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Abstract

A class of scalar autonomous parabolic equations, nonlinear with respect
to the unknown and its gradient, is investigated. The main topic of this
paper is the convergence of the solutions of the Cauchy Problem towards
solutions which exhibit, modulo a linear growth in time, periodic spatio-
temporal oscillations. Different generalizations are discussed.

1 Introduction, main results

Let a function u(x1, . . . , xN ) ∈ C(RN) be called “1-periodic in x” if it is 1-periodic
with respect to xi, for every i ∈ {1, . . . , N}. The purpose of this paper is to
investigate the long-time behaviour of the solutions of parabolic equations of the
form

ut −∆u = f(x, u,∇u), x ∈ RN (1.1)

and its following u-independent version

ut −∆u = f(x,∇u), x ∈ RN (1.2)

with f(x, r, p) 1−periodic in x and r. In addition to the fact that the above problem
is interesting on its own, our motivation for this study comes from a physical
problem, namely the propagation of flame fronts in a solid medium having periodic
striations, cf. [2] and [3], where equations similar to (1.1) and (1.2) are encountered.
See Appendix for a more detailed justification.

The function f shall be assumed to satisfy the following assumptions:
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(H1) • there exist 0 < m < M such that

m ≤ f(x, u, p) ≤M(1 + |p|),
|fx(x, u, p)|+ |fxx(x, u, p)|+ |fu(x, u, p)|+ |fuu(x, u, p)| ≤M(1 + |p|)

for every (x, u, p) ∈ RN ×R× RN .
(H2) • The derivatives fp and fpp are uniformly bounded.

The reader will notice that the nonlinearity f(x, u, p) = R(x, u)
√

1 + |p|2
of the Appendix fits into the above assumptions. Much less smoothness would
produce the same results, but being interested in qualitative properties, we may
afford to be very lavish with smoothness. What is important is the existence of a
global nonlinear semigroup associated to (1.1), denoted by S(t); a property which
is implied by (H1) and (H2).

Let us denote, for u(t, x) ∈ C(R+ ×RN ):

for any t0 > 0: τt0u(t, x) = u(t+ t0, x)

for any vector E ∈ RN : τeu(t, x) = u(t, x+ e)

Also, for the same u(t, x), let us set

< u > (t) =
∫

[0,1]N
u(t, x) dx.

These two notations will be of constant use in the sequel.

Theorem 1.1 Assume that, for every p ∈ RN , the function fu(., ., p) is nonzero.
Then there exists a unique T > 0, and a unique – up to the translations in time –
function ϕ(t, x) ∈ C2(R×RN ), T -periodic in t, and 1-periodic in x, such that the
function

φ(t, x) =
t

T
+ ϕ(t, x) (1.3)

is a solution of (1.1).
Furthermore, let u0(x) be a C2 function, 1-periodic in x. There exists t0 ∈ R and
ω > 0 such that

‖S(t)u0 − τt0φ(t)‖C1(RN ) ≤ Ce−ωt.

The function φ will be called a periodic front.
When f does not depend on u anymore, periodic in time solutions become

stationary. This is accounted for by the next result.

Theorem 1.2 Assume that f(x, u, p) = f(x, p) for all u ∈ R. Then there exists a
unique λ > 0, and a unique – up to constants – function ϕ(x) ∈ C2(RN ), 1-periodic
in x, such that the function

φ(t, x) = λt+ ϕ(x) (1.4)



Vol. 4, 1997 Convergence to periodic fronts in a class of semilinear parabolic equations 523

is a solution of (1.2). Furthermore, let u0(x) be a C2 function, 1-periodic in x.
There exists t0 ∈ R and ω > 0 such that

‖S(t)u0 − τt0φ(t)‖C1(RN ) ≤ Ce−ωt.

As we shall see, the function ϕ(x) satisfies a nonlinear elliptic equation, but it will
be more convenient to work on the evolution equation. We also see that all the
translations in time for φ(t, x) are solutions of (1.2).

The above-mentioned convergence results deal with solutions that are initially
1-periodic in x. When this is not so, we may still say something about the long-time
behaviour of the solutions, although the results are less precise. We only give the
result when f is truly dependent on u. In this case, the function v(t, x) = u(t, x)− t

T
is a solution of

vt −∆v = f(x,
t

T
+ v,∇v)− 1

T
= g(t, x, v,∇v) (1.5)

The function g is T -time periodic, thus (1.5) defines a discrete dynamical system,
defined by T u0 = S(T )u0.

Theorem 1.3 For any C2 function u0 such that u0 and its gradient are bounded
and uniformly continuous on RN , the ω-limit set of u0 – with respect to the local
uniform convergence, and for the discrete dynamical system T – contains only
periodic fronts. Furthermore, there exists a finite time t∗(u0) and δ > 0 such that

∀t ≥ t∗, ∂t(S(t)u0) ≥ δ. (1.6)

This time-monotonicity in finite time implies the L∞-stability for every trajectory.
We wish to point out that Theorem 1.3 is optimal. To see this, let us write

down the solution of the heat equation on R; for any bounded uniformly continuous
function u0 there holds

S(t)u0(x) =
∫ +∞

−∞
e−z

2
u0(x+ 2

√
tz) dz;

an expression for which, in the case of a general u0, no compactness – with respect
to the uniform topology – holds.

Let us also point out that the optimal space for the initial data u0 in the
above theorems will be defined in the course of the proofs.

The paper is organized as follows. The second section is devoted to the discus-
sion of existence of periodic, or steady solutions to (1.1) and (1.2). The long-time
behaviour of the solutions is examined in Section 3. Finally, a survey of the physical
background that motivated our study is given in Appendix.
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2 Existence and uniqueness

Let us first deal with the functions φ, defined by (1.3), solutions of (1.1), and let
us prove their uniqueness.

Lemma 2.1 There is at most one T > 0 and one – up to additive constants –
function ϕ(t, x), T -periodic in time and 1-periodic in x, such that the function
φ(t, x) defined by (1.3) is a solution of (1.1).

Proof. Assume that there are two such functions: φi(t, x) associated to the periods
Ti and functions ϕi. Let t1 and t2 be defined as

t1 = sup{t ∈ R : τtφ1(0) < φ2(0)}

t2 = inf{t ∈ R : τtφ1(0) > φ2(0)}
There exist x1 and x2 such that φ1(t1, x1) = φ2(0, x1), and φ1(t2, x2) = φ2(0, x2).
From the maximum principle we have S(t)τt1φ1(0) ≤ S(t)φ2(0) ≤ S(t)τt2φ1(0), in
other words:

t+ t1
T1

+ ϕ1(t+ t1, x) ≤ t

T2
+ ϕ2(t, x) ≤ t+ t2

T1
+ ϕ1(t+ t2, x). (2.1)

Dividing (2.1) by t and letting t → +∞ yields: T1 = T2. But this implies that,
at t = T1, we have, by periodicity and the expression of φi: S(T1)φ1(t1, x1) =
S(T1)φ2(0, x1). This situation is forbidden by the strong maximum principle ap-
plied to the linear parabolic equation satisfied by

ψ(t, x) = φ1(t+ t1, x)− φ2(t, x). �

Let us now deal with the existence proof of Theorem (1.1). The basic ingredi-
ent is a topological degree argument applied to a suitable mapping. We shall look
for our solution φ(t, x) under a slightly different form to what was announced,
namely we decompose our unknown as

φ(t, x) = p(t) + ξ(t, x); with p(t) :=< φ > (t).

It will be our task to show a posteriori that p(t) can be written as the sum of a
linear function and a periodic one, and that ξ(t, x) is time-periodic. System (1.1)
is rewritten as ṗ =< f(., p+ ξ,∇ξ) >

ξt −∆ξ = f(x, p+ ξ,∇ξ)− < f(., p+ ξ,∇ξ) >
< ξ > (t) = 0

(2.2)

This helps us see that, in order to have ξ time periodic of period T , we must not
merely demand the equality ξ(T ) = ξ(0); we have to add a requirement on the
first equation of (2.2). Namely, we wish to have ṗ(T ) = ṗ(0); this would ensure the
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time periodicity of the whole function φ, in view of the uniqueness for the Cauchy
problem associated to (2.2). A sufficient condition to achieve this is to have, due
to the 1-periodicity in u of the function f , p(T ) ∈ N; the simplest way to achieve
this is therefore to require∫ T

0
< f(., p+ ξ,∇ξ) > dt = 1. (2.3)

A solution to (2.2) satisfying this condition will be referred to as “time-periodic”,
without any other precision. In view of Assumption (H1), we get an upper bound
for T :

T ≤ 1
m
. (2.4)

Remark 2.2 At this stage, nothing excludes solutions of (1.1) having zero time-
derivatives, as the solutions of (1.2). Let us only notice that we may, using the
assumptions on f , plug (1.4) into (1.1), and realize that such a function cannot be
a solution. Hence we have true time-periodicity. �

The main step is an a priori estimate for the time-periodic solutions ξ of (2.2). In
this scope, let X be the space of all continuous functions on RN , 1-periodic. For
α ∈ [0, 1] we denote by Xα the usual domain of (−∆ + 1)α in X; see [5]. We select
once and for all a real number α ∈]0, 1[ such that

Xα ⊂ C1(RN ).

Lemma 2.3 Let (fτ (x, u, p))τ∈[0,1] be a family of functions satisfying Assump-
tions Hi, i ∈ 1, 2, with common upper and lower bounds. There exists a constant
C > 0, independent of τ , such that, for every solution (pτ , ξτ ) of System (2.2)
with nonlinearity fτ , with period T τ , we have

‖ξτ‖L∞([0, 2
m ],Xα) ≤ C. (2.5)

Let us notice that we have allowed, in our definitions of “periodic functions”,
functions ξ(t, x) that may identically vanish. This will be of help in the course of
the existence proof.

Proof of Lemma 2.3. Assume by contradiction the existence of a sequence (τn)n∈N
such that the corresponding solutions (pn, ξn), with periods Tn, satisfy, in addition
to the assumptions of the lemma, the property

lim
n→+∞

‖ξn‖L∞([0, 2
m ],Xα) = +∞.

Let us therefore set

ζn(t, x) =
ξn(t, x)

‖ξn‖L∞([0, 2
m ],Xα)

.
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We may always assume that the periods Tn are bounded away from 0; and therefore
– up to extraction of a subsequence – converge to some T > 0. If this were not
so, we would consider the sequence T̃n := γ[ 1

Tn ]Tn, where γ is chosen so as to
render that quantity less than 2

m and where [a] stands for the integer part of a.
The sequence T̃n is this time bounded from above and below, independently of n.

On the interval [0, 2
m ], the following convergence results hold, up to a subse-

quence.

• ζn → ζ∞ in C1+β, 1+β
2 ([0, 2

m ]× RN ), for all β ∈]0, 1[
• ζn → ζ∞ in L∞([0, 2

m ],Xβ), for all β ≥ α
• f(.,pn+ξn,∇ξn)−f(.,pn+ξn,0)

‖ξn‖
L∞([0, 2

m
],Xα)

⇀ f̃(t, x) in Lp weak ∗, for 1 < p < +∞.

The first convergence result holds true because of smoothness estimates for para-
bolic equations with nonsmooth coefficients – see [6]; Chapter 3 – and the time-
periodicity of the solutions. Moreover there holds |f̃(t, x)| ≤ ‖f‖Lip.

To sum up, we have found a solution to the following inequality:

∂tζ∞ −∆ζ∞ − f̃ ∇ζ∞|∇ζ∞| .∇ζ∞ ≤ 0
ζ∞(0) = ζ∞(T )

ζ∞ is 1-periodic in x

In the above parabolic inequality, the coefficient ∇ξ∞
|∇ξ∞| trivially belongs to

L∞(R+ × R); therefore the Harnack inequalities are applicable and imply that
ζ∞ is a constant. Therefore ζ∞ has to be zero because it has zero mean. However,
the second convergence result implies that ‖ζ∞‖L∞([0, 2

m ],Xα) = 1, a contradiction.
�

Corollary 2.4 Let (fτ )τ∈[0,1] be as above. There exists M > 0, independent of
τ such that, for every solution (pτ , ξτ ) of System (2.2) with nonlinearity fτ , with
period T τ , and which satisfies pτ (0) = 0, the following estimates hold:

1
M
≤ T τ ≤ 1

m
, ‖ξτ‖C2([0, 2

m ]×RN ) ≤M.

Proof. The lower bound follows from the gradient estimate for ξτ and the condition
(2.3). The additional smoothness follows from the smoothness of f – Assumption
H2 – and the standard parabolic estimates. �
Proof of Theorem 1.1, existence part. We choose the simplest deformation available
for fτ , namely:

fτ = τf + 1− τ.
Let us set

Y = {(T, ξ0) ∈]
1

2M
,+∞[×Xα}
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and let (pτ , ξτ ) be the solution of the Cauchy problem for (2.2) with f = fτ and
(pτ (0), ξτ (0)) = (0, ξ0). Let Fτ be the mapping from Y to Y such that

Fτ (T, ξ0) = (T + 1− pτ (T ), ξτ (T )).

Our problem is reduced to finding a zero of the mapping IdY −Fτ . From Corollary
2.4, the operator Fτ is a compact operator of Y ; moreover, from the same corollary,
there exists a bounded open subset V of Y such that the zeroes of IdY −Fτ lie in
V . Therefore, by homotopy invariance,

deg(IdY −F1, 0, V ) = deg(IdY −F0, 0, V ).

However, finding the zeroes of IdY −F0 amounts to studying the totally uncoupled
problem {

ṗ = 1
ξt −∆ξ = 0 (2.6)

From the strong maximum principle, the only zero of IdY −F0 is the couple
(1, 0); moreover, by Fredholm alternative, the operator IdY −F0 is an isomorphism
of Y . Therefore

deg(IdY −F0, 0, V ) = 1,

which implies the existence of T and ϕ. �
Let us notice that the above proof is valid for Theorem 1.2. Let us however

give a more direct proof.

Proof of Theorem 1.2, existence part. Plugging (1.4) into (1.2) yields the following
elliptic system:

−∆ϕ = f(x,∇ϕ)− < f(x,∇ϕ) >
ϕ is 1-periodic in x

< ϕ > = 0
(2.7)

At a point x0 where ϕ reaches its maximum, we have

< f(x,∇ϕ) >≤ f(x0, 0) ≤ ‖f(., 0)‖∞.

Then assume that there exists a sequence of solutions (ϕn)n such that ‖ϕn‖∞ →
+∞; reasoning as above we see that the sequence (ϕ̃n)n, with

ϕ̃n =
ϕn
‖ϕn‖∞

(2.8)

converges strongly to a solution ϕ∞ of an equation of the form

−∆ϕ∞ − f̃ |∇ϕ∞| = 0
ϕ∞ is 1-periodic in x

< ϕ∞ > = 0
(2.9)

This implies ϕ∞ = 0, contradicting (2.8). This allows us to apply a topological
degree argument to equation (2.7). �

We shall come back to this problem in a future paper, in the framework of
Hamilton-Jacobi equations.
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3 Convergence to periodic or steady solutions

We start with the most complicated case (1.1), then explain what modifications
are necessary to handle (1.2). Therefore let us denote by φ(t, x) the solution con-
structed in Section 3, defined by (1.3), such that < φ > (0) = 0.

Lemma 3.1 There holds φt > 0 in R× RN .

Proof. Let us recall that φ(t,.)
t → 1

T as t→ +∞; therefore there exists t0 > 0 such
that φ(t0, .) ≥ φ(0, .). As a consequence there holds φ(t + t0, .) ≥ φ(t, .) for every
t > 0. Let us set

τ0 = inf{t0 > 0 : ∀t ≥ 0, φ(t+ t0, .) ≥ φ(t, .)}.

Let us assume τ0 > 0. From the spatial periodicity of φ, there exists x0 ∈ [0, 1]N

such that φ(τ0, x0) ≥ φ(0, x0). From the time periodicity of φ, we have φ(T +
τ0, x0) ≥ φ(T, x0). However, the function ψ(t, x) := φ(t+ τ0, x)−φ(t, x) satisfies a
linear parabolic equation, to which the strong maximum principle may be applied,
implying that ψ is a constant in space and time; a contradiction. �

Let us then consider the linearized operator about φ, that we will denote by
L(t):

L(t) = −∆− fp(x, φ,∇φ).∇− fu(x, φ,∇φ),

Its domain is the space X1, as defined in Section 2. We introduce the evolution
system associated to L(t), denoted by U(t, s), namely: for every ψ ∈ Xα, the
function u(t) = U(t, s)ψ is a solution of

u̇+ L(t)u = 0, u(s) = ψ. (3.1)

The Poincaré map is then U(t, t + T ); its spectrum shall be denoted by σ(U(t)),
and its range by R(U(t)). The main feature to be noticed is that L(t) has time-
bounded coefficients, although φ is unbounded in time. Therefore, the standard
stability theorems may be used, without one single change in their proofs. Let us
denote by Bρ(0) the ball of the complex plane of radius ρ and centre 0.

Lemma 3.2 The following properties are true.
(i). φt is a simple eigenvector for U(t), associated to the eigenvalue 1.
(ii). The rest of the spectrum of U(t) is made up of eigenvalues; moreover there
exists ρ ∈]0, 1[ such that σ((U(t))\{0} lies in Bρ(0).

Proof. From [5], Lemma 7.2.2, the set σ((U(t))\{0} does not depend on time. On
the other hand, U(t) is a compact positive operator; it even sends the positive cone
of X into its interior. Finally we see, just by differentiating (1.1), that U(t)φt = φt.
However, from Lemma 3.1, the function φt is positive; a single application of Krein-
Rutman’s Theorem yields both (i) and (ii). �

We effortlessly end up with an orbital stability result, namely
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Theorem 3.3 Let u(t, x) be a solution of (1.1), such that u0 ∈ Xα. Set

ε = ‖u0 − φ(0, .)‖α.

If ε is small enough, then there exists t0 ∈ R such that

‖S(t)u0 − τt0φ(t, x)‖α = O(e−ωt).

Proof. Once Lemma 3.2 is proved, a direct application of Theorem 8.2.3 f [5] yields
the result. �

Here, we notice that we are in quite an unusual situation. Indeed, the periodic
solution of an autonomous parabolic equation is systematically unstable, due to the
same Krein-Rutman’s Theorem that we have used a few lines above. The reason
why we have a stable solution comes of course from the addition of a nonzero mean
velocity.

Let us end the local stability problem by saying that the above considerations
apply word by word to the u-independent problem. Indeed we may consider a
Poincaré map as defined in (3.1) by choosing any T > 0 to our convenience.
However, if we really wish to give an independent proof to the corresponding
version of Theorem 3.3, we may proceed as follows. We simply rewrite equation
(1.2) in πX, where π represents the projection onto the space of the functions with
zero mean. We obtain, still denoting the unknown by u:

ut −∆u = f(x,∇u)− < f(x,∇u) >
u(t) ∈ πX

The linearized operator is this time

Lh = −∆h− fp(x,∇ϕ(x)).∇h −
∫

[0,1]N
fp(x,∇ϕ(x)).∇h dx

Lemma 3.4 There exist ω > 0, θ ∈]0, π2 [ such that

σ(L) ⊂ {λ ∈ C : |arg (λ− ω)| ≤ θ}.

Proof. The operator L has compact resolvent; therefore it is enough to study its
eigenvalues. Let λ ∈ C\{0} be an eigenvalue of L, with nonpositive real part; let
h be an eigenfunction. The spectrum of the operator

h 7→ L1h := −∆h− fp(x,∇ϕ(x)).∇h

with domain in the functions with zero mean, lies in the strict right half-plane. A
possible solution of Lh = λh being

h =
∫

[0,1]N
fp(x,∇ϕ(x)).∇h dx,

it is therefore the only solution. But this implies that h = 0.
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If λ = 0, we just multiply the equation Lh = λh by a positive function e∗

satisfying L∗1e∗ = 0; this implies∫
[0,1]N

fp(x,∇ϕ(x)).∇h dx = 0,

this implies in turn that L1h = 0 and therefore h = 0, since h has zero mean. �
Proof of Theorem 1.1. The semigroup T is strongly order-preserving in Xα; see [4]
for a definition. Moreover, every periodic front is stable by Theorem 3.3. Theorem
2 of [4] states that any trajectory staying in an interval of Xα converges to a fixed
point of T , which concludes the proof. The proof of Theorem 1.2 is contained in
the above arguments. �

Let us turn to the proof of Theorem 1.3. For this let Y be the set of all
bounded, uniformly continuous real-valued functions of RN , endowed with its nat-
ural topology. For α ∈ [0, 1] let Y α be the domain of (−∆ + 1)α in Y . Then T
defines a discrete semigroup on Y α, for α ∈ ] 1

2 , 1[. Let us recall that, for any initial
datum u0, the ω-limit set of u0 is defined by

ω(u0) = {ψ ∈ Y α : ∃nk → +∞, T nku0 → ψ}.
In the above innocent looking convergence arrow for T nku0 lie all our difficulties: if
we take the convergence in the Y α norm, we may well find that ω(u0) is empty, due
to the lack of control of the solution as x→ ±∞. Moreover the semigroup T is not
strongly order-preserving; it is only order preserving. Therefore the convergences
will always be assumed to hold, unless otherwise specified, in the C1

loc topology.

Proposition 3.5 For any u0 ∈ Y α, every element of ω(u0) is a 1-periodic func-
tion.

Proof. The idea is the same as in [7]; it is the parabolic version of the sliding
method of Berestycki and Nirenberg [1]. This time we make translations both in
time and space. Let B denote the canonical basis of RN .

Let us introduce σ ≥ 0 defined as follows:

Σ(t) = {s ≥ 0 : ∀s′ ≥ s, ∀e ∈ B, τs′τeS(t)u0 ≥ S(t)u0}
σ(t) = inf Σ(t)
σ = limt→+∞ σ(t)

(3.2)

It is obvious that Σ(t) is closed, nonempty, that its infimum is time-decreasing,
and thus that σ is finite. Let us assume that σ > 0. There exists a sequence (tn)n,
going to +∞, a sequence (xn)n and a vector e of B, such that

limn→+∞

(
τσ(tn)τeu0(xn)− S(t)u0(xn)

)
= limt→+∞ infe∈B, x∈RN

(
τσ(t)τeu0(x)− S(t)u0(x)

)
= 0

(3.3)

Let us write xn = [xn] + yn, denoting by [xn] the integer part of xn; let us also set
tn = pnT + qn, 0 ≤ qn < T . The point yn is thus confined in the unit cube; hence
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the sequence (yn)n may be assumed to converge towards some y∞ belonging to
the unit cube, as may be assumed to converge – towards q∞ – the sequence (qn)n.
The sequence

(
τ[xn]S(t + pnT − 1)u0 − pn

)
n

may also be assumed to converge,
in C2

loc(R+ × RN ), towards a function u∞(t, x), solution of (1.1), and which is
uniformly bounded in time.

u∞(t, x) =
t

T
+ v∞(t, x),

the function v∞ being bounded on R+ ×RN . However, the sequence of equalities
(3.3) imply that

t+σ
T + v∞(t+ σ, x+ e) ≥ t

T + v∞(t, x)
1+q∞+σ

T + v∞(1 + q∞ + σ, y∞ + e) = 1
T + v∞(1, y∞)

The strong maximum principle implies that there holds everywhere:
t+ q∞ + σ

T
+ v∞(t+ q∞ + σ, x+ e) =

t

T
+ v∞(t, x).

This is impossible because the function v∞ is bounded.
As a consequence, σ = 0. This means exactly that, for every ψ ∈ ω(u0) and

every e ∈ B: τeψ ≥ ψ. This implies the 1-periodicity of ψ. �
Corollary 3.6 Every element of ω(u0) is 1-periodic in x.

Proof. From Theorem 1.1, for every ψ ∈ ω(u0), the ω-limit set of ψ contains a
unique periodic front. We conclude by using the invariance of ω(u0) under the
discrete semigroup. �

Let us end this section by proving time-monotonicity in finite time of the
solutions of (1.1). We point out that any of the properties that are displayed
here would imply the convergence of all trajectories if compactness in Y α held. In
particular, their conjunction may be viewed as an alternative method to the result
of Dancer and Hess in the periodic case.

Lemma 3.7 For any u0 ∈ Y α there holds

lim inf
t→+∞

inf
x∈RN

∂tS(t)u0 ≥ 0.

Proof. This is basically the same idea as in the preceding proposition. Define σ as
in (3.2), but this time we do not take into account the translations in space. We
end up with σ = 0, which is the desired property. �
Proof of Theorem 1.3 (end). It is sufficient to prove that

lim inf
t→+∞

inf
x∈RN

∂tS(t)u0 > 0.

Assume this is false. Then there exists a sequence (xn)n and a sequence (tn)n,
limn→+∞ tn = +∞, such that

lim
n→+∞

∂t
(
S(tn)u0(xn)

)
= 0.
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Writing once again xn = [xn] + yn, tn = pnT + qn – with 0 ≤ qn < T – we may
assume that the sequence (un)n, defined by

un(t, x) = τ[xn]S(t− 1 + pnT )u0(x)− pn

converges to a function u∞(t, x) such that there exists a point y∞ ∈ RN for
which ut(1 + q∞, y∞) = 0. The strong maximum principle implies that u∞ does
not depend on time. It is therefore a steady solution of (1.1), which is clearly
impossible due to Assumption H1. �

As said in the introduction, Theorem 1.3 admits a corollary which will be
our conclusion.

Proposition 3.8 For every u0 ∈ Y α, the trajectory (S(t)u0)t≥0 is L∞-stable
in Y α.

Proof. Let us start by deriving the following estimate for ∂t(S(t)u0):

‖∂t(S(t)u0)‖α ≤M (3.4)

for some M > 0. Indeed there exist t1 and t2 such that

φ(t+ t1, x) ≤ S(t)u0 ≤ φ(t+ t2, x),

with φ given by Theorem 1.1. Now if we set

w(t, x) = S(t)u0 −
t

T
,

one gets the following uniform bound for w

‖w(t, .)‖∞ ≤ C1, (3.5)

and it is easy to see that w verifies

wt −∆w − bi(t, x)wxi = c(t, x), (3.6)

with
bi(x, t) =

f(x, S(t)u0,∇w)− f(x, S(t)u0, 0)
‖∇w‖

∇w
‖∇w‖wxi .

Due to the hypotheses (H1) and (H2), it is clear that the equation (3.6), considered
as a linear parabolic one, has uniformly bounded coefficients, so that one can use
parabolic estimates with nonsmooth coefficients (chapter 3, [6]) to get uniform
bounds of w in Holder estimates which lead to

‖w(t, .)‖α ≤ C2. (3.7)

By using (3.7) and parabolic estimates with smooth coefficients, we then get

‖∂tw(t, .)‖α ≤ C3,

and finally (3.4).
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Note that, being interested in large values of t, we do not bother about singularities
which may occur near t = 0.

Now let v0 belong to Y α, and satisfy ‖u0 − v0‖α ≤ ε. From the continuity
with respect to the initial datum, there holds

‖S(t0)u0 − S(t0)v0‖α ≤ Cε,

for some sufficiently large value of t0 > t∗. If ε > 0 is small enough – namely
εC
δ < 1 – there holds

S(t0 −
εC

δ
)u0 ≤ S(t0)v0 ≤ S(t0 +

εC

δ
)u0

Therefore, for every t ≥ 0, there holds

S(t+ t0 −
εC

δ
)u0 ≤ S(t+ t0)v0 ≤ S(t+ t0 +

εC

δ
)u0.

The above inequalities together with (3.4) yield

‖S(t)u0 − S(t)v0‖∞ ≤
MCε

δ
;

to get this inequality in the Y α norm we once again apply the parabolic estimates
with smooth coefficients [6]. �
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Appendix

Let Γ(t) represent a propagating interface at time t. Then, in its classical formu-
lation, Γ propagates normal to itself with velocity

Vn = R+ k

where k is a curvature term and R, a given driving force. In the case of flame
propagation, R can be viewed as the combustion rate and is therefore an intrinsic
property of the material. In our case, the latter will be heterogeneous so that R
will have a spatial dependence.

Consider now Γ(t) as the zero level set of a function Φ(x, t) defined in the
whole domain, i.e.

Γ(t) = {x ∈ RN/Φ(x, t) = 0}.

Then if x(t) is the trajectory of a particle located on this level set, the normal
velocity will be given by

Vn =
dx

dt
.n, where n =

∇Φ
|∇Φ| .

By the chain rule, we then have

Φt +∇Φ
dx

dt
= 0,

and substitution yields the following Hamilton-Jacobi type equation

Φt − (R+ k)|∇Φ| = 0, (A.1)

with the curvature term given by k = ∇.n. Now if we suppose a parametric
representation of Γ, i.e

Γ(t) = {x = (x′, xN )/Φ(x, t) = xN − u(x′, t) = 0},

then (A.1) becomes

ut −R(x′, u)
√

1 + |∇u|2 = G(∇u,∇2u), (A.2)
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the curvature k being contained in the second order term G. Note that in this para-
metric formulation, R depends also on u, so that (1.1) appears as an approximated
version of (A.2) with

f(x, u, p) = R(x, u)
√

1 + |p|2

and the second order term G replaced by the viscosity term ∆u. That this modified
version (1.1) is reasonable, at least for qualitative behaviour of propagating fronts,
is motivated by the following numerical simulations.

Consider the two dimensional case so that x′ = x and xN = y andG =
uxx

1 + u2
x

.

Then y = u(x, t) gives the position of the front and we are interested in the
equations

ut −R(x, u)
√

1 + u2
x = g

u(x, 0) = u0(x) (A.3)

where R is periodic in both directions and u0 periodic in x. A typical set up would
be a medium with periodically displayed oblique striations, Fig. 1. Note that a
medium with horizontal striations would lead to an equation of type (1.2).

α

y

x

Figure 1: Propagation of a front in a medium with oblique striations.

Figures 2 and 3 show the numerical results obtained by solving equation with
g = G and g = ∆u respectively. We have used schemes of Godunov type for the
first order terms while g is approximated by central differences. In both cases, one
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Figure 2: Evolution of the front under curvature effect.
(ut +R(x, u)

√
1 + u2

x = G)

Figure 3: Evolution of the front with viscosity approximation.
(ut +R(x, u)

√
1 + u2

x = uxx)

can observe the setting up of a periodic pattern in time, i.e. the existence of a
period T such that u(x, t+T ) = u(x, t) +L for some constant L – in other words,
the speed of the front is T -periodic in time.
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