∈ Λ̌+ as above we have a map

j∗,λ̌+μ̌ 
 IC−w0(λ̌),GrG

 IC−μ̌ 	

⊕
ν̌

j∗,λ̌+μ̌ 
 IC−μ̌+ν̌ ⊗ V ∗(ν̌)

−→ j∗,λ̌+μ̌ 
 IC−μ̌−λ̌ −→ j∗,λ̌+μ̌ 
Δ−μ̌−λ̌ 	 Δ0.

The fact that these maps are compatible with the maps in the inductive system that

defines
•
M1, follows from the commutativity of the diagrams (49) and (50). The fact

that the resulting system of maps

•
M1
μ̌ 
 ICμ̌ −→ Δ0

factors through ConvHecke(
•
M1) follows from (44).

6.3.2.. Now we claim that the map ConvHecke(
•
M1)→ Δ0 constructed above is nonzero

in the quotient category fPerv
(
Fl
∞
2
)
I0 . Using Proposition 4.4.13, it is enough to show

that the map

AvN−,ψ
(
ConvHecke(

•
M1)

) −→ AvN−,ψ(Δ0)

is nonzero. The latter reduces to showing that for λ̌ dominant and regular, the map

j∗,λ̌ 
 ICν̌ −→ Δλ̌+ν̌

gives rise to a nonzero map

AvI−,ψ(W∗,λ̌) 
 ICν̌ −→ AvN−,ψ(Δλ̌+ν̌).

However, the latter is straightforward from the definition of convolution.
In particular, by Corollary 4.4.14(2), we obtain that the map of (55) is surjective.

Moreover, it is an isomorphism in the quotient category fPerv
(
Fl
∞
2
)
I0 by Proposi-

tion 3.2.6(1).
We claim that in order to finish the proof of the theorem, it suffices to show that

there exists a nonzero map

Δ0 −→ ConvHecke(
•
M1). (56)
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Indeed, if such a map exists, its image in fPerv
(
Fl
∞
2
)
I0 cannot be 0 by Corol-

lary 4.4.14, and hence the composition

Δ0 −→ ConvHecke(
•
M1) −→ Δ0

is nonzero. Then the above composition is the identity map on Δ0, up to a scalar.

Hence, it would remain to show that ConvHecke(
•
M1) is indecomposable. We claim

that it, in fact, does not admit irreducible quotients besides the canonical map

ConvHecke(
•
M1) −→ ConvHecke(Lw0 


•
RǦ{ρ̌′}).

This is so because ConvHecke(
•
M1) cannot map to any partially integrable irreducible

object of Perv
(
Fl
∞
2
)
I0 by the same argument as in the proof of Proposition 2.3.2,

and by Corollary 3.2.6(1), ConvHecke(Lw0 

•
RǦ{ρ̌′}) is the only nonpartially integrable

constituent of ConvHecke(
•
M1).

6.3.3.. Thus, our goal is to construct a map as in (56). By Propositions 3.2.10 and 6.2.4,
it suffices to construct a map

ConvHecke
(
(w0

•
Mw0){2ρ̌}) −→ ∇0,

or, equivalently, a map

ConvHecke
(
(w0

•
M1){2ρ̌}) −→ ∇w0 .

Consider the inductive system that defines
(
(w0

•
M1){2ρ̌})μ̌, viewed as an object of

Perv(GrG)I
0
:

lim−→
λ̌

j∗,λ̌+ρ̌′−w0(μ̌)+2ρ̌ 
 IC−w0(λ̌),GrG
.

For every such μ̌ and λ̌, we define the map

j∗,λ̌−w0(μ̌)+2ρ̌ 
 IC−w0(λ̌),GrG

ICμ̌ −→ ∇w0

as the composition

j∗,λ̌−w0(μ̌)+2ρ̌ 
 IC−w0(λ̌),GrG

 ICμ̌ 	

⊕̌
ν
j∗,λ̌+2ρ̌−w0(μ̌) 
 ICμ̌+ν̌ ⊗ (V λ̌)∗(ν̌)

−→ j∗,λ̌+2ρ̌−w0(μ̌) 
 ICμ̌−w0(λ̌)

−→ j∗,λ̌+2ρ̌−w0(μ̌) 
∇w0·(μ̌−w0(λ̌)+2ρ̌) 	 ∇w0 ,

where the third arrow comes from (52), and the last arrow comes from (51).
The fact that these maps for various λ̌ are compatible with the maps in the inductive

system follows from Lemma 5.4.5. The fact that the resulting map

Conv
(
(w0

•
M1){2ρ̌}) −→ ∇w0

factors through ConvHecke
(
(w0

•
M1){2ρ̌})→ ∇w0 follows from (44).
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