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Abstract

We prove higher integrability for the gradient of vector-valued minimizers of
some integral functionals with p− q growth.

1 Introduction

Let us consider the functional

F (u) =
∫

Ω
f(Du(x))dx, (1.1)

where Ω ⊂ Rn, n ≥ 2, u : Ω→ RN , N ≥ 1 and f : RnN → R verifies

a|z|p − b ≤ f(z) ≤ c|z|q + d, (1.2)

for some positive constants a, b, c, d, p, q, with 1 < p ≤ q. Regularity for minimizers
u of F has been extensively studied when p = q, see [Gia1], [Giu]. When the
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exponents p and q in (1.2) are different, we say that f has nonstandard growth or
p−q growth, following Marcellini [Ma5], [Ma1]. Let us remark that minimizers u of
F may be not regular, if p and q are too far apart, [Gia2], [Ma6]. On the contrary,
when p and q are close enough, some regularity results can be proven: see [Ma5],
[FS] where they deal with scalar minimizers u : Ω→ R; see [AF], [BL], [Le2], [PS]
for vector-valued u : Ω → RN . In this paper we prove higher integrability of the
gradient for vector-valued minimizers u ∈ u∗ +W 1,1

0 (Ω) of (1.1) when f has p− q
growth, with 2 ≤ p < q < p + 2, the boundary datum u∗ ∈ L∞ ∩W 1,q, under
suitable assumptions on f . A model functional for our setting is∫

Ω

(
|D1u|q1 + · · ·+ |Dnu|qn + (e+ |Du|2)α+β sin log log(e+|Du|2)

)
dx, (1.3)

where u : Rn → RN , Du = (D1u, . . . ,Dnu), Diu = ∂u/∂xi, 2 ≤ qi ≤ 2α + 2β,
0 < β < 1/2, 2 + β

√
2 ≤ α. We make a few remarks on the technique we are going

to use. We first regularize our functional by adding a q-Dirichlet integral,

Fε(v) =
∫

Ω
(f(Dv) + ε|Dv|q)dx,

in order to get the same q growth from above and from below, see Theorem C
in [Ma5]. Then we obtain integral estimates for the minimizers uε of Fε: this can
be achieved by a careful use of difference quotient technique, fractional Sobolev
spaces and a suitable maximum principle, see [DLM]. Finally, we let ε go to zero
and we prove that uε converges to our original minimizer u. A basic tool in this last
step is the absence of the so-called Lavrentiev phenomenon, proved in Lemma 2.1.
This could be a result of some interest in itself. We remark that, usually, regularity
results for minimizers are used to prove the absence of Lavrentiev phenomenon,
while in this paper the opposite procedure is followed.

2 Notation and results

Let us consider Ω = B(0, 1) the unit ball in Rn, n ≥ 2, u : Ω → RN , N ≥ 1 and
f : RnN → R. We shall deal with minimizers of the integral functional

F (u) =
∫

Ω
f(Du(x)) dx, (2.1)

where f ∈ C2(RnN ) and, for some positive constants m,L, p, q, ν, σ,

2 ≤ p < q < p+ 2, (2.2)

m|z|p ≤ f(z) ≤ L (1 + |z|q), (2.3)

|Df(z)| ≤ L (1 + |z|q−1), (2.4)

|DDf(z)| ≤ L (1 + |z|q−2), (2.5)
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ν |z|p−2|λ|2 ≤ DDf(z)λλ, (2.6)

f(2z) ≤ σf(z) (2.7)

for every z, λ ∈ RnN . The energy density f has the following structure:

f(z) = g(|z1|, . . . , |zn|, |M1z|, . . . , |Mkz|) (2.8)

where k is a fixed integer, 1 ≤ k ≤ min{n,N}, g : Rn × Rk → R is continuous,
MjDu is the vector whose components are all the j × j minors taken from the
N × n matrix z, thus |M1z| = |z|, since M1z are all the entries zαi of the matrix
z. We assume that

pi → g(p1, . . . , pi, . . . , pn, ξ1, . . . , ξk) is strictly increasing in [0,+∞), (2.9)

for every i = 1, . . . , n,

ξi → g(p1, . . . , pn, ξ1, . . . , ξi, . . . , ξk) is increasing in [0,+∞), (2.10)

for every i = 1, . . . , k. Let us assume that u∗ : Rn → RN verifies

u∗ ∈W 1,q
loc (Rn) ∩ L∞loc(Rn) (2.11)

In what follows, u minimizes the functional (2.1), that is

u ∈ u∗ +W 1,1
0 (Ω) (2.12)

and ∫
Ω

f(Du(x))dx ≤
∫
Ω

f(Dv(x))dx (2.13)

for every v ∈ u∗ +W 1,1
0 (Ω).

REMARK 1. Minimality of u, growth condition (2.3) and integrability (2.11) of
the boundary datum u∗ give

m

∫
Ω

|Du|p ≤
∫
Ω

f(Du) ≤
∫
Ω

f(Du∗) ≤
∫
Ω

L(1 + |Du∗|q) < +∞,

thus Du ∈ Lp(Ω). We will prove the following

Theorem 2.1 Under the assumptions (2.2), . . . , (2.11), if u ∈ u∗ + W 1,1
0 (Ω)

minimizes the functional (2.1), then

Du ∈ Lrloc(Ω), ∀r < pn

n− p+ q − 2

REMARK 2. Please, note that p < pn
n−p+q−2 : we improved on the integrability

of Du.



136 Luca Esposito, Francesco Leonetti and Giuseppe Mingione NoDEA

REMARK 3. The previous Theorem 2.1 is proven by an approximation argument:
we consider uε ∈ u∗+W 1,q

0 (Ω) minimizing
∫

(f(Duε) + ε|Duε|q)dx: this functional
has q growth from above and from below. We are able to deal with its Euler
equation and we get estimates independent of ε, thus Duε converges to some Dw,
for which the estimates still hold true. Eventually, we prove that u = w. The last
step u = w can be achieved after proving that no Lavrentiev phenomenon occurs
in the present setting. More precisely, we have

Lemma 2.1 Under the assumptions (2.2), . . . , (2.11) we get

inf
v∈u∗+W 1,1

0 (Ω)

∫
Ω

f(Dv)dx = inf
v∈u∗+W 1,q

0 (Ω)

∫
Ω

f(Dv)dx. (2.14)

In section 3 we collect some known results that we will use later; section 4 contains
the proof of the Theorem while section 5 is devoted to Lemma 2.1.

3 Known results

For a vector-valued function G(x), define the difference

τs,hG(x) = G(x+ hes)−G(x),

where h ∈ R , es is the unit vector in the xs direction, and s = 1, 2, . . . , n. For
x0 ∈ Rn, let BR = BR(x0) be the ball centered at x0 with radius R. We now state
several lemmas that we need later. In the following G : Rn → Rk, k ≥ 1; Bρ, BR,
B2ρ and B2R are concentric balls.

Lemma 3.1 If 0 < ρ < R, |h| < R − ρ, 1 ≤ t < ∞, s ∈ {1, . . . , n}, G,
DsG ∈ Lt(BR), then ∫

Bρ

|τs,hG(x)|tdx ≤ |h|t
∫
BR

|DsG(x)|tdx.

(See [Gia1, page 45], [C, page 28])

Lemma 3.2 If G ∈ L2(B3ρ) and for some d ∈ (0, 1) and C > 0

n∑
s=1

∫
Bρ

|τs,hG(x)|2dx ≤ C|h|2d,

for every h with |h| < ρ, then G ∈ Lr(Bρ/4) for every r < 2n/(n− 2d).

Proof. The previous inequality tells us that G ∈W b,2(Bρ/2) for every b < d , so we
can apply the imbedding theorem for fractional Sobolev spaces. [A, chapter VII].
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Lemma 3.3 For every t with 1 ≤ t < ∞, for every G ∈ Lt(B2R), for every h
with |h| < R, for every s = 1, 2, . . . , n we have∫

BR

|G(x+ hes)|tdx ≤
∫
B2R

|G(x)|tdx.

Lemma 3.4 For every p ≥ 2, G : B2R → Rk we have

∣∣∣τs,h (|G(x)|(p−2)/2 G(x)
)∣∣∣2 ≤ k3

(p
2

)2
1∫

0

|G(x) + t τs,hG(x)|p−2|τs,hG(x)|2dt,

for every h with |h| < R , for every s = 1, 2, . . . , n, for every x ∈ BR.

Lemma 3.5 (Maximum principle) Assume that f and g verify (2.8), . . . , (2.10),
with g ≥ 0. Consider v = (v1, . . . , vN ), v : A→ RN , A bounded open subset of Rn,
such that v ∈ W 1,1(A),

∫
A
f(Dv) < +∞,

∫
A
f(Dv) ≤

∫
A
f(Dv + Dφ) for every

φ ∈W 1,1
0 (A). If there exist β ∈ {1, . . . , N} and t ∈ R such that

|vβ | ≤ t on ∂A then |vβ | ≤ t in A.

(See [DLM])

4 Proof of Theorem 2.1

This Theorem will be proven using an approximation argument: for ε ∈ (0, 1) we
consider the function

fε(z) = f(z) + ε|z|q. (4.1)

It turns out that fε ∈ C2(RnN ) and, for some positive constant c1, depending only
on n,N, q, we have

ε|z|q +m|z|p ≤ fε(z) ≤ (L+ 1) (1 + |z|q), (4.2)

|Dfε(z)| ≤ (L+ q) (1 + |z|q−1), (4.3)

|DDfε(z)| ≤ (L+ c1) (1 + |z|q−2), (4.4)

εq|z|q−2|λ|2 + ν |z|p−2|λ|2 ≤ DDfε(z)λλ, (4.5)

for every z, λ ∈ RnN , where m,L, p, q, ν are the same as in (2.2), . . . ,(2.6). Thus
fε has q growth from above and from below. Let uε ∈ u∗ +W 1,q

0 (Ω) minimize the
integral

∫
fε(Dv)dx, that is∫

Ω

fε(Duε)dx ≤
∫
Ω

fε(Dv)dx, (4.6)
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for every v ∈ u∗+W 1,q
0 (Ω). Direct methods in the calculus of variations guarantee

the existence of such uε and show that inequality (4.6) holds true for v ∈ u∗ +
W 1,1

0 (Ω) too. From now on, ε will denote a sequence εj ∈ (0, 1) with εj → 0 as
j →∞. Sometimes we will pass to a subsequence that will be again denoted by ε.
Minimality (4.6) and growth conditions (4.2), (4.3) show that uε solves the Euler
equation, ∫

Ω

Dfε(Duε(x))Dφ(x) dx = 0, (4.7)

for all functions φ : Ω→ RN , with φ ∈W 1,q
0 (Ω). Let R > 0 be such that B4R ⊂ Ω

and let Bρ and BR be concentric balls, 0 < ρ < R. Let η : Rn → R be a “cut
off” function in C∞0 (BR) with η ≡ 1 on Bρ, 0 ≤ η ≤ 1. Fix s ∈ {1, . . . , n}, take
0 < |h| < R. Using φ = τs,−h(η2τs,huε) in (4.7) we get

(I) =
∫
BR

η2τs,h (Dfε(Duε)) τs,hDuε dx =

−
∫
BR

τs,h (Dfε(Duε)) 2ηDη τs,huε dx = (II).

Moreover∫
BR

1∫
0

DDfε(Duε + tτs,hDuε) η τs,hDuε η τs,hDuε dt dx = (I) =

= (II) =
∫
BR

1∫
0

−2DDfε(Duε + tτs,hDuε) η τs,hDuεDη τs,huε dt dx. (4.8)

Since fε is C2, the bilinear form (λ, ξ)→ DDfε(Duε + tτs,hDuε)λ ξ is symmetric;
moreover, it is positive because of (4.5); therefore we can use Cauchy-Schwartz
inequality in order to get

(II) ≤ 1
2

∫
BR

1∫
0

DDfε(Duε + tτs,hDuε) η τs,hDuε η τs,hDuε dt dx+

+2
∫
BR

1∫
0

DDfε(Duε + tτs,hDuε)Dη τs,huεDη τs,huε dt dx

=
1
2

(I) + 2(III). (4.9)

The two integrals in (4.9) are finite, so we can subtract 1
2 (I) from both sides of

(4.8) in order to get
1
2

(I) ≤ 2(III). (4.10)
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In order to estimate (I) from below, with constants independent of ε, we look at
(4.5): we drop εq|z|q−2|λ|2 and we keep ν|z|p−2|λ|2. If we also use Lemma 3.4 and
we recall that η = 1 in Bρ, we get

c2

∫
Bρ

∣∣∣τs,h(|Duε|
p−2

2 Duε)
∣∣∣2 dx ≤ (I), (4.11)

for some positive constant c2 indepedent of ε and h. On the other hand, if we use
the growth condition (4.4), we have

(III) ≤ c3
∫
BR

(1 + |Duε|q−2 + |τs,hDuε|q−2)|τs,huε|2dx, (4.12)

for some positive constant c3 indepedent of ε and h. The inequalities (4.10-12)
merge into the following Caccioppoli’s estimate∫
Bρ

∣∣∣τs,h(|Duε|
p−2

2 Duε)
∣∣∣2 dx ≤ c4 ∫

BR

(1 + |Duε|q−2 + |τs,hDuε|q−2)|τs,huε|2dx,

(4.13)
for some positive constant c4 indepedent of ε and h. In order to control the right
hand side of the previous inequality, we consider the growth condition (4.2): again,
we drop ε|z|q and we keep m|z|p. Using the minimality (4.6) of uε, we are able to
control the Lp norm of uε by means of the Lq norm of the boundary datum u∗:

m

∫
Ω

|Duε|pdx ≤
∫
Ω

fε(Duε)dx ≤
∫
Ω

fε(Du∗)dx ≤
∫
Ω

(L+1)(1+|Du∗|q)dx. (4.14)

Since we are able to control only the Lp norm of Duε, we need q − 2 < p in
(4.13): assumption (2.2) allows us to go on. By Hölder’s inequality with exponents
p/(q − 2) and p/(p− q + 2), we get∫

BR

(1 + |Duε|q−2 + |τs,hDuε|q−2)|τs,huε|2dx

≤ c5

∫
BR

(1 + |Duε|p + |τs,hDuε|p)dx


q−2
p
∫
BR

|τs,huε|
2p

p−q+2 dx


p−q+2
p

,

for some positive constant c5 indepedent of ε and h. Application of Lemma 3.3
with t = p and G = Duε gives∫

BR

(1 + |Duε|p + |τs,hDuε|p)dx


q−2
p

≤ c6

 ∫
B2R

(1 + |Duε|p)dx


q−2
p
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for some positive constant c6 indepedent of ε and h. Because of assumptions (2.8-
11), the maximum principle is available, [DLM], thus

‖uε‖L∞(Ω) ≤ c7 <∞, (4.15)

for some positive constant c7 indepedent of ε and h, so application of (4.15) and
Lemma 3.1 give∫

BR

|τs,huε|
2p

p−q+2 dx =
∫
BR

|τs,huε|p|τs,huε|
2p

p−q+2−pdx ≤

≤ c8
∫
BR

|τs,huε|pdx ≤ c8|h|p
∫
B2R

|Dsuε|pdx,

for some positive constant c8 indepedent of ε and h. The Lp bound (4.14) and the
previous inequalities merge into

n∑
s=1

∫
Bρ

∣∣∣τs,h(|Duε|
p−2

2 Duε)
∣∣∣2 dx ≤ c9|h|p−q+2, (4.16)

for some positive constant c9 indepedent of ε and h. Now we recall that uε ∈
u∗+W 1,q

0 (Ω), thus, the Lp bound (4.14) implies that, passing to some subsequence
still labelled by uε,

Duε → Dw weakly in Lp(Ω), (4.17)

for some w ∈ u∗ +W 1,p
0 (Ω). Moreover

‖|Duε|
p−2

2 Duε‖2L2(Ω) = ‖Duε‖pLp(Ω) ≤
L+ 1
m

∫
Ω

(1 + |Du∗|q)dx, (4.18)

thus, up to a subsequence,

|Duε|
p−2

2 Duε → v weakly in L2(Ω), (4.19)

for some v ∈ L2(Ω). The estimate (4.16) shows that the convergence (4.19) is
actually strong:

|Duε|
p−2

2 Duε → v strongly in L2
loc(Ω), (4.20)

then, passing again to some subsequence,

|Duε|
p−2

2 (x)Duε(x)→ v(x) for almost every x ∈ Ω. (4.21)

Now (4.17), (4.20) and (4.21) guarantee that

v = |Dw|
p−2

2 Dw, (4.22)

thus, (4.21) and (4.22) give

Duε(x)→ Dw(x) for almost every x ∈ Ω. (4.23)
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We use (4.20) and (4.22) in order to pass to the limit in the estimate (4.16): we
have

n∑
s=1

∫
Bρ

∣∣∣τs,h(|Dw|
p−2

2 Dw)
∣∣∣2 dx ≤ c9|h|p−q+2, (4.24)

for every h with |h| < ρ, where c9 is independent of h. Application of Lemma 3.2
withG = |Dw| p−2

2 Dw gives |Dw| p−2
2 Dw ∈ Lt(Bρ/4) for every t < 2n/(n−p+q−2).

Since ||Dw| p−2
2 Dw| = |Dw|p/2, a covering argument shows that

Dw ∈ Lrloc(Ω), ∀r < pn

n− p+ q − 2
. (4.25)

We claim that
u = w. (4.26)

In order to prove that, we consider any v ∈ u∗ + W 1,q
0 (Ω); we keep in mind the

relation between f and fε, so, using the minimality (4.6), we get∫
Ω

f(Duε) ≤
∫
Ω

fε(Duε) ≤
∫
Ω

fε(Dv) =
∫
Ω

f(Dv) + ε

∫
Ω

|Dv|q.

We use the pointwise convergence (4.23), the continuity of f and Fatou’s lemma,
thus∫
Ω

f(Dw) ≤ lim inf
ε→0

∫
Ω

f(Duε) ≤ lim inf
ε→0

∫
Ω

f(Dv) + ε

∫
Ω

|Dv|q
 =

∫
Ω

f(Dv),

so that ∫
Ω

f(Dw) ≤
∫
Ω

f(Dv), ∀v ∈ u∗ +W 1,q
0 (Ω),

then ∫
Ω

f(Dw) ≤ inf
v∈u∗+W 1,q

0 (Ω)

∫
Ω

f(Dv).

Now we use the minimality property (2.13) of u:∫
Ω

f(Du) = inf
v∈u∗+W 1,1

0 (Ω)

∫
Ω

f(Dv) ≤
∫
Ω

f(Dw) ≤ inf
v∈u∗+W 1,q

0 (Ω)

∫
Ω

f(Dv). (4.27)

In our setting no Lavrentiev phenomenon occurs, as Lemma 2.1 shows, thus (2.14)
and (4.27) give ∫

Ω

f(Du) =
∫
Ω

f(Dw).

Since f is strictly convex, see (2.6), we get Du = Dw. Moreover, u−w ∈W 1,1
0 (Ω),

so u = w. (4.25) and (4.26) end the proof. �
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5 Proof of Lemma 2.1

Direct methods in the calculus of variations give us the existence of u ∈ u∗ +
W 1,1

0 (Ω) such that ∫
Ω

f(Du)dx = inf
v∈u∗+W 1,1

0 (Ω)
f(Dv)dx. (5.1)

Claim: for every τ > 0 there exists w ∈ u∗ +W 1,q
0 (Ω) such that∫

Ω

f(Dw)dx ≤
∫
Ω

f(Du)dx+ τ. (5.2)

This and (5.1) will end the proof. We are going to build such a function w. Since
the minimizer u belongs to u∗ + W 1,1

0 (Ω), there exists u0 ∈ W 1,1
0 (Ω) such that

u = u∗ + u0. We extend u0 by zero to all of Rn: u0 = 0 in Rn \ Ω, thus u0 ∈
W 1,1(Rn). Keep in mind that u∗ ∈ W 1,q

loc (Rn). We recall that Ω is the unit ball
B(0, 1). We write Bt instead of B(0, t). For 0 < δ < 1, let η : Rn → R be a “cut
off” function in C1

0 (B1−δ/2) with η ≡ 1 on B1−3δ/4, 0 ≤ η ≤ 1. For 0 < ε < δ
4 we

define rε : Rn → Rn to be
rε(x) =

x

1− ε . (5.3)

Thus
u0 ◦ rε(x) = u0(rε(x)) = 0 when |x| > 1− ε. (5.4)

Let ρε be a radial mollifier with support in the ball B(0, ε/4). We write G ? ρε for
the mollification of G:

G ? ρε(x) =
∫

B(x,ε/4)

G(y)ρε(x− y)dy.

Because of (5.4), we get
(u0 ◦ rε) ? ρε ∈ C∞0 (Ω). (5.5)

We define vε to be

vε = η(u ? ρε) + (1− η)(u∗ + (u0 ◦ rε) ? ρε) (5.6)

and we have

vε = u∗ + η[(u ? ρε)− (u0 ◦ rε) ? ρε − u∗] + (u0 ◦ rε) ? ρε ∈ u∗ +W 1,q
0 (Ω). (5.7)

It will turn out that, for a suitable choice of δ and ε, vε will be the desired function
w in (5.2). In order to check it, we need to compute the energy of vε:∫

Ω

f(Dvε) =
∫

B1−3δ/4

f(Dvε) +
∫

B1−δ/2\B1−3δ/4

f(Dvε) +
∫

B1\B1−δ/2

f(Dvε) =

= (I) + (II) + (III). (5.8)
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Let us recall that f is convex and positive, thus Jensen’s inequality gives∫
A

f(Dũ ? ρε(x))dx =
∫
A

f(
∫

B(x,ε/4)

Dũ(y)ρε(x− y)dy)dx ≤

≤
∫
A

∫
B(x,ε/4)

f(Dũ(y))ρε(x− y)dydx =
∫
A

∫
Aε/4

f(Dũ(y))ρε(x− y)dydx

=
∫

Aε/4

∫
A

f(Dũ(y))ρε(x− y)dxdy ≤
∫

Aε/4

f(Dũ(y))dy, (5.9)

for Aε/4 =
⋃
x̃∈A

B(x̃, ε/4) and suitable ũ. Now we are ready to deal with (I) in

(5.8): in B1−3δ/4 we have Dvε = Du ? ρε, thus, applying (5.9) with ũ = u and
A = B1−3δ/4, we get

(I) ≤
∫
Ω

f(Du). (5.10)

Let us note that convexity (2.6) and ∆2 property (2.7) imply

f(v + w) ≤ σ

2
(f(v) + f(w)), (5.11)

f(tz) ≤ σ

2
(tf(z) + (2− t)f(0)), (5.12)

for every v,w, z ∈ RnN , for every t with 1 < t < 2. We now use (5.11), the property
of the “cut off” function 0 ≤ η ≤ 1 and the convexity of f :

(II) ≤ σ

2

∫
B1−δ/2\B1−3δ/4

ηf(Du ? ρε) +

+
σ

2

∫
B1−δ/2\B1−3δ/4

(1− η)f(D(u∗ + (u0 ◦ rε) ? ρε))

+
σ

2

∫
B1−δ/2\B1−3δ/4

f(Dη[u ? ρε − (u∗ + (u0 ◦ rε) ? ρε)])

= (IV ) + (V ) + (V I). (5.13)

Application of (5.9) with ũ = u and A = B1−δ/2 \B1−3δ/4 gives us

(IV ) ≤ σ

2

∫
B1\B1−δ

f(Du). (5.14)

In order to deal with (V ), we recall that u = u∗ + u0, thus

u∗ + (u0 ◦ rε) ? ρε = (u ◦ rε) ? ρε + u∗ − (u∗ ◦ rε) ? ρε,
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then, with the aid of (5.11) we get

(V ) ≤ σ2

4

∫
B1−δ/2\B1−3δ/4

f(D((u ◦ rε) ? ρε)) +

+
σ2

4

∫
B1−δ/2\B1−3δ/4

f(Du∗ −D((u∗ ◦ rε) ? ρε)) = (V II) + (V III). (5.15)

We use (5.9) with ũ = u ◦ rε and A = B1−δ/2 \B1−3δ/4:

(V II) ≤ σ2

4

∫
B1−δ/4\B1−δ

f(D(u ◦ rε)) =
σ2

4

∫
B1−δ/4\B1−δ

f(
1

1− εDu ◦ rε),

where we computed Drε = 1
1−εId. Now we use (5.12) and we change variables;

eventually, we get

(V II) ≤ σ3

4

∫
B1\B1−δ

[f(Du) + f(0)]. (5.16)

Nearly in the same way, we obtain

(V III) ≤
∫

B1\B1−δ

{σ
3

8
f(Du∗) +

σ4

8
[f(−Du∗) + f(0)]}. (5.17)

The inequalities (5.15-17) yield

(V ) ≤
∫

B1\B1−δ

[
σ3

4
f(Du) +

σ3

8
f(Du∗) +

σ4

8
f(−Du∗) + (

σ3

4
+
σ4

8
)f(0)]. (5.18)

In order to deal with (V I), we recall the growth condition (2.3):

(V I) ≤
∫

B1\B1−δ

σ

2
L+

∫
B1−δ/2

σ

2
L|Dη|q|u ? ρε − (u∗ + (u0 ◦ rε) ? ρε)|q. (5.19)

Now we use the minimality property (2.13) of u, boundedness (2.11) of the bound-
ary datum u∗ and assumptions (2.8-10): maximum principle is available, [DLM],
thus

u ∈ L∞(Ω).

Since u0 = u− u∗, we get
u0 ∈ L∞(Ω), (5.20)
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thus

‖u ? ρε − (u∗ + (u0 ◦ rε) ? ρε)‖Lq(B1−δ/2) =
= ‖u∗ ? ρε − u∗ + (u0 − u0 ◦ rε) ? ρε‖Lq(B1−δ/2)

≤ ‖u∗ ? ρε − u∗‖Lq(B1−δ/2) + ‖(u0 − u0 ◦ rε) ? ρε‖Lq(B1−δ/2)

≤ ‖u∗ ? ρε − u∗‖Lq(B1−δ/2) + ‖u0 − u0 ◦ rε‖Lq(B1−7δ/16). (5.21)

Because of the integrability properties (2.11) and (5.20), inequality (5.21) shows
that

(Dη)(u ? ρε − (u∗ + (u0 ◦ rε) ? ρε))→ 0 in Lq(B1−δ/2), as ε→ 0. (5.22)

Inequalities (5.13-14), (5.18-19) merge into

(II) ≤ (σ(1 + L) +
σ3

2
+
σ4

4
)×

×
∫

B1\B1−δ

[f(Du) + f(Du∗) + f(−Du∗) + 1 + f(0)]

+
σ

2
L

∫
B1−δ/2

|(Dη)(u ? ρε − (u∗ + (u0 ◦ rε) ? ρε))|q. (5.23)

In order to deal with (III), we keep in mind that η = 0 in B1 \ B1−δ/2, thus
Dvε = D(u∗ + (u0 ◦ rε) ? ρε) = D(u ◦ rε) ? ρε +Du∗ −D(u∗ ◦ rε) ? ρε. We now use
(5.11) and we obtain

(III) ≤ σ

2

∫
B1\B1−δ/2

f(D(u ◦ rε) ? ρε) +

+
σ

2

∫
B1\B1−δ/2

f(Du∗ −D(u∗ ◦ rε) ? ρε)

= (X) + (XI). (5.24)

We use (5.9) with ũ = u◦rε and A = B1 \B1−δ/2, then we apply (5.12), eventually
we change variables and we get

(X) ≤ σ

2

∫
B1+δ/4\B1−3δ/4

f(D(u ◦ rε)) =
σ

2

∫
B1+δ/4\B1−3δ/4

f(
1

1− εDu ◦ rε)

≤ σ2

2

∫
B1+δ/4\B1−3δ/4

[f(Du ◦ rε) + f(0)]

≤ σ2

2

∫
B1+δ\B1−δ

[f(Du) + f(0)]. (5.25)
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Using growth condition (2.3), Lq estimates for mollification and changing variables,
we obtain

(XI) ≤ σ

2

∫
B1\B1−δ/2

(1 + L2q|Du∗|q + L2q|D(u∗ ◦ rε) ? ρε|q) ≤

≤ σ
∫

B1+δ\B1−δ

(1 + L3q|Du∗|q). (5.26)

Estimates (5.24–26) merge into

(III) ≤ (σ + σ2)
∫

B1+δ\B1−δ

[f(Du) + f(0) + 1 + L3q|Du∗|q]. (5.27)

We put together the inequalities (5.8), (5.10), (5.23), (5.27):∫
Ω

f(Dvε) ≤
∫
Ω

f(Du) +

+c10

∫
B1+δ\B1−δ

[f(Du) + f(Du∗) + f(−Du∗) + f(0) + 1 + L3q|Du∗|q]

+σL
∫

B1−δ/2

|(Dη)(u ? ρε − (u∗ + (u0 ◦ rε) ? ρε))|q, (5.28)

where c10 = σ(2 +L) +σ2 +σ3 +σ4. For every τ > 0, there exists δ = δτ > 0 such
that

c10

∫
B1+δ\B1−δ

[f(Du) + f(Du∗) + f(−Du∗) + f(0) + 1 + L3q|Du∗|q] ≤ τ

2
. (5.29)

For such δ = δτ , because of (5.22), there exists ε = ετ > 0 such that

σL

∫
B1−δ/2

|(Dη)(u ? ρε − (u∗ + (u0 ◦ rε) ? ρε))|q ≤
τ

2
. (5.30)

With these parameters δ = δτ and ε = ετ , the resulting function vε verifies (5.7),
thus it belongs to u∗ +W 1,q

0 (Ω). Moreover, collecting (5.28-30) yields∫
Ω

f(Dvε) ≤
∫
Ω

f(Du) + τ,

thus, (5.2) is proven with w = vε. This ends the proof. �
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REMARK. We quote [B] and its references for more information on the Lavrentiev
phenomenon. Let us mention the approximation technique of Remark 3.4 in [B]:
unfortunately, such a method does not seem to preserve the boundary value u∗.
In our Lemma 2.1, the approximating functions vε are required to agree with u∗

on ∂Ω: this requirement makes the proof a little bit difficult.
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