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plane: The case of different viscosities
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Abstract. We study the two-phase Stokes flow driven by surface tension
for two fluids of different viscosities, separated by an asymptotically flat
interface representable as graph of a differentiable function. The flow is
assumed to be two-dimensional with the fluids filling the entire space.
We prove well-posedness and parabolic smoothing in Sobolev spaces up
to critical regularity. The main technical tools are an analysis of nonlin-
ear singular integral operators arising from the hydrodynamic single and
double layer potential, spectral results on the corresponding integral op-
erators, and abstract results on nonlinear parabolic evolution equations.
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1. Introduction

In the context of boundary value problems involving elliptic constant-coeffi-
cient PDE’s like the Laplace equation or the Stokes system, it is often nat-
ural to consider two-phase problems in unbounded domains, where the same
equation has to be solved on both sides of the boundary, and the boundary
conditions typically are of “transmission” type, i.e. they relate limits of the so-
lutions from both sides. The method of layer potentials is a classical technique
which is intrinsically suited to such settings. Typically, this method reduces
the boundary value problem to a linear, singular integral equation (or system
of such equations) on the boundary of the domain, on the basis of well-known
jump relations for these potentials across the boundary.

The first applications of layer potentials in the analysis of moving bound-
ary problems of the type described above are from the 1980s, for problems of
Hele-Shaw or Muskat type [8] (see also the recent surveys [13,14] on further
developments) as well as for Stokes flow problems [5]. In these applications, the
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interfaces are represented as graphs of a time dependent function [f �→ f(t)],
with f(t) ∈ C(R), for which an evolution equation can be derived. This equa-
tion involves singular integral operators originating from the layer potential,
depending nonlinearly and nonlocally on f(t). However, in suitable geome-
tries this nonlinearity can be described rather explicitly, and technicalities
resulting from transforming the problem to a fixed reference domain can be
avoided. More precisely, the operators determining the evolution belong to a
class discussed in Sect. 3 below, and results are available concerning mapping
properties, smoothness, localization etc. of the operators in this class.

After reducing the moving boundary problem to an evolution equation
for f , this equation has to be analyzed. Initially, various approaches have
been used that necessitated rather restrictive assumptions on the initial data.
Recently, however, more general, in some sense optimal existence, uniqueness,
and smoothness results have been obtained. One of the crucial tools for this has
been the meanwhile well-developed and versatile abstract theory of nonlinear
parabolic evolution equations, cf. [2,17,22].

This paper discusses, along the lines sketched above, the moving bound-
ary problem of two-phase Stokes flow in full 2D space driven by surface tension
forces on the interface between the two phases. More precisely, we seek a mov-
ing interface [t �→ Γ(t)] between two liquid phases Ω±(t), and corresponding
functions

v±(t) : Ω±(t) −→ R
2 and p±(t) : Ω±(t) −→ R,

representing the velocity and pressure fields in Ω±(t), respectively, such that
the following equations are satisfied:

μ±Δv± − ∇p± = 0 in Ω±(t),
div v± = 0 in Ω±(t),

[v] = 0 on Γ(t),
[Tμ(v, p)]ν̃ = −σκ̃ν̃ on Γ(t),

(v±, p±)(x) → 0 for |x| → ∞,
Vn = v± · ν̃ on Γ(t).

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(1.1a)

Here ν̃ is the unit exterior normal to ∂Ω−(t) and κ̃ denotes the curvature
of the interface. Moreover, Tμ(v, p) = (Tμ,ij(v, p))1≤i, j≤2 denotes the stress
tensor that is given by

Tμ,ij(v, p) := −pδij + μ(∂ivj + ∂jvi), (1.1b)

and [v] (respectively [Tμ(v, p)]) is the jump of the velocity (respectively stress
tensor) across the moving interface, see (2.3) below. The positive constants μ±

and σ denote the viscosity of the liquids in the two phases and the surface
tension coefficient of the interface, respectively. We assume that

Γ(t) = ∂Ω+(t) = ∂Ω−(t), Ω+(t) ∪ Ω−(t) ∪ Γ(t) = R
2, Γ(t) = graphf(t)

so that Γ(t) is a graph over the real line and Ω+(t) (resp. Ω−(t)) is the
unbounded domain above (resp. beneath) the graph Γ(t), cf. (2.1). Equa-
tion (1.1a)6 determines the motion of the interface by prescribing its normal
velocity Vn as coinciding with the normal component of the velocity at Γ(t),
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i.e. the interface is transported by the liquid flow. The interface Γ(t) is assumed
to be known at time t = 0:

f(0) = f0. (1.1c)

In the previous paper [20], the authors considered Problem (1.1a) in the
case of equal viscosities μ± = μ. In that case, the solution to the fixed-time
problem (1.1a)1–(1.1a)5 can be directly represented as a hydrodynamic single-
layer potential [16] with density −σκ̃ν̃, and the resulting evolution equation
represents the time derivative of f as a nonlinear singular integral operator
acting on f .

If μ+ �= μ− this is not feasible. Instead, we first transform the unknowns
such that the same equation holds in both phases, introducing thereby a jump
across the interface for the transformed velocity field. In Proposition 5.1, we
show that the corresponding fixed-time Stokes problem is uniquely solvable,
and we represent the solution by a sum of a hydrodynamic single layer and a
double layer potential. While the single layer potential is generated by the same
density as in the case of equal viscosities, the density β for the double layer
potential is found from solving a linear, singular integral equation of the second
kind, cf. (5.8). As Γ(t) is unbounded we cannot rely on compactness arguments
to show the solvability of this equation. Instead, we modify arguments from [7,
10] to obtain the necessary information on the spectrum of the corresponding
integral operator via a Rellich identity. Moreover, we also rely on a further
Rellich identity used in [18] in the study of the Muskat problem.

The solution to the fixed-time problem is then used in the formulation of
an evolution equation for f

df

dt
(t) = Φ(f(t)), t ≥ 0, f(0) = f0,

cf. (5.9), (5.17), (5.18), whose investigation will yield the following main result.
Here and further, Hs(R) := W s

2 (R) denotes the usual Sobolev spaces of integer
or noninteger order.

Theorem 1.1. Let s ∈ (3/2, 2) be given. Then, the following statements hold
true:

(i) (Well-posedness) Given f0 ∈ Hs(R), there exists a unique maximal solu-
tion (f, v±, p±) to (1.1) such that

• f = f(·; f0) ∈ C([0, T+),Hs(R)) ∩ C1([0, T+),Hs−1(R)),
• v±(t) ∈ C2(Ω±(t)) ∩ C1(Ω±(t)), p±(t) ∈ C1(Ω±(t)) ∩ C(Ω±(t)) for

all t ∈ (0, T+),
• v(t)±|Γ(t) ◦ Ξf(t) ∈ H2(R)2 for all t ∈ (0, T+),

where T+ = T+(f0) ∈ (0,∞] and Ξf(t)(ξ) := (ξ, f(t)(ξ)), ξ ∈ R.
Moreover, the set

M := {(t, f0) | f0 ∈ Hs(R), 0 < t < T+(f0)}
is open in (0,∞)×Hs(R), and [(t, f0) �→ f(t; f0)] is a semiflow on Hs(R)
which is smooth in M.
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(ii) (Parabolic smoothing)
(iia) The map [(t, ξ) �→ f(t)(ξ)] : (0, T+) × R −→ R is a C∞-function.
(iib) For any k ∈ N, we have f ∈ C∞((0, T+),Hk(R)).

(iii) (Global existence) If

sup
[0,T ]∩[0,T+(f0))

‖f(t)‖Hs < ∞

for each T > 0, then T+(f0) = ∞.

Remark 1.2. Observe that the complete problem (1.1) is encoded in the time
evolution of f . Besides, if f is a solution to (1.1), then, given λ > 0, also the
function [t �→ fλ(t)] given by

fλ(t)(ξ) := λ−1f(λt)(λξ),

is a solution to (1.1). This identifies H3/2(R) as a critical space for the evolution
problem (1.1). Hence, Theorem 1.1 covers all subcritical spaces. To our knowl-
edge, this result is stronger than those found in the literature on the related
problems with bounded liquid domain, e.g. [11,12,15,23]. More generally, if
the problem is treated using the general strategy described in [22], higher reg-
ularity demands on the initial interface are needed than in the approach used
here. To be more precise, the authors of [15] establish the local well-posedness
of the one phase problem for a bounded fluid domain in R

d for Hs+1-data
with s ≥ s1, where s1 is the smallest integer that satisfies s1 > 3 + (d − 1)/2.
Moreover, it is shown in [15] that balls are exponentially stable under Hs+1-
perturbations. The exponential stability of balls for the one-phase problem has
been also established in R

2 for H5-initial data, see [12], and in R
3 for H6-initial

data, see [11]. The local well-posedness for C3+α-data, with α > 0, in three
space dimensions has been investigated in [23], and the same author has justi-
fied in [24] the quasistationary Stokes flow as a limit of the Stokes flow when
the Reynolds number vanishes. Finally, the local well-posedness and stability
properties for the two-phase Stokes flow (with or without phase transitions)
in a bounded geometry in R

d, d ≥ 2, have been studied in [22] in a W
2+μ−2/p
p -

setting with 1 ≥ μ > (d + 1)/p.

1.1. Outline

The paper is structured as follows: In Sect. 2 we discuss a two-phase Stokes
problem with equal viscosities in both phases where the normal stresses are
continuous across the interface and the velocity has a prescribed jump there.
In fact, the problem is solved by the hydrodynamic double layer potential
generated by that jump. Although the boundary behavior of this potential is
well-known, we prove the results on this in Appendix A as they do not seem
directly available in the literature for our unbounded geometry.

As we rely on the solvability of singular integral equations of the second
kind arising from the hydrodynamic double-layer potential, the spectrum of
the corresponding operator is investigated in Sects. 3 and 4, first in L2(R)2

and then in Hs−1(R)2, with s ∈ (3/2, 2), and H2(R)2. The main technical
tools in the latter cases are shift invariances and commutator properties for
singular integral operators of the type discussed here. In Sect. 5 we reformulate



NoDEA Two-phase Stokes flow Page 5 of 34 54

the moving boundary problem (1.1) as a nonlinear and nonlocal evolution
equation problem, cf. (5.17). Finally, in Sect. 6 we carry out the linearization
of (5.17) and locally approximate the linearization by Fourier multipliers. This
enables us to identify the parabolic character of the evolution equation and to
prove our main result by invoking abstract results on equations of that type
from [17].

1.2. Notation

Slightly deviating from the usual notation, if E1, . . . , Ek, F , k ∈ N, are Ba-
nach spaces, we write Lk(E1, . . . , Ek;F ) for the Banach space of k-linear
bounded maps from

∏
i Ei to F . Given two Banach spaces X and Y , we

let Lk
sym(X,Y ) ⊂ Lk(X, . . . , X;Y ) denote the space of bounded, k-linear, and

symmetric maps A : Xk → Y . Moreover, C−1(E,F ) will denote the space
of locally Lipschitz continuous maps from a Banach space E to a Banach
space F . Given k ∈ N, we further let Ck(R) denote the Banach space of func-
tions with bounded and continuous derivatives up to order k and Ck+α(R),
with α ∈ (0, 1), is its subspace consisting of functions with α-Hölder continuous
kth derivative whose α-Hölder modulus is bounded.

2. An auxiliary fixed-time problem

As a preparation for solving the boundary value problem (1.1a)1–(1.1a)5 for
fixed time, in this section we consider the related Stokes problem (2.4) with
equal viscosities normed to 1. The unique solvability of (2.4) is established in
Proposition 2.1 below and in Appendix A. In this section, f ∈ H3(R) is fixed.
We introduce the following notation:

Ω± := Ω±
f := {(x1, x2) ∈ R

2 |x2 ≷ f(x1)},

Γ := Γf := ∂Ω± = {(ξ, f(ξ)) | ξ ∈ R}.
(2.1)

Note that Γ is the image of R under the diffeomorphism

Ξ := Ξf := (idR, f).

Further, let ν and τ be the componentwise pull-back under Ξ of the unit
normal ν̃ on Γ exterior to Ω− and of the unit tangent vector τ̃ to Γ, that is

ν := νf := 1
ω (−f ′, 1)�, τ := τf := 1

ω (1, f ′)�, ω := ωf := (1 + f ′2)1/2.
(2.2)

We indicate the dependence of the functions defined in (2.2) on f only where
necessary. For any function z defined on R

2 \ Γ we set z± := z|Ω± and if z±

have limits at some point (ξ, f(ξ)) ∈ Γ we will write z±(ξ, f(ξ)) for the limits,
and we set

[z](ξ, f(ξ)) := z+(ξ, f(ξ)) − z−(ξ, f(ξ)). (2.3)
For notational brevity we introduce the function space X := Xf by setting

Xf :=

{

(w, q) : R2 \ Γ −→ R
2 × R

∣
∣
∣
∣
∣

w± ∈ C2(Ω±,R2) ∩ C1(Ω±,R2)

q± ∈ C1(Ω±) ∩ C(Ω±)

}

.
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For given β = (β1, β2)� ∈ H2(R)2 we seek solutions (w, q) ∈ X to the Stokes
problem

Δw± − ∇q± = 0 in Ω±,
div w± = 0 in Ω±,

[w] = β ◦ Ξ−1 on Γ,
[T1(w, q)](ν ◦ Ξ−1) = 0 on Γ,

(w±, q±)(x) → 0 for |x| → ∞.

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(2.4)

For the construction of the solution to (2.4), let us first point out that for
any smooth solution (U,P ) : E −→ R

2 × R to the homogeneous Stokes system

ΔU − ∇P = 0,
div U = 0

}

in E, (2.5)

where E is a domain in R
2, the functions (W i, Qi) : E −→ R

2 × R, i = 1, 2,
given by

W i
j := T1,ij(U,P ) = −Pδij + ∂iUj + ∂jUi, j = 1, 2, and Qi = 2∂iP

are solutions to (2.5) as well. In particular, if E = R
2 \ {0} and

(U,P ) = (Uk,Pk) : R2 \ {0} −→ R
2 × R, k = 1, 2,

are the fundamental solutions to the Stokes equations (2.5), given by

Uk
j (y) = − 1

4π

(

δjk ln
1
|y| +

yjyk

|y|2
)

, j = 1, 2,

Pk(y) = − 1
2π

yk

|y|2 , y = (y1, y2) ∈ R
2 \ {0},

(2.6)

we obtain a system (Wi,k,Qi,k) : R2 \ {0} −→ R
2 ×R, i, k = 1, 2, of solutions

to the homogeneous Stokes equations given by

Wi,k
j (y) := (−Pkδij + ∂iUk

j + ∂jUk
i )(y) =

1
π

yiyjyk

|y|4 , j = 1, 2,

Qi,k(y) := 2∂iPk(y) =
1
π

(

− δik

|y|2 + 2
yiyk

|y|4
)

, y ∈ R
2 \ {0}.

We are going to show that (w, q) := (w, q)[β] given by

wj(x) :=
∫

Γ

Wi,k
j (x − y)ν̃i(y)βk(y1) dΓy

=
∫

R

Wi,k
j (r)νi(s)βk(s)ω(s) ds, j = 1, 2, (2.7)

q(x) :=
∫

Γ

Qi,k(x − y)ν̃i(y)βk(y1) dΓy

=
∫

R

Qi,k(r)νi(s)βk(s)ω(s)ds (2.8)

for x ∈ R
2 \ Γ and with r := r(x, s) := x − (s, f(s)) solves (2.4). Here and

further, we sum over indices appearing twice in a product. We write this more
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explicitly as

w(x) =
1
π

∫

R

−f ′r1 + r2

|r|4
(

r2
1 r1r2

r1r2 r2
2

)

β ds,

q(x) =
1
π

∫

R

1
|r|4

(−f ′ 1)
(

r2
1 − r2

2 2r1r2

2r1r2 r2
2 − r2

1

)

β ds.

(2.9)

The solution (w, q) is the so-called hydrodynamic double-layer potential gen-
erated by the density β ◦ Ξ−1 on Γ, see [16].

Proposition 2.1. The boundary value problem (2.4) has precisely one solu-
tion (w, q) ∈ X. It is given by (2.7), (2.8). Moreover, w±|Γ ◦ Ξ ∈ H2(R)2.

Proof. The uniqueness of the solution can be shown as in the proof of [20,
Theorem 2.1]. Observe that w and q are defined by integrals of the form

(w, q)(x) =
∫

R

K(x, s)β(s) ds

where for every α ∈ N
2 we have ∂α

x K(x, s) = O(s−1) for |s| → ∞ and locally
uniformly in x ∈ R

2 \ Γ. This shows that w and q are well-defined by (2.7)
and (2.8), and that integration and differentiation with respect to x may be
interchanged. As (Wi,k,Qi,k) solve the homogeneous Stokes equations, this
also holds for (w, q).

To show the decay of q at infinity we obtain from the matrix equality

1
π|r|4

(−f ′ 1)
(

r2
1 − r2

2 2r1r2

2r1r2 r2
2 − r2

1

)

= −2∂s(P2(r) − P1(r)),

via integration by parts

q(x) = 2
∫

R

(P2 − P1)(r)β′ ds =
1
π

∫

R

1
|r|2 (−r2 r1)β′ ds.

In view of this representation, [18, Lemma 2.1] implies q(x) → 0 as |x| → ∞.
In order to prove the decay of w we rewrite

w(x) =
1
2π

∫

R

−f ′r1 + r2

|r|2
(

I +
1

|r|2
(

r2
1 − r2

2 2r1r2

2r1r2 r2
2 − r2

1

))

β ds

=
1
2π

∫

R

(−f ′r1 + r2

|r|2 I + ∂s

[
1

|r|2
(

r1r2 r2
2

r2
2 −r1r2

)])

β ds

=
1
2π

∫

R

(−f ′r1 + r2

|r|2 β − 1
|r|2

(
r1r2 r2

2

r2
2 −r1r2

)

β′
)

ds,

where I ∈ R
2×2 is the identity matrix. In view of [18, Lemma 2.1] and [20,

Lemma B.2] we conclude that indeed w(x) → 0 for |x| → ∞.
The boundary conditions (2.4)3 and (2.4)4 together with the properties

that (w, q) ∈ X and w±|Γ ◦ Ξ ∈ H2(R)2 are shown in Appendix A. �
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3. The L2-resolvent of the hydrodynamic double-layer potential
operator

In this section we study the resolvent set of the hydrodynamic double-layer
potential operator D(f), with f ∈ C1(R), introduced in (3.5) below, which we
view in this section as an element of L(L2(R)2). The main result of this section
is Theorem 3.3 below which provides in particular the invertibility of λ − D(f)
for λ ∈ R with |λ| > 1/2.

To begin, we introduce a general class of singular integral operators suited
to our approach via layer potentials, cf. [19,20]. Given n, m ∈ N and Lipschitz
continuous functions a1, . . . , am, b1, . . . , bn : R −→ R, we let Bn,m denote the
singular integral operator

Bn,m(a1, . . . , am)[b1, . . . , bn, h](ξ)

:= PV
∫

R

h(ξ − η)
η

∏n
i=1

(
δ[ξ,η]bi/η

)

∏m
i=1

[
1 +

(
δ[ξ,η]ai/η

)2] dη,
(3.1)

where PV
∫

R
denotes the principal value integral and δ[ξ,η]u := u(ξ)−u(ξ −η).

For brevity we set

B0
n,m(f) := Bn,m(f, . . . f)[f, . . . , f, ·]. (3.2)

In this section we several times use the following result.

Lemma 3.1. There exists a constant C = C(n, m, maxi=1,...,m ‖a′
i‖∞) with

‖Bn,m(a1, . . . , am)[b1, . . . , bn, · ]‖L(L2(R)) ≤ C
n∏

i=1

‖b′
i‖∞.

Moreover, Bn,m ∈ C1−(W 1
∞(R)m,Ln

sym(W 1
∞(R),L(L2(R)))).

Proof. See [19, Remark 3.3]. �

As we are concerned exclusively with boundary integral operators in this
section, it will be convenient to slightly change notation and write

r := (r1, r2) := r(ξ, s) := (ξ, f(ξ)) − (s, f(s)), ξ, s ∈ R. (3.3)

Given f ∈ C1(R), we introduce the linear operators D(f) and D(f)∗

defined by

D(f)[β](ξ) :=
1
π

PV
∫

R

r1f
′ − r2

|r|4
(

r2
1 r1r2

r1r2 r2
2

)

β ds,

D(f)∗[β](ξ) :=
1
π

PV
∫

R

−r1f
′(ξ) + r2

|r|4
(

r2
1 r1r2

r1r2 r2
2

)

β ds,

(3.4)

where ξ ∈ R and β ∈ L2(R)2. We note that D(f) is related to the Bn,m via

D(f)[β] =
1
π

(
B0

0,2(f) B0
1,2(f)

B0
1,2(f) B0

2,2(f)

)(
f ′β1

f ′β2

)

− 1
π

(
B0

1,2(f) B0
2,2(f)

B0
2,2(f) B0

3,2(f)

)(
β1

β2

) (3.5)
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for β = (β1, β2)�. Therefore, as a consequence of Lemma 3.1, D(f) is bounded
on L2(R)2. Moreover, up to the sign and the push-forward via Ξ, D(f)[β](ξ)
is the “direct value” of the hydrodynamic double-layer potential w generated
by β in (ξ, f(ξ)) ∈ Γ, cf. (2.9)1. One may also check that D(f)∗ is the L2-
adjoint of D(f).

Using the same notation, we define the singular integral operators B1(f)
and B2(f) by

B1(f)[θ](ξ) :=
1
π

PV
∫

R

−r1f
′ + r2

|r|2 θ ds

B2(f)[θ](ξ) :=
1
π

PV
∫

R

r1 + r2f
′

|r|2 θ ds,

where θ ∈ L2(R). The operators Bi(f), i = 1, 2, play an important role also
in the study of the Muskat problem, cf. [18]. Lemma 3.1 implies in particular
that also Bi(f) i = 1, 2, is bounded on L2(R). Moreover, B1(f)[θ](ξ) is the
direct value of the double layer potential for the Laplacian corresponding to
the density θ in (ξ, f(ξ)) ∈ Γ.

We are going to prove in Theorem 3.3 below that the resolvent sets of
D(f) and D(f)∗ contain all real λ with |λ| > 1/2, with a bound on the resolvent
that is uniform in λ away from ±1/2, and in f as long as ‖f ′‖∞ is bounded.

Oriented at [7,10], we obtain this property on the basis of a Rellich iden-
tity for the Stokes operator. While eventually the result for D(f) is needed, it
is helpful to consider D(f)∗, as this operator naturally arises from the jump
relations for the single-layer hydrodynamic potential generated by β, cf. (3.13)
below.

We next derive the Rellich identity (3.14), and based on it we establish
an estimate that relates the operator D(f)∗ to the operators B1(f) and B2(f)
introduced above.

Lemma 3.2. Given K > 0, there exists a positive constant C, that depends
only on K, such that for all β ∈ L2(R)2, λ ∈ [−K,K], and f ∈ C1(R) which
satisfy ‖f ′‖∞ < K we have

C‖(λ − D(f)∗)[β]‖2‖β‖2 ≥ ‖(λ − 1
2B1(f))[ω−1β · ν] − 1

2B2(f)[ω−1β · τ ]‖2
2

+ m(λ)‖ω−1β · τ‖2
2,

(3.6)
where ω, ν, and τ are defined in (2.2), and with

m(λ) := max
{(

λ + 1
2

) (
λ − 3

2

)
,
(
λ − 1

2

) (
λ + 3

2

)}
. (3.7)

Proof. Let first f ∈ C∞(R) and β = (β1, β2)� with βk ∈ C∞
0 (R), k = 1, 2.

We define the hydrodynamic single-layer potential u with corresponding pres-
sure Π by

u(x) := −
∫

R

Uk(x − (s, f(s)))βk(s) ds

Π(x) := −
∫

R

Pk(x − (s, f(s)))βk(s) ds
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for x ∈ R
2 \ Γ, where and Uk, Pk defined by (2.6). Using the fact that β is

compactly supported, is is not difficult to see that the functions (u, Π) are
well-defined and smooth in Ω± and satisfy

Δu − ∇Π = 0,
div u = 0

}

in Ω±, (3.8)

as well as
Π, ∇u = O(|x|−1) for |x| → ∞. (3.9)

Moreover, [6, Lemma A.1] and the arguments in the proof of [20, Lemma A.1]
show that Π|Ω± and u|Ω± have extensions Π± ∈ C(Ω±) and u± ∈ C1(Ω±),
and, given ξ ∈ R, we have

∂iu
±
j ◦ Ξ(ξ) = −PV

∫

R

∂iUk
j (r)βk ds ± −βjν

i + νiνjβ · ν

2ω
(ξ),

Π± ◦ Ξ(ξ) = −PV
∫

R

Pk(r)βk ds ± β · ν

2ω
(ξ)

=
1
2
B1(f)[ω−1β · ν](ξ) +

1
2
B2(f)[ω−1β · τ ](ξ) ± β · ν

2ω
(ξ),

(3.10)

where ν = (ν1, ν2) and r = r(ξ, s) are defined in (2.2) and (3.3). In particular,

∂2u
± ◦ Ξ(ξ) = T(f)[β](ξ) ∓ (β · τ)τ

2ω2
(ξ), (3.11)

where T(f) is the singular integral operator given by

T(f)[β](ξ) :=
1
4π

PV
∫

R

1
|r|4

(−r3
2 − 3r2

1r2 r3
1 − r1r

2
2

r3
1 − r1r

2
2 r2

1r2 − r3
2

)(
β1

β2

)

ds.

Observe that T(f) is skew-adjoint on L2(R)2, i.e. T(f)∗ = −T(f), and therefore

〈T(f)[β] |β〉2 = 0. (3.12)

Here 〈· | ·〉2 denotes the inner product of L2(R)2.
Moreover, for the normal stress at the boundary we find

ω(T1(u,Π)± ◦ Ξ)ν =
(

∓ 1
2

− D(f)∗
)
[β]. (3.13)

For convenience we introduce the notation

τij := (T1(u,Π))ij = −Πδij + ∂iuj + ∂jui, i, j = 1, 2,

and observe that due to (3.8)

∂iτij = 0 in Ω±, j = 1, 2, and δij∂iuj = 0 in Ω±.

The latter identities lead us to the following identities in Ω±:

∂i(τij∂2uj) = τij∂i∂2uj = (∂iuj + ∂jui)∂2∂iuj =
1
4

2∑

i, j=1

∂2(∂iuj + ∂jui)2.
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In view of (3.9) we may integrate the latter relation over Ω± and using Gauss’
theorem and (3.13) we get

∫

Γ

1
ω̃

2∑

i, j=1

(∂iu
±
j + ∂ju

±
i )2 dΓ = 4

∫

Γ

τ±
ij ν̃i∂2u

±
j dΓ

= 4
〈(

∓ 1
2

− D(f)∗
)
[β]

∣
∣
∣ ∂2u

± ◦ Ξ
〉

2
,

(3.14)

where ω̃ := ω ◦ Ξ−1.

To estimate the term on the left we observe that the Cauchy-Schwarz
inequality and |ν̃| = 1 yield

2∑

i, j=1

(∂iu
±
j + ∂ju

±
i )2 ≥

2∑

i=1

((∂iu
±
j + ∂ju

±
i )ν̃j)2 =

2∑

i=1

(τ±
ij ν̃j + Π±ν̃i)2 on Γ.

This inequality, the estimate ‖Bi(f)‖L(L2(R)) ≤ C(K), i = 1, 2, cf. Lemma 3.1,
and the representations (3.10) and (3.13), now yield

∫

Γ

1
ω̃

2∑

i,j=1

(∂iu
±
j + ∂ju

±
i )2 dΓ

≥
∥
∥
∥

1
ω

(
∓ 1

2
− D(f)∗

)
[β] + (Π± ◦ Ξ)ν

∥
∥
∥

2

2

=
∥
∥
∥

1
ω

(
λ − D(f)∗

)
[β] − 1

ω

(
λ ± 1

2

)
β + (Π± ◦ Ξ)ν

∥
∥
∥

2

2

≥
∥
∥
∥ − 1

ω

(
λ ± 1

2

)
β +

(1
2
B1(f)[ω−1β · ν] +

1
2
B2(f)[ω−1β · τ ] ± β · ν

2ω

)
ν
∥
∥
∥

2

2

+
∥
∥
∥

1
ω

(λ − D(f)∗)[β]
∥
∥
∥

2

2
− C‖(λ − D(f)∗)[β]‖2‖β‖2

≥
(
λ ± 1

2

)2

‖ω−1β · τ‖2
2 +

∥
∥
∥

(
λ − 1

2
B1(f)

)
[ω−1β · ν] − 1

2
B2(f)[ω−1β · τ ]

∥
∥
∥

2

2

− C‖(λ − D(f)∗)[β]‖2‖‖β‖2

for any λ ∈ [−K,K].
We next consider the term on the right of (3.14). As a direct consequence

of Lemma 3.1 we note that ‖T(f)‖L(L2(R)2) ≤ C = C(K). This bound together
with (3.11) and (3.12) implies

4
〈(

∓ 1
2

− D(f)∗
)
[β]

∣
∣
∣ ∂2u ◦ Ξ

〉

2

= 4
〈(

λ − D(f)∗
)
[β] −

(
λ ± 1

2

)
β
∣
∣
∣T[β] ∓ (β · τ)τ

2ω2

〉

2

≤ C‖(λ − D(f)∗)[β]‖2‖‖β‖2 ± 2
(
λ ± 1

2

)
‖ω−1β · τ‖2

2.
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For f ∈ C∞(R), the estimate (3.6) follows from (3.14) and the latter estimates
upon rearranging terms and a standard density argument. For general func-
tions f ∈ C1(R) we additionally need to use the continuity of the mappings

[f �→ D(f)∗] : C1(R) → L(L2(R)2),

[f �→ Bi(f)] : C1(R) → L(L2(R)), i = 1, 2,

which is a straightforward consequence of Lemma 3.1, together with the density
of C∞(R) in C1(R). �

Based on Lemma 3.2 we now establish the following result.

Theorem 3.3. (Spectral properties of D(f) and D(f)∗) Given δ ∈ (0, 1), there
exists a constant C = C(δ) > 0 such that for all λ ∈ R with |λ| ≥ 1/2 + δ
and f ∈ C1(R) with ‖f ′‖∞ ≤ 1/δ we have

‖(λ − D(f)∗)[β]‖2 ≥ C‖β‖2 for allβ ∈ L2(R)2. (3.15)

Moreover, λ − D(f)∗, λ − D(f) ∈ L(L2(R)2) are isomorphisms for all λ ∈ R

with |λ| > 1/2 and f ∈ C1(R).

Proof. In order to prove (3.15) we assume the opposite. Then we may find
sequences (λk) in R, (fk) in C1(R), and (βk) in L2(R)2 with the property that
|λk| ≥ 1/2 + δ, ‖f ′

k‖∞ ≤ 1/δ, and ‖βk‖2 = 1 for all k ∈ N, and

(λk − D(fk)∗)[βk] → 0 in L2(R)2.

Given k ∈ N, we set νk := νfk
, τk := τfk

, and ωk := ωfk
, cf. (2.2). As the op-

erators D(fk)∗ are bounded, uniformly in k ∈ N, in L(L2(R)2), cf. Lemma 3.1,
the sequence (λk) is bounded. Observing that for the constant m = m(λ)
from (3.7) we have m(λk) ≥ δ(2+δ) > 0 for all k ∈ N, we get from Lemma 3.2
that

ω−1
k βk · τk → 0,

(
λk − 1

2B1(fk)
)
[ω−1

k βk · νk] − 1
2B2(fk)[ω−1

k βk · τk] → 0

in L2(R). As the operators B2(fk) are bounded, uniformly with respect to k ∈ N,
in L(L2(R)2), cf. Lemma 3.1, this implies

(
λk − 1

2B1(fk)
)
[ω−1

k βk · νk] → 0 in L2(R).

Let A(f) := B1(f)∗. Since |2λk| ≥ 1, it follows from the proof of [18, Theo-
rem 3.5] that the operator 2λk −A(fk) ∈ L(L2(R)), k ∈ N, is an isomorphism
with

‖ (2λk − A(fk))−1 ‖L(L2(R)) ≤ C(δ).

This implies that also 2λk − B1(fk) ∈ L(L2(R)), k ∈ N, is an isomorphism
and

∥
∥(λk − 1

2B1(fk))−1
∥
∥

L(L2(R))
≤ C(δ).

Thus ω−1
k βk · νk → 0 in L2(R), so that

βk = ωk

(
ω−1

k (βk · νk)νk + ω−1
k (βk · τk)τk

) → 0 in L2(R)2.

This contradicts the property that ‖βk‖2 = 1 for all k ∈ N and (3.15) follows.
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To complete the proof we fix f ∈ C1(R) and λ0 ∈ R with |λ0| > 1/2 and
we choose δ ∈ (0, 1) such that |λ0| ≥ 1/2 + δ and ‖f ′‖∞ ≤ 1/δ. As D(f)∗ is
bounded, λ − D(f)∗ ∈ L(L2(R)2) is an isomorphism if |λ| is sufficiently large.
The estimate (3.15) together with a standard continuity argument, cf. e.g. [3,
Proposition I.1.1.1], now implies that λ0 − D(f)∗ is an isomorphism as well.
The result for D(f) is an immediate consequence of this property. �

4. The resolvent of the hydrodynamic double-layer potential
operator in higher order Sobolev spaces

The main goal of this section is to establish spectral properties for D(f), par-
allel to those in Theorem 3.3, in the spaces Hs−1(R)2, s ∈ (3/2, 2), and in
H2(R)2. The latter are needed when solving the fixed-time problem (5.1), see
Proposition 5.1, and the former are used to derive and study the contour in-
tegral formulation (5.17) of the evolution problem (1.1).

For this purpose, we first recall some further results on the singular inte-
gral operators Bn,m introduced in (3.1).

Lemma 4.1. (i) Let n ≥ 1, s ∈ (3/2, 2), and a1, . . . , am ∈ Hs(R) be given.
Then, there exists a constant C, depending only on n, m, s, and
max1≤i≤m ‖ai‖Hs , such that

‖Bn,m(a1, . . . , am)[b1, . . . , bn, h]‖2 ≤ C‖b1‖H1‖h‖Hs−1

n∏

i=2

‖bi‖Hs (4.1)

for all b1, . . . , bn ∈ Hs(R) and h ∈ Hs−1(R).
Moreover, [(a1, . . . , am) �→ Bn,m(a1, . . . , am)] is locally Lipschitz contin-
uous as a mapping from Hs(R)m to

Ln+1(H1(R),Hs(R), . . . , Hs(R),Hs−1(R);L2(R)).

(ii) Given s ∈ (3/2, 2) and a1, . . . , am ∈ Hs(R), there exists a constant C,
depending only on n, m, s, and max1≤i≤m ‖ai‖Hs , such that

‖Bn,m(a1, . . . , am)[b1, . . . , bn, h]‖Hs−1 ≤ C‖h‖Hs−1

n∏

i=1

‖bi‖Hs

for all b1, . . . , bn ∈ Hs(R) and h ∈ Hs−1(R).
Moreover, Bn,m ∈ C1−(Hs(R)m,Ln

sym(Hs(R),L(Hs−1(R)))).
(iii) Let n ≥ 1, 3/2 < s′ < s < 2, and a1, . . . , am ∈ Hs(R) be given.

Then, there exists a constant C, which depends only on n, m, s, s′,
and max1≤i≤m ‖ai‖Hs , such that

‖Bn,m(a1, . . . , am)[b1, . . . , bn, h] − hBn−1,m(a1, . . . , am)[b2, . . . , bn, b′
1]‖Hs−1

≤ C‖b1‖Hs′ ‖h‖Hs−1

n∏

i=2

‖bi‖Hs

for all b1, . . . , bn ∈ Hs(R) and h ∈ Hs−1(R).
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Proof. The claims (i) is established in [18, Lemmas 3.2], while (ii) and (iii) are
proven in [1, Lemma 5 and Lemma 6]. �

For ξ ∈ R we define the left shift operator τξ on L2(R) by the rela-
tion τξu(x) := u(x + ξ) and observe the invariance property

τξBn,m(a1, . . . , am)[b1, . . . , bn, h] = Bn,m(τξa1, . . . , τξam)[τξb1, . . . , τξbn, τξh].
(4.2)

Differences of Bn,m with respect to the nonlinear arguments ai can be repre-
sented by the identity

Bn,m(a1, a2 . . . , am)[b1, . . . , bn, ·] − Bn,m(ã1, a2 . . . , am)[b1, . . . , bn, ·]
= Bn+2,m+1(ã1, a1, a2 . . . , am)[b1, . . . , bn, ã1 + a1, ã1 − a1, ·]. (4.3)

We will also use the interpolation property

[Hs0(R),Hs1(R)]θ = H(1−θ)s0+θs1(R), θ ∈ (0, 1), −∞ < s0 ≤ s1 < ∞,
(4.4)

where [·, ·]θ denotes the complex interpolation functor of exponent θ.

Theorem 4.2. Given δ ∈ (0, 1) and s ∈ (3/2, 2), there exists a positive con-
stant C = C(δ, s) such that

‖(λ − D(f))[β]‖Hs−1 ≥ C‖β‖Hs−1 (4.5)

for all λ ∈ R which satisfy |λ| ≥ 1/2 + δ, f ∈ Hs(R) with ‖f‖Hs ≤ 1/δ, and
all β ∈ Hs−1(R)2.

Moreover, λ − D(f) ∈ L(Hs−1(R)2) is an isomorphism for all λ ∈ R

with |λ| > 1/2 and f ∈ Hs(R).

Proof. Given f ∈ Hs(R), the relation (3.5) and Lemma 4.1 (ii) combined imply
that D(f) ∈ L(Hs−1(R)2). In order to prove the estimate (4.5), let λ ∈ R with
|λ| ≥ 1/2+δ and f ∈ Hs(R) with ‖f‖Hs ≤ 1/δ be fixed. Theorem 3.3 together
with the embedding Hs(R) ↪→ L∞(R) implies there exists C = C(δ) > 0 such
that ‖(λ −D(τξf))−1‖L(L2(R)2) ≤ C for all ξ ∈ R. It is well-known there exists
a constant C > 0 such that

[β]Hs−1 := ‖[ξ �→ |ξ|s−1F [β](ξ)]‖2 = C
(∫

R

‖β − τξβ‖2
2

|ξ|1+2(s−1)
dξ

)1/2

=: [β]W s−1
2

,

where F [β] is the Fourier transform of β. Together with (4.2) we then get

[β]2Hs−1 ≤ C

∫

R

‖(λ − D(τξf))[β − τξβ]‖2
2

|ξ|1+2(s−1)
dξ

≤ C
(∫

R

‖(λ − D(f))[β] − τξ((λ − D(f))[β])‖2
2

|ξ|1+2(s−1)
dξ

+
∫

R

‖(D(f) − D(τξf))[β]‖2
2

|ξ|1+2(s−1)
dξ

)

= C[(λ − D(f))[β]]2Hs−1 + C

∫

R

‖(D(f) − D(τξf))[β]‖2
2

|ξ|1+2(s−1)
dξ.

(4.6)
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The term ‖(D(f)−D(τξf))[β]‖2 can be estimated by a finite sum of terms
of the form

‖(B0
n,2(f) − B0

n,2(τξf))[βi]‖2 and ‖B0
n,2(f)[f ′βi] − B0

n,2(τξf)[(τξf
′)βi]‖2,

where 0 ≤ n ≤ 3 and i ∈ {1, 2}. Let s′ ∈ (3/2, s) be fixed. We first consider
terms of the second type and estimate in view of Lemma 3.1

‖B0
n,2(f)[f ′βi] − B0

n,2(τξf)[(τξf
′)βi]‖2

≤ ‖(B0
n,2(f) − B0

n,2(τξf))[f ′βi]‖2 + ‖B0
n,2(τξf)[(τξf

′ − f ′)βi]‖2

≤ ‖(B0
n,2(f) − B0

n,2(τξf))[f ′βi]‖2 + C‖τξf
′ − f ′‖2‖β‖Hs′−1 .

(4.7)

Furthermore, using (4.3), we have

B0
n,2(f) − B0

n,2(τξf) =
n∑

�=1

Bn,2(f, f)[τξf, . . . , τξf
︸ ︷︷ ︸

�−1 times

, f − τξf, f, . . . , f, ·]

+ Bn+2,3(τξf, f, f)[τξf, . . . , τξf, τξ − f, τξf + f, ·]
+ Bn+2,3(τξf, τξf, f)[τξf, . . . , τξf, τξf − f, τξf + f, ·],

and together with Lemma 4.1 (i) (with s′ instead of s), we conclude that the
operator B0

n,2(f) − B0
n,2(τξf) belongs to L(Hs′−1(R), L2(R)) and satisfies

‖B0
n,2(f) − B0

n,2(τξf)‖L(Hs′−1(R),L2(R)) ≤ C‖f − τξf‖H1(R).

Combining this estimate with (4.7) we get
∫

R

‖(D(f) − D(τξf))[β]‖2
2

|ξ|1+2(s−1)
dξ ≤ C‖f‖2

Hs‖β‖2
Hs′−1 ,

and by (4.6) and the interpolation property (4.4) we arrive at

‖β‖2
Hs−1 ≤ C

(
[λ − D(f)[β]]2Hs−1 + ‖β‖2

2

)
+

1
2
‖β‖2

Hs−1 .

Finally, using Theorem 3.3 again, we obtain the estimate (4.5). The isomor-
phism property of λ − D(f), with λ ∈ R with |λ| > 1/2 and f ∈ Hs(R), follows
by the same continuity argument as in the L2 result. �

For the H2 result we need an additional estimate for the operators Bn,m

with higher regularity of the arguments.

Lemma 4.3. Let n, m ∈ N and a1, . . . , am ∈ H2(R) be given. Then, there exists
a constant C, depending only on n, m, and max1≤i≤m ‖ai‖H2 , such that

‖Bn,m(a1, . . . , am)[b1, . . . , bn, h]‖H1 ≤ C‖h‖H1

n∏

i=1

‖bi‖H2 (4.8)

for all b1, . . . , bn ∈ H2(R) and h ∈ H1(R).
Moreover, Bn,m ∈ C1−(H2(R)m,Ln

sym(H2(R),L(H1(R)))).
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Proof. We first show that the function ϕ := Bn,m(a1, . . . , am)[b1, . . . , bn, h]
belongs to H1(R). Recalling that the group {τξ}ξ∈R ⊂ L(Hr(R)), r ≥ 0, has
generator [f �→ f ′] ∈ L(Hr+1(R),Hr(R)), it suffices to prove that the quotient
Dξϕ := (τξϕ − ϕ)/ξ converges in L2(R) when letting ξ → 0. In view of (4.3)
we write

Dξϕ =
n∑

i=1

Bn,m(τξa1, . . . , τξam)
[
b1, . . . , bi−1,Dξbi, τξbi+1, . . . , τξbn, τξh

]

+ Bn,m(τξa1, . . . , τξam)
[
b1, . . . , , bn,Dξh

]

−
m∑

i=1

Bi
n+2,m+1(ξ)

[
b1, . . . , bn,Dξai, τξai + ai, h

]
,

where Bi
n+2,m+1(ξ) := Bn+2,m+1(τξa1, . . . , τξai, ai, . . . , am) for 1 ≤ i ≤ m.

Lemma 3.1 and Lemma 4.1 (i) enable us to pass to the limit ξ → 0 in L2(R)
in this equality. Hence, ϕ ∈ H1(R) and

ϕ′ = Bn,m(a1, . . . , am)[b1, . . . , bn, h′]

+
n∑

i=1

Bn,m(a1, . . . , am)[b1, . . . , bi−1, b
′
i, bi+1, . . . bn, h]

− 2
m∑

i=1

Bn+2,m+1(a1, . . . , ai, ai, . . . , am)[b1, . . . , bn, a′
i, ai, h].

(4.9)

The estimate (4.8) is a consequence of Lemma 3.1 and Lemma 4.1 (i). The local
Lipschitz continuity property follows from an repeated application of (4.3) and
(4.8). �

As a consequence of Lemma 4.3 and (4.9) we obtain the following result.

Corollary 4.4. Bn,m ∈ C1−(H3(R)m,Ln
sym(H3(R),L(H2(R)))) for n, m ∈ N.

Theorem 4.5. The operator λ − D(f) ∈ L(H2(R)2) is an isomorphism for all
f ∈ H3(R) and λ ∈ R with |λ| > 1/2.

Proof. Fix f ∈ H3(R). We then infer from (3.5) and Corollary 4.4 that we
have D(f) ∈ L(H2(R)2). Recalling (4.9), we further compute

(D(f)[β])′′ − D(f)[β′′] = Tlot[β], β ∈ H2(R)2, (4.10)

where each component of Tlot[β] is a linear combination of terms

Bn,m(f, . . . , f)[f ′, f ′, f, . . . , f, (f ′)kβi], Bn,m(f, . . . , f)[f, . . . , f, f ′′′βi],

Bn,m(f, . . . , f)[f ′, f, . . . , f, ((f ′)kβi)′], Bn,m(f, . . . , f)[f ′′, f, . . . , f, (f ′)kβi],

where n, m ∈ N satisfy 0 ≤ n, m ≤ 7 and k ∈ {0, 1}. From Lemma 3.1 and
Lemma 4.1 (i) (with s = 7/4) we conclude that

‖Tlot[β]‖2 ≤ C‖β‖H1 , β ∈ H2(R)2. (4.11)

Given λ ∈ R with |λ| > 1/2, we pick δ ∈ (0, 1) such that |λ| ≥ 1/2 + δ and
additionally ‖f ′‖∞ ≤ 1/δ. Since ‖(μ − D(f))−1‖L(L2(R)2) ≤ C for all μ ∈ R
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with |μ| ≥ 1/2 + δ, cf. Theorem 3.3, we deduce from (4.10), (4.11), and (4.4)
that

‖β‖H2 ≤ C(‖β′′‖2 + ‖β‖2) ≤ C(‖(μ − D(f))[β′′]‖2 + ‖β‖2)

≤ C
(‖(μ − D(f))[β]′′‖2 + ‖Tlot[β]‖2 + ‖β‖2

)

≤ C
(‖(μ − D(f))[β]′′‖2 + ‖β‖H1

)

≤ 1
2‖β‖H2 + C

(‖(μ − D(f))[β]′′‖2 + ‖β‖2

)

≤ 1
2‖β‖H2 + C

(‖(μ − D(f))[β]′′‖2 + ‖(μ − D(f))[β]‖2

)
,

hence

‖β‖H2 ≤ C‖(μ − D(f))[β]‖H2

for all β ∈ H2(R)2 and μ ∈ R with |μ| ≥ 1/2 + δ. The result follows now by
the same continuity argument as in the proof of Theorem 4.2. �

5. The contour integral formulation

In this section we formulate the Stokes evolution problem (1.1) as an nonlinear
evolution problem having only f as unknown, cf. (5.17).

Based on the results established in Sect. 2, Sect. 4, and Appendix A we
start by proving that for each f ∈ H3(R), the boundary value problem

μ±Δv± − ∇p± = 0 in Ω±,
div v± = 0 in Ω±,

[v] = 0 on Γ,
[Tμ(v, p)]ν̃ = −σκ̃ν̃ on Γ,

(v±, p±)(x) → 0 for |x| → ∞

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(5.1)

has a unique solution (v, p) ∈ Xf with the property that v±|Γ ◦ Ξf ∈ H2(R)2.
This is established in Proposition 5.1 below, where we also provide an implicit
formula for v±|Γ in terms of contour integrals on Γ. This representation allows
to recast the kinematic boundary condition (1.1a)6 in the form (5.17).

With the substitution ṽ± := μ±v±, Problem (5.1) is equivalent to

Δṽ± − ∇p± = 0 in Ω±,
div ṽ± = 0 in Ω±,

μ−ṽ+ − μ+ṽ− = 0 on Γ,
[T1(ṽ, p)]ν̃ = −σκ̃ν̃ on Γ,

(ṽ±, p±) → 0 for |x| → ∞.

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(5.2)

We construct the solution to (5.2) by splitting

(ṽ, p) = (ws, qs) + (wd, qd)



54 Page 18 of 34 B.–V. Matioc and G. Prokert NoDEA

where (ws, qs), (wd, qd) ∈ Xf satisfy

Δw±
s − ∇q±

s = 0 in Ω±,
div w±

s = 0 in Ω±,
w+

s − w−
s = 0 on Γ,

[T1(ws, qs)]ν̃ = −σκ̃ν̃ on Γ,
(w±

s , q±
s ) → 0 for |x| → ∞

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(5.3)

and
Δw±

d − ∇q±
d = 0 in Ω±,

div w±
d = 0 in Ω±,

μ−w+
d − μ+w−

d = (μ+ − μ−)ws on Γ,
[T1(wd, qd)]ν̃ = 0 on Γ,

(w±
d , q±

d ) → 0 for |x| → ∞.

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(5.4)

The system (5.3) has been studied in [20]. According to [20, Theorem 2.1 and
Remark A.2], there exists exactly one solution (ws, qs) := (ws(f), qs(f)) ∈ Xf

to (5.3). It satisfies

ws ∈ C∞(R2 \ Γ) ∩ C1(R2) and q±
s ∈ C∞(Ω±) ∩ C(Ω±).

Moreover, recalling (3.2) and [20, Eqns. (2.2), (2.3), (A.2)], the trace ws(f)|Γ
can be expressed via

ws(f)|Γ ◦ Ξ =: G(f) := (G1(f), G2(f)), (5.5)

with

4πσ−1G1(f) := (B0
0,2(f) − B0

2,2(f))[φ1(f) + f ′φ2(f)]

+ B0
1,2(f)[3f ′φ1(f) − φ2(f)] + B0

3,2(f)[f ′φ1(f) + φ2(f)],

4πσ−1G2(f) := (B0
1,2(f) − B0

3,2(f))[φ1(f) + f ′φ2(f)]

− B0
0,2(f)[f ′φ1(f) + φ2(f)] + B0

2,2(f)[f ′φ1(f) − 3φ2(f)],
(5.6)

where φi(f) ∈ H2(R), i ∈ {1, 2}, are given by

φ1(f) :=
f ′2

ω + ω2
and φ2(f) :=

f ′

ω
. (5.7)

We point out that Corollary 4.4 yields Gi(f) ∈ H2(R), i ∈ {1, 2}.
It remains to show that the boundary value problem (5.4) has a unique

solution (wd, qd) ∈ Xf with w±
d |Γ ◦ Ξ ∈ H2(R)2. To construct a solution, we

use the ansatz (wd, qd) = (w, q)[β], where β ∈ H2(R)2 and (w, q)[β] is defined
by (2.7), (2.8). We recall from Proposition 2.1 that (w, q)[β] is the unique
solution to (2.4) in Xf . In view of Lemma A we have

(μ−w[β]+ − μ+[β]−)|Γ ◦ Ξ = (μ+ + μ−)
(1

2
+ aμD(f)

)
[β].

Therefore (wd, qd) solves (5.4) if and only if
(1

2
+ aμD(f)

)
[β] = aμG(f), (5.8)
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where

aμ :=
μ+ − μ−
μ+ + μ−

∈ (−1, 1).

Theorem 4.5 implies that (5.8) has a unique solution β =: β(f) ∈ H2(R)2.
This establishes not only the existence but also the uniqueness of the solution
to (5.4).

Summarizing, we have shown the following result:

Proposition 5.1. Given f ∈ H3(R), the boundary value problem (5.1) has a
unique solution (v, p) ∈ Xf such that v±|Γ ◦ Ξ ∈ H2(R)2. Moreover,

v±|Γ ◦ Ξ =
G(f)
μ±

+
1

μ±

(

−D(f) ± 1
2

)

[β(f)],

where G(f) ∈ H2(R)2 is defined in (5.5)-(5.6) and β(f) ∈ H2(R)2 is the
unique solution to (5.8).

From this result and (1.1) we infer, under the assumption that Γ(t) is
at each time instant t ≥ 0 the graph of a function f(t) ∈ H3(R) and that the
pair (v(t), p(t)) belongs to Xf(t) and satisfies v(t)±|Γ(t) ◦ Ξf(t) ∈ H2(R)2, that
(1.1a) can be recast as

∂tf =
1

μ+

〈
G(f) − D(f)[β(f)] +

1
2
β(f)

∣
∣
∣ (−f ′, 1)�

〉

=
1

μ+ − μ−

〈
β(f) | (−f ′, 1)�〉

.

(5.9)

Here 〈· | ·〉 denotes the scalar product on R
2.

Using the results in Sect. 4 and [20] we can formulate the latter equation
as an evolution equation in Hs−1(R)2, where s ∈ (3/2, 2) is fixed in the remain-
ing. To this end we first infer from [20, Corollary C.5] that, given n, m ∈ N,
we have

[f �→ B0
n,m(f)] ∈ C∞(Hs(R),L(Hs−1(R))). (5.10)

Further, [20, Lemma 3.5] ensures for the mappings defined in (5.7) that

[f �→ φi(f)] ∈ C∞(Hs(R),Hs−1(R)), i = 1, 2. (5.11)

Additionally, for any f0 ∈ Hs(R), the Fréchet derivative ∂φi(f0) is given by

∂φi(f0) = ai(f0)
d

dx
, i = 1, 2,

with

a1(f0) :=
f ′
0(2 + f ′2

0 + 2
√

1 + f ′2
0 )

√
1 + f ′2

0 (
√

1 + f ′2
0 + 1 + f ′2

0 )2
and a2(f0) :=

1
(1 + f ′2

0 )3/2
.

(5.12)
It is easy to check, by arguing as in [20, Lemma C.1], that φi, i = 1, 2, maps
bounded sets in Hs(R) to bounded sets in Hs−1(R). This observation, the



54 Page 20 of 34 B.–V. Matioc and G. Prokert NoDEA

relations (5.6), (5.10), (5.11), and Lemma 4.1 combined enable us to conclude
that the map defined in (5.5)–(5.6) satisfies

[f �→ G(f)] ∈ C∞(Hs(R),Hs−1(R)2), (5.13)

and also that G maps bounded sets in Hs(R) to bounded sets in Hs−1(R)2.
Moreover, recalling (3.5), we infer from (5.10) that

D ∈ C∞(Hs(R),L(Hs−1(R)2)). (5.14)

In view of (5.13) and of Theorem 4.2 we can solve, for given f ∈ Hs(R), the
equation (5.8) in Hs−1(R)2. Its unique solution is given by

β(f) := 2aμ(1 + 2aμD(f))−1[G(f)] ∈ Hs−1(R)2, (5.15)

and, since the mapping which associates to an isomorphism its inverse is
smooth, we obtain from Theorem 4.2, (5.13), and (5.14) that

[
f �→ β(f)]

] ∈ C∞(Hs(R),Hs−1(R)2). (5.16)

Furthermore, (5.15) and the estimate (4.5) imply that β inherits from G the
property to map bounded sets in Hs(R) to bounded sets in Hs−1(R)2. Sum-
marizing, in a compact form, the Stokes flow problem (1.1) can be recast as
the evolution problem

df

dt
(t) = Φ(f(t)), t ≥ 0, f(0) = f0, (5.17)

where Φ : Hs(R) → Hs−1(R) is defined, cf. (5.9), by

Φ(f) :=
1

μ+ − μ−
〈β(f)|(−f ′, 1)�〉. (5.18)

Observe that, due to (5.16),

Φ ∈ C∞(Hs(R),Hs−1(R)), (5.19)

and that Φ maps bounded sets in Hs(R) to bounded sets in Hs−1(R).

6. Linearization, localization, and proof of the main result

We are going to prove that the nonlinear and nonlocal problem (5.17) is par-
abolic in Hs(R) in the sense that the Fréchet derivative ∂Φ(f0), generates an
analytic semigroup in L(Hs−1(R)) for each f0 ∈ Hs(R). This property then
enables us to use the abstract existence results from [17] in the proof of our
main result Theorem 1.1.

Theorem 6.1. For any f0 ∈ Hs(R), the Fréchet derivative ∂Φ(f0), considered
as an unbounded operator in Hs−1(R) with dense domain Hs(R), generates
an analytic semigroup in L(Hs−1(R)).

The proof of Theorem 6.1 requires some preparation. To start, we fix a
function f0 ∈ Hs(R), s′ ∈ (3/2, s), and we set β0 := β(f0) := (β1

0 , β2
0)�. We

have β0 ∈ Hs−1(R)2.
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Differentiating the relations (5.18) and (5.15), we get

∂Φ(f0)[f ] =
1

μ+ − μ−
〈∂β(f0)[f ]|(−f ′

0, 1)�〉 − β1
0f ′

μ+ − μ−
(6.1)

and

(1 + 2aμD(f0))[∂β(f0)[f ]] = 2aμ∂G(f0)[f ] − 2aμ∂D(f0)[f ][β0]. (6.2)

For the computation of ∂D(f0)[f ][β0] and ∂G(f0)[f ] we use the relation

∂B0
n,2(f0)[f ][h] = nBn,2(f0, f0)[f, f0, . . . f0, h]

− 4Bn+2,3(f0, f0, f0)[f, f0, . . . , f0, h], n ∈ N,

see [20, Lemma C.4]. Additionally we use Lemma 4.1 (iii) to rewrite this ex-
pression as

∂B0
n,2(f0)[f ][h] = h

(
nB0

n−1,2(f0)[f ′] − 4B0
n+1,3(f0)[f ′]

)
+ R1,n[f, h]

= h
(
nB0

n−1,3(f0)[f ′] + (n − 4)B0
n+1,3(f0)[f ′]

)
+ R1,n[f, h],

where nB0
n−1,3(f0) := 0 for n = 0 and

‖R1,n[f, h]‖Hs−1 ≤ C‖h‖Hs−1‖f‖Hs′ ,

with a constant C independent of f ∈ Hs(R) and h ∈ Hs−1(R). Using these
relations, we infer from (3.5) that

(∂D(f0)[f ][β0])i =
1
π

{
B0

i+k−2,2[f
′βk

0 ] + βk
0

(
(i + k − 2)f ′

0B
0
i+k−3,3

+ (i + k − 6)f ′
0B

0
i+k−1,3 − (i + k − 1)B0

i+k−2,3

− (i + k − 5)B0
i+k,3

)
[f ′]

}
+ R2,i[f ]

(6.3)

for i = 1, 2, where we used the shorthand notation B0
n,m := B0

n,m(f0) and

‖R2,i[f ]‖Hs−1 ≤ C‖f‖Hs′ , f ∈ Hs(R). (6.4)

Taking the derivative of (5.6), the same arguments yield

4πσ−1∂Gi(f0)[f ] = Ti,1(f0)[f ] + Ti,2(f0)[f ] + R3,i[f ], i = 1, 2, (6.5)

where

T1,1(f0)[f ] :=(B0
0,2 − B0

2,2)[(a1 + φ2 + f ′
0a2)f ′] + B0

1,2[(3(φ1 + f ′
0a1) − a2)f ′]

+ B0
3,2[(φ1 + f ′

0a1 + a2)f ′],

T1,2(f0)[f ] :=φ1(3f ′
0B

0
0,3 − 6B0

1,3 − 6f ′
0B

0
2,3 + 2B0

3,3 − f ′
0B

0
4,3)[f

′]

+ φ2(−B0
0,3 − 6f ′

0B
0
1,3 + 6B0

2,3 + 2f ′
0B

0
3,3 − B0

4,3)[f
′],

T2,1(f0)[f ] := − B0
0,2[(φ1 + f ′

0a1 + a2)f ′] + (B0
1,2 − B0

3,2)[(a1 + φ2 + f ′
0a2)f ′]

+ B0
2,2[(φ1 + f ′

0a1 − 3a2)f ′],

T2,2(f0)[f ] :=φ1(B0
0,3 + 6f ′

0B
0
1,3 − 6B0

2,3 − 2f ′
0B

0
3,3 + B0

4,3)[f
′]

+ φ2(f ′
0B

0
0,3 − 2B0

1,3 − 6f ′
0B

0
2,3 + 6B0

3,3 + f ′
0B

0
4,3)[f

′],
(6.6)
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cf. [20, Eq. (3.7)-(3.9)]. Here we have used the shortened notation ai := ai(f0)
and φi := φi(f0) for i = 1, 2 and

‖R3,i[f ]‖Hs−1 ≤ C‖f‖Hs′ , f ∈ Hs(R). (6.7)

In order to prove Theorem 6.1 we consider the path

Ψ : [0, 1] −→ L(Hs(R),Hs−1(R))

defined by

Ψ(τ)[f ] :=
1

μ+ − μ−
〈B(τ)[f ]|(−τf ′

0, 1)�〉 − τβ1
0f ′

μ+ − μ−
(6.8)

for τ ∈ [0, 1] and f ∈ Hs(R), where B(τ)[f ] is defined by

(1 + 2τaμD(f0))[B(τ)[f ]] = 2aμ(∂G(τf0)[f ] − τ∂D(f0)[f ][β0]). (6.9)

Theorem 4.2, (6.3)–(6.7), and Lemma 4.1 (ii) combined ensure that the map-
ping B : [0, 1] −→ L(

Hs(R),Hs−1(R)2
)

is well-defined, and

‖B(τ)[f ]‖Hs−1 ≤ C‖f‖Hs , τ ∈ [0, 1], f ∈ Hs(R), (6.10)

with C independent of f and τ . We also note that both paths B and Ψ are
continuous and Ψ(1) = ∂Φ(f0). Besides, since

B(0) = 2aμ∂G(0) =
(
0,−2aμσ

4
H ◦ d

dξ

)�
,

where H = π−1B0,0 is the Hilbert transform, we observe that Ψ(0) is the
Fourier multiplier

Ψ(0) = − σ

2(μ+ + μ−)
H ◦ d

dξ
= − σ

2(μ+ + μ−)

(
− d2

dξ2

)1/2

. (6.11)

We next locally approximate the operator Ψ(τ), τ ∈ [0, 1], by certain
Fourier multipliers Aj,τ , cf. Theorem 6.2. For this purpose, given ε ∈ (0, 1), we
choose N = N(ε) ∈ N and a so-called finite ε-localization family, that is a set

{(πε
j , ξ

ε
j ) | − N + 1 ≤ j ≤ N}

such that

• πε
j ∈ C∞(R, [0, 1]),−N + 1 ≤ j ≤ N, and

N∑

j=−N+1

(πε
j )

2 = 1;

• suppπε
j is an interval of length ε for all |j| ≤ N − 1;

• suppπε
N ⊂ {|ξ| ≥ 1/ε};

• πε
j · πε

l = 0 if [|j − l| ≥ 2,max{|j|, |l|} ≤ N − 1] or [|l| ≤ N − 2, j = N ];

• ‖(πε
j )

(k)‖∞ ≤ Cε−k for all k ∈ N,−N + 1 ≤ j ≤ N ;

• ξε
j ∈ suppπε

j , |j| ≤ N − 1.
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The real number ξε
N plays no role in the analysis below. To each ε-localization

family we associate a norm on Hr(R), r ≥ 0, which is equivalent to the stan-
dard norm on Hr(R). Indeed, given r ≥ 0 and ε ∈ (0, 1) , there exists a con-
stant c = c(ε, r) ∈ (0, 1) such that

c‖f‖Hr ≤
N∑

j=−N+1

‖πε
jf‖Hr ≤ c−1‖f‖Hr , f ∈ Hr(R). (6.12)

To introduce the aforementioned Fourier multipliers Aj,τ , we first define
the coefficient functions ατ , βτ : R −→ R, τ ∈ [0, 1], by the relations

ατ :=
σ

2(μ+ + μ−)
(
a2(τf0) + τf ′

0a1(τf0)
)
, βτ := − τβ1

0

μ+ − μ−
. (6.13)

We now set

Aj,τ := A
ε
j,τ := −ατ (ξε

j )
(

− d2

dξ2

)1/2

+ βτ (ξε
j )

d

dξ
, |j| ≤ N − 1,

AN,τ := A
ε
N,τ := − σ

2(μ+ + μ−)

(
− d2

dξ2

)1/2

. (6.14)

We obviously have

Aj,τ ∈ L(Hs(R),Hs−1(R)), −N + 1 ≤ j ≤ N, τ ∈ [0, 1].

The following estimate of the localization error is the main step in the
proof of Theorem 6.1.

Theorem 6.2. Let μ > 0 be given and fix s′ ∈ (3/2, s). Then there exist ε ∈ (0, 1)
and a constant K = K(ε) such that

‖πε
jΨ(τ)[f ] − Aj,τ [πε

jf ]‖Hs−1 ≤ μ‖πε
jf‖Hs + K‖f‖Hs′ (6.15)

for all −N + 1 ≤ j ≤ N , τ ∈ [0, 1], and f ∈ Hs(R).

Before proving Theorem 6.2 we first present some auxiliary lemmas which
are used in the proof (which is presented below). We start with an estimate
for the commutator [B0

n,m(f), ϕ] (we will apply this estimate in the particular
case ϕ = πε

j , −N + 1 ≤ j ≤ N).

Lemma 6.3. Let n, m ∈ N, s ∈ (3/2, 2), f ∈ Hs(R), and ϕ ∈ C1(R) with
uniformly continuous derivative ϕ′ be given. Then, there exists a constant K
that depends only on n, m, ‖ϕ′‖∞, and ‖f‖Hs such that

‖ϕBn,m(f, . . . , f)[f, . . . , f, h] − Bn,m(f, . . . , f)[f, . . . , f, ϕh]‖H1 ≤ K‖h‖2

(6.16)
for all h ∈ L2(R).

Proof. This result is a particular case of [1, Lemma 12]. �

The results in Lemma 6.4-Lemma 6.8 below describe how to “freeze the
coefficients” of the multilinear operators B0

n,m. For these operators, this tech-
nique has been first developed in [19] in the study of the Muskat problem.
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Lemma 6.4. Let n, m ∈ N, 3/2 < s′ < s < 2, and ν ∈ (0,∞) be given. Let
further f ∈ Hs(R) and ω ∈ {1}∪Hs−1(R). For any sufficiently small ε ∈ (0, 1),
there exists a constant K depending only on ε, n, m, ‖f‖Hs , and ‖ω‖Hs−1

(if ω �= 1) such that
∥
∥
∥πε

jωB0
n,m(f)[h]− ω(ξε

j )(f ′(ξε
j ))n

[1 + (f ′(ξε
j ))2]m

B0,0[πε
jh]

∥
∥
∥

Hs−1
≤ ν‖πε

jh‖Hs−1 +K‖h‖Hs′−1

for all |j| ≤ N − 1 and h ∈ Hs−1(R).

Proof. See [1, Lemma 13]. �

We now provide a similar result as in Lemma 6.4, the difference to the
latter being that the linear argument of Bn,m is now multiplied by a function
a that also needs to be frozen at ξε

j .

Lemma 6.5. Let n, m ∈ N, 3/2 < s′ < s < 2, and ν ∈ (0,∞) be given. Let
further f ∈ Hs(R), a ∈ Hs−1(R), and ω ∈ {1}∪Hs−1(R). For any sufficiently
small ε ∈ (0, 1), there is a constant K depending on ε, n, m, ‖f‖Hs , ‖a‖Hs−1 ,
and ‖ω‖Hs−1 (if ω �= 1) such that

∥
∥
∥πε

jωB0
n,m(f)[ah] − a(ξε

j )ω(ξε
j )(f ′(ξε

j ))n

[1 + (f ′(ξε
j ))2]m

B0,0[πε
jh]

∥
∥
∥

Hs−1

≤ ν‖πε
jh‖Hs−1 + K‖h‖Hs′−1

for all |j| ≤ N − 1 and h ∈ Hs−1(R).

Proof. See [20, Lemma D.5]. �

Lemma 6.6 and Lemma 6.7 are the analogues of Lemma 6.4 corresponding
to the case j = N .

Lemma 6.6. Let n, m ∈ N, 3/2 < s′ < s < 2, and ν ∈ (0,∞) be given. Let
further f ∈ Hs(R) and ω ∈ Hs−1(R). For any sufficiently small ε ∈ (0, 1),
there is a constant K depending only on ε, n, m, ‖f‖Hs , and ‖ω‖Hs−1 such
that

‖πε
NωB0

n,m(f)[h]‖Hs−1 ≤ ν‖πε
Nh‖Hs−1 + K‖h‖Hs′−1

for all h ∈ Hs−1(R).

Proof. See [1, Lemma 14]. �

Lemma 6.7 is the counterpart of Lemma 6.6 in the case when ω = 1.

Lemma 6.7. Let n, m ∈ N, 3/2 < s′ < s < 2, and ν ∈ (0,∞) be given. Let
further f ∈ Hs(R). For any sufficiently small ε ∈ (0, 1), there is a constant K
depending only on ε, n, m, and ‖f‖Hs such that

‖πε
NB0

0,m(f)[h] − B0,0[πε
Nh]‖Hs−1 ≤ ν‖πε

Nh‖Hs−1 + K‖h‖Hs′−1

and

‖πε
NB0

n,m(f)[h]‖Hs−1 ≤ ν‖πε
Nh‖Hs−1 + K‖h‖Hs′−1 , n ≥ 1,

for all h ∈ Hs−1(R).
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Proof. See [1, Lemma 15]. �

Finally, Lemma 6.8 below is the analogue of Lemma 6.5 corresponding
to the case j = N .

Lemma 6.8. Let n, m ∈ N, 3/2 < s′ < s < 2, and ν ∈ (0,∞) be given. Let
further f ∈ Hs(R), a ∈ Hs−1(R), and ω ∈ {1}∪Hs−1(R). For any sufficiently
small ε ∈ (0, 1), there is a constant K depending on ε, n, m, ‖f‖Hs , ‖a‖Hs−1 ,
and ‖ω‖Hs−1 (if ω �= 1) such that

‖πε
NωB0

n,m(f)[ah]‖Hs−1 ≤ ν‖πε
Nh‖Hs−1 + K‖h‖Hs′−1

for all h ∈ Hs−1(R).

Proof. See [20, Lemma D.6]. �

We are now in a position to prove Theorem 6.2.

Proof of Theorem 6.2. Fix μ > 0 and let ε ∈ (0, 1). We next choose a finite
ε-localization family {(πε

j , ξ
ε
j ) | − N + 1 ≤ j ≤ N} and, associated to it, a

second family {χε
j | − N + 1 ≤ j ≤ N} with the following properties:

• χε
j ∈ C∞(R, [0, 1]) and χε

j = 1 on suppπε
j ,−N + 1 ≤ j ≤ N ;

• suppχε
j is an interval of length 3ε, |j| ≤ N − 1;

• suppχε
N ⊂ {|ξ| ≥ 1/ε − ε}.

In the arguments that follow we repeatedly use the estimate

‖gh‖Hs−1 ≤ C(‖g‖∞‖h‖Hs−1 + ‖h‖∞‖g‖Hs−1) (6.17)

which holds for g, h ∈ Hs−1(R) and s ∈ (3/2, 2), with a constant C indepen-
dent of g and h.

Below we denote by C constants that do not depend on ε and by K
constants that may depend on ε. We need to approximate the linear opera-
tors

[
f �→ B2(τ)[f ] − τf ′

0B1(τ)[f ]
]

and [f �→ β1
0f ′], see (6.8)-(6.9), where we

set B(τ) =: (B1(τ),B2(τ))�. The proof is divided in several steps.
Step 1. We consider the operator [f �→ β1

0f ′]. Since χε
jπ

ε
j = πε

j , (6.17) yields

‖πε
j (β

1
0f ′) − β1

0(ξε
j )(πε

jf)′‖Hs−1 ≤ C‖χε
j(β

1
0 − β1

0(ξε
j ))‖∞‖(πε

jf)′‖Hs−1

+ K‖f‖Hs′

for |j| ≤ N − 1 and

‖πε
N (β1

0f ′)‖Hs−1 ≤ C‖χε
Nβ1

0‖∞‖(πε
Nf)′‖Hs−1 + K‖f‖Hs′ .

From (5.16) we have β1
0 ∈ Cs−3/2(R) and β1

0(ξ) → 0 for |ξ| → ∞. Hence, if ε
is sufficiently small, then

‖πε
j (β

1
0f ′) − β1

0(ξε
j )(πε

jf)′‖Hs−1 ≤ μ|μ+ − μ−|
3

‖πε
jf‖Hs + K‖f‖Hs′ ,

‖πε
N (β1

0f ′)‖Hs−1 ≤ μ|μ+ − μ−|
3

‖πε
Nf‖Hs + K‖f‖Hs′ .

(6.18)

for |j| ≤ N − 1.
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The approximation procedure for
[
f �→ B2(τ)[f ] − τf ′

0B1(τ)[f ]
]

is more
involved.
Step 2. We prove there exists a constant CB such that

‖πε
jB(τ)[f ]‖Hs−1 ≤ CB‖πε

jf‖Hs + K‖f‖Hs′ (6.19)

for all −N +1 ≤ j ≤ N , τ ∈ [0, 1], and f ∈ Hs(R). To start, we infer from (6.9)
that
(1 + 2τaμD(f0))[πε

jB(τ)[f ]] = 2aμπε
j∂G(τf0)[f ] − 2τaμπε

j∂D(f0)[f ][β0]

+ 2τaμ

(
D(f0)[πε

jB(τ)[f ]] − πε
jD(f0)[B(τ)[f ]]

)
.

(6.20)
In order to estimate the terms on the right, we use the representations and
estimates (6.3)–(6.7) together with the commutator estimate from Lemma 6.3
and the Hs−1-estimate for the operators Bm,n provided in Lemma 4.1 (ii). So
we get

‖πε
j∂G(τf0)[f ]‖Hs−1 + ‖πε

j∂D(f0)[f ][β0]‖Hs−1 ≤ C‖πε
jf‖Hs + K‖f‖Hs′ ,

(6.21)

and similarly, using (3.5) and (6.10) with s replaced by s′,

‖D(f0)[πε
jB(τ)[f ]] − πε

jD(f0)[B(τ)[f ]]‖Hs−1 ≤ K‖B(τ)[f ]‖2 ≤ K‖f‖Hs′ .
(6.22)

The estimate (6.19) follows now from (6.20)–(6.22) and Theorem 4.2.
Step 3. Given τ ∈ [0, 1] and −N +1 ≤ j ≤ N , let Bj,τ ∈ L(Hs(R)2,Hs−1(R)2)
denote the Fourier multipliers

Bj,τ :=
aμσ

2π

(
a1(τf0)(ξε

j )B0,0 ◦ (d/dξ)
−a2(τf0)(ξε

j )B0,0 ◦ (d/dξ)

)

, |j| ≤ N − 1,

BN,τ :=
aμσ

2π

(
0

−B0,0 ◦ (d/dξ)

)

.

We next prove that given ν > 0, we have

‖πε
jB(τ)[f ] − Bj,τ [πε

jf ]‖Hs−1 ≤ ν‖πε
jf‖Hs + K‖f‖Hs′ (6.23)

for all −N + 1 ≤ j ≤ N , τ ∈ [0, 1], f ∈ Hs(R) and all sufficiently small ε. To
start, we multiply (6.9) by πε

j and get

πε
jB(τ)[f ] = 2aμπε

j

[
∂G(τf0)[f ] − τ

(
D(f0)[B(τ)[f ]] + ∂D(f0)[f ][β0]

)]
(6.24)

We consider the terms on the right hand side of (6.24) one by one. To deal with
the first term we recall (6.5)–(6.7). Repeated use of Lemma 6.4 and Lemma 6.5
then shows that

‖2aμπε
j∂G(τf0)[f ] − Bj,τ [πε

jf ]‖Hs−1 ≤ ν

3
‖πε

jf‖Hs + K‖f‖Hs′ (6.25)

for |j| ≤ N − 1, while Lemma 6.6, Lemma 6.7, and Lemma 6.8 yield

‖2aμπε
N∂G(τf0)[f ] − BN,τ [πε

Nf ]‖Hs−1 ≤ ν

3
‖πε

Nf‖Hs + K‖f‖Hs′ (6.26)

provided that ε is sufficiently small.
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We estimate the second term on the right of (6.24) and let |j| ≤ N − 1
first. Combining (3.5), Lemma 6.4, Lemma 6.5, (6.10) with s replaced by s′,
and (6.19) we obtain

‖πε
jD(f0)[B(τ)[f ]]‖Hs−1

≤
∥
∥
∥
∥
∥
πε

j

(
B0

0,2 B0
1,2

B0
1,2 B0

2,2

)(
f ′
0B1(τ)[f ]

f ′
0B2(τ)[f ]

)

− f ′
0(ξ

ε
j )

(1 + f ′2
0 (ξε

j ))2

(
1 f ′

0(ξ
ε
j )

f ′
0(ξ

ε
j ) f ′2

0 (ξε
j )

)(
B0,0[πε

jB1(τ)[f ]]
B0,0[πε

jB2(τ)[f ]]

)∥
∥
∥
∥
∥

Hs−1

+

∥
∥
∥
∥
∥
πε

j

(
B0

1,2 B0
2,2

B0
2,2 B0

3,2

)(B1(τ)[f ]
B2(τ)[f ]

)

− f ′
0(ξ

ε
j )

(1 + f ′2
0 (ξε

j ))2

(
1 f ′

0(ξ
ε
j )

f ′
0(ξ

ε
j ) f ′2

0 (ξε
j )

)(
B0,0[πε

jB1(τ)[f ]]
B0,0[πε

jB2(τ)[f ]]

)∥
∥
∥
∥
∥

Hs−1

≤ ν

6|aμ| ‖πε
jf‖Hs + K‖f‖Hs′

(6.27)

provided that ε is sufficiently small. Similarly, if j = N , then Lemma 6.7,
Lemma 6.8, (6.10) with s replaced by s′, and (6.19) imply that

‖πε
ND(f0)[B(τ)[f ]]‖Hs−1 ≤ ν

6|aμ| ‖πε
Nf‖Hs + K‖f‖Hs′ (6.28)

provided that ε is sufficiently small.
It remains to consider the term πε

j∂D(f0)[f ][β0] on the right of (6.24). To
this end we argue similarly as in the proof of (6.27) by adding and subtracting
suitable localization operators. Recalling (6.3)-(6.4), we get from Lemma 6.4
and Lemma 6.5 if |j| ≤ N − 1, respectively from Lemma 6.6 and Lemma 6.8
if j = N , that

‖πε
j∂D(f0)[f ][β0]‖Hs−1 ≤ ν

6|aμ| ‖πε
jf‖Hs + K‖f‖Hs′ (6.29)

provided that ε is sufficiently small. The estimate (6.23) follows now from
(6.24)–(6.29).
Step 4. We now localize the operators

[
f �→ B2(τ)[f ] − τf ′

0B1(τ)[f ]
]
. The

estimate (6.23) shows that, choosing ε sufficiently small, we have
∥
∥
∥πε

jB2(τ)[f ] +
aμσ

2π
a2(τf0)(ξε

j )B0,0[(πε
jf)′]

∥
∥
∥

Hs−1

≤ μ|μ+ − μ−|
3

‖πε
jf‖Hs + K‖f‖Hs′

(6.30)

for |j| ≤ N − 1 and
∥
∥
∥πε

N (B2(τ)[f ] +
aμσ

2π
B0,0[(πε

Nf)′]
∥
∥
∥

Hs−1
≤ μ|μ+ − μ−|

3
‖πε

Nf‖Hs + K‖f‖Hs′ .

(6.31)
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Moreover, for |j| ≤ N − 1, we write in view of χε
jπ

ε
j = πε

j
∥
∥
∥πε

jf
′
0B1(τ)[f ] − aμσ

2π
f ′
0(ξ

ε
j )a1(τf0)(ξε

j )B0,0[(πε
jf)′]

∥
∥
∥

Hs−1

≤ ‖χε
j(f

′
0 − f ′

0(ξ
ε
j ))πε

jB1(τ)[f ]‖Hs−1

+ C
∥
∥
∥πε

jB1(τ)[f ] − aμσ

2π
a1(τf0)(ξε

j )B0,0[(πε
jf)′]

∥
∥
∥

Hs−1
.

The first term on the right hand side may be estimated by using (6.10) (with s
replaced by s′), (6.17), (6.19), and the fact that f ′

0 ∈ Cs−3/2(R). For the second
term we rely on (6.23). Hence, if ε is sufficiently small then

∥
∥
∥πε

jf
′
0B1(τ)[f ] − aμσ

2π
f ′
0(ξ

ε
j )a1(τf0)(ξε

j )B0,0[(πε
jf)′]

∥
∥
∥

Hs−1

≤ μ|μ+ − μ−|
3

‖πε
jf‖Hs + K‖f‖Hs′ .

(6.32)

For j = N , it follows from (6.10) (with s replaced by s′), (6.17), (6.19), and
the fact that f ′

0 vanishes at infinity that

‖πε
Nf ′

0B1(τ)[f ]‖Hs−1 ≤ μ|μ+ − μ−|
3

‖πε
Nf‖Hs + K‖f‖Hs′ . (6.33)

The desired claim (6.15) follows now from (6.8), (6.18), (6.30), and (6.32)
if |j| ≤ N − 1, respectively from (6.8), (6.18), (6.31), and (6.33) if j = N. �

We now investigate the Fourier multipliers Aj,τ found in Theorem 6.2.
We recall the definitions (5.12), (6.13), and (6.14) and observe that as the
functions f ′

0, β1
0 , and ai(τf0) belong to Hs−1(R), i = 1, 2 and τ ∈ [0, 1], there

is a constant η ∈ (0, 1) such that

η ≤ ατ ≤ 1
η

and |βτ | ≤ 1
η
, τ ∈ [0, 1].

Based on this, it can be shown as in [19, Proposition 4.3], that there is a
constant κ0 ≥ 1 such that for all ε ∈ (0, 1), −N + 1 ≤ j ≤ N , and τ ∈ [0, 1]
we have

• λ − Aj,τ ∈ L(Hs(R),Hs−1(R)) is an isomorphism for all Reλ ≥ 1, (6.34)

• κ0‖(λ − Aj,τ )[f ]‖Hs−1 ≥ |λ| · ‖f‖Hs−1 + ‖f‖Hs , f ∈ Hs(R), Re λ ≥ 1.
(6.35)

The properties (6.34)-(6.35) together with Theorem 6.2 enable us to prove
Theorem 6.1.

Proof of Theorem 6.1. Let s′ ∈ (3/2, s) and let κ0 ≥ 1 be the constant in (6.35).
Theorem 6.2 with μ := 1/2κ0 implies that there are ε ∈ (0, 1), a constant K =
K(ε) > 0 and bounded operators Aj,τ ∈L(Hs(R),Hs−1(R)), for −N+1≤j ≤N
and τ ∈ [0, 1], satisfying

2κ0‖πε
jΨ(τ)[f ] − Aj,τ [πε

jf ]‖Hs−1 ≤ ‖πε
jf‖Hs + 2κ0K‖f‖Hs′ , f ∈ Hs(R).

Moreover, (6.35) yields

2κ0‖(λ − Aj,τ )[πε
jf ]‖Hs−1 ≥ 2|λ| · ‖πε

jf‖Hs−1 + 2‖πε
jf‖Hs
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for all −N + 1 ≤ j ≤ N , τ ∈ [0, 1], Re λ ≥ 1, and f ∈ Hs(R). The latter
estimates combined lead us to

2κ0‖πε
j (λ − Ψ(τ))[f ]‖Hs−1 ≥ 2κ0‖(λ − Aj,τ )[πε

jf ]‖Hs−1

− 2κ0‖πε
jΨ(τ)[f ] − Aj,τ [πε

jf ]‖Hs−1

≥ 2|λ| · ‖πε
jf‖Hs−1 + ‖πε

jf‖Hs − 2κ0K‖f‖Hs′ .

Summing over j, we deduce from (6.12), Young’s inequality, and the interpo-
lation property (4.4) that there exist constants κ ≥ 1 and ω > 1 such that

κ‖(λ − Ψ(τ))[f ]‖Hs−1 ≥ |λ| · ‖f‖Hs−1 + ‖f‖Hs (6.36)

for all τ ∈ [0, 1], Re λ ≥ ω, and f ∈ Hs(R).
From (6.11) we also deduce that ω − Ψ(0) ∈ L(Hs(R),Hs−1(R)) is an

isomorphism. This together with method of continuity [3, Proposition I.1.1.1]
and (6.36) implies that also

ω − Ψ(1) = ω − ∂Φ(f0) ∈ L(Hs(R),Hs−1(R)) (6.37)

is an isomorphism. The estimate (6.36) (with τ = 1) and (6.37) finally imply
that ∂Φ(f0) generates an analytic semigroup in L(Hs−1(R)), cf. [3, Chapter I],
and the proof is complete. �

We are now in a position to prove the main result, for which we can
exploit abstract theory for fully nonlinear parabolic problems from [17].

Proof of Theorem 1.1. Well-posedness: Given α ∈ (0, 1), T > 0, and a Banach
space X we set

Cα
α((0, T ],X) := {f : (0, T ] −→ X | ‖f‖Cα

α
< ∞},

where

‖f‖Cα
α

:= sup
t

‖f(t)‖ + sup
s 	=t

‖tαf(t) − sαf(s)‖
|t − s|α .

The property (5.19) together with Theorem 6.1 shows that the assumptions of
[17, Theorem 8.1.1] are satisfied for the evolution problem (5.17). According
to this theorem, (5.17) has, for each f0 ∈ Hs(R), a local solution f(·; f0) such
that

f ∈ C([0, T ],Hs(R)) ∩ C1([0, T ],Hs−1(R)) ∩ Cα
α((0, T ],Hs(R)),

where T = T (f0) > 0 and α ∈ (0, 1) is fixed (but arbitrary). This solution is
unique within the set

⋃

α∈(0,1)

Cα
α((0, T ],Hs(R)) ∩ C([0, T ],Hs(R)) ∩ C1([0, T ],Hs−1(R)).

We improve the uniqueness property by showing that the solution is unique
within

C([0, T ],Hs(R)) ∩ C1([0, T ],Hs−1(R)).
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Indeed, let f now be any solution to (5.17) in that space, let s′ ∈ (3/2, s) be
fixed and set α := s − s′ ∈ (0, 1). Using (4.4), we find a constant C > 0 such
that

‖f(t1) − f(t2)‖Hs′ ≤ C|t1 − t2|α, t1, t2 ∈ [0, T ], (6.38)

which shows in particular that f ∈ Cα
α((0, T ],Hs′

(R)). The uniqueness state-
ment of[17, Theorem 8.1.1] applied in the context of the evolution prob-
lem (5.17) with Φ ∈ C∞(Hs′

(R),Hs′−1(R)) establishes the uniqueness claim.
This unique solution can be extended up to a maximal existence time T+(f0),
see [17, Section 8.2]. Finally, [17, Proposition 8.2.3] shows that the solution
map defines a semiflow on Hs(R) which, according to [17, Corollary 8.3.8], is
smooth in the open set {(t, f0) | 0 < t < T+(f0)}. This proves (i).
Parabolic smoothing: The uniqueness result established in (i) enables us to
use a parameter trick applied also to other problems, cf., e.g., [4,9,19,21], in
order to establish (iia) and (iib). The proof details are similar to those in [18,
Theorem 1.2 (v)] or [1, Theorem 2 (ii)] and therefore we omit them.

Global existence: We prove the statement by contradiction. Assume there exists
a maximal solution f ∈ C([0, T+),Hs(R))∩C1([0, T+),Hs−1(R)) to (5.17) with
T+ < ∞ and such that

sup
[0,T+)

‖f(t)‖Hs < ∞. (6.39)

Recalling that Φ maps bounded sets in Hs(R) to bounded sets in Hs−1(R),
we get

sup
t∈[0,T+)

∥
∥
∥

df

dt
(t)

∥
∥
∥

Hs−1
= sup

t∈[0,T+)

‖Φ(f(t))‖Hs−1 < ∞. (6.40)

Let s′ ∈ (3/2, s) be fixed. Arguing as above, see (6.38), from the bounds (6.39)
and (6.40) we get that f : [0, T+) −→ Hs′

(R) is uniformly continuous. Apply-
ing [17, Theorem 8.1.1] to (5.17) with Φ ∈ C∞(Hs′

(R),Hs′−1(R)), we may
extend the solution f to a time interval [0, T ′

+) with T+ < T ′
+ and such that

f ∈ C([0, T ′
+),Hs′

(R)) ∩ C1([0, T ′
+),Hs′−1(R)).

Since by (iib) (with s replaced by s′) we have f ∈ C1((0, T ′
+),Hs(R)), this

contradicts the maximality property of f and the proof is complete. �
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Appendix A. The hydrodynamic double-layer potential near Γ

Given f ∈ H3(R) and β ∈ H2(R), we let (w, q) be given by (2.7) and (2.8).
We recall the definitions (3.4) of D(f) and (3.2) of the operators B0

n,m.

Lemma A.1. We have w± ∈ C1(Ω±,R2), q± ∈ C(Ω±), w±|Γ ◦ Ξ ∈ H2(R)2,
and

w± =
(

− D(f)[β] ± 1
2
β
)

◦ Ξ−1 on Γ,

[T1(w, q)](ν ◦ Ξ−1) = 0 on Γ.

}

(A.1)

Proof. For j = 0, . . . , 3, let Zj ∈ C1(R2 \ {0}) be given by

Zj(y) :=
y3−j
1 yj

2

|y|4 , y ∈ R
2 \ {0}.

Given φ ∈ H1(R), we define the function Zj [φ] : R2 \ Γ −→ R, j = 0, . . . , 3,
by

Zj [φ](x) :=
∫

R

Zj(r)φ ds, x ∈ R
2 \ Γ, r := x − (s, f(s)).

Recalling (2.9)1, we have

w =
1
π

(

−
(

Z0 Z1

Z1 Z2

)

[f ′β] +
(

Z1 Z2

Z2 Z3

)

[β]
)

.

It is shown in [20, Lemma A.1] that Zj [φ]± ∈ C(Ω±), with
⎛

⎜
⎜
⎝

Z0[φ]±

Z1[φ]±

Z2[φ]±

Z3[φ]±

⎞

⎟
⎟
⎠ ◦ Ξ =

⎛

⎜
⎜
⎝

B0
0,2(f)[φ]

B0
1,2(f)[φ]

B0
2,2(f)[φ]

B0
3,2(f)[φ]

⎞

⎟
⎟
⎠ ∓ π

2ω4

⎛

⎜
⎜
⎝

f ′3 + 3f ′

f ′2 − 1
f ′3 − f ′

−3f ′2 − 1

⎞

⎟
⎟
⎠φ. (A.2)

Consequently, w± ∈ C(Ω±,R2), and the jump relations (A.2) imply (A.1)1.
Moreover, recalling Corollary 4.4, we get w±|Γ ◦ Ξ ∈ H2(R)2. Further, the
property q± ∈ C(Ω±) follows from [18, Lemma 2.1].

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Exchanging integration with respect to s and differentiation with respect
to x by dominated convergence we find from (1.1b), (2.7), and (2.8) that

∂lwj(x) =
∫

R

∂lWi,k
j (r)νiβkω ds, (A.3)

(T1(w, q))jl(x) =
∫

R

(−δjlQi,k + ∂lWi,k
j + ∂jWi,k

j )(r)νiβkω ds (A.4)

for x ∈ R
2 \ Γ and l, j = 1, 2.

For E ⊂ R
2 open, Z ∈ C1(E), i = 1, 2, we let rot Z := (rot1Z, rot2Z),

with rot Z ∈ C(E,R2), be defined by

rotiZ :=
{−∂2Z if i = 1,

∂1Z if i = 2.

With this notation, we find from integration by parts
∫

R

(rotiZj)(r)νiφω ds =
∫

R

(f ′∂2Zj(r) + ∂1Zj(r))φ ds = −
∫

R

∂s(Zj(r))φ ds

= Zj [φ′].

Together with (A.3), (A.4), and the identities

∂1Wi,1
1 = −∂2Wi,1

2 = −∂2Wi,2
1 =

1
π

rotiZ1,

∂1Wi,2
1 = −∂2Wi,2

2 = ∂1Wi,1
2 =

1
π

rotiZ2,

∂2Wi,1
1 = − 1

π
rotiZ0,

∂1Wi,2
2 =

1
π

rotiZ3

and

Qi,1 =
1
π

roti(−Z1 − Z3),

Qi,2 =
1
π

roti(Z0 + Z2),

this yields w± ∈ C1(Ω±,R2) and (A.1)2.
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