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Abstract� The purpose of this work is to describe the �category of
 Higgs bundles on a scheme

X�C having a given cameral cover eX � We show that this category is a T
eX
�gerbe� where T

eX
is a certain sheaf of abelian groups on X� and we describe the class of this gerbe precisely� In
particular� it follows that the set of isomorphism classes of Higgs bundles with a �xed cameral
cover eX is a torsor over the group H��X�T

eX

� which itself parametrizes T

eX
�torsors on X� This

underlying group H��X�T
eX

 can be described as a generalized Prym variety� whose connected

component is either an abelian variety or a degenerate abelian variety� The main part of the
work deals with abstract Higgs bundles� in the last two sections we derive the applications to
Higgs bundles valued in a line bundle K and to bundles on elliptic �brations�
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�� Introduction

The purpose of this work is to describe the 
category of� Higgs bundles on a scheme

X�C having a given cameral cover eX � We show that this category is a T
eX �gerbe�

where T
eX is a certain sheaf of abelian groups on X � and we describe the class of this

gerbe precisely� In particular� it follows that the set of isomorphism classes of Higgs
bundles with a �xed cameral cover eX is a torsor over the group H�
X�T

eX�� which itself
parametrizes T

eX �torsors on X � This underlying group H
�
X�T

eX� can be described as
a generalized Prym variety� whose connected component is either an abelian variety or
a degenerate abelian variety�

The hardest part of our work goes into identifying precisely the H�
X�T
eX��torsor

we get� or in other words� identifying the class of the gerbe� This class is surprisingly
complicated� One piece of it can be identi�ed as a twist along the rami�cation divisors
of eX over X � and is present for all groups G� A second piece is a shift which can be
present even for unrami�ed covers� While the twist along the rami�cation expresses
properties of the cameral cover� this shift expresses the non�vanishing of a certain group
cohomology element� speci�cally� the extension class �N � of the normalizer N � NG
T ��
which is an element in the cohomology group H�
W�T � of the Weyl group acting on the
maximal torus� It vanishes for some groups� such as GL
n��PGL
n�� SL
�n���� SO
n��
but not for others such as SL
�n�� Yet a third piece is present only for the groups
SO
�n� �� 
or groups containing them as direct factors�� this piece expresses the exi�
stence of non�primitive coroots� which amounts to the non�vanishing of an element in
another cohomology group� We give several examples to illustrate these individual
ingredients as well as their combined e�ect�

Throughout this work� we let G be a connected reductive group� and let X be a
scheme over the complex numbers� A Higgs bundle over X is a principal G�bundle plus
some additional data� We describe this additional data next� �rst for G � GL
n�� and
then for all G� in subsection ���� In the remainder of this introduction we will outline
our results ���� discuss some examples and applications ���� and review some related
results in the literature ���� The notation we employ is summarized in ��
�

���� Abelianization� Higgs bundles and cameral covers� It is especially easy to
spell out the de�nition when G � GL
n�� In this case a G�bundle is the same as a
vector bundle E over X � and a Higgs structure on it is a subbundle of commutative
associative algebras cX � EndOX 
E�� which has rank n over X and such that cX is
locally generated by one section� In this case the relative spectrum of cX over X is a
�at n�sheeted cover of X � called the spectral cover corresponding to our Higgs bundle�
We will denote it by X�

How can we classify Higgs bundles with a given spectral cover X� The answer is
simple� these are in bijection with line bundles on X� Thus� by asking not just for
principal G�bundles� but rather for G�bundles endowed with a Higgs structure with a
�xed spectral cover� we go from a non�abelian problem to an abelian one�

The natural question now is how to extend the above discussion to other reductive
groups� It turns out that the notion of an abstract Higgs bundle is quite easy to
generalize� Namely� a Higgs bundle is a pair 
EG� cX�� where EG is a principal G�
bundle over X and cX is a subbundle of the associated bundle of Lie algebras gEG �
whose �bers are regular centralizers� The precise de�nition is given in Section �� Here
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we only recall that a regular centralizer in the Lie algebra g is an abelian subalgebra
c � g which is the centralizer of some regular 
but not necessarily semisimple� element
g � g� In particular� taking g to be regular semisimple� we see that every Cartan
subalgebra 
i�e�� the Lie algebra of a maximal torus� is a regular centralizer� In fact�
we will see in Section � that the set of regular centralizers in g is parametrized by an
algebraic variety G�N which is a partial compacti�cation of the parameter space G�N
for the maximal tori� The simplest Higgs bundles are the unrami�ed ones� i�e�� Higgs
bundles 
EG� cX � for which all the �bers of cX are maximal tori�
The situation is less transparent with spectral covers� In fact� we do not know a good

de�nition of a spectral cover that would work for any G and reproduce for GL
n� the
old object�
Instead� we use the notion of a cameral cover introduced in ���� By de�nition� the

latter is a �nite �at map p � eX � X such that the Weyl group W of G acts on eX and
certain restrictions on the rami�cation behaviour are satis�ed 
cf� Section ��� When
G � GL
n�� we will note below that this notion is di�erent from that of a spectral
cover� though equivalent to it�
It turns out that every Higgs bundle determines in a canonical way a cameral cover�

so one is led naturally to the problem of classi�cation of Higgs bundles with a given
cameral cover� This is the problem we solve in the present paper� Given a cameral
cover eX � we will describe the corresponding Higgs bundles in terms of the �abelian�
data consisting of the maximal torus T � G� the W �action on T � and the rami�cation
pattern of eX over X � The �non�abelian� data involving the group G itself is not needed�
���� Outline of the results� We formulate the above classi�cation problem in the
categorical framework� in terms of the category Higgs

eX
X� of Higgs bundles together

with an isomorphism between the induced cameral cover and eX� Our �rst result shows
that this classi�cation problem is indeed abelian�
Namely� starting from eX we de�ne a sheaf of abelian groups T

eX � We assert in
Theorem ��� that Higgs

eX
X� is a gerbe bound by the Picard category of T
eX�torsors�


These notions are reviewed for the reader�s convenience in Section ��� This result has
two immediate consequences�
First� the set of isomorphism classes of objects in our category Higgs

eX
X�� i�e�� the set

of isomorphism classes of Higgs bundles with the given cameral cover eX � if non�empty�
carries a simply transitive action of the abelian group H�
X�T

eX� 
Corollary ����� and is
therefore non�canonically isomorphic to it� It is thus a generalized Prym variety� cf� ����
depending on the circumstances� this may appear as a Jacobian of a spectral curve� or
as an ordinary Prym� or as various types of Prym�Tyurin varieties ����� and so on�
The second consequence allows us to determine when Higgs bundles with the given

cameral cover eX actually exist� This happens if and only if the gerbe is trivial� the
cameral cover eX determines an obstruction class in H�
X�T

eX�� and Higgs bundles with

the given eX exist if and only if this class vanishes 
Corollary ��
��
In the above� the sheaf T

eX is de�ned in terms of the slightly larger sheaf T eX 
on X�

of W �equivariant maps eX � T � i�e�� T
eX
U� �� MorW 


eU� T �� where eU is the induced
cameral cover of U � For each positive root � � T � Gm � let s� be the corresponding
re�ection acting on eX � and let D�

X � eX be its �xed point scheme� Any section t of

T
eX
U� determines a function � � t � eU � Gm which goes to its own inverse under
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the re�ection s�� In particular� its restriction to the rami�cation locus D
�
X equals its

inverse� so it equals ��� The subsheaf T
eX � T

eX is given by the positive choice�

T
eX
U� �� ft � T

eX
U� j 
� � t�jD�
U
� �� for each root �g�

Although Theorem ��� is quite useful� it is not a completely satisfactory result by
itself� as it does not describe which T

eX�gerbe we get� Our main result� Theorem ���� gives
a complete description of the category Higgs

eX
X� as the gerbe parametrizing certain

�R�twisted� N �shifted W �equivariant T �bundles on eX�� The �twist� here is along the
rami�cation divisors� and the �shift� is by the extension class of the normalizer N �
Our description of this gerbe is based on an explicit description of the underlying

Picard category TorsT
fX
which appears in the statement of Theorem ���� An object in

this category� i�e�� a T
eX�torsor� consists of�

� a 
weakly W �equivariant� T �bundle L� on eX�
� a group homomorphism �� � N� � Aut
L�� eX�X�� commuting with the projec�
tions to W � and

� for every simple root �i� a trivialization

�i�� � �i
L��jD�i
X
� OD�i

X
�

The data of �� and �� must satisfy some compatibility conditions� which are described
in detail in Section ��� 
Roughly� these say that the collection �� of isomorphisms �i��
is W �equivariant� and ��� �� are related by the compatibility condition ��jD�

X
� �� �����

Morphisms in this category are T �bundle maps that are compatible with the data of ��
and ���
Our notation here is as follows� An element of the group Aut
L�� eX�X�� for a T �

bundle L� on eX� consists of an element w �W together with an isomorphism w�
L���

L�� The bundle L� is weaklyW �equivariant if Aut
L�� eX�X� surjects ontoW � in which

case Aut
L�� eX�X� is an extension ofW by Mor
 eX�T �� Now the semidirect product N�

of T and W induces one such extension� and �� is supposed to induce an isomorphism
of this extension with Aut
L�� eX�X�� We think of the root � as a homomorphism
T � Gm � so �
L�� is the line bundle associated to L� via this homomorphism� Similarly�
the coroot �� is a homomorphism Gm � T �
In describing our gerbe� we replace each linear feature in the description of TorsT

fX

by an a ne variant� We start with the equivariance� the T �bundles L� were weakly
W �equivariant 
which means that w�
L�� was isomorphic to L�� for each w � W �� and
in fact strongly W �equivariant 
which simply means that W itself� and hence also the
semidirect product N�� acted on them��
Our variant of the weakly W �equivariant T �bundles L� involves T �bundles L which

are R�twisted weakly W �equivariant� meaning that now w�
L� � RwX is isomorphic to

L� for each w � W � Here RwX is a T �bundle on eX which encodes the rami�cation

pattern of eX over X � In the simplest case� when eX is integral and w is the re�ection
s� corresponding to a simple root �� we have R

w
X � R

�
X � ��
R

�
X�� where R

�
X is the line

bundle O
eX
D

�
X�� The precise de�nitions are given in Section ��
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Next� we need a substitute for the strong equivariance� We replace Aut
L�� eX�X� by

the group AutR
L� eX�X� of isomorphisms w�
L��RwX � L� and the semidirect product

N� by the normalizer N � so we demand that � should map N to AutR
L� eX�X��
Finally� �i needs to be twisted by the rami�cation� so it now sends �i
L�jD�i

X
�

R�i jD�i
X
� One �nal complication is that �i now depends 
linearly� on the choice of a lift

of wi to an element ni � N � 
This choice of a lift is unnecessary in the linear version�
since W is a subgroup of N�� so the wi�s have a canonical lift��
We can now give an almost complete statement of our main result� Theorem ���� It

says that a Higgs bundle with given cameral cover eX is equivalent to�

� an R�twisted� weakly W �equivariant T �bundle L on eX�
� a group homomorphism � � N � AutR
L� eX�X�� and
� for every simple root �i and lift ni � N of the re�ection si � W into N � the
data of an isomorphism

�i
ni� � �i
L�jD�i
X
� R�i jD�i

X
�

The data of � and � must satisfy several compatibility conditions� which are described
in detail in Section �� 
Roughly� these say that the collection � of isomorphisms �i
ni�
is N �equivariant� and �� � are related by the compatibility condition �jD�

X
� �� � ��� In

fact� the category Higgs
eX
X� is equivalent to the category Higgs

�
eX

X� whose objects

are the triples 
L� �� �� as above� Morphisms in this category are again T �bundle maps
that are compatible with the data of � and ��
Note that the possible nontriviality of our gerbe can be attributed to three separate

causes� the twist along the rami�cation R� the shift resulting from nontriviality of the
extension class ofN � or the extra complication involved in choosing the �i� In subsection
��
 we give a simpli�ed version of our theorem� which avoids this last complication� It
applies in all cases except when the group G has SO
�n� �� as a direct summand�

���� Some examples and applications

������ The unrami�ed case� The cameral cover eX � X is unrami�ed if and only if the
Higgs bundle 
EG� cX� is unrami�ed� i�e�� if and only if the bundle of regular centralizers
cX is actually a bundle of Cartan subalgebras� In this case the classi�cation 
given in

���� is easy� specifying a Higgs bundle 
EG� cX� with the unrami�ed cameral cover eX
is equivalent to giving an N �bundle EN over X together with an identi�cation of the
quotient EN�T with eX� In this case� our T �bundle L is just EN � considered as a T �
bundle over EN�T � eX� Since there is no rami�cation� there is no R�twist� similarly�
there is no �� and AutR
L� eX�X� is just Aut
EN � eX�X�� which is induced from the
extension N � so � is the tautological map�

������ GL
n�� Consider �rst the case of G � GL
n�� The spectral cover X is then

of degree n over X � while the cameral cover eX is of degree n!� The n points of X
above each point x of X correspond to the n simultaneous eigenvectors 
in the standard

representation� of the corresponding centralizer cx� while the n! points of eX above
x correspond to the ways of ordering these eigenvectors� In a generic situation� e�g��
when the Higgs bundle is unrami�ed or only simply rami�ed� it is clear that eX is
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precisely the Galois closure of the spectral cover X� Conversely� X is recovered as the
quotient of eX by Sn��� the stabilizer in the permutation group W � Sn of one of the
n eigenvectors� Following ���� we study the relation between the two types of covers in
Section �� In particular� we show that the above correspondence actually extends to an
equivalence between cameral and spectral covers� even when we are very far from the
generic situation�

������ The universal objects� The set of all maximal tori T � G� or equivalently� the set
of Cartan subalgebras in g� is parametrized by the quotient G�N � Over X � G�N we
have the tautological� unrami�ed Higgs bundle� the underlying G�bundle is the trivial
one� X 	G� and the regular centralizers are the universal family of Cartan subgroups�
The corresponding 
unrami�ed� cameral cover in this case is G�T � G�N � Note that
a point of G�T is determined by a Cartan subgroup together with a Borel subgroup
containing it�
The coverG�T � G�N admits a natural partial compacti�cationG�T � G�N � Here

G�N paramatrizes regular centralizers in the Lie algebra g� and G�T is the rami�edW �
cover of G�N parametrizing pairs consisting of a regular centralizer together with a
Borel subgroup containing it� cf� Section � and Section ��� The map G�T � G�N is the
cameral cover of the tautological Higgs bundle on G�N � the underlying G�bundle is still
G�N 	G� and the regular centralizers form the universal group scheme C of centralizers
over G�N � We refer to these as universal objects� every Higgs bundle on X is locally
the pullback of the tautological one via some map X � G�N � and every cameral cover
of X is locally the pullback of G�T � G�N via the same map X � G�N �
Although our ultimate results are concerned with Higgs bundles on arbitrary schemes�

much of our work boils down to a group�theoretic analysis of these universal objects
G�N and G�T � For instance� we will see that the rami�cation divisors are indexed
by the positive roots � of G� In fact� one of the key points of this paper is that the
tautological group scheme C can be completely recovered by looking at the rami�cation
pattern of G�T over G�N � In a strong sense� this says that a regular centralizer can be
recovered from the scheme parametrizing those Borel subgroups which contain it� This is
our Theorem ����� We emphasize that it is the phenomenon described in Theorem ����
which is �responsible� for the abelianization�

������ SL
��� PGL
��� We saw that in the general case� the �nal form of the answer is
quite involved� A main source of technical di culties is the possible presence in G of
non�primitive coroots 
cf� ��
���
From the classi�cation of reductive groups we know that this can occur only when G

has SO
�n � �� as a direct factor� So the simplest case where this extra complication
occurs is for G � SO
�� � PGL
��� In an attempt to illustrate the e�ect of these non�
primitive coroots� we will� in Section �� work out explicitly and contrast the examples
of G � SL
��� for which no ��s are necessary because all coroots are primitive� versus
G � PGL
��� for which the roots are non�primitive� For these groups� both the spectral
cover and the cameral cover are double covers of X � so the entire analysis can be made
much more concrete than for a general group� In particular� there are very explicit
descriptions of the universal objects G�T�G�N�G�T�G�N � cf� Subsection ����

����
� K�valued Higgs bundles� The point of our abstract notion of a Higgs bundle is
that it provides a uniform approach to the analysis of various more concrete objects� In
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the literature� the most common notion of a Higgs bundle is that of a K�valued Higgs

bundle on X � where K is a �xed line bundle on X � By de�nition� this means a pair

EG� s�� where EG is a principal G�bundle on X and s is a section of gEG �K� Starting
with one of our �abstract� Higgs bundles 
EG� cX �� we get a K�valued Higgs bundle
by choosing a section of cX �K� Conversely� a K�valued Higgs bundle 
EG� s� on X
determines a unique �abstract� Higgs bundle on the open subset X� � X where s is
regular� We say that a K�valued Higgs bundle is regular if X� � X �
Our philosophy is to think of a regular K�valued Higgs bundle as involving two

separate pieces of data� The �rst requires specifying the basis of �eigenvectors� of the
Higgs �eld� i�e�� it amounts to specifying the underlying abstract Higgs bundle� The
other piece of the data corresponds to the �eigenvalues�� in our case this amounts to
specifying the section s of cx � K� Our point is that this second part of the data is
irrelevant for the abelianization process� so we focus on the �eigenvectors� encoded in
the abstract Higgs bundle� One obvious advantage of this approach is that it allows the
bundle K of �values� to be replaced by various other objects� as we will see below�
A little more generally� we can work with the concept of a regularized K�valued Higgs

bundle on X � which means a triple 
EG� cX � s�� with 
EG� cX� a Higgs bundle in our
abstract sense� and s a 
not necessarily regular!� section of cX �K� The moduli space
of regular K�valued Higgs bundles is open in the moduli of all K�valued Higgs bundles

for X projective�� and is also open inside the moduli space of regularized K�valued
Higgs bundles� For a �general� Higgs bundle� we can expect the complement of X� to
have codimension �� so if X is projective of dimension � or �� we expect the open subset
of regular Higgs bundles to be nonempty�
In Section ��� we apply our results to show that the algebraic stack Higgs
X�K�

of regularized K�valued Higgs bundles on X �bers over the space B
X�K� which

parametrizes K�valued cameral covers� i�e�� pairs 
 eX� v� where v is a W �equivariant

map v � eX � t �K 
of schemes over X�� The �bers can be identi�ed with the gerbe
Higgs

eX
X� which we studied in the abstract case� In accordance with our general phi�

losophy� the �ber is independent of the bundle K or the way eX maps to K� it depends
only on the abstract cameral cover eX�
In case X is a smooth� projective curve and K is its canonical bundle� we thus

recover a version of Hitchin�s integrable system ����� 
The main di�erence is that we
work with regularized K�valued Higgs bundles while Hitchin uses semistable K�valued
Higgs bundles�� As an application� our results can be used to establish a duality between
the �bers of the Hitchin map for a group G and those corresponding to its Langlands
dual group �G�
������ Bundles on elliptic �brations� Essentially no new phenomena are encountered if
we allow our Higgs bundle to take its �values� in a vector bundle K� But we can go
further and try to take K to be any abelian group scheme over X � such as the relative
Picard scheme of some 
projective� integral� family f � Y � X � This leads us in Section

�� to de�ne a regularized G�bundle on Y to be the data 
 eX�EG� cX�� with eX � X a
cameral cover of X � and 
EG� cX � � HiggseY 
Y � a Higgs bundle on Y with cameral covereY �� f� eX � This notion is most natural in case f is an elliptic �bration since then we
know what it means for a bundle 
on Y � to be regular above a point 
of X�� As in the
situation for K�valued Higgs bundles� �most� G�bundles on an elliptic curve are indeed
regular� and a regular bundle has a unique regularization�
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In Theorem ���
 we apply our results for abstract Higgs bundles to obtain a complete
spectral description of regularized G�bundles on Y � In the most interesting case� when
f is an elliptic �bration� this is the main result of ����� Letting Reg
X�Y � denote
the algebraic stack of regularized G�bundles on Y � we obtain a �spectral map� h �
Reg
X�Y � � B
X�Y �� sending a regularized bundle to its Pic
Y�X��valued cameral
cover� the �bers now being a slightly twisted version of our gerbe Higgs

eX
X��

���� Some history� The idea of abelianization has its source in quantum �eld theory
and has been extensively exploited by both physicists and mathematicians� This idea
was originally applied not to our notion of an abstract Higgs bundle� but rather to K�
valued Higgs bundles� These were considered by Hitchin ���� in case X is a curve and
K its canonical bundle� Other line bundles� on X � P �� were considered by Adams�
Harnad and Hurtubise ��� and Beauville ���� Several aspects of spectral covers of P �

and their Prym�Tyurin varieties were considered by Kanev in ����� The abelianization
of K�valued Higgs bundles on other curves was considered by Beilinson and Kazhdan�
Bottacin� Donagi and Markman� Faltings� Markman� and Scognamillo ��� �� ��� ��� ���
�
�� among others� In the case that the base X is a curve� these Higgs bundles are
related to representations of the fundamental group of a punctured Riemann surface� as
well as to integrable systems arising from loop algebras� The notion of a cameral cover
was introduced in ���� where its relation to the various spectral covers was analyzed�

The main point of many of the works cited above is to show� in various interesting spe�
cial cases� that the �ber of the Hitchin map� i�e�� the family of Higgs bundles with given
spectral 
or cameral� cover� �is� generically a Jacobian or a Prym variety� depending
on the group� A description of this �ber in the general setting was announced in ����

In particular� the generalized Prym was described there as a certain quotient of
H�
T

eX�� 
This could be o� by a �nite isogeny� we have seen that the correct description
involves H�
T

eX��� It was also noted there that the �ber is canonically identi�ed not
with the generalized Prym variety itself� but with a certain torsor over it� The class
of this torsor was described there in terms of the �twist� arising from the rami�cation
divisor and the �shift� by the class of the normalizer N in H�
W�T �� The additional
complication which arises only for SO
�n� �� was �rst noted in ��
�� This is encoded
in the present work in our ��s�

Higgs bundles on higher dimensional varieties X � valued in the cotangent bundle
K �� T �X � were introduced by Simpson ����� Through work of Corlette and Simpson�
their moduli spaces are related to those of local systems on X � The version where K
is replaced by an elliptic �bration was developed in ���� and ����� These elliptically
valued Higgs bundles are of interest because of their relevance to the construction and
parametrization of bundles on elliptic �brations� These have attracted attention recently
because of their importance to understanding the conjectured duality between F�theory
and the heterotic string� cf� ��
� ��� ��� ��� ��� 
� ����

���� Notation� We work throughout with a �xed connected reductive group G over C
and we let g denote its Lie algebra� We �x a Borel subgroup B � G and denote by Fl
the �ag variety G�B� By de�nition� Fl classi�es Borel subalgebras in g�

Let U be the unipotent radical of B and T the Cartan quotient B�U � we will �x a
splitting T � B� We will denote by b and t the Lie algebras of B and T � respectively�
The rank r of G is by de�nition the dimension of T � By N we will denote the normalizer
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of T 
not the nilpotent subgroup!�� and by W the Weyl group N�T �
The set of positive roots will be denoted by "�� For � � "�� let t� � t denote the

corresponding root hyperplane and s� � W the corresponding re�ection� The set of
simple roots we will denote by I � For i � I � we will use the notation si instead of s�i �

Part I� Main Results on Higgs Bundles and Cameral Covers

�� Regular centralizers

���� Recall that an element x � g is called regular if its centralizer Zg
x� has the
smallest possible dimension� namely r 
the rank of g�� Note that with this de�nition� a
regular element need not be semisimple� The set of all regular elements forms an open
subvariety of g� which we will denote by greg�
A Lie subalgebra a � g is called a regular centralizer if a � Zg
x� for some x � greg�

Note that such a is automatically abelian� Our �rst goal is to introduce a variety which
parametrizes all regular centralizers in g�

���� Let Abr be the closed subvariety in the Grassmannian of r�planes Grrg that classi�es
abelian subalgebras in g of dimension r� Let # � Abr 	g be the incidence correspon�
dence� i�e�� the closed subvariety de�ned by the condition�


a� x� � # if x � a�

Let #reg be the intersection # 
 
Ab
r 	greg��

Proposition ���� There is a smooth morphism � � greg � Abr whose graph is #reg�

The proof is postponed until Section ���

Let G�N denote the image of the map �� The above proposition implies that G�N
is smooth and irreducible� It is clear that C �points of G�N are exactly the regular
centralizers in g�
By de�nition� the group G acts on both Abr and greg� Therefore� the variety G�N

acquires a natural G�action and the map � is G�equivariant�
Consider the quotient G�N � it classi�es Cartan subalgebras in g� These are the

centralizers in g of regular semisimple elements� Hence G�N embeds into G�N as
an open subvariety� Obviously� the action of G on G�N by left multiplication is the
restriction of its action on G�N �

���� Consider the closed subvariety of G�N 	Fl de�ned by the condition� for a � G�N
and b� � Fl�


a� b�� � G�T if a � b��

We will denote this variety by G�T and the natural projection G�T � G�N by �� It
follows from the de�nitions that we have a natural G�action on G�T �
The quotient G�T can clearly be identi�ed with the open subscheme ���
G�N� of

G�T � We have a natural action of the Weyl group W � TnN on G�T � this action is
free and the quotient can be identi�ed with G�N �
In what follows� by a W �cover of a scheme X we will mean a �nite �at scheme

p � eX � X � acted on by W such that p�O eX is locally isomorphic as a coherent sheaf
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with a W �action to OX � C �W �� A basic example is t � t�W � as is well known� it is
rami�ed along the complexi�ed walls of the Cartan subalgebra t�
The following assertion will be proved in Section ���

Proposition ���� The variety G�T is smooth and connected� The W �action on G�T
extends to the whole of G�T and it makes the latter a W �cover of G�N � Moreover� the

two W �covers G�T � G�N and t� t�W are �etale�locally isomorphic�

��	� Here is an explicit description of G�N and G�T for G � SL
��� In this case G�N
is the space of all lines in g� i�e�� G�N � P�� We have a natural map G�T � P� 	 P��
where the �rst projection is the natural map G�T � Fl � P� and the second projection
is a composition of the �rst one with the action of �� � S� �W on G�T �
It is easy to see that this map is an isomorphism� Under the identi�cation� � � G�T �

G�N is the symmetrization map P� 	 P� � P��

��
� G�orbits� For each root �� let D� � G�T denote the �xed point set of s� on
G�T � This is a smooth codimension � subscheme of G�T � Indeed� using the $etale�local
isomorphism between G�T � G�N and t� t�W given in Proposition ��
� it is enough
to prove this statement on t� However� ts� is just the corresponding root hyperplane
t� � t�

Proposition ���� The G�orbits in G�T are precisely the locally closed subsets

D��

�� 

����


D�� n �
�����


D��

where "� � " is a subset of the set of roots� closed under linear combinations� The

G�orbits in G�N are the images of the D��

� they are indexed by the "� modulo the

action of W �

The proof will be given in Section ���

�� Higgs bundles and cameral covers

���� Higgs bundles� A family of Cartan subalgebras parametrized by a scheme X is
given by a map from X to G�N � Equivalently� it is given by a G�equivariant map from
the trivial G�bundle over X to G�N � An advantage of this latter description is that
there is a natural way to twist it� given any principal G�bundle EG over X � we specify
a family of Cartan subalgebras in the adjoint bundle gEG �� EG	

G
g by a G�equivariant

map from EG to the variety G�N � By generalizing this� we de�ne�

De
nition ���� A Higgs bundle over a scheme X is a pair 
EG� 	�� where EG is a
principal G�bundle over X and 	 is a G�equivariant map 	 � EG � G�N �

Therefore� according to Proposition ���� a Higgs structure in a given G�bundle EG
is the same as a vector subbundle cX of gEG of rank r such that �cX � cX � � � and such
that locally in the $etale topology cX is the sheaf of centralizers of a section of EG	

G
greg�

The restriction of a Higgs bundle to an open subset U � X over which EG is trivi�
alized can be speci�ed more simply by a map U � G�N � In particular� the universal
Higgs bundle over G�N corresponds to the identity map G�N � G�N �
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���� The Higgs category and stack� Higgs bundles over X form a category� denoted
Higgs
X�� By de�nition� an element of Hom

E�

G� 	
��� 
E�

G� 	
��� is a G�bundle map

s � E�
G � E�

G such that 	
� � s � 	��

One can say that Higgs
X� is the category of maps from X to the stack Gn
G�N��
Additionally� for a �xed X � we can consider the functor on the category of schemes�
which attaches to a scheme S the category Higgs
S 	X�� When X is projective� this
functor is representable by an algebraic stack� which we will denote by Higgs
X�� 
The
representability follows because the stack BunG
X� classifying principal G�bundles on
X is an algebraic stack� We have� Gn
G�N� � Higgs
Spec
C ���

���� Cameral covers� We will now introduce our second basic object�

De
nition ���� A W �cover of a scheme X is a scheme eX �
� X �nite and �at over X

such that as an OX �module with aW �action� ��
O eX� is locally isomorphic to OX�C �W ��

De
nition ��	� A cameral cover of X is a W �cover eX � X � such that locally with
respect to the $etale topology on X � eX is a pullback of the W �cover t� t�W �

As an example� we note that any W �cover is cameral when G � SL
��� i�e�� W � S��
On the other hand� not every W � S��cover is cameral� the stabilizer of each point
must be a Weyl subgroup of W � so� for example� an A� stabilizer is not allowed�

��
� Openness� It is easy to see that the condition for a W �cover eX � X to be
cameral is open on X � Indeed� � � eX � X is cameral if and only if� locally on X �
we can �nd a W �equivariant embedding eX 
� X 	 t� 
Note that the space of W �

equivariant maps of X�schemes eX � X 	 t is isomorphic to the space of sections of the
sheaf HomW

OX

t� � OX � ��
O eX ��� and the latter sheaf is non�canonically isomorphic to

t� OX � since eX � X was assumed to be a W �cover��

���� The cameral category and stack� Cameral covers form a category in a natural
way� denoted Cam
X�� By de�nition� Hom
 eX�� eX�� consists of all W �equivariant iso�

morphisms eX� � eX�� It is easy to see that there exists an algebraic stack Cam� such
that Cam
X� is the category Hom
X�Cam��
Indeed� consider the space of commutative W �equivariant ring structures on the

vector space V �� C �W �� This is clearly an a ne scheme� and let us denote it by

Cov� By construction� there exists a universal W �cover gCov � Cov� Let Cam� be

the maximal open subscheme of Cov� over which gCov is cameral� Let AutW 
V � be
the algebraic group of automorphisms of V as a W �module� Clearly� AutW 
V � acts on

Cam� and the action lifts on gCovjCam� � We can now let Cam be the stack�theoretic
quotient AutW 
V �nCam��
As for Higgs bundles� for a �xed X we can consider the functor S 
� Cam
S 	X��

For X projective this functor is representable by an algebraic stack Cam
X��

Proposition ���� There is a natural functor F � Higgs
X�� Cam
X�� In particular�

for a projective scheme X� we obtain a map between algebraic stacks Higgs
X� �
Cam
X��

Proof� Any map 	 � EG � G�N determines a cameral cover eEG of EG� namely
G�T 	

G�N

EG� cf� Proposition ��
�
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For a Higgs bundle� which involves a G�equivariant map 	� the cameral cover eEG �
EG is itself G�equivariant� so by descent theory� it is pulled back from a unique cameral
cover eX � X � Clearly� the assignment 
EG� 	� 
� eX constructed above is functorial�
�

Over an open set U � X where EG is trivialized� the restriction eU � U of the
cameral cover is given in terms of 	 as G�T 	G�N U � For example� applying this to the

universal Higgs bundle over G�N gives the cameral cover G�T � G�N � For this reason
we refer in this paper to G�T � G�N 
rather than t � t�W � as the universal cameral

cover�

����� The 
ber� Let us now �x a cameral cover eX� Let Higgs
eX
X� denote the cate�

gory��ber of the above functor F � Higgs
X� � Cam
X� over eX � In other words� the
objects of Higgs

eX
X� are pairs



EG� 	� � Higgs
X�� t � F 
EG� 	� � eX�
and Hom

E�

G� 	
�� t��� 
E�

G� 	
�� t��� is the set of all bundle maps s � E�

G � E�
G with

	� � s � 	� and such that the composition

eX�t�	��

�� F 
E�
G� 	

��� F 
E�
G� 	

��
t�
�� eX

is the identity automorphism of eX �
The goal of this paper is to describe explicitly the category Higgs

eX
X� in terms of

the W �action on eX�
�� Gerbes

���� Since the objects we study have automorphisms� it is di cult to describe them
adequately without the use of some categorical language� Speci�cally� our description
requires the notion of an A�gerbe� where A is a sheaf of abelian groups on X � This is
a particularly useful case of the more general notion of a gerbe over a sheaf of Picard
categories� In this section we review the corresponding de�nitions� For more details�
the reader is referred to ���� or ����
Let Schet
X� denote the big $etale site overX � 
By de�nition� Schet
X� is the category

of all schemes over X and the covering maps are surjective $etale morphisms��

���� Recall that a presheaf Q of categories on Schet
X� assigns to every object U � X
in Schet
X� a category Q
U� and to every morphism f � U� � U� in Schet
X� a functor

f�
Q
� Q
U�� � Q
U��� Moreover� for every composition U�

f
�U�

g
�U� there should be a

natural transformation f�
Q
� g�

Q
� 
g � f��

Q
� such that an obvious compatibility relation

for three�fold compositions holds�
A presheaf Q of categories on Schet
X� is said to be a sheaf of categories 
or a stack�

if the following two axioms hold�
Axiom SC��� For U � X in Schet
X� and a pair of objects C�� C� � Q
U�� the

presheaf of sets on Schet
U� that assigns to f � U
� � U the set HomQ�U �	
f

�
Q

C��� f

�
Q

C���

is a sheaf�

Axiom SC��� If f � U � � U is a covering� then the category Q
U� is equivalent to the

category of descent data on Q
U �� with respect to f 
i�e�� every descent data on Q
U ��
with respect to f is canonically e�ective� cf� ���� p� �����
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���� Here is our main example of a sheaf of categories� Fix a cameral cover eX � X �
For every object U � Schet
X� write eU �� U 	

X

eX� which is a cameral cover of U �
We de�ne the presheaf of categories Higgs

eX by Higgs eX 
U� �� HiggseU 
U� 
the func�
tors Higgs

eX 
U� � Higgs
eX 
U

�� for U � � U and the corresponding natural transforma�
tions are de�ned in a natural way��
The following is an easy exercise in descent theory�

Lemma ���� Higgs
eX satis�es SC�� and SC���

���� Recall that a Picard category is a groupoid endowed with a a structure of a tensor
category� in which every object is invertible� A basic example 
and the source of the
name� is the category of line bundles over a scheme�
A sheaf of categories P is said to be a sheaf of Picard categories if for every 
U �

X� � Schet
X�� P
U� is endowed with a structure of a Picard category such that the
pullback functors f�

P
are compatible with the tensor structure in an appropriate sense�

If P� and P� are two sheaves of Picard categories� one de�nes 
in a straightforward
fashion� a notion of a tensor functor between them�
A typical and the most important example of a sheaf of Picard categories can be

constructed as follows�
Let A be a sheaf of abelian groups over Schet
X�� For an object f � U � X of

Schet
X� let TorsA
U� denote the category of AjU �torsors on U � This is a Picard
category and it is easy to see that the assignment U � TorsA
U� de�nes a sheaf of
Picard categories on Schet
X� which we will denote by TorsA�

��	� Just as a torsor is a space on which a group acts simply transitively� a gerbe is a
category on which a Picard category acts simply transitively� A category Q is said to
be a gerbe bound by the Picard category P� if P acts on Q as a tensor category and for
any object C � Q the functor P� Q given by

P � P �� Action
P�C� � Q

is an equivalence�
Now� if P is a sheaf of Picard categories and Q is another sheaf of categories� we say

that Q is a gerbe bound by the sheaf of Picard categories P� if the following holds�

� For every 
U � X� � Schet
X�� Q
U� has a structure of a gerbe bound by P
U��
This structure is compatible with the pullback functors f�

P
and f�

Q
�

� There exists a covering U � X � such that Q
U� is non�empty�

A basic feature of gerbes is that if Q� and Q� are gerbes bound by P� one can form
a new gerbe Q� �

P

Q�� called their tensor product� cf� ����

��
� The basic example of a gerbe bound by an arbitrary sheaf of Picard categories P�
is P itself� Here is a less trivial example�
Fix a short exact sequence � � A � A�� � A� � � of sheaves of abelian groups on

X and let �A� be an A��torsor over X � We introduce a sheaf of categories Q � Q�
A�

as follows� For U � Schet
X�� Q
U� is the category of all �liftings� of �A� jU to an
A��jU �torsor� It is easy to check that Q is a gerbe bound by P � TorsA�
In fact� gerbes bound by TorsA can be classi�ed cohomologically�
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Lemma ���� There is a bijection between the set of equivalence classes of gerbes bound

by TorsA and H�
X�A�� For a given gerbe Q the corresponding class in H�
X�A�
vanishes if and only if the category Q
X� of �global sections	 is non�empty�

In the above example� the class on H�
X�A� corresponds to the image of the class
of �A� under the boundary map H�
X�A��� H�
X�A��

���� The following will be needed in Section ���
Let P� and P� be sheaves of Picard categories� and a � P� � P� a functor compatible

with the tensor structure� We say that a is a monomorphism if for every U � Schet
X�
the functor a
U� � P�
U�� P�
U� is faithful�

We say that a is an epimorphism if� for every U � Schet
X� and P� eP � P�
U�� the

map of sheaves on Schet
U�� HomP��U �	
P jU � � eP jU �� � HomP��U �	
a
P jU � �� a
 eP �jU �� is
an epimorphism 
in the sense of sheaves�� and for every P� � P�
U�� there exists a
covering U � � U � such that P�jU � is isomorphic to a
P�� for some P� � P�
U

���
Similarly� if we have three sheaves of Picard categories and tensor functors a � P� �

P�� and b � P� � P�� we say that the form a short exact sequence if b is an epimorphism
and a induces an equivalence between P� and the category��ber of P� over the unit
object in P��
In this case� for every object P� � P�� the category �ber b

��
P�� of P� over it is�
in a natural way� gerbe bound by P�� This generalizes the above example of �� A�
A�� � A� � ��
Now let Q� be a gerbe bound P�� and a � P� � P� a tensor functor� In this case one

can construct a canonical induced gerbe Q� bound by P� with the property that there
exists a functor Q� � Q�� compatible with the P�� and P��actions via a�
Suppose now that

�� P�
a
� P�

b
� P� � �

is a short exact sequence of Picard categories� and Q� is a gerbe bound by P�� Let Q�
be the corresponding induced P��gerbe�
The next lemma follows from the de�nitions in a straightforward way�

Lemma ����� There exists a canonical functor Q� � P�� The category �ber of Q�
over a given object P� � P� is naturally a P��gerbe� canonically equivalent to the tensor

product Q� �
P�

b��
P���

�� Higgs
eX
is a gerbe

���� Given a cameral cover eX � X � let T
eX be the sheaf �of W �equivariant maps

eX �

T� on the $etale site over X � More precisely� for U � Schet
X�� T eX
U� � HomW 
eU� T ��
where eU is the induced cameral cover of U and the subscript �W� means maps respecting
the W �action�
However� we need a slightly smaller sheaf�

���� Let D�
X 
for each positive root �� be the �xed point scheme of the re�ection s�

acting on eX � Locally� this is the pullback of the universal rami�cation divisor� i�e��
D� � G�T �
Let � be a root of G� considered as a homomorphism � � T � Gm � Then any section

t of T
eX
U� determines a function � � t � U � Gm which goes to its own inverse under
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the re�ection s�� In particular� its restriction to the rami�cation locus D
�
X equals its

inverse� so it equals ��� The subsheaf T
eX � T

eX is de�ned by the following condition�

T
eX
U� �� ft � T

eX
U� j 
� � t�jD�
U
� �� for each root �g� 
��

By construction� T
eX�T eX is a Z��torsion sheaf� Note� in addition� that it su ces to

impose condition 
�� for one representative of each orbit of W on the set of roots�

Remark� Recall that a coroot �� � Gm � T is called primitive if ker
��� � � 
this is
equivalent to saying that �� is a primitive element of the lattice of cocharacters of T �� It
is clear that condition 
�� holds automatically for roots whose corresponding coroots are
primitive� For example� when the derived group of G is simply connected� all coroots
are primitive� i�e�� 
�� is automatic and T

eX � T
eX � In fact� G has non�primitive coroots

if and only if it contains SO
�n � �� 
e�g� PGL
�� � SO
��� as a direct factor� as is
easily seen from the classi�cation of Dynkin diagrams�

���� Our �rst result can be stated as�

Theorem ���� Higgs
eX is a gerbe bound by TorsT

fX
�

Let us list several corollaries of this theorem�

Corollary ���� To a cameral cover eX there corresponds a class in H�
X�T
eX�� which

vanishes if and only if eX is the cameral cover corresponding to some Higgs bundle�

This is immediate from Lemma ����

Corollary ��	� Suppose Higgs
eX
X� is non�empty� The set of isomorphism classes of

objects in this category carries a simply transitive action of H�
X�T
eX�� The group of

automorphisms of every object is canonically isomorphic to T
eX
X��

�� Rami
cation

���� We now proceed to the formulation of our main result� Theorem ���� which de�
scribes the category Higgs

eX 
X� completely in terms of
eX� For this purpose� we need

to introduce some further notation that has to do with the rami�cation pattern of eX
over X �

���� For each root � we will de�ne a line bundle R�
X on eX� Assume �rst that eX is

integral� In this case the subscheme D�
X � eX is a Cartier divisor� because locally it is

the pullback of D� � G�T � We set R�
X � O
D

�
X��

When eX is arbitrary we proceed as follows� The construction is local� so we may
assume that X � and hence also eX� is a ne� Let I�X be a coherent sheaf on eX generated
by symbols fgg� for fg � O

eX j s�
g� � �gg that satisfy the relations

f � fgg � ff � gg for all f such that s�
f� � f�

Locally� I�X is the pullback of the sheaf of ideals of the subscheme D
� � G�T � Hence�

I�X is a line bundle� We have a natural map I�X � O
eX that sends fgg 
� g and� by

construction� its cokernel is OD�
X
�

We de�ne the line bundle R�
X as the inverse of I�X � We have a canonical section

O
eX � R�

X whose locus of zeroes is the subscheme D
�
X �
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���� Consider the T �bundle R�X �� ��
R
�
X� 
i�e�� R

�
X is induced from R�

X by means of
the homomorphism �� � Gm � T ��

For an element w � W we introduce the T �bundle RwX on
eX as

R
w
X �� �

�
R
�
X �

where � runs over those positive roots for which w
�� is negative� For example� for
w � si 
a simple re�ection�� R

si
X � R

�i
X �

Observe that given a T �bundle L on eX and an element w � W � there are two ways
to produce a new T �bundle� we can pullback by w acting as an automorphism of eX� or
we can conjugate the T �action by w� We will always write w�
L� for the combination
of both actions� For example� for G � SL
��� the T �bundle L is equivalent to a line
bundle L� The two individual actions on L of the nontrivial element �� � S� �W send
L to 
����
L� and L��� respectively� while 
����
L� corresponds to the line bundle

����
L���� In particular� we have

w�
R�X � � R
w����	
X � 
��

Lemma ���� There is a canonical isomoprhism R
w��w�
X

��w��w�	
�� w�

�
R
w�
X �� R

w�
X �

The proof follows imediately from the de�nition of RwX and 
��� The following propo�
sition is necessary for the formulation of Theorem ����

Proposition ���� Let �i be a simple root and let w � W be such that w
�i� � �j

another positive simple root�� Then� the line bundle �i
R

w
X �jD�i

X
admits a canonical

trivialization�

Proof� Let us observe �rst that� since we are using only roots rather than arbitrary
weights� it is su cient to consider the case when �G�G� is simply connected�
We have w � si � sj � w� hence� by Lemma 
��

s�i 
R
w
X��R

si
X � R

w�si
X � R

sj �w
X � w�
R

sj
X ��R

w
X �

However� by de�nition w�
R
sj
X � � R

si
X � so we obtain that s

�
i 
R

w
X � � R

w
X � By restrict�

ing to D�i
X � we obtain ��i
�i
R

w
X�� � ��i
OD�i

X
��

Since �G�G� is simply connected� every coroot is primitive� Therefore� there exists a
weight �� such that � � ��i � id � Gm � Gm � By applying � to the above isomorphism

��i
�i
R
w
X�� � ��i
OD�i

X
�� we obtain an isomorphism �i
R

w
X�

isom�

� OD
�i
X
�

Now it only remains to check that this isomorphism is independent of the choice of ��
However� since the RwX �s are locally pullbacks of the corresponding T �bundles on G�T �

it su ces to consider the universal situation� namely the case X � G�N �
In the latter case� the T �bundle RwjD�i itself is trivialized over an open dense part

of D�i � namely over D�i � �
� �
�i


D� 
 D�i�� This is because �i is not among the set

of roots which become negative under the action of w� In particular� we obtain an

isomorphism �i
R
w�

isom�

� OD�i over D�i � �
��
�i


D� 
D�i��
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Moreover� it is easy to see that for any � as above� the isomorphisms isom� and isom�

coincide� In particular� isom� is independent of � over D�i� �
��
�i


D�
D�i � and hence

over the whole of D�i � which is what we need� �

The following notions will be used in the formulation of Theorem ����

De
nition ��	� Let L� be a T �bundle on eX� We say that it is weakly W �equivariant
if for every w there exists an isomorphism w�
L��� L��

For a weakly W �equivariant T �bundle� let Aut
L�� be the group whose elements are
pairs� an element w � W plus an isomorphism w�
L�� � L�� By de�nition� Aut
L��
�ts into a short exact sequence

�� Hom
 eX�T �� Aut
L���W � ��

De
nition ��
� A strongly W �equivariant T �bundle is a weakly W �equivariant T �
bundle L� plus a choice of a splitting �� �W � Aut
L���

De
nition ���� A T �bundle on eX is called weakly R�twistedW �equivariant if for every
w �W there exists an isomorphism w�
L�� RwX � L�

For a weakly R�twisted W �equivariant T �bundle L we introduce the group AutR
L��
Its elements are pairs w � W and an ismorphism w�
L� � RwX � L� The group law is
de�ned via the isomorphism 

w�� w�� of Lemma 
��� By de�nition� AutR
L� is also

an extension of W by means of Hom
 eX�T ��

	� The main result

	��� We need one more piece of notation� For a simple root �i� let Mi be the cor�
responding minimal Levi subgroup� Under the projection N � W � the intersection
N 
 �Mi�Mi� surjects onto hsii � S�� Let Ni denote the preimage of si in N 
 �Mi�Mi��
By de�nition� if ni and n�i are two elements in Ni� there exists c � Gm such that

n�i � ��i
c� � ni�

	��� Given a cameral cover eX � X � we introduce the category Higgs�
eX

X� of �R�twisted�

N �shifted W �equivariant T �bundles on eX�� Its objects consist of�
� A weakly R�twisted W �equivariant T �bundle L on eX�
� A map of short exact sequences�

� ����� T ����� N ����� W ����� ���y natural map

��y 	

��y id

��y
��y

� ����� Hom
 eX�T � ����� AutR
L� ����� W ����� �

�

� For each simple root �i and element ni � Ni� an isomorphism of line bundles
on D�i

X

�i
ni� � �i
L�jD�i
X
� R�i

X jD�i
X
�
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These data must satisfy three compatibility conditions�

�� If n�i � ��i
c� � ni for c � Gm � then �i
n

�
i� � c � �i
ni��


�� Let �i be again a simple root and ni � Ni� Consider the isomorphism

�
ni� � s
�
i 
L� � R

si
X � L�

When we restrict it to D�i
X � it induces an isomorphism

��i
�i
L�jD�i
X
� � ��i
R

�i
X jD�i

X
��

by the de�nition of RsiX � We need this isomorphism to coincide with ��i
�i
ni���

�� Let �i and �j be two simple roots and let w � W be such that w
�i� � �j � Let

%w � N be an element that projects to w� and nj an element of Nj � By pulling back
the isomorphism �j
nj� with respect to w� we obtain an isomorphism �i
w

�
L��jD�i
X
�

R�i
X jD�i

X
� In addition� the isomorphisms induced by �
 %w� and Proposition 
�
 lead to a

sequence of isomorphisms�

�i
L�jD�i
X

	� �w	
�� �i
w

�
L��jD�i
X
� �i
R

w
X�jD�i

X

Proposition ���
�� �i
w

�
L��jD�i
X
�

By composing the two� we obtain an isomorphism �i
L�jD�i
X

� R�i
X jD�i

X
and our

condition is that it coincides with �i
ni�� where ni � %w�� � nj � %w � Ni�
This concludes the de�nition of objects of Higgs�

eX

X�� Morphisms between 
L� �� �i�

and 
L�� ��� ��i � are T �bundle isomorphism maps L� � L� which intertwine in the
obvious sense � with �� and �i with �

�
i �

	��� It is easy to see that Higgs�
eX

X� can be naturally shea��ed� Namely� we de�ne the

presheaf of categories Higgs�
eX
by setting for U � Schet
X�� Higgs

�
eX

U� �� Higgs�

eU

U��

The pullback functors are de�ned in an evident manner and it is easy to see that Higgs�
eX

satis�es SC�� and SC���
Our main result is�

Theorem 	��� The sheaves of categories Higgs�
eX
and Higgs

eX are naturally equivalent�

In particular� we obtain that Higgs
eX
X� is equivalent to Higgs

�
eX

X�� In other words�

a Higgs bundle on X with the given cameral cover eX is equivalent to a T �bundle on eX
which is R�twisted� N �shifted W �equivariant�

	��� Variant� Assume that all coroots in G are primitive� i�e�� for every �� the corre�
sponding ��parameter subgroup maps injectively into T �
We claim that the de�nition of Higgs�

eX

X� is equivalent to the following 
simpli�ed�

one� We introduce the category Higgs��
eX

X� as follows�

Objects of Higgs��
eX

X� are pairs�

� a weakly R�twisted W �equivariant T �bundle L on eX�
� a map of short exact sequences�

� ����� T ����� N ����� W ����� ���y natural map

��y 	

��y id

��y
��y

� ����� Hom
 eX�T � ����� AutR
L� ����� W ����� �

�
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such that the following condition holds�


��� Let � be a weight of T such that h�� ��ii � �� which implies that �
L�jD�i
X

�

�
s�i 
L��R
si
X�jD�i

X
� Our condition is that for every ni � Ni the composition

�
L�jD�i
X
� �
s�i 
L� � R

si
X�jD�i

X

	�ni	
�� �
L�jD�i

X

is the identity map�

Morphisms between 
L� �� and 
L�� ��� are T �bundle maps� which intertwine between
� and ���

Let us show that Higgs�
eX

X� and Higgs��

eX

X� are naturally equivalent� Indeed� if

we have an object 
L� �� �i� � Higgs
�
eX

X�� the corresponding object of Higgs��

eX

X� is

obtained by just forgetting the �i�s�

Conversely� if 
L� �� � Higgs��
eX

X�� we reconstruct the �i�s as follows�

For a simple root �i and ni � Ni� consider the isomorphism �
ni� restricted to D
�i
X �

It yields an isomorphism

��i
�i
L��jD�i
X
� ��i
R

�i
X �jD�i

X
�

Since ��i is primitive� there exists a weight �
� with h��� ��ii � �� By evaluating � on the

above isomorphism� we obtain the required identi�cation �i
ni� � �i
L�jD�i
X
� R�i

X jD�i
X
�

This isomorphism does not depend on the choice of �� because of our condition 
���
on ��

The fact that conditions 
�� and 
�� hold follows from the construction� Condition

�� follows from the way in which we build the isomorphism of Proposition 
�
�

Part II� Basic Examples


� The universal example� G�N


��� In the category HiggsG�T 
G�N� there is a canonical tautological object� One of

the main steps in the proof of Theorem ��� is to exhibit the corresponding canonical
object in Higgs�

G�T

G�N �� This is our goal in this section�


��� Consider the canonical T �bundle LFl � G�U over Fl � G�B and let us denote by
Lcan its pullback to G�T under the natural projection G�T � Fl� This will be the �rst
piece in the data 
Lcan� �can� �i�can��

When we restrict Lcan to G�T � G�T � it becomes identi�ed with G� G�T � Hence
for every element %w � N that projects to w � W � we obtain an isomorphism �can
 ew� �
w�
Lcan� � Lcan over G�T � given by right multipliction by %w

�� on G�

However� when exended to the whole of G�T � the above identi�cation is meromorphic
and the con�guration of its zeroes and poles is given by a divisor on G�T with values
in the cocharacter lattice of T �

Theorem 
��� For a simple re
ection si� the divisor of the above meromorphic map

s�i 
Lcan�� Lcan is given by ���i
D
�i��

The proof will be given in Section �
�
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Since Rw��w�X � w�
�
R

w�
X � � R

w�
X � Theorem ��� implies that for any element w � W �

the divisor of zeroes&poles of the above meromorphic map w�
Lcan� � Lcan coincides
with Rw

G�T
� Hence� we obtain the data of �can � N � AutR
Lcan��

Finally� we have to specify the data of �i�can and check the compatibility conditions�
Let us �rst consider the case when �G�G� is simply connected� As was explained in
Section ��
� in this case the data of �i�can can be recovered from �can� once we check
that condition 
��� holds�

Thus� let �i be a simple root and let � be a weight orthogonal to ��i� It su ces to
check condition 
��� at the generic point of D�i � Let Mi be the corresponding minimal
Levi subgroup� We have a closed embeddingMi�T � G�T 
cf� Section ���
� and its orbit
under the G�action is the open subset of G�T equal to G�T � 
D�i � �

��
�i

D� 
D�i���

In particular� it contains a dense subset of D�i �

Since all our constructions are G�equivariant� this implies that condition 
��� for �i is
equivalent to the corresponding statement for Mi� Moreover� we can replace Mi by an
isogenous group� namely �Mi�Mi�	Z
Mi�� However� in the latter case our compatibility
condition becomes obvious� as � factors through Z
Mi��

Now� let G be arbitrary� Choose an isogeny G� � G such that �G�� G�� is simply
connected� The varieties G�T and G��T � are canonically identi�ed and the T �bundle
Lcan is induced from the T ��bundle L�can under T

� � T � Therefore� once we know
the data of ��i�can for L

�
can that satis�es the compatibility conditions� it produces the

corresponding data for Lcan�

Thus� we have constructed a canonical G�equivariant object of Higgs�
G�T

over G�N �

�� Some simple cases

���� The unrami
ed situation� We call a Higgs bundle 
EG� 	� unrami�ed if 	 maps
EG to G�N � Such a map amounts to a reduction of the structure group from G to
N � The category of unrami�ed Higgs bundles is therefore equivalent to the category of
principal N �bundles�

The functor F � Higgs
X�� Cam
X� sends an N �bundle EN to eX �� TnEN � which
is a principal W �bundle over X 
i�e�� an $etale W �cover��

In this case the assertion of Theorem ��� is quite evident�

���� G � SL���� Fix an S��cover p � eX � X and consider the subsheaf of p�
O eX�
consisting of S��anti�invariants� We will denote it by cX �
It is easy to see that the category Higgs

eX
X� is canonically equivalent to the category

of pairs 
L� ���� where L is a line bundle on eX and �� is an isomorphism det
p�
L�� � OX �

Let DX � eX be the rami�cation divisor and let RX be the corresponding line bundle

cf� Section 
�� It is easy to see that the category Higgs�

eX

X� 
which in our case is

equivalent to its simpli�ed version Higgs��
eX

X�� consists of pairs 
L� ��� where L is a line

bundle on eX and � is an isomorphism 
����
L����RX � L such that the composition

L� 
����
RX� � 
���
�

����
L����RX�

���	��		
�� 
����
L�

	
� L� 
����
RX �

is minus the identity map�
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Let us visualize the equivalence Higgs
eX
X� � Higgs

�
eX

X� of Theorem ��� in this case�

Indeed� for any line bundle L on eX we have a canonical S��equivariant isomorphism

p�
det
p�
L��� �RX � L� 
����
L��

Therefore� a data of �� de�nes the data of �� and it is easy to see that this sets up an
equivalence�

���� G � PGL���� In this case the only coroot is non�primitive� so one has to work a
little harder�
By de�nition� objects of Higgs�

eX

X� are the following data�

� a line bundle L on eX�
� an S��equivariant isomorphism of line bundles � � L� 
���

�
L� � R��
X �

� an identi�cation � � LjDX � RX jDX � which is compatible in the obvious sense
with the restriction of � to DX �

Let us make the statement of Theorem ��� explicit in this case too� Starting from
an object 
EG� 	� t� in Higgs eX 
X� we can locally choose a principal SL
���bundle E

�
G�

which induces EG� Then 
E
�
G� 	� t� is an SL
���Higgs bundle� Using the above analysis

for SL
��� we can attach to it a pair 
L�� ���� where L� is a line bundle on eX and
�� � 
����

L������RX � L��
The corresponding object of Higgs�

eX

X� is constructed as follows� We de�ne the

line bundle L as 
L���� and � �� 
������ The data of � comes from the sequence of
isomorphisms


L���� �RX jDX � 
����

L������RX jDX

	�

� L�jDX �

If we choose a di�erent lifting of EG to an SL
���bundle� the corresponding L
� will

be modi�ed by tensoring with p�
L��� where L� is a line bundle on X with 
L���� � O�
which will not a�ect the resulting 
L� �� ���
It is an easy exercise to check that the above construction de�nes an equivalence of

categories�

�� Spectral covers versus cameral covers for G � GL�n�

���� Observe �rst that a regular centralizer in gl
n� is the same as an n�dimensional
associative and commutative subalgebra in Mat
n� n� generated by one element�

De
nition ���� An n�sheeted spectral cover of a scheme X is a �nite �at scheme
p � X � X such that p�
OX� has rank n and is locally uni�generated as a sheaf of
algebras�

Thus� a Higgs bundle for gl
n� is the same as a rank n vector bundle E and an
n�sheeted spectral cover X � X with an embedding of bundles of algebras p�
OX� 
�
EndOX 
E�� This is equivalent to saying that E is a line bundle over X�
In this section we will analyze the connection of this description of Higgs bundles

for GL
n� with the one given by Theorem ���� The starting point is the observation



�
� R� Y� DONAGI AND D� GAITSGORY

that the category of Sn�cameral covers of X is naturally equivalent to the category of
n�sheeted spectral covers� Let us describe the functors in both directions�

Given an Sn�cameral cover eX � X � we de�ne the scheme eX as Sn��n eX� Conversely�
given an n�sheeted spectral cover X � X � we de�ne eX to be the scheme that represents
the functor of orderings of the sheets of X � X � This functor attaches to a scheme S
the set of data consisting of


A map S � X and n sections ti � S � S �� X 	
X
S��

such that the characteristic polynomial of the multiplication action on p�
OX� of any
function f � OS equals 'i


Y � f � ti�� where Y is an indeterminate�

It is easy to see that this functor is indeed representable by a scheme that is �nite

over X � The group Sn acts on
eX by permuting the ti�s�

Proposition ���� The functors eX � eX and X � eX send cameral covers to spectral

covers and spectral covers to cameral covers� respectively� Moreover� they are inverses

of one another�

Proof� Let us consider �rst the universal situation� X� � Spec
C �a� � ���� an����� eX� �
Spec
C �x� � ���� xn��� where the xi�s satisfy

Y
i


Y � xi� � Y n � an�� � Y
n�� � ���� a� � Y � a��

and X� � Spec
C �x� � a�� ���� an����� where x� satis�es

xn� � an�� � x
n��
� � ���� a� � x� � a� � ��

The natural maps eX� � X� and X� � X� are a cameral and a spectral cover�

respectively� and it is easy to see that in this case eX� � X� and
eX� � eX��

This proves the �rst assertion of the proposition� Indeed� any cameral 
resp�� spectral�

cover is locally induced from eX� 
resp�� X���

For a spectral cover X there is a natural map eX � X that attaches to a map S � eX
given by an n�tuple ft�� ���� tng of maps ti � S � S the composition S

tn� S � X � The

resulting map eX � X is an isomorphism� because this is so in the universal situation�

i�e�� for eX� � X��

Similarly� we have n maps eX � eX which correspond to the natural map Sn�Sn��	

eX � X � We claim that they de�ne an isomorphism eX �
eeX�

Indeed� both the fact that these maps satisfy the condition on the characteristic
polynomial and that the resulting map is an isomorphism follow from the corresponding
facts for eX�� �
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���� Thus� �xing a spectral cover and �xing an Sn�cameral cover amounts to the same
thing� Now� Theorem ��� implies that the category Higgs�

eX

X� is equivalent to the

category of line bundles on the corresponding spectral cover X� We would like to
explain how to see this equivalence explicitly�
We start with the following observation�
Let eX � X be an Sn�cameral cover and let Pic eX�n
X� be the groupoid of Sn�

equivariant line bundles L on eX for which the following condition holds� For every
re�ection si�j � Sn the isomorphism

s�i�j
L�� L

is the identity map on the �xed point set of si�j in eX�
Proposition ���� The pullback functor establishes an equivalence between the category

of line bundles on X and Pic
eX�n
X��

Let us see �rst how this proposition implies what we need�
The natural map eX � X is itself an Sn���cameral cover� On the one hand� by

applying the above proposition to this map we obtain that the category of line bundles
on X is equivalent to Pic

eX�n��
X�� On the other hand� we claim that Pic eX�n��
X� is

equivalent to Higgs��
eX

X��

Indeed� let us identify the Cartan group of GL
n� with the product of n copies of
Gm and let �n � T � Gm be the weight corresponding to the last coordinate� Then a
functor Higgs��

eX

X� � Pic

eX�n��
X� is given by 
L� �� � L �� �n
L�� It is easy to see
that this is indeed an equivalence�

��	� Now let us prove Proposition ��
� The argument will be a prototype of the one we
are going to use to prove Theorem ����
Given an object L � Pic

eX�n
X� and a point x � X � we must �nd an $etale neighbour�
hood of x such that� when restricted to the preimage of this neighbourhood� L becomes
isomorphic to the unit object in Pic

eX�n
X� 
i�e�� the one for which L � O
eX with the

tautological Sn�structure��
First� it is easy to reduce the statement to the case when the rami�cation over x is

the maximal possible� i�e�� when x has only one geometric preimage %x in eX � Further�
we can assume that X 
and therefore also eX� is a spectrum of a local ring�
Choose some trivialization of L� Its discrepancy with the Sn�equivariant structure is

a ��cocycle Sn � Hom
 eX� Gm �� We must show that this cocycle is homologous to ��

Let K denote the kernel of the map Hom
 eX� Gm �� Gm given by the evaluation at

%x� Our condition on L implies that the above cocycle Sn � Hom
 eX� Gm � takes values

in K� However� since eX is local� K is divisible and torsion free� Hence H�
Sn�K� � ��
so our cocycle is cohomologically trivial�

Part III� Basic Structure Results over G�N

��� The structure of G�N

����� The next two parts of this paper are devoted to the proofs of various results
announced in the previous sections� We start with the proof of Proposition ����
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Proof� First we need to show that the map � � greg � Abr is well de�ned� which is
equivalent to saying that the projection #reg � greg is an isomorphism� Since the latter
projection is proper and greg is reduced� it is enough to show that the scheme�theoretic
preimage in #reg of every x � greg is isomorphic to Spec
C ��

This is clear on the level of C points� since by de�nition of regular elements� the only
abelian r�dimensional subalgebra in g that contains x is its own centralizer�

For a � Abr� the tangent space Ta
Ab
r� can be identi�ed with the space of maps

T � a� g�a that satisfy

�y�� y� � a� �T 
y��� y�� � �y�� T 
y��� � � � g�

We claim that the tangent space to #reg 
 
Ab
r	x� at a 	 x is zero� Indeed� this

is the space of maps T � a � g�a as above� for which� moreover �T 
y�� x� � �� �y � a�
However� since a � Zg
x�� any such T is identically zero�

This implies that Ta�x
#reg 
 Ab
r 	x� � �� which means that #reg 
 
Ab

r 	x� is
reduced� i�e�� � Spec
C ��

Now let us show that � is smooth� Let a � Abr be equal to �
x�� Using the above
description of the tangent space to Abr� it is easy to see that d� sends an element
u � g � Tx
greg� to the unique map T � a� g�a that satis�es

�T 
y�� x� � �y� u� � �� �y � a�

Consider now the map ev � Ta
Ab
r� � g�a given by T � T 
x�� The above descrip�

tion of d� implies that the composition

g � Tx
greg�
d

��Ta
Ab

r�
ev
��g�a

coincides with the tautological projection g� g�a� However� since x is regular� the fact
that �T 
x�� y� � ��x� T 
y��� �y � a implies that ev is an injection� We conclude that ev
is an isomorphism� hence Im
�� is contained in the smooth locus of Abr� Furthermore�
d� is surjective� so � is smooth as claimed� �

����� Let eg be the closed subvariety in g	Fl de�ned by the condition� 
x� b�� � eg if x �
b�� Let egreg denote the intersection eg 
 
greg 	 Fl� and let e� denote the projection
egreg � greg� It is clear that as a variety� egreg is smooth and connected� since it is an
open subset in a vector bundle over Fl�

Proposition ����� There exists a natural G�invariant map e� � egreg � G�T � such that

the following square is Cartesian�

egreg e

����� G�T

e�

��y �

��y
greg



����� G�N

�
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Proof� Consider the �bered product G�T 	
G�N

greg� By de�nition of G�T � there is a

closed embedding G�T 	
G�N

greg � egreg that sends a triple 
a � G�N� b� � Fl� x � greg� �

G�T 	
G�N

greg to 
x� b
�� � egreg�

We claim that this embedding is in fact an isomorphism� Indeed� the statement is
obvious over the preimage in egreg of the regular semisimple locus of g� Therefore� the
two schemes coincide at the generic point of egreg� This implies what we need since egreg
is reduced� �

Now we are ready to prove Proposition ��
�

Proof� The map e� � egreg � G�T is smooth since it is a base change of a smooth map�

Hence� the fact that egreg is smooth and connected implies that G�T has the same
properties�
A well known theorem of Kostant 
cf� ���� or ���� p� ���� says that the restriction

of the Chevalley map g � t�W to greg is smooth and that it gives rise to a Cartesian
square

egreg ����� t��y
��y

greg ����� t�W

�

Therefore� the natural action of W on the preimage in eg of the regular semisimple
locus in g extends to the whole of egreg� The same is true for G�T because the mape� is �at and surjective� The $etale local isomorphism follows from comparison of our
Cartesian square with that of Proposition ����� �

����� Now let us prove Proposition ����

Proof� Let "� be as in the formulation of the proposition� Consider an element t � t

such that �
t� � � for � � "� and �
t� �� � for � �� "��
In this case m �� Zg
t� is a Levi subalgebra of g� Let M be the corresponding Levi

subgroup� It is well known that m 
 b is a Borel subalgebra in m� Let u be an element
in the unipotent radical of m 
 b� which is regular with respect to M �
We then see that x � t � u is a regular element in g since Zg
x� � Zm
u�� It is

known that if a Borel subalgebra contains a regular element� then it also contains its
centralizer 
cf� Lemma ���
�� Therefore� 
Zm
u�� b� � G�T � Moreover� it is easy to see
that every pair 
a� b�� � G�T is G�conjugate to one of the above form�
To conclude the proof� it remains to show that 
Zm
u�� b� � 


����


D�� n �
�����


D���

For that� it su ces to show that the image of 
t�u� b� as above under egreg � t belongs
to the corresponding locus of t� However� the above image is just t� which makes the
assertion obvious� �

����� Levi subgroups� Let J � I be a subset� It de�nes a root subsystem "J and let
MJ 
resp�� PJ � G� WJ �W � denote the corresponding standard Levi subgroup 
resp��
standard parabolic� Weyl subgroup�� Let NMJ

be the intersectionMJ 
N � which is the
normalizer of T in MJ �
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It is easy to see that the natural map MJ�NMJ
� G�N extends to a map iJ �

MJ�NMJ
� G�N � In fact� MJ�NMJ

is a closed subvariety of G�N which corresponds

to fa � G�N j a � mJg�

Proposition ���	� There is a canonical W �equivariant isomorphism

eiJ �WWJ

	MJ�T �MJ�NMJ
	
G�N

G�T�

Proof� First� we have a natural closed embedding

MJ�T �MJ�NMJ
	
G�N

G�T � G�T�

Its image consists of pairs 
a� b�� � G�T such that a � mJ and b� � pJ �� Lie
PJ ��
This map is compatible with the WJ �action� Hence� it extends to a �nite map

eiJ �WWJ

	MJ�T �MJ�NMJ
	
G�N

G�T�

Since both varieties are smooth� in order to prove thateiJ is an isomorphism� it su ces to
do so over the open part� i�e�� over MJ�NMJ

� However� in the latter case� the assertion
becomes obvious� �

It is easy to see that the G�orbit ofMJ�NMJ
	
G�N

G�T � G�T 
resp��MJ�T � G�T � is

the union of those D��

for which "� isW �conjugate to a subset of "J 
resp�� "
� � "J ��

��� The group scheme of centralizers

In this section we will formulate two basic theorems� Theorem ���� and Theorem �����
which will be used for the proof of our �rst main result� Theorem ����

����� The universal centralizers C and c� Consider the constant group scheme
G	G�N overG�N � and let C � G	G�N be its closed group subscheme of �centralizers��
In other words� C is de�ned by the condition that 
g � G� a � G�N� � C if g commutes
with a� Clearly� C is equivariant with respect to the G�action on G�N �
Note that the corresponding bundle c of Lie algebras can be identi�ed with the

tautological rank r vector bundle over G�N which comes from the embedding G�N �
Grrg� Another interpretation of this c� considered as a subbundle of the trivial bundle

g	 G�N � is that it is the family cG�N of centralizers of the universal Higgs bundle on

G�N � which was studied in detail in Section �� 
Recall from Section � that a Higgs
bundle 
EG� 	� on any X determines� and is determined by� a subbundle cX consisting
of regular centralizer subalgebras of the adjoint bundle gEG ��

Proposition ����� The group scheme C is commutative and smooth over G�N and is

irreducible as a variety�

Proof� Let C� be the group subscheme of G	 greg over greg de�ned by the condition

C
� �� f
g� x� � G	 greg j Adg
x� � xg�
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First� let us show that C� is commutative and smooth over greg�
Let 
g� x� be a C �point of C�� The tangent space to C� at 
g� x� consists of pairs


�� y� � g	 g such that Adg
�x� ��� � Adg
y�� y� The di�erential of the map C� � greg
sends 
�� y� to y� We claim that it is surjective�
It is known that if G is of adjoint type� then the centralizer of every regular element

is connected� 
In particular� each ZG
x� is commutative� this holds even if G is not of
adjoint type��� Therefore� Span

g�ZG�x	

Adg
y� � y� � Im
adZg�x	�� However� the latter� as

we saw in the proof of Proposition ���� coincides with Im
adx� since x is regular�
To prove that C� is smooth over greg� it remains to observe that the �bers of C

� are
smooth 
since they are algebraic groups in char��� and all have dimension r� by the
de�nition of greg� The fact that C

� is commutative was established in the course of the
above argument�
Now let us prove the assertion for C� We have a natural closed embedding C 	

G�N

greg �

C�� which is an isomorphism over the regular semisimple locus of greg� Hence� it is an

isomorphism because C� is reduced� Therefore� since the map � � greg � G�N is �at and

surjective� this shows that C is commutative and smooth over G�N � It is irreducible
because this is obviously true over G�N � �

����� The group scheme T� Now we will introduce another group scheme over G�N �
seemingly of a di�erent nature� Recall the sheaves T

eX � T eX introduced in section ��
Consider the contravariant functor Schemes � Groups which assigns to a scheme S

the set of pairs


A map S � G�N � a W �equivariant map eS �� S 	
G�N

G�T � T ��

It is easy to see that this functor is representable by an abelian group scheme over
G�N � which we will denote by T� Therefore� once S � G�N is �xed� HomG�N 
S�T� �

#
S� T
eS�� In other words� T represents the sheaf TG�T on Schet
G�N �� Clearly� the

G�action on G�T gives rise to a G�action on T�
We de�ne the open group subscheme T of T by the following condition 
����

Hom
S�T� consists of those pairs 
S � G�N� eS � T � as above� for which for every
root � the composition

S 	
G�N

D� 
� eS � T
�
� Gm

avoids �� � Gm �
Since for any map S � T� the above composition takes values in �� � Gm � condition


��� is equivalent to condition 
�� in the de�nition of the sheaf T
eS 
cf� Section ����� for

a �xed map S � G�N � HomG�N 
S�T� � #
S� TeS�� i�e�� the group scheme T represents

the sheaf TG�T on Schet
G�N��

����� A remarkable fact is that the group schemes C and T are canonically isomorphic�
Here we will construct a map between them in one direction�
Let B denote the universal group scheme of Borel subgroups over Fl� Let us denote

by eB its pullback to G�T � In addition� let us denote by eC the pullback of C to G�T �
Both eB and eC are group subschemes of the constant group scheme G	G�T �
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Lemma ����� eC is a closed group subscheme of eB�
Indeed� since eC is reduced and irreducible� it su ces to check that over G�N � eC is

contained in eB� However� this is obvious�
We have a natural projection B � T 	 Fl� By composing it with the inclusion of

Lemma ���
� we obtain a map

C 	
G�N

G�T � T�

This map respects the group law on C and T and commutes with the W �action�

This is because it su ces to check both facts after the restriction to G�N � where they
become obvious��

Hence� we obtain a homomorphism of group schemes � � C� T�

Theorem ���	� The above map � � C� T de�nes an isomorphism � � C� T�

The proof will be given in the next section�

���
� Now we will formulate the second key result which will be used in the proof of
Theorem ����

Consider the functor that assigns to a scheme S the set of triples 
G�N
�

S � G�N
�

S � ���

where G�N
�

S and G�N
�

S are two S�points of G�N and � is aW �equivariant isomorphism

� � eS� � eS��

where eSi is the W �cover of S induced by G�N i

S from � � G�T � G�N �

It is easy to see that this functor is representable� Let H denote the representing
scheme� Since the W �cover G�T � G�N is G�equivariant� we obtain a natural map

� � G	G�N � H which covers the map G	G�N
Action� id
�� G�N 	G�N �

Theorem ����� The above map � � G	G�N � H is smooth and surjective�

This theorem will be proven in Section ���

����� The scheme H lives over G�N 	 G�N � Let H� denote its restriction to the
diagonal� By de�nition� H� is a group scheme over G�N which represents the functor
of W �equivariant automorphisms of G�T over G�N �

Let St � G	G�N be the closed group subscheme of stabilizers� i�e��


g� a� � St if Adg
a� � a�

Obviously� C is a closed normal group subscheme of St�

The map � � G	G�N � H gives rise to a map �� � St� H��

Proposition ������ H� represents the quotient group scheme St �C�

Proof� Theorem ���� implies that the map �� � St � H� is smooth and surjective�
Therefore� all we have to show is that if S � St is a map such that the induced
automorphism of eS is trivial� then S maps to C�
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Observe that H� acts on T via its action on G�T � Since the isomorphism � � C� T

is G�equivariant� we obtain a commutative diagram of actions�

St 	
G�N

C ����� C

����

��y �

��y
H� 	

G�N

T ����� T

�

where the top horizontal arrow is the adjoint action� Therefore� if a map S � St induces
the trivial automorphism of eS� its adjoint action on C is trivial too� But this means
that it factors through C� �

Similarly� one shows�

Corollary ������ The scheme H represents the quotient group scheme 
G	G�N��C�

������ Here is one more interpretation of Theorem ����� Clearly� the scheme H with
its two projections to G�N is a groupoid over that latter scheme� According to Theo�
rem ����� the above projections are smooth and� therefore� we can consider the algebraic
stack Hn
G�N��

Corollary ������ The stack Hn
G�N� is canonically isomorphic to the stack Cam of

Section ����

��� Proof of Theorem ���	

����� We start by establishing a result on compatibility of our objects with restrictions
to Levi subgroups� We then verify the Lie�algebraic version of the theorem by restricting
to an sl
�� subalgebra� and �nally we re�ne this to prove the desired group�theoretic
version�

����� Let M �MJ be a standard Levi subgroup of G 
cf� Section ���
� and let CM be
the corresponding sheaf of centralizers over M�NM �

On the one hand� there is a natural closed embedding

CM 
� i�J
C� ��M�NM 	
G�N

C�

On the other hand� we have the group scheme T over G�N � as well as the group scheme
TM over M�NM � This time� by Proposition ����� we have a canonical isomorphism

TM � i�J
T� ��M�NM 	
G�N

T�

Moreover� it induces an isomorphism TM � i�J
T�� since if a root � is not W �conjugate

to a root in M � then s� has no �xed points on W
WJ

	M�T �
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Proposition ����� The map CM � i�J
C� is an isomorphism� Moreover� the diagram

CM
�M

����� TM��y
��y

i�J
C�
i�J ��	����� i�J
T�

is commutative�

Proof� The map CM 
� i�J
C� is an isomorphism because it is a closed embedding and at

the same time an isomorphism over the generic point of M�NM � Commutativity of the
diagram can be checked over the preimage ofM�NM � in which case it becomes obvious�
�

����� We will now prove the assertion of Theorem ���� on the Lie�algebra level�
Let t denote the sheaf of Lie algebras corresponding to T� Obviously� it is isomorphic

to Lie
T� as well� By de�nition� we have t � 
t � ��
OG�T ��
W � Since ��
O
G�T �� is

locally isomorphic to OG�N � C �W �� t is a vector bundle of rank r over G�N �

On the other hand� recall that in subsection ���� we de�ned the sheaf c of Lie algebras
corresponding to C� Our map � � C� T induces a map d� � c� t which� for simplicity�
we abbreviate as d� � c� t�

Proposition ����� The map d� � c� t is an isomorphism�

Proof� The proof will consist of two steps� The �rst step will be a reduction to the case
of SL
�� and the second one will be a proof of the assertion for SL
���

Step �� Both c and t are vector bundles of rank r over G�N and the map d� is clearly
an isomorphism over G�N � Since the variety G�N is smooth� it remains to show that
d� is an isomorphism on an open subset of G�N whose complement has codimension
at least ��
It follows from Section ���
 that such an open subset is formed by the union of the G�

orbits of the images of iJ
MJ�NMJ
�� where J � f�jg for all simple roots �j � Therefore�

by G�equivariance and by Proposition ����� it su ces to show that the map

d�MJ
� cMJ

� tMJ

is an isomorphism� This reduces us to the case when G is a reductive group of semi�
simple rank �� Moreover� the statement is clearly invariant under isogenies� so we may
replace G by Z�
G� 	 �G�G�� Clearly� the assertion in such a case is equivalent to the
one for �G�G�� which in turn can be replaced by SL
���

Step �� For G � SL
��� the variety G�N can be identi�ed with P� in such a way
that the sheaf c goes over to O
���� Moreover� G�T � G�N can be identi�ed with the
S��cover � � P

� 	 P� � P��
To prove the assertion� it is enough to show that t has degree ��� since any non�zero

map between two line bundles of the same degree is automatically an isomorphism�
By de�nition� t is the O
P���module of anti�invariants of S� in ��
O
P

�	P���� There�
fore�

t � det
��
O
P
� 	 P

���� � O
���� �
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���	� Now we will check that the map � induces an isomorphism between C �points of C
and T� Evidently� this assertion� combined with Proposition ���
 and Proposition �����
implies Theorem �����
Let a � G�N be the centralizer of a regular element x � g� As we saw in the proof

of Proposition ����� on the one hand� the �ber of C at a � Zg
x� can be identi�ed with
ZG
x�� On the other hand� the �ber of T at a can be identi�ed with HomW 
Fl

x� T ����
where Flx is the �xed point scheme of the vector �eld induced by x on Fl and the
superscript �� corresponds to the 
��� condition in the de�nition of T�
Let x � xss � xnil be the Jordan decomposition of x� We can assume that Zg
x

ss�
is a standard Levi subalgebra m and xnil is a regular nilpotent element in m� Using
Proposition ����� we can replace G by M and hence we can assume that xss is a central
element in g�
There are natural embeddings Z
G�	G�N � C and Z
G�	G�N � T� which make

the diagram

Z
G�	G�N ����� C

id

��y �

��y
Z
G�	G�N ����� T

commute�

Proposition ���
� Let x be a regular nilpotent element and let

ZG
x� � ZG
x�
ss 	 ZG
x�

nil�

HomW 
Fl
x� T ��� � HomW 
Fl

x� T �ss��� 	HomW 
Fl
x� T �nil���

be the Jordan decompositions of the �bers of C and T at Zg
x�� Then the embedding of

Z
G� induces isomorphisms

Z
G� � ZG
x�
ss and Z
G� � HomW 
Fl

x� T �ss����

It is clear� �rst of all� that this proposition implies the theorem� Indeed� it is enough
to show that � induces an isomorphism ZG
x�

nil � HomW 
Fl
x� T �nil���� But since

these groups are unipotent� our assertion follows from the corresponding assertion on
the Lie�algebra level� which has been proved before�

Proof� The fact that Z
G� � ZG
x�
ss is an immediate consequence of the fact that in a

group of adjoint type centralizers of regular elements are connected�
To prove that Z
G� � HomW 
Fl

x� T �ss���� let us observe that if x is a regular nilpotent
element� Flx is a local non�reduced scheme� Its closed point� viewed as a point of G�T �
belongs to the intersection of all the D��s�
Let HomW 
Fl

x� T �� be the subgroup of HomW 
Fl
x� T � which corresponds to maps

Flx � T that send the closed point of Flx to the identity in T � Clearly� HomW 
Fl
x� T ��

is unipotent and HomW 
Fl
x� T � � HomW 
Fl

x� T �� 	 TW is the Jordan decomposition
of HomW 
Fl

x� T ��
The proof is concluded by the observation that Z
G� � ft � TW j �
t� � �� � � � "g�

which is exactly the 
��� condition� �
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��� Proof of Theorem ����

����� We will need an additional property of the isomorphism ��

By de�nition� we have a canonical W �equivariant map

t 	
G�N

G�T � t�

hence we obtain a map t� t�W �

Lemma ����� The above map coincides with the composition

t
���

�� c 
� g	G�N � g� t�W�

where the last arrow is the Chevalley map�

The proof follows from the fact that the two maps coincide over G�N �

����� Since G	G�N is smooth� to prove the theorem� we need to show that any map
S � H can be lifted� locally in the $etale topology� to a map S � G	G�N �

Thus� let a� and a� be two S�points of G�N and let � � eS� � eS� be an isomorphism
between the corresponding cameral covers� The maps ai give rise to vector subbundles
ciS � g� OS� and Theorem ���� implies that

ciS � HomW�OS 
t
��O

eSi�� i � �� ��

Therefore� the data of � de�nes an isomorphism of vector bundles �� � c�S � c�S �
By Proposition ��� we can �nd a section x�S � c�S � such that c

�
S � Zg
x

�
S�� Let

x�S � c�S be the image of x
�
S under �

�� By making the choice of x�S su ciently generic�
we can assume that x�S is regular� i�e�� that c

�
S � Zg
x

�
S��

Consider xiS � i � �� � as maps S � greg� Lemma ���� implies that their compositions
with the Chevalley map

S
xiS�� greg � t�W

coincide� Now� we have the following general assertion that follows from smoothness of
the Chevalley map restricted to greg�

Lemma ����� The adjoint action map G	greg � greg 	
t�W

greg is smooth and surjective�

Therefore� locally there exists a map gS � S � G that conjugates x�S to x
�
S � Then

this map conjugates c�S to c
�
S � which is what we had to prove�

����� Complements� We conclude this section by two remarks regarding the asserti�
ons of Theorem ���� and Theorem �����
First� let us �x a C �point a � G�N and let � � Fla � t be a W �equivariant map�

which according to Theorem ����� is the same as an element x
 � a � ca� One may
wonder� how can one express the condition that x
 is a regular element of a in terms
of ��

Lemma ���	� The necessary and su�cient condition for x
 to be a regular element of

a is that � � Fla � t is a scheme�theoretic embedding�
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Proof� First� one easily reduces the assertion to the case when a is the centralizer of
a regular nilpotent element� which we will assume� In this case� a entirely consists of
nilpotents elements� Let StG
a� be the normalizer of a� Since the nilpotent locus in greg
is a single G�orbit� we obtain that a 
 greg is a single StG
a��orbit�

Thus� let � be an embedding� To show that x
 is regular� it is enough to show that
its centralizer in StG
a� coincides with Ca�

By Proposition ������ the quotient StG
a��Ca maps isomorphically to the group of
W �equivariant automorphisms of Fla� If for some n � StG
a� we have Adn
x
� � x
�
then n acts trivially on Fla since � is an embedding� Hence n � Ca�

To prove the implication in the other direction� let us observe that a 
 greg is the
only StG
a��invariant open subset of a consisting of regular elements only� However� the
locus of � that are embeddings is clearly such a subset� �

Secondly� let us see how Corollary ����� is related to Proposition ����

Let a� and a� be two C �points ofG�N � Corollary ����� says that they areG�conjugate
if and only if ���
a�� � ���
a�� as W �schemes� The condition of Proposition ��� is
seemingly weaker 
but in fact� equivalent�� it implies that a� and a� are G�conjugate if
and only if 
���
a���red � 
�

��
a���red as W �schemes�

Part IV� Proofs of the Main Results

��� Proof of Theorem ���

����� We now deduce our theorem from Theorem ���� and Theorem ���� combined
with the following �abstract nonsense� observation�

Lemma ����� Let Q be a sheaf of categories on Schet
X�� and A be a sheaf of abelian

groups on Schet
X�� Suppose that for every 
U � X� � Schet
X� and every C � Q
U��
we are given an isomorphism AutQ�U	
C� � A
U� such that the following conditions

hold�


�� There exists a covering U � X such that Q
U� is non�empty�


�� If C� � C� is an isomorphism between two objects in Q
U�� then the induced

isomorphism AutQ�U	
C�� � AutQ�U	
C�� is compatible with the identi�cation of both

sides with A
U��


�� If f � U � � U is a morphism in Schet
X� and C � Q
U�� then the map

f�Q � AutQ�U	
C�� AutQ�U �	
f
�
Q
C��

is compatible with the restriction map A
U�� A
U ���


�� For any U � Schet
X� and any two C�� C� � Q
U�� there exist a covering f �
U � � U such that the objects f�

Q

C�� and f�

Q

C�� of Q
U

�� are isomorphic�

Then Q has a canonical structure of a gerbe bound by TorsA�

����� We claim that Higgs
eX satis�es the conditions of this lemma� Condition 
�� is a

tautology� locally the cameral cover eX � X is induced from the universal one by means
of a map X � G�N �
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Let 
EG� 	� t� be an object of Higgs eX
U�� We must construct an isomorphism

AutHiggs
fX
�U	
EG� 	� t� � T

eX
U��

Let us �rst assume that EG is trivialized and our Higgs bundle corresponds to a map

U � G�N such that eU t
� G�T 	

G�N

U � In this case� an automorphism of 
EG� 	� as an

object of Higgs
U� is the same as a map U � St 
cf� Section ����� that covers the given
map X � G�N � Now� Proposition ����� implies that this automorphism belongs to
AutHiggs

fX
�U	
EG� 	� t� if and only if the above map factors as U � C� St�

Now we apply Theorem ���� which says that HomG�N 
U�C� � HomG�N 
U�T� �

T
eX
U��
The fact that the map � � C � T is G�equivariant implies that our isomorphism

between AutHiggs
fX
�U	
EG� 	� t� and T eX
U� is independent of the choice of a trivialization

of EG� In particular� by SC��� it de�nes the required isomorphism for all EG� The fact
that conditions 
�� and 
�� are satis�ed is automatic from the construction�
Finally� let us check condition 
��� Let 
E�

G� 	
�� t�� and 
E�

G� 	
�� t�� be two objects

of Higgs
eU 
U�� Without restricting the generality we can assume that both E

�
G and E

�
G

are trivialized�
In this case� the data of 
	�� 	�� t� � 
t����� de�nes a U �point of the scheme H� By

Theorem ���� we can locally �nd a map gU � U � G which conjugates 
	�� t�� to 
	�� t���
We can regard gU as a gauge transformation� i�e�� a map E

�
G � E�

G� which de�nes an
isomorphism between 
E�

G� 	
�� t�� and 
E�

G� 	
�� t��� Thus� Theorem ��� is proved�

��� Proof of Theorem 
��

����� It remains to prove Theorem ���� In this section we will prove Theorem ��� which
takes care of the universal situation�

����� Step �� First we show that our map s�i 
Lcan��Lcan is an isomorphism o� D
�i �

To do that let us analyze more closely the situation described in Section ���
�
Let "J � " be a root subsystem and let M � MJ be the corresponding standard

Levi subgroup� Let FlM denote the �ag variety of M and BM � B 
M � UM � U 
M �
It is well known that there exists a canonical closed embedding WMnW 	FlM � Fl�
A point b� � Fl belongs to w 	 FlM � if and only if b

� is in relative position w with
respect to P � PJ 
this makes sense� as P �orbits in Fl are parametrized exactly by
WMnW � and b� 
m is a Borel subalgebra in M �
Consider the restriction of the canonical T �bundle LFl to WMnW 	 FlM � It is easy

to see that its further restriction to the connected component � 	 FlM identi�es with
LFlM �
Let w � W be a minimal representative of its coset in WMnW � The action of w

de�nes a map �	FlM � w�� 	FlM � Let us consider the pullback w
�
LFljw�FlM � as a

T �bundle on �	 FlM � FlM � Let %w � N be an element that projects to w � W �

Lemma ����� We have a canonical M�equivariant isomorphism

w�
LFljw�FlM � � LFlM �
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Proof� Both w�
LFljw�FlM � and LFlM are M �equivariant T �bundles on FlM � To prove
that they are isomorphic� we must show that the two homomorphisms B 
M � T
corresponding to the base point b � FlM coincide� However� this follows from the fact
that w�� 	 b � Ad �w��
b�� which is true since w is minimal� �

����� Let w be as above� Consider the map

M�T
Proposition ���


�� G�T
w
� G�T � Fl�

The fact that Ad �w��
B� 
M � BM implies that the above map coincides with

M�T � �	 FlM
w
� w 	 FlM � Fl�

Therefore� from Lemma �
�� we obtain an isomorphism

��can
 %w� � w
�
Lcan�jM�T � LcanjM�T �

Moreover� it is easy to see that the above isomorphism is induced by the restric�
tion to M�T of the 
meromorphic� isomorphism �can
 %w�� In particular� the a priori

meromorphic isomorphism �can
 %w� is regular on M�T �

Let us now go back to the situation of the theorem� We must check that the mero�
morphic map s�i 
Lcan� � Lcan has no poles along D

� if � �� �i� Choose a minimal
Levi subgroup Mj such that w
�j� � � for some w � W � Then the fact that � �� �i
implies that both w and si � w are minimal representatives of the corresponding cosets
in W�hsji� Then the above discussion shows that s

�
i 
Lcan� � Lcan has no poles on

w 	Mj�T �

This proves what we need since the G�orbit of w 	Mj�T contains an open part of
D� 
cf� Proposition �����

����� Step �� Thus� we have shown that the poles of the map s�i 
Lcan� � Lcan can
occur only on D�i � Let Mi be the corresponding minimal Levi subgroup� As we have
seen before� there is a natural embedding Mi�T � G�T � and Lcan restricts to the
corresponding T �bundle on Mi�T �
Since s�i 
Lcan�� Lcan is G�equivariant� to determine the contribution of the divisor

D�i � it is enough to perform the corresponding calculation forMi� The latter case easily
reduces to SL
���
For SL
��� G�T � P� 	 P� and Lcan � O
�� � O� Moreover� �� � S� � W acts

on G�T by swapping the two P� factors� with the �xed point locus G�T
��
being the

diagonal P�� Hence� 
����
Lcan� � O� O
����
Therefore� we have a meromorphic map between O� O
��� and O
��� O� which is

allowed to have zeroes and poles only on the diagonal� Then it must have a zero of
order �� by degree considerations�

�	� Proof of Theorem 	��

�	��� The functor� Finally� we are ready to complete the proof of the main result�
First� we claim that there is a natural functor ( � Higgs

eX � Higgs�
eX
�
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Let 
EG� 	� t� be an object of Higgs eX 
U�� where 	 � EG � G�N is a G�equivariant

map� We can pullback the universal object of Higgs�
G�T

G�N� 
cf� Section �� and obtain

a G�equivariant object of Higgs�
eEG

EG�� where eEG is the induced cameral cover of EG�

By descent� it gives rise to an object of Higgs�
eX

U� and this assignment is clearly a

functor between sheaves of categories�
The key fact now is that Higgs�

eX
is also a gerbe bound by TorsT

fX
� Condition 
��

of Lemma ���� follows from the existence of the functor ( and the fact that Higgs
eX

satis�es condition 
���
Let 
L� �� �i� be an object of Higgs

�
eX

U�� We must identify the group of its auto�

morphisms with T
eX
U�� By de�nition� this group consists of T �bundle automorphisms�

which respect the data of � and �i� However� a T �bundle map L� L is the same as a
map eU � T and compatibility with � implies that this map is W �equivariant� There�
fore� we obtain a section of T

eX
U�� Now� compatibility with �i is exactly condition 
���

Recall that it su ces to impose condition 
�� for one representative in every W �orbit
on the set of roots� In particular� it is su cient to impose it for simple roots only��
It is easy to see that conditions 
�� and 
�� hold for the above identi�cation of

AutHiggs�
fX
�U	
L� �� �i� � T

eX
U�� In addition� it follows from the construction of �� that

( � Higgs
eX � Higgs�

eX
respects the identi�cations of groups of automorphisms of objects

with T
eX
U��

Assume for a moment that condition 
�� of Lemma ���� has been checked� We claim
that this already implies Theorem ��� because of the following general fact�

Lemma �	��� Let Q� and Q� be two gerbes bound by TorsA and let ( � Q� � Q�

be a functor between the corresponding sheaves of categories� Assume that for every

U � Schet
X� and C � Q�
U� we have a commutative square�

A
U� ����� AutQ��U	
C�

id

��y �

��y
A
U� ����� AutQ��U	
(
C��

�

Then ( is an equivalence of TorsA�gerbes�

�	��� The homogeneous version� Tors�
T
fX

� It remains to prove that every two objects

of Higgs�
eX

U� are locally isomorphic� For this purpose we will introduce a sheaf of Picard

categories Tors�T
fX
� which will be the �homogeneous� version of Higgs�

eX

X��

Objects of Tors�T
fX

U� are triples


L�� ��� �i����

where 
L�� ��� is a stronglyW �equivariant T �bundle on eU and each �i�� is a trivialization
of �i
L��jD�i

U
�

The following compatibility conditions must hold�

�� For a simple root �i� the data of ��
si� � s

�
i 
L�� � L� de�nes� after restriction to

D�i
U � a trivialization

��i
�i
L��jD�i
U
� � ��i
OD�i

U
��
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We need this trivialization to coincide with ��i
�i����

�� Assume that w �W conjugates a simple root �i to another simple root �j � The

pullback of �j�� under w is a trivialization of �i
w
�
L���jD�i

U
� which via ��
w� de�nes a

trivialization of �i
L��� Our condition is that this trivialization coincides with �i���
Morphisms in Tors�T

fX

U� are by de�nition maps between strongly W �equivariant

T �bundles� compatible with the data of �i���
If 
L��� �

�
� � �

�
i��� and 
L

�
�� �

�
� � �

�
i��� are two objects of Tors

�
T
fX

U�� we can form their ten�

sor product 
L���L
�
�� �

�
���

�
� � �

�
i����

�
i��� which will be a new object of Tors

�
T
fX

U�� More�

over� if 
L�� ��� �i��� is an object of Tors
�
T
fX

U� and 
L� �� �i� is an object of Higgs

�
eX

U��

we can take their tensor product and obtain another object of Higgs�
eX

U��

It is easy to see that the above constructions de�ne on Tors�T
fX
a structure of a sheaf

of Picard categories and on Higgs�
eX
a structure of a gerbe bound by it� Therefore� to

prove that every two objects of Higgs�
eX

U� are locally isomorphic� it is enough to show

that any object of Tors�T
fX

U� is locally isomorphic to the unit object� i�e�� to the one

with L� being the trivial T �bundle and 
��� �i��� being the tautological maps� The last
assertion is equivalent to�

Proposition �	��� Tors�T
fX
is equivalent as a sheaf of Picard categories to TorsT

fX
�

We proceed to prove this proposition by showing that any object in Tors�T
fX

U� is

locally isomorphic to the unit object�

�	��� Step �� Without restricting the generality� we can assume that U � X and we
must �nd an $etale covering X � � X � over which a given object 
L�� ��� �i��� becomes
isomorphic to the trivial one�
Fix a C �point x � X � First� we will reduce our situation to the case when the

rami�cation over x is maximal possible� i�e�� when x belongs to the image of 

�
D�
X �

where the intersection is taken over all roots of G�
After an $etale localization we can assume that we have a map X � t�W so thateX � X 	

t�W
t� Let t be a point in t which has the same image in t�W as x� By

conjugating t� we can assume that there exists J � I such that �j
t� � � for j � "J

and �
t� �� � for � �� "J �
We have a Cartesian square

W
WJ

	 
t n �
����J

t�� ����� t

��y
��y


t n �
����J

t���WJ ����� t�W

�

in particular� the map t�WJ � t�W is $etale in a neighbourhood of the image of t in t�W �
Therefore� the base change X � X � �� X 	

t�W
t�WJ is $etale in a neighbourhood of x�

This reduces us to the situation when the W �cover eX is induced from a WJ �cover eXJ �

i�e�� eX �W
WJ

	 eXJ �
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By restricting 
L�� ��� �i��� to eXJ we obtain an object of Tors
�
T
fXJ


X�� equivariant

with respect to WJ � Moreover� it is easy to see that this establishes an equivalence
between Tors�T

fX
and Tors�T

fXJ

� thereby reducing us to the situation when "J � "�

�	�	� Step �� According to Step �� we may assume that there exists a unique geometric
point ex � eX over x� To prove the assertion of the proposition� we can replace X by the
spectrum of the local ring of X at x� In this case all the D�

X �s and
eX are local too�

Let us choose a trivialization of our line bundle L�� subject only to the condition that
it is compatible with the data of �i�� at ex for every simple root �i� We must show that
this trivialization can be modi�ed so that it will be compatible with the structure on
L� of a W �equivariant T �bundle� i�e�� with the data of ��� 
The argument given below
mimics the proof of Proposition ��
��

The discrepancy between our initial trivialization and �� is given by a ��cocycle
� �W � Hom
 eX�T ��

The evaluation at ex gives rise to a surjection of W �modules� Hom
 eX�T �� T � Thus
we obtain a short exact sequence

�� K � Hom
 eX�T �� T � ��

where K consists of maps eX � T that have value � at ex�
Now� our condition on the trivialization 
i�e�� its compatibility with �i��� and condi�

tion 
�� in the de�nition of Tors�T
fX
imply that �
si� � K for every simple re�ection si�

Hence� � takes values in K� However� since eX is local� K is torsion�free and divisible!
Hence H�
W�K� � ��

Therefore� we can choose a trivialization of L� which respects the W �equivariant
structure and the data of �i�� at ex� But this implies that it is compatible with the data
of �i�� on the entire D

�i
X � � i � I �

Indeed� a possible discrepancy takes values in ��� and its value is constant along
every connected component of D�i

X � However� by construction� each D
�i
X is local with ex

being its unique closed point�

The proof of Proposition ����� and hence of Theorem ���� is now complete�

�	�
� Variant� As was the case for Higgs�� we can give a much simpli�ed description of
Tors�T

fX
in case our group G does not have an SO
�n��� direct factor� In this case the

data consists of a strongly equivariant T �bundle 
L�� ���� such that for a simple root �i
and a weight � orthogonal to the corresponding coroot� the isomorphism �
s�i 
L��jD�i �
�
L�jD�i induced by �
si�� coincides with the tautological one�

Part V� Some Applications

The point of our abstract notion of a Higgs bundle� as de�ned in Section �� is that
it provides a uniform approach to the analysis of various more concrete objects� In the
�nal sections we illustrate the applications to Higgs bundles with values in a line bundle
or in an elliptic �bration�
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�
� Higgs bundles with values

�
��� In Section � we de�ned a Higgs bundle over a scheme X to be a pair 
EG� 	��
where p � EG � X is a principal G�bundle over X � and 	 is a G�equivariant map
	 � EG � G�N � We noted there that on a given G�bundle EG� a Higgs bundle is
speci�ed by a vector subbundle cX of gEG whose �bers are regular centralizers� 
Recall
that gEG �� EG	

G
g is the adjoint bundle of EG�� In subsection ���� we de�ned the

universal centralizer c � g 	 G�N � corresponding to the universal Higgs bundle over
G�N � The family of centralizers cX of a general Higgs bundle 
EG� 	� over X is related
to the universal c by p�cX � 	�c� an equality of vector subbundles of the trivial bundle
g	EG on the total space of EG� We recall also that by Theorem ���
� c is isomorphic
to t � Lie
T��
Let K be a line bundle on our base X � In the literature� the most common notion of

a Higgs bundle is the following�

De
nition �
��� A K�valued Higgs bundle on X is a pair 
EG� s�� where EG is a
principal G�bundle on X and s is a section of gEG �K�

The section s of gEG �K is called regular at a point x � X if the corresponding local
section of gEG determined by some 
hence� any� trivialization of K at x is regular� We
work instead with the following more general notion� which is also better adapted to
our setup�

De
nition �
��� A regularized K�valued Higgs bundle on X is a triple 
EG� 	� s��
with 
EG� 	� a Higgs bundle on X and s a section of cX �K� where cX is the regular
centralizer subbundle of the adjoint bundle gEG determined by 	�

�
��� Regular vs� regularized� A regularized K�valued Higgs bundle 
EG� 	� s� on
X clearly determines the unique K�valued Higgs bundle 
EG� s� on X � Conversely� if
the section s of gEG � K is everywhere regular� then we can recover cX � gEG as
the centralizer of s� which de�nes a regularized K�valued Higgs bundle� When s is
generically regular� the family cX of centralizers is still unique� if it exists� In general�
when s is not necessarily regular� our de�nition adds a choice of a regular centralizer
containing s to the pair 
EG� s��
We want to establish the following result�

Theorem �
��� A regularized K�valued Higgs bundle on X is the same as a triple�


a� A cameral cover eX � X�


b� A W �equivariant map v � eX � t�K 
of schemes over X��

c� An object of Higgs�

eX

X��

Proof� Given Theorem ���� it remains to show that the data 
b� of a W �equivariant

�value� map eX � t�K is the same as the data of a section s of cX �K� And indeed�
giving such a section s � X � cX �K is equivalent to giving a G�equivariant section
%s � EG � 	�c �K of the pullback p�cX �K � 	�c �K over EG� cf� ���� above� By
Theorem ���
� this is the same as a G�equivariant section %s� � EG � 	�t � K� Now
by the de�nition of T 
cf� Subsection ������ HomG�N 
EG� t� � HomW 
 eEG� t�� Here
eEG �� EG 	X

eX is the G�equivariant cameral cover of EG associated to the Higgs
bundle on EG which is p

� of our given Higgs bundle 
EG� 	� on X � The section %s��
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and hence also our original section s� are therefore equivalent to a W �equivariant map
of X�schemes s � eEG � t � K which is also G�invariant� But this is the same as a
W �equivariant map of X�schemes v � eX � t�K� as claimed� �

Note that in the data 
EG� 	� s�� the section s � X � cX �K is regular if and only if
the corresponding map v is an embedding� This follows from Lemma ����� So we have�

Corollary �
�	� A regular K�valued Higgs bundle on X is the same as a triple�


a� A cameral cover eX � X�


b� A W �equivariant embedding v � eX � t�K 
of schemes over X��

c� An object of Higgs�

eX

X��

�
�
� The Hitchin map� To conclude our discussion of K�valued Higgs bundles� let
us note that the data 
a� and 
b� in the above theorem can be assembled into what can
be called �a point of the Hitchin base��
Assume that X is proper� and let B
X�K� denote the algebraic stack which classi�es

the data 
a� and 
b� of Theorem ���
� That is for a scheme S� Hom
S�B
X�K�� is the

category of pairs 
 eXS � v � eXS � t �K�� where eXS is a cameral cover of S 	X � and v
is a W �equivariant morphism of X�schemes�
On the other hand� let Higgs
X�K� denote the algebraic stack of all regularized

K�valued Higgs bundles on X � The Hitchin map h � Higgs
X�K�� B
X�K� sends a
regularized K�valued Higgs bundle 
EG� 	� s� given by data 
a��
b� and 
c� to the point
of the Hitchin base given by data 
a� and 
b��

Corollary �
��� The �bers of the Hitchin map h � Higgs
X�K� � B
X�K� can be

identi�ed 
as categories� with Higgs�
eX

X�� By Corollary ���� the set of isomorphism

classes of objects of this �ber is a torsor over the abelian group H�
X�T
eX�� and the

torsor class is given in Theorem ����

Note that our description of the �ber of the Hitchin map is independent of the line
bundle K�

�
��� Let nowHitch
X�K� denote the scheme of sections of the �bration 
t�K��W �
X � In fact� Hitch
X�K� is non�canonically isomorphic to an a ne space�
The relation between Hitch
X�K� and B
X�K� is similar in some respects to the

relation between the vector space t�W parametrizing semisimple adjoint orbits in the
Lie algebra g and the stack g�G of all G�orbits in g� In both cases� there is an open
embedding of the variety into the stack� and there is a retraction of the stack onto the
variety which is the identity on the variety�
In our case� the retraction r � B
X�K�� Hitch
X�K� associates to v � eX � t�K

the corresponding map X � 
t�K��W � As for the open embedding i � Hitch
X�K��

B
X�K�� starting with X � 
t�K��W � we recover eX as

eX �� X 	
�t�K	�W


t�K��

and v � eX � t�K is the second projection�
Obviously� the image i
Hitch
X�K�� � B
X�K� is the open substack correspond�

ing to the condition that the map eX � t � K is an embedding� By Corollary �����
the preimage of Hitch
X�K� � B
X�K� under the Hitchin map is exactly the open
substack of regular K�valued Higgs bundles� Let 
EG� 	� s� denote some regularized
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K�valued Higgs bundle on X � Note that the image h

EG� 	� s�� � B
X�K� determines
whether 
EG� 	� s� is regular� A point in Hitch
X�K�� on the other hand� can be the
image of both regular and irregular 
EG� 	� s��s�

�
���� Variant� De�nition ����� Theorem ���
� and Corollary ���� remain unchanged
if we allow K to be a vector bundle� as in ���� where K � )�X is the cotangent bundle�
In De�nition ����� on the other hand� commutativity is not built in� so we must impose
it by hand� the components of the section s� with respect to any local decomposition of
K as a sum of line bundles� must commute with each other� Equivalently� the bracket
of s with itself� interpreted as a section of gEG ���K� must vanish�

��� Elliptic 
brations

Let f � Y � X be a projective� �at� dominant morphism with integral 
that is�
reduced and irreducible� �bers� Eventually we will specialize this to the case of an
elliptic �bration� but for now we will work with the general situation� We want to
describe an application of our results to the study of regularized G�bundles on Y in
terms of data on the base X and along the 
eventually� elliptic� �bers�
By a regularization of a G�bundle EG on Y we mean a reduction of its structure group

along each �ber to some regular centralizer� In other words� we want a Higgs bundle

EG� 	� on Y whose group scheme of centralizers CY 
equivalently� its cameral covereY � Y � is the pullback of some group scheme of centralizers CX on X 
respectively� of

a cameral cover eX � X�� More precisely�

De
nition ����� A regularized G�bundle on Y consists of the data 
 eX�EG� 	�� witheX � X a cameral cover of X � and 
EG� 	� � HiggseY 
Y � a Higgs bundle on Y with

cameral cover eY �� eX 	
X
Y �

In the case of an elliptic �bration there is a natural notion of what it means for a
bundle 
on Y � to be regular above a point 
of X�� In analogy with the situation for
K�valued Higgs bundles considered in Subsection ����� �most� G�bundles on an elliptic
curve are indeed regular� and a regular bundle has a unique regularization� We review
these well known facts below�

����� In general� our current situation is the analogue of Higgs bundles with values�
in which we replace the bundle K of values from Section �� by the relative Picard
scheme Pic
Y�X�� The tensor product t �C K can be identi�ed with * �ZK� so
we take its analogue to be * �ZPic
Y�X� �� BunT 
Y�X�� 
Here * is the lattice of
coweights�� Similarly� we will need the analogue of cX �K� This is the sheaf of groups
TorsY�X �� TorsCY �Y�X � the shea��cation of the presheaf on Y given by

U 
� fCY � torsors on U modulo pullbacks of CX �torsorsg�


As above� CX is the group scheme of regular centralizer subgroups with Lie algebra
cX � and CY �� f�
CX��� In fancier language� we could think of TorsY�X as a sheaf of
Picard groupoids� But its objects have no automorphisms� so we are dealing in fact
with a sheaf of abelian groups� In more detail�
We introduce the sheaf of Picard categories TorsCY �Y�X on Schet
X� as �CY �torsors

on Y modulo pullbacks of CX �torsors�� The de�nition of TorsCY �Y�X is as follows�
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First� consider the presheaf of categories Torspre
CY �Y�X

� whose objects over U � X are

torsors over U 	
X
Y with respect to the sheaf T

eY � Morphisms between two such torsors

� � and � �� are pairs 
�X � 	�� where �X is a T
eX�torsor on U and 	 is an isomorphism

� �� � � � � f�
�X �� 
Since f � Y � X is dominant� and thus #
U� T
eX� � #
U 	

X
Y� T

eY �

is an injection� it is easy to see that the morphisms de�ned this way form a set and not
just a category��
The presheaf Torspre

CY �Y�X
satis�es the �rst sheaf axiom� but not the second one� i�e��

not every descent data is automatically e�ective� By applying the standard shea��cation
procedure� we obtain from Torspre

CY �Y�X
a sheaf of Picard categories� which we denote by

TorsCY �Y�X �
Note� however� that since the morphism f � Y �X is projective� objects of TorsCY �Y�X

have no nontrivial automorphisms� because for every U as above� the map #
U� T
eX��

#
U 	
X
Y� T

eY � is in fact an isomorphism� Hence� TorsY�X �� TorsCY �Y�X is in fact a

sheaf of groups�
We need an explicit description of this sheaf�

Lemma ����� There is a canonical identi�cation�

TorsY�X 
X� � fv � MorW 
 eX�BunT 
Y�X��j �i � vjD�i
X
� � � Pic
Y�X����i � Ig�


As always� I denotes the set of simple roots �i��

Proof� We identify TorsY�X and Tors�Y�X using Proposition ����� There is a natural

map � � Tors�Y�X � MorW 
 eX�BunT 
Y�X��� sending a T �bundle on eY � eX 	
X
Y to its

classifying morphism v� This map � is clearly injective� and its image is contained in
the RHS�
We still have to prove the surjectivity of �� i�e�� to show that a morphism v in the

RHS satis�es the two compatibility conditions between ��s and ��s stated in ����� It
su ces to do so locally� and then we may assume that f � Y � X has a section� In
this case� we can identify Tors�Y�X with the sheaf of T �bundles on

eY satisfying the two
compatibility conditions between ��s and ��s� which additionally are trivialized along
the section X � Y � Similarly� we can identify BunT 
Y�X�� with T �bundles on Y which
are trivialized along the section�
Each of the compatibility conditions requires the equality of two given trivializations

of some 
T � or Gm �� bundle over D
i
X 	

X
Y � Now our assumption� �i � vjDi

X
� �� to�

gether with the assumed trivialization of all objects along the section� guarantees that
these equalities hold over the section� The di�erence between the two trivializations is
therefore a global automorphism which equals the identity along the section� so it is the
identity everywhere since the �bers of f are integral and proper� �

����� By construction� we have a short exact sequence of Picard categories�

�� TorsT
fX
� f�
TorsT

eY
�� TorsY�X � ��

As in Subsection ���� an element v � TorsY�X 
X� determines a TorsT
fX
�gerbe which we

denote Qv� In fact� for 
U � X� � Schet
X�� Qv
U� is the category of all possible lifts
of v to a T

eY �torsor on U 	
X
Y �

The main result of this section is the following analogue of Theorem ���
�
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Theorem ����� A regularized G�bundle on Y is the same as a triple�


a� A cameral cover eX � X�


b� A W �equivariant map v � eX � BunT 
Y�X� 
of X�schemes�� satisfying�

�i � vjD�i � � � Pic
Y�X��� simple root �i�

c� An object of Higgs�

eX

X� �

TorsT
fX

Qv�

Proof� Let us �x a cameral cover eX � X and consider regularized G�bundles on Y
corresponding to this �xed eX as a sheaf of categories over X � denoted by Reg

eX
Y ��
By Theorem ���� Reg

eX
Y � is a gerbe bound by the sheaf of Picard categories f�
TorsTeY��
This gerbe is induced from the TorsT

fX
�gerbe Higgs

eX by the homomorphism TorsTfX �
f�
TorsT

eY
�� cf� Section ����

Thus� according to Lemma ����� we have a functor Reg
eX
Y � � TorsY�X � and for a

given object v � TorsY�X
X�� the category��ber of the above functor is a TorsT
fX
�gerbe�

which can be canonically identi�ed with Higgs
eX
X� �

TorsT
fX

Qv � Finally� according to

Lemma ����� an object v � TorsY�X
X� is equivalent to data 
b� above� �

���	� Now let us assume that X is projective as well� As our analogue of Higgs
X�K��
we will consider the algebraic stack Reg
X�Y � which associates to a scheme S the
category of regularized G�bundles on S	

X
Y 
with respect to the projection S	

X
Y � S��

We can now describe an analogue of the Hitchin map� Indeed� let B
X�Y � be the

stack whose S�points are pairs� 
 eXS � v� consisting of a cameral cover of S 	 X and a

W �equivariant map v � eXS � BunT 
Y�X� of X�schemes�
We have a natural map of stacks h � Reg
X�Y �� B
X�Y ��

Corollary ���
� The �ber of the spectral map Reg
X�Y � � B
X�Y � over a cameral

point 
 eX� v� � B
X�Y � can be identi�ed with Higgs�
eX

X� �

TorsT
fX

Qv� The set of isomor�

phism classes of objects of this �ber is a torsor over the abelian group H�
X�T
eX��

In the case of K�valued Higgs bundles� we saw in Corollary ���� that the �ber of the
Hitchin map Higgs
X�K� � B
X�K� is independent of the line bundle K� Note in
contrast that the �ber Higgs�

eX

X� �

TorsT
fX

Qv of the spectral map could depend on the

original map f � Y � X � This dependence is mild though� it a�ects only the second
factor� Qv � A simpli�cation occurs when f � Y � X has a global section� in this case
Qv is always trivial because its de�ning short exact sequence of Picard categories ����
is split� It follows that the category Reg

eX
Y � of regularized bundles with a speci�ed

cameral cover eX factors�

Reg
eX
Y � � TorsY�X 	Higgs�

eX

X��

����� In addition to the stack B
X�Y �� one can also de�ne an analogue of Hitch
X�K��
we let the space Hitch
X�Y � denote the scheme of all sections of the �bration


BunT 
Y�X���W � X�

As before� we have an obvious retraction B
X�Y � � Hitch
X�Y �� The analogue of
the embedding Hitch
X�K�� B
X�K� can be described as follows�
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Consider the W �cover BunT 
Y�X� � 
BunT 
Y�X���W and let 
BunT 
Y�X��
��W

be the maximal open subscheme over which this cover is cameral� let BunT 
Y�X�
�

denote its preimage in BunT 
Y�X��
We will have to shrink 
BunT 
Y�X��

��W to a still smaller open subscheme� For a
simple root �i consider the corresponding rami�cation divisor

D�i
�BunT �Y�X		��W � BunT 
Y�X�

��

Under the map BunT 
Y�X�� Pic
Y�X� given by �i� the image of D
�i
�BunT �Y�X		��W is

contained in the set of Z��torsion points of Pic
Y�X��
We de�ne the open subscheme 
BunT 
Y�X��

���W of 
BunT 
Y�X��
��W by removing

those points� whose preimage in BunT 
Y�X�
� maps to a non�unit point in Pic
Y�X�

by means of the above map� Let BunT 
Y�X��
�� � 
BunT 
Y�X��

���W denote the
corresponding cameral cover�
Finally� let Hitch
X�Y �� be the open subscheme ofHitch
X�Y �� which corresponds

to sections whose values belong to 
BunT 
Y�X��
���W � The �ber product construction

gives the desired map i � Hitch
X�Y �� � B
X�Y �� Its image is the open substack

corresponding to the locus where the map v � eX � BunT 
Y�X� is an embedding�

����� The case of an elliptic 
ber� The main relevance of the above results is to the
case that f � Y � X is an elliptic �bration� This is due to the existence in this case of
a good notion of a regular bundle� analogous to the notion of a regular K�valued Higgs
bundle� Take the group G to be semisimple� and consider the case of a single elliptic
curve Z�
For any semistable G�bundle EG on Z� the dimension of the groupH �� AutG
EG� of


global� automorphisms of EG is � r� We say that EG is regular if dim
H� � r� In this
case� H is commutative and there exists an embeddingH � G and a principalH�bundle

EH on Z such that EG � G
H
	EH � A regular bundle has a unique regularization�

These results can be found in ���� ��� ��� ��� and elsewhere� In fact� the moduli space
MG
Z� of 
S�equivalence classes of� semistable� topologically trivial G�bundles on the
elliptic curve Z is well understood� As a complex variety� it is isomorphic toMT 
Z��W �

This is proved analytically 
e�g�� ����� using Borel�s result that in a simply connected
compact group� any two commuting elements are contained in a maximal torus� An
algebraic proof was given in ������ Each S�equivalence class contains a unique regular
representative as well as a unique semisimple representative 
i�e�� one whose structure
group can be reduced to T �� For a generic point of the moduli space� the S�equivalence
class consists of a unique isomorphism class� which is both regular and semisimple� A
similar but somewhat more complicated description exists for all reductive G� cf� �����
Returning to an elliptic family f � Y � X � we �nd ourselves in a situation analogous
to that which we had for K�valued Higgs bundles� a �generic� G�bundle on Y which is
semistable along the elliptic �bers should be regular on the generic �ber� and therefore
its restriction to a dense open X� � X should admit a unique regularization to which
we can apply our results�
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