
Nonlinear Differ. Equ. Appl. (2022) 29:61
c© 2022 The Author(s), under exclusive licence

to Springer Nature Switzerland AG
1021-9722/22/050001-33
published online July 18, 2022

https://doi.org/10.1007/s00030-022-00792-1

Nonlinear Differential Equations
and Applications NoDEA

Boundary controllability for a coupled
system of parabolic equations with singular
potentials

Brahim Allal, Jawad Salhi and Amine Sbai

Abstract. This paper deals with the boundary controllability for a coupled
system of singular parabolic equations by means of one control force. In
particular, we consider well posedness of the problem and then we prove
both approximate and null controllability results. Moreover, an estimate
on the null-control cost is provided. Our proofs rely on the use of the
moment method together with some properties of Bessel functions and
their zeros.
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1. Introduction

The goal of this paper is to analyze controllability properties for a singular
system of two equations when we apply just one control on a part of the
boundary. More precisely, we consider the following linear control system:

⎧
⎪⎪⎨

⎪⎪⎩

yt − yxx − μ
x2 y = Ay, (t, x) ∈ Q := (0, T ) × (0, 1),

y(t, 1) = Bv, t ∈ (0, T ),
y(t, 0) = 0, t ∈ (0, T ),
y(0, x) = y0(x), x ∈ (0, 1),

(1.1)

where y0 ∈ H−1,μ(0, 1)2 (that will be defined later in sect. 2), μ is a real
parameter such that μ ≤ 1

4 , v = v(t) represents the control force which is
exerted at point x = 1 by means of the boundary Dirichlet condition, and
y = (y1, y2)∗ is the state variable.

Moreover, A ∈ L(R2) and B ∈ R
2 are, respectively, a suitable coupling

matrix and a control operator, chosen so that the Kalman rank condition
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is satisfied. Indeed, as highlighted in [25], it is well-known that a necessary
condition for the controllability of this kind of systems is given by the so-
called Kalman’s rank condition:

rank[B|AB] = 2. (1.2)

On the other hand, as explained in [25], by taking P = [B|AB], the change of
variables

ỹ = P−1y,

leads to the following reformulation of (1.1):
⎧
⎪⎪⎨

⎪⎪⎩

ỹt − ỹxx − μ
x2 ỹ = Ãỹ, (t, x) ∈ (0, T ) × (0, 1),

ỹ(t, 1) = B̃v, t ∈ (0, T ),
ỹ(t, 0) = 0, t ∈ (0, T ),
ỹ(0, x) = P−1y0(x), x ∈ (0, 1),

(1.3)

with

Ã =
(

0 a1

1 a2

)

and B̃ = e1 =
(

1
0

)

.

Therefore, passing through this mentioned change of variables, the situation
reduces to the case where

A =
(

0 a1

1 a2

)

and B = e1 =
(

1
0

)

. (1.4)

For simplicity, it will be assumed in the rest of the paper that A and B are
given by (1.4). Let us observe that this choice amounts to suppose that we
are exerting only one control force on the system but we want to control the
corresponding state y = (y1, y2) which has two components. In fact, y1 is
directly controlled by the boundary control and the second equation in (1.1)
is indirectly controlled by means of the coupling term y1.

We are particularly interested in the study of system (1.1) under the
assumption that the coupling matrix A admits two distinct eigenvalues, that
is:

a2
2 + 4a1 �= 0. (1.5)

Prior to controllability issues is the well-posedness of problem (1.1), a
question we address in sect. 2. We will see that, for every v ∈ L2(0, T ) and
y0 ∈ H−1,μ(0, 1)2, system (1.1) admits a unique weak solution defined by
transposition that satisfies

y ∈ L2(Q)2 ∩ C0
(
[0, T ],H−1,μ(0, 1)2

)
.

Observe that the previous regularity permits to pose the boundary controlla-
bility of the singular system (1.1) in the space H−1,μ(0, 1)2.

Then, we pass to see whether one can force the solution of system (1.1)
to have certain desired properties by choosing appropriate control inputs. In
particular, we analyze both approximate and null controllability issues. So, we
use the following notions:
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Definition 1.1. 1. It will be said that system (1.1) is approximately control-
lable in H−1,μ(0, 1)2 at time T > 0 if for every y0, yd ∈ H−1,μ(0, 1)2 and
any ε > 0, there exists a control function v ∈ L2(0, T ) such that the
solution y to system (1.1) satisfies

‖y(T, ·) − yd‖H−1,µ(0,1)2 ≤ ε.

2. It will be said that system (1.1) is null controllable at time T > 0 if for
every y0 ∈ H−1,μ(0, 1)2, there exists a control v ∈ L2(0, T ) such that the
solution y to system (1.1) satisfies

y(T, ·) = 0, in H−1,μ(0, 1)2.

Our first result for the boundary controllability of system (1.1) concerns
the approximate controllability and is proved in sect. 4 under the rank con-
dition (1.2) together with a condition (see (3.13)) that is equivalent to the
simplicity of the spectrum associated with system (1.1). We refer to Theorem
4.3 for a precise statement of this result. In order to prove this result, we argue
by duality reducing the problem to the obtention of an unique continuation
property for the corresponding adjoint system.

In this work, we will also prove the boundary null controllability of (1.1)
assuming the previous conditions which characterize the approximate control-
lability property (see Theorem 5.1 for a rigorous statement). The strategy for
proving our null controllability result for system (1.1) is based on the well-
known moment method initially developed in [23,24]. In the literature, this
moment method has been successfully applied for treating the controllability
of (nonsingular) parabolic systems of PDEs, see [4–6,9,10,20,28].

Before dealing with problem (1.1), let us first review some previous re-
sults concerning the theory of singular PDEs. In this framework, the Hardy
inequality (see (2.1)) has a crucial role in the analysis of these equations. The
intimate relation between Hardy’s inequality and the nonexistence results of
positive solutions of parabolic equations with a singular potential was discov-
ered by Baras and Goldstein in [7]. For better contextualise this fact, let us
consider the following heat operator with a singular potential

Pu = ut − uxx − μ

xL
u, x ∈ (0, 1), (1.6)

with Dirichlet boundary conditions. The case L = 2, we have the so-called
inverse-square potential (that appear in particular in the context of quantum
mechanics or in linearized combustion problems). Baras and Goldstein [7,8]
proved that the Cauchy-Dirichlet problem for Eq. (1.6) has a global positive
solution (for any value of μ ∈ R) if L < 2 whereas instantaneous and complete
blow-up occurs (for any value of μ) if L > 2. Next, when the exponent is
critical i.e. when L = 2, it is the value of the parameter μ that determines
the behavior of the equation: if μ ≤ 1/4 (which is the optimal constant of
the Hardy inequality, see (2.1)) global positive solutions exist, while, if μ >
1/4, instantaneous and complete blow-up occurs (for other comments on this
argument we refer to [40]). Later on, this result has been improved by J. L.
Vazquez and E. Zuazua [43] where the authors gave a complete description of
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the functional framework in which heat equations perturbed by such inverse-
square potentials are well-posed.

Recently, the null controllability properties of the linear heat equation
with an inverse-square potential began to be studied. In [42], using Carleman
estimates it has been proved that such equations can be controlled (in any
time T > 0) by a locally distributed control under the condition μ ≤ 1

4 . On
the contrary, if μ > 1

4 , the null controllability fails as shown in [22]. After these
first results, several other works followed extending them in various situations.
See for instance [26,27,29,38,39] for parabolic problems in divergence and non
divergence form with interior singularity and [15,16,40] for boundary singu-
larity. It is also worth to mention the work [13] for the case of a potential with
singularity distributed all over the boundary.

It is interesting to point out that all the previous papers are dealing with
locally distributed controls and contributions are mainly based on a Carle-
man approach, suitably adapted for taking into account the singularity in the
equation. To our best knowledge, the first results on controllability in the case
of a boundary control, have been established in [11,37]. In more detail, the
boundary controllability from x = 1 has been studied in [37] whereas the case
of a control acting at x = 0 is treated in [11]. Different from the distributed
case, the approach of these mentioned papers is based on decomposition in
series and the moment method.

In the present work, we are interested in studying the more complex
situation case in which we are exerting only one control force on the system (a
boundary control) but we want to control the corresponding state y = (y1, y2)∗

that has two components. As far as we know, the analysis of problem (1.1)
that we are presenting has never been treated in precedence, although it is a
natural extension of the results achieved in the articles presented above.

Throughout this paper, we shall use the following notations. Given D ∈
L
(
R

N ;RM
)
, N,M ≥ 1, D∗ ∈ L

(
R

M ;RN
)

stands for the transpose of D. For
z ∈ C, �(z) and 	(z) denote the real and imaginary parts of z.

Let us now precise the main technical tools for obtaining our main con-
trollability results. For the proof of the approximate controllability result, we
are going to apply the following known result which relates the existence and
bounds of biorthogonal families to complex exponentials to some gap condi-
tions (see [6] or [25]).

Theorem 1.2. Let T > 0. Suppose that {Λn}n≥1 is a sequence of complex num-
bers such that, for some δ, ρ > 0, one has

⎧
⎨

⎩

�(Λn) ≥ δ|Λn|, |Λn − Λm| ≥ ρ|n − m|, ∀n,m ≥ 1,
∑

n≥1

1
|Λn| < +∞. (1.7)

Then, there exists a family {qn}n≥1 ⊂ L2(0, T ) biorthogonal to {e−Λnt}n≥1

i.e., a family {qn}n≥1 in L2(0, T ) such that
∫ T

0

qn(t)e−Λmt dt = δnm, ∀n,m ≥ 1.
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Moreover, for every ε > 0, there exists Cε > 0 for which

‖qn‖L2(0,T ) ≤ Cεe
ε�(Λn), ∀n ≥ 1.

It is worth mentioning that the above Theorem can also be applied to get
the null controllability result for the system (1.1). However, it does not permit
to deduce the required exponential estimate on the null-control cost.

For this reason, to obtain the null controllability result together with an
estimate of the control cost, we will need the next result provided in [10].

Theorem 1.3. Let {Λn}n≥1 be a sequence of complex numbers fulfilling the
following assumptions:

1. Λn �= Λm for all n,m ≥ 1 with n �= m;
2. �(Λn) > 0 for every n ≥ 1;
3. for some δ > 0

|	(Λn)| ≤ δ
√

�(Λn) ∀n ≥ 1;

4. {Λn}n≥1 is nondecreasing in modulus,

|Λn| ≤ |Λn+1| ∀n ≥ 1;

5. {Λn}n≥1 satisfies the following gap condition: for some �, q > 0,
{

|Λn − Λm| ≥ �|n2 − m2| ∀n,m : |n − m| ≥ q,
inf

n�=m, |n−m|<q
|Λn − Λm| > 0; (1.8)

6. for some p, s > 0,

|p
√

r − N (r)| ≤ s, ∀r > 0, (1.9)

where N is the counting function associated with the sequence {Λn}n≥1,
that is the function defined by

N (r) = #{n : |Λn| ≤ r}, ∀r > 0.

Then, there exists T0 > 0, such that for any T ∈ (0, T0), we can find a family
{qn}n≥1 ⊂ L2(−T/2, T/2) biorthogonal to {e−Λnt}n≥1 i.e., a family {qn}n≥1

in L2(−T/2, T/2) such that
∫ T/2

−T/2

qn(t)e−Λmt dt = δnm.

Moreover, there exists a positive constant C > 0 independent of T for which

‖qn‖L2(−T/2,T/2) ≤ CeC
√

�(Λn)+C
T , ∀n ≥ 1. (1.10)

The rest of the paper is organized as follows. In Sect. 2, we prove the
well-posedness of the problem (1.1) in appropriate weighted spaces using the
transposition method and recall some characterizations of the controllability.
In sect. 3, we discuss the spectral analysis related to scalar singular operators
and present a description of the spectrum associated with system (1.1) which
will be useful for developing the moment method. Section 4 is devoted to
studying the boundary approximate controllability problem for the system
(1.1). Finally, in sect. 5, we prove the boundary null controllability result.



61 Page 6 of 33 B. Allal, J. Salhi and A. Sbai NoDEA

2. Preliminary results

2.1. Functional framework

In the study of evolution PDEs containing singular inverse-square potentials,
it is by now classical that of great importance is the Hardy inequality, guar-
anteeing that for any function z ∈ H1

0 (0, 1) we have z
x ∈ L2(0, 1) and the

following estimate holds (see, for example, [30, Theorem 327] or [19, Lemma
5.3.1]):

1
4

∫ 1

0

z2

x2
dx ≤

∫ 1

0

z2
x dx. (2.1)

Let us fix μ ≤ 1
4 . We introduce the associated functional space:

H1,μ
0 (0, 1) :=

{
z ∈ L2(0, 1) ∩ H1

loc((0, 1]) | z(0) = z(1) = 0,

and
∫ 1

0

(z2
x − μ

z2

x2
) dx < +∞

}
.

Note that H1,μ
0 (0, 1) is a Hilbert space obtained as the closure of C∞

c (0, 1), or
H1

0 (0, 1), with respect to the norm

∀z ∈ H1
0 (0, 1), ‖z‖μ :=

(∫ 1

0

(z2
x − μ

z2

x2
) dx
) 1

2
.

In the case of a sub-critical parameter μ < 1
4 , thanks to Hardy inequality (2.1),

one can see that ‖ ·‖μ is equivalent to the standard norm of H1
0 (0, 1), and thus

H1,μ
0 (0, 1) = H1

0 (0, 1). In the critical case μ = 1
4 , it has been proved (see

[43]) that this identification does not hold anymore and the space H1,μ
0 (0, 1)

is slightly (but strictly) larger than H1
0 (0, 1). Further, in both cases, one can

define H−1,μ(0, 1) the dual space of H1,μ
0 (0, 1) with respect to the pivot space

L2(0, 1), endowed with the natural norm

‖f‖H−1,µ(0,1) := sup
‖g‖

H
1,µ
0 (0,1)

=1

〈f, g〉H−1,µ(0,1),H1,µ
0 (0,1).

Observe that, if we denote H1,μ(0, 1) the Hilbert space obtained as the com-
pletion of H1(0, 1) with respect to the norm ‖ · ‖L2(0,1) + ‖ · ‖μ, we have

H1,μ
0 (0, 1) =

{
z ∈ H1,μ(0, 1) | z(0) = z(1) = 0

}
.

We also define

H2,μ(0, 1) =
{
z ∈ H1,μ(0, 1) ∩ H2

loc((0, 1]) | zxx +
μ

x2
z ∈ L2(0, 1)

}
.

We recall (see [41,43]) the following fundamental embedding result.

Theorem 2.1. Let μ ≤ 1
4 be given. Then H1,μ

0 (0, 1) ↪→ L2(0, 1) with compact
embedding.

Notice besides that, as C∞
c (0, 1) is dense both in L2(0, 1) and in H1,μ

0 (0, 1),
H1,μ

0 (0, 1) is dense in L2(0, 1).
In what follows, for simplicity, we will always denote by 〈·, ·〉 the standard

scalar product of either L2(0, 1) or L2(0, 1)2, by 〈·, ·〉X′,X the duality pairing
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between the Hilbert space X and its dual X ′. On the other hand, we will use
‖·‖μ (resp. ‖·‖H−1,µ) for denoting the norm of H1,μ

0 (0, 1)2 (resp. H−1,μ(0, 1)2).

2.2. Well-posedness

Now, we are ready to give some results related to the existence, uniqueness
and continuous dependence with respect to the data of the singular problem
(1.1). To this aim, let us consider the nonhomogeneous adjoint problem:

⎧
⎨

⎩

−ϕt − ϕxx − μ
x2 ϕ = A∗ϕ + g, in Q,

ϕ(t, 0) = ϕ(t, 1) = 0, t ∈ (0, T ),
ϕ(T, x) = ϕ0, in (0, 1),

(2.2)

where A is given in (1.4) and ϕ0 and g are functions in appropriate spaces.
Let us start with a first result on existence and uniqueness of strict so-

lutions to system (2.2). One has (see [37, Definition 2.2] or [2, Theorem 2.1]):

Proposition 2.2. Assume that ϕ0 ∈ H1,μ
0 (0, 1)2 and g ∈ L2(Q)2. Then, system

(2.2) admits a unique strict solution

ϕ ∈ W := C0([0, T ];H1,μ
0 (0, 1)2) ∩ H1(0, T ;L2(0, 1)2)

∩ L2(0, T ;H2,μ(0, 1)2 ∩ H1,μ
0 (0, 1)2)

such that
‖ϕ‖C0([0,T ];H1,µ

0 (0,1)2) + ‖ϕ‖H1(0,T ;L2(0,1)2) + ‖ϕ‖L2(0,T ;H2,µ(0,1)2∩H1,µ
0 (0,1)2)

≤ C
(
‖ϕ0‖μ + ‖g‖L2(Q)2

)
,

(2.3)

for some positive constant C.

In view of Proposition 2.2, the following definition makes sense:

Definition 2.3. Let y0 ∈ H−1,μ(0, 1)2 and v ∈ L2(0, T ) be given. It will be said
that y ∈ L2(Q)2 is a solution by transposition to (1.1) if, for each g ∈ L2(Q)2,
the following identity holds

∫ ∫

Q

y · g dx dt = 〈y0, ϕ(0, ·)〉H−1,µ,H1,µ
0

−
∫ T

0

B∗ϕx(t, 1) v(t) dt, (2.4)

where ϕ ∈ W is the solution of (2.2) associated to g and ϕ0 = 0.

With this definition, we can state the result of existence and uniqueness
of solution to system (1.1) by the transposition method in the spirit of [34].

Proposition 2.4. Assume that y0 ∈ H−1,μ(0, 1)2 and v ∈ L2(0, T ). Then, sys-
tem (1.1) admits a unique solution by transposition y that satisfies

⎧
⎪⎪⎨

⎪⎪⎩

y ∈ L2(Q)2 ∩ C0
(
[0, T ],H−1,μ(0, 1)2

)
,

yt ∈ L2
(
0, T ; (H2,μ(0, 1)2 ∩ H1,μ

0 (0, 1)2)
′
),

yt − yxx − μ
x2 y = Ay in L2

(
0, T ; (H2,μ(0, 1)2 ∩ H1,μ

0 (0, 1)2)
′
),

y(0, ·) = y0 in H−1,μ(0, 1)2

(2.5)
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and
‖y‖L2(Q)2 + ‖y‖C0(H−1,µ) + ‖yt‖L2((H2,µ(0,1)2∩H1,µ

0 (0,1)2)′ )

≤ C
(
‖v‖L2(0,T ) + ‖y0‖H−1,µ

)
,

(2.6)

for a constant C = C(T ) > 0.

Proof. Let y0 ∈ H−1,μ(0, 1)2, v ∈ L2(0, T ) and consider the following func-
tional T : L2(Q)2 → R given by

T (g) = 〈y0, ϕ(0, ·)〉H−1,µ,H1,µ
0

−
∫ T

0

B∗ϕx(t, 1)v(t) dt,

where ϕ ∈ W is the solution of the adjoint system (2.2) associated to g ∈
L2(Q)2 and ϕ0 = 0. In view of the results of Proposition 2.2, the mapping T
is well defined and it is linear. Next, observe that

∣
∣T (g)

∣
∣ ≤ ‖y0‖H−1,µ‖ϕ(0, ·)‖μ + ‖B∗ϕx(t, 1)‖L2(0,T )‖v‖L2(0,T ).

Since ϕ ∈ L2(0, T ;H2,μ(0, 1)2 ∩ H1,μ
0 (0, 1)2) ⊂ L2(0, T ;H2

loc((0, 1])2), by in-
voking the theory of traces (see, for example [1, Theorem 4.3.28]), one has:

‖B∗ϕx(t, 1)‖L2(0,T ) ≤ C‖ϕx(t, 1)‖L2(0,T ) ≤ C‖ϕ‖L2(0,T ;H2
loc((0,1])2)

≤ C‖ϕ‖L2(0,T ;H2,µ(0,1)2∩H1,µ
0 (0,1)2)

(by (2.3))

≤ C‖g‖L2(Q)2 .

Using again (2.3), we also have:

‖ϕ(0, ·)‖μ ≤ C‖g‖L2(Q)2 .

Therefore,
∣
∣T (g)

∣
∣ ≤ C

(
‖v‖L2(0,T ) + ‖y0‖H−1,µ

)
‖g‖L2(Q)2 ,

for all g ∈ L2(Q)2. We infer that T is bounded. Hence, by Riesz-Fréchet
representation theorem, there exists a unique y ∈ L2(Q)2 satisfying (2.4), i.e.,
a solution by transposition of (1.1) in the sense of Definition 2.3. Moreover,

‖y‖L2(Q)2 = ‖T ‖ ≤ C
(
‖v‖L2(0,T ) + ‖y0‖H−1,µ

)
.

Moreover, this solution satisfies the equality yt − yxx − μ
x2 y = Ay in

D′
(Q)2. Indeed, it suffices to multiply (2.2) associated to g and ϕ0 = 0 by any

regular solution y of (1.1) (corresponding to regular data (y0, v)) and integrate
on Q, obtaining

∫ ∫

Q

y · g dx dt +
∫ ∫

Q

Ay · ϕdx dt

=
∫ ∫

Q

(yt − yxx − μ

x2
y)ϕdx dt

+ 〈y0, ϕ(0, ·)〉H−1,µ,H1,µ
0

−
∫ T

0

B∗ϕx(t, 1) v(t) dt.

(2.7)
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By comparing (2.4) and (2.7), we deduce that
∫ ∫

Q

(yt − yxx − μ

x2
y)ϕdx dt =

∫ ∫

Q

Ay · ϕdx dt, ∀ϕ ∈ W.

Since D(Q)2 ⊂ W, the claim follows.
Next, we are going to prove that the solution y of system (1.1) is more

regular. To be precise, let us show that yxx + μ
x2 y ∈ L2

(
0, T ; (H2,μ(0, 1)2 ∩

H1,μ
0 (0, 1)2)

′
) and

‖yxx +
μ

x2
y‖L2((H2,µ(0,1)2∩H1,µ

0 (0,1)2)′ ) ≤ C
(
‖v‖L2(0,T ) + ‖y0‖H−1,µ

)
. (2.8)

To this end, let us consider two sequences {ym
0 }m≥1 ⊂ H1,μ

0 (0, 1)2 and {vm}m≥1

⊂ H1
0 (0, T ) such that

ym
0 → y0 in H−1,μ(0, 1)2 and vm → v in L2(0, T ).

Now, the strategy consists in transforming our original system (1.1) (as done
for instance in [37] in the context of a scalar singular parabolic equation) into
a problem with homogeneous boundary conditions and a source term. To this
end, let us introduce the following function:

∀x ∈ [0, 1], p(x) := xqµ where qμ :=
1 +

√
1 − 4μ

2
.

Formally, if ym is the solution of (1.1) associated to ym
0 and vm, then the

function defined by

ỹm(t, x) = ym(t, x) − Bp(x)vm(t),

is solution of
⎧
⎨

⎩

ỹm
t − ỹm

xx − μ
x2 ỹm = Aỹm + f̃m(t, x), on (0, T ) × (0, 1),

ỹm(t, 0) = ỹm(t, 1) = 0, in (0, T ),
ỹm(0, x) = ym

0 (x), in (0, 1),
(2.9)

where f̃m(t, x) = p(x)vm(t)AB − p(x)vm
t (t)B ∈ L2(Q)2. With the previous

regularity assumptions on the data, we can apply Proposition 2.2, to deduce
that system (2.9) has a unique strict solution

ỹm ∈ C0([0, T ];H1,μ
0 (0, 1)2) ∩ H1(0, T ;L2(0, 1)2)

∩ L2(0, T ;H2,μ(0, 1)2 ∩ H1,μ
0 (0, 1)2).

By setting

ṽm(t, x) := Bp(x)vm(t),

we observe that ṽm satisfies

ṽm ∈ C0([0, T ];H1,μ(0, 1)2) ∩ H1(0, T ;L2(0, 1)2) ∩ L2(0, T ;H2,μ(0, 1)2).

Therefore, the problem (1.1) for vm and ym
0 has a unique solution

ym ∈ C0([0, T ];H1,μ(0, 1)2) ∩ H1(0, T ;L2(0, 1)2) ∩ L2(0, T ;H2,μ(0, 1)2)
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which satisfies
∫ ∫

Q

ym · g dtdx = 〈ym
0 , ϕ(0, x)〉H−1,µ,H1,µ

0
−
∫ T

0

B∗ϕx(t, 1)vm(t) dt, ∀m ≥ 1,

for all g ∈ L2(Q)2, where ϕ is the solution of the system (2.2) associated to g
and ϕ0 = 0. Using this last identity and (2.4), we get

{
‖ym‖L2(Q)2 ≤ C

(
‖v‖L2(0,T ) + ‖y0‖H−1,µ

)
and

ym → y in L2(Q)2. (2.10)

From this, we also deduce that ym
xx → yxx in D′

(Q)2. Indeed, for every φ ∈
D(Q)2, we have

∣
∣
∣

∫ ∫

Q

ym
xx · φ dt dx −

∫ ∫

Q

yxx · φ dt dx
∣
∣
∣

=
∣
∣
∣

∫ ∫

Q

ym · φxx dt dx −
∫ ∫

Q

y · φxx dt dx
∣
∣
∣→ 0,

as claimed.
On the other hand, integrations by parts that may be justified as de-

scribed in a detailed manner in [17], lead to
∫ ∫

Q

(ym
xx+

μ

x2
ym)·ψ dt dx=

∫ ∫

Q

ym ·(ψxx+
μ

x2
ψ) dt dx−

∫ T

0

B∗ψx(t, 1) vm(t) dt,

for every ψ ∈ L2
(
0, T ;H2,μ(0, 1)2 ∩ H1,μ

0 (0, 1)2). From this equality we de-
duce that the sequence {ym

xx + μ
x2 ym}m≥1 is bounded in L2

(
0, T ; (H2,μ(0, 1)2 ∩

H1,μ
0 (0, 1)2)

′
). This property together with (2.10) implies that yxx + μ

x2 y ∈
L2
(
0, T ; (H2,μ(0, 1)2 ∩ H1,μ

0 (0, 1)2)
′
) and satisfies the estimate (2.8).

Combining the identity yt = yxx + μ
x2 y + Ay and the regularity property

for yxx + μ
x2 y, we also see that yt ∈ L2

(
0, T ; (H2,μ(0, 1)2 ∩ H1,μ

0 (0, 1)2)
′
) and

‖yt‖L2((H2,µ(0,1)2∩H1,µ
0 (0,1)2)′ ) ≤ C

(
‖v‖L2(0,T ) + ‖y0‖H−1,µ

)
,

for some positive constant C. Therefore y ∈ C([0, T ];X2), where X is the
interpolation space X = [L2(0, 1), (H2,μ(0, 1)2 ∩ H1,μ

0 (0, 1))
′
]1/2 = H−1,μ(0, 1)

(see [35, Proposition 2.1, p. 22]). In conclusion, we get

‖y‖C(H−1,µ) ≤ C
(
‖v‖L2(0,T ) + ‖y0‖H−1,µ

)
.

Finally, one can easily check that y(0, ·) = y0 in H−1,μ(0, 1)2. This ends the
proof. �

2.3. Duality

Let us consider the adjoint of system (1.1)
⎧
⎨

⎩

−ϕt − ϕxx − μ
x2 ϕ = A∗ϕ, in Q,

ϕ(t, 0) = ϕ(t, 1) = 0, t ∈ (0, T ),
ϕ(T, x) = ϕ0, in (0, 1),

(2.11)

where ϕ0 ∈ H1,μ
0 (0, 1)2. In the sequel, the solution to (2.11) will be called

the adjoint state associated to ϕ0. The controllability of system (1.1) can be



NoDEA Boundary controllability for a coupled system of parabolic Page 11 of 33 61

characterized in terms of appropriate properties of the solutions to (2.11). In
order to provide these characterizations, we use the following result which
relates the solutions of systems (1.1) and (2.11). One has:

Proposition 2.5. Let y0 ∈ H−1,μ(0, 1)2, v ∈ L2(0, T ) and ϕ0 ∈ H1,μ
0 (0, 1)2 be

given. Let y be the state associated to y0 and v and let ϕ be the adjoint state
associated to ϕ0. Then:

∫ T

0

B∗ϕx(t, 1)v(t) dt = 〈y0, ϕ(0, ·)〉H−1,µ,H1,µ
0

− 〈y(T ), ϕ0〉H−1,µ,H1,µ
0

.

(2.12)

This result is a straightforward consequence of the properties of y stated
in Proposition 2.4.

One important result that will be useful for treating the approximate
controllability of the system (1.1) is the following characterization in terms of
the unique continuation property for the corresponding adjoint system (2.11).
More precisely, we have:

Theorem 2.6. Let us consider T > 0. Then, system (1.1) is approximately
controllable at time T if and only if for all initial condition ϕ0 ∈ H1,μ

0 (0, 1)2

the solution to system (2.11) satisfies the unique continuation property

B∗ϕx(·, 1) = 0 on (0, T ) ⇒ ϕ0 = 0 in (0, 1) (i.e., ϕ = 0 in Q).

This result is well known. For a proof see, for instance [18,25] and [45].

3. Spectral analysis

3.1. Spectral properties of scalar singular operators

In this section, we discuss some preliminary results related to a spectral anal-
ysis of the operator y �→ −yxx − μ

x2 y, i.e., the nontrivial solutions (λ,Φ) of
{

−Φ
′′
(x) − μ

x2 Φ(x) = λΦ(x), x ∈ (0, 1),
Φ(0) = Φ(1) = 0,

(3.1)

that will be essential for our purposes. For this reason, we will start by giving
a brief account of some results concerning the Bessel functions that will be
useful in the rest of the paper. For a complete treatise on Bessel functions, see
[44].

For a real number ν ∈ R+, we denote by Jν the Bessel function of the
first kind of order ν defined by the following Taylor series expansion around
x = 0:

Jν(x) =
∑

m≥0

(−1)m

m! Γ(1 + ν + m)

(x

2

)2m+ν

,

where Γ(.) is the Gamma function.
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We recall that the Bessel function Jν satisfies the following differential
equation

x2y′′(x) + xy′(x) + (x2 − ν2)y(x) = 0, x ∈ (0,+∞).

Moreover, the function Jν has an infinite number of real zeros which are simple
with the possible exception of x = 0 (see [21,33]). We denote by (jν,n)n≥1 the
strictly increasing sequence of the positive zeros of Jν :

0 < jν,1 < jν,2 < · · · < jν,n < · · ·
and we recall that

jν,n → +∞ as n → +∞
and the following bounds on the zeros jν,n, which are provided in [36]:

• ∀ν ∈
[
0,

1
2

]
, ∀n ≥ 1,
(

n +
ν

2
− 1

4

)

π ≤ jν,n ≤
(

n +
ν

4
− 1

8

)

π. (3.2)

• ∀ν ≥ 1
2
, ∀n ≥ 1,

(

n +
ν

4
− 1

8

)

π ≤ jν,n ≤
(

n +
ν

2
− 1

4

)

π. (3.3)

In our investigation we need the following classical result (see [32, Proposition
7.8]):

Lemma 3.1. Let jν,n, n ≥ 1 be the positive zeros of the Bessel function Jν .
Then, the following hold:

• If ν ∈
[
0,

1
2

]
, the difference sequence (jν,n+1 − jν,n)n is nondecreasing

and converges to π as n −→ +∞.

• If ν ≥ 1
2
, the sequence (jν,n+1 − jν,n)n is nonincreasing and converges to

π as n −→ +∞.

We also have that the Bessel functions enjoy the following integral formula
(see [44]):

∫ 1

0

xJν(jν,nx)Jν(jν,mx) dx =
δnm

2
[J

′
ν(jν,n)]2, n,m ∈ N

∗,

where, δnm is the Kronecker symbol.
Next we recall the expression of the eigenvalues and eigenfunctions related

to problem (3.1) that have been computed in [37]. To this end, given μ ≤ 1
4 ,

let us introduce the quantity

νμ :=

√
1
4

− μ.

With the previous notation, we have the following result:
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Proposition 3.2. Assume μ ≤ 1
4 . Then the admissible eigenvalues λ for prob-

lem (3.1) are given by

λμ,n = j2
νµ,n, ∀n ≥ 1. (3.4)

and the associated normalized (in L2(0, 1)) eigenfunctions are

Φμ,n(x) =
√

2
|J ′

νµ
(jνµ,n)|

√
xJνµ

(jνµ,nx), x ∈ (0, 1), n ≥ 1. (3.5)

Moreover, the family (Φμ,n)n≥1 forms an orthonormal basis of L2(0, 1).

We end this subsection with the following lemma which will be used later.
One has:

Lemma 3.3. The sequence of eigenvalues (λμ,n)n≥1 satisfies the following gap
condition: there is a constant ρ > 0 such that

|λμ,n − λμ,m| ≥ ρ|n2 − m2|, ∀n,m ≥ 1. (3.6)

Proof. Let n,m ∈ N
� with n ≥ m. We have

λμ,n − λμ,m = (j2
νµ,n − j2

νµ,m)

= (jνµ,n − jνµ,m)(jνµ,n + jνµ,m)

=
(
(jνµ,n − jνµ,n−1) + ... + (jνµ,m+1 − jνµ,m)

)
(jνµ,n + jνµ,m).

We can now distinguish the two different cases νμ ∈
[
0,

1
2

]
and νμ ≥ 1

2
,

depending on the parameter μ.

• if νμ ∈
[
0,

1
2

]
(i.e. μ ∈

[
0, 1

4

]
), by virtue of Lemma 3.1 we immediately

have that

jνµ,n − jνµ,n−1 ≥ jνµ,2 − jνµ,1, ∀n ≥ 2.

Therefore,

λμ,n − λμ,m ≥ (n − m)(jνµ,2 − jνµ,1)(jνµ,n + jνµ,m).

Using (3.2), the last inequality becomes:

λμ,n − λμ,m ≥ 7
8
π2(n − m)

(
n + m + νμ − 1

2
)
.

Moreover, we have

(
n + m + νμ − 1

2
)

>
n + m

2
,

and thus, that there exists ρ = 7
16π2 such that

λμ,n − λμ,m ≥ ρ(n2 − m2).
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• Let us now see the case νμ ≥ 1
2 (i.e. μ ≤ 0). Here we use the fact that

the sequence (jνµ,n+1 − jνµ,n)n is nonincreasing and converges to π. This
ensures that

jνµ,n+1 − jνµ,n ≥ π, ∀n ≥ 1.

Therefore:

λμ,n − λμ,m ≥ π(n − m)(jνµ,n + jνµ,m).

Owing to (3.3), we also have

jνµ,n + jνµ,m ≥
(
n + m +

νμ

2
− 1

4
)
π ≥ π(n + m).

Combining the above last two estimates, the thesis follows with ρ = π2.

Thus, in every case there holds

λμ,n − λμ,m ≥ ρ(n2 − m2).

In both cases, after reversing the roles of n and m, one has

λμ,m − λμ,n ≥ ρ(m2 − n2).

Hence,

|λμ,n − λμ,m| ≥ ρ|n2 − m2|, ∀n,m ≥ 1,

for a constant ρ > 0. �

3.2. Spectral properties of vectorial singular operators

Let A be given by (1.4) and consider the singular vectorial operator

L : D(L) ⊂ L2(0, 1)2 → L2(0, 1)2

y �→ −yxx − μ

x2
y − Ay,

(3.7)

with domain D(L) = H2,μ(0, 1)2 ∩ H1,μ
0 (0, 1)2 and also its adjoint L∗.

This section will be devoted to giving some properties of the eigenvalues
and eigenfunctions of the operators L and L∗ which will be useful for devel-
oping the moment method. Let us first analyze the spectrum of the operators
L and L∗:

Proposition 3.4. Let us consider the operator L given by (3.7) and its adjoint
L∗. Then,

1. The spectra of L and L∗ are given by σ(L) = σ(L∗) =
{
λ

(1)
μ,n, λ

(2)
μ,n

}

n≥1

with

λ(1)
μ,n = λμ,n − α1, λ(2)

μ,n = λμ,n − α2, ∀n ≥ 1, (3.8)

where α1 and α2 are the eigenvalues of the matrix A defined by :
• Case 1: a2

2 + 4a1 > 0,

α1 =
1
2

(
a2 −

√

a2
2 + 4a1

)
and α2 =

1
2

(
a2 +

√

a2
2 + 4a1

)
. (3.9)
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• Case 2: a2
2 + 4a1 < 0,

α1 =
1
2

(
a2 + i

√

−(a2
2 + 4a1)

)
and α2 =

1
2

(
a2 − i

√

−(a2
2 + 4a1)

)
.

(3.10)

2. For each n ≥ 1, the corresponding eigenfunctions of L (resp., L∗) asso-
ciated to λ

(1)
μ,n and λ

(2)
μ,n are respectively given by

ψ(1)
n = U1Φμ,n, ψ(2)

n = U2Φμ,n, (3.11)

with

U1 =
1

α1 − α2

(
−α2

1

)

and U2 =
1

α2 − α1

(
−α1

1

)

(resp.,

Ψ(1)
n = V1Φμ,n, Ψ(2)

n = V2Φμ,n, (3.12)

with

V1 =
(

1
α1

)

and V2 =
(

1
α2

)

.

Proof. We will prove the result for the operator L. The same reasoning provides
the proof for its adjoint L∗.

Using the fact that the function Φμ,n is the eigenfunction of the Dirichlet-
singular elliptic operator (−∂xx − μ

x2 ) associated to the eigenvalue λμ,n, one
can see that the eigenvalues of the operator L correspond to the eigenvalues
of the matrices

λμ,nId − A, ∀n ≥ 1,

(Id ∈ L(C2) is the identity matrix) and the associated eigenfunctions of L
are given under the form ψn(·) = znΦμ,n(·), where zn ∈ C

2 is the associated
eigenvector of the matrix λμ,nId − A.

Taking into account the expression of the characteristic polynomial of
λμ,nId − A:

P (z) = z2 − z(2λμ,n − a2) + λμ,n(λμ,n − a2) − a1, n ≥ 1,

a direct computation provides the formulas (3.8) and (3.11) as eigenvalues and
associated eigenfunctions of the operator L. This ends the proof. �

Let us now check that the sequence of eigenvalues of L and L∗ fulfills the
conditions in Theorem 1.3. One has

Proposition 3.5. Assume that the following condition holds

λμ,n − λμ,l �= α1 − α2, ∀n, l ∈ N
∗, with n �= l. (3.13)

Then, one can construct a family from the spectrum
{
λ

(1)
μ,n, λ

(2)
μ,n

}

n≥1
, defined

by
{
Λμ,n

}

n≥1
=
{
λ(1)

μ,n + α2, λ
(2)
μ,n + α2

}

n≥1

= {λμ,n + α2 − α1 : n ≥ 1} ∪ {λμ,n : n ≥ 1},
(3.14)
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which satisfies the hypotheses in Theorem 1.3.
Here, we note that the sequence

{
λ

(1)
μ,n, λ

(2)
μ,n

}

n≥1
refers to the union of

two families of sequences.

Proof. We distinguish between two cases depending on the spectrum of matrix
A.

Case 1: A has two real eigenvalues α1 and α2, chosen such that α1 < α2.
Let us introduce the sequence

{
Λμ,n

}

n≥1
, where

{
Λμ,n : n ≥ 1

}
:=
{
λ(1)

μ,n + α2, λ
(2)
μ,n + α2

}

n≥1
.

The hypothesis 1) holds true if and only if the condition (3.13) is satisfied. In
addition, the hypotheses 2) and 3) are obviously satisfied by definition.

Let us now show the hypothesis 4). Since α2 − α1 > 0, observe that
{
λ

(1)
μ,n + α2

}

n≥1
and

{
λ

(2)
μ,n + α2

}

n≥1
are increasing sequences satisfying

0 < λ(2)
μ,n + α2 < λ(1)

μ,n + α2, ∀n ≥ 1.

Thus, we deduce that the sequence
{
Λμ,n

}

n≥1
can be rearranged into a positive

increasing sequence.
Let us move to prove hypothesis 5). For this purpose, we are going to give

an explicit rearrangement of the sequence
{
λ

(1)
μ,n + α2, λ

(2)
μ,n + α2

}

n≥1
. Firstly,

observe that there exists an integer n0 ≥ 1 and a constant C > 0 such that

λ
(1)
μ,n−1 < λ(2)

μ,n < λ(1)
μ,n < λ

(2)
μ,n+1 < · · · , ∀n ≥ n0, and

min
n≥n0

{
λ(2)

μ,n − λ
(1)
μ,n−1, λ

(1)
μ,n − λ(2)

μ,n

}
> C.

(3.15)

Indeed, using (3.6), one has

λ(2)
μ,n − λ

(1)
μ,n−1 = λμ,n − λμ,n−1 + α1 − α2

≥ ρ(2n − 1) + α1 − α2 −→
n→+∞ +∞. (3.16)

From (3.16) and the fact that λ
(1)
μ,n − λ

(2)
μ,n = α2 − α1 > 0, we can conclude

(3.15).
Therefore, if 1 ≤ n ≤ 2n0 − 2, we define Λμ,n such that

{
Λμ,n

}

1≤n≤2n0−2
= {λ(1)

μ,n + α2}1≤n≤n0−1 ∪ {λ(2)
μ,n + α2}1≤n≤n0−1 and

Λμ,n < Λμ,n+1 ∀n : 1 ≤ n ≤ 2n0 − 3.

Moreover, from (2n0−1)-th term, we choose to arrange the sequence as follows:

Λμ,2n−1 = λ(2)
μ,n + α2 and Λμ,2n = λ(1)

μ,n + α2, ∀n ≥ n0. (3.17)

Since the elements of the sequence
{
Λμ,n

}

n≥1
are pairwise different and from

(3.15), one has:

inf
n,m≥1:n�=m

|λ(1)
μ,n − λ(2)

μ,m| > 0. (3.18)

Hence, thanks to (3.18), the sequence
{
Λμ,n

}

n≥1
satisfies the second inequality

in (1.8) for every q ≥ 1.
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Our next task will be to prove the first inequality of (1.8) for appropriate
q > 0 and � > 0. To this aim, as it has been remarked in [28], it is enough to
prove the existence of q > 0 and �̃ > 0 such that

|Λn − Λm| ≥ �̃|n2 − m2| ∀n,m ≥ q, |n − m| ≥ q. (3.19)

We divide the proof of (3.19) into two steps.
1. Observe that, if n,m ∈ N

� are such that n,m ≥ n0 and |n − m| ≥ n0,
then by (3.17) and using (3.6) we have

|Λμ,2n − Λμ,2m| = |λμ,n − λμ,m| ≥ ρ|n2 − m2| =
ρ

4
|(2n)2 − (2m)2|

and
|Λμ,2n−1 − Λμ,2m−1| = |λμ,n − λμ,m| ≥ ρ|n2 − m2|

≥ ρ

4
|(2n − 1)2 − (2m − 1)2|.

We obtain thus the proof of (3.19) for q = n0 and �̃ = ρ
4 .

2. Let n,m ∈ N
� such that n,m ≥ n0. From (3.17), by denoting ñ = 2n and

m̃ = 2m − 1 and using again (3.6), we readily see that

|Λμ,ñ − Λμ,m̃| =
∣
∣λ(1)

μ,n − λ(2)
μ,m

∣
∣

=
∣
∣λμ,n − λμ,m + (α2 − α1)

∣
∣

≥ ρ|n2 − m2| − (α2 − α1)

=
ρ

4
|ñ2 − (m̃ + 1)2| − (α2 − α1)

=
ρ

4
|ñ2 − m̃2 − 2m̃ − 1| − (α2 − α1).

Now, observe that if ñ < m̃, we have

|Λμ,ñ − Λμ,m̃| ≥ ρ

4
(m̃2 − ñ2)

(
1 − 4(α2 − α1)

ρ(m̃2 − ñ2)

)
.

Let us take an integer q0 ≥ max{2n0 − 1, 4(α2−α1)
ρ }. Then, ∀m̃, ñ ≥ q0

with |m̃ − ñ| ≥ q0, one has

|Λμ,ñ − Λμ,m̃| ≥ ρ

4
(m̃2 − ñ2)

(
1 − 4(α2 − α1)

ρ(m̃ + ñ)q0

)

≥ ρ

4
(m̃2 − ñ2)

(
1 − 2(α2 − α1)

ρq0

)

≥ ρ

8
(m̃2 − ñ2).

On the other hand, if ñ > m̃, we have

|Λμ,ñ − Λμ,m̃| ≥ ρ

4
(ñ2 − m̃2)

(
1 −
(4(α2 − α1)

ρ
+ 2m̃ + 1

) 1
(ñ2 − m̃2)

)
.

Let us work with an integer q1 given by

q1 ≥ max{2n0 − 1,
4(α2 − α1)

ρ
+ 4}.
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Thus, if ñ, m̃ ∈ N
∗ are such that ñ, m̃ ≥ q1 and |ñ − m̃| ≥ q1, then one

has

|Λμ,ñ − Λμ,m̃| ≥ ρ

4
(ñ2 − m̃2)

(
1 −
(4(α2 − α1)

ρ
+ 2m̃ + 1

) 1
2m̃q1

)

≥ ρ

4
(ñ2 − m̃2)

(
1 − 1

q1

(2(α2 − α1)
ρ

+ 2
))

≥ ρ

8
(ñ2 − m̃2).

Hence, choosing q = max{q0, q1}, (3.19) follows immediately for �̃ = ρ
8 .

In conclusion, we have proved the existence of a number q ≥ 1 such that (3.19)
holds.

Let us now show the hypothesis 6). From the definition of
{
Λμ,n

}

n≥1
, for

any r > 0, we can write:

N (r) = #{k : λμ,k + α2 − α1 ≤ r} + #{k : λμ,k ≤ r}
= #A1(r) + #A2(r) = n1 + n2,

where Ai(r) = {k : λ
(i)
μ,k + α2 ≤ r} and ni = #Ai(r), i=1,2. Our purpose is

to prove suitable estimates for n1 and n2.
From the definition of A2(r) and n2, we deduce that n2 is a natural

number which is characterized by λμ,n2 ≤ r and λμ,n2+1 > r. We distinguish
two cases depending on the value of νμ. Let us start by the case νμ ≤ 1

2 . From
the inequality λμ,n2 ≤ r and by (3.2), we have

(
n2 + νµ

2 − 1
4

)2
π2 ≤ r so that

n2 ≤
√

r

π
− νμ

2
+

1
4
. (3.20)

On the other hand, from the inequality λμ,n2+1 > r, we get

n2 >

√
r

π
− νμ

4
− 7

8
.

Summarizing, n2 is a nonnegative integer such that
√

r

π
− νμ

4
− 7

8
< n2 ≤

√
r

π
− νμ

2
+

1
4
, ∀r > 0. (3.21)

Next we are going to estimate n1. Using arguments similar to the ones used
above, we can see that

λμ,n1 + α2 − α1 ≤ r

and

λμ,n1+1 + α2 − α1 > r

imply that
√

r + α1 − α2

π
− νμ

4
− 7

8
< n1 ≤

√
r + α1 − α2

π
− νμ

2
+

1
4
.
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Then, using the fact that
√

a −
√

b ≤
√

a − b and
√

a − b ≤ √
a provided

a ≥ b > 0, one gets
√

r

π
−

√
α2 − α1

π
− νμ

4
− 7

8
< n1 ≤

√
r

π
− νμ

2
+

1
4
, ∀r > 0. (3.22)

Recall that N (r) = n1 +n2. Thus, combining (3.21) and (3.22), it follows that
for νμ ≤ 1

2 :

2
√

r

π
−

√
α2 − α1

π
− νμ

2
− 7

4
< N (r) ≤ 2

√
r

π
− νμ +

1
2
, ∀r > 0,

and deduce (1.9) with

p=
2
π

and s=max{
√

α2−α1

π
+

νμ

2
+

7
4
, −νμ +

1
2
}=

√
α2 − α1

π
+

νμ

2
+

7
4
.

The case νμ ≥ 1
2 can be treated in a similar way, but, instead of working with

the bounds (3.2), we will use (3.3) to obtain
√

r

π
− νμ

2
− 3

4
< n2 ≤

√
r

π
− νμ

4
+

1
8
, ∀r > 0, (3.23)

and
√

r

π
−

√
α2 − α1

π
− νμ

2
− 3

4
< n1 ≤

√
r

π
− νμ

4
+

1
8
, ∀r > 0. (3.24)

From the inequalities (3.23) and (3.24), we obtain that:

2
√

r

π
−

√
α2 − α1

π
− νμ − 3

2
< N (r) ≤ 2

√
r

π
− νμ

2
+

1
4
, ∀r > 0,

and again deduce (1.9) with

p=
2

π
and s=max

{√
α2 − α1

π
+νμ +

3

2
, −νμ

2
+

1

4

}

=

√
α2 − α1

π
+ νμ +

3

2
.

We thus obtain the last hypothesis 6) of Theorem 1.3. This ends the proof in
this case.
Case 2: A has two complex eigenvalues α1 and α2.

In this case a2
2 + 4a1 < 0,

α1 =
a2

2
+ iβ, and α2 =

a2

2
− iβ,

where β := 1
2

√
−(a2

2 + 4a1).
Now, we consider the complex sequence {Λμ,n}n≥1, with

Λμ,2n−1 = λ(2)
μ,n + α2 = λμ,n, ∀n ≥ 1,

Λμ,2n = λ(1)
μ,n + α2 = λμ,n − 2iβ, ∀n ≥ 1.

(3.25)

Let us check if the hypotheses in Theorem 1.3 hold true for
{
Λμ,n

}

n≥1
.

First, it is clearly that the sequence
{
Λμ,n

}

n≥1
always satisfies the hypothesis

1). Furthermore, the hypothesis 2) follows directly from the fact that

�(Λμ,2n) = �(Λμ,2n−1) = λμ,n > 0.
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The hypothesis 3) is clearly fulfilled. Indeed, one can find δ > 0 (which depends
on β) such that

|	(Λμ,2n)| = 2β ≤ δ
√

�(Λμ,2n)

and

|	(Λμ,2n−1)| = 0 ≤ δ
√

�(Λμ,2n−1).

Let us now prove hypothesis 4). To this end, it suffices to prove that there
exists an integer ñ0 ≥ 1 such that for all n ≥ ñ0 |Λμ,2n| ≤ |Λμ,2n+1|. Using
(3.6), we have

|Λμ,2n+1|2 − |Λμ,2n|2 = λ2
μ,n+1 − λ2

μ,n − 4β2

≥ (λμ,n+1 − λμ,n)2 − 4β2

≥ ρ2|(n + 1)2 − n2|2 − 4β2

= ρ2(2n + 1)2 − 4β2,

which implies that

lim
n→+∞

(
|Λμ,2n+1|2 − |Λμ,2n|2

)
= +∞.

Therefore, there exists ñ0 ≥ 1 such that {Λμ,n}n≥2ñ0 is nondecreasing in
modulus. This shows hypothesis 4).

Let us now check if the hypothesis 5) holds true. To this aim, we choose
to arrange the sequence {Λμ,n}n≥1 defined in (3.25) as follows:
{
Λμ,n

}

1≤n≤2ñ0−2
= {λ(1)

μ,n + α2}1≤n≤ñ0−1 ∪ {λ(2)
μ,n + α2}1≤n≤ñ0−1 and

|Λμ,n| < |Λμ,n+1| ∀n : 1 ≤ n ≤ 2ñ0 − 3.

Moreover, from (2ñ0 − 1)-th term, we set:

Λμ,2n−1 = λ(2)
μ,n + α2 and Λμ,2n = λ(1)

μ,n + α2, ∀n ≥ ñ0. (3.26)

First, observe that the second property is actually satisfied for any q. Our next
objective will be to prove the first inequality in (1.8). Arguing as done in the
real case, by Lemma 3.3, there exists ρ > 0 such that

|Λμ,2n − Λμ,2m| ≥ ρ

4
|(2n)2 − (2m)2|, ∀n,m ≥ ñ0

and

|Λμ,2n−1 − Λμ,2m−1| ≥ ρ

4
|(2n − 1)2 − (2m − 1)2|, ∀n,m ≥ ñ0.

Moreover, denoting ñ = 2n and m̃ = 2m − 1, one can prove that there exists
q ≥ max{4, 2ñ0 − 1} such that ∀ñ, m̃ ≥ q with |ñ − m̃| ≥ q, we have

|Λμ,ñ − Λμ,m̃|2 = |Λμ,2n − Λμ,2m−1|2 ≥
(ρ

8
|ñ2 − m̃2|

)2

.
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Indeed, by (3.6), for ñ, m̃ ≥ 2ñ0 − 1 we have

|Λμ,ñ − Λμ,m̃|2 = |Λμ,2n − Λμ,2m−1|2

=
∣
∣λμ,n − λμ,m

∣
∣2 + 4β2

≥
∣
∣λμ,n − λμ,m

∣
∣2

≥
(
ρ|n2 − m2|

)2

=
(ρ

4
|ñ2 − m̃2 − 2m̃ − 1|

)2

.

Next, if |ñ − m̃| ≥ 4, simple computation gives

|ñ2 − m̃2 − 2m̃ − 1| = |(ñ2 − m̃2)(1 − 2m̃ + 1
ñ2 − m̃2

)|

≥ 1
2
|ñ2 − m̃2|.

Hence, the conclusion follows by working with q given by

q ≥ max{4, 2ñ0 − 1}.

Finally, proceeding as in the real case, it is not difficult to obtain some
suitable parameters p and s for which the inequality (1.9) holds. This completes
the proof of Proposition 3.5. �

We will finish this section giving a result on the set of eigenfunctions of
the operators L and L∗. It reads as follows:

Proposition 3.6. Let us consider the sequences

B =
{
ψ(1)

n , ψ(2)
n , n ≥ 1

}
and B∗ =

{
Ψ(1)

n ,Ψ(2)
n , n ≥ 1

}
. (3.27)

Then,

1. B and B∗ are biorthogonal families in L2(0, 1)2.
2. B and B∗ are complete sequences in L2(0, 1)2.
3. The sequences B and B∗ are biorthogonal Riesz bases of L2(0, 1)2.
4. The sequence B∗ is a basis of H1,μ

0 (0, 1)2 and B is its biorthogonal basis
in H−1,μ(0, 1)2.

Proof. From the expressions of ψ
(i)
n and Ψ(i)

n (see (3.11) and (3.12)), we can
write

ψ(i)
n = UiΦμ,n and Ψ(i)

n = ViΦμ,n, i = 1, 2, n ≥ 1,

where Ui, Vi ∈ R
2 and Φμ,n is given (3.5).

1. It is not difficult to check that {Ui}i=1,2 and {Vi}i=1,2 are biorthogonal
families of R

2. Moreover, since (Φμ,n)n≥1 is an orthonormal basis for
L2(0, 1), we readily deduce

〈ψ(i)
n ,Ψ(j)

k 〉 = Ui · Vj〈Φμ,n,Φμ,k〉 = δijδnk, ∀n, k ≥ 1, i, j = 1, 2.

This proves the claim.
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2. We will use [31, Lemma 1.44]. For this purpose, let us consider f =
(f1, f2) ∈ L2(0, 1)2 such that

〈f, ψ(i)
n 〉 = 0, ∀n ≥ 1, i = 1, 2.

If we denote fi,n (i = 1, 2) the corresponding Fourier coefficients of the
function fi ∈ L2(0, 1) with respect to the basis (Φμ,n)n≥1, then the pre-
vious equality can be written as

(f1,n, f2,n)[U1|U2] = 0R2 , ∀n ≥ 1.

Using the fact that det[U1|U2] �= 0, we deduce f1,n = f2,n = 0, for all
n ≥ 1. This implies that f1 = f2 = 0 (since (Φμ,n)n≥1 is an orthonormal
basis in L2(0, 1)) and, therefore, f = 0 which proves the completeness
of B. A similar argument can be used for B∗ and the conclusion follows
immediately.

3. By [31, Theorem 7.13], we know that
{
ψ

(1)
n , ψ

(2)
n

}

n≥1
is a Riesz basis for

L2(0, 1)2 if and only if
{
ψ

(1)
n , ψ

(2)
n

}

n≥1
is a complete Bessel sequence and

possesses a biorthogonal system that is also a complete Bessel sequence.
Using the previous properties 1) and 2), we only have to prove that the
sequence

{
ψ

(1)
n , ψ

(2)
n

}

n≥1
and

{
Ψ(1)

n ,Ψ(2)
n

}

n≥1
are Bessel sequences. This

amounts to prove that the series

S1(f) =
∑

n≥1

[
〈f, ψ(1)

n 〉2 + 〈f, ψ(2)
n 〉2

]
and

S2(f) =
∑

n≥1

[
〈f,Ψ(1)

n 〉2 + 〈f,Ψ(2)
n 〉2

]

converge for any f = (f1, f2) ∈ L2(0, 1)2.
From the definition of the functions ψ

(i)
n and Ψ(i)

n , it is easy to see
that there exists some constant C > 0 such that

S1(f) ≤ C
∑

n≥1

(
|f1,n|2 + |f2,n|2

)
and

S2(f) ≤ C
∑

n≥1

(
|f1,n|2 + |f2,n|2

)
.

Recall that fi,n is the Fourier coefficient of the function fi ∈ L2(0, 1)
(i = 1, 2) with respect to Φμ,n. Accordingly, the series S1(f) and S2(f)
converge since (Φμ,n)n≥1 is an orthonormal basis for L2(0, 1). We obtain
thus the proof of desired result.

4. For showing item 4) we make use of [31, Theorem 5.12]. First, using
Theorem 2.1, one has

H1,μ
0 (0, 1) ⊂ L2(0, 1) ⊂

(
H1,μ

0 (0, 1)
)′

= H−1,μ(0, 1).

Furthermore, observe that B∗ ⊂ H1,μ
0 (0, 1)2 and is complete in this space

since it is in L2(0, 1)2. On the other hand, by the definition of the duality
pairing, we have

〈ψ(i)
n ,Ψ(j)

k 〉H−1,µ,H1,µ
0

= 〈ψ(i)
n ,Ψ(j)

k 〉 = δijδnk, ∀n, k ≥ 1, i, j = 1, 2.
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Thus, B ⊂ H−1,μ(0, 1)2 and is biorthogonal to B∗, which also yields that
B∗ is minimal in H1,μ

0 (0, 1)2 thanks to [31, Lemma 5.4]. To conclude the
proof, it remains to prove that for any f = (f1, f2) ∈ H1,μ

0 (0, 1)2, the
series

S(f) =
∑

n≥1

[
〈ψ(1)

n , f〉H−1,µ,H1,µ
0

Ψ(1)
n + 〈ψ(2)

n , f〉H−1,µ,H1,µ
0

Ψ(2)
n

]

converges in H1,μ
0 (0, 1)2.

Using again the definitions of ψ
(i)
n and Ψ(i)

n , one can prove that

〈ψ(1)
n , f〉H−1,µ,H1,µ

0
Ψ(1)

n =
1

α1 − α2

⎛

⎝
−α2f1,n + f2,n

−α1α2f1,n + α1f2,n

⎞

⎠Φμ,n

and

〈ψ(2)
n , f〉H−1,µ,H1,µ

0
Ψ(2)

n =
1

α2 − α1

⎛

⎝
−α1f1,n + f2,n

−α1α2f1,n + α2f2,n

⎞

⎠Φμ,n

where fi,n is the Fourier coefficient of the function fi ∈ H1,μ
0 (0, 1), i =

1, 2.
But, we know that the series

∑

n≥1

fi,nΦμ,n, i = 1, 2 converges in

H1,μ
0 (0, 1) since (Φμ,n)n≥1 is an orthogonal basis for H1,μ

0 (0, 1) and f1, f2 ∈
H1,μ

0 (0, 1). This implies that, the series
∑

n≥1

〈ψ(1)
n , f〉H−1,µ,H1,µ

0
Ψ(1)

n and
∑

n≥1

〈ψ(2)
n , f〉H−1,µ,H1,µ

0
Ψ(2)

n

converge in H1,μ
0 (0, 1)2 and assure the convergence of S(f) in H1,μ

0 (0, 1)2.
This concludes the proof of the result.

�

4. Boundary approximate controllability

We will devote this section to proving the approximate controllability at time
T > 0 of system (1.1). To this aim, we are going to use Theorem 1.2. Firstly,
we give the following result:

Lemma 4.1. Let (λμ,k)k≥1 be the sequence of eigenvalues of the spectral prob-
lem (3.1). Then, the following properties hold:

1. For all n,m ∈ N
�, there is a constant ρ > 0 such that the sequence of

eigenvalues (λμ,n)n≥1 satisfy the separation condition:

|λμ,n − λμ,m| ≥ ρ|n − m|, ∀n,m ≥ 1.

2. The series
∑

n≥1

1
λμ,n

is convergent.



61 Page 24 of 33 B. Allal, J. Salhi and A. Sbai NoDEA

The proof of the above Lemma is similar to the one given, for instance,
in [3, Lemma 2], so we omit it.

Using the previous result and similar techniques as in Proposition 3.5,
we also have the following result.

Proposition 4.2. Assume that condition (3.13) holds. Then, the family defined
in (3.14) satisfies (1.7).

Now, we are ready to state our first main result on approximate control-
lability. One has:

Theorem 4.3. Assume that condition (1.5) holds. Let μ ≤ 1
4 and let us denote

by α1 and α2 the eigenvalues of the matrix A. Then, system (1.1) is approx-
imately controllable in H−1,μ(0, 1)2 at time T > 0 if and only if condition
(3.13) is satisfied.

Remark 1. We highlight that the above approximate controllability result can
be derived as a byproduct of the null controllability one (see, Theorem 5.1).
Here, we will provide a direct proof, which is interesting in itself and poten-
tially useful in other situations such as pointwise control problem where the
approximate controllability holds at any time T > 0, whereas a minimal time
of control appears for the null controllability result.

Proof. As said in sect. 2, in order to prove this theorem we will follow a duality
approach leading us to study the unique continuation property for the adjoint
system.
Necessary condition: By contradiction, let us assume that condition (3.13)
does not hold, i.e., that there is n0, l0 ∈ N

∗ with n0 �= l0 such that

λ(1)
μ,n0

= λ
(2)
μ,l0

:= λ.

Let us see that the unique continuation property for the adjoint system (2.11)
is no longer valid. Indeed, let us take ϕ0 = aΨ(1)

n0 + bΨ(2)
l0

∈ H1,μ
0 (0, 1)2, with

a, b ∈ R to be determined. In this case, it is not difficult to see that the
corresponding solution to the adjoint problem (2.11) is given by

ϕ(t, x) = (aΨ(1)
n0

(x) + bΨ(2)
l0

(x))e−λ(T−t), ∀(t, x) ∈ Q.

On the other hand, direct computations show that

Φμ,n,x(1) =

√
2jνµ,n

|J ′
νµ

(jνµ,n)|J
′
νµ

(jνµ,n).

Coming back to the definition of Ψ(i)
n , and taking into account the previous

property, one obtains

B∗ϕx(t, 1) = B∗(aΨ(1)
n0,x(1) + bΨ(2)

l0,x(1)
)
e−λ(T−t)

=
√

2
(
aB∗V1jνµ,n0

J ′
νµ

(jνµ,n0)
|J ′

νµ
(jνµ,n0)|

+ bB∗V2jνµ,l0

J ′
νµ

(jνµ,l0)
|J ′

νµ
(jνµ,l0)|

)
e−λ(T−t)

=
√

2
(
ajνµ,n0

J ′
νµ

(jνµ,n0)
|J ′

νµ
(jνµ,n0)|

+ bjνµ,l0

J ′
νµ

(jνµ,l0)
|J ′

νµ
(jνµ,l0)|

)
e−λ(T−t).
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Choosing

a = jνµ,l0

J ′
νµ

(jνµ,l0)
|J ′

νµ
(jνµ,l0)|

and

b = −jνµ,n0

J ′
νµ

(jνµ,n0)
|J ′

νµ
(jνµ,n0)|

,

we have that B∗ϕx(t, 1) = 0 but ϕ0 �= 0, which proves that the unique con-
tinuation property for the adjoint system (2.11) fails to be true. This ends the
proof of the necessary part.

Sufficient condition: Let us now assume that the condition (3.13) holds and
prove that the unique continuation property for the solutions of the adjoint
system (2.11) holds.

Let us consider ϕ0 ∈ H1,μ
0 (0, 1)2 and suppose that the corresponding

solution ϕ of the adjoint problem (2.11) satisfies

B∗ϕx(t, 1) = 0, ∀t ∈ (0, T ). (4.1)

From Proposition 3.6, we know that B∗ is a basis for H1,μ
0 (0, 1)2 and thus

ϕ0 ∈ H1,μ
0 (0, 1)2 can be written as

ϕ0 =
∑

n≥1

(bnΨ(1)
n + cnΨ(2)

n ),

where

bn = 〈ψ(1)
n , ϕ0〉H−1,µ,H1,µ

0
and cn = 〈ψ(2)

n , ϕ0〉H−1,µ,H1,µ
0

, for any n ≥ 1.

Using Proposition 3.4, the corresponding solution ϕ of system (2.11) associated
to ϕ0 is given by

ϕ(t, ·) =
∑

n≥1

(
bnΨ(1)

n e−λ(1)
µ,n(T−t) + cnΨ(2)

n e−λ(2)
µ,n(T−t)

)
, ∀t ∈ (0, T ).

Therefore,

0 = B∗ϕx(T − t, 1)

=
∑

n≥1

B∗(bnΨ(1)
n,x(1)e−λ(1)

µ,nt + cnΨ(2)
n,x(1)e−λ(2)

µ,nt
)

=
√

2
∑

n≥1

J ′
νµ

(jνµ,n)
|J ′

νµ
(jνµ,n)|jνµ,n

(
bnB∗V1e

−λ(1)
µ,nt + cnB∗V2e

−λ(2)
µ,nt
)

=
√

2
∑

n≥1

J ′
νµ

(jνµ,n)
|J ′

νµ
(jνµ,n)|jνµ,n

(
bne−λ(1)

µ,nt + cne−λ(2)
µ,nt
)

=
√

2
∑

n≥1

J ′
νµ

(jνµ,n)
|J ′

νµ
(jνµ,n)|jνµ,neα2t

(
bne−(λ(1)

µ,n+α2)t + cne−(λ(2)
µ,n+α2)t

)
.

From Proposition 4.2, we can apply Theorem 1.2 in order to deduce the exis-
tence of a biorthogonal family {q

(1)
n , q

(2)
n }n≥1 to {e−(λ(1)

µ,n+α2)t, e−(λ(2)
µ,n+α2)t}n≥1
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in L2(0, T ). Thus, the previous identity, in particular, implies
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∫ T

0
B∗ϕx(T − t, 1) e−α2t q

(1)
n (t) dt

=
√

2
J ′

νµ
(jνµ,n)

|J ′
νµ

(jνµ,n)|jνµ,nbn = 0, ∀n ≥ 1
∫ T

0
B∗ϕx(T − t, 1) e−α2t q

(2)
n (t) dt

=
√

2
J ′

νµ
(jνµ,n)

|J ′
νµ

(jνµ,n)|jνµ,ncn = 0, ∀n ≥ 1.

Then bn = cn = 0 for any n ≥ 1. In conclusion, ϕ0 = 0. This proves the
continuation property for the solutions to the adjoint problem (2.11) and,
thanks to Theorem 2.6, the approximate controllability of system (1.1) at any
positive time T holds. �

5. Boundary null controllability

In this section, we will address the main achievement of this work which is the
boundary null controllability result of system (1.1), providing an estimate of
the control cost as a function of T . In this sense, one has:

Theorem 5.1. Assume that condition (1.5) holds. Let μ ≤ 1
4 and let us denote

by α1 and α2 the eigenvalues of A. Then, system (1.1) is null controllable in
H−1,μ(0, 1)2 at time T > 0 if and only if condition (3.13) is satisfied.

Moreover, for every T > 0 and y0 ∈ H−1,μ(0, 1)2 there exists a null
control v ∈ L2(0, T ) for system (1.1) which, in addition, satisfies

‖v‖L2(0,T ) ≤ CeCT+C
T ‖y0‖H−1,µ , (5.1)

where C > 0 does not depend on T .

Proof. To prove Theorem 5.1, we transform the controllability problem into
a moment problem. Using Proposition 2.5, we deduce that the control v ∈
L2(0, T ) drives the solution of (1.1) to zero at time T if and only if v ∈ L2(0, T )
fulfills

∫ T

0

B∗ϕx(t, 1) v(t) dt = 〈y0, ϕ(0, ·)〉H−1,µ,H1,µ
0

, ∀ϕ0 ∈ H1,μ
0 (0, 1)2 (5.2)

where ϕ ∈ C0
(
[0, T ];H1,μ

0 (0, 1)2
)

∩ L2
(
0, T ;H2,μ(0, 1)2 ∩ H1,μ

0 (0, 1)2
)

is the
solution of the adjoint system (2.11) associated to ϕ0.

Using Proposition 3.4, the corresponding solution ϕ of system (2.11) as-
sociated to ϕ0 is given by

ϕ(t, x)

=
∑

k≥1

(
〈ψ(1)

k , ϕ0〉H−1,µ,H
1,µ
0

Ψ
(1)
k e−λ

(1)
µ,k(T−t)+〈ψ(2)

k , ϕ0〉H−1,µ,H
1,µ
0

Ψ
(2)
k e−λ

(2)
µ,k(T−t)

)
.

From Proposition 3.6, we have that B∗ is a basis for H1,μ
0 (0, 1)2. In particular,

we also deduce that ϕ(t, x) = Ψ(i)
n (x)e−λ(i)

µ,n(T−t) is the solution of system
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(2.11) corresponding to ϕ0 = Ψ(i)
n ∈ H1,μ

0 (0, 1)2. Therefore, we can deduce
that the identity (5.2) is equivalent to
∫ T

0

B∗Ψ(i)
n,x(1)v(t)e−λ(i)

µ,n(T−t)dt = e−λ(i)
µ,nT 〈y0,Ψ(i)

n 〉H−1,µ,H1,µ
0

, ∀n ≥ 1, i = 1, 2.

Taking into account the expressions of Ψ(i)
n (see (3.12)), we infer that v ∈

L2(0, T ) is a null control for system (1.1) associated to y0 if and only if
√

2jνµ,n

|J ′
νµ

(jνµ,n)|J
′
νµ

(jνµ,n)B∗Vi

∫ T

0

v(t)e−λ(i)
µ,n(T−t)dt

= e−λ(i)
µ,nT 〈y0,Ψ(i)

n 〉H−1,µ,H1,µ
0

, ∀n ≥ 1, i = 1, 2

and equivalently,
∫ T

0

v(t)e−λ(i)
µ,n(T−t)dt = C(i)

νµ,n, ∀n ≥ 1, i = 1, 2, (5.3)

where C
(i)
νµ,n is given by

C(i)
νµ,n =

|J ′
νµ

(jνµ,n)|e−λ(i)
µ,nT

√
2jνµ,nJ ′

νµ
(jνµ,n)B∗Vi

〈y0,Ψ(i)
n 〉H−1,µ,H1,µ

0
, ∀n ≥ 1, i = 1, 2.

Performing the change of variable s = T/2−t in (5.3), the controllability prob-
lem reduces then to the following moment problem: Given y0 ∈ H−1,μ(0, 1)2

find v ∈ L2(0, T ) such that u(s) = v(T/2 − s)eα2s ∈ L2(−T/2, T/2) satisfies
∫ T/2

−T/2

u(s)e−(λ(i)
µ,n+α2)sds = Ĉ(i)

νµ,n, ∀n ≥ 1, i = 1, 2, (5.4)

with

Ĉ(i)
νµ,n = eλ(i)

µ,nT/2C(i)
νµ,n. (5.5)

At this stage, the strategy to solve the moment problem (5.4) is to use the con-
cept of biorthogonal family. In fact, Proposition 3.5 and Theorem 1.3 guarantee
the existence of T0 > 0, such that for any T ∈ (0, T0), there exists a biorthogo-
nal family {q

(1)
n , q

(2)
n }n≥1 to {e−(λ(1)

µ,n+α2)t, e−(λ(2)
µ,n+α2)t}n≥1 in L2(−T/2, T/2)

which also satisfies

‖q(i)
n ‖L2(−T/2,T/2) ≤ Ce

√
�(λ

(i)
µ,n+α2)+

C
T , ∀n ≥ 1, i = 1, 2. (5.6)

for some positive constant C independent of T .
For T < T0, a solution to the moment problem (5.4) is then given for

every t ∈ (0, T ) by

u(t) =
∑

n≥1

(Ĉ(1)
νµ,nq(1)

n (t) + Ĉ(2)
νµ,nq(2)

n (t)).

Thus

v(t) =
∑

n≥1

(
Ĉ(1)

νµ,nq(1)
n (T/2 − t) + Ĉ(2)

νµ,nq(2)
n (T/2 − t)

)
e−α2(T/2−t). (5.7)
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The only remaining point is to prove that v ∈ L2(0, T ) and to estimate its
norm with respect to T and y0. This can be achieved thanks to the estimate
(5.6). Indeed, from the expression of Ψ(i)

n and λ
(i)
μ,n, we can easily deduce the

existence of constants C1, C2 > 0 such that for i = 1, 2:

‖Ψ(i)
n ‖μ ≤ C1

√
λμ,n = C1jνµ,n, |Ĉ(i)

νµ,n| ≤ C2e
−λ(i)

µ,nT/2‖y0‖H−1,µ , ∀n ≥ 1.

From (5.5), it is easy to see that there exists a new constants C not depending
on n and T such that

|Ĉ(i)
νµ,n| ≤ Ce−λ(i)

µ,nT/2‖y0‖H−1,µ , ∀n ≥ 1, i = 1, 2. (5.8)

Coming back to the expression (5.7) of the null control v, taking into account
the definition of λ

(i)
μ,n and using the estimates (5.6) and (5.8), we get

‖v‖L2(0,T ) ≤ CeCT ‖y0‖H−1,µ

∑

n≥1

e−λµ,nT/2eC
√

λµ,n+C
T . (5.9)

Moreover, Young’s inequality gives

C
√

λμ,n ≤ λμ,nT

4
+

C2

T

for every n ≥ 1 and T > 0, so that

‖v‖L2(0,T ) ≤ CeCT+C
T ‖y0‖H−1,µ

∑

n≥1

e−λµ,nT/4.

On the other hand, by (3.2) and (3.3), it can be easily checked that there exists
a constant C > 0 such that

Cn2 ≤ λμ,n = j2
νµ,n, ∀n ≥ 1.

Finally, for every T < T0, we then have

‖v‖L2(0,T ) ≤ CeCT+C
T ‖y0‖H−1,µ

∑

n≥1

e−Cn2T

≤ CeCT+C
T ‖y0‖H−1,µ

∫ ∞

0

e−CTs2
ds

= CeCT+C
T ‖y0‖H−1,µ

√
π

T

≤ CeCT+C
T ‖y0‖H−1,µ ,

where C is independent of T . This inequality shows that v ∈ L2(0, T ) and
yields the desired estimate on the null control in the case where T < T0. The
case T ≥ T0 is actually reduced to the previous one. Indeed, any continuation
by zero of a control on (0, T0/2) is a control on (0, T ) and the estimate follows
from the decrease of the cost with respect to the time. This completes the
proof of Theorem 5.1. �
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6. Conclusions and open problems

In this work we have dealt with the boundary controllability for two cou-
pled parabolic equations with singular potentials. In particular, we provided
a well-posedness analysis of the corresponding system and using the method
of moments of Fattorini-Russell, conditions for its controllability through a
boundary action are derived. Moreover, an estimate for the null controllability
cost with respect to T > 0 was given.

The methods and results in this paper lead to some interesting open
problems, which we will briefly mention.

1. As a first thing, we recall that in the present work we are not treating
the case of a coupling matrix admitting a double eigenvalue. However,
we expect that null controllability results can be obtained using the ideas
in [6] (see also, [14, Theorem V.4.17]). Moreover, we point out that com-
bining our proofs with the ideas of [12], null controllability result can
be obtained for degenerate/singular parabolic systems in the case of a
boundary control acting away from the degenerate and singular point.
When the control acts at the degenerate/singular point, instead, this is
an open question. Indeed, as explained in [12], in this case the difficulty
comes from the fact that it is not possible to impose a standard non ho-
mogeneous Dirichlet boundary condition. See [11,12] for some results in
the range of subcritical coefficients of the singular potential.

2. In this work, we have addressed the problem of boundary controllability
for a coupled system of parabolic equations with the same parameter of
singularity. It would be interesting to consider a coupled system with two
different parameters of singularity. In this case the difficulty lies in the
behavior of the sequence of eigenvalues of the associated operator which
may not satisfy the gap condition appearing in (1.7), and, consequently,
this is completely an open problem.

3. Inspired by the results in [37], it would also be interesting to give sharp
estimates of the cost of controllability in terms of the two parameters
T > 0 and μ.

4. Finally, it would be of interest to extend these boundary controllability
results to the more general case of a system of n singular parabolic equa-
tions by means of m controls. Of course, the most interesting case is the
case in which the number of controls is less than the number of equations:
m < n.
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