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Abstract

Let ∆Hn be the Kohn Laplacian on the Heisenberg group Hn and let Q =
2n+2 be the homogeneous dimension of Hn. In this note, completing a recent
result obtained with E. Lanconelli [9], we prove that, if Π is a halfspace of
Hn, then the critical Dirichlet problem

(*) −∆Hnu = u
Q+2
Q−2 in Π, u = 0 in ∂Π,

has no nontrivial nonnegative weak solutions. This result enables to improve
a representation theorem by Citti [2], for Palais-Smale sequences related to
the equation in (*).

1 Introduction

In a recent paper with E. Lanconelli [9] we have proved the following uniqueness
result. Let u be a nonnegative weak solution of the following boundary value
problem 

−∆Hnu = u
Q+2
Q−2 in Π

u ≥ 0 in Π
u = 0 in ∂Π

(1.1)

where ∆Hn denotes the Kohn Laplacian on the Heisenberg group Hn, Q = 2n+ 2
is the homogeneous dimension of Hn and Π is a halfspace with boundary parallel
to the center of Hn. Then u ≡ 0.

In this note, by means of a different technique, we extend this result to the
other halfspaces: the ones with boundary transverse to the center of Hn. Therefore,
we are able to state the following theorem which completely extends to the context
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of the Heisenberg group a result by Esteban and P.L. Lions related to the classical
Laplacian in RN [4].

Theorem 1.1 Let Π be an arbitrary halfspace of Hn. Then the Dirichlet problem{
−∆Hnu = u

Q+2
Q−2 in Π

u ∈ S1
0(Π)

(1.2)

has no nontrivial nonnegative weak solutions.

While we refer to section 2 for the notation used in Theorem 1.1 and throughout
the paper, here we only recall that

Q+ 2
Q− 2

is the critical exponent for ∆Hn as well as
N + 2
N − 2

is the critical exponent for semilinear Poisson equations in RN , N ≥ 3. As proved
by Citti in [2], the non-existence result of Theorem 1.1 plays a crucial role in the
characterization of the Palais-Smale sequences related to the equation −∆Hnu =
u
Q+2
Q−2 on bounded domains of Hn. Additional remarks and further references can be

found in [9]. Other non-existence results related to subcritical equations on cones
of Hn have been recently proved by Birindelli, Capuzzo Dolcetta and Cutr̀ı[1].

We would like to stress that the techniques employed in [9] are not applicable
to the halfspaces Π of the type {t > 0} considered here. Moreover, unlike in [9], in
our case the boundary ∂Π contains characteristic points: as a consequence, a more
careful analysis of the behavior of the solution u at the boundary is required.

Our approach is based on a systematic use of cylindrically symmetric barrier
functions. The starting point is the following result on the asymptotic behavior of
a solution u to (1.2), proved in [9]:

u(ξ) = O(Γ(ξ)), as d(ξ)→∞, ξ ∈ Πt = {t > 0}

(see (2.4) and (2.5) for this notation). From this estimate we first deduce a behavior
at infinity of the trace of ∂tu on ∂Πt:

|∂tu(z, 0)| = O(|z|2−Q), as |z| → ∞.

Then, by comparison with suitable barrier functions and by exploiting the fact
that ∆Hn and ∂t commute, we are able to extend the above estimate inside Πt and
obtain

|∂tu(ξ)| = O(Γ(ξ)), as d(ξ)→∞, ξ ∈ Πt.

In a similar way we study the behavior of u at the origin, where the regularity may
fail due to the characteristic nature of 0 for ∂Πt. The main steps of our scheme
are the proofs of propositions 3.2, 3.8, 3.9 and 3.15. The proof of Theorem 1.1
easily follows from these propositions by using, as in [9], the Rellich-Pohozaev
type identity proved by Garofalo and Lanconelli in [7].

We thank Prof. E. Lanconelli for his continuous interest in this work.
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2 Notation

The Heisenberg group Hn, whose points will be denoted by ξ = (z, t) = (x, y, t),
is the Lie group (R2n+1, ◦) with composition law defined by

ξ ◦ ξ′ = (z + z′, t+ t′ + 2(〈x′, y〉 − 〈x, y′〉)) (2.1)

where 〈 , 〉 denotes the inner product in Rn. The Kohn Laplacian on Hn is the
operator

∆Hn =
n∑
j=1

(Xj
2 + Yj

2) where Xj = ∂xj + 2yj∂t , Yj = ∂yj − 2xj∂t

for all j ∈ {1, . . . , n}. We set

∇Hn = (X1, . . . ,Xn, Y1, . . . , Yn).

A natural group of dilations on Hn is given by

δλ(ξ) = (λz, λ2t) , λ > 0. (2.2)

The Jacobian determinant of δλ is λQ where

Q = 2n+ 2

is the homogeneous dimension of Hn. The operators ∇Hn and ∆Hn are invariant
w.r.t. the left translations τξ of Hn and homogeneous w.r.t. the dilations δλ of
degree one and of degree two, respectively. More precisely, if we set

τξ(ξ′) = ξ ◦ ξ′ (2.3)

we have

∇Hn(u ◦ τξ) = (∇Hnu) ◦ τξ , ∇Hn(u ◦ δλ) = λ(∇Hnu) ◦ δλ,

∆Hn(u ◦ τξ) = (∆Hnu) ◦ τξ , ∆Hn(u ◦ δλ) = λ2(∆Hnu) ◦ δλ.
A remarkable analogy between the Kohn Laplacian and the classical Laplace

operator is that a fundamental solution of −∆Hn with pole at zero is given by [5]

Γ(ξ) =
cQ

d(ξ)Q−2 , (2.4)

where cQ is a suitable positive constant and

d(ξ) = (|z|4 + t2)1/4. (2.5)

Moreover, if we define d(ξ, ξ′) = d(ξ′−1 ◦ ξ), then d is a distance on Hn (see [3]
for a complete proof of this statement). We shall denote by Bd(ξ, r) the d-ball of
center ξ and radius r.
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A basic role in the functional analysis on the Heisenberg group is played by
the following Sobolev-type inequality:

‖ϕ‖2Q∗ ≤ BQ‖∇Hnϕ‖22 ∀ϕ ∈ C∞0 (Hn) (2.6)

where

Q∗ :=
2Q
Q− 2

(2.7)

and BQ is a positive constant whose best value has been determined by Jerison
and Lee in [8]. If Ω is an open subset of Hn, we shall denote by S1(Ω) the Sobolev
space of the functions u ∈ LQ∗(Ω) such that ∇Hnu ∈ L2(Ω). The norm in S1(Ω)
is given by

‖u‖S1(Ω) = ‖u‖Q∗ + ‖∇Hnu‖2. (2.8)

We denote by S1
0(Ω) the closure of C∞0 (Ω) with respect to (2.8). By means of (2.6),

this norm is equivalent in S1
0(Ω) to that generated by the inner product

〈u, v〉S1
0

=
∫
Ω

〈∇Hnu,∇Hnv〉.

A nonnegative weak solution of the Dirichlet problem (1.1) is a function
u ∈ S1

0(Ω), u ≥ 0, such that∫
Ω

〈∇Hnu,∇Hnϕ〉 =
∫
Ω

uQ
∗−1ϕ ∀ϕ ∈ S1

0(Ω). (2.9)

We explicitly remark that, for every u, ϕ ∈ S1
0(Ω), u ≥ 0, we have u

Q+2
Q−2ϕ ∈ L1(Ω).

Indeed ϕ ∈ L
2Q
Q−2 (Ω), u

Q+2
Q−2 ∈ L

2Q
Q+2 (Ω) and Q−2

2Q + Q+2
2Q = 1. We also remark that

every classical solution of (1.1) satisfies the integral identity (2.9) since X∗j = −Xj

and Y ∗j = −Yj , for j = 1, ..., n.
We conclude by recalling that a boundary point ξ of a smooth domain Ω is

called characteristic if the vector fields X1, . . . ,Xn, Y1, . . . , Yn are all tangent to
∂Ω at ξ.

3 Proof of Theorem 1.1

We know from [9] that Theorem 1.1 holds when ∂Π is parallel to the t-axis. Then,
we only have to study the other case. It is not restrictive to assume

Π = Πt := {ξ = (z, t) ∈ Hn | t > 0}. (3.1)

Indeed, for every halfspace Π with boundary transverse to the t-axis, there exists a
left translation τξ0 such that either Π = τξ0(Πt) or Π = τξ0(−Πt). Moreover, setting
σ(x, y, t) = (y, x,−t), we have −Πt = σ(Πt) and the operators ∆Hn and |∇Hn | are
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invariant with respect to σ, i.e. ∆Hn(f ◦ σ) = (∆Hnf) ◦ σ and |∇Hn(f ◦ σ)| =
|∇Hnf | ◦ σ.

Throughout this section we will then assume (3.1) and denote by u a (fixed)
nonnegative weak solution of (1.2). Moreover we define

w = Γ ∗ (u
Q+2
Q−2 ) : Hn → R

w(ξ) =
∫
Hn

Γ(ξ, ξ′)u(ξ′)
Q+2
Q−2 dξ′

(3.2)

and

v = w − u in Π. (3.3)

In (3.2) we have set u = 0 outside Π and denoted Γ(ξ, ξ′) = Γ(ξ′−1 ◦ ξ). Many
properties of the above introduced functions were established in [9] for arbitrary
halfspaces, then, in particular, for Π = Πt. The following proposition collects the
ones we will need here.

Proposition 3.1 1) u is a classical solution of
−∆Hnu = u

Q+2
Q−2 in Π

u ≥ 0 in Π
u = 0 in ∂Π

, (3.4)

u ∈ C∞(Πr {0}) ∩ C(Π) (3.5)

and

u(ξ) = O(Γ(ξ)), as d(ξ)→∞, ξ ∈ Π. (3.6)

Moreover, if we continue u on Hn by setting u = 0 outside Π, there exist β0 ∈]0, 1[
and M > 0 such that

|u(ξ)− u(ξ′)| ≤Md(ξ, ξ′)β0 ∀ξ, ξ′ ∈ Hn (3.7)

(i.e., following Folland-Stein [6], u belongs to the Hölder space Γβ0(Hn)).
2) w has the following properties:

w ≥ u, (3.8)

w ∈ C1(Hn), (3.9)

w(ξ) = O(Γ(ξ)), as d(ξ)→∞, (3.10)

|∂tw(ξ)| = O(Γ(ξ)), as d(ξ)→∞. (3.11)
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3) v is a classical solution of 
−∆Hnv = 0 in Π
v ≥ 0 in Π
v = w in ∂Π

(3.12)

and

v(ξ) = O(Γ(ξ)), as d(ξ)→∞, ξ ∈ Π. (3.13)

The proof of these statements is contained in [9]. See: Remark 2.10, Proposition
2.9, Theorem 1.1, Corollary 2.8, (3.9), (3.25), Proposition 3.2, Proposition 3.4,
(3.8), respectively.

The first step of our approach consists in finding an estimate of the normal
derivative of u at the boundary of Π.

Proposition 3.2 We have |∂tu(ξ)| = O(Γ(ξ)), as d(ξ)→∞, ξ ∈ ∂Π.

We will make use of the following cylindrically symmetric barrier functions. For
every R ≥ 1 we set

AR = {ξ = (z, t) ∈ Hn | 0 < t < 1, |z| > R}

and for every α > 0 and β ∈]0, 1] we define

Fα,β : A1 → R+, Fα,β(z, t) =
(sin t)β

|z|α .

We also set
Fα = Fα,1.

Remark 3.3 If Φ(z, t) = ϕ(|z|, t) = ϕ(r, t) is a cylindrically symmetric regular
function, then, as it has been noticed by Garofalo-Lanconelli in [7], we have

∆HnΦ = ∂2
rϕ+

Q− 3
r

∂rϕ+ 4r2∂2
t ϕ. (3.14)

Lemma 3.4 For every β ∈]0, 1[ there exist δβ > 0 and Rβ ≥ 1 such that

−∆HnF2,β ≥ δβ in ARβ . (3.15)

Moreover, for every α > 0 there exists Rα ≥ 1 such that

−∆HnFα ≥
sin t
|z|α−2 . in ARα . (3.16)

Proof We set δβ = 4β(1− β). Using formula (3.14) a computation yields

−∆HnFα,β(z, t) =
δβ

|z|α−2(sin t)2−β +
(

4β2 − α(α+ 4−Q)
|z|4

) (sin t)β

|z|α−2

≥ δβ
|z|α−2 +

(
4β2 − α2

R4

) (sin t)β

|z|α−2

(3.17)
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for every (z, t) ∈ AR. If α = 2 and β ∈]0, 1[ then δβ > 0 and, choosing Rβ ≥ 1√
β

,
from (3.17) we get (3.15). On the other hand, if β = 1 then δβ = 0 and, choosing
Rα ≥

√
α, (3.17) gives (3.16).

Lemma 3.5 For every α ∈]0, Q− 2] and R ≥ 1 there exists M > 0 such that

u ≤MFα,β in ∂AR ∪ {∞} ∀β ∈]0, 1]. (3.18)

Proof Since u = 0 in ∂Π and u → 0 at infinity (see (3.4) and (3.6)), we only
need to prove (3.18) in ∂1 = {t = 1, |z| ≥ R} and ∂2 = {0 ≤ t ≤ 1, |z| = R}. From
(3.6) it follows that for every ξ = (z, 1) ∈ ∂1 we have

u(ξ) ≤ c

d(ξ)Q−2 ≤
c

|z|Q−2 ≤
c

|z|α

≤M sin 1
|z|α = MFα(ξ) ≤MFα,β(ξ).

On the other hand, (3.5) implies ∂tu ∈ C(∂2). Hence for every ξ ∈ ∂2

u(ξ) = u(z, t)− u(z, 0) ≤ (max
∂2
|∂tu|)t

≤ cR(sin t)β = MR,α
(sin t)β

Rα
= MFα,β(ξ).

We now exploit the equation −∆Hnu = u
Q+2
Q−2 and compare u with the functions

Fα,β . Since Q+2
Q−2 > 1 we will be able to perform a kind of boot-strap process.

Lemma 3.6 There exist R ≥ 1 and M > 0 such that

u ≤MFQ−2 in AR. (3.19)

Proof We set
β =

Q− 2
Q+ 2

.

Since u ∈ L∞(Π) (see Proposition 3.1), from (3.15) and (3.18) we deduce the
existence of R′ ≥ 1 and M ′ > 0 such that{

u ≤M ′F2,β in ∂AR′ ∪ {∞}
−∆Hnu = u

Q+2
Q−2 ≤M ′δβ ≤ −∆Hn(M ′F2,β) in AR′

Hence, the maximum principle for ∆Hn yields

u ≤M ′F2,β in AR′ . (3.20)

We now define for every α > 0

(P )α = (∃Rα ≥ 1 ∃Mα > 0 such that u ≤MαFα in ARα).
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From (3.16), (3.18) and (3.20) we can deduce (P )2. In deed (3.20) and (3.16) yield

−∆Hnu = u
1
β ≤M ′

1
β F

1
β

2,β = c
sin t

|z| 2β
≤ c sin t ≤ −∆Hn(M2F2)

in AR2 , for R2 large enough, and (3.18) gives

u ≤M2F2 in ∂AR2 ∪ {∞}

since Q ≥ 4. Hence, by the maximum principle, (P )2 holds. We now set, for every
α > 0, α′ = min {Q− 2, α+ 6}. Since (P )2 holds, it is sufficient to prove that

(P )α ⇒ (P )α′ ∀α > 0

and we will get (3.19)=(P )Q−2. Let us then fix α > 0 and assume (P )α. We have

−∆Hnu = uu
4

Q−2 ≤MαFαu
4

Q−2 (by (P )α)

≤ c sin t
|z|αd4 (by (3.6))

≤ c sin t
|z|α′−2 ≤ −∆Hn(Mα′Fα′) (by (3.16))

in ARα′ , for Rα′ large enough. Moreover, by (3.18), we can choose Mα′ such that

u ≤Mα′Fα′ in ∂ARα′ ∪ {∞}.

Therefore, from the maximum principle (P )α′ follows.
Proof of Proposition 3.2 Since u ≥ 0 in Π and u = 0 in ∂Π, from (3.19) we
get

0 ≤ u(z, t)− u(z, 0)
t

=
u(z, t)
t
≤MFQ−2(z, t)

t
≤ M

|z|Q−2

for |z| > R and 0 < t < 1. Letting t→ 0 and recalling (3.5) we finally obtain

0 ≤ ∂tu(z, 0) ≤ M

|z|Q−2 =
M

d(z, 0)Q−2 , for |z| > R.

Now, we want to estimate ∂tu in a neighborhood of the origin, the only
characteristic point of ∂Π. We recall that ∂tu is smooth up to the boundary at
any non-characteristic point (see (3.5)). We define

A = {ξ = (z, t) ∈ Hn | 0 < t < 1, |z| < 1
2
}.

Lemma 3.7 There exists M > 0 such that u(z, t) ≤Mt for every (z, t) ∈ A.
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Proof For every β ∈]0, 1] we define

(P )β = (∃Mβ > 0 such that u ≤Mβt
β in A).

From the Hölder continuity of u (see (3.7)) we obtain

u(z, t) = |u(z, t)− u(z, 0)| ≤Md((z, t), (z, 0))β0 = Mt
β0
2 ,

i.e. (P )β0
2

holds. Therefore it is sufficient to show that, setting β′ = Q−2
Q+2β,

(P )β′ ⇒ (P )β ∀β ∈]0, 1]

and we will get (P )1 and prove the lemma. Let us then fix β ∈]0, 1] and assume
(P )β′ . We set

F : A→ R+, F (z, t) = tβ exp {−|z|2}.
Using formula (3.14) a computation yields

−∆HnF = (2Q− 4− 4|z|2)F + 4β(1− β)
|z|2
t2
F.

Hence
−∆HnF ≥ F in A

so that, from (P )β′ we obtain

−∆Hnu = u
Q+2
Q−2 ≤ (Mβ′t

β′)
Q+2
Q−2 = ctβ ≤ cF ≤ −∆Hn(MβF ) in A.

On the other hand, using (3.5) it is easily seen that Mβ can be chosen such that

u ≤MβF in ∂A.

Therefore, from the maximum principle (P )β follows.

Proposition 3.8 There exists M > 0 such that |∂tu(z, 0)| ≤ M for every z ∈
R2n such that 0 < |z| < 1

2 .

Proof It is an immediate consequence of (3.4), (3.5) and Lemma 3.7.
The next step is to extend inside Π the estimates obtained in propositions

3.2 and 3.8. We first evaluate the behavior of ∂tu at infinity.

Proposition 3.9 We have |∂tu(ξ)| = O(Γ(ξ)), as d(ξ)→∞, ξ ∈ Π.

To prove Proposition 3.9 we need some lemmas. Let us define

% : Π→ R+, %(z, t) =
t

|z|+
√
t+ |z|2

. (3.21)

Lemma 3.10 For every ξ ∈ Π we have

Bd(ξ, %(ξ)) ⊆ {(z′, t′) ∈ Hn | 0 < t′ < 2t} ⊆ Π. (3.22)
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Proof We fix ξ ∈ Π and for sake of brevity we set % = %(ξ). Let ξ′ ∈ Bd(ξ, %)
and let us denote ζ = (h, k) = (x − x′, y − y′) = z − z′, s = t − t′. We have (see
(2.1) and (2.5))

%4 > d(ξ′−1◦ξ)4 = |ζ|4 +(s+2(〈x−h, y〉−〈x, y−k〉))2 = |ζ|4 +(s+2〈z, (k,−h)〉)2.

Hence |ζ| < % and

|s| ≤ |s+ 2〈z, (k,−h)〉|+ 2|z||ζ| ≤ %2 + 2|z|%.

On the other hand (3.21) yields %2 + 2|z|% = t. Therefore |t− t′| = |s| ≤ t.
We now consider the function v defined in (3.3). Since ∆Hnv = 0 in Π (see (3.12))
and (3.22) holds, we can give an estimate of the derivatives of v in terms of v and
%.

Lemma 3.11 There exists c > 0 such that for every ξ ∈ Π we have

|∇Hnv(ξ)| ≤ c

%(ξ)
sup

Bd(ξ, %(ξ)2 )

|v| (3.23)

|∂tv(ξ)| ≤ c

%(ξ)2 sup
Bd(ξ, %(ξ)2 )

|v| (3.24)

Proof It follows from the ∆Hn-harmonicity of v. We refer to [10], Proposition
2.1, for a complete proof.
We define

D = {ξ = (z, t) ∈ Hn | 0 < t < |z|, |z| > 1},
E = {ξ = (z, t) ∈ Hn | t ≥ |z|, t ≥ 1}.

From (3.13), (3.21) and (3.24) the next lemma easily follows.

Lemma 3.12 There exists M > 0 such that

|∂tv| ≤
M

t2
in D, (3.25)

|∂tv| ≤MΓ in E. (3.26)

We now set, for every R > 1,

DR = {ξ = (z, t) ∈ Hn | 0 < t < |z|, 1 < |z| < 2R− t}.

We also set β = 1
2 , α = 2 + β and define

GR : DR → R+, GR(z, t) =
tβ

(2R− |z|)α .

Lemma 3.13 There exist M > 0 and R0 > 1 such that for every R > R0 we have

|∂tv| ≤M(Γ +GR) in DR. (3.27)
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Proof Using (3.14) it is not difficult to verify that, for large R,

−∆HnGR ≥ 0 in DR.

Since ∆Hn(∂tv) = ∂t(∆Hnv), by (3.12) ∂tv is ∆Hn-harmonic in Π. Then, if we
prove that

|∂tv| ≤M(Γ +GR) in ∂DR, (3.28)

(3.27) will follow from the maximum principle. From (3.11) and Proposition 3.2
we get

|∂tv| ≤ |∂tw|+ |∂tu| ≤MΓ in ∂DR ∩ ∂Π.

On the other hand (3.25) yields

|∂tv| ≤
M

t2
= MGR in ∂DR ∩ {|z| = 2R− t}

and (3.26) gives
|∂tv| ≤MΓ in ∂DR ∩ {|z| = t}

where M is a constant not depending on R. Moreover |∂tv| is a continuous function
on the set {0 ≤ t ≤ 1, |z| = 1}. Therefore (3.28) holds.

Corollary 3.14 We have |∂tv(ξ)| → 0, as d(ξ)→∞, ξ ∈ Π.

Proof From (3.27) it follows that, for R large enough,

|∂tv| ≤M(Γ +GR) in D ∩ {|z| = R}.

Then, if ξ = (z, t) ∈ D and |z| is sufficiently big, we have

|∂tv(ξ)| ≤M
(

Γ(ξ) +
tβ

(2|z| − |z|)2+β

)
≤M

(
Γ(ξ) +

1
|z|2

)
.

Hence |∂tv(ξ)| → 0, as d(ξ)→∞, ξ ∈ D. Keeping in mind (3.26), the corollary is
proved.

Proof of Proposition 3.9 We set Π̃ = ΠrBd(0, 1). Due to (3.11), (3.12) and
Proposition 3.2 we have

|∂tv| ≤MΓ in ∂Π̃

and
∆Hn(∂tv) = ∂t(∆Hnv) = 0 = ∆Hn(MΓ) in Π̃.

Then, by using Corollary 3.14 and the maximum principle, we get

|∂tv| ≤MΓ in Π̃.

This estimate and (3.11) finally give |∂tu| ≤MΓ in Π̃.
We now examine the behavior of ∇Hnu and ∂tu at the origin. We shall prove

the following statement.
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Proposition 3.15 We have |∇Hnu|, |∂tu| ∈ L∞(Π ∩Bd(0, 1)).

Let us define
K = {ξ = (z, t) ∈ Hn | 0 < t < 1, |z| < 1}.

Lemma 3.16 There exists M > 0 such that

|∇Hnu| ≤M in K, (3.29)

|∂tu| ≤
M

%
in K. (3.30)

The function % has been defined in (3.21).

Proof We fix ξ0 ∈ K and define

v0 = v − v(z0, 0).

For sake of brevity we also set % = %(ξ0) and B = Bd(ξ0, %). For every ξ ∈ B we
have

|v0(ξ)| = |w(ξ)− w(z0, 0)− u(ξ)|

≤
(

max
Bd(0,3)

|∇w|
)
|ξ − (z0, 0)|+ u(ξ) (see (3.9))

≤ c(|z − z0|+ t) + ct (by Lemma 3.7)

≤ c(%+ t0) (by (3.22)).

Hence
sup
B
|v0| ≤ c(%+ t0).

Since v0 is ∆Hn-harmonic as well as v, (3.23) and (3.24) hold also replacing v with
v0. Therefore we obtain

|∇Hnv(ξ0)| = |∇Hnv0(ξ0)| ≤ c

%
sup
B
|v0| ≤ c(1 +

t0
%

) ≤ c

and
|∂tv(ξ0)| = |∂tv0(ξ0)| ≤ c

%2 sup
B
|v0| ≤

c

%
,

where c is a positive constant not depending on ξ0. Recalling (3.9) we finally get
(3.29) and (3.30).

We now fix β ∈]0, 1[ and set α = 2 + β and γ =
√

4β(1−β)
α(α+1) . Moreover for every

ε ∈]0, 1
2 [ we define

Kε = {ξ = (z, t) ∈ Hn | ε < |z| < 1, 0 < t < γ|z|(|z| − ε)}

and

Ψε : Kε → R+, Ψε(z, t) =
1
ε

+
ε1−βtβ

(|z| − ε)α .
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Lemma 3.17 There exists M > 0 such that

|∂tv| ≤MΨε in Kε ∀ε ∈]0,
1
2

[. (3.31)

Proof Using (3.14) it is easy to check that

−∆HnΨε ≥ 0 in Kε.

Then, since ∆Hn(∂tv) = ∂t(∆Hnv) = 0, if we prove that

|∂tv| ≤MΨε in ∂Kε, (3.32)

the maximum principle will give (3.31). From (3.9) and Proposition 3.8 we get

|∂tv| ≤ |∂tw|+ |∂tu| ≤M ≤MΨε in ∂Kε ∩ ∂Π.

Moreover

|∂tv| ≤ max
{0≤t≤1, |z|=1}

|∂tv| ≤MΨε in ∂Kε ∩ {|z| = 1}.

On the other hand from (3.9) and (3.30) it follows that

|∂tv| ≤MΨε in ∂Kε ∩ {t = γ|z|(|z| − ε)},

with M not depending on ε. Indeed, keeping in mind the very definition (3.21) of
the function %, if t = γ|z|(|z| − ε) and ε ≤ |z| ≤ 2ε, we have

1
%(ξ)

≤ c |z|
t
≤ c ε1−βtβ

(|z| − ε)2+β ≤ cΨε(ξ).

Moreover, if t = γ|z|(|z| − ε) and 2ε ≤ |z| ≤ 1, then

1
%(ξ)

≤ c |z|
t
≤ c

ε
≤ cΨε(ξ).

Therefore (3.32) holds.

Corollary 3.18 We have |∂tv(ξ)| = O( 1
d(ξ) ), as d(ξ)→ 0, ξ ∈ Π.

Proof From (3.31) it follows that for every ε ∈]0, 1
2 [

|∂tv| ≤MΨε in {|z| = 2ε, 0 < t <
γ

2
|z|2}.

This means that for every ξ ∈ K ∩ {t < γ
2 |z|2} we have

|∂tv(ξ)| ≤MΨ |z|
2

(ξ) =
2M
|z| + c

|z|1−βtβ
|z|α ≤ c′

|z| ≤
c

d(ξ)
.

On the other hand (3.21) and (3.30) give

|∂tv(ξ)| ≤ M

%(ξ)
≤ c′√

t
≤ c

d(ξ)
in K ∩ {t ≥ γ

2
|z|2}.
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Proof of Proposition 3.15 Thanks to (3.29) and (3.9) we only need to prove
that |∂tv| ∈ L∞(B), B = Π ∩Bd(0, 1). From Proposition 3.8 it follows that there
exists M > 0 such that

|∂tv| ≤M in ∂B r {0}.
Moreover, by Corollary 3.18, for every ε > 0 we have

lim
ξ→0

(M + εΓ− |∂tv|)(ξ) = +∞.

Since ∆Hn(∂tv) = 0 = ∆Hn(M + εΓ) in B, the maximum principle gives |∂tv| ≤
M + εΓ in B. Letting ε→ 0 we finally obtain |∂tv| ≤M in B.

Proof of Theorem 1.1 We only sketch the proof which is similar to that of
Theorem 1.2 in [9] for the halfspace {x1 > 0}. It follows from Proposition 3.9 and
Proposition 3.15, by using the Rellich-Pohozaev type integral identity proved in
[7].

We assume Π = Πt (see (3.1)) and, as usual, denote by ξ = (z, t) the point
ξ ∈ Hn. The outer unit normal to ∂Π is

N = (0,−1). (3.33)

Let P be the vector field

P = −∂t ≡ (0,−1). (3.34)

Then 〈P,N〉 = 1 on ∂Π and Π is τ -starshaped with respect to (0,−1) (see Defini-
tion 2.2 in [7]). We also remark that, in the notation of [7], P = P (0,−1). We set
Br = Bd(0, r) for every r > 0 and BR,ε = BR rBε for every R > ε > 0. Recalling
(3.5), using the integral identity (2.7) of [7] and proceeding as on page 83 of the
same paper, we obtain∫
BR,ε∩∂Π

|∇Hnu|2dσ =
∫

BR,ε∩∂Π

|∇Hnu|2〈P,N〉dσ

=
∫

Π∩∂BR,ε

(
(|∇Hnu|2 −

2
Q∗

uQ∗)〈P, ν〉 − 2〈A∇u, ν〉Pu
)
dσ.

(3.35)

Here ν = ± ∇d|∇d| is the outer unit normal to ∂BR,ε, σ denotes the surface measure
and A is the matrix which allows us to represent ∆Hn in the divergence form
∆Hn = div(A∇). Since

|〈P, ν〉(ξ)| =
∣∣∣∣〈P, ∇d|∇d|〉(ξ)

∣∣∣∣ =
|〈(0,−1), d(ξ)−3(|z|2z, t2 )〉|

|∇d(ξ)| ≤ 1
d(ξ)|∇d(ξ)|

and

|〈A∇u, ν〉| = |〈A∇u,∇d〉||∇d| =
|〈∇Hnu,∇Hnd〉|

|∇d| ≤ |∇H
nu|

|∇d| ,



Vol. 6, 1999 A non-existence theorem for a semilinear Dirichlet problem 205

(3.34) and (3.35) yield∫
BR,ε∩∂Π

|∇Hnu|2dσ ≤ c
∫

Π∩∂BR,ε

|∇Hnu|2 + uQ∗

d|∇d| dσ + c

∫
Π∩∂BR,ε

|∇Hnu||∂tu|
|∇d| dσ.

(3.36)

By Federer’s coarea formula, for every g ∈ L1(Hn) we have

∫
Hn

g =

+∞∫
0

( ∫
∂Br

g

|∇d|dσ
)
dr. (3.37)

Letting g = |∇Hnu|2 + uQ
∗
, (3.37) implies that there exists a divergent sequence

(Rk)k∈N such that∫
Π∩∂BRk

|∇Hnu|2 + uQ∗

|∇d| dσ = o
( 1
Rk

)
, as k → +∞. (3.38)

Moreover, letting g be the characteristic function of the set Br, (3.37) yields

r∫
0

( ∫
∂B%

dσ

|∇d|
)
d% =

∫
Br

dξ = crQ

and, by differentiation, ∫
∂Br

dσ

|∇d| = cQrQ−1. (3.39)

By means of Proposition 3.9 and Proposition 3.15, choosing a sequence εk → 0,
from (3.36), (3.38) and (3.39) we finally obtain∫
BRk,εk∩∂Π

|∇Hnu|2dσ ≤ o
( 1
R2
k

)
+ cεQ−2

k

+
c

RQ−2
k

( ∫
Π∩∂BRk

|∇Hnu|2
|∇d| dσ

) 1
2
( ∫

Π∩∂BRk

1
|∇d|dσ

) 1
2

+ cεQ−1
k

≤ o(1) +
1

RQ−2
k

(
o
( 1
Rk

)) 1
2
R
Q−1

2
k = o(1) +

1

R
Q−2

2
k

o(1).

Since Q = 2n+ 2 ≥ 2, as k goes to infinity we obtain ∇Hnu ≡ 0 in ∂Πr {0} and,
as in [7], we can conclude that u ≡ 0 in Π.
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