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Abstract. Upper bounds on the essential dimension of algebraic groups can be found by
examining related questions about the integral representation theory of lattices for their Weyl
groups. We examine these questions in detail for all simple affine algebraic groups, expanding
on work of Lorenz and Reichstein for PGLn. This results in upper bounds on the essential
dimensions of these simple affine algebraic groups which match or improve on the previously
known upper bounds.

1. Introduction

The purpose of this paper is to use integral representation theory to obtain upper
bounds on the essential dimension of certain linear algebraic groups. Throughout the
paper, we will work over a fixed algebraically closed field k of characteristic zero. Let
G be a fixed linear algebraic group over k.

A G-variety X is an algebraic variety with a regular G-action. X is a generically
free G-variety if G acts freely (with trivial stabilizers) on a dense open subset of X . A
dominant G-equivariant rational map of generically free G-varieties X and Y is called a
G-compression and is denoted byX ��� Y . Then the essential dimension of an algebraic
group is

ed(G) = min dim(Y/G),

where Y is taken over the set of generically free G-varieties for which there exists a
G-compression from a linear generically free G-variety X to Y . Essential dimension
comes up naturally in a number of interesting situations. It is a numerical invariant of
the group G which is often the number of independent parameters needed to describe
certain algebraic objects associated to G. In [Re], it is shown that:

• ed(PGLn) is the minimum positive integer d such that every division algebra of
degree n over k can be defined over a field K0 with trdegkK0 � d;

• ed(On) (respectively ed(SOn)) is the minimum positive integer d such that every
quadratic form in n variables (respectively of determinant 1) is equivalent to one
defined over a field of transcendence degree � d;
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• ed(G2) (respectively ed(F4)) is the minimum positive integer d such that every
octonion algebra (respectively exceptional 27 dimensional Jordan algebra) can
be defined over a field of trdegk(K0) � d.

The methods used for computing, or at least estimating, the essential dimension of
an algebraic group G are geometric, algebraic and cohomological. In a few cases, the
value of the essential dimension is known. The following proposition, due to Reichstein,
gives a summary of most of the known exact values for ed(G):

Proposition 1.1. ([Re])
(a) ed(G) = 0 if and only if G is a connected algebraic group with Levi subgroup

isomorphic to L1 × · · · × Lr with Li ∼= k×, Sp2n or SLn for some n;
(b) ed(On) = n;
(c) ed(SOn) = n− 1;
(d) ed(G2) = 3.

The exact values for a few other simple groups are known. Rost [Ro1] has calculated
the essential dimension of the Spinn groups for n � 14. The essential dimension of
PGLn is known for n = 2, 3, 4, 6. The result for n = 4 is due to Rost [Ro2], the others
are due to Reichstein [Re]. Kordonskĭı [K] showed that the essential dimension of F4

is 5. For the other simple algebraic groups, both upper and lower bounds are known
(see [Re]), but naturally one seeks to make improvements.

The case of PGLn has attracted some attention due to its connection with generic
division algebras. Let A be a central simple algebra with centre K containing k. Define

τ(A) = min{trdegk(K0) | A ∼= K ⊗K0 A0, A0 is a central simple K0-algebra}.

Let UD(n) be the universal division algebra, the k-subalgebra of Mn(xij , yij) generated
by 2 generic n by n matrices X = (xij) and Y = (yij). Then ed(PGLn) ≡ τ(UD(n)),
see [Re]. Procesi found the initial bound of n2 for ed(PGLn), see [Pr]. The following
proposition summarizes currently known bounds on the essential dimension of PGLn:

Proposition 1.2.
• ed(PGLn) = 2, n = 2, 3, 6, see [Re];
• ed(PGL4) = 5, see [Ro2];
• ed(PGLn) � n2 − 2n, see [Re];
• ed(PGLn) � ed(PGLmn) � ed(PGLn) + ed(PGLm), (m,n) = 1, see [Re];
• ed(PGLnr) � 2r, see [Re];
• ed(PGLn) � (n− 1)(n− 2)/2, n � 5 odd, see [LR], [LRRS].

In the last result, due to Lorenz and Reichstein, lattice-theoretic techniques were
used. Note that this result was reproved in [LRRS] using different methods. In this
paper, we will expand upon the techniques used in [LR] in order to improve on bounds
for the essential dimension of certain adjoint algebraic groups.

Let G be a reductive algebraic k-group. Let T be a maximal torus, let N be the
normalizer NG(T ) of T , and let W be the Weyl group of G with respect to T . Let
X(T ) = Hom(T, k∗) be the character lattice which has a natural action ofW . Reichstein
showed in [Re] that

ed(G) � ed(N).
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Following the work of Saltman in [Sa2], we construct generically free N -varieties from
information about the integral representation theory of the associated Weyl group. This
analysis leads to some new bounds on the essential dimension of certain simple algebraic
groups and produces an interesting class of irreducible Weyl group lattices.

The inequality ed(G) � ed(N) is often strict. The bounds that we get from integral
representations of Weyl groups seem to be most effective in the case of simple adjoint
groups. In Section 2, we will define edW (X(T )), which will be the best possible bound
on ed(N) that can be obtained from our construction of generically free N -varieties
from integral representations of the associated Weyl group. So we will have

ed(G) � ed(N) � edW (X(T )).

It is not known whether the last inequality is strict.
The first main result of the paper is the following theorem.

Theorem 1.3. For a simple adjoint algebraic group G of rank n, not of type A1,Bn,

ed(G) � ed(N) � edW (ZΦ) � |Φ0| − n− 1,

where N is the normalizer of the maximal torus T and Φ (respectively Φ0) is the (short)
root system associated to G and T . If G is of type A1,Bn, then ed(G) � ed(N) �
edW (ZΦ) � 2n.

Corollary 1.4. We have the following bounds on the essential dimension of the simple
adjoint algebraic groups:

• Type A1: ed(PGL2) � 2;
• Type An, n � 2: ed(PGLn) � n2 − 2n;
• Type Bn : ed(SO2n+1) � 2n;
• Type Cn, n � 3 : ed(PSp2n) � 2n2 − 3n− 1;
• Type Dn, n � 4 : ed(POn) � 2n2 − 3n− 1;
• ed(E6(adj)) � 65;
• ed(E7(adj)) � 112;
• ed(E8) � 231;
• ed(F4) � 19;
• ed(G2) � 3.

Remark 1.5. For an arbitrary simple algebraic group G, Kordonskĭı obtained by diffe-
rent means the bound ed(G) � dim(G) − 2rank (G) − 1 in [K2]. Since dim(G) −
2rank (G) − 1 = |Φ| − n − 1 where rank (G) = n and Φ is the root system associ-
ated to G and a maximal torus T , we see that our bound matches this one in the simple
adjoint simply laced cases and improves upon it in the simple adjoint nonsimply laced
cases. For the adjoint group of type Cn, our bound of 2n2 − 3n − 1 improves on Kor-
donskĭı ’s bound of 2n2 − n− 1. In later work [K], Kordonskĭı found a bound of 5 for
the group of type F4 which is considerably better than our corresponding bound of 19.
The essential dimension of the remaining simple nonsimply connected adjoint groups of
type G2, A1, and Bn were determined by Reichstein in [Re]. In these cases, our bound
matches Reichstein’s values.

The second main result produces a new bound for ed(PGLn), n � 4, as follows.
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Proposition 1.6. For n � 4, ed(PGLn) � ed(N) � edSn(ZAn−1) � n2 − 3n+ 1.

Although this bound is not an improvement in the case of odd n covered by Lorenz
and Reichstein, it gives the best currently known bound in the case where n is a power
of 2, or at least divisible by a large power of 2.

The rest of this paper is structured as follows. In Section 2, we discuss the connection
between the determination of upper bounds on the essential dimension of a simple
algebraic group and a lattice-theoretic question about the associated Weyl group. We
will use this discussion to define edW (X(T )). In Section 3, we will prove Theorem 1.3
and Corollary 1.4 after some preliminaries on root systems and permutation resolutions.
In Sections 4 and 5, we examine some of the lattice-theoretic questions posed in Section 2
which are motivated by the study of essential dimension and find upper bounds on
edW (X(T )) for the simple algebraic groups.

2. Essential dimension and Weyl group lattices

Let G be a reductive algebraic k-group where k is an algebraically closed field of
characteristic 0. Let T be a maximal torus, N ≡ NG(T ), the normalizer of T , W the
Weyl group. Let X(T ) = Hom(T, k∗) be the character lattice.

A construction due to Saltman [Sa2] produces a generically free linear N -variety from
an exact sequence of W -lattices

0 −→M −→ P
f−→ X(T ) −→ 0,

with M = Ker(f) a faithful W -lattice and P a permutation W -lattice. We will gener-
alise his construction here, and then we will make connections to upper bounds on the
essential dimension of N extending results in [LR] for PGLn to an arbitrary reductive
algebraic group G.

Proposition 2.1. To any map of W -lattices f : L → X(T ) which extends to a map
of W -lattices f̂ : P → X(T ) where P is a permutation W -lattice, one can associate an
irreducible N -variety Xf having the following properties:

(a) Functoriality: A commutative diagram

X(T )

L0

f0
����������

� �

p
�� L

f
����������

of W -lattices, where f : L → X(T ) extends to a W -map f̂ : P → X(T ) for
a permutation lattice P , leads to a dominant rational map of N -varieties Xp :
Xf ��� Xf0 ;

(b) dim(Xf/N) = rank (Ker(f));
(c) Xf is generically free if and only if f is surjective and Ker(f) is a faithful W -

lattice;
(d) If L = P is a permutation lattice, then Xf is birationally equivalent to a linear

N -variety.
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Proof. Let f : L → X(T ) be a W -map of lattices. Let k[L] be the group algebra of L
with k-basis {el | l ∈ L} written exponentially. We will show that there is a twisted
N -action on k[L] and hence on the irreducible variety Spec(k[L]) which satisfies

n · (kel) = ke(nT )·l; t · el = f(l)(t)el, n ∈ N, t ∈ T, l ∈ L (1)

where nT ∈ W is the image of n ∈ N in W = N/T . In [Sa2], Saltman does this for
a permutation lattice L = P . We will extend his construction to a more general class
of W -lattices. For example, for any permutation projective lattice L, we may extend
f : L → X(T ) to f̂ : P → X(T ) where L is a direct summand of the permutation
lattice P .

Let the permutation W -lattice P have permutation basis pi, i = 1, . . . , r. We will
define a kN space Vf̂ with k-basis {epi | i = 1, . . . , r}, which satisfies

n · (kepi) = ke(nT )·pi ; t · epi = f̂(pi)(t)epi , n ∈ N, t ∈ T, i = 1, . . . , r. (2)

The permutation lattice P can be decomposed into a direct sum of transitive com-
ponents P = ⊕mj=1Pj . Let f̂j : Pj → X(T ) be the restriction of P to Pj . First observe
that if we determine for each j = 1, . . . ,m, a kN space Vf̂j

which satisfies (2) for

f̂j : Pj → X(T ), then Vf̂ = ⊕mj=1Vf̂j
would satisfy (2) for f̂ : P → X(T ). So it suffices

to construct Vf̂ for a transitive permutation lattice P = ZWq = Z[W/Wq] and a W -map

f̂ : P → X(T ) satisfying (2).
Note that, although the extension of groups

1 −→ T −→ N
π−→W −→ 1

does not in general split, Saltman shows in [Sa2, 2.5] that for each ϕ ∈ X(T ),

1 −→ T/Ker(ϕ) −→ Nϕ/Ker(ϕ) −→Wϕ −→ 1 (3)

does split as a sequence of W modules where Wϕ is the stabilizer subgroup of ϕ in W
and Nϕ = π−1(Wϕ).

We may apply this result to f̂(q)∈X(T ). Let V0 be the permutation space k[Wf̂(q)/Wq]
with permutation basis eqk , k = 1, . . . , d (written exponentially). (3) shows that we can
define an action of Nf̂(q) on V0 which extends the permutation action of Wf̂(q) and such
that t ∈ T acts on V0 via

t · eqk = f̂(qk)(t)eqk .

Indeed, we have

tw · eqk = f̂(w · qk)(t)ew·qk = w · [f̂(qk)](t)ew·qk = f̂(qk)(w−1tw)ew·qk = w(w−1tw) · eqk

for t ∈ T,w ∈Wf̂(q), k = 1, . . . , d, so the actions of T and Wf̂(q) combine to define a
locally free action of Nf̂(q) on V0.

Let Vf̂ = IndNNf̂(q)
V0. Note that the dimension of Vf̂ is r = rank (P ). Let s = [N :

Nf̂(q)] = [W : Wf̂(q)]. For a transversal nj , j = 1, . . . , s of Nf̂(q) in N ,

{nj ⊗ eqk | j = 1, . . . , s; k = 1, . . . , d}
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is a k-basis of Vf̂ and, correspondingly,

{njT · qk | j = 1, . . . , s; k = 1, . . . , d}

is a permutation basis of P . Relabelling this basis of P as pi, i = 1, . . . , r and the
corresponding basis of Vf̂ as epi , i = 1, . . . , r, we may observe that {epi | i = 1, . . . , r}
satisfies (2). Indeed, t ∈ T acts as required on this basis, since for j = 1, . . . , s, k =
1, . . . , d, we have

t · [nj ⊗ eqk ]=nj ⊗ (n−1
j tnj) · eqk = nj ⊗ f̂(qk)(n−1

j tnj) · eqk

= [nj · (f̂(qk))](t)]nj ⊗ eqk =[f̂(njT · qk)(t)]nj ⊗ eqk .

We also find that n ∈ N acts as required on this basis: Since there exists n′ ∈ Nf̂(q)
which satisfies nnj = nln

′ for some l ∈ {1, . . . , s}, we have

n · [knj ⊗ eqk ] = nl ⊗ n′ · keqk = knl ⊗ en
′T ·qk = kenlT ·(n′T ·qk) = kenT ·(njT ·qk)

using the identification enjT ·qk ≡ nj ⊗ eqk .
Let Sf̂ be the multiplicative subgroup of k(Vf̂ )

× generated by k× and the epi , i =
1, . . . , r. Note that T acts trivially on Sf̂/k

×, which is then a W = N/T lattice isomor-
phic to P . As Abelian groups, Sf ∼= k× ⊕ P = k[P ]×, the units of the group algebra of
P . So the N -action on Sf induces an extension of N -modules

[α] = [0 −→ k× −→ k[P ]× −→ P −→ 0] ∈ Ext1N (P, k×) ∼= H1(N,Hom(P, k×)).

Note that the action of N on k[P ]× can be completely defined by the 1-cocycle α as

n · ep = αn(n−1(p))enT ·p. (4)

The N -action on the units k[P ]× extends naturally to k[P ] and hence to the k-variety
Spec(k[P ]). We will write Xf̂ = Spec(kα[P ]) to remind us of the twisted action by α

where [α] ∈ Ext1N (P, k×) defines the N -action via (2). Note that the N -variety Xf̂ with
the N -action induced by (2) satisfies (1) for L = P .

Now for the W -map of lattices f : L → X(T ) and its extension f̂ : P → X(T ), the
inclusion L ↪→ P induces an inclusion of N -varieties Spec(k[L]) ↪→ Spec(k[P ]) = Xf̂ .
Define Xf as Spec(k[M ]) with this induced N -action. Let [β] be the image of [α] under
the induced map

Ext1N(P, k×) → Ext1N (L, k×).

Then Xf is Spec(kβ [L]) as an N -variety.
Now

k(Xf̂/T ) = k(Xf̂ )
T = kα′(Ker(f̂))

as a W = N/T -field where

[α′] ∈ Ext1W (Ker(f̂), k×) = Ext1N (Ker(f̂), k×)
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is the image of [α] under

Ext1N (L, k×) → Ext1N (Ker(f), k×).

Then
k(Xf/T ) = k(Xf )T = k(Xf ) ∩ k(Xf̂ )

T = kβ′(Ker(f))

as a W -field where

[β′] ∈ Ext1W (Ker(f), k×) = Ext1N (Ker(f), k×)

is the image of [β] under

Ext1N (L, k×) −→ Ext1N (Ker(f), k×)

so that
k(Xf/N) = k(Xf/T )W = kβ′(Ker(f))W .

Since the transcendence degree of k(Xf/N) = kβ′(Ker(f))W over k is rank (Ker(f)), we
see that dim(Xf/N) = rank (Ker(f)).
Xf is a generically free T -variety if and only if f is surjective [OV, Theorem 3.2.5]

and Xf/T is a generically free W -variety if and only if Ker(f) is a faithful W -lattice. So
Xf is a generically free N -variety if and only if f is surjective and Ker(f) is a faithful
W -lattice [LR, Lemma 2.1].

A commutative diagram as in Proposition 2.1(a) induces an injective W -equivariant
map from kβ0 [L0] → kβ [L], and hence a dominant rational N -equivariant map

Xp : Xf = Spec(kβ [L]) ��� Xf0 = Spec(kβ0 [L0]).

If L = P is a permutation W -lattice, the N -variety Xf̂ = Spec(kα[P ]) is birationally
equivalent to a linear N -variety. �
Corollary 2.2. If there exists a commutative diagram of W -lattices

X(T )

P0

f0
����������

� �

p
�� P

f
����������

with P permutation and Ker(f0) faithful, then

ed(G) � ed(N) � rank (P0) − rank (G).

Proof. By Proposition 2.1, the diagram above induces a dominant N -equivariant map
Xp : Xf ��� Xf0 from a generically free linear N -variety Xf to a generically free
N -variety Xf0 . Then

ed(N) � dim(Xf/N) = rank (Ker(f0)) = rank (P0) − rank (G)

as required. �
The following general definition for an H-lattice Y will give an upper bound on ed(N)

from representation-theoretic information about the W -lattice X(T ).
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Definition 2.3. Let H be a finite group and Y a ZH-lattice. Let P(Y ) be the set of
pairs (P, π) such that P is an H-permutation lattice, π : P → Y is an H-epimorphism
with Ker(π) a faithful H-lattice, and let

r(Y ) = min{rank (P ) | (P, π) ∈ P(Y )}.

Let PE(Y ) be the set of extension classes

[0 −→ Ker(π) −→ P
π−→ Y −→ 0]

such that (P, π) ∈ P(Y ). Let M be a faithful H-lattice such that

ξ = [0 −→M −→ P −→ Y −→ 0] ∈ PE(Y ),

and let ed(ξ) be the minimum rank of a faithful H-sublattice M0 such that

ξ ∈ Im(Ext1H(Y,M0) −→ Ext1H(Y,M)).

Then define
edH(Y ) = min{ed(ξ) | ξ ∈ PE(Y )}.

Remark 2.4. This definition was suggested by Reichstein [Rem] and was motivated by
Merkurjev’s definition of the essential dimension of a functor [Me]. By Corollary 2.2,
we note that

ed(G) � ed(N) � edW (X(T )),

as the existence of a diagram of the form as in Corollary 2.2 is equivalent to

ξ ∈ Im(Ext1W (X(T ),M0) −→ Ext1W (X(T ),M))

where ξ ∈ Ext1W (X(T ),M) corresponds to the extension class

[0 −→M −→ P → X(T ) −→ 0] ∈ PE(X(T )).

Note also that r(X(T )) − rank (G) gives a first (rough) upper bound for edW (X(T )).
In the case of PGLn, Lorenz and Reichstein in [LR] showed

ed(PGLn) � (n− 1)(n− 2)
2

, n odd, n � 5,

by showing that there exists a commutative diagram of ZSn lattices

0 �� ZA⊗2
n−1

�� Z[Sn/Sn−2] �� ZAn−1
���� 0

0 �� ∧2(ZAn−1) ��
� �

��

X ��
� �

��

ZAn−1
�� 0

(5)
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where ZAn−1 is the root lattice and X is an Sn-lattice. They showed this by cohomo-
logical means. That is, they showed:

Ext1Sn

(
ZAn−1,∧2(ZAn−1)

)
� Ext1Sn

(
ZAn−1, (ZAn−1)⊗2

)
for n � 5 odd using

∧2(ZAn−1) � (ZAn−1)⊗2 � Sym2(ZAn−1)

and the fact, proved by Lemire and Lorenz in [LL], that Sym2(ZAn−1) is stably permu-
tation for n odd. So, in fact, they found a bound on edSn(ZAn−1) for n � 5 odd. In this
paper, we will show that the same reduction for the even case is impossible. However,
we will now prove Proposition 1.6 to improve on the n2 − 2n bound for the even case
using similar techniques.
Proof of Proposition 1.6. Let Un be the standard permutation lattice for Sn with
permutation basis

{ei | 1 � i � n}
where

σ(ei) = eσ(i), σ ∈ Sn, 1 � i � n.

Then the root lattice ZAn−1 is the kernel of the augmentation map ε : Un → Z,
ei 
→ 1. So we have the following exact sequence of Sn-lattices:

0 −→ ZAn−1 −→ Z[Sn/Sn−1] −→ Z −→ 0.

Tensor this sequence with ZAn−1 and use the fact that

ZAn−1 ⊗Z Un ∼= P := ⊕r �=sZ(er ⊗ es), (es − er) ⊗ es 
→ er ⊗ es

to obtain an exact sequence

0 −→ (ZAn−1)⊗2 −→ P
f−→ ZAn−1 −→ 0

where f(er ⊗ es) = es − er. Note that P ∼= Z[Sn/Sn−2]. Now define g : P → Un by
g(er ⊗ es) = es and put P0 = Ker(g) and M0 = Kerf ∩ Kerg = (ZAn−1)⊗2 ∩ P0. If
{r, s, t} are all distinct, then the element er ⊗ es − et ⊗ es is in P0 and maps to et − er
under f . Therefore, f(P0) = ZAn−1 if n � 3, and we obtain a commutative diagram of
Sn− lattices:

0 �� (ZAn−1)⊗2 �� P
f �� ZAn−1

���� 0

0 �� M0
��

� �

��

P0
f0 ��

� �

��

ZAn−1
�� 0

.

Note that

rankM0 = rankP − rankUn − rankZAn−1 = n2 − 3n+ 1.
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Furthermore, if n � 4, then M0 is faithful. Indeed, let 1 �= σ ∈ Sn, say σ(i) �= i. Choose
j �∈ {i, σ(i)} and choose two distinct elements r, s �∈ {i, j}. Then the element

m = (es − er) ⊗ (ei − ej) ∈ P

satisfies f(m) = 0, g(m) = 0 and σ(m) �= m.
We can now apply Corollary 2.2 to complete the proof of the proposition. Note that

in this case, we could actually apply Lemma 3.2 and 3.3 of [LR] as we are doing in the
PGLn case. �

We will show that for each irreducible root system Φ �= A1,Bn, a minimal element
of P(ZΦ) is given by (P (Φ), π(Φ)), where P (Φ) = ⊕α∈Φ0Zeα is the permutation lattice
on the set of short roots Φ0 and

π(Φ) : P (Φ) −→ ZΦ, eα 
→ α.

Let K(Φ) = Ker(π(Φ)). It turns out that P (An−1) ∼= Z[Sn/Sn−2], K(An−1) ∼= ZA⊗2
n−1

and the Formanek–Procesi sequence above is precisely that given by (P (An−1), π(An−1)).
There is also an analogous construction to that of (5). Let

P−(Φ) = ⊕α∈(Φ0)+Z(eα − e−α).

Then P−(Φ) is clearly a W -sublattice of P (Φ). Let K−(Φ) = P−(Φ) ∩ K(Φ). Then
K−(An−1) ∼=

∧2(ZAn−1) and π(Φ) restricted to P−(Φ) gives the exact sequence

0 −→ K−(Φ) −→ P−(Φ) −→ 2ZΦ −→ 0,

as in the case of An−1.
In Section 4, we examine the cohomological properties of the sequence

0 −→ K(Φ) −→ P (Φ) −→ ZΦ −→ 0. (6)

We consider when it is possible to have (6) in the image of the map

Ext1W (ZΦ,K−(Φ)) −→ Ext1W (ZΦ,K(Φ))

and find that this is possible if and only if Φ = An−1, n odd. More generally, we examine
the question of when compressions of the above sequence are possible.

In Section 5, we determine minimal elements of P(X(T )) and r(X(T )) for each
simple algebraic group G with maximal torus T . This gives us rough upper bounds on
edW (X(T )) in each case.

3. Essential dimension of simple adjoint groups

In this section we will determine an upper bound on the essential dimension of the
simple adjoint groups. We first discuss some preliminary material about permutation
resolutions and root systems.
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3.1. Permutation resolutions
Let H be a finite group and Y an H-lattice. We want to determine (P, π) ∈ P(Y ).
That is, we want to find an H-epimorphism π : P → Y from an H-permutation lattice
P with Ker(π) being a faithful H-lattice.

We will begin with some general observations about homomorphisms from permuta-
tion lattices.

Remark 3.1. Let H0 be a subgroup of H . Then HomZH(Z[H/H0], Y ) is in bijective
correspondence with Y H0 . This is just the easiest case of Shapiro’s Lemma, i.e., for
n = 0. Explicitly, any g ∈ HomZH(Z[H/H0], Y ) is completely determined by its value
on H0, g(H0), which must be fixed by H0. Conversely, for any y ∈ Y H0 , the map
Z[H/H0] → Y , hH0 
→ hy, is a well defined H-map.

Notation. Let yi ∈ Y and let Hi be a subgroup of Hyi for i = 1, . . . , k where Hy is the
stabilizer subgroup of y ∈ Y in H . Then fy1,...,yk

will denote the H-homomorphism

fy1,...,yk
: ⊕ki=1Z[H/Hi] −→ Y, (h1H1, . . . , hkHk) 
→

∑k
i=1 hiyi.

Remark 3.2. Let Hi, i = 1, . . . , k be subgroups of the finite group H , let yi ∈ Y for
i = 1, . . . , k and let Y be an H-lattice. Then fy1,...,yk

is an H-epimorphism from
⊕ki=1Z[H/Hi] onto Y if and only if

(a) Hi � Hyi for all i = 1, . . . , k;
(b)

∑k
i=1(ZH)yi = Y .

Proposition 3.3. Suppose H is a finite group and Y is a faithful H-lattice such that
QY is an irreducible QH space. Then:

(a) Suppose g : P � Y is an H-epimorphism. Then M = Ker(g) is a faithful H-
lattice if and only if for every nontrivial normal subgroup N of H, rank (PN ) <
rank (M);

(b) rank (Z[H/H0]N ) � [H : H0]/2 for any subgroup H0 of Hy, any 0 �= y ∈ Y and
any nontrivial normal subgroup N of H. In particular, Z[H/H0] is a faithful
H-lattice;

(c) If ZHy = Y for some H0 � Hy, then g : Z[H/H0] → Y, hH0 
→ hy is an
H-epimorphism such that M = Ker(g) is a faithful H-lattice if [H : H0] >
2rank (Y ).

Proof. (a) Let N be a normal subgroup of H . Then 0 →MN → PN → Y N is an exact
sequence. Y N is an H-sublattice of Y so that QY N is a QH submodule of QY . But
QY is irreducible and faithful as a QH module so that QY N = 0, and hence Y N = 0.
So MN ∼= PN , and hence rank (MN ) = rank (PN ). Note also that PN � Ker(π) = M
as π(PN ) ⊂ Y N = 0 so that rank (PN ) � rank (M).

Let N0 = Ker(H → Aut(M)), then MN0 = M so that rank (M) = rank (PN0). Now
if rank (PN ) < rank (M) for all nontrivial normal subgroups N of H , then N0 = 1 so
that M is a faithful H-lattice.

Conversely, suppose M were a faithful H-lattice and N is were a nontrivial normal
subgroup of H . If rank (PN ) = rank (M), it follows that M = PN as both P/PN and
P/M are torsion free and PN ⊂M . This would contradict the fact that M is a faithful
H-lattice. So rank (PN ) < rank (M) for every nontrivial normal subgroup N of H .
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(b) Claim: Given 1 �= h0 in Hy, there exists an h ∈ H such that h−1h0h �∈ Hy.
Suppose not. Then h0hy = hy for all h ∈ H . But QHy = QY as QY is an irreducible

QH module. This implies that h0 fixes all elements of QY , which contradicts the fact
that QY is a faithful QH module. So, by contradiction, there exists h ∈ H , h−1h0h �∈ Hy

as claimed.
Note that it follows from the claim that Hy cannot contain a nontrivial normal

subgroup N of H since otherwise for any h0 ∈ N ⊂ Hy, there would exist h ∈ H such
that h−1h0h �∈ Hy and hence not in N , contradicting the normality of N .

Now let N be an arbitrary nontrivial normal subgroup of H and let H0 be a subgroup
of Hy. From the above remark we know that N ∩Hy is a proper subgroup of N and
hence N ∩H0 must also be a proper subgroup of N . Using Mackey decomposition, we
will determine ResHN (Z[H/H0]):

ResHN(Z[H/H0]) ∼= ⊕D=NhH0Z[N/hH0h
−1 ∩N ]

where the sum is taken over the set of double cosets of N and H0 in H . Fortunately,
since N is normal, the double cosets of N and H0 in H correspond to the left cosets of
the subgroup NH0 in H . Note also that the subgroups hH0h

−1∩N are all conjugate in
H since N is normal. So rank (Z[H/H0]N ) is the number ofN -orbits in ResHN (Z[H/H0]),
or equivalently, the number of cosets of NH0 in H . But this number is

|H ||N ∩H0|
|H0||N | .

Since N ∩H0 is a proper subgroup of N , rank (Z[H/H0]N ) is at most |H |/2|H0| = [H :
H0]/2. It follows that Z[H/H0] is a faithful H-lattice.

(c) We already know that g : Z[H/H0] → Y, hH0 
→ hy is an H-epimorphism.
By (a), to check that M = Ker(g) is a faithful H-lattice, we need only show that
rank (Z[H/H0]N ) < rank (M) for all nontrivial normal subgroups N of H . But by (b),
given a nontrivial normal subgroup N of H , rank (Z[H/H0]N ) � [H : H0]/2. Since
rank (M) = [H : H0]− rank (Y ), rank (Z[H/H0]N ) < rank (M) if [H : H0] > 2rank (Y ).
�
3.2. Weyl groups, root lattices and weight lattices
Let Φ be a root system with Weyl group W = W (Φ). Let (· , ·) be a fixed W -invariant
bilinear form on QΦ.

If Φ is irreducible, there are at most two root lengths, and all roots of a given length
are conjugate under W . If Φ has two distinct root lengths, we refer to short and long
roots. The set of short roots, Φ0, is again a root system with respect to the same root
pairing 〈· , ·〉. If Φ is irreducible with only one root length, then Φ = Φ0. In the cases
in which there are two root lengths, the W -orbit of a short root spans the root system
over Z.

The weight lattice of Φ is

Λ(Φ) = {λ ∈ QΦ | 〈λ, α〉 ∈ Z, α ∈ Φ}
where 〈v, w〉 = 2(v, w)/(w,w). We will sometimes abbreviate Λ(Φ) by Λ where there is
no confusion.
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For each root system Φ, we will fix a root system base Δ = {α1, . . . , αn}. Let si
be the reflection in the root αi. Let {�1, . . . , �n} be the set of fundamental dominant
weights corresponding to Δ. That is, 〈�i, αj〉 = δij for all i, j. Note that any weight
λ ∈ Λ(Φ) can be written uniquely as λ =

∑n
j=1〈λ, αj〉�j and that ZΦ ⊂ Λ(Φ). A

weight is called dominant with respect to Δ if 〈λ, αi〉 � 0 for all i = 1, . . . , n. We
will refer to Humphreys’ lists of bases [Hu1, pp. 64–65] and their corresponding sets of
fundamental dominant weights [Hu1, p. 69] for each irreducible root system Φ.

If J is a subset of {1, . . . , n}, the parabolic subgroup

WJ = 〈sj | j ∈ J〉
is the Weyl group of ΦJ , the root system with base ΔJ = {αj | j ∈ J}.

The isotropy subgroup of λ ∈ Λ is

Wλ = {w ∈W | wλ = λ}.
There is a nice description of Wλ for any λ ∈ Λ+ where Λ+ = {∑n

i=1mi�i | mi � 0} is
the set of dominant weights with respect to the base Δ. That is:

Wλ = 〈si | siλ = λ〉
So in each case the isotropy subgroup is a proper parabolic subgroup of W . Since

si�j = �j − δijαi,

we see that W�i = 〈s1, . . . , ŝi, . . . sn〉 corresponds to the maximal parabolic subgroups
of W . Let λ ∈ Λ. Then there exists a unique w ∈ W such that wλ ∈ Λ+. If wλ =∑n

i=1 ki�i ∈ Λ+,

wWλw
−1 = Wwλ = 〈sj | kj = 0〉 = ∩kj �=0W�j .

A root α ∈ Φ can be written uniquely as α =
∑n

i=1 ciαi where the ci’s are integers
that are of the same sign. If ci � 0 for all i, then α is called a positive root with respect
to Δ. We denote by Φ+ the set of all positive roots in Φ with respect to the base Δ. For
a positive root α =

∑n
i=1 ciαi, the height of α is defined as height(α) =

∑n
i=1 ci. There

exists a unique highest root which is always long. There also exists a unique highest
short root which we will denote by α̃.

3.3. Proof of Theorem 1.3
Let G be a simple group of adjoint type with maximal torus T . Since G is adjoint, the
character lattice X(T ) associated to T and G is ZΦ, the root lattice of the root system
Φ associated to G and T . Let the Weyl group of Φ be denoted by W = W (Φ).

Set P (Φ) to be the permutation W -lattice with Z-basis

{eα | α ∈ Φ0}
in bijective correspondence with the set Φ0 of short roots in Φ. Let W act on P (Φ) via
weα = ewα, for all w ∈ W,α ∈ Φ0. Then there exists a natural W -epimorphism from
P (Φ) to ZΦ, namely

π ≡ π(Φ) : P (Φ) −→ ZΦ, eα 
→ α.
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Let K(Φ) be the kernel of this map. Note that η : Z[W/Wα̃] → P (Φ), wWα̃ 
→ ewα̃ is a
W -isomorphism for which fα̃ = π(Φ) ◦ η where fα̃ : Z[W/Wα̃] → P (Φ), wWα̃ 
→ wα̃.

Note that P (An) ∼= Z[Sn+1/Sn−1] and π(An) corresponds to the map

Z[Sn+1/Sn−1] −→ ZAn, yij 
→ εi − εj.

So K(An) ∼= (ZAn)⊗2 and the exact sequence

0 −→ K(Φ) −→ P (Φ) −→ ZΦ −→ 0

is a direct analogue of the Formanek–Procesi sequence for other irreducible root systems.

Proof of Theorem 1.3. For the first statement, let ρ : P (Φ) → Z, eα 
→ 1 be the
augmentation map. Assume Φ �= A1,Bn and set P0(Φ) = Ker(ρ) and K0 = Ker(ρ) ∩
K(Φ). Since Φ �= A1,Bn there exist α, β ∈ Φ0 with 〈α, β〉 = −1. So α+β = sβ(α) ∈ Φ0.
But then π(P0(Φ)) = ZΦ since α+ β ∈ ρ(P0(Φ)) and the W -span of a short root is ZΦ.

For the α, β ∈ Φ0 above, α+β ∈ Φ0, x = eα+ eβ− eα+β ∈ K(Φ) and ρ(x) = 1. This
shows that ρ(K(Φ)) = Z.

So we have the following commutative diagram with exact rows and columns:

K0(Φ) �� ��
��

��

P0(Φ) �� ��
��

��

ZΦ

K(Φ) �� ��

����

P (Φ)

����

�� �� ZΦ

Z Z

.

In order to apply Corollary 2.2 to this diagram, we need to verify that K(Φ) and K0(Φ)
are faithful W -lattices.

We have that P (Φ) ∼= Z[W/Wα̃] and that, under this isomorphism, the map π = π(Φ)
corresponds to

fα̃ : Z[W/Wα̃] −→ ZΦ, wWα̃ 
→ wα̃.

Since Φ �= A1,Bn, rank (P (Φ)) = [W : Wα̃] = |Φ0| > 2n, and hence we may use
Proposition 3.3(c) to conclude that K(Φ) is a faithful W -lattice. Now, since

0 −→ K0(Φ) −→ K(Φ) −→ Z −→ 0

is exact,K0(Φ) must also be a faithfulW -lattice, otherwise there would exist a nontrivial
normal subgroup N which fixes both K0(Φ) and Z and hence also fixes K(Φ). By
contradiction, K0(Φ) is also a faithful W -lattice. Then the result follows by applying
Corollary 2.2 since rank (P0(Φ)) = |Φ0| − 1.

For the second statement, note that for Φ = A1,Bn there exists a commutative
diagram of the form

0 �� P (Φ) ⊕K(Φ) �� P (Φ) ⊕ P (Φ) �� ZΦ ���� 0

0 �� P−(Φ) ⊕K(Φ) ��
� �

��

P−(Φ) ⊕ P (Φ) ��
� �

��

ZΦ �� 0
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where P−(Φ) is the W -sublattice of P (Φ) with Z-basis {eα − e−α | α ∈ (Φ0)+}. Since
Φ = A1,Bn, we have P−(Φ) ∼= ZΦ and hence it is W -irreducible and thus a faithful
W -lattice. This shows that P−(Φ) ⊕K(Φ) is W -faithful. Since K(Φ) and P−(Φ) both
have rank n in this case, and P (Φ) ⊕K(Φ) is W -faithful, the second statement follows
from an application of Corollary 2.2. �

Remark 3.4. Note that Corollary 1.4 now follows directly from Proposition 3.3 and the
cardinalities of the corresponding short root systems. Observe also that we will later
prove in Corollary 5.9 that (P (Φ), π(Φ)) is a minimal element of P(ZΦ) if Φ �= A1,Bn
and (P (Φ) ⊕ P (Φ), (π(Φ), 0)) is a minimal element of P (ZΦ) if Φ = A1,Bn. Then
r(ZΦ) = |Φ0| if Φ �= A1,Bn and r(ZΦ) = 2|Φ0| if Φ = A1,Bn.

4. Existence of N-compressions of Xπ(Φ)

In this section, we look for N -compressions of Xπ(Φ) where

π(Φ) : P (Φ) −→ ZΦ, eα 
→ α,

for an irreducible root system Φ. We first discuss some preliminaries about the coho-
mology and W -lattice structure of the root and weight lattice of Φ.

4.1. Cohomology and representation theoretic properties of the root and
weight lattices

We will use the notation and definitions of Section 3.2. Let W = W (Φ) be the Weyl
group of an irreducible root system Φ and let ZΦ be its root lattice, Φ0 its set of short
roots and Λ its weight lattice. Let α̃ be the highest short root of Φ.

Let Supp{α̃} = {j | 〈α̃, αj〉 �= 0} and let I = {1, . . . , n} \ Supp{α̃}. Set ΦI to be the
subroot system of Φ with base {αi | i ∈ I} and set WI = W (ΦI). Then, by the above
discussion, Wα̃ = WI .

The following lemma gives a list of the highest short root α̃, I and Wα̃ for each
irreducible root system.

Lemma 4.1. Let the notation be given as above. For any irreducible root system Φ,
the highest short root α̃ is a dominant weight so that Wα̃ = W (ΦI). The following is a
list of α̃, Wα̃ and ΦI for each irreducible root system Φ.

• For Φ = A1, α̃ = 2�1, I = ϕ and Wα̃ = 1.
• For Φ = An, n � 2, α̃ = �1 +�n, ΦI = An−2 and Wα̃

∼= W (An−2).
• For Φ = Bn, α̃ = �1, ΦI = Bn−1 and Wα̃

∼= W (Bn−1).
• For Φ = Cn, α̃ = �2, ΦI = A1 ∪ Cn−2 and Wα̃

∼= W (A1) ×W (Cn−2).
• For Φ = Dn, α̃ = �2, ΦI = A1 ∪ Dn−2 and Wα̃

∼= W (A1) ×W (Dn−2).
• For Φ = E6, α̃ = �2, ΦI = A5 and Wα̃

∼= W (A5).
• For Φ = E7, α̃ = �1, ΦI = D6 and Wα̃

∼= W (D6).
• For Φ = E8, α̃ = �8, ΦI = E7 and Wα̃

∼= W (E7).
• For Φ = F4, α̃ = �4, ΦI = B3 and Wα̃

∼= W (B3).
• For Φ = G2, α̃ = �1, ΦI = A1 and Wα̃

∼= W (A1).
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Proof. Suppose 〈α̃, αj〉 < 0 for some j. Then sαj (α̃) = α̃+αj is another short root with
height larger than that of α̃. By contradiction, 〈α̃, αi〉 � 0 for all i = 1, . . . , n so that α̃
is a dominant weight. By [Hu2, pp. 22–23], Wα̃ = 〈sαi | 〈α̃, αi〉 = 0〉 = W (ΦI) ≡ WI .
The rest of the lemma is simply a list of the highest short roots [Hu1, p. 66] expressed
in terms of the fundamental dominant weights for the convenience of the reader. �

The following technical lemma gives cohomological information about the W -lattice
ZΦ. It was first proved in [Kl]. The proof is supplied for the convenience of the reader
as the above reference is not easily accessible.

Lemma 4.2. Let Φ be an irreducible root system. Then

H−1(W,ZΦ) =
{

Z/2Z if Φ = A1,Bn,
0, otherwise.

Proof. By definition,

H−1(W,ZΦ) = KerZΦ(NW )/
∑

w∈W ImZΦ(w − 1).

For every α ∈ Φ,
NW (α) =

∑
w∈W wα = |Wα|

∑
β∈Wα β = 0

where the last equality follows from the fact that Wα = W (−α) = −Wα. Since the
root lattice is spanned by Φ, this shows that KerZΦ(NW ) = ZΦ. Since Δ is a Z-basis
for the root lattice, we have KerZΦ(NW ) = ⊕ni=1Zαi.

Recall that if a finite group H is generated by a subset S, and X is an H module,
we have

∑
h∈H ImX(h − 1) =

∑
s∈S ImX(s − 1). Applying this fact to the generating

set {si | i = 1, . . . , n} for W , we find that∑
w∈W ImZΦ(w − 1) =

∑n
i=1 ImZΦ(si − 1) =

∑n
i=1

(∑n
j=1 Z〈αj , αi〉

)
αi.

By examining the Cartan matrix for each irreducible root system, we observe that

gcd
j=1,...,n

{〈αj , αi〉} =
{

2, if i = n and Φ = A1 or Φ = Bn; i = n,
1, else.

Together with the first paragraph this gives the result of Lemma 4.2. �

We now need some more information about the structure of Λ(Φ0) as a W -lattice.
Note that

Λ(Φ0) = {v ∈ QΦ0 = QΦ | 〈v, β〉 ∈ Z for all β ∈ Φ0}
where 〈v, w〉 = 2(v, w)/(w,w) is still defined using the fixed W (Φ)-invariant bilinear
form (· , ·). This shows that even if Φ0 �= Φ, the lattice Λ(Φ0) is still a W (Φ)-lattice. In
fact, when Φ0 �= Φ, W (Φ) = Aut(Φ0).

Lemma 4.3. (ZΦ)∗ is isomorphic as a W (Φ) lattice to Λ(Φ0).
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Proof. Let β1, . . . , βn be a root system base for Φ0. Let λ1, . . . , λn be the corresponding
fundamental dominant weights. Then β1, . . . , βn is a Z-basis for the root lattice for Φ.
Let (· , ·) be the W (Φ)-invariant bilinear form on QΦ used to define 〈· , ·〉. Let r = (α̃, α̃).
Note that r = (α, α) for all α ∈ Φ0. Define

θ : Λ(Φ0) → (ZΦ)∗, λ 
→ 〈λ, ·〉.

Since θ(λ) = 〈λ, ·〉 = 2
r (λ, ·), it is clear that θ(λ) ∈ (ZΦ)∗ and that θ is a Z-linear map

from the bilinearity of (· , ·). Now θ(wλ)(α) = 2
r (wλ, α) = 2

r (λ,w
−1α) = (wθ)(α) for all

λ ∈ Λ(Φ0) and α ∈ Φ. Moreover, 2
r (λi, βj) = 〈λi, βj〉 = δij = β∗

i (βj) for all i, j so that
θ(λi) = β∗

i for all i. This shows that θ is a W (Φ)-isomorphism as required. �
The next lemma describes the structure of Λ(Φ0) as a Wα̃ lattice. It requires some

more notation and conventions about the structure of the base chosen for Φ0.

Notation. We will denote the base of the short root system Φ0 by Δ0 = {β1, . . . , βn}
and its corresponding fundamental dominant weights by {λ1, . . . , λn}, which will give a
Z-basis for Λ(Φ0). If Φ = Φ0, we will choose βi = αi for all i = 1, . . . , n so that Δ0 = Δ
and λi = �i for all i = 1, . . . , n. When Φ �= Φ0, we will choose the order of Δ0 to match
that of the base of the root system Φ0 that we chose before (i.e., [Hu1, pp. 64–65]). The
order of the fundamental dominant weights λ1, . . . , λn will then correspond. Note that
the highest short root α̃ of Φ is the highest root of Φ0 and hence is a dominant weight
with respect to Δ0. If Φ = Bn, then Φ0 is of type An1 ; if Φ = Cn, then Φ0 is of type
Dn; if Φ = F4, then Φ0 is of type D4; if Φ = G2, then Φ0 is of type A1. In each case
W (Φ) = Aut(Φ0).

Lemma 4.4. For any subset J of {1, . . . , n},

0 −→ Λ(Φ)W (ΦJ ) −→ Λ(Φ) −→ Λ(ΦJ ) −→ 0

is an exact sequence of WJ = W (ΦJ)-lattices. It is also an exact sequence of Aut(ΦJ )-
lattices.

Proof. Note that

si�j = �j − δijαj = �j − δij
∑n

k=1〈αj , αk〉�k, 1 � i, j � n.

Then since W (ΦJ ) = 〈sj | j ∈ J〉, we have that Λ(Φ)W (ΦJ ) = ⊕j �∈JZ�j . Let �J
j , j ∈ J

be the set of fundamental dominant weights with respect to ΔJ = {αj | j ∈ J}. Then

si�
J
j = �J

j − δij
∑

k∈J 〈αj , αk〉�J
k , i, j ∈ J.

Now �j ≡ �j+Λ(Φ)W (ΦJ ), j ∈ J is a Z-basis for Λ(Φ)/Λ(Φ)W (ΦJ ), and from the above,
it is clear that

Λ(Φ)/Λ(Φ)W (ΦJ ) −→ Λ(ΦJ ), �j 
→ �J
j , j ∈ J,

is an isomorphism of W (ΦJ)-lattices. In fact, it is also an isomorphism of Aut(ΦJ ) =
W (ΦJ )�Diag(ΔJ )-lattices where Diag(ΔJ) is the diagram automorphism group of ΔJ ,
since Diag(ΔJ ) permutes �j , j ∈ J . �
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4.2. Compressions of the analogue of the Formanek–Procesi sequence

In this section, for the Weyl group W = W (Φ) of an irreducible root system Φ �= A1,Bn,
we ask when there exists a commutative diagram of W -lattices

0 �� K(Φ) �� P (Φ) �� ZΦ ���� 0

0 �� K−(Φ) ��
� �

��

X ��
� �

��

ZΦ �� 0

(7)

or, equivalently, when

[0 → K(Φ) → P (Φ)
π(Φ)→ ZΦ → 0] ∈ Im(Ext1W (ZΦ,K−(Φ)) → Ext1W (ZΦ,K(Φ))). (8)

Recall that P (Φ) is the W -lattice with Z-basis {eα | α ∈ Φ0} on which W acts by
permuting the short roots and P−(Φ) is the W -sublattice

P−(Φ) = ⊕α∈Φ0Z(eα − e−α).

The W -map
π ≡ π(Φ) : P (Φ) −→ ZΦ, eα 
→ α,

is surjective with kernel K(Φ) and K−(Φ) = K(Φ) ∩ P−(Φ). As we have discussed
before, in the An−1, n � 3 case we have

K(An−1) = (ZAn−1)⊗2, P (An−1) = Z[Sn/Sn−2],K−(Φ) = ∧2(ZAn−1),

and the sequence in the top row of (7) is the Formanek–Procesi sequence. In the An−1

case, Lorenz and Reichstein in [LR] found a better upper bound on ed(PGLn), n � 5
odd, using a special case of Corollary 2.2, by showing that a commutative diagram
as above exists in this case. It is natural to ask whether we could find an analogous
bound on the essential dimension of the other simple adjoint groups by answering the
analogous question for the corresponding root systems. Unfortunately, we will find in
Proposition 4.13 that there exists a diagram of the form (7) if and only if Φ = An−1,
n � 5 odd. We will do this by answering the cohomological question (8). In order to do
this, we need to first look at the W -lattice structure and the cohomology of the lattices
in the exact sequences

0 −→ K(Φ) −→ P (Φ) −→ ZΦ −→ 0

and
0 −→ K−(Φ) −→ P−(Φ) −→ 2(ZΦ) −→ 0

where the second map in the second sequence is the restriction of π(Φ) to P−(Φ).
Now

P−(Φ) ∼= ZW ⊗Wα̃×〈sα̃〉 Zξ
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as a W -lattice where Zξ is the rank 1 ZWα̃×〈sα̃〉 lattice on which Wα̃ acts trivially and
sα̃ acts as multiplication by −1. Let P+(Φ) be the W -sublattice of P (Φ) with Z-basis

{eα + e−α | α ∈ (Φ0)+}

so that
P+(Φ) ∼= ZW ⊗Wα̃×〈sα̃〉 Z

as a W -lattice. There exist natural surjective W -lattice homomorphisms from

P (Φ) −→ P±(Φ), eα 
→ eα ± e−α,

with kernels P∓(Φ). Note that P−(A1) ∼= ZA1 and that P−(Bn) ∼= ZBn. In both
cases, eβi − e−βi 
→ βi defines the isomorphism. This shows that K(Φ) ∼= P+(Φ) is a
permutation lattice for Φ = A1,Bn. Note that in general, for all Φ, P+(Φ) is a sublattice
of K(Φ).

We need to determine Ext1W (ZΦ,K(Φ)) and Ext1W (ZΦ,K−(Φ)) in order to ascertain
when the induced map

Ext1W (ZΦ,K−(Φ)) −→ Ext1W (ZΦ,K(Φ))

is surjective. Applying cohomology to the analogue of the Formanek–Procesi sequence
above, we obtain the exact sequence

HomW (ZΦ, P (Φ)) −→ HomW (ZΦ,ZΦ) −→ Ext1W (ZΦ,K(Φ)) −→ Ext1W (ZΦ, P (Φ)).

We will first determine Ext1W (ZΦ, P (Φ)) and find that it is usually zero.
Recall that P (Φ) ∼= Z[W/Wα̃] where α̃ is the highest short root of Φ. Note that Wα̃

is the parabolic subgroup WI where I = {1, . . . , n} \ Supp{α̃}.
Proposition 4.5.

Ext1W (ZΦ, P (Φ)) ∼= H1(Wα̃,Λ(Φ0)) =

{
Z/2Z if Φ = Bn,

0 else.

Proof. The first isomorphism follows from the fact that P (Φ) ∼= Z[W/Wα̃] and then

Ext1W (ZΦ, P (Φ)) ∼= H1(W,Hom(ZΦ, P (Φ)))
∼= H1(Wα̃,Hom(ZΦ,Z))
∼= H1(Wα̃, (ZΦ)∗)
∼= H1(Wα̃,Λ(Φ0))

where the first isomorphism follows from Shapiro’s Lemma and the third from Lem-
ma 4.3. So it suffices to determine H1(Wα̃,Λ(Φ0)) in each case.

If Φ = An, n = 1, 2, then Wα̃ = 1 so that the result is trivial in this case.
If Φ = An, n � 3; Dn,E6,E7,E8, then Φ0 = Φ, so by Lemma 4.4,

0 −→ Λ(Φ)Wα̃ −→ Λ(Φ) −→ Λ(ΦI) −→ 0
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is an exact sequence of Wα̃ = WI lattices. Then

0 = H1(Wα̃,Λ(Φ)Wα̃) −→ H1(Wα̃,Λ(Φ)) −→ H1(Wα̃,Λ(ΦI))

is exact. Now H1(Wα̃,Λ(ΦI)) = H1(WI ,Λ(ΦI)) ∼= H−1(WI ,ZΦI). For An, n �
4; E6, E7, E8, ΦI is an irreducible root system not of type A1 or Bn, so we have
H1(Wα̃,Λ(ΦI)) ∼= H−1(WI ,ZΦI) = 0, and hence H1(Wα̃,Λ(Φ)) = 0 in these cases.

For A3, Wα̃ = 〈s2〉 and s2 fixes �1, �3, but s2(�2) = �1 −�2 + �3. Since {�1 −
�2 +�3, �2, �3} is an alternate basis for Λ(Φ), we see that Λ(Φ) ∼= ZWα̃ ⊕ Z so that
H1(Wα̃,Λ(Φ)) = 0.

For D4, Wα̃ = 〈s1, s3, s4〉 ∼= (C2)3. Now for i = 1, 3, 4, si(�i) = −�i +�2; si(�j) =
�j , j �= i, so that si permutes the basis �i,−�i + �2, �j , �k, where {2, i, j, k} =
{1, 2, 3, 4}. Hence H1(〈si〉,Λ(Φ)) = 0 for i = 1, 3, 4. Applying the inflation-restriction
sequence to Λ(Φ), we note that

H1(Wα̃/〈s1〉,Λ(Φ)〈s1〉) −→ H1(Wα̃,Λ(Φ)) −→ H1(〈s1〉,Λ(Φ)) = 0

is exact. So H1(Wα̃,Λ(Φ)) ∼= H1(〈s3, s4〉,⊕4
i=2Z�i). Applying the inflation-restriction

sequence again, we see that H1(Wα̃,Λ(Φ)) ∼= H1(〈s3〉,⊕3
i=2Z�i) = 0, since s3 permutes

−�3 +�2, �2.
For Dn, n � 5, Wα̃ = 〈s1, s3, . . . , sn〉 ∼= W (A1) × W (Dn−2). Since W (Dn−2) =

〈s3, . . . , sn〉 is a normal subgroup of Wα̃, we may apply inflation-restriction to obtain
the exact sequence

0 −→ H1(Wα̃/W (Dn−2),Λ(Φ)W (Dn−2)) −→ H1(Wα̃,Λ(Φ)) −→ H1(W (Dn−2),Λ(Φ)).

Applying Lemma 4.4 and cohomology to J = {3, . . . , n} and W (Dn−2) = W (ΦJ) for
W = W (Dn), we find that

0 = H1(W (Dn−2),Λ(Φ)W (Dn−2)) −→ H1(W (Dn−2),Λ(Φ)) −→ H1(W (Dn−2),Λ(ΦJ)).

But by Lemmas 4.3 and 4.2, H1(W (Dn−2),Λ(ΦJ )) ∼= H−1(W (Dn−2),ZΦJ ) = 0. So we
may conclude that

H1(Wα̃,Λ(Φ)) ∼= H1(〈s1〉,⊕2
i=1Z�2) = 0,

since s1 permutes the basis −�1 +�2, �1.
For Cn, n � 3, Wα̃ = 〈s1, s3, . . . , sn〉 ∼= W (A1) ×W (Cn−2). Note that W (Φ0)α̃ ∼=

W (A1) ×W (Dn−2) is a normal subgroup of Wα̃ with Λ(Φ0)W (Φ0)α̃ = Zα̃. But since
Wα̃/W (Φ0)α̃ is generated by an element which permutes λn−1 and λn and fixes all other
λi, i �= n− 1, n (in particular α̃ = λ2), we see that

H1(Wα̃/W (Φ0)α̃,Λ(Φ0)W (Φ0)α̃) = 0,

so that by inflation-restriction,

0 −→ H1(Wα̃,Λ(Φ0)) −→ H1(W (Φ0)α̃,Λ(Φ0)) = H1(W (Dn)α̃,Λ(Dn)) = 0
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is exact, where the last equality follows from our calculations for Dn, n � 4 and D3 = A3.
So H1(Wα̃,Λ(Φ0)) = 0.

For F4, Wα̃ = 〈s1, s2, s3〉 ∼= W (B3) and Φ0 = D4. Note that W (Φ0)α̃ is a normal
subgroup of Wα̃ with Λ(Φ0)W (Φ0)α̃ = Zα̃. But since Wα̃/W (Φ0)α̃ is isomorphic to a
subgroup which permutes λ1, λ3, λ4 and fixes α̃ = λ2, we see that

H1(Wα̃/W (Φ0)α̃,Λ(Φ0)W (Φ0)α̃) = 0,

so that by inflation-restriction,

0 −→ H1(Wα̃,Λ(Φ0)) −→ H1(W (Φ0)α̃,Λ(Φ0)) = H1(W (D4)α̃,Λ(D4)) = 0

is exact, where the last equality follows from our calculations for D4. So H1(Wα̃,Λ(Φ0))
= 0.

For G2, Wα̃ = 〈sα2〉 ∼= C2. We can see directly that sα2(λ1) = −λ1 and sα2(λ2) =
λ2 − λ1 so that sα2 permutes the basis λ2 − λ1, λ2 of Λ(Φ0). So H1(Wα̃,Λ(Φ0)) = 0.

Lastly, for Bn, n � 2, Wα̃ = 〈s2, . . . , sn〉 ∼= W (Bn−1), Φ0 = An1 and Λ(Φ0) = ⊕ni=1Zλi
where λi = 1

2ei. So Λ(Φ0) = Zλ1 ⊕⊕ni=1Zλi ∼= Z ⊕ ZBn−1 as Wα̃
∼= W (Bn−1) lattices.

But then H1(Wα̃,Λ(Φ0)) = H1(W (Bn−1),ZBn−1). Now Cn−1
2 is a normal subgroup of

W (Bn−1) with ZB
Cn−1
2
n−1 = 0 and W (Bn−1)/Cn−1

2
∼= Sn−1, so by the inflation-restriction

sequence,

H1(W (Bn−1),ZBn−1) ∼= H1(Cn−1
2 ,ZBn−1)Sn−1

∼= [H1(C2,Z−)n−1]Sn−1 ∼= [(Z/2Z)n−1]Sn−1 = Z/2Z,

since Sn−1 permutes the n− 1 copies of H1(C2,Z−). So H1(Wα̃,Λ(Φ0)) = Z/2Z in this
case. �

Then, by Proposition 4.5, for all Φ �= Bn, we find that

Ext1W (ZΦ,K(Φ)) ∼= Coker(HomW (ZΦ), P (Φ)) −→ HomW (ZΦ,ZΦ)).

To determine HomW (ZΦ, P (Φ)) and HomW (ZΦ, P+(Φ)), we need to find the Wα̃-orbits
on Φ0.

Notation. Let the irreducible components of ΦI be denoted by ΦIk
, k = 1, . . . , r. We

will denote ΦIk
∩ Φ0 by Φ0

Ik
. Define

O(α)i = {β ∈ Φ0 | 〈β, α〉 = i}

for α ∈ Φ0, i = 0,±1,±2. Lastly, set

P1(α̃) = {j | αj ∈ O(α̃)1}.

Lemma 4.6. The orbits of Wα̃ = WI on Φ0 are Φ0
Ik
, k = 1, . . . , r; ±(WI · αj), j ∈

P1(α̃); {α̃} and {−α̃}. Moreover,

O(α̃)0 = ∪rk=1Φ
0
Ik
, O(α̃)±1 = ∪j∈P1(α̃)WI · (±αj), O(α̃)±2 = {±α̃}.
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Proof. Wα̃ stabilizes the sets

O(α̃)i = {β ∈ Φ0 | 〈β, α̃〉 = i}, i = 0,±1,±2,

since for w ∈Wα̃, 〈wβ, α̃〉 = 〈wβ,wα̃〉 = 〈β, α̃〉. Note that Φ0 is the disjoint union of the
sets O(α̃)i, i = 0,±1,±2. We need now determine how the O(α̃)i split into Wα̃-orbits.
It is clear that O(α̃)2 = {α̃} and O(α̃)−2 = {−α̃}. Since these are each one element
sets, they are Wα̃-orbits.

Observe that for all roots α, β, we have 〈α, β〉 = 0 if and only if 〈β, α〉 = 0 and
〈α, β〉〈β, α〉 � 0. The first observation implies that for β =

∑n
j=1miαi ∈ O(α̃)i we

have
〈β, α̃〉 =

∑
j∈Supp{α̃}mj〈αj , α̃〉 = i. (9)

Using the second observation above and the fact that α̃ is dominant, we see that β ∈
O(α̃)0 if and only if β ∈ ΦI ∩ Φ0. So the WI -orbits of O(α̃)0 are in bijection with the
connected components of ΦI . That is, the WI -orbits of O(α̃)0 are Φ0

Ik
, k = 1, . . . , r as

required.
Observe that for A1 and Bn we have P1(α̃) = ∅. But by (9), we see that O(α̃)1 = ∅

as well in these cases, as required. For all other Φ, P1(α̃) = Supp(α̃). For An, n � 2,
P1(α̃) has cardinality 2, and for all other cases P1(α̃) has cardinality 1.

Assume Φ �= A1,Bn so that P1(α̃)=Supp(α̃). We claim that O(α̃)1 = ∪j∈P1(α̃)Wα̃αj .
From (9), we see that if β =

∑n
j=1mjαj ∈ O(α̃)1, then

β = αj +
∑
k �∈Supp(α̃)mkαk (10)

where j ∈ Supp(α̃) = P1(α̃), so that β ∈ Φ+ ∩ Φ0. We proceed by induction on the
height of β ∈ O(α̃)1 to show that β ∈ Wα̃αj . If height(β) = 1, then β = αj ∈ Wα̃αj .
Let β ∈ O(α̃)1 have height(β) > 1. Then β ∈ Φ+ ∩ Φ0 is not a simple root. This
means that there exists a simple root αk such that 〈β, αk〉 > 0 [Hu1, p. 50]. If this
holds for αj , it implies that 〈β, αj〉 = 1 as both roots are short and not equal. Then
γ = sj(β) = β − αj ∈ ΦI ∩ Φ0 and 〈β, γ〉 = 1 so that sγ(β) = αj or β = sγαj ∈
WIαj . If 〈β, αj〉 � 0, then there exists αk, k �= j, with sk(β) = β − αk ∈ O(α̃)1
with height(sk(β)) = height(β) − 1. Note that sk(β) ∈ Φ+, so that by (10), we have
k �∈ Supp(α̃), and hence αk ∈ ΦI . By the induction hypothesis, sk(β) ∈ WIαj , and so
β ∈ WIαj as sk ∈WI . So O(α̃)1 = ∪j∈P1(α̃)WIαj , as required.

Since O(α̃)−1 = −O(α̃)1, we see that this implies that O(α̃)−1 = ∪j∈P1(α̃)WI(−αj).
�

Corollary 4.7. If Φ �= An, then P (Φ)Wα̃ has Z-basis

{∑β∈O(α̃)1
eβ ,

∑
β∈O(α̃)−1

eβ , eα̃, e−α̃} ∪ {∑β∈Φ0
Ik

eβ | k = 1, . . . , r}

and P+(Φ)Wα̃ has Z-basis

{∑β∈O(α̃)1
(eβ + e−β), eα̃ + e−α̃} ∪ {∑β∈Φ0

Ik

eβ | k = 1, . . . , r}.
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Proof. If Φ �= An, then O(α̃)1 is itself a Wα̃-orbit. The rest of the first statement
follows from Lemma 4.6 and the fact that P (Φ) is a W -permutation lattice with basis
{eα | α ∈ Φ0}. The second statement follows from Lemma 4.6 and the fact that
P+(Φ)Wα̃ = P (Φ)Wα̃ ∩ P+(Φ). �

If Φ = An, n � 2, then K−(ZAn) =
∧2(ZAn) is an irreducible Sn+1-lattice. The

next lemma proves the analogous result for the W -lattice K−(ZΦ) for Φ �= A1,Bn.

Lemma 4.8. K−(Φ) is an irreducible W -lattice if Φ �= A1,Bn.

Proof. Recall that K−(Φ) = 0 for Φ = A1,Bn. For Φ = An, n � 2, K−(Φ) ∼= ∧2(ZAn)
which is an irreducible ZSn+1-lattice [FH, Ex. 4.6, p. 48]. Now assume Φ �= An,Bn.
Note that

QP (Φ) = QP−(Φ) ⊕ QP+(Φ)

as QW -modules. Note also that from Corollary 4.7,

QP (Φ)Wα̃ = Qeα̃ ⊕ Qe−α̃ ⊕ Q
∑
β∈O(α̃)1

eβ + Q
∑
β∈O(α̃)−1

eβ ⊕⊕ri=1Q
∑
β∈Φ0

Ik

eβ

so that

QP (Φ)Wα̃×〈sα̃〉 = (QP (Φ)Wα̃)〈sα̃〉 = Q(eα̃+e−α̃)⊕Q
∑
β∈O(α̃)±1

eβ⊕⊕ri=1Q
∑
β∈Φ0

Ik

eβ ,

since sα̃(α̃) = −α̃; β ∈ O(α̃)±1 if and only if sα̃(β) ∈ O(α̃)∓1 and sα̃(β) = β if β ∈ ΦI .
Now

HomQW (QP−(Φ),QP+(Φ)) ∼= HomQWα̃×〈sα̃〉(QP−(Φ),Q)
∼= (QP−(Φ))Wα̃×〈sα̃〉

= (QP (Φ))Wα̃×〈sα̃〉 ∩ QP−(Φ) = 0.

The last equality follows from the fact that if x ∈ (QP (Φ))Wα̃×〈sα̃〉 ∩ P−(Φ), then

x = p(eα̃ + e−α̃) + q
(∑

β∈O(α̃)±1
eβ

)
+

∑r
k=1 sk

(∑
β∈Φ0

Ik

eβ
)

=
∑
β∈Φ0

mβeβ

for some p, q, sk ∈ Q and m−β = −mβ for all β ∈ Φ0. Now p = m−α̃ = −mα̃ = −p
implies that p = 0. Since β ∈ O(α̃)±1 implies −β ∈ O(α̃)∓1, we see that q = 0,
and since β ∈ Φ0

Ik
if and only if −β ∈ Φ0

Ik
, we see that sk = 0, k = 1, . . . , r. So we

see that QP−(Φ) and QP+(Φ) have no common irreducible QW -submodules. Then by
Corollary 4.7, we have

dim
(
HomQW (QP−(Φ),QP−(Φ))

)
= dim

(
HomQW (QP (Φ), P (Φ))

)
− dim

(
HomQW (QP+(Φ), P+(Φ))

)
= dim

(
(QP (Φ))Wα̃

) − dim
(
(QP+(Φ))Wα̃×〈sα̃〉) = 2.

But dim(HomQW (QP−(Φ),QP−(Φ))) is
∑k

i=1 n
2
i where k is the number of irreducible

components of QP−(Φ) and ni is the number of irreducible components of QP−(Φ) of
the ith type. Since

QP−(Φ) = QK−(Φ) ⊕ QΦ

is a decomposition of QW -modules with QΦ irreducible, then QK−(Φ) must be an
irreducible QW -module. Hence, K−(Φ) is an irreducible W -lattice as required. �

The following lemma will be useful for computing Ext1W (ZΦ,K(Φ)).
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Lemma 4.9. For any α ∈ Φ0, ∑
β∈Φ0

〈α, β〉β = 2hα

where h is the Coxeter number of the irreducible component Φ′
0 of Φ0 to which α belongs.

In particular, ∑
β∈O(α)1

β = (h− 2)α.
Proof. Observe that∑

β∈Φ0
〈α, β〉β =

∑2
i=−2

∑
β∈O(α)i

〈α, β〉β =
∑

β∈O(α)1
β +

∑
γ∈O(α)−1

(−γ) + 4α.

Since O(α)−1 = −O(α)1, we see that∑
β∈Φ0

〈α, β〉β = 2
(∑

β∈O(α)1
β + 2α

)
.

So the two statements are equivalent.
Note that ∑

β∈Φ0
〈α, β〉β =

∑
β∈Φ′

0
〈α, β〉β,

since 〈α, β〉 = 0 for all β ∈ Φ0 \ Φ′
0.

Now
ZΦ′

0 → ZΦ′
0, α 
→ ∑

β∈Φ′
0
〈α, β〉β

is an element of HomW (ZΦ′
0,ZΦ′

0) = Zid. So
∑
β∈Φ′

0
〈α, β〉β = Nα for some N ∈ Z.

Applying 〈·, α〉 to both sides of this equation, we see that

N = 1
2

∑
β∈Φ0

〈α, β〉2.
By symmetry,

N = |O(α)1| + 4.

Moreover, since every α ∈ Φ0 can be expressed as α = wα̃ for some w ∈ W and
O(wα̃)1 = wO(α̃)1, we have

N = |O(α̃)1| + 4.

Since α̃ is the highest root in the irreducible component of Φ0 to which it belongs,
we have by [Hu2, p. 84] that height(α̃) = h− 1.

We will compute length of an element of W (Φ0) with respect to the base Δ0 ⊂ Φ+

of Φ0. Note that by [Hu2, p. 14],

length(sα̃) = |{β ∈ (Φ0)+ | sα̃(β) ∈ (Φ0)−}| = |{β ∈ Φ0 | 〈β, α̃〉 > 0}| = |O(α̃)1| + 1.

The following claim will complete the proof:
Claim: length(sα̃) = 2height(α̃) − 1.
Assuming this claim, we see that |O(α̃)1| + 1 = 2h− 3 so that N = 2h, as required.

To complete the proof we prove a slightly stronger statement than the claim. Namely,
we show that

length(sα) = 2height(α) − 1 for all α ∈ (Φ0)+

by induction on the height of α. For a simple root α, it is clear that length(sα) = 1 =
2·1−1 = 2height(α)−1. Assume height(α) > 1. Then α is a positive nonsimple root. So
there exists a simple root β with 〈α, β〉 > 0, [Hu1, p. 50]. Then sβ(α) = α− β ∈ (Φ0)+

has height(sβ(α)) = height(α) − 1, whereas by [Hu1, p. 43] and [Hu2, p. 12], we have
length(ssβα) = length(sβsαsβ) = length(sβsα) − 1 = length(sα) − 2. Applying the
induction hypothesis to sβ(α), we get length(sα) − 2 = 2(height(α) − 1) − 1 so that
length(sα) = 2height(α) − 1 as required. �
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Lemma 4.10.

Coker(HomW (ZΦ, P (Φ)) −→ HomW (ZΦ,ZΦ)) ∼=
{

Z/hZ, Φ = An,Bn,
Z/2hZ, otherwise.

Under the map induced by the commutative square

P−(Φ) ��
��

��

2ZΦ
��

��

�� 0

P (Φ) �� ZΦ �� 0

,

the image of
Coker

(
HomW (ZΦ, P−(Φ)) −→ HomW (ZΦ, 2ZΦ)

)
in

Coker
(
HomW (ZΦ, P (Φ)) −→ HomW (ZΦ,ZΦ)

)
is a subgroup of index 2 for all Φ �= An, n even. For Φ = An, n even, the map between
these cokernels is an isomorphism.

Proof. First note that since Q is the splitting field for the irreducible module QΦ, we
have HomQW (QΦ,QΦ) = Q id, and hence HomW (ZΦ,ZΦ) = Z id.

Now we have

HomW (ZΦ, P (Φ))
(η∗)−1

∼= HomW (ZΦ,ZW ⊗ZWI Z)
(ρ∗)−1

∼= HomW

(
ZΦ,HomZWI (ZW,Z)

)
(ψ)−1

∼= HomZWI (ZΦ,Z)

=
(
Hom(ZΦ,Z)

)WI

(θ)−1

∼= (
Λ(Φ0)

)WI

∼=

⎧⎪⎨⎪⎩
Z(1

2 α̃), Φ = A1,Bn,

Zλ1 + Zλn, Φ = An, n � 2,
Zα̃, otherwise.

We need to unravel these isomorphisms in reverse in order to determine the map
HomW (ZΦ, P (Φ)) → HomW (ZΦ,ZΦ). First of all, the isomorphism η : ZW ⊗ZWI Z →
P (Φ) is defined by w ⊗ 1 
→ ewα̃. Next, the isomorphism ρ is defined as

ρ : HomZWI (ZW,Z) −→ ZW ⊗ZWI Z, f 
→ ∑
w∈W/WI

w ⊗ f(w−1).

It is the natural isomorphism between coinduced and induced modules [Br, p. 70]. Third-
ly, the isomorphism [Br, p. 64]

ψ : HomZWI (ZΦ,Z) −→ HomW

(
ZΦ,HomZWI (ZW,Z)

)
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is given by
g 
→ [α→ [w 
→ g(wα)]].

Lastly, the W -isomorphism θ : Λ(Φ0) → Hom(ZΦ,Z) is given by

θ(λ)(α) = 〈λ, α〉
where λ ∈ Λ(Φ0) and α ∈ Φ0. Note that, since ZΦ0 = ZΦ, a Z-linear homomorphism
from ZΦ to any other Z-module can be determined from its restriction to Φ0.

Now we have to work backwards. Let μ : (Λ(Φ0))WI → HomW (ZΦ, P (Φ)) be the
composite map η∗ ◦ ρ∗ ◦ ϕ ◦ θ. Let λ ∈ Λ(Φ0)WI and α ∈ Φ0. Then

θ(λ)(α) = 〈λ, α〉,
ψ(θ(λ))(α) = [w 
→ 〈λ,wα〉],

ρ∗(ψ(θ(λ)))(α) =
∑

w∈W/WI
w ⊗ 〈λ,w−1α〉.

Lastly, μ(λ)(α) = η∗(ρ∗(ψ(θ(λ))))(α) =
∑

w∈W/WI
〈λ,w−1α〉ewα̃. Evaluating this at

λ = α̃, we get
∑

w∈W/WI
〈wα̃, α〉ewα̃ =

∑
β∈Φ0

〈β, α〉eβ . For Φ �= An, Bn, the element
α̃ generates Λ(Φ0)WI and, if Φ = A1,Bn, then 1

2 α̃ generates Λ(Φ0)WI . Now μ(α̃) is
the homomorphism [α 
→ ∑

β∈Φ0
〈β, α〉eβ ] ∈ HomW (ZΦ, P (Φ)) which, according to

Lemma 4.9, maps to 2h id ∈ HomW (ZΦ,ZΦ) under the map

HomW

(
ZΦ, P (Φ)

) −→ HomW (ZΦ,ZΦ).

This proves the first result for Φ �= An, n � 2. Note that μ(α̃)(ZΦ) ⊂ P−(Φ) so that, in
fact, HomW (ZΦ, P−(Φ)) = HomW (ZΦ, P (Φ)) in these cases. This shows that

Coker
(
HomW

(
ZΦ, P−(Φ) −→ HomW (ZΦ, 2ZΦ)

)) ∼= Z/hZ

as required.
For Φ = An, n � 2, recall that Φ = {εi − εj | i �= j} and Δ = Δ0 = {εi − εi+1 |

i = 1, . . . , n}. We have α̃ = �1 + �n = ε1 − εn+1. We need to determine the image
of �1 and �n under the isomorphism from Λ(Φ)WI → HomW (ZΦ, P (Φ)). Evaluating
μ at λ = �k, k = 1, n, we get μ(�k) = [α 
→ ∑

w∈W/WI
〈�k, w

−1α〉ewα̃]. It is sufficient
to determine the value of this map at α = α̃ to determine its image in HomW (ZΦ,ZΦ).
So for each root α = εi− εj, we need an element w ∈ Sn+1 such that α = wα̃. We have:

(1, i)(n+ 1, j)α̃ = εi − εj , {i, j} ∩ {1, n+ 1} = ϕ,

(j, n+ 1)α̃ = ε1 − εj, i = 1; j �= n+ 1,
(i, 1)α̃ = εi − εn+1, i �= 1, j = n+ 1,

(1, n+ 1, j)α̃ = εn+1 − εj,

(1, n+ 1, j)−1α̃ = (1, j, n+ 1)α̃ = εj − ε1, i = n+ 1, j �= 1,
(1, i, n+ 1)α̃ = εi − ε1,

(1, i, n+ 1)−1α̃ = (1, n+ 1, i)α̃ = εn+1 − εi, i �= n+ 1, j = 1,
id(α̃) = α̃,

(1, n+ 1)α̃ = −α̃.
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This implies that

μ(�1)(α̃) =
∑n

j=2(eε1−εj − eεn+1−εj ) + eε1−εn+1 − eεn+1−ε1

and
μ(�n)(α̃) =

∑n
j=2(eεj−εn+1 − eεj−ε1) + eε1−εn+1 − eεn+1−ε1 .

In either case, we see that for k = 1, n, μ(�k) ∈ HomW (ZΦ, P (Φ)) is mapped to
(n + 1)id ∈ HomW (ZΦ,ZΦ) as required for the first result. Let aμ(�1) + bμ(�n) ∈
HomW (ZΦ, P−(Φ)). Then (aμ(�1) + bμ(�n))(α̃) ∈ P−(Φ) implies that a = b. So
HomW (ZΦ, P−(Φ)) is generated by μ(�1 + �n) = μ(α̃), which has image h([α 
→
2α]) ∈ HomW (ZΦ, 2ZΦ). So

Coker
(
HomW (ZΦ, P−(Φ)) −→ HomW (ZΦ, 2ZΦ)

) ∼= Z/hZ

as required. However, the induced map between the cokernels is equivalent to the map
between 2Z/2hZ and Z/hZ induced by the inclusion 2Z � Z. This is a surjection (and
hence an isomorphism) if and only if h = n+ 1 is odd. �
Lemma 4.11. Ext1W

(
ZΦ, P−(Φ)

)
= 0.

Proof. For A1,Bn, we have that P−(Φ) ∼= ZΦ so that

Ext1W (P−(Φ), P−(Φ)) ∼= Ext1Wα̃×〈sα̃〉(P−(Φ) |Wα̃×〈sα̃〉,Zξ)
∼= Ext1Wα̃×〈sα̃〉((Zξ)

n,Zξ)
∼= H1(Wα̃ × 〈sα̃〉, ((Zξ)n)∗ ⊗ Zξ)
∼= H1(Wα̃ × 〈sα̃〉,Zn) = 0.

Now assume that Φ �= A1,Bn. We have the exact sequence of W -lattices

0 −→ P−(Φ) −→ P (Φ) −→ P+(Φ) −→ 0.

Now

HomW (ZΦ, P+(Φ)) ∼= HomW (ZΦ,ZW ⊗ZWα̃×〈sα̃〉 Z)
∼= HomW (ZΦ,HomZWα̃×〈sα̃〉(ZW,Z))
∼= HomZWα̃×〈sα̃〉(ZΦ,Z)

= (Hom(ZΦ,Z))Wα̃×〈sα̃〉

∼= ((ZΦ)∗)Wα̃×〈sα̃〉

∼= (Λ(Φ0))Wα̃×〈sα̃〉

∼= ((Λ(Φ0)Wα̃)sα̃

=

{
Z(�1 −�n), Φ = An, n � 2,
0, otherwise.

If Φ = An, n � 2, the generators μ(�1) and μ(�n) of HomW (ZΦ, P (Φ)) map to a
generator of HomW (ZΦ, P+(Φ)).

So for all Φ, HomW (ZΦ, P (Φ)) → HomW (ZΦ, P (Φ)/P−(Φ)) is surjective so that the
map Ext1W (ZΦ, P−(Φ)) → Ext1W (ZΦ, P (Φ)) is injective. But for Φ �= A1,Bn, we have
by Proposition 4.5 that Ext1W (ZΦ, P (Φ)) = 0 so that Ext1W (ZΦ, P−(Φ)) = 0 as well.
�



364 N. LEMIRE

Proposition 4.12. Let h be the Coxeter number of the connected component of ΦI to
which α̃ belongs.

ξ = [0 −→ K(Φ) −→ P (Φ) −→ ZΦ −→ 0] ∈ Ext1W
(
ZΦ,K(Φ)

)
is an element of Ext1W

(
ZΦ,K(Φ)

)
of order m where m = h if Φ = An,Bn, and m =

2h if Φ �= An,Bn. In each case, ξ generates the image of Coker
(
Hom(ZΦ, P (Φ)

) →
Hom

(
ZΦ,ZΦ)

)
in Ext1W

(
ZΦ,K(Φ)

)
. If Φ �= Bn, ξ generates Ext1W

(
ZΦ,K(Φ)

)
. In

fact,

Ext1W
(
ZΦ,K(Φ)

) ∼=

⎧⎪⎨⎪⎩
Z/hZ, if Φ = An,
(Z/2Z)2, if Φ = Bn, n � 2,
Z/2hZ, if Φ �= An,Bn.

Proof. We will show that

Coker
(
HomW

(
ZΦ, P (Φ)

) −→ HomW (ZΦ,ZΦ)
)

maps isomorphically onto the cyclic group generated by the extension class of

[0 −→ K(Φ) −→ P (Φ) −→ ZΦ −→ 0]

in Ext1W (ZΦ,K(Φ)).
Since the map ∂ from

Coker
(
HomW

(
ZΦ, P (Φ)

) −→ HomW (ZΦ,ZΦ)
)

to Ext1W (ZΦ,K(Φ)) is that induced by the connecting homomorphism

∂ : HomW (ZΦ,ZΦ) −→ Ext1W
(
ZΦ,K(Φ)

)
,

it suffices to show that ∂ is surjective as ∂ is, by construction, injective.
Note that

HomW (ZΦ,ZΦ) ∂ ��

δ

����������������� Ext1W
(
ZΦ,K(Φ)

)
∼=

��
H1

(
W,Hom(ZΦ,K(Φ))

)
is a commutative diagram.

Now HomW (ZΦ,ZΦ) = Z id. Under the map

δ : HomW (ZΦ,ZΦ) � id 
→ [w → (wσ) − σ] ∈ H1
(
W,Hom(ZΦ,K(Φ))

)
where σ : ZΦ → P (Φ) is any Z-splitting of the sequence

0 −→ K(Φ) −→ P (Φ) −→ ZΦ −→ 0.
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But under the isomorphism

H1
(
W,Hom(ZΦ,K(Φ))

) ∼= Ext1W
(
ZΦ,K(Φ)

)
,

[w → (wσ) − σ] is mapped to the extension class

[0 −→ K(Φ) −→ P (Φ) −→ ZΦ −→ 0] ∈ Ext1W
(
ZΦ,K(Φ)

)
.

This implies that ∂ is surjective and completes the proof of the second statement. For
the first statement, we need only apply Lemma 4.10.

Since Ext1W (ZΦ, P (Φ)) = 0 for all Φ �= Bn, we have that

Ext1W
(
ZΦ, P (Φ)

) ∼= Coker
(
HomW

(
ZΦ, P (Φ)

) −→ HomW (ZΦ,ZΦ)
)

in this case.
So we need only consider Φ = Bn. Now K(Φ) ∼= P+(Φ) in this case. So

Ext1W (ZΦ,K(Φ)) ∼= Ext1W
(
ZΦ, P+(Φ)

)
∼= Ext1ZWα̃×〈sα̃〉(ZΦ,Z)
∼= H1

(
Wα̃ × 〈sα̃〉,Λ(Φ0)

)
.

NowWα̃×〈sα̃〉 ∼= (C2)n�Sn−1 and Λ(Φ0) ∼= ZBn as a W (Bn) lattice. Since ZB
(C2)n

n = 0
andH1((C2)n,ZBn)∼=(Z/2Z)n, we see by inflation-restriction thatH1(Wα̃×〈sα̃〉,Λ(Φ0))∼= H1((C2)n,ZBn)Sn−1 ∼= (Z/2Z)2 as required. �
Corollary 4.13. There exists a commutative diagram of the form

0 �� K(Φ) �� P (Φ) �� ZΦ ���� 0

0 �� K−(Φ) ��
� �

��

X ��
� �

��

ZΦ �� 0

if and only if Φ = An, n even.

Proof. Since ξ = [0 → K(Φ) → P (Φ) → ZΦ → 0] generates the subgroup

Coker
(
HomW

(
ZΦ, P (Φ)

) −→ HomW (ZΦ,ZΦ)
)

of Ext1W (ZΦ,K(Φ)), then ξ has a preimage in

Ext1W
(
ZΦ,K−(Φ)

) −→ Ext1W
(
ZΦ,K(Φ)

)
if and only if

Coker
(
HomW

(
ZΦ, P−(Φ)

) −→ HomW (ZΦ, 2ZΦ)
)

−→ Coker
(
HomW

(
ZΦ, P (Φ)

) −→ HomW (ZΦ,ZΦ)
)

is surjective. By Lemma 4.10, Coker(HomW (ZΦ, P−(Φ)) → HomW (ZΦ, 2ZΦ)) maps
into Coker(HomW (ZΦ, P (Φ)) → HomW (ZΦ,ZΦ)) as a subgroup of index 2 unless Φ =
An, n even, in which case this map is an isomorphism. �
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Corollary 4.14. Let K0 be a W -sublattice of K(Φ).
If Φ is not of type Bn, there exists a commutative diagram of the form

0 �� K(Φ) �� P (Φ) �� ZΦ ���� 0

0 �� K0
��

� �

��

X ��
� �

��

ZΦ �� 0

if and only if the map Ext1W (ZΦ,K0) −→ Ext1W
(
ZΦ,K(Φ)

)
is surjective.

Proof. Such a diagram exists if and only if

[0 −→ K(Φ) −→ P (Φ) −→ ZΦ −→ 0] ∈ Ext1W
(
ZΦ,K(Φ)

)
has a preimage under the map Ext1W (ZΦ,K0) → Ext1W (ZΦ,K(Φ)). Note that for Φ
not of type Bn, we have Ext1W (ZΦ, P (Φ)) = 0 so that by Proposition 4.12,

[0 → K(Φ) −→ P (Φ) −→ ZΦ −→ 0]

generates the group Ext1W (ZΦ,K(Φ)). �

5. Minimal permutation resolutions of the character lattice

Let G be a simple algebraic group with maximal torus T , corresponding Weyl group
W , and character lattice X(T ). Let Φ ≡ Φ(G, T ) be the root system attached to G and
the maximal torus T . We will use the notation and definitions introduced in Section 3.2
for the set of short roots Φ0, the root lattice ZΦ, its weight lattice Λ(Φ), its Weyl group
W = W (Φ) and Wλ, the isotropy subgroup of W fixing λ ∈ Λ(Φ). In this section,
we will determine a minimal permutation W -lattice P of minimal rank such that there
exists a W -epimorphism π : P � X(T ) with Ker(π) being a faithful W -lattice. That
is, with the notation of Section 3.1, we will find a minimal element (P, π) of P(X(T ))
together with r(X(T )) = rank (P ). This discussion is motivated by Corollary 2.2.

We first discuss some preliminaries onW -sublattices of character lattices and minimal
permutation resolutions.

5.1. W -sublattices of character lattices and minimal permutation resolutions

Recall that if Φ is the root system of W and Λ(Φ) is its weight lattice, we have ZΦ ⊂
X(T ) ⊂ Λ(Φ), and all are W -lattices of the same rank, say n.

The following two technical lemmas are useful for determining the W -span of an
element χ ∈ X(T ) and for determining conditions on χ ∈ X(T ) such that ZWχ = X(T ).

Lemma 5.1.

(a) Λ(Φ)/ZΦ is a (finite) trivial W -module.
(b) For any χ ∈ X(T ), ZWχ ⊂ Zχ+ ZΦ.
(c) ZW�i = Z�i + ZWαi for all i = 1, . . . , n. In particular, if αi is a short root,

then ZW�i = Z�i + ZΦ.
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Proof. (a) Note that ZΦ is a W -sublattice of Λ. Let λ ∈ Λ(Φ). For i = 1, . . . , n,

siλ− λ = 〈λ, αi〉αi ∈ ZΦ

so that si(λ + ZΦ) = λ + ZΦ. But then, since the simple reflections generate W ,
w(λ + ZΦ) = λ+ ZΦ for all w ∈ W .

(b) Since ZΦ ⊂ X(T ) ⊂ Λ(Φ), it follows from (a) that X(T )/ZΦ is a trivial W -
module. Now (b) follows immediately.

(c) ZWαi is a W -sublattice of Λ. Since the simple reflections generate W , and
sj�i = �i − δijαj for all j = 1, . . . , n, we see that w ∈ W fixes �i + ZWαi. Hence,
ZW�i ⊂ Z�i + ZWαi. But �i ∈ ZW�i, and �i − αi = si�i ∈ ZW�i, so that
Z�i + ZWαi ⊂ ZW�i as required. If αi is a short root, then ZWαi = ZΦ. �

Let λ ∈ Λ(Φ). Denote by λ+ the unique element of Λ+ in the W -orbit of λ. Note
that ZWλ = ZWλ+ and that if λ+ = wλ, then wWλw

−1 = Wλ+ so that |Wλ| = |Wλ+ |.
Lemma 5.2. Assume that the rank of G is n > 1.

(a) If λi = mi�ji ∈ X(T ), i = 1, . . . , r and dj is the order of �j+X(T ) in Λ/X(T ),
then if

∑r
i=1 ZWλi = X(T ), we have

gcd{dji | i = 1, . . . , r} = gcd{mi | i = 1, . . . , r} = 1.

(b) If
∑r
i=1 ZWλi = X(T ), then 〈λi + ZΦ | i = 1, . . . , r〉 must generate X(T )/ZΦ.

In particular, if X(T )/ZΦ is cyclic of prime power order, then there exists i
such that λi + ZΦ generates X(T )/ZΦ.

Proof. (a) Note that since mi�ji ∈ X(T ), then dji must divide mi for all i = 1, . . . , r.
So gcd{dji | i = 1, . . . , r} divides m = gcd{mi | i = 1, . . . , r}. Now X(T ) =∑r

i=1 ZWmi�ji ∈ mΛ ∩ X(T ), so that X(T ) ⊂ mΛ. But if m > 1, then mn =
[Λ : mΛ] > n+ 1 � [Λ : X(T )]. By contradiction, m = 1.

(b) By Lemma 5.1(b), X(T ) =
∑r
i=1 ZWλi ⊂

∑r
i=1 Zλi + ZΦ implies that λi + ZΦ,

i = 1, . . . , r, generate X(T ). �
Recall the following notation from Section 3.1 for an H-lattice Y : For a finite group

H with subgroupsH1, . . . , Hk and an H-lattice Y with y1, . . . , yk, fy1,...,yk
is the H-map

fy1,...,yk
: ⊕ki=1Z[H/Hi] −→ Y

which maps Hi to yi, i = 1, . . . , k. The following technical proposition will help us to
determine minimal permutation resolutions under certain conditions. That is, it will
help to find (P, π) ∈ P(Y ) with rank (P ) = r(Y ) where

r(Y ) = min{rank (P ) | (P, π) ∈ P(Y )}.
Proposition 5.3. Suppose the following conditions hold:

(i) The intersection of nontrivial normal subgroups is nontrivial .
(ii) Z[H/Hy] is a minimal faithful transitive permutation lattice for H, but Ker(fy)

is not a faithful H-lattice.
(iii) If ZHz = Y and Ker(fz) is a faithful H-lattice, then [H : Hz] � 2[H : Hy].

Then (Z[H/Hy ] ⊕ Z[H/Hy], fy,0) is a minimal element of P(Y ).
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Proof. Note that (Z[H/Hy]⊕Z[H/Hy], fy,0)∈P(Y ) since fy,0 is surjective, and Ker(fy,0)
= Ker(fy) ⊕ Z[H/Hy] is faithful since Z[H/Hy] is.

Note that the kernel of the action of H on a direct sum of lattices is the intersection
of the kernels of the actions of H on each lattice. So if we assume that the intersection of
nontrivial normal subgroups is nontrivial , a direct sum of nonfaithful H-lattices is also
nonfaithful. This shows that if Z[H/Hy] is a minimal faithful transitive permutation
lattice, then it is a minimal faithful permutation lattice. Now suppose (Q, p) ∈ P(Y )
with Q = ⊕ri=1Z[H/Hi] and p = fy1,...,yr . If s is the number of faithful components, then
rank (Q) � s[H : Hy], so we may assume that Z[H/H1] is the only faithful component
and p = fy1,0...,0. So ZHy1 = Y , Ker(p) = Ker(fy1) ⊕ri=2 Z[H/Hi] is faithful, and by
(iii), rank (Q) � [H : Hy1 ] � 2[H : Hy] as required. �

Lemma 5.4. If H0 is a subgroup of H, then r(Y |H0) � r(Y ).

Proof. Let 0 → K → P
π→ Y → 0 be an exact sequence of H-lattices with P being

permutation and K faithful. Restricting this sequence to H0 proves the statement. �

The following proposition can be used to determine a minimal element of P(X(T ))
in most cases.

Proposition 5.5. Suppose G is not of type An and suppose that there exists a permu-
tation lattice P = Z[W/Wχ] with ZWχ = X(T ) which satisfies the following conditions:

(i) rank (P ) � [W : W�i ] for all �i ∈ X(T );
(ii) Let I(X(T )) = {i | [W : W�i ] < rank (P )}, then rank (P ) � [W : W�i+�j ] for

all i, j ∈ I(X(T )), i �= j;
(iii) rank (P ) > 2n.

Then (P, fχ) is a minimal element of P(X(T )) and r(X(T )) = rank (P ).

Proof. Suppose that P = Z[W/Wχ] satisfies the conditions (i),(ii) and (iii). Then by
Proposition 3.3(c), (P, fχ) ∈ P(X(T )).

Let (Q, p) be an arbitrary element of P(X(T )) where Q = ⊕ri=1Z[W/Wi] and p =
fλ1,...,λr . Note that rank (Q) ≥ ∑k

i=1[W : Wλ+
i
] and

∑r
i=1 ZWλ+

i = X(T ). We need to
show that rank (Q) � rank (P ).

Case I: Assume that all λ+
i are nonnegative multiples of fundamental dominant

weights with at least one nonzero. Set λ+
i = mi�ji , i = 1, . . . , k. We wish to show

that there then must exist a λ+
i which is a positive multiple of a fundamental dominant

weight contained in X(T ). If G is simply connected so that X(T ) = Λ, this is clear.
Assume then that G is not simply connected so that X(T ) is a proper sublattice of Λ.

Now if λ+
i are all positive multiples of fundamental dominant weights not in X(T ),

then m = gcd{miji | i = 1, . . . , k} is divisible by gcd{dj | �j �∈ X(T )}. The latter is
greater than 1, since each 1 �= dj must divide [Λ : X(T )] which is a prime or at least
a prime power. Then, by contradiction with Lemma 5.2(a), there must exist at least
one λ+

i which is a positive multiple of a fundamental dominant weight in X(T ), say �j .
Then, in this case, rank (Q) � [W : Wλi ] = [W : W�j ] � rank (P ) by (i).

Case II: Suppose there exists at least one λ+
i which is a nontrivial linear combination

of 2 or more fundamental dominant weights. Let λ+
i =

∑n
j=1 rij�j . If there exists j such

that rij �= 0 and j �∈ I(X(T )), then rank (Q) � [W : W�j ] � rank (P ). Otherwise, there
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exists s, t ∈ I(X(T )) with ris �= 0, rit �= 0. Then rank (Q) � [W : W�s+�t ] � rank (P )
by (ii).

Since an arbitrary element (Q, p) of P(X(T )) must fall into one of these two cases,
the rank of P is indeed minimal among those in P(X(T )) so that r(X(T )) = rank (P ).
�
5.2. Minimal elements of P(X(T ))
For the remainder of this section we will determine minimal elements of P(X(T )) and
r(X(T )) for all simple groups G with maximal torus T . This will give us the rough
upper bound of r(X(T )) − rank (X(T )) for edW (X(T )) in each case.

Proposition 5.6. Suppose G = SLn+1/Cd where d divides n+ 1.
Let Tn+1,d be the maximal torus of SLn+1/Cd where d is a divisor of n + 1. Let

W = W (An) be the Weyl group. Note that SLn+1/Cn+1 = PGLn+1 is the adjoint group
of type An with X(Tn+1,n+1) = ZAn, and SLn+1/C1 = SLn+1 is the simply connected
group of type An with X(Tn+1,1) = Λ(An). In each case, the element of P(X(Tn+1,d))
listed below is minimal:

• r(Λ(An)) = 2(n+ 1), edW (Λ(An)) � n+ 2, and(
Z[W (An)/W (An−1)]2, f�1,0

) ∈ P(
Λ(An)

)
;

• r(ZA1) = 4, edW (ZA1) � 3, and (Z[W (A1)]2, fα1,0) ∈ P(ZA1);
• if n � 2, then r(ZAn) = n(n+ 1), edW (ZAn) � n2 and(

Z[W (An)/W (An−2)], f�1+�n

) ∈ P(ZΦ);

• if (n, d) = (3, 2), then r(X(T4,2)) = 10, edW (X(T4,2)) � 7 and(
Z[W (A3)/W (A1) ×W (A1)] ⊕ Z[W (A3)/W (A2)], f�2,0

) ∈ P(
X(T4,2)

)
;

• if (n, d) = (2k + 1, 2), k � 2 or (n, d) = (5, 3), then r(X(Tn+1,d)) =
(
n+1
d

)
,

edW (X(Tn+1,d)) �
(
n+1
d

) − n and(
Z[W (An)/W (Ad−1) ×W (An−d)], f�k

) ∈ P(
X(Tn+1,d)

)
;

• if n � 6 and d is a proper divisor of n + 1, then r(X(Tn+1,d)) = n(n + 1),
edW (X(Tn+1,d)) � n2 and(

Z[W (An)/W (An−2)], π
) ∈ P(

X(Tn+1,d)
)

where π = f�1+k�2 if d = 2k + 1 � 3 and π = f(k−1)�1+�2 if d = 2k > 2.

Proof. The maximal parabolic subgroups of W (An) = Sn+1 are W�i = W (An−i) ×
W (Ai−1) where |W�i | = (n+ 1 − i)!i!. So for all i = 1, . . . , n, [W : W�i ] � n+ 1. The
minimum value n+ 1 is attained by �1 and �n and W�1 = W�n = W (An−1).

We first consider Λ = Λ(An). Note that Λ(An)/ZAn ∼= Z/(n + 1)Z and �k +
ZAn = k�1 + ZAn for all k = 1, . . . , n. This shows that ZW�1 = ZW�n = Λ. Since
rank (Z[W (An)/W (An−1)]W (An)) = 1 = rank (Ker(f�1)) = rank (Ker(f�n)), we see
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that Ker(f�1) (respectively Ker(f�n)) is a trivial W -lattice and hence is not faithful.
We wish to apply Proposition 5.3 to demonstate that (Z[W (An)/W (An−1)]2, f�1,0)
(respectively (Z[W (An)/W (An−1)]2, f�n,0) is a minimal element of P(Λ).

Now, the intersection of nontrivial normal subgroups of Sn is S2 if n = 2, An if
n �= 2, 4, and V4 if n = 4. In all cases, it is nontrivial, verifying (i). Suppose Z[W/W0]
is a transitive permutation lattice of rank r < n. The action of W on Z[W/W0] of rank
r < n induces a homomorphism ϕ : Sn → Sr. Since ϕ cannot be injective, Z[W/W0]
cannot be faithful. So Z[W/W�1 ] is a minimal faithful transitive permutation lattice
verifying (ii).

Now suppose λ ∈ Λ satisfies ZWλ = Λ and Ker(fλ) is faithful. Then Wλ is a proper
parabolic subgroup of Sn+1. If Wλ = Sn, then Ker(fλ) ∼= Z is not faithful. So Wλ is a
proper parabolic subgroup of Sn+1 which is not Sn. So n � 3. For n > 3, any proper
parabolic subgroupWλ �= Sn would satisfy [W : Wλ] � n(n+1)

2 � 2(n+1) = 2[W : W�1 ],
verifying (iii). For n = 2, there is no λ ∈ Λ such that ZWλ = Λ and Ker(fλ) is faithful
since any λ ∈ Λ must be a multiple of �1. So (iii) is verified trivially in this case. Lastly,
for n = 3, λ satisfying ZWλ = Λ and Ker(fλ) faithful cannot have λ+ be a multiple
of a fundamental dominant weight since Ker(f�1) and Ker(f�3) are not faithful and
ZW�2 �= Λ. So Wλ has rank at most 1, and so [W : Wλ] � 12 � 2[W : W�1 ], verifying
(iii) for n = 3. Hence, by Proposition 5.3, (Z[W (An)/W (An−1)]2, f�1,0) is a minimal
element of P(Λ) and r(Λ) = 2(n+ 1).

Note that ZA1 = Zα1 = Z2�1 = 2Λ(A1). Then the argument for Λ(A1) shows also
that r(ZA1) = 4 and (Z[W (A1)]2, fα1,0) ∈ P(ZA1) is a minimal element.

We next consider the nonsimply connected cases for n � 2. So, d > 1. Note that
Λ/X(Tn+1,d) ∼= Z/dZ and �k + X(Tn+1,d) = k�1 + X(Tn+1,d) for all k = 1, . . . , n.
Note that �k ∈ X(Tn+1,d) if and only if d divides k. This shows that no fundamental
dominant weights lie in ZAn = X(Tn+1,n+1).

Let dk be the order of �k + X(Tn+1,d) in Λ/X(Tn+1,d). Note that d1 = dn = [Λ :
X(Tn+1,d)] = d > 1. Suppose that (Q, p) ∈ P(X(Tn+1,d)) with Q = ⊕ki=1Z[W/Wi] and
p = fλ1,...,λk

. Suppose each λ+
i is a multiple of some fundamental dominant weight

not in ZAn, i.e., λ+
i = mi�ji . Then by Lemma 5.2(a), we know that gcd{dji | i =

1, . . . , k} = 1. Since all the dji > 1, we see that Q cannot be transitive. Also since
all dji divide n + 1 and d1 = dn = n + 1, we see that there must be at least two λ+

i

with ji ∈ {2, . . . , n − 1}. But then rank (Q) � 2 min{[W : W�j ] | j = 2, . . . , n − 1}.
Since |W�i | = i!(n + 1 − i)!, this implies that rank (Q) � n(n + 1). Now suppose that
there exists λi such that λ+

i =
∑k
j=1 cij�j has at least two nonzero coefficients, say

cip and ciq. Since Wcip�p+ciq�q = W (Ap−1) × W (Aq−p−1) × W (An−q), we see that
rank (Q) � n(n+ 1) also in this case.

For the case of ZAn, the above discussion is sufficient to conclude that r(ZAn) �
n(n+ 1). Note that ZW (�1 +�n) = ZAn and [W : W�1+�n ] = n(n+ 1) > 2n. Hence,
(Z[W/W�1+�n ], f�1+�n) ∈ P(ZAn) and r(ZAn) = n(n+ 1).

If d is a proper nontrivial divisor of n+ 1, we must also consider the case of (Q, p) ∈
P(X(Tn+1,d)) as above with at least one λ+

i = m�j where �j ∈ X(Tn+1,d). (Note that
this cannot occur for ZAn). Then rank (Q) � min{[W : W�k

] | �k ∈ X(Tn+1,d)} =
[W : W�d

] =
(
n+1
d

)
. Note that ZW�d = X(Tn+1,d).

Now if d = 2 and n = 2k+ 1 > 3, or if (n, d) = (5, 3), then 2n <
(
n+1
d

)
< n(n+ 1) so
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that r(X(Tn+1,d)) =
(
n+1
d

)
and (Z[W/W�d

], f�d
) ∈ P(X(Tn+1,d)) is minimal.

If (n, d) = (3, 2), then V = 〈(12)(34), (13)(24)〉 is a normal subgroup of W (A3) = S4.
By the proof of Proposition 3.3 (c),

rank
(
Z[W (A3)/W (A1) ×W (A1)]V

)
=

|W (A3)||V ∩W (A1) ×W (A1)|
|W (A1) ×W (A1)||V | = 3

= rank
(
Ker(f�2)

)
,

and hence Ker(f�2) is not a faithful W -lattice by Proposition 3.3 (a). But

(Z[W/W�2 ] ⊕ Z[W/W�1 ], f�2,0)

gives an element of P(X(T2)) of rank 10 since Z[W/W�1 ] = Z[W (A3)/W (A2)] is faithful.
By the above discussion, if Q = ⊕ki=1Z[W/Wi] and (Q, fλ1,...,λk

) ∈ P(X(T4,2)) had rank
smaller than 10, then Q cannot be transitive, and at least one λ+

i must be a positive mul-
tiple of a fundamental dominant weight contained in X(T4,2) (i.e., �2). As all nontrivial
normal subgroups intersect in V , we cannot add on a nonfaithful permutation lattice
onto Z[W/W�2 ]. So since Z[W (A3)/W (A2)] is the smallest faithful permutation lattice
for W (A3), we must have that (Z[W (A3)/W (A1) ×W (A1)] ⊕ Z[W (A3)/W (A2)], f�2,0)
is a minimal element of P(X(T4,2)) and r(X(T4,2)) = 10.

If n � 6 and d > 2 is a proper divisor of n + 1, then 2n < n(n + 1) <
(
n+1
d

)
. Since

ZW (�1 + k�2) = X(Tn+1,2k+1) and ZW (2(k − 1)�1 + �2) = X(Tn+1,2k), we find
that r(X(Tn+1,d)) = n(n + 1) in this case and that (Z[W (An)/W (An−2)], f�1+k�2) ∈
P(X(Tn+1,2k+1)) and (Z[W (An)/W (An−2)], f(2k−1)�1+�2) ∈ P(X(Tn+1,2k)) are mini-
mal elements. �
Proposition 5.7. Let G = SOk, k � 5. Let Tk be its maximal torus. If k = 2n+ 1,
n � 2, then W = W (Bn) = Cn2 � Sn and X(T2n+1) = ZBn = ⊕ni=1Zei on which W (Bn)
acts by signed permutations. If k = 2n, n � 4, then W = W (Dn) = Cn−1

2 � Sn and
X(T2n) = ZBn|W (Dn) is a lattice properly between ZDn and Λ(Dn) on which W (Dn)
acts by even signed permutations. Then:

• r(ZBn) = r(X(T2n+1)) = 4n, edW (ZBn) � 3n, and(
Z[W (Bn)/W (Bn−1)]2, f�1,0

) ∈ P(ZBn)

is minimal;
• r(X(T2n)) = 4n, edW (X(T2n)) � 3n and(

Z[W (Dn)/W (Dn−1)]2, f�1,0

) ∈ P(
X(T2n)

)
is minimal.

Proof. We will use Proposition 5.3 to prove the statement for X(T2n), n � 4. Note that
the intersection of nontrivial normal subgroups of W (Dn) is (C2)n−1 if n odd and the
diagonal subgroup of Cn2 if n even so that in either case it is nontrivial . We claim that
Z[W (Dn)/W (Dn−1)] is a minimal faithful transitive permutation lattice for W (Dn).
Suppose Z[W/W0] were a permutation lattice of rank r smaller than 2n. Then the
action of W on Z[W/W0] induces a homomorphism ϕ : W (Dn) → Sr. Then the kernel
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of the action of W on Z[W/W0] is nontrivial. So Z[W (Dn)/W (Dn−1)] is a minimal
faithful transitive permutation lattice.

Note that �1 = e1, ZW�1 = X(T2n) and W�1 = W (Dn−1). Since

rank
(
Z[W (Dn)/W (Dn−1)]C

n−1
2

)
= n = rank

(
Ker(f�1)

)
,

we see that by the proof of Proposition 3.3(a), the normal subgroupCn−1
2 fixes Ker(f�1),

so Ker(f�1) is not faithful.
Suppose λ ∈ X(T2n) is such that ZWλ = X(T2n) and Ker(fλ) is faithful. Then

λ+ =
∑n

i=1mi�i cannot be a multiple of �1 since otherwise Wλ = W (Dn−1) and
Ker(fλ) is fixed by Cn−1

2 by the argument above. So Wλ must be a proper parabolic
subgroup not equal to W (Dn−1). This means that [W : Wλ] � 2n(n− 1) > 4n.

So by Proposition 5.3, r(X(T2n))=4n and (Z[W (Dn)/W (Dn−1)]2, fe1,0)∈P(X(T2n))
is a minimal element.

Since ZW (Bn)e1 = ZBn and Z[W (Bn)/W (Bn−1)] is a faithful permutation lattice,
(Z[W (Bn)/W (Bn−1)]2, fe1,0) ∈ P(ZBn) with rank 4n.

Now for n � 4, since W (Dn) is a normal subgroup of W (Bn) and ZBn|W (Dn) =
X(T2n), we have r(ZBn) � r(X(T2n)) = 4n by Lemma 5.4. This shows that the
element (Z[W (Bn)/W (Bn−1)]2, fe1,0) is minimal and that r(ZBn) = 4n for n � 4. For
n = 2, ZB2|W (A1)2 = (ZA1)2. Since(

Z[W (A1)2/We1 ] ⊕ Z[W (A1)2/We2 ] ⊕ Z[W (A1)2]
) ∈ P(

(ZA1)2
)

is minimal of rank 8, then r(ZB2) � 8 by Lemma 5.4. For n = 3, X(T6) = ZB3|W (A3) is
a lattice between the root and weight lattice of A3 where W (A3) = W (D3) = S4. Note
that S4 acts on X(T6) = ⊕3

i=1Zei by permutations via S4/V4
∼= S3. Although Z[S4/V4]

is not faithful since it is fixed by V4,(
Z[S4/〈(12)(34)〉], fe1

) ∈ P(
X(T6)

)
is minimal of rank 12 so that r(ZB3) � 12 by Lemma 5.4. So, for n � 2, we see that
(Z[W (Bn)/W (Bn−1)]2, fe1,0) ∈ P(ZBn) is a minimal element and r(ZBn) = 4n. �

The following proposition covers the adjoint case. Note that we obtained better
bounds on edW (ZΦ) than r(ZΦ) − rank (ZΦ) in Theorem 1.3 using compressions.

Proposition 5.8. Suppose G is adjoint. In each case, the element of P(ZΦ) listed is
minimal:

• if Φ = A1, then r(ZΦ) = 4 and(
Z[W (A1)]2, fα1,0

) ∈ P(ZΦ);

• if Φ = An, n � 2, then r(ZΦ) = n(n+ 1) and(
Z[W (An)/W (An−2)], f�1+�n

) ∈ P(ZΦ);

• if Φ = Bn, n � 2, then r(ZΦ) = 4n and(
Z[W (Bn)/W (Bn−1)]2, f�1,0

) ∈ P(ZΦ);



ESSENTIAL DIMENSION 373

• if Φ = Cn, n � 3, then r(ZΦ) = 2n(n− 1) and(
Z[W (Cn)/W (A1) ×W (Cn−2)], f�2

) ∈ P(ZΦ);

• If Φ = Dn, n � 4, then r(ZΦ) = 2n(n− 1) and(
Z[W (Dn)/W (A1) ×W (Dn−2)], f�2

) ∈ P(ZΦ);

• if Φ = E6, then r(ZΦ) = 72 and(
Z[W (E6)/W (A5)], f�2

) ∈ P(ZΦ);

• if Φ = E7, then r(ZΦ) = 126 and(
Z[W (E7)/W (D6)], f�1

) ∈ P(ZΦ);

• if Φ = E8, then r(ZΦ) = 240 and(
Z[W (E8)/W (E7)], f�8

) ∈ P(ZΦ);

• if Φ = F4, then r(ZΦ) = 24 and(
Z[W (F4)/W (B3)], f�4

) ∈ P(ZΦ);

• if Φ = G2, then r(ZΦ) = 6 and(
Z[W (G2)/W (A1)], f�1

) ∈ P(ZΦ).

Proof. Note that Φ = An was treated in Proposition 5.6 and Φ = Bn was covered in
Proposition 5.7.

For the remaining cases, we may apply Proposition 5.5. To do so, we find a fun-
damental dominant weight �i ∈ ZΦ for which [W : W�i ] is minimal and for which
ZW�i = ZΦ. Then we verify the three hypotheses of Proposition 5.5.

Let Φ = Dn, n � 4. The fundamental dominant weights contained in ZDn are �2k

for 1 � k < (n − 1)/2 and W�i = W (Ai−1) × W (Dn−i). So the minimal value of
[W : W�i ] for �i ∈ ZDn is 2n(n− 1) and is achieved by �2. Only �1 has [W : W�1 ] <
2n(n − 1), so we need not check condition (ii). Now W�2 = W (A1) ×W (Dn−2) and
[W (Dn) : W (A1) ×W (Dn−2)] = 2n(n− 1) > 2n, and we see that (Z[W (Dn)/W (A1) ×
W (Dn−2)], f�2) ∈ P(ZΦ) and r(ZDn) = 2n(n− 1).

Let Φ = Cn. For n � 4, ZCn|W (Dn) = ZDn, and for n = 3, ZCn|W (A3)
∼= ZA3 where

A3 = D3 has base
ε2 + ε3, ε1 − ε2, ε2 − ε3.

In either case, Lemma 5.4 shows that r(ZCn) � 2n(n−1). Since ZW�2 = ZCn, W�2 =
W (A1)×W (Cn−2) and [W (Cn) : W (A1)×W (Cn−2)] = 2n(n− 1) > 2n if n � 3, we see
that (Z[W (Cn)/W (A1)×W (Cn−2)], f�2) ∈ P(ZΦ) is minimal and r(ZCn) = 2n(n− 1).

Let Φ = E6. Note that Λ/ZΦ = Z/3Z and �2, �4 are the only fundamental dominant
weights in ZΦ. Since W�2 = W (A5) and W�4 = W (A2) × W (A2) × W (A1), the
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minimal value of [W : W�i ] for �i ∈ ZE6 is 72 and is achieved by �2. The only
�i with [W : W�i ] < 72 are �1 and �6. But W (D4) = W�1+�6 has rank 270 > 72.
Since ZW�2 = ZΦ and [W : W�2 ] = 72 > 2(n) = 12, we see that r(ZΦ) = 72 and
(Z[W (E6)/W (A5)], f�2) ∈ P(ZΦ).

Let Φ = E7. Note that Λ/ZΦ = Z/2Z and �1, �3, �4, �6 are the only fundamental
dominant weights contained in ZΦ. Since W�1 = W (D6), W�3 = W (A1) ×W (A5),
W�4 = W (A2) × W (A1) × W (A3) and W�6 = W (A1) × W (D5), we see that the
minimal value of [W : W�i ] for �i ∈ ZE6 is 126 and is achieved by �1. Since �7

is the only �i with [W : W�i ] < 126, [W (E7) : W (D6)] = 126 > 2n = 14, and
ZW�1 = ZΦ and W�1 = W (D6), we see by Proposition 5.5 that r(ZΦ) = 126 and
(Z[W (E7)/W (D6)], f�1) ∈ P(ZΦ).

For the remaining cases, G is also simply connected so that Λ = ZΦ. Note that
hypothesis (ii) of Proposition 5.5 is automatically satisfied in these cases.

For Φ = E8, the maximal parabolic subgroups are W�8 = W (E7), W�1 = W (D7),
W�2 = W (A7), W�7 = W (E6) ×W (A1), W�3 = W (A6) ×W (A1), W�6 = W (D5) ×
W (A2), W�5 = W (A4) ×W (A3) and W�4 = W (A4) ×W (A2) ×W (A1). In this case,
ZW�i = ZΦ = Λ for all i = 1, . . . , 8. By Proposition 5.5, (Z[W (E8)/W (E7)], f�8) is a
minimal element of P(ZΦ) and r(ZΦ) = 240.

For Φ = F4, the maximal parabolic subgroups are W�4 = W (B3), W�1 = W (C3),
W�2 = W�3 = W (A2)×W (A1). �4 is the only fundamental dominant weight satisfying
ZW�4 = ZΦ = Λ. By Proposition 5.5, (Z[W (F4)/W (B3)], f�4) is a minimal element
of P(ZΦ) and r(ZΦ) = 24.

For Φ = G2, the maximal parabolic subgroups are W�1 = W�2 = W (A1). �1 is the
only fundamental dominant weight satisfying ZW�1 = ZΦ = Λ. By Proposition 5.5,
(Z[W (G2)/W (A1)], f�1) is a minimal element of P(ZΦ) and r(ZΦ) = 6. �

The following corollary summarizes the results of Proposition 5.8 where

P (Φ) = ⊕α∈Φ0Zeα
∼= Z[W/Wα̃].

Corollary 5.9. Let π(Φ) : P (Φ) → ZΦ, eα 
→ α. If Φ �= A1,Bn, then
(
P (Φ), π(Φ)

) ∈
P(ZΦ) and r(ZΦ) = |Φ0|. If Φ = A1,Bn, then

(
P (Φ)2, (π(Φ), 0)

) ∈ P(ZΦ) and r(ZΦ) =
2|Φ0|.
Proposition 5.10. Let G be simply connected. In each case below, the element of P(Λ)
listed is minimal:

• if Φ = An, then r(Λ) = 2(n+ 1), edW (Λ) � n+ 2 and(
Z[W (An)/W (An−1)]2, f�1,0

) ∈ P(Λ);

• if Φ = B2, then r(Λ) = 8, edW (Λ) � 6 and(
Z[W (B2)/W (A1)]2, f�2,0

) ∈ P(Λ);

• if Φ = Bn, where n � 3, then r(Λ) = 2n, edW (Λ) � 2n − n and(
Z[W (Bn)/W (An−1)], f�n

) ∈ P(Λ);
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• if Φ = Cn, n � 3, then r(Λ) = 4n, edW (Λ) � 3n and(
Z[W (Cn)/W (Cn−1)]2, f�1,0

) ∈ P(Λ);

• if Φ = Dn, then r(Λ) = 2n−1, edW (Λ) � 2n−1 − n and(
Z[W (Dn)/W (An−1)], f�n

) ∈ P(Λ)

for odd n, and r(Λ) = 2n−1 + 2n, edW (Λ) � 2n−1 + n and(
Z[W (Dn)/W (Dn−1] ⊕ Z[W (Dn)/W (An−1)], f�1,�n

) ∈ P(Λ)

for even n;
• if Φ = E6, then r(Λ) = 27, edW (Λ) � 21 and(

Z[W (E6)/W (D5)], f�6

) ∈ P(Λ);

• if Φ = E7, then r(Λ) = 56, edW (Λ) � 49 and(
Z[W (E7)/W (E6)], f�7

) ∈ P(Λ);

• if Φ = E8, then r(Λ) = 240, edW (Λ) � 232 and(
Z[W (E8)/W (E7)], f�8

) ∈ P(Λ);

• if Φ = F4, then r(Λ) = 24, edW (Λ) � 20 and(
Z[W (F4)/W (B3)], f�4

) ∈ P(Λ);

• if Φ = G2, then r(Λ) = 6, edW (Λ) � 4 and(
Z[W (G2)/W (A1)], f�1

) ∈ P(Λ).

Proof. In most cases, Proposition 5.5 applies. We note that if there exists �i with
[W : W�i ] minimal but larger than 2n and such that ZW�i = Λ, then (Z[W/W�i ], f�i)
is a minimal element of P(X(T )) and r(Λ) = [W : W�i ]. Note that condition (ii) of
Proposition 5.5 is automatically satisfied in this case.

We have already dealt with Φ = E8,F4,G2 since the adjoint groups are also simply
connected in these cases so that Λ = ZΦ. We have also already covered Φ = An in
Proposition 5.6.

For Φ = E6, the maximal parabolic subgroups are W�1 = W�6 = W (D5), W�2 =
W (A5), W�3 = W�5 = W (A4) × W (A1) and W�4 = W (A2) × W (A2) × W (A1).
�1, �3, �5, �6 all satisfy ZW�i = Λ. By Proposition 5.5, (Z[W (E6)/W (D5)], f�1)
and (Z[W (E6)/W (D5)], f�6) are both minimal elements of P(Λ) so that r(Λ) = 27.

For Φ = E7, the maximal parabolic subgroups are W�7 = W (E6), W�1 = W (D6),
W�2 = W (A6), W�6 = W (D5) ×W (A1), W�3 = W (A5) ×W (A1), W�5 = W (A4) ×
W (A2) and W�4 = W (A3) ×W (A2) ×W (A1). �2, �5, �7 all satisfy ZW�i = Λ. By
Proposition 5.5, (Z[W (E7)/W (E6)], f�7) is a minimal element of P(Λ) and r(Λ) = 56.
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Let Φ = B2. In this case, W�i = W (A1) and [W : W�i ] = 4 = 2n for i = 1, 2. How-
ever, only �2 satisfies ZW�2 = Λ. Since for the normal subgroup C2

2 of W (B2) we have
rank (Z[W (B2)/W (A1)]C

2
2 ) = 2 = rank (Ker(f�2), we see that Ker(f�2) is not a faithful

W -lattice. Since Z[W (B2)/W (A1)] is faithful, we see that (Z[W (B2)/W (A1)]2, f�2,0) ∈
P(Λ) and has rank 8. We can apply Proposition 5.3 to show that this element is mini-
mal. Indeed, since a subgroup of W (B2) of index r < 2n would induce a homomorphism
W (B2) → Sr, we see that Z[W/W�2 ] is a minimal transitive permutation lattice so that
condition (ii) of Proposition 5.3 is verified. Condition (i) follows as the intersection of
nontrivial normal subgroups in W (B2) is nontrivial. Now let (Z[W/Wλ], fλ) ∈ P(Λ).
By the discussion above, λ+ cannot be a multiple of a fundamental dominant weight,
so Wλ = 1 and [W : Wλ] = 8, verifying condition (iii). So Proposition 5.3 shows that
the element above is minimal and r(Λ) = 8.

Let Φ = Bn with n > 2. For this case, Proposition 5.5 does not apply. This is because
the fundamental dominant weight �1, which attains the minimum value of [W : W�i ],
does not satisfy ZW�i = Λ. Suppose (Q, p) ∈ P(Λ) where Q = ⊕ki=1Z[W/Wi] and
p = fλ1,...,λk

. Assume that λ+
i ∈ SpanZ{�j | j = 1, . . . , n − 1} for all i = 1, . . . , k.

But then
∑k

i=1 ZWλi ⊂ ∑k
i=1 Zλ+

i + ZΦ ⊂ ∑n−1
i=1 Z�i + ZΦ = ZΦ. Since Λ/ZΦ ∼=

Z/2Z, this contradicts the surjectivity of the map p. So if λ+
i =

∑n
j=1mij�j , there

must exist i such that min �= 0 so that Wλ+
i

� W�n . Then rank (Q) �
∑k

i=1[W : Wλi ]
� [W : W�n ]. Since ZW�n = Λ, W�n = W (An−1) and [W : W�n ] = 2n > 2n,
(Z[W (Bn)/W (An−1)], f�n) ∈ P(Λ) and r(Λ) = 2n.

Let Φ = Cn. Note that W (Cn) = W (Bn) and Λ(Cn) ∼= ZBn. In both cases, �1 = e1.
So (Z[W (Cn)/W (Cn−1)]2, f�1,0) is a minimal element of P(Λ) and r(Λ) = 4n.

Let Φ = Dn. Once again, Proposition 5.5 does not apply, as �1 is the fundamen-
tal dominant weight which attains the minimum value of [W : W�i ] but ZW�1 �= Λ.
Suppose (Q, p) ∈ P(Λ) where Q = ⊕ki=1Z[W/Wi], p = fλ1,...,λk

and λ+
i =

∑k
j=1mij�j .

Assume that mij = 0 for all i = 1, . . . , k; j = n − 1, n. But then
∑k

i=1 ZWλi ⊂∑k
i=1 Zλi + ZΦ ⊂ ∑n−2

i=1 Z�i + ZΦ ⊂ Z(αn−1 + αn)/2 + ZΦ. This contradicts the
surjectivity of the map p since Λ/ZΦ ∼= Z/4Z if n is odd, and Λ/ZΦ ∼= Z/2Z ⊕ Z/2Z

if n is even. So there must exist i such that mi,n−1 �= 0 or mi,n �= 0, and hence
Wλ+

i
� W�n−1 (respectively W�n). Since W�n−1

∼= W�n
∼= W (An−1) of order n!, we

have rank (Q) � [W (Dn) : W (An−1)] = 2n−1.
Suppose n is odd. ZW�n−1 = ZW�n = Λ, and for P = Z[W (Dn)/W (An−1)] with

π = f�n−1 , or π = f�n , we have rank (P ) = 2n−1>2n. So (Z[W (Dn)/W (An−1)], f�n−1)
∈ P(Λ) and (Z[W (Dn)/W (An−1)], f�n) ∈ P(Λ) and r(Λ) = 2n−1. Now suppose n is
even. It is not possible for Q to be a transitive permutation lattice, as otherwise Λ =
ZWλi ⊂ Zλi+ZΦ, which contradicts the fact that Λ/ZΦ is not cyclic. So there must be
another nonzero λj with, say, Wλj � W�k

. Since |W�1 | = max{|W�j | | j = 1, . . . , k}
and W�1 = W (Dn−1), we see that in fact rank (Q) � [W (Dn) : W (An−1)] + [W (Dn) :
W (Dn−1)] for n even. Let P = Z[W (Dn)/W (Dn−1)] ⊕ Z[W (Dn)/W (An−1)] and π =
f�1,�n . Since ZW�1 + ZW�n = Λ, and for any nontrivial normal subgroup N of W ,
rank (PN ) � (2n−1 + 2n)/2 < 2n−1 + n = rank (Ker(π)), then (P, fω1,ωn) ∈ P(Λ) and
r(Λ) = 2n−1 + 2n. �

Proposition 5.11. Suppose G is a nonadjoint, nonsimply connected group of type
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Dn, n � 4. Then if n is odd, G = SO2n, and if n is even, G = SO2n, Spin±
2n. Let T1 be

a maximal torus for SO2n and Ti be maximal tori for Spin±
4k where i = n− 1 for Spin−

4k

and i = n for Spin+
4k. Then:

• r(X(T1)) = 4n, edW (X(T1)) � 3n, and(
Z[W (Dn)/W (Dn−1)]2, f�1,0

) ∈ P(
X(T2n)

)
;

• if n = 4, then r(X(Ti)) = 16, edW (X(Ti)) � 12 for i = n− 1, n and(
Z[W (D4)/W (A3)]2, f�i,0

) ∈ P(
X(Ti)

)
;

• if n > 4 is even, then r(X(Ti)) = 2n−1, edW (X(Ti) � 2n−1 − n, and(
Z[W (Dn)/W (An−1)], f�i

) ∈ P(
X(Ti)

)
for i = n− 1, n.

Proof. For Φ = Dn, n odd, Λ/ZΦ ∼= Z/4Z = Z�1 + ZΦ. So SO2n is the unique
intermediate group, in this case, with X(T1) = ZW�1.

For Φ = Dn, with n even, we have Λ/ZΦ ∼= Z/2Z ⊕ Z/2Z where Λ/ZΦ = Z�n−1 +
Z�n+ZΦ. Now if k � (n−2)/2, then �2k ∈ ZΦ and �2k+1+ZΦ = Z(�n−1+�n)+ZΦ.
There are three intermediate groups in this case: SO2n with X(T1)/ZΦ = Z�1 + ZΦ;
Spin−

2n with X(Tn−1) = ZW�n−1 and Spin+
2n with X(Tn) = ZW�n.

We have already covered the case of SO2n in Proposition 5.7.
Suppose n = 4. Then the minimal value of [W : W�i ], 2n = 8, is attained by

�1, �3, �4 and W�i = W (A3) = W (D3) in all these cases. We have already deter-
mined a minimal element (Z[W (D4)/W (A3)]2, f�1,0) for P(X(T2n)). But �1, �3, �4

are permuted by the action of the automorphism group of D4. So suppose

0 −→ K −→ P −→ X(T1) = ZW�1 −→ 0

were an exact sequence of W -lattices with K faithful and P permutation, and σi ∈
Aut(Φ) with σi(�1) = �i, i = n− 1, n. Then

0 −→ σi(K) −→ σi(P ) −→ X(Ti) = ZW�i −→ 0

would be an exact sequence of W -lattices with σ(P ) permutation and σ(K) faithful.
This shows that r(X(Ti)) = r(X(T1)) for i = n − 1, n and a minimal element of
P(X(T±

2n)), i = n−1, n can be found by applying σi. That is (Z[W (D4)/W (A3)]2, f�i,0)
is a minimal element of P(X(Ti) for i = 1, n− 1, n and r(X(Ti)) = 16.

Now let n > 4 be even. Let (Q, p) ∈ P(X(Tk)), k = n− 1, n with Q = ⊕ri=1Z[W/Wi]
and p = fλ1,...,λr . Suppose that all λ+

i ∈ SpanZ{�i | i �= k}. Then �k �∈ ∑r
i=1 ZWλi ⊂∑

i�=k Z�i + ZΦ. So, by contradiction, there must be at least one λ+
i =

∑n
j=1 Zmij�j

with mik �= 0. Hence rank (Q) � [W : W�k
] = 2n−1. Since indeed ZW�k = X(Tk),

W�k
= W (An−1) and [W : W�k

] > 2n, we see that (Z[W (Dn)/W (An−1)], f�k
) is a

minimal element of P(X(Tk)) and r(X(Tk)) = 2n−1 for k = n− 1, n. �
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Remark 5.12. There are many directions for future research here. I would like to further
examine possible compressions of

0 −→ K(Φ) −→ P (Φ) −→ ZΦ −→ 0

in the adjoint case or more generally a minimal element of P(X(T )). It is also possible
that a non-minimal element of P(X(T )) could be compressed further than a minimal
element. That is, that non-minimal elements of P(X(T )) could produce smaller bounds
on edW (X(T )). It would also be interesting to determine whether or not the inequality
ed(N) � edW (X(T )) is strict.
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(V. Kordonskĭı, On the essential dimension of connected algebraic groups (in Rus-
sian)), unpublished preprint.

[LL] N. Lemire, M. Lorenz, On certain lattices associated with generic division algebras,
J. Group Theory 3 (2000), No. 4, 385–405.

[LR] M. Lorenz, Z. Reichstein, Lattices and parameter reduction in division algebras,
preprint, January 2000, http://arXiv.org/abs/math.RA/0001026.

[LRRS] M. Lorenz, Z. Reichstein, L. H. Rowen, D. J. Saltman, Fields of definition for division
algebras, J. London Math. Soc. (2) 68 (2003), No. 3, 651–670.

[Me] A. Merkurjev, Essential Dimension, private notes, 1999.



ESSENTIAL DIMENSION 379

[OV] �. B. Vinberg, A. L. Oniwik, Seminar po gruppam Li a algebraiqeskim grup-
pam, M., Nauka, 1988. Engl. transl.: A. L. Onishchik, E. B. Vinberg, Lie Groups
and Algebraic Groups, Springer-Verlag, Berlin, Heidelberg, 1990.

[Pr] C. Procesi, Non-commutative affine rings, Atti Accad. Naz. Lincei, VIII. Ser., v. VIII,
fo. 6 (1967), 239–255.

[Re] Z. Reichstein, On the notion of essential dimensions for algebraic groups, Transfor-
mation Groups 5 (2000), No. 3, 265–304.

[Rem] Z. Reichstein, private communication.

[RY] Z. Reichstein, B. Youssin, Essential dimensions of algebraic groups and a resolution
theorem for G-varieties, with an appendix by J. Kollar and E. Szabo, Canad. J. Math.
52 (2000), No. 5, 1018–1056.

[Ro1] M. Rost, On Galois cohomology of Spin(14), preprint, March 1999, http://www.

mathematik.uni-bielefeld.de/∼rost/papers.html.

[Ro2] M. Rost, Computations of some essential dimensions, preprint, August 2000,
http://www.mathematik. uni-bielefeld.de/∼rost/papers.html.

[Sa2] D. Saltman, Invariant fields of linear groups and division algebras, in: Perspectives
in Ring Theory (Antwerp, 1987), NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci. 233
(1988), 277–297.


