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Abstract. We consider a curve with boundary points free to move on a line
in R

2, which evolves by the L2-gradient flow of the elastic energy, that is,
a linear combination of the Willmore and the length functional. For this
planar evolution problem, we study the short and long-time existence.
Once we establish under which boundary conditions the PDE’s system is
well-posed (in our case the Navier boundary conditions), employing the
Solonnikov theory for linear parabolic systems in Hölder space, we show
that there exists a unique flow in a maximal time interval [0, T ). Then,
using energy methods we prove that the maximal time is T = +∞.

Mathematics Subject Classification. Primary 53E40, 35G31, 35A01.

Keywords. Geometric evolution, Elastic energy, Parabolic Hölder spaces,
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1. Introduction

In this paper, we consider the geometric evolution of a curve with a partially
free boundary. To be more precise, we consider the gradient flow of the elastic
energy under the constraint that the boundary points of the curve have to
remain attached to the x-axis.

This paper fits within the broad range of topics on the geometric evolu-
tion of curves and surfaces, where the evolution law is dictated by functions
of curvature. These topics have recently gained increasing attention from the
mathematical community due to their applications to various physical prob-
lems and the fascinating challenges they present in analysis and geometry.

The elastic energy of a curve is a linear combination of the L2-norm of
its curvature κ (also known as one-dimensional Willmore functional) and its
weighted length, namely

E(γ) =
∫

γ

|κ|2 + μds

where μ > 0.
Before passing to the evolutionary problem, we say a few words about

the critical points of the energy E , known as elasticae or elastic curves. As
explained in [48], elasticae have been studied since the time of Bernoulli and
Euler, who used elastic energy as a model for the bending energy of elastic
rods. Still later, Born, in his Thesis of 1906, plotted the first figures of elas-
ticae, using numerical schemes. However, in the last decades, many authors
contribute to their classification, for instance, we refer to Langer and Singer
[26,27], Linnér [30], Djondjorov et al. [18] and Langer and Singer [28], Bevilac-
qua, Lussardi and Marzocchi [9], the same authors with Ballarin [8], for the
case of a functional which depends both on the curvature and the torsion of
the curve. More recently, Miura and Yoshizawa in a series of papers [36–38],
give a complete classification of both clamped and pinned p-elasticae.

In this paper, we aim to study the L2-gradient flow of E . To the best of
our knowledge, the problem was introduced by Polden in his PhD Thesis [43],
where it is shown that given as initial datum a smooth immersion of the circle
in the plane, then there exists a smooth solution to the gradient flow problem
for all positive times which sub-converges to an elastica. Then, Dziuk, Kuwert
and Schätzle generalized the global existence and sub-convergence result to
R

n and derived an algorithm to treat the flow and compute several numerical
examples. Later, the evolution of elastic curves has been extended and studied
in detail both for closed curves (see for instance [19,33,43,44]) as well as for
open curves with Navier boundary conditions in [39,40] and clamped boundary
conditions in [16,29,40,47]. We also recall that a slightly different problem was
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tackled, among others, by Wen in [49] and by Rupp and Spener in [45], where
the authors analyzed the elastic flow of curves with a nonzero rotation index
and clamped boundary conditions respectively, which are in both cases subject
to fix length and in [25,41,42] where a variety of constraints are considered. For
the sake of completeness, we also mention that the L2-gradient flow of

∫
γ

|κ|2 ds

for curve subjected to fix length is studied in [12,13,19], indeed other fourth (or
higher) order flows are analyzed, for instance, in [1,2,15,34,35,50,51]. Finally,
we mention the survey [32] for a complete review of the literature and we
recommend all the references therein.

As already said, in this paper, we let evolve a curve supposing that it
remains attached to the x-axis. To derive the flow, we start by writing the
associated Euler–Lagrange equations and in particular we find suitable “nat-
ural” boundary conditions for this problem (these boundary conditions are
known in the literature as Navier conditions). We thus get that the evolution
can be described by solutions of a system of quasilinear fourth order with
boundary conditions in (2.7), namely the attachment condition, second and
third order conditions. We then introduce a class of admissible initial curves
of class C4+α with α ∈ (0, 1) which needs to be non-degenerate, in the sense
that the y-component of the unit tangent vector must be positive at boundary
points, and satisfy (in addition to the conditions mentioned above) an extra
fourth order condition (see Definition 2.2).

Then, we establish well-posedness of the flow. More precisely, starting
with a (geometrically) admissible initial curve we prove in Theorem 3.14 that
there exists a unique (up to reparametrization) solution to the flow in a small
time interval [0, T ] with T > 0, that can be described by a parametrization of
class C

4+α
4 ,4([0, T ] × [0, 1]).

To do so, we choose a specific tangential velocity turning the system (2.9)
into a non-degenerate parabolic boundary value problem without changing
the geometric nature of the evolution (namely the analytic problem (3.2)).
Then, we solve the analytic problem using a linearization procedure and a fixed
point argument. The main difficulty is actually to solve the associated linear
system (3.5), coupled with extra compatibility conditions (see Definition 3.4),
employing the Solonnikov theory for linear parabolic systems in Hölder space
introduced in [46], as it is shown in Theorem 3.5.

Once we have a solution for the analytic problem, the key point is to
ensure that solving (3.2) is enough to obtain a unique solution to the original
geometric problem. This is shown in Theorem 3.14, following the approach
presented in [20] and later in [21].

The second natural step is trying to understand the long-time behavior
of the evolving curves. This leads to our main result.

Theorem 1.1. Let γ0 be a geometrically admissible initial curve and γt be a
solution to the elastic flow with initial datum γ0 in the maximal time interval
[0, T ) with T ∈ (0,∞) ∪ {∞}. Then, up to reparametrization and translation
of γt, it follows

T = ∞



96 Page 4 of 42 A. Diana NoDEA

or at least one of the following holds

• the inferior limit of the length of γt is zero as t → T ;
• the inferior limit of the y-component of the unit tangent vector at the
boundary is zero as t → T .

Even though the structure of the proof of this result is based on a con-
tradiction argument already present in the literature (see for instance [14,19,
22,32,43]) this is the most technical part of the paper and it contains relevant
novelties.

We find energy type inequalities, more precisely bounds on the L2-norm
of the second and sixth derivative of the curvature, which leads to contradicting
the finiteness of T . Those estimates, which involved the smallest number of
derivatives, can be derived under the assumption that during the evolution
the length is uniformly bounded away from zero and that the curve remains
non-degenerate in a uniform sense (see Definition 4.4).

Moreover, we underline that only estimates for geometric quantities,
namely the curvature, are needed. In particular, the proof itself is independent
of the choice of tangential velocity which corresponds to the very definition of
the flow, where only the normal velocity is prescribed. For this reason, follow-
ing [14], we reparametrize the flow in such a way that the tangential velocity
linearly interpolates its values at boundary points (see condition (4.13)) and
such that suitable estimates both inside and at boundary points hold. With
this choice and the uniform bounds for the curvature, we can extend the flow
smoothly up to the time T given by the short-time existence result and then
restart the flow, contradicting the maximality of T .

In short, our approach combines the one presented in [14] and the other
in [22], in the sense that we choose a tangential velocity as explained above
and we use the minimum number of derivatives (and hence of estimates) which
are needed to conclude the proof of Theorem 1.1.

This work is organized as follows: in the next section we formulate the
geometric evolution problem for elastic curves and we show that those curves
decrease the energy E . In Section 3 we show short-time existence of a unique
smooth solution using the Solonnikov theory and a contraction argument. We
also show geometric uniqueness. In the final Section 5, we prove the long-time
existence result using the curvature bounds provided in Section 4.

2. The elastic flow

2.1. Preliminary definitions and notation

A regular curve is a continuous map γ : [a, b] → R
2 which is differentiable on

(a, b) and such that |∂xγ| never vanishes on (a, b). Without loss of generality,
from now on we consider [a, b] = [0, 1].

We denote by s the arclength parameter, then ∂s := 1
|∂xγ|∂x and ds :=

|∂xγ|dx are the derivative and the measure with respect to the arclength
parameter of the curve γ, respectively.
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From now on, we will pass to the arclength parametrization of the curves
without further comments.

If we assume that γ is a regular planar curve of class at least C1, we can
define the unit tangent vector τ = |∂xγ|−1∂xγ and the unit normal vector ν
as the anticlockwise rotation by π/2 of the unit tangent vector.

We introduce the operator ∂⊥
s that acts on vector fields ϕ defined as the

normal component of ∂sϕ along the curve γ, that is ∂⊥
s ϕ = ∂sϕ−〈∂sϕ, ∂sγ〉 ∂sγ.

Moreover, for any vector ψ(·) ∈ R
2, we use the notation (ψ(·)1,ψ(·)2) to denote

the projection on the x-axis and y-axis, respectively.
Let μ > 0. Assuming that γ is of class H2, we denote by κ = ∂sτ the

curvature vector and we define the elastic energy with a length penalization

E(γ) =
∫

γ

|κ|2 + μds .

Denoting by k the oriented curvature, by means of relation κ = kν which holds
in R

2, the energy functional can be equivalently written as

E(γ) =
∫

γ

k2 + μds . (2.1)

2.2. Formal derivation of the flow

Let γ : [0, 1] → R
2 be a regular curve of class H2. We consider a variation

γε = γ + εψ with ε ∈ R and ψ : [0, 1] → R
2 of class H2, which is regular

whenever |ε| is small enough. By direct computations (see [33], for instance)
we get the first variation of E , that is

d

dε
E(γε)

∣∣∣
ε=0

=
∫

γ

2〈κ, ∂2
sψ〉ds +

∫
γ

(−3|κ|2 + μ) 〈τ, ∂sψ〉 ds . (2.2)

We say that a regular curve γ of class H2 is a critical point of E if for any ψ
its first variation vanishes.

Lemma 2.1. (Euler–Lagrange equations) Let γ : [0, 1] → R
2 be a critical point

of E parametrized proportional to arclength. Then, γ is smooth and satisfies

2(∂⊥
s )2κ + |κ|2κ − μκ = 0

in (0, 1). Moreover, if the endpoints are constrained to the x-axis, the following
Navier boundary conditions are fulfilled{

k(y) = 0 curvature or second order conditions
(−2∂sk(y)ν(y) + μτ(y))1 = 0 third order conditions

for y ∈ {0, 1}.
Proof. By a standard bootstrap argument, one can show that critical points
of E are actually smooth (for the reader’s convenience a proof of this fact
is given in Proposition 5.3 in the appendix). Hence, integrating by parts the
expression (2.2), we have
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d

dε
E(γε)

∣∣∣
ε=0

=
∫

γ

〈
2(∂⊥

s )2κ + |κ|2κ − μκ, ψ
〉

ds

+ 2 〈κ, ∂sψ〉|10 + 〈−2∂⊥
s κ − |κ|2τ + μτ, ψ〉∣∣1

0
. (2.3)

Since γ is critical, from formula (2.3) we immediately get

2(∂⊥
s )2κ + |κ|2κ − μκ = 0

and
2 〈κ, ∂sψ〉|10 + 〈−2∂⊥

s κ − |κ|2τ + μτ, ψ〉∣∣1
0

= 0 . (2.4)

We now recall that
∂⊥

s κ = ∂sκ + |κ|2τ .

Hence, from κ = kν and the Serret-Frenet equation in the plane, that is

∂sν = −kτ, (2.5)

the boundary terms in (2.4) reduce to

2 〈kν, ∂sψ〉|10 +
〈−2∂skν − k2τ + μτ, ψ〉∣∣1

0
.

The fact that the endpoints must remain attached to the x-axis affects the
class of test functions: we can only consider variations γε = γ + εψ with

ψ(0)2 = ψ(1)2 = 0.

Now, letting first ψ(0)1 = ψ(1)1 = 0, it remains the boundary term

2 〈kν, ∂sψ〉|10 = 0 ,

where the test functions ψ appear differentiated. So, we can choose a test
function ψ such that

∂sψ(0) = ν(0) and ∂sψ(1) = 0

and we get k(0) = 0. Then, interchanging the role of ∂sψ(0) and ∂sψ(1), we
have k(1) = 0.

It remains to consider the last term〈−2∂skν − k2τ + μτ, ψ〉∣∣1
0

= 0 .

Taking into account the condition k(0) = k(1) = 0, by arbitrariness of ψ the
term is zero if

(−2∂sk(y)ν(y) + μτ(y))1 = 0

for y ∈ {0, 1}. �
The previous lemma allows us to formally define the elastic flow of a

curve with endpoints constrained to the x-axis coupling the motion equation
∂tγ = −2(∂⊥

s )2κ − |κ|2κ + μκ, (2.6)

with the following Navier boundary conditions⎧⎪⎨
⎪⎩

γ(y)2 = 0 attachment conditions
k(y) = 0 curvature or second order conditions
(−2∂sk(y)ν(y) + μτ(y))1 = 0 third order conditions

(2.7)

for y ∈ {0, 1}.
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2.3. Definition of the geometric problem

In this section, we briefly introduce the parabolic Hölder spaces (see [46] for
more details).

Given a function u : [0, T ] × [0, 1] → R, for ρ ∈ (0, 1) we define the
semi-norms

[u]ρ,0 := sup
(t,x),(τ,x)

|u(t, x) − u(τ, x)|
|t − τ |ρ ,

and

[u]0,ρ := sup
(t,x),(t,y)

|u(t, x) − u(t, y)|
|x − y|ρ .

Then, for l ∈ {0, 1, 2, 3, 4} and α ∈ (0, 1), the parabolic Hölder space

C
l+α
4 ,l+α([0, T ] × [0, 1])

is the space of all functions u : [0, T ] × [0, 1] → R that have continuous deriva-
tives ∂i

t∂
j
xu where i, j ∈ N are such that 4i + j ≤ l for which the norm

‖u‖ l+α
4 ,l+α :=

l∑
4i+j=0

∥∥∂i
t∂

j
xu
∥∥

∞ +
∑

4i+j=l

[
∂i

t∂
j
xu
]
0,α

+
∑

0<l+α−4i−j<4

[
∂i

t∂
j
xu
]

l+α−4i−j
4 ,0

is finite. Moreover, the space C
α
4 ,α ([0, T ] × [0, 1]) coincides with the space

C
α
4
(
[0, T ];C0([0, 1])

) ∩ C0 ([0, T ];Cα([0, 1])) ,

with equivalent norms.

Definition 2.2. (Admissible initial curve) A regular curve γ0 : [0, 1] → R
2 is an

admissible initial curve for the elastic flow if
1. it admits a parametrization which belongs to C4+α([0, 1],R2) for some

α ∈ (0, 1);
2. it satisfies the Navier boundary conditions in (2.7): attachment, curvature

and third order conditions;
3. it satisfies the non-degeneracy condition, that is, there exists ρ > 0 such

that

(τ0(y))2 ≥ ρ for y ∈ {0, 1} . (2.8)

4. it satisfies the following fourth order condition

((−2∂2
sk0(y) − k3

0(y) + k0(y))ν0(y))2 = 0 for y ∈ {0, 1} .

Definition 2.3. (Solution of the geometric problem) Let γ0 be an admissible
initial curve as in Definition 2.2 and T > 0. A time-dependent family of curves
γt for t ∈ [0, T ] is a solution to the elastic flow with initial datum γ0 in the
maximal time interval [0, T ], if there exists a parametrization

γ(t, x) ∈ C
4+α
4 ,4+α

(
[0, T ] × [0, 1],R2

)
,
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with γ regular and such that for every t ∈ [0, T ], x ∈ [0, 1] the system{
(∂tγ)⊥ =

(−2∂2
sk − k3 + μk

)
ν

γ(0, x) = γ0(x),
(2.9)

coupled with boundary conditions (2.7), is satisfied.

Remark 2.4. The motion equation in (2.9) follows from (2.6), using Serret-
Frenet equation (2.5) and recalling that

(∂⊥
s )2κ = ∂2

sκ + 3 〈∂sκ,κ〉 τ + |κ|2κ .

Remark 2.5. Observe that the formulation of the problem given so far involves
purely geometric quantities and hence it is invariant under reparametrizations.
Thus, given a solution γ of (2.9), any reparametrization of γ still satisfies
system (2.9).

Remark 2.6. As the authors pointed out in [32], in system (2.9) only the nor-
mal component of the velocity is prescribed. This does not mean that the
tangential velocity is necessarily zero. Indeed, we can equivalently write the
motion equations as

∂tγ = V ν + Λτ, (2.10)

where V = −2∂2
sk − k3 + μk and Λ is some at least continuous function.

2.4. Energy monotonicity

In Proposition 2.8 we show that the energy of an evolving curve decreases in
time, adapting the proof of [32, Proposition 2.20].

Lemma 2.7. If γ satisfies (2.10), the commutation rule

∂t∂s = ∂s∂t + (kV − ∂sΛ) ∂s

holds and the measure ds evolves as

∂t( ds) = (∂sΛ − kV ) ds. (2.11)

Moreover the unit tangent vector, unit normal vector, and the j-th derivatives
of scalar curvature of γ satisfy

∂tτ = (∂sV + Λk) ν ,

∂tν = − (∂sV + Λk) τ , (2.12)

∂tk = 〈∂tκ, ν〉 = ∂2
sV + Λ∂sk + k2V

= − 2∂4
sk − 5k2∂2

sk − 6k (∂sk)2 + Λ∂sk − k5 + μ
(
∂2

sk + k3
)

, (2.13)

Proof. The proof of the lemma is obtained by direct computations, we refer
for instance to [32, Lemma 2.19]. �

Proposition 2.8. Let γt be a solution to the elastic flow in the sense of Defini-
tion 2.3. Then

∂tE(γt) = −
∫

γ

V 2 ds .
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Proof. Using the evolution laws collected in Lemma 2.7, we get

∂t

∫
γ

k2 + μds =
∫

γ

2k∂tk +
(
k2 + μ

)
(∂sΛ − kV ) ds

=
∫

γ

2k
(
∂2

sV + ∂skΛ + k2V
)

+
(
k2 + μ

)
(∂sΛ − kV ) ds

=
∫

γ

2k∂2
sV + k3V − μkV + ∂s

(
Λ
(
k2 + μ

))
ds .

Integrating twice by parts the term
∫

γ
2k∂2

sV ds we obtain

∂t

∫
γ

k2 + μds = −
∫

γ

V 2 ds +
(
2k∂sV − 2∂skV + Λ(k2 + μ)

) ∣∣∣1
0
. (2.14)

It remains to show that the contribution of the boundary term in (2.14) is
zero, once we assume that Navier boundary conditions hold.

Since k(y) = 0 for y ∈ {0, 1}, we only need to show that

−2∂skV + μΛ
∣∣∣1
0

= 0 .

From γ(y) = (γ1(y), 0), using relation (2.7) we obtain

0 =〈∂tγ(y),−2∂sk(y)ν(y) + μτ(y)〉
=〈V (y)ν(y) + Λ(y)τ(y),−2∂sk(y)ν(y) + μτ(y)〉
= − 2∂sk(y)V (y) + μΛ(y) ,

where y ∈ {0, 1}. �

3. Short-time existence

In this section we show that, fixed an admissible initial curve, there exists a
maximal existence time T . To do so, we find a unique solution to the associated
analytic problem defined in (3.2) using a standard linearization procedure.
More precisely, we use Solonnikov theory (see [46]) to prove the well-posedness
of the linearized system and then we conclude with a fixed point argument.
Then, a key point is to ensure that solving the analytic problem is enough to
obtain a solution to the geometric problem (2.9) and that the solution of (2.9)
is unique up to reparametrization.

3.1. Definition of the analytic problem

Let T > 0 and α ∈ (0, 1). Let us consider a time-dependent family of curves
parametrized by a map γ ∈ C

4+α
4 ,4+α([0, T ] × [0, 1]).

We compute the normal velocity of such moving curves in terms of the
parametrization (see [21] for more details), that is
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(∂tγ)⊥ = − 2
∂4

xγ

|∂xγ|4 + 12
∂3

xγ
〈
∂2

xγ, ∂xγ
〉

|∂xγ|6 + 5
∂2

xγ
∣∣∂2

xγ
∣∣2

|∂xγ|6 + 8
∂2

xγ
〈
∂3

xγ, ∂xγ
〉

|∂xγ|6

− 35
∂2

xγ
〈
∂2

xγ, ∂xγ
〉2

|∂xγ|8

+

〈
2

∂4
xγ

|∂xγ|4 − 12
∂3

xγ
〈
∂2

xγ, ∂xγ
〉

|∂xγ|6 − 5
∂2

xγ
∣∣∂2

xγ
∣∣2

|∂xγ|6 − 8
∂2

xγ
〈
∂3

xγ, ∂xγ
〉

|∂xγ|6

+35
∂2

xγ
〈
∂2

xγ, ∂xγ
〉2

|∂xγ|8 , τ

〉
τ + μ

∂2
xγ

|∂xγ|2 −
〈

μ
∂2

xγ

|∂xγ|2 , τ

〉
τ .

We now aim to use a well-known technique, which was introduced for the first
time by DeTurck in [17] for the Ricci flow and then has been employed in a
large variety of situations (see for instance [14,22,32]).

More precisely, we choose as tangential velocity the function

Λ̃ :=

〈
−2

∂4
xγ

|∂xγ|4 + 12
∂3

xγ
〈
∂2

xγ, ∂xγ
〉

|∂xγ|6 + 5
∂2

xγ
∣∣∂2

xγ
∣∣2

|∂xγ|6 + 8
∂2

xγ
〈
∂3

xγ, ∂xγ
〉

|∂xγ|6

−35
∂2

xγ
〈
∂2

xγ, ∂xγ
〉2

|∂xγ|8 + μ
∂2

xγ

|∂xγ|2 , τ

〉
,

turning (2.10) into a non-degenerate equation

∂tγ =V ν + Λ̃τ

= − 2
∂4

xγ

|∂xγ|4 + 12
∂3

xγ
〈
∂2

xγ, ∂xγ
〉

|∂xγ|6 + 5
∂2

xγ
∣∣∂2

xγ
∣∣2

|∂xγ|6 + 8
∂2

xγ
〈
∂3

xγ, ∂xγ
〉

|∂xγ|6

− 35
∂2

xγ
〈
∂2

xγ, ∂xγ
〉2

|∂xγ|8 + μ
∂2

xγ

|∂xγ|2 . (3.1)

Moreover, we specify another tangential condition

〈∂2
xγ(y), τ(y)〉 = 0 fory ∈ {0, 1}

and we notice that this together with the curvature condition, is equivalent to
the second order condition

∂2
xγ(y) = 0 fory ∈ {0, 1}.

From now on, we identify the curve with its parametrization without further
comments.

Definition 3.1. (Admissible initial parametrization) A map γ0 : [0, 1] → R
2 is

an admissible initial parametrization if

1. it belongs to C4+α([0, 1],R2) for some α ∈ (0, 1);
2. it satisfies the Navier boundary conditions in (2.7): attachment, curvature

and third order conditions;
3. it satisfies the non-degeneracy condition (2.8);



NoDEA Elastic flow of curves with partial free boundary Page 11 of 42 96

4. it satisfies the following fourth order condition(
V (0, y)ν0(y) + Λ̃(0, y)τ0(y)

)
2

= 0 fory ∈ {0, 1},

where ν0, τ0 are the normal and tangent unit vectors to γ0.

In the following, we refer to conditions (2) − (4) in Definition 3.1 as
compatibility conditions.

Definition 3.2. (Solution of the analytic problem) Let γ0 be an admissible
initial parametrization as in Definition 3.1. A time-dependent parametrization
γt for t ∈ [0, T ] is a solution to the analytic elastic flow with initial datum γ0

in the time interval [0, T ] with T > 0, if

γ(t, x) ∈ C
4+α
4 ,4+α

(
[0, T ] × [0, 1],R2

)
,

with γ regular and such that for every t ∈ [0, T ], x ∈ [0, 1] and y ∈ {0, 1},
satisfies the system⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂tγ = V ν + Λ̃τ = −2 ∂4
xγ

|∂xγ|4 + l.o.t.

γ(y)2 = 0 attachment conditions,
∂2

xγ(y) = 0 second order conditions,
(−2∂sk(y)ν(y) + μτ(y))1 = 0 third order conditions,
γ(0, ·) = γ0(·) initial condition.

(3.2)

3.2. Linearization

This section is devoted to proving the existence and uniqueness of solutions to
the linearized system associated to (3.2). To do so, we show that the linearized
system can be solved using the general theory introduced by Solonnikov in
[46].

We highlight that in this section we follow closely [21]. More precisely,
we adapt the arguments developed for networks in [21, Section 3.3.2 and Sec-
tion 3.3.3], to the case of one curve with endpoints constrained to the x-axis.

We linearize the highest order terms of the motion equation (3.1) around
the initial parametrization γ0 and we obtain

∂tγ +
2

|∂xγ0|4 ∂4
xγ =

(
2

|∂xγ0|4 − 2
|∂xγ|4

)
∂4

xγ + f̃(∂3
xγ, ∂2

xγ, ∂xγ)

= : f(∂4
xγ, ∂3

xγ, ∂2
xγ, ∂xγ) . (3.3)

Then, after noticing that the attachment condition and the second order con-
dition are already linear, we linearize the highest order terms of the third order
condition, that is(

− 1

|∂xγ0|3
〈∂3

xγ, ν0〉ν0

)
1

=

(
− 1

|∂xγ0|3
〈∂3

xγ, ν0〉ν0 +
1

|∂xγ|3 〈∂3
xγ, ν〉ν + h(∂xγ)

)
1

= : b(∂3
xγ, ∂xγ) . (3.4)
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Thus, the linearized system associated to (3.2) is given by
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂tγ + 2
|∂xγ0|4 ∂4

xγ = f

γ2 = 0 attachment conditions,
∂2

xγ = 0 second order conditions,(
− 1

|∂xγ0|3
〈
∂3

xγ, ν0

〉
ν0

)
1

= b third order conditions,

γ(0) = γ0 initial condition

(3.5)

where f, b are defined in (3.3), (3.4) and we have omitted the dependence on
(t, x) ∈ [0, T ] × [0, 1] in the motion equation, on (t, y) ∈ [0, T ] × {0, 1} in the
boundary conditions and on x ∈ [0, 1] in the initial condition.

Remark 3.3. Replacing the right-hand side of system (3.5) with (f, b, ψ), we
get the general system

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂tγ + 2
|∂xγ0|4 ∂4

xγ = f

γ2 = 0 attachment conditions,
∂2

xγ = 0 second order conditions,(
− 1

|∂xγ0|3
〈
∂3

xγ, ν0

〉
ν0

)
1

= b third order conditions,

γ(0) = ψ initial condition

(3.6)

where f ∈ C
α
4 ,α([0, T ] × [0, 1],R2), (b(·, 0), b(·, 1)) ∈ C

1+α
4 ([0, T ],R2) and ψ ∈

C4+α
(
[0, 1],R2

)
.

Definition 3.4. [Linear compatibility conditions] Let (f, b) be a given right-
hand side to the linear system (3.6). A function ψ ∈ C4+α

(
[0, 1],R2

)
satisfies

the linear compatibility conditions with respect to (f, b) if for y ∈ {0, 1} there
hold

ψ(y)2 = 0 ,

∂2
xψ(y) = 0 ,(
− 1

|∂xγ0|3
〈
∂3

xψ(y), ν0(y)
〉
ν0(y)

)
1

= b(0, y),
(

2
|∂xγ0|4 ∂4

xψ(y) − f(0, y)
)

2

= 0 .

Theorem 3.5. Let α ∈ (0, 1) and let T > 0. Suppose that

• f ∈ C
α
4 ,α([0, T ] × [0, 1],R2);

• (b(·, 0), b(·, 1)) ∈ C
1+α
4 ([0, T ],R2) ;

• ψ ∈ C4+α
(
[0, 1],R2

)
;

• ψ satisfies the linear compatibility conditions in Definition 3.4 with re-
spect to (f, b).

Then, the linearized problem (3.6) has a unique solution γ ∈ C
4+α
4 ,4+α

([0, T ]×
[0, 1],R2).
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Moreover, for all T > 0 there exists a C(T ) > 0 such that the solution
satisfies

‖γ‖ 4+α
4 ,4+α ≤ C(T )

(
‖f‖α

4 ,α + ‖b‖ 1+α
4

+ ‖ψ‖4+α

)
.

Proof. To show the result we have to prove that system (3.6) satisfies all the
hypothesis of the general [46, Theorem 4.9].

Using the notation of [46], we write γ = (u, v) and we denote by b, r,
respectively, the number of boundary and initial conditions which in our case
are b = 2, r = 2.

Moreover, we write the motion equation in the form

Lγ = f (3.7)

where the 2 × 2 matrix L is given by

L(x, t, ∂x, ∂t) =

[
∂t + 2

|∂xγ0|4 ∂4
x 0

0 ∂t + 2
|∂xγ0|4 ∂4

x

]

and the vector f = (f1, f2) is the right-hand side of motion equation in sys-
tem (3.6).

• We firstly show that system (3.7) satisfies the parabolicity condition [46,
page 8]. As in [46], we call L0 the principal part of the matrix L and we
choose the integers sk, tj in [46, page 8] as follows: sk = 4 for k ∈ {1, 2}
and tj = 0 for j ∈ {1, 2}. Hence, we have L0 = L and its determinant

detL0(x, t, iξ, p) =
(

2
|∂xγ0|ξ

4 + p

)2

is a polynomial of degree two in p with one root

p = − 2
|∂xγ0|4 ξ4

of multiplicity two.
Then, choosing δ ≤ 2

|∂xγ0|4 , the conditions of [46, page 8] are satisfied
and the system is parabolic in the sense of Solonnikov.

• As it is shown in [52, pages 11-15], the compatibility condition at bound-
ary points stated in [46, page 11] is equivalent to the following Lopatinskii-
Shapiro condition, which we check only for y = 0 (the case y = 1 can be
treated analogously).

Let λ ∈ C with �(λ) > 0 be arbitrary. The Lopatinskii-Shapiro
condition at y is satisfied if every solution γ ∈ C4([0,∞),C2) to the
system of ODEs⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

λγ(x) + 1
|∂xγ0|4 ∂4

xγ(x) = 0

γ(y)2 = 0
∂2

xγ(y) = 0(
1

|∂xγ0|3
〈
∂3

xγ(y), ν0(y)
〉
ν0(y)

)
1

= 0

(3.8)

where x ∈ [0,∞), which satisfies limx→∞|γ(x)| = 0, is the trivial solution.
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To do so, we consider a solution γ to (3.8) such that limx→∞|γ(x)| =
0. We test the motion equation by |∂xγ0| 〈γ(x), ν0〉 ν0 and we integrate
twice by part to get

0 =λ|∂xγ0|
∫ ∞

0

| 〈γ(x), ν0〉 |2 dx +
1

|∂xγ0|3
∫ ∞

0

| 〈∂2
xγ(x), ν0

〉 |2 dx

+
1

|∂xγ0|3 〈γ(0), ν0〉
〈
∂3

xγ(0), ν0

〉− 1
|∂xγ0|3

〈
∂xγ(0), ν0

〉 〈
∂2

xγ(0), ν0

〉
,

(3.9)

where we have already used the fact that all derivatives decay to zero
for x tending to infinity, due to the specific exponential form of the
solutions to (3.8). We now observe that, since γ0 is an admissible ini-
tial parametrization, the first component of ν0 is bounded from below.
That is, from the third order condition in system (3.8) it follows that〈
∂3

xγ(0), ν0

〉
= 0. Thus, this condition together with the second order

condition implies that the boundary terms in (3.9) vanish. Then, taking
the real part of (3.9) and recalling that �(λ) > 0, we have 〈γ(x), ν0〉 = 0
for all x ∈ [0,∞). In particular, from the attachment condition in (3.8),
it follows that γ(0) = 0.

As before, testing the motion equation by |∂xγ0| 〈γ(x), τ0〉 τ0 and
integrating by part, we get

0 =λ|∂xγ0|
∫ ∞

0

| 〈γ(x), τ0〉 |2 dx +
1

|∂xγ0|3
∫ ∞

0

| 〈∂2
xγ(x), τ0

〉 |2 dx

+
1

|∂xγ0|3 〈γ(0), τ0〉
〈
∂3

xγ(0), τ0

〉− 1
|∂xγ0|3

〈
∂xγ(0), τ0

〉 〈
∂2

xγ(0), τ0

〉
.

(3.10)

The boundary terms in (3.10) vanishe since γ(0) = 0 and the second
order condition holds. Hence, considering again the real part of (3.10) we
have that 〈γ(x), τ0〉 = 0 for all x ∈ [0,∞). So, we conclude that γ(x) = 0
for all x ∈ [0,∞).

• Finally, to check the complementary condition for the initial datum stated
in [46, page 12], we observe that the 2 × 2 matrix [Cαj ] is the identity
matrix. Then, choosing γαj = 0 for α ∈ {1, 2} and j ∈ {1, 2}, we obtain
ρα = 0 and C0 = Id.

Moreover, the rows of the matrix D(x, p) = L̂0(x, 0, 0, p) = pId are
linearly independent modulo the polynomial p2. �

3.3. Short-time existence of the analytic problem

From now on, we fix α ∈ (0, 1) and we consider an admissible initial parametriza-
tion γ0 as in Definition 3.1, with ‖γ0‖4+α = R. Moreover, with a slight abuse
of notation, we denote by b(·) the vector (b(·, 0), b(·, 1)) in the statement of
Theorem (3.5).

Definition 3.6. For T > 0 we define the linear spaces
ET := {γ ∈ C

4+α

4
,4+α

([0, T ] × [0, 1],R2) such that for t ∈ [0, T ] ,

attachment and second order conditions hold} ,
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FT := {(f, b, ψ) ∈ C
α

4
,α

([0, T ] × [0, 1],R2) × C
1+α

4 ([0, T ],R2) × C4+α
(
[0, 1],R2)

such that the linear compatibility conditions hold} ,

endowed with the norms

‖γ‖ET
=‖γ‖ 4+α

4 ,4+α ,

‖(f, b, ψ)‖FT
= ‖f‖α

4 ,α + ‖b‖ 1+α
4

+ ‖ψ‖4+α.

Moreover, we consider the affine spaces

E
0
T := {γ ∈ ET such that γ|t=0 = γ0} ,

F
0
T := {(f, b) such that (f, b, γ0) ∈ FT } × {γ0} .

We remark that Lemma 3.7 and Lemma 3.8 below are respectively [21,
Lemma 3.17] and [21, Lemma 3.23].

Lemma 3.7. For T > 0, the map LT : ET → FT defined by

LT (γ) :=

⎛
⎜⎝

∂tγ + 2
|∂xγ0|4 ∂4

xγ(
− 1

|∂xγ0|3
〈
∂3

xγ, ν0

〉
ν0

)
1

γ0

⎞
⎟⎠ ,

is a continuous isomorphism.

In the following we denote by L−1
T the inverse of LT , by BM the open ball of

radius M > 0 and center 0 in ET and by BM its closure.
Before proceeding we notice that, since the admissible initial parametriza-

tion γ0 : [0, 1] → R
2 is a regular curve, there exists a constant C > 0 such

that

inf
x∈[0,1]

|∂xγ0| ≥ C, (3.11)

which obviously implies that

sup
x∈[0,1]

1
|∂xγ0| ≤ 1

C
.

Then, as it is shown in [21], there exists a constant C̃ depending on R and C,
such that for every j ∈ N it holds
∥∥∥∥ 1

|∂xγ0|j
∥∥∥∥

α

≤
(‖∂xγ0‖α

C2

)j

≤
(

R

C2

)j

and
∥∥∥∥ 1

|∂xγ0|j
∥∥∥∥

1+α

≤ C̃(R,C) .

We also notice that these estimates are preserved during the flow. More pre-
cisely, following the proof in [21], one can show that there exists T̃ (M,C) ∈
(0, 1] such that for T ∈ [0, T̃ (M,C)] every curve γ ∈ E

0
T ∩ BM is regular and

for all t ∈ [0, T̃ (M,C)] it holds

sup
x∈[0,1]

1
|∂xγ(t, x)| ≤ 2

C
.
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Furthermore, for every j ∈ N and y ∈ {0, 1}, we have
∥∥∥∥ 1

|∂xγ|j
∥∥∥∥

α
4 ,α

≤
(

4M

C2

)j

and
∥∥∥∥ 1

|∂xγ(y)|j
∥∥∥∥

1+α
4

≤ C̃(R,C).

Lemma 3.8. For T ∈ (0, T̃ (M,C)], the map NT (γ) := (NT,1, NT,2, γ0) given
by

NT,1 :

{
E

0
T → C

α
4 ,α([0, T ] × [0, 1],R2),

γ → f(γ) := f(∂4
xγ, ∂3

xγ, ∂2
xγ, ∂xγ),

NT,2 :

{
E

0
T → C

1+α
4 ([0, T ],R2),

γ → b(γ) := b(∂3
xγ, ∂xγ)

where f, b are defined in (3.3), (3.4) respectively, is a well defined mapping
from E

0
T to F

0
T .

Proof. We have that γ(t, ·) is a regular curve thanks to the discussion above,
hence NT is well defined. In order to show that NT (γ) ∈ F

0
T , we have to

prove that γ0 satisfies the linear compatibility conditions with respect to
(NT,1, NT,2). This easily follows from the definition of NT,1, NT,2 and the fact
that γ0 is an admissible initial parametrization as in Definition 3.1. �

Definition 3.9. Let γ0 be an admissible initial parametrization and let C > 0
the constant given by (3.11). For M > 0 and T ∈ (0, T̃ (M,C) we define the
mapping KT : E0

T → E
0
T as KT := L−1

T NT .

With a proof similar to [21, Proposition 3.28 and Proposition 3.29] one
can prove the following result.

Proposition 3.10. There exists a positive radius M = M(R,C) and a positive
time T̂ (M) ∈ (0, T̃ (M,C)) such that for all T ∈ (0, T̂ (M)] the map KT :
E

0
T ∩ BM → E

0
T ∩ BM is well-defined and it is a contraction.

Theorem 3.11. Let γ0 be an admissible initial parametrization as in Defini-
tion 3.1. There exists a positive radius M and a positive time T such that the
system (3.2) has a unique solution in C

4+α
4 ,4+α ([0, T ] × [0, 1]) ∩ BM .

Proof. Let M and T̂ (M) be the radius and time as in Proposition 3.10 and
let T ∈ (0, T̂ (M)]. The solutions of (3.2) in C

4+α
4 ,4+α ([0, T ] × [0, 1]) ∩ BM

are the fixed points of KT in E
0
T ∩ BM . Moreover, it is unique by the Banach-

Caccioppoli contraction theorem as KT is a contraction of the complete metric
space E

0
T ∩ BM . �

3.4. Geometric existence and uniqueness

In Theorem 3.11 we show that there exists a unique solution to the analytic
problem (3.2) provided that the initial curve is admissible. In this section, we
first establish a relation between geometrically admissible initial curves and
admissible initial parametrizations, then we show the geometric uniqueness of
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the flow, in the sense that up to reparametrization the geometric problem (2.9)
has a unique solution.

We remark that the following technique was introduced by Garcke and
Novick-Cohen in [23], and then it has been employed, for instance, by Garke,
Pluda at al. in [21,22,24] for the case of shortening and elastic flows of net-
works.

Lemma 3.12. Suppose that γ0 is a geometrically admissible initial curve as in
Definition 2.2. Then, there exists a smooth function ψ0 : [0, 1] → [0, 1] such that
the reparametrization γ̃0 = γ0◦ψ0 of γ0 is an admissible initial parametrization
for the analytic problem (3.2).

Proof. We look for a smooth map ψ0 : [0, 1] → [0, 1] with ∂xψ0(x) �= 0 for every
x ∈ [0, 1], such that γ̃0 = γ0◦ψ0 : [0, 1] → R

2 is regular and of class C4+α([0, 1]).
If ψ0(y) = y for y ∈ {0, 1}, then γ̃0 clearly satisfies the attachment condition.
Moreover, since the geometric quantities are invariant under reparametriza-
tion, also the non-degeneracy condition and the third-order condition are still
satisfied. In order to fulfil the second order condition ∂2

xγ̃0(y) = 0, we consider
a map ψ0 such that

∂xψ0(y) = 1 and ∂2
xψ0(y) = −∂2

xγ0(y)
∂xγ0(y)

for y ∈ {0, 1}. Thus, it remains to show that(
Ṽ0ν̃0 + T̃0τ̃0

)
2

= 0 .

As we notice above, this is equivalent to(
V0ν0 + T̃0τ0

)
2

= 0 ,

however, since γ0 is a geometrically admissible initial curve, it is enough to
prove that

T̃0 − T0 = 0 . (3.12)

Thus, asking that ∂3
xψ0(y) = 1, we rewrite relation (3.12) as

g1(∂xγ)(y)∂4
xψ0(y) + g2(∂xγ, ∂2γ, ∂3

xγ)(y) = 0

where g1, g2 are non-linear functions. Hence, ∂4
xψ0(y) are uniquely determined

for y ∈ {0, 1}. In the end, we may choose ψ0 to be the fourth Taylor polynomial
near each boundary point, join these values up inside the interval (0, 1) and
then make it smooth. �

Definition 3.13. Let γ0 be a geometrically admissible initial curve as in Defi-
nition 2.2 and T > 0. A time-dependent family of curves γt for t ∈ [0, T ) is a
maximal solution to the elastic flow with initial datum γ0, if it is a solution in
the sense of Definition 2.3 in [0, T̂ ] for some T̂ < T and if there does not exist
a solution γ̃t in [0, T̃ ] with T̃ > T and such that γ = γ̃ in (0, T ).
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Following the arguments in [22, Lemma 5.8 and Lemma 5.9], one can
show that a maximal solution to the elastic flow always exists and it is unique
up to reparametrization. Hence, from now on we only consider the time T in
Definition 3.13, which we call maximal time of existence and we denote by
Tmax.

We notice that the following theorem is slightly different to the corre-
sponding one in [22], where the authors firstly prove the geometric uniqueness
in a “generic” time interval [0, T ] and then they show the existence of Tmax

using the fact that the solution is unique in a geometric sense. However, with
an intermediate step, the result can be stated as follows.

Theorem 3.14. [Geometric existence and uniqueness] Let γ0 be a geometrically
admissible initial curve as in Definition 2.2. Then, there exists a positive time
Tmax such that within the time interval [0, Tmax) there is a unique elastic flow
γt in the sense of Definition 2.3.

Proof. By Lemma 3.12 there exists a reparametrization γ̃0 of γ0 which is an
admissible initial parametrization in the sense of Definition 3.1. Then, by The-
orem 3.11 there exists a solution γ̃t of system (3.2) in some maximal time
interval [0, T̃max]. In particular, γ̃t is a solution to system (2.9).

Let us suppose that γt is another solution to the elastic flow in sense of
Definition 2.3 in a time interval [0, T ′], with the same geometrically admissible
initial curve. We aim to show that there exists a time Tmax ∈ (0,max{T̃max, T

′})
such that γ̃t = γt (as curves) for every t ∈ [0, Tmax].

To be precise, we need to construct a regular reparametrization ψ(t, x) :
[0, Tmax]×[0, 1] → [0, 1], such that the reparametrized curve σ(t, x) = γ(t, ψ(t, x))
is a solution to the analytic problem (3.2) and coincides with γ̃t in a possi-
bly small but positive time interval. Hence, computing the space and time
derivatives of σ(t, x) as a composed function and replacing in the evolution
equation

∂tσ(t, x) =
∂4

xσ

|∂xσ|4 + l.o.t.

we get the following evolution equation for ψ

∂tψ(t, x) = − 〈∂tγ(t, ψ(t, x)), ∂xγ(t, ψ(t, x))〉
|∂xγ(t, ψ(t, x))|2

+
〈∂4

xγ(t, ψ(t, x)), ∂xγ(t, ψ(t, x))〉
|∂xγ(t, ψ(t, x)|6

+
6〈∂3

xγ(t, ψ(t, x)), ∂xγ(t, ψ(t, x))〉∂2
xψ(t, x)

|∂xγ(t, ψ(t, x)|6(∂xψ(t, x))2

+
3〈∂2

xγ(t, ψ(t, x)), ∂xγ(t, ψ(t, x))〉(∂2
xψ(t, x))2

|∂xγ(t, ψ(t, x)|6(∂xψ(t, x))4

+
4〈∂2

xγ(t, ψ(t, x)), ∂xγ(t, ψ(t, x))〉∂3
xψ(t, x)

|∂xγ(t, ψ(t, x)|6(∂xψ(t, x))3

+
∂4

xψ(t, x)
|∂xγ(t, ψ(t, x)|2(∂xψ(t, x))4

+ l.o.t. .
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Taking into account the boundary conditions, we have that such parametriza-
tion has to satisfy the following boundary value problem⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂tψ(t, x) = ∂4
xψ(t,x)

|∂xγ(t,ψ(t,x)|2(∂xψ(t,x))4 + g

ψ(t, y) = y

∂2
xψ(t, y) = − 〈∂2

xγ(t,ψ(t,x)),∂xγ(t,ψ(t,x))〉(∂xψ)2

|∂xγ(t,ψ(t,x))|2
ψ(0, x) = ψ0(x)

(3.13)

for y ∈ {0, 1} and t ∈ [0, Tmax], where the function ψ0 is given by Lemma 3.12
and the terms in g depend on the solution ψ, ∂j

xψ for j ∈ {1, 2, 3} and ∂tγ, ∂j
xγ

for j ∈ {1, 2, 3, 4}. From the computation above, it follows that the function γ
and its time-space derivatives depend also on ψ. To remove this dependence, we
consider the associated problem for the inverse of ψ, that is ξ(t, ·) = ψ−1(t, ·).
So, the differentiation rules

∂zξ(t, z) = ∂xψ(t, ξ(t, z))−1

∂2
zξ(t, z) = −(∂zξ(t, z))3∂2

xψ(t, ξ(t, z))

∂3
zξ(t, z) = 3

(∂2
zξ(t, z))2

∂zξ(t, z)
− (∂zξ(t, z))4∂3

xψ(t, ξ(t, z))

∂4
zξ(t, z) = −15

(∂2
zξ(t, x))3

(∂zξ(t, x))2
+ 10

∂2
zξ(t, z)∂3

zξ(t, z)
∂zξ(t, z)

− (∂zξ(t, z))5∂4
xψ(t, ξ(t, z))

yield the evolution equation

∂tξ(t, z) = − 〈∂tσ(t, z), ∂zσ(t, z)〉
|∂zσ(t, z)|2 ∂zξ(t, z) +

〈∂4
zσ(t, z), ∂zσ(t, z)〉

|∂zσ(t, z)|6 ∂zξ(t, z)

− 6〈∂3
zσ(t, z), ∂zσ(t, z)〉

|∂zσ(t, z)|6 ∂2
zξ(t, z) +

3〈∂2
zσ(t, z), ∂zσ(t, z)〉

|∂zσ(t, z)|6
(∂2

zξ(t, z))2

∂zξ(t, z)

+
〈∂2

zσ(t, z), ∂zσ(t, z)〉
|∂zσ(t, z)|6

(
−4∂3

zξ(t, z) +
12(∂2

zξ(t, z))2

∂zξ(t, z)

)

+
1

|∂zσ(t, z)|2
(

−∂4
zξ(t, z) +

10∂2
zξ(t, z)∂3

zξ(t, z)

∂zξ(t, z)
− 15(∂2

zξ(t, z))3

(∂zξ(t, z))2

)
+ l.o.t. .

Hence, we obtain the following system for ξ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂tξ(t, z) = − ∂4
zξ(t,z)

|∂zσ(t,z)|2 + g

ξ(t, y) = y

∂2
zξ(t, y) = 〈∂2

zσ(t,y),∂zσ(t,y)〉∂zξ(t,y)
|∂zσ(t,y)|2

ξ(0, z) = ψ−1
0 (z)

(3.14)

where g is a non-linear smooth function which depends on ∂j
xξ for j ∈ {1, 2, 3},

∂σ
z for j ∈ {1, 2, 3, 4}, ∂tσ. We now observe that the system (3.14) has a very

similar structure as (3.6), hence, after linearize, we apply the linear theory
developed by Solonnikov in [46] and we get well-posedness. Contraction esti-
mates allow us to conclude the existence and uniqueness of solution with a
fixed-point argument. Reversing the above argumentation, we obtain that the
function ψ solves system (3.13).
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Then, σt is a solution to system (3.2). Indeed, the motion equation follows
from (3.13) and the geometric evolution of γt in normal direction. The geo-
metric boundary conditions, namely attachment, curvature, and third-order
conditions, are satisfied as γt is a solution to the geometric problem. More-
over, the boundary conditions in system (3.13) ensure that σt satisfies the
second order condition.

Thus, by uniqueness of the analytic problem proved in Theorem 3.11, σt

(that is γt up to reparametrization) and γ̃t need to coincide on a possibly small
time interval. �

4. Curvature bounds

To simplify the notation, we introduce the following polynomials.

Definition 4.1. For h ∈ N, we denote by ph
σ(k) a polynomial in k, . . . , ∂h

s k with
constant coefficients in R such that every monomial it contains is of the form

C

h∏
l=0

(∂l
sk)αl with

h∑
l=0

(l + 1)αl = σ,

where αl ∈ N for l ∈ {0, . . . , h} and αl0 ≥ 1 for at least one index l0.

Remark 4.2. One can easily prove that

∂s

(
ph

σ(k)
)

= ph+1
σ+1(k) ,

ph1
σ1

(k)ph2
σ2

(k) = p
max{h1,h2}
σ1+σ2

(k) ,

ph1
σ (k) + ph2

σ (k) = pmax{h1,h2}
σ (k).

Moreover, following the arguments in [32], it holds

∂t

(
ph

σ(k)
)

= ph+4
σ+4(k) + Λph+1

σ+1(k) + μph+2
σ+2(k) . (4.1)

Lemma 4.3. If γ satisfies (2.10), then for any j ∈ N the j-th derivative of
scalar curvature of γ satisfies

∂t∂
j
sk = − 2∂j+4

s k − 5k2∂j+2
s k + μ ∂j+2

s k + Λ∂j+1
s k + pj+1

j+5 (k) + μ pj
j+3(k) .

(4.2)

Proof. For j = 0 we have

∂tk = − 2∂4
sk − 5k2∂2

sk − 6k (∂sk)2 + Λ∂sk − k5 + μ
(
∂2

sk + k3
)

= − 2∂4
sk − 5k2∂2

sk + μ∂2
sk + Λ∂sk + p1

5(k) + μp0
4(k) .

Then, assuming that relation (4.2) is true for j, we show that

∂t∂
j+1
s k =∂t∂s∂j

sk = ∂s∂t∂
j
sk + (kV − ∂sΛ)∂j+1

s k

= − 2∂j+5
s k − 10k∂sk∂j+2

s k − 5k2∂j+3
s k + μ∂j+3

s k + ∂sΛ∂j+1
s k + Λ∂j+2

s k

+ pj+2
j+6 + μpj+1

j+4 − 2k∂2
sk∂j+1

s k − k4∂j+1
s k + μk2∂j+1

s k − ∂sΛ∂j+1
s k

= − 2∂j+5
s k − 5k2∂j+3

s k + μ ∂j+3
s k + Λ∂j+2

s k + pj+2
j+6 (k) + μpj+1

j+4(k) .

By induction, formula (4.2) holds for any j ∈ N. �
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4.1. Bound on ‖∂2
s k‖L2

We aim to show that, once the following condition is satisfied, the tangential
velocity behaves as the normal velocity at boundary points.

Definition 4.4. Let γt be a maximal solution to the elastic flow in [0, Tmax).
We say that γt satisfies the uniform non-degeneracy condition if there exists
ρ > 0 such that

τ2(y) ≥ ρ (4.3)

for every t ∈ [0, Tmax) and y ∈ {0, 1}.

Lemma 4.5. Let γt be a maximal solution to the elastic flow of curves subjected
to boundary conditions (2.7), such that the uniform non-degeneracy condi-
tion (4.3) holds in [0, Tmax). Then, for every t ∈ [0, Tmax) and y ∈ {0, 1}, the
tangential velocity is proportional to the normal velocity, that is

Λ(y) ≈ ∂2
sk(y) .

Proof. Since the boundary points are constrained to the x-axis, we have that

(∂tγt)2(y) = −2∂2
sk(y)ν2(y) + Λ(y)τ2(y) = 0

for y ∈ {0, 1} and t ∈ [0, Tmax). By the fact that τ2 (hence, ν2) are bounded
from below at boundary points, it follows

Λ(y) = 2∂2
sk(y)

ν2(y)
τ2(y)

≈ ∂2
sk(y)

for t ∈ [0, Tmax) and y ∈ {0, 1}. �
Proposition 4.6. Let γt be a maximal solution to the elastic flow of curves
subjected to boundary conditions (2.7) with initial datum γ0, which satisfies the
uniform non-degeneracy condition (4.4) in the maximal time interval [0, Tmax).
Then, for all t ∈ [0, Tmax), it holds

d

dt

∫
γ

|∂2
sk|2 ds ≤ C(E(γ0)) .

Proof. From formula (4.2) we have
d

dt

∫
γ

|∂2
sk|2 ds =

∫
γ

2∂2
sk∂t∂

2
sk + (∂2

sk)2(∂sΛ − kV ) ds

=
∫

γ

−4∂2
sk∂6

sk − 10k2∂2
sk∂4

sk + 2μ∂2
sk∂4

sk + 2Λ∂3
sk∂2

sk

+ p3
10(k) + μp2

8(k) + (∂2
sk)2(∂sΛ − kV ) ds

=
∫

γ

−4∂2
sk∂6

sk − 10k2∂2
sk∂4

sk + 2μ∂2
sk∂4

sk

+ 2Λ∂3
sk∂2

sk + 2∂sΛ(∂2
sk)2 + p3

10(k) + μp2
8(k) ds .

Thus, the terms involving the tangential velocity can be written as∫
γ

∂sΛ(∂2
sk)2 + 2Λ∂2

sk∂3
sk ds =

∫
γ

∂s(Λ(∂2
sk)2) ds = Λ(∂2

sk)2
∣∣∣1
0
.
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Moreover, integrating by parts the other terms, we get

d

dt

∫
γ

|∂2
sk|2 ds =

∫
γ

−4(∂4
sk)2 − 2μ(∂3

sk)2 + p3
10(k) + μp2

8(k) ds

+ Λ(∂2
sk)2

∣∣∣1
0

+ 4(∂3
sk∂4

sk − ∂2
sk∂5

sk)
∣∣∣1
0

− 10k2∂2
sk∂3

sk
∣∣∣1
0

− 12(∂sk)3∂2
sk
∣∣∣1
0

+ 2μ∂2
sk∂3

sk
∣∣∣1
0
. (4.4)

Using Navier boundary conditions, the boundary terms in equation (4.4) re-
duce to

Λ(∂2
sk)2

∣∣∣1
0

+ 4(∂3
sk∂4

sk − ∂2
sk∂5

sk)
∣∣∣1
0

− 12(∂sk)3∂2
sk
∣∣∣1
0

+ 2μ∂2
sk∂3

sk
∣∣∣1
0
. (4.5)

We aim to lower the order of the second and third terms in (4.5). In particular,
differentiating in time the condition k(y) = 0 using relation (2.13), we have

4∂3
sk∂4

sk = 2Λ∂sk∂3
sk + 2μ∂2

sk∂3
sk . (4.6)

From conditions in (2.7), it follows

∂t〈γ, 2∂skν − μτ〉 = 〈V ν + Λτ, ∂t(2∂skν − μτ)〉 = 0 ,

then, computing the scalar production using (4.2), we obtain

0 = − 2∂t∂skV + 2Λ∂sk∂sV + μV ∂sV

=4∂t∂sk∂2
sk + 2Λ∂sk(−2∂3

sk + μ∂sk) − 2μ∂2
sk(−2∂3

sk + μ∂sk)

=4∂s∂tk∂2
sk − 4∂sΛ∂sk∂2

sk + 2Λ∂sk(−2∂3
sk + μ∂sk)

− 2μ∂2
sk(−2∂3

sk + μ∂sk)

= − 8∂2
sk∂5

sk − 24(∂sk)3∂2
sk + 4∂sΛ∂sk∂2

sk + 4Λ(∂2
sk)2

+ 4μ∂2
sk∂3

sk − 4∂sΛ∂sk∂2
sk

+ 2Λ∂sk(−2∂3
sk + μ∂sk) − 2μ∂2

sk(−2∂3
sk + μ∂sk)

= − 8∂2
sk∂5

sk − 24(∂sk)3∂2
sk + 4Λ(∂2

sk)2 − 4Λ∂sk∂3
sk

+ 8μ∂2
sk∂3

sk + 2μΛ(∂sk)2 − 2μ2∂sk∂2
sk ,

that is,

−4∂2
sk∂5

sk = 12(∂sk)3∂2
sk − 2Λ(∂2

sk)2

+2Λ∂sk∂3
sk − 4μ∂2

sk∂3
sk − μΛ(∂sk)2 + μ2∂sk∂2

sk . (4.7)

Hence, replacing the terms (4.6) and (4.7) in (4.5), we obtain

d

dt

∫
γ

|∂2
sk|2 ds =

∫
γ

−4(∂4
sk)2 − 2μ(∂3

sk)2 + p3
10(k) + μp2

8(k) ds

− Λ(∂2
sk)2

∣∣∣1
0

+ 4Λ∂sk∂3
sk
∣∣∣1
0

− μΛ(∂sk)2
∣∣∣1
0

+ μ2∂sk∂2
sk
∣∣∣1
0
.
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We now recall that Λ is proportional to ∂2
sk at boundary points (see Lemma 4.5),

hence it follows that Λph
σ(k) = p

max{2,h}
σ+3 (k). Thus, we have

d

dt

∫
γ

|∂2
sk|2 ds = − 4‖∂4

sk‖2
L2(γ) − 2μ‖∂3

sk‖2
L2(γ) +

∫
γ

p3
10(k) + μp2

8(k) ds

+ p3
9(k)

∣∣∣1
0

+ μp3
7(k)

∣∣∣1
0

+ μ2p2
5(k)

∣∣∣1
0
.

By means of Lemma 4.6 and Lemma 4.7 in [32], for any ε > 0 we have∫
γ

|p3
10 (k) |ds ≤ε‖∂4

sk‖2
L2 + C(ε, �(γ))

(
‖k‖2

L2 + ‖k‖Θ1
L2

)
,

∫
γ

|p2
8 (k) |ds ≤ε‖∂3

sk‖2
L2 + C(ε, �(γ))

(
‖k‖2

L2 + C‖k‖Θ2
L2

)
,

p3
9(k)(y)| ≤ε‖∂4

sk‖2
L2 + C(ε, �(γ))

(
‖k‖2

L2 + ‖k‖Θ3
L2

)
,

p3
7(k)(y) ≤ε‖∂4

sk‖2
L2 + C(ε, �(γ))

(
‖k‖2

L2 + C‖k‖Θ4
L2

)
,

p2
5(k)(y) ≤ε‖∂3

sk‖2
L2 + C(ε, �(γ))

(
‖k‖2

L2 + C‖k‖Θ5
L2

)
,

for some exponents Θi > 2 with i = 1, . . . , 5.

Hence, we get

d

dt

∫
γ

|∂2
sk|2 ds ≤ −C

(
‖∂4

sk‖2
L2(γ) + μ‖∂3

sk‖2
L2(γ)

)
+ C

(
‖k2‖2

L2(γ) + ‖k2‖Θ
L2(γ)

)

for some exponent Θ > 2 and constant C which depend on �(γ). Using the
energy monotonicity proved in Proposition 2.8, we conclude that

d

dt

∫
γ

|∂2
sk|2 ds ≤ C(E(γ0)) .

�

4.2. Bound on ‖∂6
s k‖L2

We observe that since (2.10) is a parabolic fourth-order equation, after having
controlled the second-order derivative of the curvature, it is natural to control
the sixth-order derivative of the curvature. Then, using interpolation inequal-
ities, we get estimates for all the intermediate orders. Before doing that, we
notice that the elastic flow of curves becomes instantaneously smooth. More
precisely, following the proof presented in [32] in the case of closed curves (both
using the so-called Angenent’s parameter trick [5,6,11] and the classical theory
of linear parabolic equations [46]), one can show that given a solution to the
elastic flow in a time interval [0, T ], then it is smooth for positive times, in
the sense that it admits a C∞-parametrization in the interval [ε, T ] for every
ε ∈ (0, T ).

From now on, we denote by

v := ∂tγ = V ν + Λτ (4.8)
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the velocity of γ. Hence, by means of integration by parts and the commutation
rule in Lemma 2.7, we get the following identity

d

dt

1
2

∫
γ

|∂⊥
t v|2 ds = − 2

∫
γ

|(∂⊥
s )2(∂⊥

t v)|2 ds
1
2∫

γ

|∂⊥
t v|2(∂sΛ − kV ) ds +

∫
γ

〈Y, ∂⊥
t v〉ds

− 2〈∂⊥
t v, (∂⊥

s )3(∂⊥
t v)〉

∣∣∣1
0

+ 2〈∂⊥
s (∂⊥

t v), (∂⊥
s )2(∂⊥

t v)〉
∣∣∣1
0
,

(4.9)

where we denoted by

Y := ∂⊥
t (∂⊥

t v) + 2(∂⊥
s )4(∂⊥

t v) .

Before proceeding, we prove the following lemma, which gives estimates
for some special family of polynomials.

Lemma 4.7. Let γ : [0, 1] → R
2 be a smooth regular curve. For all j ≤ 7, if the

polynomial pj
σ(j)(k) defined as in Definition 4.1 satisfies one of the following

conditions:
1. σ(j) ≥ 2(l + 1) for all l ≤ j,
2. σ(j) ≥ 2(l + 1) for all l ≤ j − 1 and (j + 1) ≤ σ(j) < 2(j + 1),

and

σ(j) −
j∑

l=0

αl < 15 , (4.10)

then, there exists a constant C and an exponent Θ > 2 such that∫
γ

|pj
σ(j) (k) |ds ≤ ε‖∂8

sk‖2
L2 + C(j, ε, �(γ))

(‖k‖2
L2 + ‖k‖Θ

L2

)
.

Similarly, for all j ≤ 7 and

σ′(j) −
j∑

l=0

αl < 16 ,

there exists a constant C and an exponent Θ′ > 2 such that for y ∈ {0, 1} it
holds

|pj
σ′(j)(k)(y)| ≤ ε‖∂8

sk‖2
L2 + C(j, ε, �(γ))

(
‖k‖2

L2 + ‖k‖Θ′
L2

)
.

Proof. By definition, every monomial of pj
σ(j)(k) is of the form C

∏j
l=0(∂

l
sk)αl

with

αl ∈ N and
j∑

l=0

αl(l + 1) = σ(j) .

We set

βl :=
σ(j)

(l + 1)αl
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for every l ≤ j and we take βl = 0 if αl = 0. We observe that
∑

l∈J
1
βl

= 1,
hence by Hölder inequality, we get

C

∫
γ

j∏
l=0

|∂l
sk|αl ds ≤ C

j∏
l=0

(∫
γ

|∂l
sk|αlβl ds

) 1
βl

= C

j∏
l=0

‖∂l
sk‖αl

Lαlβl
.

If condition 1 holds, then αlβl ≥ 2 for every l ∈ J . Applying the Gagliardo-
Nirenberg inequality (see [3] or [7], for instance) for every l ≤ j yields

‖∂l
sk‖Lαlβl ≤ C(l, j, αl, βl, �(γ))‖∂8

sk‖ηl

L2‖k‖1−ηl

L2 + ‖k‖L2

where the coefficient ηl is given by

ηl =
l + 1/2 − 1/(αlβl)

8
∈
[

l

8
, 1
)

. (4.11)

Then, we have

C

∫
γ

j∏
l=0

|∂l
sk|αl ds ≤ C

j∏
l=0

‖∂l
sk‖αl

Lαlβl

≤ C

j∏
l=0

‖k‖(1−ηl)αl

L2

(‖∂8
sk‖L2 + ‖k‖L2

)ηlαl

L2

=C‖k‖
∑j

l=0(1−ηl)αl

L2

(‖∂8
sk‖L2 + ‖k‖L2

)∑j
l=0 ηlαl

L2 .

Moreover, from condition (4.10), we have
j∑

l=0

ηlαl ≤ σ(j) − 1 −∑j
l=0 αl

8
< 2,

that is, by means of Young’s inequality with p = 2∑j
l=0 ηlαl

and q = 2

2−∑j
l=0 ηlαl

we obtain

C

∫
γ

j∏
l=0

|∂l
sk|αl ds ≤ εC

(‖∂8
sk‖L2 + ‖k‖L2

)2
L2 +

C

ε
‖k‖Θ

L2 (4.12)

where constant C depends on j, ε, �(γ) and Θ > 2.
Otherwise, if condition 2 holds, we have 1 ≤ αjβj < 2, that is

‖∂j
sk‖αj

Lαjβj
≤ ‖∂j

sk‖αj

L2 ≤ ‖∂8
sk‖ηjαj

L2 ‖k‖(1−ηj)αj

L2 + ‖k‖αj

L2

where ηj = j
8 and we used the boundedness of �(γ).

Hence, as in the previous case, we have

C

∫
γ

j∏
l=0

|∂l
sk|αl ds ≤C

j−1∏
l=0

‖∂l
sk‖αl

Lαlβl
‖∂j

sk‖αj

Lαjβj

≤C
(
‖∂8

sk‖
∑j−1

l=0 ηlαl

L2 ‖k‖
∑j−1

l=0 (1−ηl)αl

L2 + ‖k‖
∑j−1

l=0 αl

L2

)
(
‖∂8

sk‖ηjαj

L2 ‖k‖(1−ηj)αj

L2 + ‖k‖αj

L2

)
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≤C‖k‖
∑j

l=0(1−ηl)αl

L2

(
‖∂8

sk‖
∑j

l=0 ηlαl

L2 + ‖∂8
sk‖

∑j−1
l=0 ηlαl

L2 ‖k‖ηjαj

L2

+‖∂8
sk‖ηjαj

L2 ‖k‖
∑j−1

l=0 ηlαl

L2 + ‖k‖
∑j

l=0 ηlαl

L2

)

where for all l ≤ j − 1 the coefficient ηl is given by expression (4.11) and
ηj = j

8 . Applying again Young’s inequality, since
∑j

l=0 ηlαl < 2 still holds, we
obtain estimate (4.12).

The second part of the lemma comes using the same arguments. �

Lemma 4.8. Let γt be a maximal solution to the elastic flow of curves subjected
to Navier boundary conditions (2.7), such that the uniform non-degeneracy
condition (4.4) holds in the maximal time interval [0, Tmax). Then, for every
j ∈ N, it holds

∂j
sΛ(y)ph

σ(k)(y) = p
max{h,j+2}
σ+j+3 (k)(y)

and

∂tΛ(y)ph
σ(k)(y) = p

max{h,6}
σ+7 (k)(y) + μp

max{h,4}
σ+5 (k)(y)

for every t ∈ [0, Tmax) and y ∈ {0, 1}.
Proof. By means of Lemma 4.5 and by the fact that τ2 is bounded from below,
we have

Λ(y) = ∂2
sk(y)

ν2(y)
τ2(y)

= p2
3(k)(y)

for y ∈ {0, 1}. Hence, by Remark 4.2, it follows

∂j
sΛ(y) = pj+2

j+3(k)(y) ,

and thus,

∂j
sΛ(y)ph

σ(k)(y) = pj+2
j+3(k)(y)ph

σ(k)(y) = p
max{h,j+2}
σ+j+3 (k)(y) .

Similarly, by formula (4.1), we have

∂tΛ(y) = ∂t

(
p2
3(k)(y)

)
= p6

7(k)(y) + μp4
5(k)(y)

then,

∂tΛ(y)ph
σ(k)(y) = p

max{h,6}
σ+7 (k)(y) + μp

max{h,4}
σ+5 (k)(y) .

�

From now on, for any t ∈ [0, Tmax), we choose the tangential velocity
Λ(t, x) with x ∈ (0, 1) as the linear interpolation between the value at the
boundary points, that is

Λ(t, x) = Λ(t, 0)
(
1 +

Λ(t, 1) − Λ(t, 0)
Λ(t, 0)

1
�(γ)

∫ x

0

|∂xγ| dx
)
. (4.13)



NoDEA Elastic flow of curves with partial free boundary Page 27 of 42 96

Lemma 4.9. Let Λ be the tangential velocity defined in (4.13), there exist two
constants C1 = C1(�(γ)) and C2 = C2(E(γ0), �(γ)) such that

|∂sΛ(t, x)| ≤ C1(|Λ(t, 1)| + |Λ(t, 0)|) ,

|∂tΛ(t, x)| ≤ C2

[
|∂tΛ(t, 0)| + |∂tΛ(t, 1)| + |∂tΛ(t, 0)| |Λ(t, 1)|

|Λ(t, 0)|
+ |Λ(t, 1) − Λ(t, 0)|2 + |Λ(t, 1) − Λ(t, 0)|

]

for t ∈ [0, Tmax) and x ∈ [0, 1].

Proof. From (4.13) it easily follows that

∂sΛ(t, x) =
Λ(t, 1) − Λ(t, 0)

�(γ)
and ∂j

sΛ(t, x) = 0 forj ≥ 2.

Moreover, taking the time derivative, we get

∂tΛ(t, x) = ∂tΛ(t, 0)
(
1 +

Λ(t, 1) − Λ(t, 0)
Λ(t, 0)

1
�(γ)

∫ x

0

|∂xγ| dx
)

+
(∂tΛ(t, 1) − ∂tΛ(t, 0))Λ(t, 0) − (Λ(t, 1) − Λ(t, 0))∂tΛ(t, 0)

Λ(t, 0)
1

�(γ)

∫ x

0

|∂xγ| dx

− (Λ(t, 1) − Λ(t, 0)
) 1
�2(γ)

d(�(γ))
dt

∫ x

0

|∂xγ| dx

+
(
Λ(t, 1) − Λ(t, 0)

) 1
�(γ)

d

dt

∫ x

0

|∂xγ| dx

= ∂tΛ(t, 0)
(
1 +

Λ(t, 1) − Λ(t, 0)
Λ(t, 0)

1
�(γ)

∫ x

0

|∂xγ| dx
)

+
(∂tΛ(t, 1) − ∂tΛ(t, 0))Λ(t, 0) − (Λ(t, 1) − Λ(t, 0))∂tΛ(t, 0)

Λ(t, 0)
1

�(γ)

∫ x

0

|∂xγ| dx

−
(
Λ(t, 1) − Λ(t, 0)

)2
�2(γ)

∫ x

0

|∂xγ| dx +
Λ(t, 1) − Λ(t, 0)

�2(γ)∫
γ

kV ds

∫ x

0

|∂xγ| dx

+
(
Λ(t, 1) − Λ(t, 0)

) 1
�(γ)

d

dt

∫ x

0

|∂xγ| dx .

where we used relations (2.11). Hence, noticing that from interpolation and
Proposition 4.6 it follows ∫

γ

kV ≤ C(E(γ0)) ,

we obtain the last estimate in the statement. �
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Lemma 4.10. If γ satisfies (2.10), then

∂2
t γ =

(
4∂6

sk + 10k2∂4
sk + p3

7(k) − 4Λ∂3
sk − 6Λk2∂sk + Λ2k

− 4μ∂4
sk + μp2

5(k) + 2μΛ∂sk + μ2∂2
sk + μ2p0

3(k)
)
ν

+
(
∂tΛ + p3

7(k) − 2Λk∂3
sk − 3Λk3∂sk + μp3

5(k) + μΛk∂sk + μ2p1
3(k)

)
τ .

(4.14)

Proof. We firstly compute

∂tV = 4∂6
sk + p3

7(k) − 2Λ∂3
sk + Λp1

4(k) − 4μ∂4
sk

+μp2
5(k) + μΛ∂sk + μ2∂2

sk + μ2p0
3(k)

and

∂t∂sV =4∂7
sk + p4

8(k) − 2Λ∂4
sk + Λp2

5(k) + ∂sΛp1
4(k) − 4μ∂5

sk + μp3
6(k)

+ μΛ∂2
sk + 3μ∂sΛ∂sk + μ2∂3

sk + μ2p1
4(k) .

Then, by means of Lemma 2.7, we have

∂2
t τ =(∂t∂sV + ∂tΛk + Λ∂tk)ν − (∂sV + Λk)2τ

=
(
4∂7

sk + p4
8(k) − 4Λ∂4

sk + Λp2
5(k) + ∂sΛp1

4(k)

+ Λ2∂sk + ∂tΛk − 4μ∂5
sk + μp3

6(k)

+ μΛp2
3(k) + 3μ∂sΛ∂sk + μ2∂3

sk + μ2p1
4(k)

)
ν

+
(
p3
8(k) + Λp3

5(k) + Λ2k2 + μp3
6(k) + μΛp2

3(k) + μ2p1
4(k)

)
τ . (4.15)

Similarly, differentiating in time the relation (2.12) we get

∂2
t ν = −(∂sV + Λk)2ν − (∂t∂sV + ∂tΛk + Λ∂tk)τ ,

that is

∂2
t ν =

(
p3
8(k) + Λp3

5(k) + Λ2k2 + μp3
6(k) + μΛp2

3(k) + μ2p1
4(k)

)
ν

−
(
4∂7

sk + p4
8(k) − 4Λ∂4

sk + Λp2
5(k) + ∂sΛp1

4(k)

+ Λ2∂sk + ∂tΛk − 4μ∂5
sk + μp3

6(k)

+ μΛp2
3(k) + 3μ∂sΛ∂sk + μ2∂3

sk + μ2p1
4(k)

)
τ . (4.16)

Using computations (4.15) and (4.16), we obtain

∂2
t γ =(∂tV + Λ(∂sV + Λk))ν + (∂tΛ − V (∂sV − Λk))τ

=
(
∂tV + Λ(−2∂3

sk − 3k2∂sk + μ∂sk) + Λ2k
)
ν

+
(
∂tΛ − (−2∂2

sk − k3 − μk)(−2∂3
sk − 3k3∂sk − μ∂sk − Λk)

)
τ

=
(
4∂6

sk + 10k2∂4
sk + p3

7(k) − 4Λ∂3
sk − 6Λk2∂sk + Λ2k
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− 4μ∂4
sk + μp2

5(k) + 2μΛ∂sk + μ2∂2
sk + μ2p0

3(k)
)
ν

+
(
∂tΛ + p3

7(k) − 2Λk∂3
sk − 3Λk3∂sk + μp3

5(k) + μΛk∂sk + μ2p1
3(k)

)
τ .

�

In the following, we show that to estimate the L2-norm of ∂6
sk it is enough

to control the L2-norm of ∂⊥
t v. Hence, we start writing the boundary terms

in (4.9) using the curvature and its derivatives, lowering the order by means
of the boundary condition.

Lemma 4.11. Let γt be a family of curves moving with velocity v defined in (4.8).
Then,

〈∂⊥
s (∂⊥

t v), (∂⊥
s )2(∂⊥

t v)〉 = p7
17(k) + p7

15(k) + p7
13(k) + p5

11(k) + μ4p4
9(k) .

Proof. By straightforward computations, we have that

∂⊥
s (∂⊥

t v) = ∂s(∂tv
⊥)ν , (∂⊥

s )2(∂⊥
t v) = ∂2

s (∂tv
⊥)ν

where ∂tv
⊥ is the normal component of ∂2

t γ, which is computed in (4.14).
Hence, we compute

∂s(∂tv
⊥) =4∂7

sk + p4
8(k) − 4Λ∂4

sk − 4∂sΛ∂3
sk + Λ2∂sk − 4μ∂5

sk + μp4
7(k)

+ 2μΛ∂2
sk + 2μ∂sΛ∂sk + μ2∂3

sk + μ2p1
4(k) (4.17)

and

∂2
s (∂⊥

t v) = p5
9(k) + 4Λ∂sΛ∂sk + Λp2

6(k) − 4∂2
sΛ∂3

sk − 8∂sΛ∂4
sk − ∂tΛ∂sk

+ μp4
7(k) + μΛp1

4(k) + 2μ∂2
sΛ∂sk + 4μ∂sΛ∂2

sk + μ2p2
5(k) , (4.18)

where in relation (4.18) we used

4∂8
sk = p5

9(k) + 4Λ∂5
sk + Λp2

6(k) − Λ2∂2
sk − ∂tΛ∂sk

+ 4μ∂6
sk + μp4

7(k) − 2μΛ∂3
sk + μΛp1

4(k) − μ2∂4
sk + μ2p2

5(k)

since Navier boundary conditions hold. So, using expressions (4.17) and (4.18),
replacing Λ and its derivatives by means of Lemma 4.8 and recalling that μ > 0
is constant, we get

〈∂⊥
s (∂⊥

t v), (∂⊥
s )2(∂⊥

t v)〉 = p7
17(k) + p7

15(k) + p7
13(k) + p5

11(k) + μ4p4
9(k) .

�

Lemma 4.12. Let γt be a family of curves moving with velocity v defined in (4.8).
Then,

〈∂⊥
t v, (∂⊥

s )3(∂⊥
t v)〉 =〈∂⊥

t v, 4∂9
skν〉 + 〈∂⊥

t v, (∂⊥
s )3(∂⊥

t v) − 4∂9
skν 〉

=p6
17(k) + p7

15(k) + p7
13(k) + p7

11(k) + p5
9(k) + p2

7(k) .

Proof. Let us analogously handle the other boundary term in (4.9). By stan-
dard computations, we have that

(∂3
s )⊥(∂⊥

t v) = ∂3
s (∂tv

⊥)ν
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where

∂3
s (∂tv

⊥) =4∂9
sk + p6

10(k) − 4Λ∂6
sk + ∂sΛp5

6(k) − 12∂2
sΛ∂4

sk − 4∂3
sΛ∂3

sk

+ Λ2∂3
sk + 6Λ∂sΛ∂2

sk + 6Λ∂2
sΛ∂sk − 4μ∂7

sk + μp5
8(k)

+ μ2Λ∂4
sk + 6μ∂sΛ∂3

sk + 6μ∂2
sΛ∂2

sk + 2μ∂3
sΛ∂sk + μ2∂5

sk + μ2p3
6(k) .

As above, we aim to write the ninth-order derivative as the sum of lower-order
derivatives.

Hence, from condition (2.7), at boundary points it holds

〈∂tv, ∂2
t (−2∂skν + μτ)〉 = 0, (4.19)

where

∂tv =∂tV ν + V ∂tν + ∂tΛτ + Λ∂tτ

=
(
∂tV + Λ∂sV

)
ν + (∂tΛ − V ∂sV )τ

=
(
4∂6

sk + p3
7(k) − 4Λ∂3

sk + Λp1
4(k) − 4μ∂4

sk

+ μp2
5(k) + 2μΛ∂sk + μ2∂2

sk + μ2p0
3(k)

)
ν

+
(
∂tΛ − 4∂2

sk∂3
sk
)
τ (4.20)

and

∂2
t (−2∂skν + μτ) = − 2∂2

t ∂skν − 4∂t∂sk∂tν − 2∂sk∂2
t ν + μ∂2

t τ

=
(

− 2∂2
t ∂sk − 2∂sk(∂2

t ν)⊥ + μ(∂2
t τ)⊥

)
ν

+
(
4∂sV ∂t∂sk − 2∂sk(∂2

t ν)	 + μ(∂2
t τ)	

)
τ .

Then, after computing ∂2
t ∂sk, we have

∂
2
t (−2∂skν + μτ) =

(
− 8∂

9
sk + p

6
10(k) + Λp

6
7(k) + ∂sΛp

2
6(k) + Λ

2
p
3
4(k) + (∂sΛ)

2
p
1
2(k)

+ ∂tΛp
2
3(k) + μp

7
8(k) + μΛp

4
5(k) + μ∂sΛp

1
4(k) + μΛ

2
p
1
2(k)

+ μ∂tΛp
0
1(k) + μ

2
p
5
6(k) + μ

2
Λp

2
3(k) + μ

2
∂sΛp

1
2(k) + μ

3
p
3
4(k)

)
ν

+
(
p
7
10(k) + Λp

4
7(k) + ∂sΛp

1
6(k) + Λ

2
p
1
4(k) + ∂tΛp

1
3(k)

+ μp
3
8(k) + μΛp

3
5(k) + μ∂sΛp

1
4(k) + μΛ

2
p
0
2(k)

+ μ
2
p
3
6(k) + μ

2
Λp

2
3(k) + μ

3
p
1
4(k)

)
τ . (4.21)

Replacing equations (4.20) and (4.21) in the scalar product (4.19) and recalling
that at boundary points Λ and its derivatives can be approximated by suitable
polynomials (as it is shown in Lemma 4.8), we get

〈∂tv, 8∂9
skν〉 = p6

17(k) + p7
15(k) + p7

13(k) + p7
11(k) + p5

9(k) + p2
7(k) .

We now notice that

〈∂tv, ∂9
skν〉 = 〈∂tv

⊥ν + ∂tv
	τ, ∂9

skν〉 = 〈∂⊥
t v, ∂9

skν〉 ,
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hence, we have

〈∂⊥
t v, (∂⊥

s )3(∂⊥
t v)〉 =〈∂⊥

t v, 4∂9
skν〉 + 〈∂⊥

t v, (∂⊥
s )3(∂⊥

t v) − 4∂9
skν 〉

=p6
17(k) + p7

15(k) + p7
13(k) + p7

11(k) + p5
9(k) + p2

7(k) .

�

Proposition 4.13. Let γt be a maximal solution to the elastic flow of curves
subjected to boundary conditions (2.7), with initial datum γ0 in the maximal
time interval [0, Tmax). Then for all t ∈ (0, Tmax) it holds∫

γ

|∂⊥
t v|2 ds ≤ C(E(γ0)) .

Proof. The thesis follows once we estimate the quantities in (4.9). From equa-
tion (4.18), we have

−2
∫

γ

|(∂⊥
s )2(∂⊥

t v)|2 ds = −2
∫

γ

|4∂8
sk + p5

9(k) + Λp5
6(k) + ∂sΛp4

5(k)

+ ∂2
sΛp3

4(k) + Λ2p2
3(k) + Λ∂sΛp1

2(k)

+ μp6
7(k) + μΛp3

4(k)

+ μ∂sΛp2
3(k) + μ2p4

5(k)|2 ds .

Hence, using the simple inequalities

|a + b|2 ≤ C
(|a|2 + |b|2) ,

|a + b|2 ≥ (1 − ε)|a|2 − C(ε)|b|2

with ε =
1
2
, we get

−2

∫
γ

|(∂⊥
s )2(∂⊥

t v)|2 ds ≤ −
∫

γ

|4∂8
sk|2 + C

∫
γ

|p5
18(k) + Λ2p5

12(k) + (∂sΛ)2p4
10(k)

+ (∂2
sΛ)2p3

8(k) + Λ4p2
6(k) + μ2p6

14(k)

+ μ2Λ2p3
8(k) + μ2(∂sΛ)2p2

6(k) + μ4p4
10(k) ds

≤ − 16

∫
γ

|∂8
sk|2 +

∫
γ

|p5
18(k) + p4

16(k)

+ p6
14(k) + p2

12(k) + p4
10(k)| ds , (4.22)

where we used the very expression of Λ in (4.13) and the estimates in Lemma 4.9.
Moreover, with same arguments, from equation (4.20) we get

1

2

∫
γ

|∂⊥
t v|2(∂sΛ − kV ) ds =

1

2

∫
γ

|∂⊥
t v|2(∂sΛ + 2k∂2

sk + k4 − μk2) ds

=

∫
γ

|p6
18(k) + p6

17(k) + p6
16(k) + p6

15(k) + p6
14(k) + p6

13(k)

+ p6
12(k) + p2

12(k) + p4
10(k) + p2

9(k) + p2
8(k)| ds .

(4.23)

We only need to compute the integral in (4.9) involving Y . By straightforward
computation, we have
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∂t(∂tv)⊥ = − 8∂10
s k − 20k2∂8

sk + p7
11(k) + Λp7

8(k) + Λ2p4
5(k) + ∂tΛp3

4(k)

+ 12μ∂8
sk + μp6

9(k) + μΛp5
6(k) + μΛ2p2

3(k) + μ∂tΛp1
2(k) + μ2p6

7(k)

+ μ2Λp3
4(k) + μ3p4

5(k) ,

and

∂4
s (∂tv)⊥ =4∂10

s k + p7
11(k) + Λp7

8(k) + ∂sΛp6
7(k) + ∂2

sΛp5
6(k) + ∂3

sΛp4
5(k) + ∂4

sΛp3
4(k)

− 4μ∂8
sk + μp6

9(k) + μΛp5
6(k) + μ∂sΛp4

5(k) + μ∂2
sΛp3

4(k)

+ μ∂3
sΛp2

3(k) + μ∂4
sΛp1

2(k) + μ2(p6
7(k) .

Then, we get

Y =∂⊥
t (∂⊥

t v) + 2(∂⊥
s )4(∂⊥

t v)

=
(

− 20k2∂8
sk + p7

11(k) + Λp7
8(k) + ∂sΛp6

7(k) + Λ2p4
5(k) + ∂tΛp3

4(k)

+ 4μ∂8
sk + μp6

9(k) + μΛp5
6(k) + μ∂sΛp4

5(k) + μΛ2p2
3(k) + μ∂tΛp1

2(k)

+ μ2p6
7(k) + μ2Λp3

4(k) + μ3p4
5(k)

)
ν .

Hence, computing the scalar product 〈Y, ∂⊥
t v〉, using the well-known

Peter–Paul inequality and integrating by parts the integral
∫

γ
∂6

sk∂8
sk ds, we

have∫
γ

〈Y, ∂⊥
t v〉ds ≤1

2

∫
γ

|∂8
sk|2 ds − 4μ

∫
γ

|∂7
sk|2 ds + p7

15(k)
∣∣∣1
0

+
∫

γ

|p7
18(k) + p6

17(k) + p7
18(k)p7

16(k) + p6
15(k) + p7

14(k)

+ p6
13(k) + p6

12(k) + p4
11(k) + p4

10(k) + p4
8(k) + p2

6(k)|ds .
(4.24)

where, as above, we estimated Λ and its derivatives by means of Lemma 4.9.
Moreover, using identities in Lemma 4.11 and Lemma 4.12, we end up

with the following inequality

−2〈∂⊥
t v, (∂⊥

s )3(∂⊥
t v)〉

∣∣∣1
0

+ 2〈∂⊥
s (∂⊥

t v), (∂⊥
s )2(∂⊥

t v)〉
∣∣∣1
0

≤|p7
17(k)| + |p7

15(k)| + |p7
13(k)|

+ |p7
11(k)| + |p5

9(k)| + |p2
7(k)| .

(4.25)

Then, putting together inequalities (4.22), (4.23), (4.24) and (4.25), we get
d

dt

1

2

∫
γ

|∂⊥
t v|2 ds ≤

∫
γ

|p7
18(k) + p7

17(k) + p7
16(k) + p7

14(k) + p6
15(k) + p6

13(k) + p6
12(k)

+ p4
11(k) + p4

10(k) + p4
8(k) + p2

9(k) + p2
6(k)| ds

+ |p7
17(k)| + μ|p7

15(k)| + μ2|p7
13(k)|

+ μ3|p7
11(k)| + μ4|p5

9(k)| + μ5|p2
7(k)|

∣∣∣1
0

.

By means of Lemma 4.7, we have
d

dt

1

2

∫
γ

|∂⊥
t v|2 ds ≤ − C

(
‖∂8

sk‖2
L2(γ) + μ‖∂7

sk‖2
L2(γ)

)
+ C

(
‖k‖2

L2(γ) + ‖k‖Θ
L2(γ)

)

≤C(E(γ0))
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for some exponent Θ > 2 and constant C which depends on �(γ).
Hence, by integrating, it follows∫

γ

|∂⊥
t v|2 ds ≤ C(E(γ0)).

�

Proposition 4.14. Let γt be a maximal solution to the elastic flow of curves
subjected to Navier boundary conditions with initial datum γ0, which satis-
fies the uniform non-degeneracy condition (4.4) in the maximal time interval
[0, Tmax). Then, for all t ∈ (0, Tmax) it holds∫

γ

|∂6
sk|2 ds ≤ C(E(γ0)) .

Proof. From formula (4.14) and Lemma 4.8, it follows

∂⊥
t v = ∂tv

⊥ν =
(
∂6

sk + p4
7(k) + μp4

5(k) + μ2p2
3(k)

)
ν .

However, since we are assuming that μ is constant, we simply have

∂6
sk = ∂tv

⊥ + p4
7(k) + p4

5(k) + p2
3(k)

and by means of Peter–Paul inequality, we get∫
γ

|∂6
sk|2 ds ≤

∫
γ

|∂tv
⊥|2 ds

+C

(∫
γ

|p4
7(k)|2 ds +

∫
γ

|p4
5(k)|2 ds +

∫
γ

|p2
3(k)|2 ds

)
. (4.26)

We now estimate separately the integrals involving the polynomials.
We start considering

∫
γ

|p4
7(k)|2 ds =

∫
γ

∣∣∣
4∏

l=0

(∂l
sk)αl

∣∣∣2 ds

where αl ∈ N and
∑4

l=0(l + 1)αl = 7. So, by Hölder inequality, we get
∫

γ

|p4
7(k)|2 ds =

∫
γ

∣∣∣
4∏

l=0

(∂l
sk)αl

∣∣∣2 ds ≤
4∏

l=0

(∫
γ

|∂l
sk|2αlβl ds

) 1
βl

=

4∏
l=0

‖∂l
sk‖2αl

L2αlβl (γ)

where βl := 7
(l+1)αl

> 1 if αl �= 0 (if αl = 0 we simply have the integral of a
unitary function), which clearly satisfies

4∑
l=0

1
βl

= 1 .

Then, we estimate any of such products by the well-known interpolation in-
equalities (see [31], for instance),

‖∂l
sk‖L2αlβl (γ) ≤ C‖∂6

sk‖σl

L2(γ)‖k‖1−σl

L2(γ) + ‖k‖L2(γ) (4.27)
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for some constant C depending on αl, βl and coefficient σl given by

σl =
1
6

(
l − 1

2αlβl
+

1
2

)
∈
[ l

6
, 1
)

.

Moreover, we notice that

4∑
l=0

2αlσl =
4∑

l=0

1
3

(
αl(l + 1) − 1

2βl
− αl

2

)

=
7
3

− 1
6

−
∑4

l=0 αl

6
< 2 ,

where in the last inequality we use the fact that, since l, αl are respectively
the order of derivations and the exponents of the derivative in p4

7(k), it follows

1 <

4∑
l=0

αl ≤ 7 .

Then, multiplying together inequalities (4.27) and applying the Young inequal-
ity, we have∫

γ

|p4
7(k)|2 ds ≤ (‖∂6

sk‖L2γ) + ‖k‖L2(γ)

)∑4
l=0 2αlσl ‖k‖

∑4
l=0 2αl(1−σl)

L2(γ)

≤ε
(‖∂6

sk‖L2(γ) + ‖k‖L2(γ)

)2
+ C(ε)‖k‖Θ1

L2(γ) (4.28)

for some exponent Θ1 > 2.
Arguing in the same way, one can check that∫

γ

|p4
5(k)|2 ds ≤ ε

(‖∂6
sk‖L2(γ) + ‖k‖L2(γ)

)2
+ C(ε)‖k‖Θ2

L2(γ) (4.29)

and ∫
γ

|p2
3(k)|2 ds ≤ ε

(‖∂6
sk‖L2(γ) + ‖k‖L2(γ)

)2
+ C(ε)‖k‖Θ3

L2(γ) (4.30)

for some exponents Θ2,Θ3 > 2.
Replacing the estimates (4.28), (4.29) and (4.30) in (4.26) and moving

the small part of ‖∂6
sk‖2

L2(γ) on the right-hand side, we have
∫

γ

|∂6
sk|2 ds ≤

∫
γ

|∂tv
⊥|2 ds + C(‖k‖2

L2(γ) + ‖k‖Θ
L2(γ)) , (4.31)

where, as above, θ > 2. Then, we conclude using Proposition 4.13 and the
energy monotonicity in Proposition 2.8. �

5. Long-time existence

In the following, we adapt the proof of [32, Theorem 4.15] to our situation.
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Theorem 5.1. Let γ0 be a geometrically admissible initial curve. Suppose that
γt is a maximal solution to the elastic flow with initial datum γ0 in the maximal
time interval [0, Tmax) with Tmax ∈ (0,∞) ∪ {∞}. Then, up to reparametriza-
tion and translation of γt, it follows

Tmax = ∞
or at least one of the following holds

• lim inf �(γt) → 0 as t → Tmax;
• lim inf τ2 → 0 as t → Tmax at boundary points.

Proof. Suppose by contradiction that the two assertions in the statement are
not fulfilled and that Tmax is finite. So, in the whole time interval [0, Tmax)
the length of the curves γt is uniformly bounded from below away from zero
and the uniform condition (4.3) is satisfied. Moreover, since the energy (2.1)
decreases in time, both the L2-norm of the curvature and the length of γ are
uniformly bounded from above. Let ε > 0 be fixed, by means of Proposition 4.6
and Proposition 4.13 we have that

∂2
sk ∈ L∞([0, Tmax);L2) and ∂6

sk ∈ L∞((ε, Tmax);L2) .

Hence, using Gagliardo-Nirenberg inequality for all t ∈ [0, Tmax) we get

‖∂j
sk‖L2(γ) ≤ C1‖∂6

sk‖σ
L2(γ)‖k‖1−σ

L2(γ) + C2‖k‖L2(γ) ≤ C(E(γ0)),

for every integer j ≤ 6, with constants independent on t and for suitable
exponent σ. Actually, by interpolation, we have

∂j
sk ∈ L∞((ε, Tmax);L∞)

for every integer j ≤ 5. Reparametrizing the curve γt into γ̃t with the property
|∂xγ̃(x)| = �(γ̃) for every x ∈ [0, 1] and for all t ∈ [0, Tmax) and translating so
that it remains in a ball BR(0) for every time (since its length is uniformly
bounded from above), we get

• 0 < c ≤ supt∈[0,Tmax),x∈[0,1] |∂xγ̃(t, x)| ≤ C < ∞,
• 0 < c ≤ supt∈[0,Tmax),x∈[0,1] |γ̃(t, x)| ≤ C < ∞ .

Hence, τ ∈ L∞([0, Tmax);L∞) and ∂j
xγ̃ ∈ L∞((ε, Tmax);L∞) for every integer

j ≤ 7. Then, from the observation above and the fact that κ = kν, we get
∂j

sκ ∈ L∞((ε, Tmax);L∞) for every integer j ≤ 5 and ∂6
sκ ∈ L∞((ε, Tmax);L2).

Moreover, thanks to our choice of parametrization, we have

κ(x) =
∂2

xγ̃(x)
�(γ̃)2

and ∂j
sκ(x) =

∂j+2
x γ̃(x)
�(γ̃)j+2

.

So, it follows that ∂j
xγ̃ ∈ L∞((ε, Tmax);L∞) for every integer 1 ≤ j ≤ 7 and

∂8
xγ̃ ∈ L∞((ε, Tmax);L2).

Then, by Ascoli-Arzelà Theorem, there exists a curve γmax such that

lim
t↗Tmax

∂j
xγ̃(x) = ∂j

xγmax(x)

for every integer j ≤ 6. The curve γmax is an admissible initial curve, since by
continuity of k and ∂2

sk it fulfills the system (2.7) and uniform condition (4.3) at
boundary points. Then, there exists an elastic flow γt ∈ C

4+α
4 ,4+α

(
[Tmax, Tmax+



96 Page 36 of 42 A. Diana NoDEA

δ)× [0, 1];R2
)

with δ > 0. We again reparametrize γt in γ̂t with constant speed
equal to length and we have

lim
t↘Tmax

∂j
xγ̂(x) = ∂j

xγmax(x)

for every integer j ≤ 6.
Then,

lim
t↗Tmax

∂tγ̃(t, x) = lim
t↘Tmax

∂tγ̂(t, x).

Thus, we found a solution to the elastic flow in C
4+α
4 ,4+α

(
[0, Tmax + δ) ×

[0, 1];R2
)
. This obviously contradicts the maximality of Tmax. �

We conclude by emphasizing that, even if those arguments and techniques
have been already used in literature, all the previous works deal with closed
curves (see for instance [19,33,44]) or open curves with fixed boundary points
(see for instance [16,29,39,40,47]). So, all the complications that appear in
this paper are due to the fact that we have partial conditions on the boundary
points.
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Appendix

For the sake of completeness, we show the smoothness of critical points of
functional E .

Lemma 5.2. ([4, Corollary 6.13, Exercise 6.7]) Suppose that Ω ⊂ R
n is open,

f ∈ L1
loc(Ω), p ∈ (1,∞], 1/p + 1/p′ = 1, m ∈ N0, and that there exists a

constant C0 such that for all k ∈ N0 with k ≤ m and all ζ ∈ C∞
c (Ω)∣∣∣∣

∫
Ω

f∂kζ dx

∣∣∣∣ ≤ C0‖ζ‖Lp′ (Ω) .

Thenf ∈ Wm,p(Ω) and there exists a constant C = C(m,C0) with ‖f‖W m,p ≤
C.

Proposition 5.3. (Regularity for critical point of E)s Suppose that γ is a critical
point of E, then γ is of class C∞. Moreover, for all l ∈ N there exists a constant
Cl = Cl(‖γ‖H2) such that

‖γ‖W l+2,∞ ≤ Cl(‖γ‖H2). (5.1)

Proof. In order to show the regularity of a critical point of the elastic energy,
we follow a bootstrap argument based on Lemma 5.2 (see [10] for a similar
proof).

Indeed, we prove that for any m ∈ N0, η : [0, 1] → R of class C∞ and
l ∈ N0, l ≤ m, we have ∫

γ

k∂l
sη ds ≤ C(‖γ‖H2)‖η‖L1 . (5.2)

Then, by Lemma 5.2 we conclude that κ ∈ Wm,∞ and γ ∈ Wm+2,∞, where
κ = kν.

We start showing the assertion for m = 1. We recall that, since γ is a
critical point of E , it holds∫

γ

2〈κ, ∂2
sψ〉ds +

∫
γ

(−3|κ|2 + μ) 〈τ, ∂sψ〉 ds = 0 (5.3)

for all ψ : [0, 1] → R
2 of class H2 such that

ψ(0)2 = 0 and ψ(1)2 = 0 .

Moreover, the fact that γ ∈ H2 ensures that the L2-norm of the curvature is
bounded, that is

‖κ‖L1 ≤ C‖κ‖L2 ≤ C(‖γ‖H2) . (5.4)

We now denote by F (γ, ψ) the second integral in (5.3), so we have

|F (γ, ψ)| ≤ C(‖κ‖2
L2 + μ�(γ))‖∂sψ‖L∞ ≤ C(‖γ‖H2)‖ψ‖W 2,1 . (5.5)

In order to show the L∞-regularity of κ, we consider η ∈ C∞ and we use

ψ(x) = �(γ)2
∫ x

0

∫ y

0

η(t)ν(t) dt dy + �(γ)2x
∫ 1

0

∫ y

0

η(t)ν(t) dt dy
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as test function in (5.3). It clearly follows that ψ ∈ H2 and ∂2
sψ = ην (using

the relation |γ′(x)| = �(γ) for all x ∈ [0, 1]). Then, if we replace ψ in (5.3) we
have ∫

γ

2〈κ, ην〉ds = −F (γ, ψ)

for all η ∈ C∞. Hence, using the estimate (5.5), we obtain∫
γ

2〈κ, ην〉ds =
∫

γ

2kη ds ≤ C(‖γ‖H2)‖ψ‖W 2,1 ≤ C(‖γ‖H2)‖η‖L1 ,

and by Lemma 5.2, we conclude that κ ∈ L∞ (that is γ ∈ W 2,∞) and there
exists a constant C0 = C0(‖γ‖H2) such that

‖κ‖L∞ ≤ C0(‖γ‖H2) . (5.6)

Arguing in the same way, we want to show that k ∈ W 1,∞. For η ∈ C∞, we
use

ψ(x) = �(γ)
∫ x

0

η(t)ν(t) dt + �(γ)x
∫ 1

0

η(t)ν(t) dt

as test function in (5.3). So we have ψ ∈ H2, ∂sψ = ην and

〈∂2
sψ, ν〉 = 〈∂sην, ν〉 = ∂sη .

Then, relation (5.3) can be written as∫
γ

k∂sη ds =
∫

γ

(3|κ|2 − μ)〈τ, ∂sψ〉ds ≤ C(‖γ‖H2)‖∂sψ‖L1 ≤ C(‖γ‖H2)‖η‖L1

where we used the L∞-bound in (5.6). Then, by Lemma 5.2 it follows that
κ ∈ W 1,∞ (that is γ ∈ W 3,∞) and there exists a constant C1 = C1(‖γ‖H2)
such that

‖κ‖W 1,∞ ≤ C1(‖γ‖H2) .

Once we show the assertion for m = 1, we can suppose that m ≥ 2 and that
it holds for m − 1. So, we only need to prove the estimate (5.2) for l = m.

For η ∈ C∞, we use ψ = ∂l−2
s ην as a test function in (5.3). Hence, we

have

〈∂2
sϕ, ν〉 = 〈∂s(∂l−1

s ην + ∂l−2
s η∂sν), ν〉 = ∂l

sη + 2〈∂l−1
s η∂sν, ν〉 + 〈∂l−2

s η∂2
sν, ν〉

= ∂l
sη − 〈∂l−2

s η∂s(kτ), ν〉 = ∂l
sη − k2∂l−2

s η .

and

〈∂sψ, τ〉 = 〈∂l−1
s ην + ∂l−2

s η∂sν, τ〉 = −k∂l−2
s η .

Replacing this relations in (5.3), we obtain∫
γ

k∂l
sη ds =

∫
γ

k3∂l−2
s η −

∫
γ

k(3k2 − μ)∂l−2
s η ds .
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In view of the regularity already established, we may integrate by parts the
terms involving derivatives of η on the right-hand side and we obtain∫

γ

k∂l
sη ds ≤ C(‖γ‖H2).

Since this estimate holds for all l ≤ m, by Lemma 5.2 we conclude that κ ∈
Wm,∞ and there exists a constant Cl = Cl(‖γ‖H2) such that estimate (5.1)
holds. �
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[24] Gösswein, M., Menzel, J., Pluda, A.: Existence and uniqueness of the motion by
curvature of regular networks. Interfaces Free Bound 25, 109–154 (2023)

[25] Koiso, N.: On the motion of a curve towards elastica. In: Actes de la Table
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mathematik.unituebingen.de/mozilla/home.e.html

[44] Pozzetta, M.: Convergence of elastic flows of curves into manifolds. Nonlinear
Anal. 214, 112581 (2022)

[45] Rupp, F., Spener, A.: Existence and convergence of the length-preserving elastic
flow of clamped curves. arXiv: Analysis of PDEs (2020)

[46] Solonnikov, V.A.: Boundary Value Problems of Mathematical Physics. III.
American Mathematical Society, Providence (1967)

[47] Spener, A.: Short time existence for the elastic flow of clamped curves. Math.
Nachr. 290(13), 2052–2077 (2017)

[48] Truesdell, C.: The influence of elasticity on analysis: the classic heritage. Bull.
Am. Math. Soc. 9, 293–310 (1983)

http://arxiv.org/abs/2203.08535
http://arxiv.org/abs/2209.05721
http://arxiv.org/abs/2301.08384
http://poincare.mathematik.unituebingen.de/mozilla/home.e.html
http://poincare.mathematik.unituebingen.de/mozilla/home.e.html


96 Page 42 of 42 A. Diana NoDEA

[49] Wen, Y.: Curve straightening flow deforms closed plane curves with nonzero
rotation number to circles. J. Differ. Equ. 120, 89–107 (1995)

[50] Wheeler, G.: Global analysis of the generalised Helfrich flow of closed curves
immersed in R

n. Trans. Am. Math. Soc. 367(4), 2263–2300 (2015)

[51] Wheeler, G., Wheeler, V.-M.: Curve diffusion and straightening flows on parallel
lines. Preprint arXiv:1703.10711 (2017)

[52] Zhitarashu, N.V., Eidelman, S.D.: Parabolic boundary value problems. Opera-
tor Theory: Advances and Applications. Birkhäuser Basel, Translated from the
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