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Abstract. In this paper, we study the following reaction-diffusion-
advection system

⎧
⎪⎨

⎪⎩

ut = DuΔu − χ∇ · (u∇v) + f(u), (x, t) ∈ Ω × (0, ∞),

vt = DvΔv + svuw − μvv, (x, t) ∈ Ω × (0, ∞),

wt = DwΔw + sw − λwuw − μww, (x, t) ∈ Ω × (0, ∞),

in a smoothly bounded domain Ω ⊂ R
n, which describes a directed move-

ment of immune cells toward chemokines during the immune
process, where Du, Dv, Dw, sv, sw, λw, μv, μw, χ are positive parameters,
and f ∈ C1([0, ∞)) is a kinetic function. When n ≥ 1, if there exist
positive constants α and θ0 such that sups≥0{f(s) + αs} < ∞ and

lims→∞ inf
{

−f(s)

s2

}
=: μ ∈ (θ0, ∞], then the solution of the system is

global and uniformly bounded. In particular, when n = 2 and
f(0) ≥ 0, the condition of f(u) could be improved as follows: if there exists
α > 0 such that sups≥0{f(s) + αs} < ∞ and one of the conditions that

lims→∞ inf
{

− f(s) ln s

s2

}
=: μ ∈ (

√
2χsvCw

Dv
, ∞] or

2
√

2χsvC4
GNm1Cw

Dv
≤ Du

holds, then the solution of the system is still global and uniformly bounded,
where m1 is a positive constant given by below, CGN > 0 is the Gagliardo-
Nirenberg inequality’s constant and Cw represents the uniform upper

bound of w. Moreover, when f ≡ 0 and
2
√

2χsvC4
GNm1Cw

Dv
≤ Du, the

global and uniform boundedness of solutions can also be established.

Mathematics Subject Classification. 35K55, 35B35, 35B40, 92C17.

Keywords. Global existence, Immune system, Chemotaxis,
Kinetic function.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00030-023-00840-4&domain=pdf


29 Page 2 of 24 W. Shan and P. Zheng NoDEA

1. Introduction

In this paper, we consider the following immune system induced by chemotaxis
in [21] with general kinetic functions

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = DuΔu − χ∇ · (u∇v) + f(u), (x, t) ∈ Ω × (0, ∞),

vt = DvΔv + svuw − μvv, (x, t) ∈ Ω × (0, ∞),

wt = DwΔw + sw − λwuw − μww, (x, t) ∈ Ω × (0, ∞),

∂u

∂ν
=

∂v

∂ν
=

∂w

∂ν
= 0, (x, t) ∈ ∂Ω × (0, ∞),

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x), x ∈ Ω,

(1.1)

where Ω ⊂ R
n (n ≥ 1) is a smoothly bounded domain, the kinetic function f

belongs to C1([0,+∞)) and the initial data u0(x), v0(x), w0(x) are nonnegative
functions satisfying

u0 ∈ C0(Ω), v0 ∈ C1(Ω), w0 ∈ C0(Ω). (1.2)

Moreover, the unknown functions u, v and w represent the density of immune
cell, the concentrations of chemokine and antigen, respectively. Du, Dv and
Dw respectively denote the diffusion coefficients of the three elements and μv,
μw represent their own decline rates. The constant antigen sw > 0 represents
source of persistent infection and svuw indicates that immune cells secrete
chemokines based on the quality of the antigen. The term −λwuw represent
the depletion of phagocytosis. In addition, the source f(u) of immune cell
includes its own decay and regulatory depletion. The chemosensitivity χ > 0
in the advection term contributes to the movement of immune cells towards
the chemokine gradient.

In recent years, the researches on the immune system with chemotaxis
have attracted many biologists and mathematicians (see [8,9,12,13,30,30,32]).
Among them, the chemotactic system describes the directional movement of
individual organisms in response to chemical signals, which is important in the
immune system (see [7,46]). More specifically, during immunity, immune cells
secrete chemicals called chemokines at the site of inflammation. The eukaryotic
cells then sense the gradient of chemokines by the polarization distribution of
the receptor as they move toward a relatively high concentration of the chem-
ical (chemical attraction) or in the opposite direction (chemical repulsion). To
describe the above mentioned chemotactic movement of cells, the well-known
minimal Keller-Segel chemotaxis model is proposed in [18]. However, a striking
feature of this minimal Keller-Segel model is that the solution may blow up in
finite or infinite time, depending largely on the spatial dimension. Therefore,
in order to suppress this phenomenon, the following Keller-Segel model with
source term has been proposed and studied by many authors

{
∂u
∂t = Δu − χ∇ · (u∇v) + f(u), x ∈ Ω, t > 0,

τ ∂v
∂t = Δv − v + u, x ∈ Ω, t > 0,

(1.3)
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where τ ≥ 0, χ > 0, f(u) is a logistic source and Ω ⊂ R
n is a bounded domain

with smooth boundary ∂Ω. For the case f(u) = 0 in (1.3), there exists a finite-
time blow-up solution for system (1.3) in the higher-dimensional case n ≥ 2
(see [16,40]). However, some rigorous results of (1.3) are shown that logistic
source can prevent the occurrence of blow-up. In particular, in two-dimensional
smooth bounded domain, Xiang [43] proved that the sub-logistic source f(u)
can prevent the blow-up of solutions. When f(u) ≤ a−buα, a, b > 0 and α = 2,
Winkler [37] proved the global existence and boundedness of solutions to (1.3)
in a convex bounded smooth domain Ω ⊂ R

n(n ≥ 2). The finite-time blow-up
of solutions for (1.3) is still possible if n and α are chosen in certain way [38].
Moreover, the global existence, asymptotic behavior or blow-up of solutions in
more general quasilinear parabolic-parabolic chemotaxis systems with source
term have been studied extensively (see [2,6,17,33,41,44]).

Nowadays, some authors have also proposed the variants of (1.3) and ob-
tained many interesting results (see [11,14,15,24,27,47–49]). It is worth men-
tioning that in theoretical immunology, scholars often describe the evolution
of virus populations by using the following chemotaxis May-Nowak model

⎧
⎨

⎩

ut = DuΔu − ∇ · (uf(u)∇v) − g(u)w + r − u, x ∈ Ω, t > 0,
vt = DvΔv + g(u)w − v, x ∈ Ω, t > 0,
wt = DwΔw + v − w, x ∈ Ω, t > 0,

(1.4)

where Ω ⊂ R
n (n ≥ 1) is a smoothly bounded domain and the parameters

Du,Dv,Dw, r are positive. When f(u) = χ and g(u) = u, Stancevic [31] re-
vealed Turing-type instabilities to system (1.4) for suitably large χ by numer-
ical simulations. If f(u) = (1 + u)−α and g(u) = u, Winkler [39] proved that
whenever α > −1 in n = 1 and α > n−2

n−1 in n = 2, 3, the solutions to system
(1.4) are global and uniformly bounded. When f(u) = 1 and g(u) ≤ Kfuα

with Kf > 0, Fuest [10] proved that whenever α < 2
n , the solutions of sys-

tem (1.4) exist globally and are bounded. When f(u) = Kf (1 + u)−α and
g(u) = Kgu

β with Kf ∈ R,Kg, α, β > 0, Pan et.al [29] proved that the global

boundedness of solutions is shown if α > max
{

nβ
4 , β

2 , n(n+2)
6n+8 β + 1

2

}
. Besides,

some interesting results have also been derived in [3,4,20,34].
Recently, in order to describe a cross-talk between antigens and immune

cells via chemokines, Lee [21] proposed a reaction-diffusion-advection system
⎧
⎨

⎩

ut = DuΔu − χ∇ · (u∇v) + su − λuuw − μuu, x ∈ Ω, t > 0
vt = DvΔv + svuw − μvv, x ∈ Ω, t > 0
wt = DwΔw + sw − λwuw − μww, x ∈ Ω, t > 0

(1.5)

where Du,Dv,Dw, su, sv, sw, λu, λw, μu, μv, μw, χ are positive parameters. Lee
[21] analyzed the stability and instability that appeared in (1.5), and found
that instability occurs when the chemosensitivity coefficient χ is suitably large;
Yoon et.al [45] verified the global boundedness of solutions to system (1.5) in
one and two dimensions. In the one-dimensional space, without being restricted
by χ or the initial conditions, the global boundedness of solutions can be
obtained. However, in the two-dimensional case, the global boundedness of
solutions is obtained under some constraints of initial conditions and χ. In



29 Page 4 of 24 W. Shan and P. Zheng NoDEA

addition, the stability of the non-constant steady state and the existence of
periodic orbits are obtained, and the numerical results are given.

Moreover, the following chemotaxis model with indirect signal production
and general kinetic function

⎧
⎪⎨

⎪⎩

ut = Δu − χ∇ · (u∇v) + f(u), x ∈ Ω, t > 0
vt = Δv − v + w, x ∈ Ω, t > 0
τwt + λw = g(u), x ∈ Ω, t > 0

(1.6)

has been studied by Li [22] in a bounded domain Ω ⊂ R
n(n ≤ 3) with smooth

boundary ∂Ω, where χ, τ, λ are given positive parameters, f and g are known
functions. Li found several explicit conditions involving the kinetic function
f, g, the parameters χ, λ and the initial mass ‖u0‖L1(Ω) to ensure the global-
in-time existence and uniform boundedness for the corresponding 2D/3D
Neumann initial-boundary value problem.

To the best of our knowledge, there are still some gaps that need to
be studied, such as the global existence and boundedness of the solutions for
system (1.1) in higher dimensions. Inspired by [22], we consider the effect of
the general kinetic function f(u) on the global boundedness of solutions for
(1.1) in higher dimensions. Our main results are stated as follows.

Theorem 1.1. Let Ω ⊂ R
n, n ≥ 1 be a bounded domain with smooth boundary.

Suppose that the nonnegative initial data (u0, v0, w0) satisfies (1.2) and the
kinetic function f belongs to C1([0,+∞)). Assume that there exists θ0 > 0
such that the following condition holds:

∃α > 0, s.t. sup
s≥0

{f(s) + αs} < ∞, lim
s→∞ inf

{

−f(s)
s2

}

=: μ ∈ (θ0,∞].

Then system (1.1) has a unique global-in-time classical solution (u, v, w) ∈
(C0(Ω × [0,∞) ∩ C2,1(Ω × (0,∞)))3, which is uniformly bounded in the sense
that there exists C > 0 such that

||u(·, t)||L∞(Ω) + ||v(·, t)||W 1,∞(Ω) + ||w(·, t)||L∞(Ω) ≤ C for all t ∈ (0,∞).

Remark 1.1. When n = 3, this result of Theorem 1.1 is similar to that of [22],
but we can cancel the restriction of dimensions. In fact, we use the result of
Lemma 2.3 in [35] to derive the boundedness of ||u(·, t)||Lp(Ω), and combine the
well-known Lp − Lq estimate to obtain the boundedness of ||v(·, t)||W 1,∞(Ω),
which allows us to get rid of the dimensional limitation of the Gagliardo-
Nirenberg inequality. However, since θ0 = χsvCw

p−1
p CS(p)

1
p+1 > 0 for p > 1,

where Cw > 0 represents the uniform upper bound of w(x, t), the constant
CS(p) is produced by the maximal Sobolev regularity estimate in Lemma 3.1,
which depends on p in a fairly intransparent manner, then two different cases
arise: if CS(p)

1
p+1 → CS0 as p → ∞ for some constant CS0 ≥ 0, the condition

is simplified to μ ∈ (χsvCwCS0 ,∞] for sufficiently large p; if CS(p)
1

p+1 → ∞
as p → ∞, then the value of μ needs to be large enough or even μ → ∞
for p → ∞. In addition, this result implies that when f(u) = μu(1 − u) with
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μ is sufficiently large in the multi-dimensional space, the solution is globally
bounded in system (1.1).

In particular, when n = 2, the condition of f(u) could be improved by
using some new estimates as follows.

Theorem 1.2. Let Ω ⊂ R
2 be a bounded domain with smooth boundary. Suppose

that the nonnegative initial data (u0, v0, w0) satisfies (1.2) and f belongs to
C1([0,+∞)) satisfying f(0) ≥ 0. Assume that one of the following conditions
holds:

(i) ∃α > 0, s.t. sups≥0{f(s) + αs} < ∞, lim
s→∞

inf{−f(s) ln s

s2
} =: μ ∈ (

√
2
χsvCw

Dv
, ∞],

(ii) ∃α > 0, s.t. sups≥0{f(s) + αs} < ∞,
2
√

2χsvC4
GNm1Cw

Dv
≤ Du,

(iii) f ≡ 0,
2
√

2χsvC4
GNm1Cw

Dv
≤ Du,

where CGN > 0 is the Gagliardo-Nirenberg inequality’s constant given in
Lemma 2.2, m1 is given in (2.4) and Cw represents the uniform upper bound
of w(x, t) given in Lemma 2.1. Then system (1.1) possesses a unique global-
in-time classical solution (u, v, w) ∈ (C0(Ω× [0,∞)∩C2,1(Ω×(0,∞)))3, which
is uniformly bounded in the sense that there exists C > 0 such that

||u(·, t)||L∞(Ω) + ||v(·, t)||W 1,∞(Ω) + ||w(·, t)||L∞(Ω) ≤ C for all t ∈ (0,∞).

Remark 1.2. When n = 2, the condition (i) is similar as in [22], but there
exists a difference that the range of μ has nothing to do with the initial data
||u0||L1(Ω) in Theorem 1.2. Moreover, the condition (i) implies that the order
of f(u) can ensure the boundedness of the solution in system (1.1). For ex-
ample, when f(u) = μu(1 − u) with any μ > 0 in two-dimensional space (see
[26,28],etc), which can establish the boundedness of solutions in (1.1). Further-
more, it’s worth mentioning that when f(u) = −μ u2

ln u with sufficiently large
μ, the global boundedness of solutions can be obtained by (i) in Theorem 1.2,
but it cannot be obtained by Theorem 1.1, which means that the condition of
f(u) has been improved. Apart from this, the conditions (ii) and (iii) imply
that when f ≡ 0 or f(u) = −αu for any α > 0, if the diffusion coefficient Du

and Dv are sufficiently large, the boundedness of solutions in (1.1) can also be
established.

The rest of the article is organized as follows. Section 2 gives some pre-
liminary lemmas. In Sects. 3 and 4, we shall prove Theorem 1.1 and Theorem
1.2 respectively. In addition, we let u(·, t) = u(x, t) and omit the sign dx during
integrating throughout this paper.

2. Preliminaries

In this section, we first give some preliminaries.
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Lemma 2.1. Let Ω ⊂ R
n(n ≥ 1) be a smoothly bounded domain. Assume that

the function f ≡ 0 or f belongs to C1([0,+∞)) and the nonnegative initial
data (u0, v0, w0) satisfies (1.2). Then there exist Tmax ∈ (0,∞] and a uniquely
determined triple (u, v, w) with

u ∈ C0(Ω × [0, Tmax)) ∩ C2,1(Ω × (0, Tmax)),

v ∈ C0(Ω × [0, Tmax)) ∩ C2,1(Ω × (0, Tmax)),

w ∈ C0(Ω × [0, Tmax)) ∩ C2,1(Ω × (0, Tmax)),

such that (u, v, w) solves problem (1.1) classically in Ω × (0, Tmax). Moreover,
if Tmax < ∞, then

sup ||u(·, t)||L∞(Ω) → ∞, as t ↗ Tmax. (2.1)

In addition, there exists a positive constant Cw such that

0 ≤ w(x, t) ≤ Cw for (x, t) ∈ Ω × (0, Tmax).

Proof. By Amman’s well-established parabolic theory introduced in Theorem
7.3 of [1], we can obtain the local existence, uniqueness and blow-up criterion
(2.1). By the standard comparison principle for parabolic equations (cf. Lemma
2.1 of [45] for details), we ensure the boundedness of w(x, t). �

Lemma 2.2. (see [25]) Let Ω ⊂ R
n, n ≥ 1 be a bounded domain with smooth

boundary, and let p � 1, q ∈ (0, p). Then there exists a constant CGN > 0
such that

||u||Lp(Ω) ≤ CGN (||∇u||δL2(Ω)||u||1−δ
Lq(Ω) + ||u||Lr(Ω)),

where r ≥ 0 is arbitrary and δ =
n
q −n

p

1−n
2 +n

q
∈ (0, 1).

Lemma 2.3. Assume that f ≡ 0 or f satisfies

sup
s≥0

{f(s) + αs} < ∞, (2.2)

with some positive constant α, then the solution component u of (1.1) satisfies

||u(·, t)||L1(Ω) ≤ m1, (2.3)

where

m1 :=

{
max

{
||u0||L1(Ω),

sups≥0{f(s)+αs}|Ω|
α

}
, if sups≥0{f(s) + αs} < ∞,

||u0||L1(Ω), if f(u) = 0.

(2.4)

Proof. By integrating the first Eq. (1.1) with respect to x ∈ Ω, we have

d

dt

∫

Ω

u =
∫

Ω

f(u) for all t ∈ (0, Tmax).

If f(u) satisfies (2.2), we have

d

dt

∫

Ω

u + α

∫

Ω

u =
∫

Ω

(f(u) + αu) ≤ sup
s≥0

{f(s) + αs}|Ω| for all t ∈ (0, Tmax),
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which implies that (2.3) holds by using the ODE argument.
If f(u) = 0, then the mass of solution component u of (1.1) is conserved,

i.e,

||u(·, t)||L1(Ω) = ||u0||L1(Ω) for all t ∈ (0, Tmax).

The proof of Lemma 2.3 is complete. �

3. Proof of theorem 1.1

In this section, we shall prove the uniform boundedness of the solution of
(1.1) in the space dimension n ≥ 1. To do this, we need the following maximal
Sobolev regularity estimate.

Lemma 3.1. (See Lemma 2.3 in [35]) Let Ω ⊂ R
n(n ≥ 1) be a smoothly

bounded domain, and let 0 ≤ t0 < Tmax ≤ ∞ and p ∈ (n,+∞). Assume that
each z0 ∈ W 2,p(Ω) with ∂νz0 = 0 on ∂Ω and h ∈ Lp ([0, Tmax);Lp(Ω)), then
the problem

⎧
⎪⎪⎨

⎪⎪⎩

zt = DzΔz − μzz + h, (x, t) ∈ Ω × (0, Tmax),
∂z

∂ν
= 0, (x, t) ∈ ∂Ω × (0, Tmax),

z(·, 0) = z0, x ∈ Ω,

exists a unique solution z ∈ W 1,p ([0, Tmax);Lp(Ω))
⋂

Lp
(
[0, Tmax);W 2,p(Ω)

)
,

where Dz and μz are positive constants. Moreover, there exists CS(p) > 0 such
that

∫ t

t0

epτ

∫

Ω

|Δz(·, τ)|pdτ

≤ CS(p)
∫ t

t0

epτ

∫

Ω

|h(·, s)|pdτ + CS(p)ept0 ||Δz(·, t0)||pLp(Ω)

for any t ∈ (t0, Tmax).

Lemma 3.2. Let Ω ⊂ R
n(n ≥ 1) be a smoothly bounded domain and the kinetic

function f belongs to C1([0,+∞)). Assume that there exists θ0 > 0 such that
the following condition holds:

∃α > 0, s.t. sup
s≥0

{f(s) + αs} < ∞, lim
s→∞ inf

{

−f(s)
s2

}

=: μ ∈ (θ0,∞].

Then for any p > 1, there exists C > 0 such that
∫

Ω

up(·, t) ≤ C for all t ∈ (0, Tmax).
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Proof. Testing the first Eq. (1.1) by pup−1 for all p > 1, we obtain

d

dt

∫

Ω

up = Dup

∫

Ω

up−1Δu − χp

∫

Ω

up−1∇ · (u∇v) + p

∫

Ω

up−1f(u)

= −4Dup(p − 1)
p2

∫

Ω

|∇u
p
2 |2 + χp(p − 1)

∫

Ω

up−1∇u · ∇v

+ p

∫

Ω

up−1f(u).

(3.1)

Applying Young’s inequality to the second term on the right of (3.1), we de-
duce

χp(p − 1)
∫

Ω

up−1∇u · ∇v = −χ(p − 1)
∫

Ω

up · Δv

≤ χ(p − 1)
∫

Ω

up|Δv|

≤ ε

∫

Ω

up+1 + cεχ
p+1(p − 1)p+1

∫

Ω

|Δv|p+1,

(3.2)

where ε > 0 shall be determined later and cε = pp

(p+1)p+1εp . By combining (3.1)
with (3.2), we have

d

dt

∫

Ω

up +
4Dup(p − 1)

p2

∫

Ω

|∇u
p
2 |2

≤ ε

∫

Ω

up+1 + cεχ
p+1(p − 1)p+1

∫

Ω

|Δv|p+1 + p

∫

Ω

up−1f(u).
(3.3)

By using Lemma 2.2, Lemma 2.3 and Young’s inequality, there exist positive
constants C1, C2 and C3 such that

∫

Ω

up = ||u p
2 ||2L2(Ω)

≤ C1||∇u
p
2 ||2a1

L2(Ω)||u
p
2 ||2(1−a1)

L
2
p (Ω)

+ C1||u
p
2 ||2

L
2
p (Ω)

≤ C2||∇u
p
2 ||2a1

L2(Ω) + C2

≤ 4Dup(p − 1)
p2(p + 1)

∫

Ω

|∇u
p
2 |2 + C3,

(3.4)

where a1 :=
np
2 − n

2

1 − n
2 + np

2

∈ (0, 1) for any p > 1 and n ≥ 1.

Combining (3.3) and (3.4), we obtain

d

dt

∫

Ω

up + (p + 1)
∫

Ω

up

≤ ε

∫

Ω

up+1 + cεχ
p+1(p − 1)p+1

∫

Ω

|Δv|p+1 + p

∫

Ω

up−1f(u) + C4,

(3.5)
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where C4 = (p + 1)C3. Integrating (3.5) from t0 to t, we derive
∫

Ω

up(·, t) ≤ εe−(p+1)t

∫ t

t0

e(p+1)τ

∫

Ω

up+1(·, τ)dτ

+ cεχ
p+1(p − 1)p+1e−(p+1)t

∫ t

t0

e(p+1)τ

∫

Ω

|Δv|p+1(·, τ)dτ

+ pe−(p+1)t

∫ t

t0

e(p+1)τ

∫

Ω

up−1f(u)(·, τ)dτ

+ e(p+1)(t0−t)

∫

Ω

up(·, t0) + C4e
−(p+1)t

∫ t

t0

e(p+1)τdτ

≤ εe−(p+1)t

∫ t

t0

e(p+1)τ

∫

Ω

up+1(·, τ)dτ

+ cεχ
p+1(p − 1)p+1e−(p+1)t

∫ t

t0

e(p+1)τ

∫

Ω

|Δv|p+1(·, τ)dτ

+ pe−(p+1)t

∫ t

t0

e(p+1)τ

∫

Ω

up−1f(u)(·, τ)dτ + C5,

(3.6)

for any fixed time t0 ∈ (0, Tmax) and t ∈ (t0, Tmax), where C5 =
∫

Ω
up(·, t0) +

C4
p+1 .

Applying Lemma 3.1 to the second Eq. (1.1) and combining the bound-
edness of w(·, t) in Lemma 2.1, there exists a positive constant CS(p) such
that

∫ t

t0

e(p+1)τ

∫

Ω

|Δv|p+1(·, τ)dτ

≤ CS(p)
∫ t

t0

e(p+1)τ

∫

Ω

(svuw)p+1dτ + CS(p)e(p+1)t0 ||Δv(·, t0)||p+1
Lp+1(Ω)

≤ K(p)
∫ t

t0

e(p+1)τ

∫

Ω

up+1(·, τ)dτ + CS(p)e(p+1)t0 ||Δv(·, t0)||p+1
Lp+1(Ω),

(3.7)

where K(p) = CS(p)sp+1
v Cp+1

w . Substituting (3.7) into (3.6), we derive
∫

Ω

up(·, t) ≤ (ε + cεχ
p+1(p − 1)p+1K(p))e−(p+1)t

∫ t

t0

e(p+1)τ

∫

Ω

up+1(·, τ)dτ

+ pe−(p+1)t

∫ t

t0

e(p+1)τ

∫

Ω

up−1f(u)(·, τ)dτ + C6,

(3.8)

where C6 = C5 + cεχ
p+1(p − 1)p+1CS(p)e(p+1)t0 ||Δv(·, t0)||p+1

Lp+1(Ω). Setting

F1(ε) := ε + cεχ
p+1(p − 1)p+1K(p), (3.9)

it follows from cε in (3.2) and some simple calculations that F1(ε) can attain
the minimum value

min
ε>0

F1(ε) = χ(p − 1)K(p)
1

p+1 , (3.10)
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when ε = p
p+1χ(p − 1)K(p)

1
p+1 . With this ε, we can derive

∫

Ω

up(·, t) ≤ χ(p − 1)K(p)
1

p+1 e−(p+1)t

∫ t

t0

e(p+1)τ

∫

Ω

up+1(·, τ)dτ

+ pe−(p+1)t

∫ t

t0

e(p+1)τ

∫

Ω

up−1f(u)(·, τ)dτ + C6.

(3.11)

Let

F2(s) := χ(p − 1)K(p)
1

p+1 sp+1 + psp−1f(s), (3.12)

it follows from lims→∞ inf{− f(s)
s2 } =: μ ∈ (θ0,∞] for θ0 = χsvCw

p−1
p CS(p)

1
p+1

> 0 that

lim
s→∞ inf

1
sp+1

F2(s) = χ(p − 1)K(p)
1

p+1 − pμ < 0, (3.13)

so that

∃s1 > 0, s.t. F2(s) < 0 for all s > s1.

Therefore, we have

χ(p − 1)K(p)
1

p+1 e−(p+1)t

∫ t

t0

e(p+1)τ

∫

Ω

up+1(·, τ)dτ

+ pe−(p+1)t

∫ t

t0

e(p+1)τ

∫

Ω

up−1f(u)(·, τ)dτ

= e−(p+1)t

∫ t

t0

e(p+1)τ

∫

Ω

[χ(p − 1)K(p)
1

p+1 up+1 + pup−1f(u)](·, τ)dτ

= e−(p+1)t

∫ t

t0

e(p+1)τ

∫

{u≤s1}
F2(u)(·, τ)dτ

+ e−(p+1)t

∫ t

t0

e(p+1)τ

∫

{u>s1}
F2(u)(·, τ)dτ

≤ e−(p+1)t

∫ t

t0

e(p+1)τ

∫

{u≤s1}
F2(u)(·, τ)dτ

≤ 1
p + 1

sup
0<s≤s1

[F2(s)]|Ω| < ∞.

(3.14)

Substituting (3.14) into (3.11), we derive
∫

Ω

up(·, t) ≤ C (3.15)

for all t ∈ (0, Tmax). �

Lemma 3.3. Let the conditions of Lemma 3.2 hold, then there exists C > 0
such that the solution component v of (1.1) fulfills

||v(·, t)||W 1,∞(Ω) ≤ C for all t ∈ (0, Tmax). (3.16)
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Proof. With the uniform boundedness on w(·, t) in Lemma 2.1, we can repre-
sent the second Eq. (1.1) via the heat Neumann semigroup as follows

v(·, t) = et(DvΔ−μv)v0 +
∫ t

0

e(t−τ)(DvΔ−μv)svuw(·, τ)dτ

≤ et(DvΔ−μv)v0 + svCw

∫ t

0

e(t−τ)(DvΔ−μv)u(·, τ)dτ

(3.17)

for all t ∈ (0, Tmax).
Now, by the well-known Lp − Lq estimate in [36], we can deduce the

following results:
(i) By Lemma 1.3 (i) of [36], there exist positive constants C7 and C8

such that

‖v(·, t)‖L∞(Ω)

≤ ‖et(DvΔ−μv)v0‖L∞(Ω) + svCw

∫ t

0

‖e(t−τ)(DvΔ−μv)u(·, τ)‖L∞(Ω)dτ

≤ C7‖v0‖L∞(Ω) + C7

∫ t

0

[1 + (t − τ)− n
2p ]e−(Dvλ1+μv)(t−τ)‖u(·, τ)‖Lp(Ω)dτ

≤ C8

t ∈ (0, Tmax), where λ1 is the first positive eigenvalue of the Laplace operator
−DvΔ in Ω and we have used the fact that − n

2p > −1 by selecting the same
p in Lemma 3.2 with p > n

2 .
(ii) By Lemma 1.3 (ii), (iii) of [36], there exist some positive constants

C9 and C10 such that

‖∇v(·, t)‖L∞(Ω)

≤ ‖∇et(DvΔ−μv)v0‖L∞(Ω) + svCw

∫ t

0

‖∇e(t−τ)(DvΔ−μv)u(·, τ)‖L∞(Ω)dτ

≤ C9‖∇v0‖L∞(Ω) + C9

∫ t

0

[1 + (t − τ)
− 1

2 − n
2p ]e−(Dvλ1+μv)(t−τ)‖u(·, τ)‖Lp(Ω)dτ

≤ C10

for all t ∈ (0, Tmax), where λ1 is the first positive Neumann eigenvalue of the
Laplace operator −DvΔ in Ω and we have used the fact that − 1

2 − n
2p > −1

by selecting the same p in Lemma 3.2 with p > n. The proof of Lemma 3.3 is
complete. �

By Lemma 3.2 and Lemma 3.3, we can complete the proof of Theorem
1.1.

Proof of Theorem 1.1. It follows from Lemma 3.2 and Lemma 3.3, as well
as Moser-Alikakos iteration (Appendix A of [33]) that there exists a constant
C > 0 such that

||u(·, t)||L∞(Ω) ≤ C for all t ∈ (0, Tmax). (3.18)

This in conjunction with Lemma 2.1 proves Theorem 1.1. �
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4. Proof of theorem 1.2

In this section, we can improve the conditions of f(u) in the space di-
mension n = 2. Firstly, we give the coupled estimate of

∫

Ω
u ln u and

∫

Ω
|∇v|2.

Lemma 4.1. Let (u, v, w) be a solution ensured in Lemma 2.1. Then the solu-
tion (u, v, w) of (1.1) satisfies

d

dt

{∫

Ω

u ln u +
χ√

2svCw

|∇v|2
}

+ Du

∫

Ω

|∇u|2
u

+
∫

Ω

u ln u +
√

2μvχ

svCw
|∇v|2

≤
√

2
χsvCw

Dv

∫

Ω

u2 +
∫

Ω

f(u)(ln u + 1) + M0 for all t ∈ (0, Tmax),
(4.1)

where M0 = sups>0

{
s ln s −

√
1
8

χsvCw

Dv
s2

}
|Ω| < ∞ and Cw is given in Lemma

2.1.

Proof. Testing the first Eq. (1.1) by lnu + 1 and using Young’s inequality, we
have

d

dt

∫

Ω

u ln u + Du

∫

Ω

|∇u2|
u

= −χ

∫

Ω

uΔv +
∫

Ω

f(u)(ln u + 1)

≤ ε

∫

Ω

u2 +
χ2

4ε

∫

Ω

|Δv|2 +
∫

Ω

f(u)(ln u + 1),
(4.2)

where ε > 0 shall be determined later. In order to deal with the integral∫

Ω
|Δv|2 in (4.2), we multiply the second Eq. (1.1) by −Δv, then integrate by

parts over Ω and use Young’s inequality to get

1
2

d

dt

∫

Ω

|∇v|2 + μv

∫

Ω

|∇v|2 +
Dv

2

∫

Ω

|Δv|2 ≤ s2
v

2Dv

∫

Ω

(uw)2. (4.3)

Since w(·, t) is bounded due to Lemma 2.1, we obtain

1
2

d

dt

∫

Ω

|∇v|2 + μv

∫

Ω

|∇v|2 +
Dv

2

∫

Ω

|Δv|2 ≤ C2
ws2

v

2Dv

∫

Ω

u2. (4.4)

By a combination (4.2) + χ2

2εDv
× (4.4), we derive

d

dt

{∫

Ω

u ln u +
χ2

4εDv
|∇v|2

}

+ Du

∫

Ω

|∇u|2
u

+
μvχ2

2εDv
|∇v|2

≤
(

ε +
C2

wχ2s2
v

4εD2
v

)∫

Ω

u2 +
∫

Ω

f(u)(ln u + 1).
(4.5)

Setting

K(ε) := sup
s>0

{s ln s − εs2},

then we have

s ln s ≤ εs2 + K(ε) for all ε > 0.

Since

lim
s→∞

s ln s − εs2

s2
= −ε < 0,
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we obtain

K(ε) < ∞ for all ε > 0.

Thus, by adding
∫

Ω
u ln u to both sides of (4.5), we can obtain

d

dt

{∫

Ω

u ln u +
χ2

4εDv
|∇v|2

}

+ Du

∫

Ω

|∇u|2
u

+
∫

Ω

u ln u +
μvχ

2

2εDv
|∇v|2

≤
(

2ε +
C2

wχ2s2
v

4εD2
v

) ∫

Ω

u2 +
∫

Ω

f(u)(ln u + 1) + K(ε) |Ω| .
(4.6)

Let

F3(ε) := 2ε +
C2

wχ2s2
v

4εD2
v

for all ε ∈ (0,∞),

it follows from the elementary inequality that F3(ε) can attain the minimum
value

min
ε>0

F3(ε) =
√

2
χsvCw

Dv
,

when ε =
√

1
8

χsvCw

Dv
. Therefore, by choosing this ε and setting M0

= K(
√

1
8

χsvCw

Dv
) |Ω|, we can obtain (4.1). �

Lemma 4.2. Let n = 2 and f(0) ≥ 0. Assume that one of the following condi-
tions holds:

(i) ∃α > 0, s.t. sup
s≥0

{f(s) + αs} < ∞, lim
s→∞

inf{−f(s) ln s

s2
} =: μ ∈ (

√
2
χsvCw

Dv
, ∞],

(ii) ∃α > 0, s.t. sup
s≥0

{f(s) + αs} < ∞,
2
√

2χsvC4
GNm1Cw

Dv
≤ Du,

(iii) f ≡ 0,
2
√

2χsvC4
GNm1Cw

Dv
≤ Du,

where CGN is given in Lemma 2.2, m1 is given in (2.4) and Cw is given in
Lemma 2.1. Then there exists C > 0 such that

∫

Ω

u ln u +
∫

Ω

|∇v|2 ≤ C for all t ∈ (0, Tmax). (4.7)

Proof. (i) Setting

Φ(s) := f(s) ln s +
√

2
χsvCw

Dv
s2,

since lims→∞ inf{− f(s) ln s
s2 } =: μ ∈ (

√
2χsvCw

Dv
,∞], we deduce

∃s2 > 1, s.t. Φ(s) < 0 for all s ≥ s2.
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Therefore, we have
√

2
χsvCw

Dv

∫

Ω

u2 +
∫

Ω

f(u)(ln u + 1)

=
∫

{u<s2}
Φ(u) +

∫

{u≥s2}
Φ(u) +

∫

Ω

f(u)

≤ sup
0<s<s2

[Φ(s)]|Ω| + sup
s>0

f(s)|Ω| < ∞ for all t ∈ (0, Tmax),

(4.8)

due to the conditions that f ∈ C1([0,+∞)), f(0) ≥ 0 and sups>0 f(s) < ∞
implied by (2.2).

Let

y(t) :=
∫

Ω

u ln u +
χ√

2svCw

∫

Ω

|∇v|2 + e−1|Ω|, (4.9)

then y(t) ≥ 0 due to s ln s ≥ −e−1. Moreover, it follows from (4.1) and (4.8)
that y(t) satisfies

y′(t) + c1y(t) ≤ c2 for all t ∈ (0, Tmax),

where
c1 := min {1, 2μv} ,

c2 :=
(

sup
0<s<s2

[Φ(s)] + sup
s>0

f(s) + e−1

)

|Ω| + M0.
(4.10)

By the ODE comparison argument, we have

y(t) ≤ max
{

y(0),
c2

c1

}

for all t ∈ (0, Tmax),

which implies (4.7).
(ii) We further consider the effect of diffusion. It follows from n = 2,

Lemma 2.2 and Lemma 2.3 that
∫

Ω

u2 = ||√u||4L4(Ω) ≤ {CGN (||√u|| 1
2
L2(Ω)||∇

√
u|| 1

2
L2(Ω) + ||√u||L2(Ω))}4

≤ 8C4
GN (||√u||2L2(Ω)||∇

√
u||2L2(Ω) + ||√u||4L2(Ω))

≤ 8C4
GN (||u||L1(Ω)||∇

√
u||2L2(Ω) + ||u||2L1(Ω))

≤ 2C4
GNm1

∫

Ω

|∇u|2
u

+ 8C4
GNm2

1,

(4.11)

where CGN and m1 are given in Lemmas 2.2 and 2.4, respectively.

According to the elementary inequality

1 < ln s + 1 ≤ s for all s ≥ 1,

and the conditions f(0) ≥ 0 and (2.2), we have

0 ≤ sup
s>0

f(s) < ∞,

which implies

(ln s + 1)f(s) ≤ (ln s + 1) sup
s>0

f(s) ≤ s sup
s>0

f(s) for all s ≥ 1.
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Therefore, the two integrals on the right-hand side of (4.1) can be estimated
as follows:

√
2
χsvCw

Dv

∫

Ω

u2 +
∫

Ω

f(u)(ln u + 1)

≤
√

2
χsvCw

Dv

∫

Ω

u2 +
∫

{u<1}
f(u)(ln u + 1) +

∫

{u≥1}
f(u)(ln u + 1)

≤
√

2
χsvCw

Dv

∫

Ω

u2 + sup
u<1

[f(u)(ln u + 1)] |Ω| + sup
s>0

f(s)
∫

Ω

u

≤
√

2
χsvCw

Dv

∫

Ω

u2 + sup
u<1

[f(u)(ln u + 1)] |Ω| + sup
s>0

f(s)m1.

(4.12)

Setting

M1 = sup
u<1

[f(u)(ln u + 1)] |Ω| + sup
s>0

f(s)m1 < ∞,

we can combine (4.1), (4.11) as well as (4.12) to deduce

d

dt

{∫

Ω

u ln u +
χ√

2svCw

|∇v|2
}

+ Du

∫

Ω

|∇u|2
u

+
∫

Ω

u ln u +
√

2μvχ

svCw
|∇v|2

≤
√

2
χsvCw

Dv

(

2C4
GNm1

∫

Ω

|∇u|2
u

+ 8C4
GNm2

1

)

+ M1 + M0.

Thanks to the condition 2
√

2χsvC4
GNm1Cw

Dv
≤ Du, we have

d

dt

{∫

Ω

u ln u +
χ√

2svCw

|∇v|2 + e−1|Ω|
}

+
∫

Ω

u ln u +
√

2μvχ

svCw
|∇v|2

≤ 8
√

2χsvC
4
GNm2

1Cw

Dv
+ M1 + M0 for all t ∈ (0, Tmax).

Thus, this along with the ODE comparison argument once again then yields
(4.7).

(iii) If f ≡ 0, it implies m1 = ||u0||L1(Ω). By the same argument as in
the proof of (ii), we can conclude that the condition

2
√

2χsvC
4
GNm1Cw

Dv
≤ Du

is enough to ensure (4.7). The proof of Lemma 4.2 is complete. �

Lemma 4.3. Let the conditions of Lemma 4.2 hold, then for any q ∈ (2,∞),
there exists C > 0 such that the component v of (1.1) fulfills

||v(·, t)||W 1,q(Ω) ≤ C for all t ∈ (0, Tmax). (4.13)

Proof. Firstly, we prove the boundedness of ||u(·, t)||L2(Ω). Testing the first Eq.
(1.1) by u, it follows from Young’s inequality that

1
2

d

dt

∫

Ω

u2 = −Du

∫

Ω

|∇u|2 + χ

∫

Ω

u∇u · ∇v +
∫

Ω

f(u)u

≤ −1
2
Du

∫

Ω

|∇u|2 +
χ2

2Du

∫

Ω

u2|∇v|2 + m1 sup
s≥0

f(s).
(4.14)
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By using ∇v · ∇Δv = 1
2Δ|∇v|2 − |D2v|2, and combining with the second Eq.

(1.1) we have

1
4

d

dt

∫

Ω

|∇v|4

= −Dv

2

∫

Ω

|∇|∇v|2|2 +
Dv

2

∫

∂Ω

|∇v|2 ∂|∇v|2
∂ν

− Dv

∫

Ω

|∇v|2|D2v|2

− μv

∫

Ω

|∇v|4 − sv

∫

Ω

uw|∇v|2Δv − sv

∫

Ω

uw∇v · ∇|∇v|2. (4.15)

By using the estimate that ∂|∇v|2
∂ν ≤ c3|∇v|2 on ∂Ω with some c3 > 0 (see

Lemma 4.2 in [23]), and the trace inequality (see Lemma 3.4 in [42]), there
exists c4 > 0 such that

Dv

2

∫

∂Ω

|∇v|2 ∂|∇v|2
∂ν

=
Dv

4

∫

∂Ω

∂(|∇v|2)2
∂ν

≤ Dv

4

∫

Ω

|∇|∇v|2|2 + c4

(∫

Ω

|∇v|2
)2

.

(4.16)

By using Young’s inequality on the last two terms of (4.15) and combining the
pointwise inequality |Δv|2 ≤ n|D2v|2, we obtain

− sv

∫

Ω

uw|∇v|2Δv − sv

∫

Ω

uw∇v · ∇|∇v|2

≤ sv

∫

Ω

uw|∇v|2|Δv| + sv

∫

Ω

uw|∇v| · |∇|∇v|2|

≤ (
ns2

vC2
w

4Dv
+

2s2
vC2

w

Dv
)
∫

Ω

u2|∇v|2 + Dv

∫

Ω

|∇v|2|D2v|2 +
Dv

8

∫

Ω

|∇|∇v|2|2.

Combining this with (4.14)–(4.16), we obtain

d

dt

{
1
2

∫

Ω

u2 +
1
4

∫

Ω

|∇v|4
}

+
Du

2

∫

Ω

|∇u|2 +
Dv

8

∫

Ω

|∇|∇v|2|2

≤ c5

∫

Ω

u2|∇v|2 + c5,

(4.17)

with some c5 > 0. Next, invoking an extended interpolation [5], Lemma 2.3
and Lemma 4.2, then for each ε > 0 we can pick some c6(ε) > 0 and c7(ε) > 0
such that

||u||3L3(Ω) ≤ ε||∇u||2L2(Ω)||u ln u||L1(Ω) + c6(ε)(||u||3L1(Ω) + 1)

≤ ε

∫

Ω

|∇u|2 + c7(ε) for all t ∈ (0, Tmax).

By using the Gagliardo-Nirenberg inequality and Lemma 4.2 we have

|| |∇v|2 ||3L3(Ω) ≤ c8||∇|∇v|2||2L2(Ω)|| |∇v|2 ||L1(Ω) + c8|| |∇v|2 ||3L1(Ω)

≤ c9

∫

Ω

|∇|∇v|2|2 + c9

(4.18)
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with some c8 > 0 and c9 > 0. Due to Hölder’s and Young’s inequalities, there
exists c10 > 0 such that

c5

∫

Ω

u2|∇v|2 ≤ c5||u||2L3(Ω)|| |∇v|2 ||L3(Ω)

≤ c5c
1
3
9

{

ε

∫

Ω

|∇u|2 + c7(ε)
} 2

3
{∫

Ω

|∇|∇v|2|2 + 1
} 1

3

≤ Dv

16

{∫

Ω

|∇|∇v|2|2 + 1
}

+ c10

{

ε

∫

Ω

|∇u|2 + c7(ε)
}

.

By choosing ε := Du

4c10
, we thus conclude from (4.17) that there exists c11 > 0

such that
d

dt

{
1
2

∫

Ω

u2 +
1
4

∫

Ω

|∇v|4
}

+
Du

4

∫

Ω

|∇u|2 +
Dv

16

∫

Ω

|∇|∇v|2|2 ≤ c11.

Next, since the Gagliardo-Nirenberg inequality and Young’s inequality, there
exist some constants c12 > 0 and c13 > 0 such that

∫

Ω

u2 ≤ c12

{∫

Ω

|∇u|2 + 1
}

and
∫

Ω

|∇v|4 ≤ c13

{∫

Ω

|∇|∇v|2|2 + 1
}

.

Then, we have
d

dt

{
1
2

∫

Ω

u2 +
1
4

∫

Ω

|∇v|4
}

+
Du

4

(
1

c12

∫

Ω

u2 − 1
)

+
Dv

16

(
1

c13

∫

Ω

|∇v|4 − 1
)

≤ c11.

Let

y(t) :=
1
2

∫

Ω

u2 +
1
4

∫

Ω

|∇v|4,

we can obtain that y(t) satisfies

y′(t) + c14y(t) ≤ c15 for all t ∈ (0, Tmax),

where

c14 := min
{

Du

2c12
,

Dv

4c13

}

,

c15 := c11 +
Du

4
+

Dv

16
.

By using the ODE comparison argument, we can obtain the boundedness of
||u(·, t)||L2(Ω).

Thus, it follows from the boundedness of ||u||L2(Ω) and w(·, t) in Lemma
2.1 that ||uw||L2(Ω) is bounded. By using the parabolic regularity (Ref. Lemma
4.1 of [16] and Lemma 1 of [19]) when n = 2, we can obtain (4.13). The proof
of Lemma 4.3 is complete. �
Lemma 4.4. Let the conditions of Lemma 4.2 hold, then for all p > 1 there
exists C > 0 such that

∫

Ω

up ≤ C for all t ∈ (0, Tmax).
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Proof. Multiplying the first Eq. (1.1) by pup−1 and integrating by parts, we
see

d

dt

∫

Ω

up + Dup(p − 1)
∫

Ω

up−2|∇u|2

= χp(p − 1)
∫

Ω

up−1∇u · ∇v + p

∫

Ω

up−1f(u).
(4.19)

By using Young’s inequality to the first term on the right of (4.19) and com-
bining Lemma 4.3, then for all ε > 0 there exist some positive constants c16

and c17 such that

χp(p − 1)
∫

Ω

up−1∇u · ∇v

≤ Dup(p − 1)
2

∫

Ω

up−2|∇u|2 +
χ2p(p − 1)

8Du

∫

Ω

up|∇v|2

≤ Dup(p − 1)
2

∫

Ω

up−2|∇u|2 + ε

∫

Ω

up+1 + c16

∫

Ω

|∇v|2(p+1)

≤ Dup(p − 1)
2

∫

Ω

up−2|∇u|2 + ε

∫

Ω

up+1 + c17.

(4.20)

When f satisfies (2.2), there exists a positive constant c18 such that

p

∫

Ω

up−1f(u) = p

∫

Ω

up−1(f(u) + αu − αu)

≤ p sup
s>0

(f(s) + αs)
∫

Ω

up−1 − αp

∫

Ω

up

≤ −αp

2

∫

Ω

up + c18.

This in conjunction with (4.19) and (4.20) then yields

d

dt

∫

Ω

up +
Dup(p − 1)

2

∫

Ω

up−2|∇u|2 +
αp

2

∫

Ω

up

≤ ε

∫

Ω

up+1 + c17 + c18.

(4.21)

By applying Lemma 2.2 and Lemma 2.3, we get
∫

Ω

up+1 = ||u p
2 ||

2(p+1)
p

L
2(p+1)

p (Ω)

≤ (2CGN )
2(p+1)

p (||u p
2 ||

2
p

L
2
p (Ω)

||∇u
p
2 ||2L2(Ω) + ||u p

2 ||
2(p+1)

p

L
2
p (Ω)

)

= (2CGN )
2(p+1)

p (||u||L1(Ω)||∇u
p
2 ||2L2(Ω) + ||u||p+1

L1(Ω))

≤ (2CGN )
2(p+1)

p (m1||∇u
p
2 ||2L2(Ω) + mp+1

1 )

= (2CGN )
2(p+1)

p (
m1p

2

4

∫

Ω

up−2|∇u|2 + mp+1
1 ).

(4.22)
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Therefore, we can choose ε = 2Du(p−1)
pm1

(2CGN )
−2(p+1)

p in (4.21) to obtain

d

dt

∫

Ω

up +
αp

2

∫

Ω

up ≤ c19, (4.23)

where c19 > 0. By the ODE comparison argument, we have
∫

Ω

up ≤ c20,

where c20 > 0.

On the other hand, when f ≡ 0, we combine (4.19) and (4.20) to deduce
that there exists a positive constant c21 such that

d

dt

∫

Ω

up +
Dup(p − 1)

2

∫

Ω

up−2|∇u|2 ≤ ε

∫

Ω

up+1 + c21. (4.24)

Adding
∫

Ω
up to the both sides of (4.24) and combining Young’s inequality, we

obtain

d

dt

∫

Ω

up +
∫

Ω

up +
Dup(p − 1)

2

∫

Ω

up−2|∇u|2

≤
∫

Ω

up + ε

∫

Ω

up+1 + c21

≤ 2ε

∫

Ω

up+1 + c22,

(4.25)

where c22 > 0. By using (4.22) again, we can choose ε = Du(p−1)
pm1

(2CGN )
−2(p+1)

p

in (4.25) to obtain that there exists c23 > 0 such that

d

dt

∫

Ω

up +
∫

Ω

up ≤ c23. (4.26)

By using the ODE comparison argument again, we get
∫

Ω

up ≤ c24 for all t ∈ (0, Tmax),

where c24 > 0. The proof of Lemma 4.4 is complete. �
By means of Lemmas 4.3 and 4.4, we can complete the proof of Theorem

1.2.
Proof of Theorem 1.2. By combining Lemmas 4.3 and 4.4, we can use the

Moser-Alikakos iteration (Appendix A of [33]) to derive

||u(·, t)||L∞(Ω) ≤ C for all t ∈ (0, Tmax), (4.27)

where C > 0. This in conjunction with the extensibility criterion of Lemma
2.1 proves Theorem 1.2. �
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