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Abstract. Using variational methods, we prove the existence of infinitely
many sub-harmonics for two-dimensional asymptotically linear Hamiltonian
systems with at least two periodic orbits, under non-resonance conditions.
Such a result is strictly related to a recent result by Franks, proved by com-
pletely different methods.

1 Introduction

Poincaré’s celebrated ‘last geometric theorem’ asserts that every area-preserving
homeomorphism of the annulus which twists the two boundaries into opposite
directions must have at least two fixed points [11]. This theorem was first proved
by Birkhoff [3, 4], using strictly two-dimensional tools (see [5] for a modern expo-
sition of Birkhoff’s proof).

In 1984 Conley and Zehnder proved the following result: an asymptotically
linear T -periodic Hamiltonian system in R2n which has the origin as an equilib-
rium point and such that the Maslov index of the origin differs from the Maslov
index at infinity, must have at least one T -periodic orbit, two under non-resonance
conditions [6].

Since the flow determined by a Hamiltonian system is volume-preserving and
the Maslov index is a number which measures the twist of the flow near a given
equilibrium point, the two results are strictly connected. Notice, however, that
Conley and Zehnder’s theorem holds in every dimension. Their proof is based on
the study of the action functional via Morse theory.

More recently, Franks has proved a somewhat astonishing result: every area-
preserving homeomorphism of the two-dimensional open disk with at least two
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fixed points must have infinitely many periodic points [8]. Having two fixed points
is of course essential: a rotation of an angle not commensurable with 2π has one
fixed point and no other periodic points. Again, Franks’s proof is strictly two-
dimensional.

In this paper we prove the following result: every asymptotically linear T -
periodic Hamiltonian system in R2 which has at least two periodic orbits must
have infinitely many sub-harmonics. Again, we need non-resonance conditions.
As an immediate corollary we get that a two-dimensional system having an equi-
librium point with Maslov index different from the Maslov index at infinity has
not only one periodic orbit, as proved by Conley and Zehnder, but infinitely many
sub-harmonics.

The analytical tool in our existence result is the Morse theory for the action
functional developed by Conley and Zehnder. Then our theorem follows from
a careful study of the Maslov index in dimension two and, in particular, of a
real invariant called mean winding number or twist number. Such a number was
widely used by Benci [1] and Benci-Fortunato [2], because it contains a lot of
relevant information about the periodic orbit. We show that in dimension two it
actually determines uniquely the Maslov index of a periodic orbit and of all its
iterations. As a side remark, we also show that it determines the linear stability
of the solution.

The first two sections are devoted to the study of the symplectic group
and of the Maslov index in dimension two. Our exposition is different from the
traditional one, which covers the general case (see for example [12]), and in some
sense the analysis is more accurate. Excluding the proof of the Morse relations of
Conley and Zehnder, which are only stated, the exposition is self-contained.

2 The structure of Sp(1)
and the rotation function

The symplectic group of the plane Sp(1) consists of the real matrices two by two
A such that AT JA = J , where AT is the transpose of A and

J =
(

0 1
−1 0

)
.

Equivalently
Sp(1) = {A ∈ GL(2,R) | detA = 1} .

Every invertible matrix A can be decomposed into polar form

A = PO, P = (AAT )
1
2 , O = P−1A

where P is symmetric and positive definite, O is orthogonal. This decomposition
is unique. If A is symplectic, both P and O are symplectic. Therefore O belongs
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to the group of rotations

SO(2) =

{
R(θ) =

(
cos θ − sin θ
sin θ cos θ

)∣∣∣∣∣θ ∈ R

}
.

As a topological group, SO(2) is isomorphic to S1 = {z ∈ C | |z| = 1}. Therefore
we can define the map u : Sp(1) 7→ S1 as

u(PO) = eiθ if O = R(θ) =
(

cos θ − sin θ
sin θ cos θ

)
.

Since P and O in the polar decomposition depend continuously on A, Sp(1)
is homeomorphic to the product space between S1 and the set of symmetric,
positive definite, symplectic two by two matrices. Call P the latter set.

Using the fact that every positive definite symmetric matrix is the exponen-
tial of one and only one symmetric matrix, it can be shown that P is homeomorphic
to the plane. However we are going to build a different homeomorphism, which
will make some later calculations easier.

The trace of P is the sum of its eigenvalues, which are positive and whose
product is 1. Therefore tr P ≥ 2 and we can set tr P = 2 cosh τ , with τ ≥ 0.
Then P can be written as

P =
(

cosh τ + a b
b cosh τ − a

)
.

There is a relationship between a and b determined by the determinant condition

1 = detP = cosh2 τ − a2 − b2.

The above equation makes sense if and only if |a| ≤ | sinh τ |. Therefore we can
set a = cos σ sinh τ , with σ ∈ R. Then b2 = sin2 σ sinh2 τ and we get a one-to-one
parameterization of P if we set b = sinσ sinh τ and we let σ vary in [0, 2π[. If
we consider (τ = |z|, σ = arg z) as polar coordinates on the complex plane, a
homeomorphism between C and P is given by

P =
(

cosh τ + cos σ sinh τ sinσ sinh τ
sinσ sinh τ cosh τ − cos σ sinh τ

)
.

In order to draw better pictures, it is more convenient to parameterize P with the
open unit disk D = {z ∈ C | |z| < 1}. To do this it is enough to consider polar
coordinates (r = |z|, σ = arg z) on D and to set r = tanh2 τ .

Therefore Sp(1) is homeomorphic to the product space between the circle
and the open disk, i.e. to the interior of a torus, as it is shown in Fig. 1, (see also
[9]). We will always use coordinates (θ, r, σ) as above on Sp(1).

Notice that SO(2) = {(θ, r, σ) ∈ Sp(1) | r = 0}: thus SO(2) is a deformation
retract of Sp(1). Moreover the map u defined before is just

u(θ, r, σ) = eiθ.
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Figure 1 Parameterization of Sp(1)

Therefore u restricts to the standard isomorphism from SO(2) to S1. The problem
with the map u is that it is no longer a homomorphism on the whole Sp(1),
because in general the orthogonal part and the positive definite part in the polar
decomposition do not commute.

In order to avoid this problem we want to define a map

ρ : Sp(1) 7−→ S1

homotopic to u which is still not a homomorphism but has the property that
ρ(Ak) = ρ(A)k, for every A ∈ Sp(1).

The eigenvalues of A ∈ Sp(1) must be of the form λ, 1
λ , where λ ∈ R ∪ S1.

An eigenvalue λ 6= ±1 must be therefore simple. The eigenvalues 1 and −1 are
always double.

To define ρ we need to define the Krein sign of the eigenvalues which lie
on S1 (for a complete exposition on this subject see, for example, [9] and [7]).
G = iJ is a hermitian matrix, meaning that G∗ = G, where G∗ is the adjoint of
G with respect to the standard hermitian product 〈·, ·〉 of C2: G∗ = G

T
. Assume

that A has eigenvalues λ 6= ±1 and λ of modulus one and that ξ and η are the
corresponding eigenvectors. Then

〈Gξ, η〉 = 〈A∗GAξ, η〉 = 〈GAξ, Aη〉 = λ2〈Gξ, η〉.

Since λ 6= ±1, we must have 〈Gξ, η〉 = 0. So {ξ, η} is a G-orthonormal basis of
C2. Remembering that G is hermitian and invertible, we conclude that 〈Gξ, ξ〉
and 〈Gη, η〉 are real and not zero.

Definition 2.1 If λ ∈ S1\{−1, 1} is an eigenvalue of A and ζ is the corresponding
eigenvector, the Krein sign of λ is the sign of 〈Gζ, ζ〉.

Since G has signature (1, 1), if the eigenvalue λ ∈ S1 \ {−1, 1} is Krein-
positive, the eigenvalue λ is Krein-negative. Sometimes it is useful to consider the



Vol. 6, 1999 Sub-harmonics for two-dimensional Hamiltonian systems 345

double eigenvalue λ = ±1 as a pair of eigenvalues, one of which is Krein-positive,
the other Krein-negative. The rotation of a symplectic matrix A is defined as

ρ(A) =




λ if λ ∈ S1\{−1, 1} is the Krein-positive eigenvalue of A
1 if the eigenvalues of A are real and positive
−1 if the eigenvalues of A are real and negative

.

To see that ρ : Sp(1) 7→ S1 is continuous, notice that

ρ(A) =
λ

|λ|
where λ is any eigenvalue of A, in the case λ ∈ R, and it is the Krein-positive
eigenvalue, in the case λ ∈ S1 \ {−1, 1}.

The rotation R(θ) has eigenvalues eiθ, e−iθ.

ζ =
(

cos θ + i sin θ
sin θ − i cos θ

)

is an eigenvector corresponding to eiθ. An explicit calculation shows that:

〈Gζ, ζ〉 = 2

so eiθ is Krein-positive and ρ(R(θ)) = u(R(θ)) = eiθ.
If λ is an eigenvalue of A, λk is an eigenvalue of Ak, the eigenvectors being

the same. Therefore
ρ(Ak) = ρ(A)k.

In order to study the function ρ we must find the eigenvalues of A, so we
must solve

det(λI − A) = λ2 − (tr A)λ + 1 = 0

for λ. The discriminant of this polynomial is

∆ = (tr A)2 − 4 = 4 cosh2 τ cos2 θ − 4.

A has a double eigenvalue ±1 if and only if ∆ = 0, which is equivalent to

r = sin2 θ.

So the set of symplectic matrices with double eigenvalue is the checked sur-
face depicted in Fig. 2. It consists of two connected components (remember that
the full torus has no boundary). The right component contains I and thus it
consists of matrices with eigenvalue 1. The left component contains −I and thus
it consists of matrices with eigenvalue −1.

The inequality ∆ > 0 is equivalent to

r > sin2 θ.
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Figure 2 The rotation function

Figure 3 The sets Γ+, Γ0 and Γ−

Therefore ∆ is greater than zero outside the checked surface in Fig. 2: so ρ = ±1
in that region. By continuity, ρ = 1 on the right and ρ = −1 on the left.

If A belongs to the interior of the checked surface, ∆ is less than zero and
A must have two eigenvalues λ, λ ∈ S1 \ {−1, 1}. The interior of the checked
surface consists of two components, one which contains the rotations of angle θ
with sin θ > 0, the other which contains the rotations of angle θ with sin θ < 0.
Call these regions Ω+ and Ω−, respectively. The function ρ is continuous, it never
takes the values ±1 inside the checked surface and ρ(O) = eiθ whenever O is a
θ-rotation: therefore ρ must take values on the upper half circle in Ω+, and on
the lower half circle in Ω−. These facts easily imply that the map ρ is homotopic
to the map u defined before.

We summarize the above discussion into the following proposition:

Proposition 2.1 There exists a continuous map

ρ : Sp(1) 7−→ S1 = {z ∈ C | |z| = 1}
such that:

1. ρ is homotopic to u;

2. ρ(R(θ)) = u(R(θ)) = eiθ;

3. ρ(Ak) = ρ(A)k for every A ∈ Sp(1) and for every integer k.
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3 The Maslov index

The set Sp(1) can be divided into three subsets:

Γ+ = {A ∈ Sp(1) | det(I − A) > 0}
Γ− = {A ∈ Sp(1) | det(I − A) < 0}
Γ0 = {A ∈ Sp(1) | det(I − A) = 0} .

Recall that the checked surface of Fig. 2 consists of the matrices with double
eigenvalue 1 or −1. Therefore Γ0 is the component of such surface containing I,
that is the right part.

Fig. 3 represents Γ0, Γ+ and Γ−: Γ0 is a surface with a 2-codimensional
singularity and it divides Sp(1) into two connected components, Γ+ and Γ−.
Notice that both these components are contractible in Sp(1) (also if Γ− is not
contractible in itself).

We want to associate to every continuous path

γ : [0, T ] 7−→ Sp(1) γ(0) = I, γ(T ) /∈ Γ0

an integer, which will be called the Maslov index of the path γ. Loosely speaking,
the Maslov index of γ is the number of half windings made by γ in Sp(1), Sp(1)
being divided into two components by Γ0.

The matrix −I lies in Γ+; let us fix a matrix W in Γ−: for instance

W =
(

2 0
0 1

2

)
.

The path γ : [0, T ] 7→ Sp(1) can be extended to a path γ̃ : [0, T + 1] 7→ Sp(1) in
such a way that 


γ̃(t) = γ(t) if t ∈ [0, T ]
γ̃(t) /∈ Γ0 if t ∈ [T, T + 1]
γ̃(T + 1) ∈ {−I, W}.

There exists a unique function δ̃ : [0, T + 1] 7→ R such that:

ρ(γ̃(t)) = eiδ̃(t), δ̃(0) = 0.

Notice that, since γ̃(t) /∈ Γ0 for every t ∈ [T, T + 1],

|δ̃(T + 1) − δ̃(T )| < π. (1)

Since ρ(W ) = 1 and ρ(−I) = −1, δ̃(T + 1) is an integer multiple of π.

Definition 3.1 The Maslov index of the path γ at time T is defined as

µT (γ) =
1
π

δ̃(T + 1).
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The above definition does not depend on the extension γ̃ chosen, provided
γ̃(t) /∈ Γ0: this follows from the fact that the closed loops in Γ+ and in Γ− are
contractible in Sp(1) (see Fig. 3).

A linear T -periodic Hamiltonian system in R2 has the form

ż(t) = JB(t)z(t) (2)

where B(t) is a T -periodic path of symmetric matrices.
Let γ(t) be the fundamental solution of (2), i.e. the solution of the matrix

differential problem {
γ̇(t) = JB(t)γ(t)
γ(0) = I.

Then γ(t) is symplectic for every t ∈ R.

Definition 3.2 The T -Floquet multipliers of system (2) are the eigenvalues of
γ(T ).

Definition 3.3 The linear Hamiltonian system (2) is said to be T -resonant if 1
is a T -Floquet multiplier.

If system (2) is T -non resonant, the path γ has a well defined Maslov index
µT (γ), which will be also the T -Maslov index of system (2). Moreover the system
will be kT -non resonant at least for every large prime k: this follows from the
formula γ(kT ) = γ(T )k. We would like to study the behavior of the kT -Maslov
index of system (2) as k grows up. As before, let δ : R 7→ R be the only continuous
function such that

ρ(γ(t)) = eiδ(t), δ(0) = 0.

Proposition 3.1 δ(kT ) = kδ(T ) for every k ∈ Z.

Proof. Since the system (2) is T -periodic, its fundamental solution γ satisfies

R(kT + t) = R(t)R(T )k ∀t ∈ R, ∀k ∈ Z.

In the previous section we have seen that SO(2) is a deformation retract
of Sp(1): let γλ : [0, T ] 7→ Sp(1), λ ∈ [0, 1], be a homotopy such that γ0 = γ,
γ1(t) ∈ SO(2) for every t ∈ [0, T ] and γλ(0) = I. We can extend the paths γλ

over all R by setting

γλ(t) = γλ(t − kT )γλ(T )k for t ∈ [kT, (k + 1)T ].

Then γ·(·) is continuous on (λ, t) ∈ [0, 1] × R. Let δλ : R 7→ R be the only
continuous function such that

ρ(γλ(t)) = eiδλ(t), δλ(0) = 0.
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By construction

γλ(kT + t) = γλ(t)γλ(T )k ∀t ∈ R, ∀k ∈ Z (3)

and γ1(t) ∈ SO(2) for every t ∈ R. By (3) and Proposition 2.1 (3)

ρ(γλ(kT )) = ρ(γλ(T )k) = ρ(γλ(T ))k

and so
δλ(kT ) − kδλ(T ) (4)

must be an integer multiple of 2π. Moreover the quantity (4) depends continuously
on λ and therefore

δ(kT ) − kδ(T ) = δ0(kT ) − kδ0(T ) = δ1(kT ) − kδ1(T ). (5)

So it is enough to show that the right-hand member of (5) vanishes for every
k ∈ Z.

We start with the case k > 0 and we argue by induction on k. The thesis is
true for k = 1. Assume that it is true for k = k. Since ρ is a homomorphism on
SO(2)

ρ(γ1(T + t)) = ρ(γ1(t)) · ρ(γ1(T )).

Therefore the quantity
δ1(T + t) − δ1(t) − δ1(T )

must be an integer multiple of 2π. It depends continuously on t and it vanishes
for t = 0. So

δ1(T + t) − δ1(t) − δ1(T ) = 0. (6)

For t = kT , (6) gives:

δ1((k + 1)T ) − δ1(kT ) − δ1(T ) = 0.

Since the thesis is supposed to be true for k = k, we have

δ1((k + 1)T ) − (k + 1)δ1(T ) = 0.

This proves the induction step and the thesis for k > 0. To conclude the proof
notice that formula (6) with t = −T gives

δ1(−T ) = −δ1(T ).

Then the same induction argument for negative k’s proves the Proposition.
¨

The above Proposition implies that the kT -Maslov index grows linearly with
k. This fact allows to give the following definition (see also [7]):
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Definition 3.4 The mean winding number of the linear Hamiltonian system (2) is

τ = lim
k→+∞

µkT

kT
= lim

k→+∞
δ(kT )
πkT

=
1

πT
δ(T ).

Here the limit is taken over all k ∈ N such that system (2) is kT -non resonant
and we have been able to write 1

π δ(kT ) instead of µkT = 1
π δ̃(kT + 1) because of

estimate (1).
A crucial remark is that the mean winding number of a T -periodic linear

Hamiltonian system in dimension 2 completely determines its Maslov index:

Proposition 3.2 Let τ be the mean winding number of the T -non resonant linear
Hamiltonian system (2). Let ν = 1

T be the frequency of the system.

1. If τ = 2kν, with k ∈ Z, then the Maslov index µT of system (2) is equal to
2k.

2. If τ = (2k + σ)ν, with k ∈ Z, σ ∈]0, 2[, then µT is equal to 2k + 1,

In fact, if πTτ = δ(T ) = 2kπ, R(T ) must belong to Γ− (see Figs. 2, 3).
When we extend R so to reach W , remaining in Γ−, we find that δ̃(T + 1) = 2kπ.
Therefore µT = 2k.

If πTτ = δ(T ) = 2kπ + σπ, with σ ∈]0, 2[, R(T ) must belong to Γ+ (see
Figs. 2, 3). By (1), µT = 1

π δ̃(T + 1) must be the odd integer such that |πµT −
πTτ | < π and so µT = 2k + 1.

We end up this section showing, as a side remark, that the mean winding
number determines also the stability of the system. Recall that a T -periodic linear
system is said to be elliptic if the eigenvalues of R(T ) have modulus 1. If the
eigenvalues have modulus 1 and they are different from ±1, the system is strongly
elliptic. The system is hyperbolic if the eigenvalues have modulus different from 1.

Proposition 3.3 Let τ be the mean winding number of the T -non resonant linear
Hamiltonian system (2). Let ν = 1

T be the frequency of the system.

1. If τ = 2kν, with k ∈ Z, then system (2) is hyperbolic.

2. If τ = (2k + 1)ν, with k ∈ Z, and system (2) is also 2T -non resonant, then
system (2) is hyperbolic.

3. If τ /∈ νZ then system (2) is strongly elliptic.

Again this Proposition follows from the fact that πTτ = δ(T ) and from the
dependence of the function ρ on the eigenvalues (see Fig. 2).

We emphasize the fact that Propositions 3.2 and 3.3 are a special feature of
dimension two and that they definitely do not hold for larger dimension.
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4 Asymptotically linear 2-dimensional systems

A T -periodic Hamiltonian system in R2 takes the form:

ż(t) = J∇H(z(t), t) (7)

where H : R2 × R 7→ R is T -periodic in the last variable and ∇ denotes the
Jacobian with respect to the first two variables.

A kT -periodic solution of (7), for k ∈ N, is called a sub-harmonic. The
minimum of the numbers hT such that z is hT -periodic is the minimal period
of z.

Let z be a kT -periodic solution of (7). We can consider the linearization of
(7) along z:

ẇ(t) = JH ′′(z(t), t)w(t) (8)

where H ′′ is the Hessian of H with respect to the first two variables. (8) is a
kT -periodic linear Hamiltonian system.

Definition 4.1 The kT -Floquet multipliers of the kT -periodic solution z are the
kT -Floquet multipliers of system (8).

Definition 4.2 The kT -periodic solution z of (7) is said to be kT -resonant if
system (8) is kT -resonant.

Definition 4.3 The Maslov index µkT (z) and the mean winding number τ(z)
of z are defined as the kT -Maslov index and the mean winding number of (8),
respectively.

A kT -periodic solution of (7) is said to be elliptic, strongly elliptic or hyper-
bolic if the kT -periodic system (8) is elliptic, strongly elliptic or hyperbolic.

The ellipticity, strong ellipticity or hyperbolicity of a kT -periodic solution is
determined by its mean winding number, exactly as in Proposition 3.3.

Definition 4.4 System (7) is said to be asymptotically linear if:

lim
|z|→+∞

|∇H(z, t) − A∞(t)z| = 0 uniformly in t ∈ R

where A∞ is a T -periodic path of symmetric matrices.

Moreover we assume that the hessian of H with respect to the space variables
is bounded:

sup
(z,t)∈R2×R

|H ′′(z, t)| < +∞ (9)
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Definition 4.5 The asymptotically linear T -periodic Hamiltonian system (7) is
said to be T -resonant at infinity if its linearization at infinity:

ẇ(t) = JA∞(t)w(t) (10)

is T -resonant.

The basic tool to determine the existence of periodic solutions for asymp-
totically linear Hamiltonian systems is provided by the Morse relations proved by
Conley and Zehnder [6] (see also [10] where the two-dimensional case, omitted by
Conley and Zehnder, is considered):

Theorem 4.1 Assume that the T -periodic asymptotically linear Hamiltonian sys-
tem (7) satisfies (9) and that it is T -non resonant at infinity. Assume moreover
that all its T -periodic solutions are T -non resonant. Let µT (∞) be the Maslov
index of the linearization at infinity (10). Then there is only a finite number of
T -periodic solutions and the following equality holds:∑

z

λµT (z) = λµT (∞) + (1 + λ)Q(λ)

where the sum is taken over all the T -periodic solutions and Q is a Laurent poly-
nomial with non-negative integer coefficients.

Now we want to prove the result stated in the introduction:

Theorem 4.2 Assume that the T -periodic asymptotically linear Hamiltonian sys-
tem (7) satisfies (9) and that it is T -non resonant at infinity. Assume moreover
that all its T -periodic solutions are T -non resonant. If there are two or more
T -periodic solutions, then for every large prime p there is at least a sub-harmonic
with minimal period pT . If such a sub-harmonic is pT -non resonant, then there
must be a second sub-harmonic with minimal period pT .

Proof. By Theorem 4.1 there is a finite number of T -periodic solutions. We can
group them into subsets Zi, i = 1, . . . , k, according on the value of their mean
winding number:

τ(z) = τi ∀z ∈ Zi and τi 6= τj if i 6= j.

Let {λ∞, λ−1
∞ } be the T -Floquet multipliers of system (10) and let {λz, λ

−1
z }

be the T -Floquet multipliers of z, for every T -periodic solution z. By the non-
resonance assumptions

λ∞ 6= 1 and λz 6= 1 ∀z.

Assume that {α1, . . . , αr} ⊂ {λ∞} ∪ {λz | z is a T -periodic solution} are those
Floquet multipliers which are roots of 1:

αmi
i = 1, αn

i 6= 1 if 1 ≤ n < mi, i = 1, . . . , r.
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Let M = max{m1, . . . , mr}. Let p be a prime number greater than M . Since p
can not be an integer multiple of mi, for any i = 1, . . . , r, we have

αp
i 6= 1 ∀i = 1, . . . , r.

Therefore (7) is pT -non resonant at infinity and all the T -periodic solutions are
pT -non resonant.

If z ∈ Zi is a T -periodic solution, then Proposition 3.2 implies that

|µpT (z) − pTτi| < 1.

If z is in Zi and w is in Zj

|µpT (z) − µpT (w)| ≥ pT |τi − τj | − |µpT (z) − pTτi

+ pTτj − µpT (w)| > pT |τi − τj | − 2.

So we can find a large number N > M such that, for every p ≥ N

|µpT (z) − µpT (w)| ≥ 2 if z ∈ Zi, w ∈ Zj , i 6= j. (11)

Let p ≥ N be a prime number and assume, by contradiction, that there are
no sub-harmonics with minimal period pT . Since p is prime, all the pT -periodic
solutions must be T -periodic.

So (7) is pT -non resonant at infinity and all its pT -periodic solutions are
pT -non resonant; therefore the Morse relations hold∑

z

λµpT (z) = λµpT (∞) + (1 + λ)Q(λ) (12)

where the sum is taken over all the T -periodic solutions.
Since there are at least two T -periodic solutions, Q 6= 0. Let n ∈ Z be such

that the coefficient of λn in Q is not zero. Then the Morse relations imply that
there exist T -periodic solutions z and w such that

µpT (z) = n and µpT (w) = n + 1. (13)

But this is impossible: by (11) these solution must belong to the same Zi

and so
τ(z) = τ(w).

But then µpT (z) = µpT (w), because Proposition 3.2 implies that the pT -Maslov
index is uniquely determined by the mean winding number.

The existence of the second sub-harmonic in the pT -non resonant case follows
again from relation (12). ¨

From the above theorem we get immediately the following corollary:
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Corollary 4.3 Assume that the T -periodic asymptotically linear Hamiltonian sys-
tem (7) satisfies (9) and that it is T -non resonant at infinity. Assume that it has
an equilibrium point at the origin and that all the T -periodic solutions are T -non
resonant. If the Maslov index µT (∞) of the linearization at infinity (10) is dif-
ferent from the Maslov index µT (0) of the origin, then for every large prime p
there is at least a sub-harmonic with minimal period pT . If such a sub-harmonic
is pT -non resonant, then there must be a second sub-harmonic with minimal
period pT .
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