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Abstract. In this paper, we study the relation between the least energy
levels and between the minimizers of the following minimization problems

Eσ(ρ) = inf
{1

2

∫

RN

|∇w|2 − 1

2σ + 2

∫

RN

|w|2σ+2
∣∣∣
∫

RN

w2 = ρ
}

and

Z(ρ) = inf
{1

2

∫

RN

|∇w|2 − 1

2

∫

RN

w2 log w2
∣∣∣
∫

RN

w2 = ρ
}

.

We show that as σ → 0+, the minimizers for Eσ(ρ), after rescaling,
converge to the minimizers of Z(ρ). Besides, we also give estimates for
Eσ(ρ) and the corresponding Lagrange multiplier when σ is small.
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1. Introduction

The aim of this work is to explore the asymptotic behaviors of the minimizer
and the least energy level to the following minimization problem with L2-
constraint:

Eσ(ρ) = inf

{
1

2

∫

RN

|∇w|2dx − 1

2σ + 2

∫

RN

|w|2σ+2dx
∣∣∣w ∈ H1(RN ),

∫

RN

w2dx = ρ

}
,

(1.1)
where N ≥ 1, ρ > 0, and the power σ satisfies the so-called L2-subcritical
condition that 0 < σ < 2

N (see [5]). By the classical results from [1,2,5,
8,10], for each ρ > 0, we know that Eσ(ρ) is achieved at some wσ(x) =
wσ(|x|) > 0 depending on σ and ρ. Moreover, the minimizer wσ(x) is unique
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up to translations, decreases in r = |x|, and decays exponentially at infinity.
The Euler-Lagrange equation corresponding to problem (1.1) is as follows:

⎧
⎪⎨
⎪⎩

− Δw + μw = |w|2σw, in R
N ,

lim
|x|→∞

w(x) = 0,
∫

RN

w2dx = ρ,
(1.2)

where μ = μσ(ρ) ∈ R appears as a Lagrange multiplier depending on σ and ρ.
Solutions with prescribed L2-norms are known as normalized solutions. wσ is
a normalized ground state solution of (1.2), since it is a nontrivial solution to
(1.2) having the least energy Eσ(ρ). Problem (1.1) and (1.2) are motivated in
particular by the search for stationary states in nonlinear Schrödinger equation,
that is, the following time-dependent nonlinear Schrödinger equation

i
∂Ψ
∂t

(t, x) + ΔΨ(t, x) + |Ψ(t, x)|2σΨ(t, x) = 0, (t, x) ∈ R × R
N ,

which appears in nonlinear optics and the theory of Bose-Einstein condensates
(see [7,9,15]). The constraint

∫
RN w2dx = ρ in the stationary problem is in-

troduced due to the mass conservation property of the time-dependent nonlin-
ear Schrödinger equation. In applications, the prescribed mass represents the
power supply in nonlinear optics or the number of particles in Bose-Einstein
condensates. The problem (1.2) also appears in the Mean Field Games the-
ory in Lasry and Lions [11] as a case of the mean field limit equations in a
stationary setting.

The present paper is invoked by [19] that uncovers a relation between
power-law nonlinear scalar field equations and logarithmic-law scalar field
equations. In [19], Wang and Zhang consider the following power-law non-
linear Schrödinger equation:⎧

⎨
⎩

− Δv + λv = |v|p−2v in R
N ,

lim
|x|→∞

v(x) = 0, (1.3)

and logarithmic-law nonlinear Schrödinger equation:⎧
⎨
⎩

− Δv = λv log |v| in R
N ,

lim
|x|→∞

v(x) = 0. (1.4)

They show that as p ↓ 2, the ground state solutions of (1.3), after a unique
rescaling, converge to the ground state solutions of (1.4). The logarithmic non-
linear Schrödinger equation was introduced as an important model in quan-
tum physics. It admits plenty of applications related to quantum mechanics,
quantum optics, nuclear physics, transport and diffusion phenomena, theory of
superfluidity and Bose–Einstein condensation, see [3,4,16,17,19] and the ref-
erences therein. d’Avenia-Montefusco-Squassina[6] and Troy[16] have proved
that the ground state solution of (1.4) is unique up to translations and is given
by

U(x) = e
N
2 e− λ

4 |x|2 .
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Therefore, it is easy to see that the L2-constrained minimization problem

Z(ρ) = inf
{

1
2

∫

RN

|∇v|2dx − 1
2

∫

RN

v2 log v2dx
∣∣∣v ∈ H1(RN ),

∫

RN

v2dx = ρ

}

(1.5)
is achieved at

v0(x) = ρ
1
2 π− N

4 e− |x|2
2 .

The logarithmic nonlinear Schrödinger equation corresponding to prob-
lem (1.5) is as follows:⎧

⎪⎨
⎪⎩

− Δv + λv = v log v2 in R
N ,

lim
|x|→∞

v(x) = 0,
∫

RN

v2dx = ρ,
(1.6)

here λ ∈ R appears as a Lagrange multiplier dependent of ρ. It is obvious that
v0(x) is a normalized ground state solution of (1.6). A direct calculation shows
that the Lagrange multiplier is

λ = λ0(ρ) := log ρ − N − N

2
log π,

and the least energy to (1.6) is

Z(ρ) = −λ0ρ

2
=

ρ

2

(
N +

N

2
log π − log ρ

)
.

These explicit formulas give clear information about the Lagrange multiplier
and the ground state energy to (1.6). In contrast, very little is known about μσ

and Eσ of (1.2) except for some obvious knowledge that, as σ → 0, Eσ(ρ) →
−ρ/2 and μσ → 1. Further information is rather difficult to obtain.

In order to establish the relation between the two L2-constrained mini-
mization problems (1.1) and (1.5), and give estimates on Eσ(ρ) and μσ(ρ), we
are dedicated to proving the convergence of wσ(x) to v0(x) as σ → 0.

Theorem 1.1. Let vσ(x) = σ− N
2(2−σN) wσ(σ− 1

2−σN x). Then, as σ → 0, it holds
that vσ → v0 strongly in H1(RN ) and in C2,α(RN ) for any α ∈ (0, 1). More-
over, we have

ρ− 2σ
2−σN μσ(ρ) = 1 +

N

2
σ log σ − σ

(
N +

N

2
log π

)
+ oσ(σ),

ρ−1− 2σ
2−σN Eσ(ρ) = −1

2
− σN

4
log σ +

(
N + 1

2
+

N log π

4

)
σ + oσ(σ).

In comparison to the recent and interesting work [19] by Wang and Zhang,
the major novelty here is given by the mass constraint, that was not considered
in [19]. In [19], the authors study the asymptotic behaviors of the least energy
level and ground state solutions of probelm (1.3) with a prescribed λ. After a
scaling up(x) = λ− 1

p−2 vp( x√
p−2

)(see [19], Theorem 1.1), as p ↓ 2, they derive
the convergence of up(x) to U . However in this paper, μ ∈ R appears as a
Lagrange multiplier, which varies as σ → 0+. So it is difficult to use the result
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in [19] to obtain the asymptotic behaviors of (μσ, wσ) solving Eq.(1.2). We
introduce a new scaling in which μ does not appear to achieve these behaviors.

Remark 1.1. We remark that ρ− 2σ
2−σN μσ(ρ), ρ−1− 2σ

2−σN Eσ(ρ) are quantities in-
dependent of ρ, see (2.4) and (2.7). Moreover, when ρ belongs to a compact
subset of (0,+∞), there hold

μσ(ρ) = 1 +
N

2
σ log σ − σ

(
N +

N

2
log π − log ρ

)
+ oσ(σ),

Eσ(ρ) =
(

−1
2

− σN

4
log σ

)
ρ +

(
N + 1

2
+

N log π

4
− ρ log ρ

)
σ + oσ(σ).

The paper is organized as follows: In Sect. 2, we establish the work space
and give some preliminaries which will be used in the proof of the main theo-
rems; Sect. 3 is devoted to the proof of Theorem 1.1.

2. Preliminaries

Throughout this paper, we use the following notations:

• H1(RN ) is the usual Sobolev space with the following inner product and
norm

(u, v) :=
∫

RN

∇u∇v + uvdx, ‖u‖ :=
√

(u, u), ∀u, v ∈ H1(RN ).

H1
rad(R

N ) denotes the space
{
u ∈ H1(RN )|u(x) = u(|x|)} .

• Lp(RN ) (1 ≤ p < ∞) is the Lebesgue space with the norm |u|p =
( ∫

RN |u|pdx
) 1

p .
• oσ(1) denotes an infinitesimal with oσ(1) → 0 as σ → 0.
• C(a1, a2, . . . , an) denotes any positive constant that depends on a1, a2,

. . . , an.
• For R > 0, BR(0) denotes the ball of radius R centered at 0. Bc

R(0)
denotes the set R

N \ BR(0).

Consider Iσ : H1(RN ) → R defined by

Iσ(w) =
1
2

∫

RN

|∇w|2dx − 1
2σ + 2

∫

RN

|w|2σ+2dx, w ∈ H1(RN ).

We will perform some scaling on w so that we can approach the limit
functional J : H1(RN ) → R ∪ {+∞} given by

J(v) =
1
2

∫

RN

|∇v|2dx − 1
2

∫

RN

v2 log v2dx, v ∈ H1(RN ).

First, following [19], for w ∈ H1(RN ) and |w|22 = ρ, set u(x) = w( 1√
σ
x).

Then we get |u|22 = ρσ
N
2 and

Iσ(w) = σ1− N
2

(
1
2

∫

RN

|∇u|2dx − 1
2σ + 2

∫

RN

σ−1|u|2σ+2dx

)
. (2.1)
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Next, we use a re-scaling that shifts the L2 norm of functions and pre-
serves some homogeneity on the functional (see also [18,20]). For each s > 0,
letting u(x) = s

1
2−σN v(s

σ
2−σN x), we have

|u|22 = s|v|22, |∇u|22 = s1+
2σ

2−σN |∇v|22, |u|2σ+2
2σ+2 = s1+

2σ
2−σN |u|2σ+2

2σ+2.

Setting s = σ
N
2 , we have |v|22 = ρ. By (2.1), we arrive at

Iσ(w) = σ1− N
2 · σ

N
2 (1+ 2σ

2−σN )

(
1
2

∫

RN

|∇v|2dx − 1
2σ + 2

∫

RN

σ−1|v|2σ+2dx

)

= σ1+ Nσ
2−σN

(
1
2

∫

RN

|∇v|2dx − 1
2σ + 2

∫

RN

σ−1|v|2σ+2dx

)

= σ
σN

2−σN

(
σJσ(v) − ρ

2σ + 2

)
,

(2.2)
where

Jσ(v) =
1
2

∫

RN

|∇v|2dx − 1
2σ + 2

∫

RN

|v|2σ+2 − v2

σ
dx.

Note that in (2.2)

v(x) = σ− N
2(2−σN) w(σ− 1

2−σN x).

Remark 2.1. If we set s = ρσ
N
2 , then |v|22 = 1 and

Iσ(w) = ρ1+
2σ

2−σN σ
σN

2−σN

(
σJσ(v) − 1

2σ + 2

)
.

Setting Mρ := { v ∈ H1(RN ) | |v|22 = ρ }, we introduce another L2-
constrained minimization problem

Zσ(ρ) := inf
{

1
2

∫

RN

|∇v|2dx − 1
2σ + 2

∫

RN

|v|2σ+2 − v2

σ
dx

∣∣∣ v ∈ Mρ

}
.

(2.3)
Then, by (2.2) and Remark 2.1, it is clear that

Eσ(ρ) = σ
σN

2−σN

(
σZσ(ρ) − ρ

2σ + 2

)
= ρ1+

2σ
2−σN σ

σN
2−σN

(
σZσ(1) − 1

2σ + 2

)
.

(2.4)
Since for any ϕ ∈ C∞

0 (RN ),

J ′
σ(v)ϕ =

∫

RN

∇v∇ϕdx −
∫

RN

|v|2σv − v

σ
ϕdx − 1

σ + 1

∫

RN

vϕdx, (2.5)

the minimizer corresponding to problem (2.3) satisfies:
⎧
⎪⎪⎨
⎪⎪⎩

− Δv + λσv =
|v|2σv − v

σ
, in R

N ,

lim
|x|→∞

v(x) = 0,
∫

RN

v2dx = ρ.
(2.6)
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Here λσ = λσ(ρ) ∈ R appears as a Lagrange multiplier. From [20, Lemma 2.1],
we know (λσ, vσ) is unique up to translations. So λσ depends only on N , σ
and ρ. It is easy to verify that

μσ(ρ) = σ
σN

2−σN (σλσ(ρ) + 1) = ρ
2σ

2−σN σ
σN

2−σN (σλσ(1) + 1). (2.7)

In the sequel, we will compare the above equation (2.6) with the loga-
rithmic Schrödinger equation (1.6).

Note that Iσ and Jσ are C2 functionals but J is not continuous(see [6]
or [17]). In fact, by using the following standard logarithmic Sobolev inequal-
ity(see Lieb and Loss [12])

∫

RN

u2 log u2dx ≤ c2

π
|∇u|22 +

[
log |u|22 − N (1 + log c)

] |u|22, u ∈ H1(RN )

and c > 0, (2.8)

where the equality holds if and only if u(x) = e− π|x|2
2c2 , it is obvious that∫

RN u2 log u2dx < +∞ for all u ∈ H1(RN ). Indeed there exists u ∈ H1(RN )
such that

∫
RN u2 log u2dx = −∞ (see [13]). Thus, in general, the functional

J fails to be finite and lacks C1-smoothness on H1(RN ). However as in [17],
the L2-constrained minimization problem (1.5) can also be considered in the
following space

D =
{

u ∈ H1(RN )|
∫

RN

|u2 log u2|dx < +∞
}

=

{
u ∈ H1(RN )|

∫

|u|≤1

|u2 log u2|dx < +∞
}

.

In addition, we give some important notations:

Definition 2.1. (1) We say C∞
0 (RN ) is dense in D in the following sense: for

any v ∈ D, there exists a sequence ϕn ∈ C∞
0 (RN ), such that

‖ϕn − v‖ → 0 and
∫

RN

ϕ2
n log ϕ2

ndx →
∫

RN

v2 log v2dx.

(2) For v, ϕ ∈ D, we define

J ′(v)ϕ :=
∫

RN

∇v∇ϕdx −
∫

RN

vϕ(1 + log v2)dx

(3) We say v ∈ D ∩ Mρ is a critical point of J on D ∩ Mρ if and only if
J ′(v)ϕ = 0 for every ϕ ∈ C∞

0 (RN ) such that
∫
RN vϕ = 0.

Remark 2.2. Note that v ∈ D ∩ Mρ is a critical point of J on D ∩ Mρ if and
only if there is λ ∈ R such that

J ′(v)ϕ = λ

∫

RN

vϕ for every ϕ ∈ C∞
0 (RN ).

Moreover, λ = ρ−1J ′(v)v.

The following lemma (see [19, Lemma 2.1]) describes the behavior of the
nonlinear term as σ near 0.
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Lemma 2.1. (i) For any σ′ > 0, there exists C(σ′) > 0 such that

x2σ − 1
σ

≤ C(σ′)x2σ′

holds for all σ ∈ (0, σ′) and x ≥ 0.
(ii) Let s > 0, σ > 0, then

xs(xσ − 1)
σ

→ xs log x in Cm,α
loc [0,+∞)

as σ → 0, where m is the largest integer with m < s, and α ∈ (0, s − m).

3. Proofs of the main results

We first consider the case ρ = 1 and write Zσ = Zσ(1).

Lemma 3.1. Zσ is achieved at

vσ(x) = σ− N
2(2−σN) wσ(σ− 1

2−σN x) ∈ M1.

Moreover, as σ → 0+, Zσ, ‖vσ‖, and ∫
RN σ−1||vσ|2σ+2 − v2

σ| are bounded.

Proof. Recalling (2.2), for w ∈ H1(RN ) and |w|22 = 1, by rescaling

v(x) = σ− N
2(2−σN) w(σ− 1

2−σN x),

we derive that |v|22 = 1 and

Iσ(w) = σ
2

2−σN Jσ(v) − 1
2σ + 2

· σ
Nσ

2−σN .

Then,

inf
w∈M1

Iσ(w) = σ
2

2−σN inf
v∈M1

Jσ(v) − 1
2σ + 2

· σ
Nσ

2−σN ,

implying that

Eσ(1) = σ
2

2−σN Zσ(1) − 1
2σ + 2

· σ
Nσ

2−σN ,

and Eσ(1) is attained at wσ if and only if Zσ(1) is attained at vσ.
We next prove that Zσ is bounded as σ → 0+. Fixing any v ∈ C∞

0 (RN ) \
{0} satisfying

∫
RN |v|2dx = 1, from Lemma 2.1(ii), one gets Jσ(v) → J(v) as

σ → 0. Therefore, Zσ(1) is bounded from above.
Applying Lemma 2.1(i) and Gagliardo-Nirenberg inequality

|v|2σ′+2
2σ′+2 ≤ C(σ′, N)|∇v|σ′N

2 |v|2σ′+2−σ′N
2 ,

where σ′ is a fixed constant such that 0 < σ′N < 2, we obtain

Zσ ≥ 1

2

∫

RN

|∇vσ|2dx − C(σ′)
∫

RN

|vσ|2σ′+2dx

≥ 1

2

∫

RN

|∇vσ|2dx − C(σ′, N)

(∫

RN

|∇vσ|2dx

) σ′N
2

(∫

RN

|vσ|2dx

) 2σ′+2−σ′N
2

=
1

2

∫

RN

|∇vσ|2dx − C(σ′, N)

(∫

RN

|∇vσ|2dx

) σ′N
2

.

(3.1)
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Then (3.1) implies that Zσ is bounded from below. Thus, Zσ is bounded.
In addition, the boundedness of Zσ and (3.1) assert that |∇vσ|2 is bounded.
Together with |vσ|22 = 1, we derive that ‖vσ‖ is bounded. By the Sobolev
embedding H1(RN ) ↪→ Lp(RN ) for p ∈ (2, 2∗), where 2∗ = 2N

N−2 for N ≥ 3
and 2∗ = +∞ for N = 1, 2, we have

∫

RN

(|vσ|2σ+2 − v2
σ)+

σ
dx ≤ C(σ′)|vσ|2σ′+2

2σ′+2 ≤ C(σ′, N)‖vσ‖2σ′+2.

By

Zσ =
1
2

∫

RN

|∇vσ|2dx

− 1
2σ + 2

[∫

RN

(|vσ|2σ+2 − v2
σ)+

σ
dx −

∫

RN

(|vσ|2σ+2 − v2
σ)−

σ
dx

]
,

we know
∫
RN σ−1(|vσ|2σ+2 − v2

σ)− is bounded. Thus,
∫
RN σ−1||vσ|2σ+2 − v2

σ| is
bounded. Then we complete the proof. �

Theorem 3.1. As σ → 0+, we have λσ → λ0, Zσ(1) → Z(1), and vσ → v0

strongly in H1(RN ).

Proof. Since vσ satisfies (2.6) with ρ = 1, i.e.
⎧
⎪⎪⎨
⎪⎪⎩

− Δvσ + λσvσ =
|vσ|2σvσ − vσ

σ

lim
|x|→∞

vσ(x) = 0,
∫

RN

v2
σdx = 1,

(3.2)

by Lemma 3.1, we know that

|λσ| =
∣∣∣∣
∫

RN

|vσ|2σ+2 − v2
σ

σ
dx −

∫

RN

|∇vσ|2dx

∣∣∣∣

≤
∫

RN

σ−1||vσ|2σ+2 − v2
σ|dx + ‖vσ‖2

(3.3)

is bounded.
We next re-scale vσ in order to avoid the possible difficulties that λσ < 0

poses to the subsequent proofs. Setting ṽσ = avσ, from (3.2), we can get

− Δṽσ + μσ ṽσ =
a−2σ(|ṽσ|2σ ṽσ − ṽσ)

σ
(3.4)

where

μσ = λσ − a−2σ − 1
σ

. (3.5)

Since

a−2σ − 1
σ

→ −2 log a,

we can fix a > 0 sufficiently large such that μσ > 1 for every small σ. By
Lemma 3.1 and (3.3) and (3.5), ‖ṽσ‖ and μσ are both bounded. Then up to a
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subsequence, we assume

ṽσ ⇀ ṽ weakly in H1(RN ),

ṽσ → ṽ strongly in Lp
loc(R

N ), p ∈ (2, 2∗),

ṽσ → ṽ a.e. in R
N ,

and μσ → μ0 ∈ [1,+∞). If N ≥ 2, then by the radial lemma of Strauss [14],
ṽσ(x) < 1, |x| ≥ R for some R independent of σ. If N = 1, we have ṽσ → ṽ in
Cloc(R). Then we also get ṽσ(x) < 1 when |x| ≥ R for some R independent of
σ. Hence for N ≥ 1, ṽσ satisfies −Δṽσ + ṽσ ≤ 0 in R

N \BR(0). By comparison
theorem, we obtain

ṽσ(x) ≤ Ce−c|x|, |x| ≥ R,

for C, c > 0 independent of σ. Necessarily,

ṽσ → ṽ strongly in Lp(RN ), p ∈ [1, 2∗).

Especially,

|ṽσ|2σ ṽσ − ṽσ

σ
(ṽσ − ṽ) → 0 strongly in L1(RN ).

Multiplying (3.4) by ṽσ − ṽ and integrating, we get
∫

RN

∇ṽσ∇(ṽσ − ṽ) + μσ ṽσ(ṽσ − ṽ)dx =
∫

RN

a−2σ(|ṽσ|2σ ṽσ − ṽσ)
σ

(ṽσ − ṽ)dx.

(3.6)
Taking limits as σ → 0+, we get

|∇ṽσ|22 → |∇ṽ|22.
It follows that limσ→0+ ‖ṽσ‖ = ‖ṽ‖. Combining with ṽσ ⇀ ṽ in H1(RN ), we
deduce that ṽσ → ṽ strongly in H1(RN ). Up to a translation, we can assume
ṽ(0) = maxRN ṽ. Since (μ0, ṽ) solves

−Δṽ + μ0ṽ = ṽ log ṽ2, |ṽ|22 = a2,

we conclude that (μ0, ṽ) is unique. Therefore, the convergence (μσ, ṽσ) →
(μ0, ṽ) is independent of subsequences.

By uniqueness of the solution to (2.6), we derive that μ0 = λ0 + 2 log a
and ṽ = av0. Thus, λσ → λ0, and vσ → v0 strongly in H1(RN ). �

Proof of Theorem 1.1. Combining (2.2) with Lemma 3.1, one can show that

Eσ(ρ) = σ
2

2−σN Zσ(ρ) − ρ

2σ + 2
· σ

Nσ
2−σN ,

and Zσ(ρ) is attained at vσ(x) = σ− N
2(2−σN) wσ(σ− 1

2−σN x) ∈ Mρ. By arguments
similar to those in the proof of Theorem 3.1, we also have λσ → λ0 and
vσ → v0 strongly in H1(RN ) as σ → 0. By regularity theory, it follows that
vσ → v0 in C2,α(RN ), α ∈ (0, 1). Applying Lemma 2.1(ii) again, we deduce
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that Jσ(vσ) → J(v0) as σ → 0. That is, Zσ(ρ) → Z(ρ) as σ → 0. Hence, by
(2.7), one gets

ρ− 2σ
2−σN μσ(ρ) = σ

σN
2−σN (σλσ(1) + 1) = σλ0(1) +

N

2
σ log σ + 1 + oσ(σ)

= 1 +
N

2
σ log σ − (N +

N

2
log π)σ + oσ(σ),

and by (2.4),

ρ−1− 2σ
2−σN Eσ(ρ) = σ

σN
2−σN

(
σZσ(1) − 1

2σ + 2

)

= σ
σN

2−σN

(
σZσ(1) − 1

2
+

σ

2
+ oσ(σ)

)

= σZ(1) − 1
2

− σN

4
log σ +

σ

2
+ oσ(σ)

= −1
2

− σN

4
log σ + (

N + 1
2

+
N log π

4
)σ + oσ(σ).
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