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Abstract. In this paper we consider the symmetric Kolmogorov operator
L = Δ + ∇µ

µ
· ∇ on L2(RN , dμ), where μ is the density of a probability

measure on R
N . Under general conditions on μ we prove first weighted

Rellich’s inequalities and deduce that the operators L and −L2 with do-
main H2(RN , dμ) and H4(RN , dμ) respectively, generate analytic semi-
groups of contractions on L2(RN , dμ). We observe that dμ is the unique
invariant measure for the semigroup generated by −L2 and as a con-
sequence we describe the asymptotic behaviour of such semigroup and
obtain some local positivity properties. As an application we study the
bi-Ornstein-Uhlenbeck operator and its semigroup on L2(RN , dμ).
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1. Introduction

The focus of this article is to study some parabolic properties in weighted
L2 spaces for a class of forth order operators with unbounded coefficients: bi-
Kolmogorov type operators. We define our operators (A,D(A)) as operators
associated to the sesquilinear form

aL(u, v) =
∫
RN

LuLv dμ u, v ∈ D(aL) := D(L),
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where L is a second order Kolmogorov type operator defined on smooth func-
tions as Lf = Δf + ∇μ

μ · ∇f and dμ is some probability measure which has
density μ with respect to the Lebesgue measure. Second order Kolmogorov
type operators have been widely studied in the literature, the prototype being
the Ornstein-Ulhenbeck operator corresponding to the choice of a Gaussian
measure dμ, see for example [6,24,25,27,29]. The Gaussian measure is the
unique invariant measure for the Ornstein-Ulhenbeck semigroup and an ex-
plicit formula for the semigroup is available; having such a formula simplifies
the study of the main properties of the semigroup. It is known that the most
appropriate space to study parabolic properties of the Ornstein-Ulhenbeck
semigroup is the weighted space L2

μ(RN ) := L2(RN , dμ) where it gives rise to
a strongly continuous analytic semigroup (the result holding true in Lp

μ(RN )
for any p ∈ [1,∞)). Roughly speaking, the Ornstein-Ulhenbeck operator in
L2

μ(RN ) is the counterpart of the Laplacian operator in L2(RN ).
Having defined the bi-Kolmogorov type operator through the form aL,

in order to establish generation results in L2
μ(RN ) for A, we need generation

results for the second order Kolmogorov type operator L. In [2] under mild as-
sumptions on μ, the authors prove that the closure of (L,C∞

c (RN )) on L2
μ(RN )

is the generator of an analytic contraction C0-semigroup of angle π
2 on L2

μ(RN ).
In particular they assume

Hypothesis (H1)
(i) μ ∈ H1

loc(R
N ), ∇μ

μ ∈ Lr
loc(R

N , RN ) for some r > N ,
(ii) infx∈K μ(x) > 0 for every compact K ⊂ R

N .
Therefore, we are able to state that, under Hypothesis (H1), the operator
(−A,D(A)) generates an analytic contraction C0-semigroup of angle π

2 on
L2

μ(RN ).
In this paper we also deal with perturbation of the operator A by a

singular potential. It is known that there is a strong relation between second
order Schrödinger type operators and Hardy’s inequalities. When one deals
with a complete operator, i.e., allowing for a drift term, some generalised
Hardy inequality is needed. In [8] suitable conditions on μ are obtained for the
validity of a weighted Hardy inequality of the following form

C0

∫
RN

|u(x)|2
|x|2 dμ ≤

∫
RN

|∇u(x)|2dμ + Cμ

∫
RN

|u(x)|2dμ, u ∈ H1
μ(RN ),

where C0 =
(

N−2
2

)2
is the best constant in Hardy’s inequality and Cμ is a

positive constant depending on the measure μ. As a consequence existence
of positive solutions to the parabolic problem associated to the perturbed
operator L + V with 0 ≤ V (x) ≤ C0

|x|2 is stated. The bi-Laplacian operator
perturbed by the inverse fourth order potential has been studied in [20]: in
this case a Rellich’s inequality is needed. We prove here a weighted Rellich’s
inequality with respect to the operator L. Indeed, under the assumptions
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Hypothesis (H2)

(i)
√

μ ∈ H1
loc(R

N ),Δμ ∈ L1
loc(R

N ),

(ii) there exists a R0 > 0 such that |x|2
(

1
4

∣∣∣∇μ
μ

∣∣∣2 − 1
2

Δμ
μ

)
≤ 1

4
1

| log |x||2 ∀x ∈
BR0 ,

(iii) 1
4

∣∣∣∇μ
μ

∣∣∣2 − 1
2

Δμ
μ is bounded from above in R

N \ BR for every R > 0,

we prove that there exists C > 0 such that the following inequality with
optimal constant holds

(C0 − 1)2
∫
RN

|u|2
|x|4 dμ ≤

∫
RN

|Lu|2dμ + C||u||2H1
μ(RN )

for any u ∈ H2
μ(RN ), N ≥ 5. This inequality allows us to establish generation

results for the perturbed operator −A + V when 0 ≤ V ≤ (C0−1)2

|x|4 .
An important feature of the Ornstein-Uhlenbeck semigroup in L2

μ(RN )
(and also in Lp

μ(RN ) for p ∈ (1,∞)) is that a complete characterization of
its generator is available. In particular, it is known that the domain of the
Ornstein-Ulhenbeck operator in L2

μ is exactly the weighted Sobolev space
H2

μ(RN ), cf. [11,25]. The same result holds when μ takes the form μ = e−φ

with φ convex or φ ∈ C3(RN ) and φ together with its derivatives up to second
order has polynomial growth, cf. [12]. In this paper we provide more general
assumptions that imply that the domain of the Kolmogorov operator L coin-
cides with H2

μ(RN ). In particular, as a consequence of weighted Hardy’s and
Rellich’s inequalities, we derive some useful estimates such as a weighted in-
terpolation inequality and a kind of Calderon-Zygmund inequality that allows
us to deduce that D(L) = H2

μ(RN ) if N ≥ 5, Hypotheses (H1) and (H2) hold,
and additionally

Hypothesis (H3)

(i) μ ∈ W 2,1
loc (RN ) and

∣∣∣Di

(
Djμ

μ

)∣∣∣ ≤ ε
|x|2 + C

∣∣∣∇μ
μ

∣∣∣ ∀ i, j = 1, . . . , N .
Moreover, through more general higher order weighted Rellich’s inequal-
ities, we are also able to characterize the domain of the bi-Kolmogorov
operator A. We show that, assuming further N ≥ 7 and

Hypothesis (H3)
(ii) μ ∈ W 3,1

loc (RN ) and
∣∣∣Dij

(
Dkμ

μ

)∣∣∣ ≤ ε
|x|3 + C

∣∣∣∇μ
μ

∣∣∣ ∀ i, j, k = 1, . . . , N

then D(A) = H4
μ(RN ).

The interest in higher order operators has grown considerably in recent
times due to their applications in many fields of science, for example they
are involved in models of elasticity [26] or condensation in graphene [30], free
boundary problems [1] and non-linear elasticity [3,31]. Among the best known
features of higher order differential equations is the failure of maximum prin-
ciples, and hence of the positivity preserving property of the semigroup. The
heat kernel of the bi-Laplacian operator was studied by Hochberg already in
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80s, cf. [22], indeed even earlier in [16]. Together with a stochastic interpre-
tation for the underlying process, Hochberg shows that the integral kernel
k(t, x, y) satisfies

k(t, x, y) ≈ Mt−
1
6 |x − y|− 1

3 exp

(
−3

8

( |x − y|4
4t

) 1
3
)

cos

(
3
√

3
8

( |x − y|4
4t

) 1
3
)

for large x, M is a positive constant and the approximation holds up to lower-
order terms. This shows in particular that k has an oscillatory character and
changes sign infinitely often. However, even if the classical notion of positivity
fails, one can ask for a relaxation of this property: eventual positivity, meaning
that, considering positive initial data, the solution to a Cauchy problem may
become positive for large enough time. A further relaxation is the property of
local eventual positivity, i.e., eventual positivity on compact sets. Relying on
the explicit formula of the kernel on R

N , in [19] it is proved that for continu-
ous, compactly supported, positive initial data u0, the solution to the Cauchy
problem associated to the bi-Laplacian in R

N is individually locally eventually
positive meaning that: for any compact set K ⊂ R

N , there exists TK > 0 that
depends on u0 such that u(t, x) > 0 for all t ≥ TK and x ∈ K; and there exists
τ > 0 that depends on u0 such that for any t > τ there exists a xt ∈ R

N such
that u(t, xt) < 0. A generalisation in [18] covers the case of initial data that
decay fast at infinity and in [17] it is shown that also fractional polyharmonic
equations display the same behaviour. In Sect. 6, we obtain a semi-explicit
formula for the kernel of the bi-Ornstein-Ulhenbeck operator showing also in
this case an oscillatory character that prevents the kernel to be positive. How-
ever, we are able to state suitable conditions on the measure μ that imply local
eventual positivity for the semigroup (e−tA)t≥0. To this purpose we rely on
an abstract theory initiated by Daners, Glück and Kennedy in [13,14]. They
state sufficient conditions on the generators in order to obtain eventual pos-
itivity for the associated semigroups. The theory has been developed in [5]
considering milder conditions which imply local eventual positivity. Firstly,
investigating on the asymptotic behaviour of (e−tA)t≥0, we prove that the
semigroup is asymptotically irreducible, a rather strong property. Further, we
give sufficient conditions on the measure μ for both individual and uniform
local eventual positivity of the bi-Kolmogorov semigroup

(
e−tA

)
t≥0

.

The paper is organised as follows. In Sect. 2 we introduce the fourth
order operator A and state generation results. In Sect. 3 we prove that μ is the
unique invariant measure for (e−tA)t≥0 and we study asymptotic and positivity
properties for the semigroup. Section 4 deals with the proof of the weighted
Rellich inequality and the optimality of the constant. Some more estimates
and further higher order weighted Rellich’s inequality of Sect. 5 serve for the
characterisation of both the domains of L and A. Finally, in Sect. 6 we adapt
all the obtained results to the bi-Ornstein-Ulhenbeck semigroup and give a
semi-explicit formula for its kernel.
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2. The bi-Kolmogorov operator

We consider the square of a general Kolmogorov-type operator. To this purpose
let us consider some probability measure μ which has density 0 ≤ μ ∈ L1(RN )
with respect to the Lebesgue measure. We assume the following on μ

Hypothesis (H1)

(i) μ ∈ H1
loc(R

N ), ∇μ
μ ∈ Lr

loc(R
N , RN ) for some r > N ,

(ii) infx∈K μ(x) > 0 for every compact K ⊂ R
N .

We consider the operator L defined on smooth functions f as

Lf = Δf +
∇μ

μ
· ∇f.

By [2, Corollary 3.7], the closure of (L,C∞
c (RN )) on L2

μ(RN ) denoted by
(L,D(L)) generates an analytic contraction C0-semigroup of angle π

2 on L2
μ(RN ).

We notice that (L,D(L)) coincides with the operator associated to the sesquilin-
ear form

a(u, v) :=
∫
RN

∇u · ∇v dμ, u, v ∈ H1
μ(RN ), (2.1)

since it coincides with L on C∞
c (RN ) and both are generators on L2

μ(RN ). In
particular, D(L) ⊂ H1

μ(RN ) and∫
RN

Lf dμ = −
∫
RN

∇f · ∇1 dμ = 0,

for all f ∈ D(L). This implies that μ is a symmetrizing invariant measure for
the semigroup generated by L, and so we have the following.

Remark 2.1. It follows from [7, Corollary 2.10] that μ ∈ W 1,r
loc (RN ) for some

r > N and by Sobolev’s embedding we deduce that μ ∈ C
1− N

r

loc (RN ). In partic-
ular, this implies that for any compact set K ⊂ R

N there exists a positive con-
stant c = cK such that c−1 ≤ μ(x) ≤ c for any x ∈ K, where the lower bound
follows from the assumption that infK μ > 0 for any compact set K ⊂ R

N ,
and the upper bound is a byproduct of the partnership of μ to C

1− N
r

loc (RN ).

We introduce on the domain of L the sesquilinear form

aL(u, v) :=
∫
RN

Lu Lv dμ, u, v ∈ D(aL) := D(L). (2.2)

Since aL is positive semidefinite, there exists an operator (A,D(A)) which
satisfies

aL(u, v) =
∫
RN

A u v dμ, u ∈ D(A), v ∈ D(L).

Further, since C∞
c (RN ) is a core for L in L2

μ(RN ) it follows that aL is densely
defined. It is simple to check that aL is continuous and closed. Therefore, −A
is the generator of an analytic contraction C0-semigroup on L2

μ(RN ).
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Let us compute the explicit form of the operator A. We denote by divμ

the adjoint operator of ∇ in L2
μ(RN , RN ). Let Φ be a smooth vector field.

Then, for any f ∈ C1
c (RN ), the integration by parts formula gives∫

RN

∇f · Φ dμ = −
∫
RN

f

(
divΦ +

∇μ · Φ
μ

)
dμ,

where div is the classical divergence operator. It follows that divμ =

−
(
div + ∇μ

μ

)
and it is easy to see that L = divμ∇. Take now u, v ∈ C∞

c (RN )

and assume that μ ∈ W 2,1
loc (RN ). Then, two integration by parts give

aL(u, v) =
∫
RN

Lu Lv dμ =
∫
RN

Lu(divμ∇v)dμ

= −
∫
RN

∇(L u) · ∇v dμ =
∫
RN

divμ∇(Lu)v dμ. (2.3)

We have

∇(L u) · ∇v =
N∑

i=1

∂i

(
Δu +

∇μ

μ
· ∇u

)
∂iv

=
N∑

i,j=1

(
∂3

ijju +
∂2

ijμ∂ju

μ
+

∂jμ∂2
iju

μ
− ∂iμ∂jμ∂ju

μ2

)
∂iv. (2.4)

Let us assume now that μ ∈ W 3,1
loc (RN ) and consider the vector field

Φ := (Φ1, . . . ,ΦN ), Φi := ∂i

(
Δu +

∇μ

μ
· ∇u

)
, i = 1, . . . , N, u ∈ C∞

c (RN ).

It remains to compute divμΦ. By taking advantage from (2.4) we infer that

divμΦ =
N∑

i=1

(
∂iΦi +

∂iμΦi

μ

)
.

For any i = 1, . . . , N we have

∂iΦi =
N∑

j=1

(
∂4

iijju +
∂3

iijμ∂ju

μ
+

∂2
ijμ∂2

iju

μ
− ∂2

ijμ∂iμ∂ju

μ2
+

∂2
ijμ∂2

iju

μ

+
∂jμ∂3

iiju

μ
− ∂jμ∂iμ∂2

iju

μ2
− ∂2

iiμ∂jμ∂ju

μ2

− ∂iμ∂2
ijμ∂ju

μ2
− ∂iμ∂jμ∂2

iju

μ2
+ 2

(∂iμ)2∂jμ∂ju

μ3

)
. (2.5)

Further,

∂iμΦi

μ
=

N∑
j=1

(
∂iμ∂3

ijju

μ
+

∂2
ijμ∂iμ∂ju

μ2
+

∂jμ∂iμ∂2
iju

μ2
− (∂iμ)2∂jμ∂ju

μ3

)
.

(2.6)
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Putting together (2.5) and (2.6) we get

divμ∇(Lu) =
N∑

i,j=1

(
∂4

iijju + 2
∂jμ∂3

iiju

μ
+ 2

∂2
ijμ∂2

iju

μ
− ∂jμ∂iμ∂2

iju

μ2

− ∂2
ijμ∂jμ∂iu

μ2
− ∂3

iijμ∂ju

μ
− ∂2

iiμ∂jμ∂ju

μ2
+

(∂iμ)2∂jμ∂ju

μ3

)

and then, for u ∈ C∞
c (RN ), we have

Au = Δ2u + 2
∇μ

μ
· ∇(Δu) + 2

Tr[D2μD2u]
μ

−
(

D2u
∇μ

μ

)
· ∇μ

μ

− (
D2μ∇u

) · ∇μ

μ
+

∇(Δμ)
μ

· ∇u − Δμ

μ

∇μ

μ
· ∇u +

∣∣∣∣∇μ

μ

∣∣∣∣
2 ∇μ

μ
· ∇u.

(2.7)

Thus, we have the following result.

Proposition 2.2. Assume (H1) is satisfied. Then the operator −A associated
to the sesquilinear form aL defined by (2.2) generates an analytic contraction
C0-semigroup e−tA of angle π

2 on L2
μ(RN ). If in addition μ ∈ W 3,1

loc (RN ) then
C∞

c (RN ) ⊂ D(A) and A is given by (2.7).

3. Asymptotic properties of bi-Kolmogorov semigroups

We start with some considerations on the operator L introduced above. Let
us notice that D(L) ⊂ H1

μ(RN ), and that if g ∈ D(L) satisfies ∇g = 0 μ-a.e.
in R

N it follows that g is constant μ-a.e. in R
N .

Lemma 3.1. Let L be as above. Then:
(i) 1 ∈ D(L) and L1 = 0. This means that 0 is an eigenvalue of L and the

constant functions belong to the associated eigenspace;
(ii) the eigenspace of L associated to 0 coincides with the constant functions,

and it equals the fixed points of the semigroup (etL)t≥0, i.e., the set

E := {f ∈ L2
μ(RN ) : etLf = f μ − a.e. in R

N}.

Proof. (i) Consider a function η ∈ C∞
c (RN ) satisfying 0 ≤ η ≤ 1, η ≡ 1 in B1

and η ≡ 0 in R
N \ B2, where BR denotes the ball with centre 0 and radius

R. Then one can see easily that ηn converges to 1 and Lηn converges to 0,
where ηn(x) := η(x/n) for x ∈ R

N and n ∈ N. Since C∞
c (RN ) is a core for L,

it follows that 1 ∈ D(L) and L1 = 0. The linearity of L gives the second part.
(ii) Let f ∈ D(L) belong to the eigenspace associated to 0. Hence,

0 =
∫
RN

Lf fdμ =
∫
RN

|∇f |2dμ,

which gives ∇f = 0 μ-a.e. in R
N . The above considerations implies that f is

constant μ-a.e. in R
N . Let us prove that E coincides with the eigenspace of

L associated to 0. The inclusion ⊂ is trivial, indeed if f ∈ E then from the
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definition of L it follows that f ∈ D(L) and Lf = 0. This implies that f is a
constant function. To prove the converse inclusion, we recall that L generates
a strongly continuous semigroup, and so

etLf − f = L

∫ t

0

esLfds, f ∈ L2
μ(RN ), t ≥ 0. (3.1)

Let us assume that f ∈ D(L) and Lf = 0. Hence, LesLf = esLLf = 0 for any
s > 0, and from (3.1) it follows that

etLf − f = L

∫ t

0

esLfds =
∫ t

0

LesLfds = 0, t ≥ 0,

which gives f ∈ E . �

3.1. Analysis of (e−tA)t≥0

We prove that the measure μ is an invariant measure for the semigroup gen-
erated by −A. We recall first the definition of invariant measures.

Definition 3.2. Let ν be a probability Borel measure, and let (S(t))t≥0 be a
C0-semigroup of bounded linear operators on L2

ν(RN ). We say that ν is an
invariant measure for S(t) if∫

RN

S(t)fdν =
∫
RN

fdν, f ∈ Cb(RN ), t ≥ 0.

The following result shows that μ is an invariant measure for the semi-
group (e−tA)t≥0 generated by −A.

Proposition 3.3. μ is an invariant measure for (e−tA)t≥0. Further, 0 is an
eigenvalue of A, and the corresponding eigenspace consists of constant func-
tions.

Proof. By density, it is enough to prove that∫
RN

e−tAfdμ =
∫
RN

fdμ, f ∈ D(A).

Let f ∈ D(A), then we have

e−tAf − f =
∫ t

0

e−sA(−A)fds, t ≥ 0, (3.2)

where the equality is meant in L2
μ(RN ). By integrating both sides of (3.2) on

R
N with respect to μ, by applying Fubini’s theorem and by using the fact that

e−sA is a bounded linear operator for any s ∈ [0, T ] we get∫
RN

(e−tAf − f)dμ = −
∫ t

0

e−sA

(∫
RN

Afdμ

)
ds, t ≥ 0. (3.3)

We now claim that ∫
RN

Agdμ = 0, g ∈ D(A).
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If the claim is true, then the right-hand side of (3.3) vanishes and we get the
thesis. From Lemma 3.1 we know that the constant function equal to 1 is in
D(L) and L1 = 0. Hence,∫

RN

Agdμ =
∫
RN

Ag 1dμ =
∫
RN

LgL1dμ = 0, g ∈ D(A).

Therefore, the claim is proved and the thesis follows at once.
Let us prove the second part of the statement. Since 1 ∈ D(L) and

L1 = 0 it follows that 1 ∈ D(A) and for any constant function f , f ∈ D(A) and
Af = 0. Hence, 0 is an eigenvalue of A and R is contained in the corresponding
eigenspace. Let us prove that any function f ∈ L2

μ(RN ) such that Af = 0 μ-
a.e. is constant. To this aim, let f ∈ L2

μ(RN ) be such that Af = 0 μ-a.e.
Then,

0 =
∫
RN

Af fdμ =
∫
RN

(Lf)2dμ.

This implies that Lf = 0 μ-a.e. Lemma 3.1(ii) allows us to conclude. �

Now we show that μ is ergodic with respect to the semigroup (e−tA)t≥0,
i.e.,

L2
μ − lim

t→+∞
1
t

∫ t

0

e−sAfds =
∫
RN

fdμ, f ∈ L2
μ(RN ).

Proposition 3.4. μ is ergodic with respect to the semigroup (e−tA)t≥0. As a
byproduct, μ is the unique invariant measure for (e−tA)t≥0.

Proof. Let us set Ptf := t−1
∫ t

0
e−sAfds for any f ∈ L2

μ(RN ), arguing as in
the proof of [6, Proposition 8.1.13] we infer that there exists an operator P∞
such that

L2
μ − lim

t→+∞ Ptf = P∞f, f ∈ L2
μ(RN ),

that e−rAP∞ = P∞ for any r > 0 and that P∞ is a projection on the space
C := {f ∈ L2

μ(RN ) : e−tAf = f μ − a.e. in X}. Let us show that C only
consists of constant functions. If f ∈ C then f ∈ D(A) and Af = 0. From
Proposition 3.3 it follows that f is a constant function. On the other hand, if f
is constant then Af = 0, and from (3.2) we infer that e−tAf − f = 0 for μ-a.e.
in R

N . This implies that the dimension of C is 1, and therefore there exists a
linear operator S ∈ (L2

μ(RN ))∗ such that P∞f = S(f) for any f ∈ L2
μ(RN ).

From the Riesz representation theorem there exists a function g ∈ L2
μ(RN )

such that

S(f) =
∫
RN

fgdμ, f ∈ L2
μ(RN ).

Let us prove that g = 1 for μ-a.e. in R
N . Integrating Ptf on R

N with respect
to μ, by applying Fubini’s theorem and recalling that μ is an invariant measure
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for e−tA we get∫
RN

Ptfdμ =
∫
RN

1
t

(∫ t

0

e−sAfds

)
dμ =

1
t

∫ t

0

(∫
RN

e−sAfdμ

)
dt =

∫
RN

fdμ.

Letting t → +∞ it follows that∫
RN

fdμ =
∫
RN

S(f)dμ =
∫
RN

fgdμ, f ∈ L2
μ(RN ),

which gives g = 1 for μ-a.e. in R
N . The uniqueness of μ follows arguing as in

[6, Theorem 8.1.15]. �
The following proposition deals with the asymptotic behaviour of (e−tA)t≥0.

Proposition 3.5. For any f ∈ L2
μ(RN ) we have

(i) L2
μ − lim

t→+∞ e−tAf =
∫
RN

f dμ,

(ii) L2
μ − lim

λ→0+
λR(λ,−A)f =

∫
RN

f dμ.

Proof. (i) Let f ∈ D(A). Then, for t > 0
d

dt

∫
RN

|e−tAf |2dμ =2
∫
RN

(
e−tAf

) (−Ae−tAf
)
dμ = −2

∫
RN

|Le−tAf |2dμ.

Hence,

2
∫ t

0

‖Le−sAf‖2
L2

μ(RN )ds + ‖e−tAf‖2
L2

μ(RN ) ≤ ‖f‖2
L2

μ(RN ), t > 0.

This implies that the function t �→ Φf (t) := ‖Le−tAf‖2
L2

μ(RN ) ∈ L1(0,+∞).

Further, if f ∈ D(A2) we get

d

dt
Φf (t) = 2

∫
RN

(
L

d

dt
e−tAf

)(
Le−tAf

)
dμ

= 2
∫
RN

(
Le−tA(−A)f

) (
Le−tAf

)
dμ ≤ 2Φf (t) + 2Φ−Af (t),

for any t > 0. Hence, both Φf and Φ′
f belong to L1(0,+∞), which implies

that

lim
t→+∞ Φf (t) = 0.

Since −A generates an analytic semigroup, we infer that for any f ∈ L2
μ(RN )

we have e−Af ∈ D(An) for any n ∈ N. Therefore,

lim
t→+∞ ‖Le−tAf‖2

L2
μ(RN ) = lim

t→+∞ ‖Le−(t−1)Ae−Af‖2
L2

μ(RN )

= lim
t→+∞ ‖Le−tAe−Af‖2

L2
μ(RN ) = 0

for any f ∈ L2
μ(RN ).

Let us fix f ∈ L2
μ(RN ). Since (e−tA)t≥0 is a semigroup of contractions

in L2
μ(RN ) it follows that supt>0 ‖e−tAf‖L2

μ(RN ) < +∞, and so there exists a
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sequence (tn) diverging to +∞ and g ∈ L2
μ(RN ) such that e−tnAf → g weakly

in L2
μ(RN ). We claim that g is constant. Indeed, for any ψ ∈ D(L) we have∫

RN

gLψ dμ = lim
n→+∞

∫
RN

(e−tnAf)Lψ dμ = lim
n→+∞

∫
RN

(Le−tnAf)ψ dμ = 0.

This means that g ∈ D(L∗) = D(L) and L∗g = Lg = 0. From [24, Theorem
9.1.17] it follows that g is a constant function and the claim is proved. Further,

g =
∫
Rn

g dμ = lim
n→+∞

∫
Rn

e−tnAf dμ =
∫
Rn

f dμ,

since μ is the unique invariant measure for (e−tA)t≥0. Above computations
reveal that for any sequence (tm) diverging as m → +∞ there exists a sub-
sequence (tkm

) ⊂ (tm) such that e−tkmAf → ∫
RN fdμ weakly in L2

μ(RN ) as
m → +∞. Hence, we get that e−tAf → ∫

RN fdμ weakly in L2
μ(RN ) as t → +∞.

To prove that e−tAf → ∫
RN fdμ in L2

μ(RN ) as t → +∞, we notice that

‖e−tAf‖2
L2

μ(RN ) =
∫
RN

(e−tAf)(e−tAf)dμ

=
∫
RN

(e−2tAf)fdμ →
∫
RN

gfdμ = ‖g‖2
L2

μ(RN ),

which gives the thesis.
(ii) The statement is a consequence of (i) and of the representation of

R(λ,−A) as Laplace transform of (e−tA)t≥0. Let us fix f ∈ L2
μ(RN ), then,

R(λ,−A)f =
∫ ∞

0

e−λte−tAfdt, λ > 0.

We have

λR(λ,−A)f −
∫
RN

fdμ = λ

∫ ∞

0

e−λt

(
e−tAf −

∫
RN

fdμ

)
dt.

Let us fix ε > 0, from (i) there exists τ ∈ (0,+∞) such that∥∥∥∥e−tAf −
∫
RN

fdμ

∥∥∥∥
L2

μ(RN )

< ε/2, t ≥ τ.

By applying the integral Minkowski inequality we get∥∥∥∥λR(λ,−A)f −
∫
RN

fdμ

∥∥∥∥
L2

μ(RN )

≤ λ

∫ ∞

0

e−λt

∥∥∥∥e−tAf −
∫
RN

fdμ

∥∥∥∥
L2

μ(RN )

dt

= λ

∫ τ

0

e−λt

∥∥∥∥e−tAf −
∫
RN

fdμ

∥∥∥∥
L2

μ(RN )

dt

+ λ

∫ ∞

τ

e−λt

∥∥∥∥e−tAf −
∫
RN

fdμ

∥∥∥∥
L2

μ(RN )

dt

< 2‖f‖L2
μ(RN )λ

∫ τ

0

e−λtdt +
ε

2
≤ 2τλ‖f‖L2

μ(RN ) +
ε

2
.
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Let us choose λ > 0 such that 2τλ‖f‖L2
μ(RN ) ≤ ε/2 for any λ ∈ (0, λ), it follows

that ∥∥∥∥λR(λ,−A)f −
∫
RN

fdμ

∥∥∥∥
L2

μ(RN )

< ε, λ ∈ (0, λ).

The arbitrariness of ε gives the thesis. �

3.2. Local and asymptotic positivity

In this subsection we study some positiveness properties of the semigroup
(e−tA)t≥0. Let us begin with some considerations. From [21, Corollary 7.4(1)]
and Proposition 3.3 it follows that the semigroup e−tA is individually asymp-
totically positive, i.e.,

f ∈ L2
μ(RN )+ ⇒ lim

t→+∞ dist(e−tAf, L2
μ(RN )+) = 0,

where L2
μ(RN )+ := {f ∈ L2

μ(RN ) : f ≥ 0}. However, nothing can be said
neither about uniform eventual positivity nor eventual irreducibility, in the
sense of [13,14], since it is not known whether D(Ak) ⊂ L∞(RN ) for some
k ∈ N or et0A(L2

μ(RN )) ⊂ L∞(RN ) for some t0 > 0. Proposition 3.5 can be
seen as an intermediate result between individually asymptotically positivity
and eventually irreducibility, and we formulate it as follows. We introduce the
space

L2
μ(RN )> := {f ∈ L2

μ(RN ) : f ≥0,∃A∈B(RN ) : Leb(A)>0, f(x)>0 ∀x ∈ A},

where Leb(A) denotes the Lebesgue measure for any A ⊂ B(RN ). We say that
a strongly continuous semigroup of linear bounded operators T (t) on L2

μ(RN )
is asymptotically irreducible if

f ∈ L2
μ(RN )> ⇒ lim

t→+∞ dist(T (t)f, L2
μ(RN )>) = 0.

Proposition 3.6. The semigroup (e−tA)t≥0 is asymptotically irreducible.

Proof. The statement follows combining Proposition 3.5 and the fact that μ
is equivalent to the Lebesgue measure. �

The following results are inherit from the abstract results in [5, Theorems
3.3 & 4.4] applied to our setting. In particular, in [5], criteria for individual and
uniform local eventual positivity for C0-semigroups are proved. More precisely,
given three Banach lattices E,F,G, a C0-semigroup

(
etA

)
t≥0

with generator
A : D(A) ⊂ F → F and two positive operators S ∈ L(F,G), T ∈ L(E,F ),
positivity of SetATf for large times t > 0 whenever f is positive is stated. We
provide explicit proofs which follow the lines of that of the quoted theorems,
but are simplified since we deal with concrete objects.

Proposition 3.7. Assume that there exists n ∈ N such that D(An) ⊂ L∞
loc(R

N ).
Then, the semigroup (e−tA)t≥0 is locally individually eventually positive, i.e.,
for any f ∈ L2

μ(RN )∩L2
μ(K)> and any K ⊂ R

N compact set, there exist c > 0
and t0 > 0 such that

e−tA(χKf)(x) ≥ c, t ≥ t0, a.e. x ∈ K. (3.4)
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Proof. Let K ⊂ R
N be a compact set. Let us prove that we can apply to

(e−tA)t≥0 the procedure in [5, Theorem 3.3], with E = F = G = L2
μ(RN ), and

Sf = Tf = χKf for any f ∈ L2
μ(RN ). Clearly, T ′f = χkf for any f ∈ L2

μ(RN ).
We recall that GχK

:= {f ∈ G| ∃c > 0 : |f | ≤ cχK} is a Banach space if
endowed with the norm ‖f‖GχK

:= inf{c ≥ 0 : |f | ≤ cχK} for any f ∈ GχK
.

Let us notice that f ∈ GχK
if and only if f is essentially bounded on K and

f ≡ 0 a.e. on R
N

� K. The analyticity of A implies that e−tAf ⊂ D(Ak) for
any f ∈ L2

μ(RN ), any k ∈ N and any t > 0, hence for any f ∈ L2
μ(RN ) we have

Se−tAf ∈ GχK
for any t > 0.

Arguing as in [5, Theorem 3.3] we infer that SetATf → SP∞Tf in GχK

as t → +∞ for any f ∈ L2
μ(RN ), i.e.,

lim
t→+∞ inf{c > 0 : |SetATf − SP∞Tf | ≤ cχK a.e. in K} = 0, f ∈ L2

μ(RN ).

Let us consider f ∈ L2
μ(RN ) ∩ L2

μ(K)> and let us notice that

SP∞Tf = χK‖f‖L1
μ(K) > 0.

If t0 > 0 satisfies inf{c > 0 : |SetATf − SP∞Tf | ≤ cχK a.e. in K} ≤
2−1‖f‖L1

μ(RN ) for any t ≥ t0, by combining the above computations we get

Se−tATf = SetATf − SP∞Tf + SP∞Tf ≥
‖f‖L1

μ(RN )

2
χK ,

a.e. in K, for any t ≥ t0. From the definition of S and T (3.4) follows. �

If 0 is a simple pole for σ(−A) then we can improve the result of Propo-
sition 3.7.

Proposition 3.8. Assume that there exists n ∈ N such that D(An) ⊂ L∞
loc(R

N )
and that 0 is a simple pole for σ(−A). Then, the semigroup (e−tA)t≥0 is locally
uniformly eventually positive, i.e., for any K ⊂ R

N compact set there exists
t0 > 0 such that for any f ∈ L2

μ(RN ) ∩ L2
μ(K)> there exists c > 0 which

satisfies

e−tA(χKf)(x) ≥ c, t ≥ t0, a.e. in x ∈ K.

Proof. Since 0 is a simple pole for σ(−A) and (e−tA)t≥0 is eventually norm
continuous (this fact follows from the analyticity of (e−tA)t≥0, se e.g. [15,
Chapter II, Section 4.c]), from [32, Theorem 2.7] we have e−tA → P∞ in
operator norm as t → +∞.

Let us fix a compact set K, let E := L2
μ(K) and let F,G, S, T be as

in the proof of Proposition 3.7. Arguing as [5, Theorem 4.4] we infer that
Se−tA(I − P∞)T → 0 in L(ET ′

, GχK
), where ET ′

is the closure of E with
respect to the norm

‖f‖ET ′ :=
∫

K

|f |dμ, f ∈ L2
μ(K).

Hence, for any ε > 0 there exists t0 > 0 such that

‖Se−tA(I − P∞)Tf‖GχK
≤ ε‖f‖ET ′ = ε‖f‖L1

μ(K), f ∈ L2
μ(K).
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Let us choose f ∈ L2
μ(K)>, then SP∞Tf = χK‖f‖L1

μ(K) and we have

Se−tATf(x) =SP∞Tf(x) + Se−tA(I − P∞)Tf(x) ≥ (1 − ε)‖f‖L1
μ(K)χK(x),

a.e. in x ∈ K, t ≥ t0. By choosing ε = 1/2 we get the thesis with c =
2−1‖f‖L1

μ(K). �

Remark 3.9. In order to apply the above results, it remains then to provide
sufficient conditions which ensure D(An) ⊂ L∞

loc(R
N ) for some n ∈ N and that

0 is a simple pole for σ(−A).
To get the first condition, from the Sobolev embeddings, it is enough to prove
that D(An) ⊂ Hj

loc(R
N ) for some j > N/2. Let us notice that if μ ∈ C3(RN ),

by applying the local elliptic regularity and the explicit formula (2.7) of A
it follows that D(A) ⊂ H3

loc(R
N ). Analogously, we can prove that if μ ∈

C4n−1(RN ) it follows that D(An) ⊂ H4n−1
loc (RN ) for any n ∈ N. Hence, if

n ∈ N satisfies 4n − 1 > N/2 and μ ∈ C4n−1(RN ), it follows that D(An) ⊂
H4n−1

loc (RN ) ⊂ L∞
loc(R

N ).
As far as the second request is concerned, let us notice that if the embedding
D(L) ⊂ L2

μ(RN ) is compact, then the operator −A has compact resolvent.
Further, applying [15, Chapter IV, Corollary 1.19] it follows that 0 is a pole
for σ(−A) and Proposition 3.3 ensures that the multiplicity of rgP∞ = 1, i.e.,
0 is a simple pole for σ(−A). By Theorem 3.1 and the successive Example in
[23], it is enough that μ decays at infinity as e−c|x|α for some α > 1 and c > 0
to obtain that the embedding Hk

μ(RN ) ⊂ L2
μ(RN ) is compact for any k ∈ N,

k ≥ 1. To conclude, since D(L) ⊂ H1
μ(RN ), a sufficient condition for 0 of being

a simple pole for σ(−A) is that the embedding H1
μ(RN ) ⊂ L2

μ(RN ) is compact
and therefore that μ decays at infinity as e−c|x|α for some α > 1 and c > 0.

Taking Remark 3.9 into account, we provide an example of a measure μ
which satisfies the assumptions of Proposition 3.8.

Example 3.10. The measure

μ(x) := K exp
(−(c1 + c2|x|2)m

)
, x ∈ R

N ,

where c1, c2,m are positive constants with m > 1/2 and K := ‖μ‖−1
L1(RN )

is a
normalizing factor, satisfies the assumptions of Proposition 3.8.

4. Weighted Rellich’s inequality

The aim of this section is to prove a weighted Rellich’s inequality with respect
to the measure μ. We define

U :=
1
4

∣∣∣∣∇μ

μ

∣∣∣∣
2

− 1
2

Δμ

μ
,

denote by C0 :=
(

N−2
2

)2
and consider the following assumptions on μ.

Hypothesis (H2)
(i)

√
μ ∈ H1

loc(R
N ),Δμ ∈ L1

loc(R
N );
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(ii) there exists a R0 > 0 such that |x|2U(x) ≤ 1
4

1
| log |x||2 ∀x ∈ BR0 ;

(iii) U is bounded from above in R
N \ BR for every R > 0.

We note that if μ satisfies (H1)(i) then
√

μ ∈ H1
loc(R

N ). In fact, μ ∈
H1

loc(R
N ) implies μ ∈ L1

loc(R
N ) and ∇μ ∈ L2

loc(R
N , RN ) and since ∇μ

μ ∈
Lr

loc(R
N , RN ) for some r > N , it follows that ∇μ

μ ∈ L2
loc(R

N , RN ). Then√
μ ∈ L2

loc(R
N ) and

∫
K

|∇μ
1
2 |2dx =

1
4

∫
K

|∇μ|2
μ

dx ≤ 1
4

(∫
K

∣∣∣∣∇μ

μ

∣∣∣∣
2

dx

) 1
2 (∫

K

|∇μ|2dx

) 1
2

< ∞

for every compact set K ⊂ R
N .

Theorem 4.1. Set C0 =
(

N−2
2

)2
and assume N ≥ 5 and Hypothesis (H2).

Then,

(i) For any ε > 0 and any u ∈ C∞
c (RN ) there exists C1 > 0 such that

(
(C0 − 1)2 − ε

) ∫
RN

|u(x)|2
|x|4 dμ ≤

∫
RN

|Lu(x)|2dμ +
C1

ε

∫
RN

|u(x)|2dμ. (4.1)

(ii) For any u ∈ C∞
c (RN ) there exist C1, C2 > 0 such that

(C0 − 1)2
∫
RN

|u(x)|2
|x|4 dμ ≤

∫
RN

|Lu(x)|2dμ + C1

∫
RN

|∇u(x)|2dμ

+ C2

∫
RN

|u(x)|2dμ. (4.2)

Proof. Under the assumption (H2), by [8, Theorem 3.3], the following weighted
Hardy inequality holds

C0

∫
RN

|ϕ|2
|x|2 dμ ≤

∫
RN

|∇ϕ|2dμ + Cμ

∫
RN

|ϕ|2dμ, ϕ ∈ H1
μ(RN ) (4.3)

for some constant Cμ > 0 and C0 =
(

N−2
2

)2
is the best constant in Hardy’s in-

equality. For u ∈ C∞
c (RN ) let us apply (4.3) to the function ϕ(x) = u(x)(|x|2+

δ)−1/2 for δ > 0. We have

C0

∫
RN

|u|2
|x|2(|x|2 + δ)

dμ ≤
∫
RN

∣∣∣∣∇
(

u

(|x|2 + δ)1/2

)∣∣∣∣
2

dμ + Cμ

∫
RN

|u|2
|x|2 + δ

dμ.

(4.4)

Since ∣∣∣∣∇
(

u

(|x|2 + δ)1/2

)∣∣∣∣
2

=
∣∣∣∣ ∇u

(|x|2 + δ)1/2
− u

x

(|x|2 + δ)3/2

∣∣∣∣
2

=
|∇u|2

|x|2 + δ
− 2u

∇u · x

(|x|2 + δ)2
+

|u|2|x|2
(|x|2 + δ)3

,

by applying the integration by parts formula to the above first addend we infer
that
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∫
RN

∣∣∣∣∇
(

u

(|x|2 + δ)1/2

)∣∣∣∣
2

dμ =

∫
RN

(∇u · ∇u

|x|2 + δ
− 2u

∇u · x

(|x|2 + δ)2
+

|u|2|x|2
(|x|2 + δ)3

)
dμ

=

∫
RN

∇u · ∇
(

u

|x|2 + δ

)
dμ +

∫
RN

|u|2|x|2
(|x|2 + δ)3

dμ

= −
∫
RN

Lu
u

|x|2 + δ
dμ +

∫
RN

|u|2|x|2
(|x|2 + δ)3

dμ. (4.5)

By replacing (4.5) in (4.4) and using the fact that |x|2 < |x|2 + δ, we get

(C0 − 1)
∫
RN

|u|2
(|x|2 + δ)2

dμ ≤ −
∫
RN

Lu
u

|x|2 + δ
dμ + Cμ

∫
RN

|u|2
|x|2 + δ

dμ.

Let us apply the Young inequality ab ≤ η
2a2 + 1

2η b2, for any a, b, η > 0, to
the first addend of the right-hand side above, with a = |u(x)|(|x|2 + δ)−1 and
b = |Lu(x)|. It follows that

−
∫
RN

Lu
u

|x|2 + δ
dμ ≤ 1

2η

∫
RN

|Lu|2dμ +
η

2

∫
RN

|u|2
(|x|2 + δ)2

dμ,

which gives

2η
(
C0 − 1 − η

2

) ∫
RN

|u|2
(|x|2 + δ)2

dμ ≤
∫
RN

|Lu|2dμ + 2Cμη

∫
RN

|u|2
|x|2 + δ

dμ.

The maximum of the function (0,+∞) � η �→ 2η
(
C0 − 1 − η

2

)
is achieved at

η = C0 − 1. Then,

(C0 − 1)2
∫
RN

|u|2
(|x|2 + δ)2

dμ ≤
∫
RN

|Lu|2dμ + 2Cμ(C0 − 1)
∫
RN

|u|2
|x|2 + δ

dμ.

(4.6)

To prove (i), it is enough to apply again the Young inequality 2ab ≤ δ̃a2 + 1

δ̃
b2

for any a, b, δ̃ > 0 to the last addend in the right-hand side of (4.6) with
a = |u(x)|(|x|2 + δ)−1 and b = |u(x)|. It follows that

(C0 − 1)2
∫
RN

|u|2
(|x|2 + δ)2

dμ ≤
∫
RN

|Lu|2dμ + δ̃Cμ(C0 − 1)
∫
RN

|u|2
(|x|2 + δ)2

dμ

+
Cμ(C0 − 1)

δ̃

∫
RN

|u|2dμ

for any δ̃ > 0. For ε > 0 take δ̃ = ε(Cμ(C0 − 1))−1. Then we have

(
(C0 − 1)2 − ε

) ∫
RN

|u|2
(|x|2 + δ)2

dμ ≤
∫
RN

|Lu|2dμ +
(Cμ(C0 − 1))2

ε

∫
RN

|u|2dμ.

Letting δ → 0, the thesis follows by applying Fatou’s lemma.
For assertion (ii) we use (4.6) to deduce that

(C0 − 1)2
∫
RN

|u|2
(|x|2 + δ)2

dμ ≤
∫
RN

|Lu|2dμ + 2Cµ(C0 − 1)

∫
RN

|u|2
|x|2 dμ. (4.7)
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Now, applying (4.3) to the last integral in the right-hand side of (4.7) we obtain

(C0 − 1)2
∫
RN

|u|2
(|x|2 + δ)2

dμ ≤
∫
RN

|Lu|2dμ +
2(C0 − 1)Cμ

C0

∫
RN

|∇u|2dμ

+
2(C0 − 1)(Cμ)2

C0

∫
RN

|u|2dμ.

So, Fatou’s lemma gives the assertion (ii). �

Remark 4.2. If one assumes (H1) and (H2), then, since C∞
c (RN ) is a core for

L, it follows that (4.1) and (4.2) hold true for all u ∈ D(L).

4.1. Optimality of the constant

In this subsection we prove that the best constant in the weighted Rellich

inequality is (C0 − 1)2 =
(

N(N−4)
4

)2

, which is known as the best constant in
the classical Rellich inequality.

Using Remark 2.1, we first observe the following properties of the measure
μ.

Remark 4.3. Assume that μ satisfies (H1). Then

(i) sup
{

δ ∈ R : 1
|x|δ ∈ L1

μ,loc(R
N )

}
= N . Indeed, from Remark 2.1, for any

ε > 0 we have∫
B1\Bε

|x|−δdμ ∼
∫

B1\Bε

|x|−δdx = ωN

∫ 1

ε

t−δ+N−1dt

=

⎧⎨
⎩

ωN
(1 − εN−δ)

N − δ
, δ < N,

−ωN ln(ε) δ = N ;

(ii) for any δ < N and any n ∈ N we have
∫

B1/n

|x|−δdμ = ωN

(
1
n

)−δ+N

.

This simply follows arguing as in (i).

Taking into consideration Remark 4.2 and Remark 4.3 we prove now the
optimality of the constant (C0 − 1)2 in the weighted Rellich inequality (4.2).

Theorem 4.4. Assume that N ≥ 5, Hypothesis (H1) holds and for any ε > 0
there is Cε > 0 such that∣∣∣∣∇μ

μ

∣∣∣∣
2

≤ ε

|x|2 + Cε in BR1

for some R1 > 0. Then, the weighted Rellich inequality

c

∫
RN

|u(x)|2
|x|4 dμ ≤

∫
RN

|Lu(x)|2dμ + C‖u‖2
H1

μ
for some C > 0 and all u ∈ D(L)

does not hold if c > (C0 − 1)2 =
(

N(N−4)
4

)2

.
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Proof. Take γ < 0 and consider the function ϕ(x) = |x|γ . A simple computa-
tion shows that

Lϕ = Δ|x|γ +
∇μ

μ
· ∇|x|γ = γ

(
γ − 2 + N +

∇μ

μ
· x

)
|x|γ−2.

Using Young’s inequality and the hypotheses on μ, for x ∈ BR1 , we have

|Lϕ|2 ≤ (1 + ε)γ2(γ − 2 + N)2|x|2γ−4 +
(

1 +
1
ε

)
γ2

∣∣∣∣∇μ

μ

∣∣∣∣
2

|x|2γ−2

≤
[
(1 + ε)γ2(γ − 2 + N)2 + ε2

(
1 +

1
ε

)
γ2

]
|x|2γ−4

+ Cε2

(
1 +

1
ε

)
γ2|x|2γ−2

≤ [
(1 + ε)γ2(γ − 2 + N)2 + (ε2 + ε)γ2

] |x|2γ−4 + C|x|2γ−2. (4.8)

Let c > (C0 − 1)2 and γ be such that⎧⎪⎨
⎪⎩

(1 + ε)γ2(γ − 2 + N)2 + (ε2 + ε)γ2 < c

2γ − 4 ≤ −N

2γ − 2 > −N

so that ϕ ∈ H1
loc(R

N ) but ϕ /∈ H2
loc(R

N ). Observe that such choice of γ

is possible for ε small enough since the function f(γ) = γ2 (γ − 2 + N)2 is
continuous and decreasing in

(
1 − N

2 , 2 − N
2

]
and f(γ) ≥ f(2− N

2 ) = (C0−1)2.
For n ∈ N and ϑ ∈ C∞

c (RN ) such that 0 ≤ ϑ ≤ 1, ϑ = 1 in B1 and ϑ = 0
in Bc

2 we set

ϕn(x) =

⎧⎪⎪⎨
⎪⎪⎩

αn + βn|x|γ1 if |x| < 1
n ,

|x|γ if 1
n ≤ |x| < 1,

|x|γϑ(x) if 1 ≤ |x| < 2,
0 if |x| ≥ 2,

where 2 − N
2 < γ1 < 0, βn = γ1

γ
1

nγ−γ1 and αn = 1
nγ − βn

nγ1 . Since L is the
operator associated to the form a given by (2.1), on can see that ϕn ∈ D(L).
Modifying the support of ϕn we can assume without loss of generality that
R1 = 1.

We propose now to prove that

λ1 := inf
ϕ∈H2

μ\{0}

⎛
⎝

∫
RN

(
|Lϕ|2 − c

|x|4 ϕ2
)

dμ∫
RN ϕ2 dμ +

∫
RN |∇ϕ|2 dμ

⎞
⎠

is equal to −∞. To this purpose we observe that∫
RN

(
|Lϕn|2 − c

|x|4 ϕ2
n

)
dμ =

∫
B1\B 1

n

(
|L|x|γ |2 − c

|x|4 |x|2γ

)
dμ

+
∫

B2\B1

(
|L (|x|γϑ(x)) |2 − c

|x|4 (|x|γϑ(x))2
)

dμ
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+
∫

B 1
n

|L (αn + βn|x|γ1) |2 − c

|x|4 (αn + βn|x|γ1)2 dμ.

So, by (4.8), we have
∫
RN

(
|Lϕn|2 − c

|x|4 ϕ2
n

)
dμ

≤ [
(1 + ε)γ2(γ − 2 + N)2 + (ε2 + ε)γ2 − c

] ∫
B1\B 1

n

|x|2γ−4 dμ

+ C

∫
B1\B 1

n

|x|2γ−2 +
∫

B2\B1

(
|L (|x|γϑ(x)) |2 − c

|x|4 (|x|γϑ(x))2
)

dμ

+
∫

B 1
n

[
β2

n

[
(1 + ε)γ2

1(γ1 − 2 + N)2 + (ε2 + ε)γ2
1

] |x|2γ1−4

− c (αn + βn|x|γ1)2
1

|x|4
]
dμ + C

∫
B 1

n

|x|2γ1−2dμ.

The term∫
B 1

n

β2
n

[
(1 + ε)γ2

1(γ1 − 2 + N)2 + (ε2 + ε)γ2
1

] |x|2γ1−4 − c (αn + βn|x|γ1)2
1

|x|4 dμ

is negative, for ε small enough, since f(γ1) ≤ c, αn > 0 and βn > 0. Moreover,
using (H1) we deduce that

∫
B2\B1

(
|L (|x|γϑ(x)) |2 − c

|x|4 (|x|γϑ(x))2
)

dμ ≤ Cϑ

for some constant Cϑ > 0. Furthermore, since 2γ1 − 2 > 2γ − 2 > −N , we
obtain ∫

B 1
n

|x|2γ1−2 +
∫

B1\B 1
n

|x|2γ−2dμ ≤ C

for some positive constant C. Then we have
∫
RN

(
|Lϕn|2 − c

|x|4 ϕ2
n

)
dμ

≤ [
(1 + ε)γ2(γ − 2 + N)2 + (ε2 + ε)γ2 − c

] ∫
B1\B 1

n

|x|2γ−4 dμ + Cϑ + C.

(4.9)

On the other hand we know that ‖ϕn‖H1
μ

≥ C ′
ϑ for some C ′

ϑ > 0. Putting
together this and (4.9) one obtains

λ1 ≤
[
(1 + ε)γ2(γ − 2 + N)2 + (ε2 + ε)γ2 − c

] ∫
B1\B 1

n

|x|2γ−4 dμ + Cϑ + C

C ′
ϑ

.
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Now, since 2γ − 4 ≤ −N and taking into account Remark 4.3 (i) we have

lim
n→∞

∫
B1\B 1

n

|x|2γ−4 dμ = +∞.

Therefore, since (1 + ε)γ2(γ − 2 + N)2 + (ε2 + ε)γ2 − c < 0 it follows that
λ1 = −∞. �

5. Domain characterization

In this section we want to characterise the domain of A. To this purpose we
first have to characterise the domain of L. Then, recall that U = −Δ

√
μ√

μ =

− 1
2

Δμ
μ + 1

4
|∇μ|2

μ2 , we first prove the following fundamental estimate.

Proposition 5.1. Let N ≥ 3. Assume that μ satisfies Hypothesis (H2). If ϕ ∈
H1

μ(RN ) then ∇μ
μ ϕ ∈ L2

μ(RN , RN ) and there exists C > 0 such that∥∥∥∥∇μ

μ
ϕ

∥∥∥∥
L2

μ

≤ C
(
‖∇ϕ‖L2

μ
+ ‖ϕ‖L2

μ

)
.

Proof. Integrating by parts, taking into account the definition of U and using
Hölder’s and Young’s inequalities we have∥∥∥∥∇μ

μ
ϕ

∥∥∥∥
2

L2
μ

=
∫
RN

∇μ
∇μ

μ
ϕ2dx = −

∫
RN

(
Δμ

μ
ϕ2 − |∇μ|2

μ2
ϕ2 + 2ϕ

∇μ

μ
· ∇ϕ

)
dμ

≤
∫
RN

2Uϕ2dμ +
1
2

∫
RN

|∇μ|2
μ2

ϕ2dμ + δ

∫
RN

|∇μ|2
μ2

ϕ2dμ +
C

δ

∫
RN

|∇ϕ|2dμ

for every δ > 0 and some C > 0. Then(
1
2

− δ

)∥∥∥∥∇μ

μ
ϕ

∥∥∥∥
2

L2
μ

≤
∫
RN

2Uϕ2dμ +
C

δ
‖∇ϕ‖2

L2
μ
. (5.1)

We observe now that the hypotheses of [8, Theorem 3.3] are fulfilled and then
the weighted Hardy inequality

c

∫
RN

ϕ2

|x|2 dμ ≤
∫
RN

|∇ϕ|2dμ + cμ‖ϕ‖2
L2

μ

holds for c < C0 =
(

N−2
2

)2
, where cμ is a positive constant. Moreover, by (ii)

and (iii) of (H2), there exist c1 < C0 and c2 ≥ 0 such that 2U ≤ c1
|x|2 + c2.

Then we have∫
RN

2Uϕ2dμ ≤ c1

∫
RN

ϕ2

|x|2 dμ + c2

∫
RN

ϕ2dμ ≤ ‖∇ϕ‖2
L2

μ
+ (c2 + cμ)‖ϕ‖2

L2
μ
.(5.2)

Putting together (5.1), (5.2) and taking δ ∈ (0, 1/2) we obtain the thesis. �

Throughout the rest of this section we will assume Hypothesis (H2) and
further

Hypothesis (H3) For any ε > 0 there is Cε > 0 such that
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(i) μ ∈ W 2,1
loc (RN ) and

∣∣∣Di

(
Djμ

μ

)∣∣∣ ≤ ε
|x|2 +Cε

∣∣∣∇μ
μ

∣∣∣ for every i, j = 1, . . . , N ;

(ii) μ ∈ W 3,1
loc (RN ) and

∣∣∣Dij

(
Dkμ

μ

)∣∣∣ ≤ ε
|x|3 + Cε

∣∣∣∇μ
μ

∣∣∣ for every i, j, k =
1, . . . , N .

In the sequel we need the following interpolation inequality.

Proposition 5.2. Assume that N ≥ 5 and μ satisfies Hypotheses (H2) and
(H3)(i). Then for any ε > 0 there exists Cε > 0 such that

‖∇u‖2
L2

μ
≤ ε‖D2u‖2

L2
μ

+ Cε‖u‖2
L2

μ
(5.3)

for every u ∈ C∞
c (RN ).

Proof. It is well known that for every ϕ ∈ H2(RN ) we have

‖∇ϕ‖2
L2 ≤ ε‖Δϕ‖2

L2 +
C

ε
‖ϕ‖2

L2 .

We take ϕ = u
√

μ. Then we have

‖∇ϕ‖2
L2 =

∫
RN

|∇u
√

μ + u∇ (
√

μ) |2dx

= ‖∇u‖2
L2

μ
+

∫
RN

(
2u

√
μ ∇u · ∇ (

√
μ) + u2 |∇ (

√
μ)|2

)
dx

= ‖∇u‖2
L2

μ
+

∫
RN

u2Udμ.

On the other hand, since Δ
√

μ = −√
μU , we have

‖Δϕ‖2
L2 =

∫
RN

|Δu
√

μ + 2∇u · ∇√
μ + uΔ

√
μ|2 dx

≤ C

(
‖Δu‖2

L2
μ

+
∫
RN

∣∣∣∣∇μ

μ
· ∇u

∣∣∣∣
2

dμ +
∫
RN

U2u2dμ

)
.

Estimating the second term in the right hand side by Proposition 5.1, one
obtains

∫
RN

∣∣∣∣∇μ

μ
· ∇u

∣∣∣∣
2

dμ ≤ C
(
‖∇u‖2

L2
μ

+ ‖D2u‖2
L2

μ

)
.

As regards the last term we observe that by Hypothesis (H3)(i) we have

U2 ≤ C

(∣∣∣∣∇μ

μ

∣∣∣∣
2

+
∣∣∣∣div

(∇μ

μ

)∣∣∣∣
)2

≤ C

(∣∣∣∣∇μ

μ

∣∣∣∣
4

+
∣∣∣∣∇μ

μ

∣∣∣∣
2

+ c1
1

|x|4
)

for some c1 < (C0 − 1)2 =
(

N(N−4)
4

)2

. By Proposition 5.1 we have

∫
RN

∣∣∣∣∇μ

μ

∣∣∣∣
2

u2dμ ≤ C‖u‖2
H1

μ
.
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Using twice Proposition 5.1 and taking into account that by assumption
we have ∇

∣∣∣∇μ
μ

∣∣∣ ≤ ε
|x|2 + Cε

∣∣∣∇μ
μ

∣∣∣, it follows, by weighted Rellich’s inequality,
that

∫
RN

∣∣∣∣∇μ

μ

∣∣∣∣
4

u2dμ =

∫
RN

∣∣∣∣∇μ

μ

∣∣∣∣
2 (∣∣∣∣∇μ

μ

∣∣∣∣ u

)2

dμ ≤ C

(∥∥∥∥∇μ

μ
u

∥∥∥∥
2

L2
μ

+

∥∥∥∥∇
∣∣∣∣∇μ

μ
u

∣∣∣∣
∥∥∥∥
2

L2
μ

)

≤ C

(
‖u‖2

L2
μ

+ ‖∇u‖2
L2

μ
+

∥∥∥∥∇μ

μ
· ∇u

∥∥∥∥
2

L2
μ

+

∫
RN

∣∣∣∣∇
∣∣∣∣∇μ

μ

∣∣∣∣
∣∣∣∣
2

u2dμ

)

≤ C

(
‖u‖2

L2
μ

+ ‖∇u‖2
L2

μ
+ ‖D2u‖2

L2
μ

+

∫
RN

ε2
u2

|x|4 dμ +

∫
RN

∣∣∣∣∇μ

μ

∣∣∣∣
2

u2dμ

)

≤ C‖u‖2
H2

μ
.

Then, ∫
RN

U2u2dμ ≤ C‖u‖2
H2

μ
.

Finally,

‖∇u‖2
L2

μ
≤ ε‖u‖2

H2
μ

+
∫
RN

(
εU2 − U

)
u2dμ + Cε‖u‖2

L2
μ
.

Since εU2 − U ≤ 1
ε + 2εU2 we have

‖∇u‖2
L2

μ
≤ ε‖u‖2

H2
μ

+ Cε‖u‖2
L2

μ
.

This implies (5.3). �

The following result concerns a kind of Calderon-Zygmund’s inequality.

Proposition 5.3. Assume that N ≥ 5 and μ satisfies Hypotheses (H2) and
(H3)(i).

Then for all u ∈ C∞
c (RN ) we have

‖D2u‖L2
μ

≤ C
(
‖Lu‖L2

μ
+ ‖u‖L2

μ

)
. (5.4)

Proof. For u ∈ C∞
c (RN ) we have

‖D2u‖2
L2

μ
=

N∑
i,j=1

∫
RN

Diju Diju μdx

= −
N∑

i,j=1

∫
RN

(Diiju Dju μ + Diju Dju Diμ) dx

=
N∑

i,j=1

(∫
RN

(Diiu Djju μ + Diiu Dju Djμ) dx −
∫
RN

Diju Dju Diμdx

)

=
N∑

i,j=1

(∫
RN

(
Diiu Djju μ + Diiu Dju Djμ

)
dx

+

∫
RN

(
Diu Dju Dijμ + Diu Djju Diμ

)
dx

)
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=

∫
RN

(
(Δu)2 + 2Δu

∇μ

μ
· ∇u +

(
D2μ

μ
∇u

)
· ∇u

)
dμ.

We observe that(
D2μ

μ
∇u

)
· ∇u =

(∇μ

μ
· ∇u

)2

− (D2φ∇u) · ∇u,

where φ is such that μ = e−φ. Then finally

‖D2u‖2
L2

μ
=

∫
RN

(
(Lu)2 − (

D2φ∇u
) · ∇u

)
dμ.

We estimate now the last term in the inequality. By (H3)(i) we obtain that
for any ε > 0 there is Cε > 0 such that

| (D2φ∇u
) · ∇u| ≤ ε

|∇u|2
|x|2 + Cε

∣∣∣∣∇μ

μ

∣∣∣∣ |∇u|2.

So, using (4.3), we have

−
∫
RN

(
D2φ∇u

) · ∇udμ ≤ ε

∫
RN

|∇u|2
|x|2 dμ + Cε

∫
RN

∣∣∣∣∇μ

μ

∣∣∣∣ |∇u|2dμ

≤ C−1
0 ε‖D2u‖2

L2
μ

+ C−1
0 εcμ‖∇u‖2

L2
μ

+ Cεδ

∫
RN

∣∣∣∣∇μ

μ

∣∣∣∣
2

|∇u|2dμ

+ Cε,δ

∫
RN

|∇u|2dμ

≤ (C−1
0 ε + δCε)‖D2u‖2

L2
μ

+ Cε,δ‖∇u‖2
L2

μ
= ε′‖D2u‖2

L2
μ

+ Cε′‖∇u‖2
L2

μ
.

Using the weighted interpolation inequality (5.3) we have that for every δ > 0
there is Cδ > 0 such that

‖D2u‖2
L2

μ
≤ ‖Lu‖2

L2
μ

+ ε′‖D2u‖2
L2

μ
+ Cε′‖∇u‖2

L2
μ

≤ ‖Lu‖2
L2

μ
+ ε′‖D2u‖2

L2
μ

+ Cε′
(
δ‖D2u‖2

L2
μ

+ Cδ‖u‖2
L2

μ

)
.

So, the assertion follows by choosing ε′ and δ such that ε′ + δCε′ < 1
2 . �

Applying Propositions 5.1, 5.2 and 5.3 one obtains the following charac-
terization of D(L).

Theorem 5.4. Assume that N ≥ 5 and μ satisfies Hypotheses (H1), (H2) and
(H3)(i) then

D(L) = H2
μ(RN ).

Proof. It follows from Propositions 5.3, 5.2 and 5.1 that

C−1‖u‖H2
μ

≤ ‖Lu‖L2
μ

+ ‖u‖L2
μ

≤ C‖u‖H2
μ

(5.5)

for all u ∈ C∞
c (RN ) and some constant C > 0. So, since C∞

c (RN ) is a core for
L, we deduce that D(L) ⊂ H2

μ(RN ).
Now, if u ∈ H2

μ(RN ), then, integrating by parts, we obtain∫
RN

∇u · ∇ϕ dμ = −
∫
RN

(Δu +
∇μ

μ
· ∇u)ϕ dμ



13 Page 24 of 37 D. Addona et al. NoDEA

for all ϕ ∈ C∞
c (RN ). Thus, using Proposition 5.1, we have (Δu + ∇μ

μ · ∇u) ∈
L2

μ(RN ) and hence u ∈ D(L). �

Remark 5.5. Observe that since C∞
c (RN ) is a core for L and D(L) = H2

μ(RN ),
by equivalence of the norms (5.5) it follows that C∞

c (RN ) is dense in the
weighted Sobolev space H2

μ(RN ).

As a consequence of the above theorem and the weighted Rellich inequal-
ity (4.1) one obtains the following.

Theorem 5.6. Assume N ≥ 5 and Hypotheses (H1), (H2), (H3) (i). For every

0 ≤ V (x) ≤ c
|x|4 with c <

(
N(N−4)

4

)2

, the perturbed operator (−A + V,D(A))

is the generator of an analytic C0-semigroup on L2
μ(RN ). If instead, c =(

N(N−4)
4

)2

, a suitable extension of −A + c
|x|4 is the generator of an analytic

C0-semigroup on H1
μ(RN ).

Proof. Let us first consider the case c <
(

N(N−4)
4

)2

and the sesquilinear form

aL,V (u, v) =
∫
RN

LuLvdμ −
∫
RN

V uvdμ,

D(aL,V ) = D(L)

associated to A−V . Since by Theorem 5.4 D(L) = H2
μ(RN ), it follows by (4.2)

that D(aL,V ) = H2
μ(RN ) and D(A − V ) = D(A). Now, since c < (C0 − 1)2,

there is ε > 0 such that bε := c((C0 − 1)2 − ε)−1 < 1. So, applying (4.1) we
obtain

aL,V (u, u) +
C1

ε

∫
RN

|u|2dμ ≥ (1 − bε)
∫
RN

|Lu|2dμ

for all u ∈ D(L) and some constant C1 > 0. Thus aL,V with domain D(L) is
closed and quasi-accretive. So the first assertion follows, since aL,V is contin-
uous and densely defined.

As regards the limit case V = c
|x|4 and c =

(
N(N−4)

4

)2

, we have, by
(4.2),

aL,V (u, u) + C‖u‖H1
μ

≥ 0 for all u ∈ D(L).

So, since A is symmetric, by [28, Lemma 1.29], one obtains that aL,V is closable
and a suitable extension of −A + V associated to the closure of aL,V is the
generator of an analytic C0-semigroup on H1

μ(RN ). �

We note now that Proposition 5.1 allows us to prove the following useful
estimates.

Proposition 5.7. Let N ≥ 5 and μ satisfy Hypotheses (H1) and (H2). Then
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1.
∫
RN

|u(x)|2
|x|4 dμ ≤ C‖u‖2

H2
μ

(5.6)

for all u ∈ H2
μ(RN ), and if we assume in addition that (H3)(i) holds then

∫
RN

|∇u(x)|2
|x|4 dμ ≤ C

(∫
RN

|∇Lu(x)|2dμ + ‖u‖2
H2

μ

)
(5.7)

for all u ∈ D(L) with Lu ∈ H1
μ(RN ).

2. If N ≥ 7, then∫
RN

|u(x)|2
|x|6 dμ ≤ C

(∫
RN

|L∇u(x)|2dμ + ‖u‖2
H2

μ

)
(5.8)

for any u ∈ H3
μ(RN ).

We stress that all the constants C appearing in (5.6), (5.7) and in (5.8) are
independent of u.

Proof. Estimate (5.6) follows from the weighted Rellich inequality (4.2), (5.5)
and Theorem 5.4. As regards the estimate (5.8) we apply the weighted Hardy
inequality (4.3) to the function u

|x|2+δ for δ > 0. Then, by Young’s inequality,
for any ε > 0 there is Cε > 0 such that

C0

∫
RN

1
|x|2

(
u

|x|2 + δ

)2

dμ ≤
∫
RN

∣∣∣∣∇
(

u

|x|2 + δ

)∣∣∣∣
2

dμ + C

∫
RN

|u|2
(|x|2 + δ)2

dμ

=
∫
RN

∣∣∣∣ ∇u

|x|2 + δ
− 2

x

(|x|2 + δ)2
u

∣∣∣∣
2

dμ + C

∫
RN

|u|2
(|x|2 + δ)2

dμ

≤ (4 + ε)
∫
RN

|u|2
(|x|2 + δ)3

dμ + Cε

∫
RN

|∇u|2
(|x|2 + δ)2

dμ + C

∫
RN

|u|2
(|x|2 + δ)2

dμ

≤ (4 + ε)
∫
RN

|u|2
|x|2(|x|2 + δ)2

dμ + Cε

∫
RN

|∇u|2
|x|4 dμ + C

∫
RN

|u|2
|x|4 dμ.

Applying (4.2) we have
∫
RN

|∇u|2
|x|4 dμ =

N∑
i=1

∫
RN

|Diu|2
|x|4 dμ

≤ 1
(C0 − 12)

N∑
i=1

∫
RN

|LDiu|2dμ + C‖Diu‖H1
μ

≤ C

(∫
RN

|L∇u|2dμ + ‖u‖2
H2

μ

)
.

So, using (5.6), we deduce

(C0 − (4 + ε))
∫
RN

|u|2
|x|2(|x|2 + δ)2

dμ ≤ C

(∫
RN

|L∇u|2dμ + ‖u‖2
H2

μ

)
.

We observe that for N > 6 and ε small enough we have C0 − (4+ε) > 0. Then
(5.8) follows by applying Fatou’s lemma.
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To prove (5.7) we show first that∫
RN

|∇ϕ|2
|x|2(|x|2 + δ)

dμ ≤ −C

∫
RN

∇ϕ · ∇Lϕ

|x|2 + δ
dμ + M‖ϕ‖H2

μ
(5.9)

for all ϕ ∈ C∞
c (RN ) and some positive constants C, M independent of ϕ.

Using (H3)(i) and applying (4.4) and (4.5), we obtain

(C0 − 1)
∫
RN

|Dkϕ|2
|x|2(|x|2 + δ)

dμ

≤ −
∫
RN

LDkϕ
Dkϕ

|x|2 + δ
dμ + C1

∫
RN

|Dkϕ|2
|x|2 + δ

dμ

= −
∫
RN

DkLϕ
Dkϕ

|x|2 + δ
dμ +

∫
RN

∇ϕ · ∇
(

Dkμ

μ

)
Dkϕ

|x|2 + δ
dμ

+ C1

∫
RN

|Dkϕ|2
|x|2 + δ

dμ

≤ −
∫
RN

DkLϕ
Dkϕ

|x|2 + δ
dμ + ε

∫
RN

|∇ϕ|2
|x|2(|x|2 + δ)

dμ

+ Cε

∫
RN

|∇ϕ|2
|x|2 + δ

∣∣∣∣∇μ

μ

∣∣∣∣ dμ + C1θ

∫
RN

|∇ϕ|2
(|x|2 + δ)2

dμ

+
C1

4θ

∫
RN

|∇ϕ|2dμ

≤ −
∫
RN

DkLϕ
Dkϕ

|x|2 + δ
dμ + ε

∫
RN

|∇ϕ|2
|x|2(|x|2 + δ)

dμ

+ Cεη

∫
RN

|∇ϕ|2
(|x|2 + δ)2

dμ +
Cε

4η

∫
RN

|∇ϕ|2
∣∣∣∣∇μ

μ

∣∣∣∣
2

dμ

+ C1θ

∫
RN

|∇ϕ|2
(|x|2 + δ)2

dμ +
C1

4θ

∫
RN

|∇ϕ|2dμ

for any ε, θ, η > 0 and ϕ ∈ C∞
c (RN ). Choosing ε, θ and η small enough we

obtain∫
RN

|∇ϕ|2
|x|2(|x|2 + δ)

dμ ≤ −C

∫
RN

∇ϕ · ∇Lϕ

|x|2 + δ
dμ

+ M

(∫
RN

|∇ϕ|2
∣∣∣∣∇μ

μ

∣∣∣∣
2

dμ +
∫
RN

|∇ϕ|2dμ

)

and so, by Proposition 5.1, we obtain (5.9).
We now prove that 5.1 remains true for all u ∈ D(L) such that Lu ∈ H1

μ(RN ).
For such function u, there is ϕn ∈ C∞

c (RN ) such that limn→∞ ϕn = u and
limn→∞ Lϕn = Lu in L2

μ(RN ). Since the graph norm of L and the H2
μ-norm

are equivalent, we deduce that limn→∞ ‖ϕn −u‖H2
μ

= 0. So, it remains to show
that

lim
n→∞

∫
RN

∇ϕn · ∇Lϕn

|x|2 + δ
dμ =

∫
RN

∇u · ∇Lu

|x|2 + δ
dμ.



NoDEA Bi-Kolmogorov type operators Page 27 of 37 13

To this purpose, integrating by parts, recalling the definition of L and taking
into account that Lu ∈ H1

μ(RN ), we have

lim
n→∞

∫
RN

∇ϕn · ∇Lϕn

|x|2 + δ
dμ

= lim
n→∞

(
−

∫
RN

|Lϕn|2
|x|2 + δ

dμ + 2
∫
RN

Lϕn
∇ϕn · x

(|x|2 + δ)2
dμ

)

= −
∫
RN

|Lu|2
|x|2 + δ

dμ + 2
∫
RN

Lu
∇u · x

(|x|2 + δ)2
dμ

=
∫
RN

∇u · ∇Lu

|x|2 + δ
dμ,

since the functions x �→ (|x|2 + δ)−1 and x �→ x(|x|2 + δ)−2 are bounded,
where the last equality follows from the definition of L and the fact that
Lu ∈ H1

μ(RN ). Thus, Young’s inequality gives that, for any ε > 0 there is
Cε > 0 such that∫

RN

|∇u|2
|x|2(|x|2 + δ)

dμ ≤ −C

∫
RN

∇u · ∇Lu

|x|2 + δ
dμ + M‖u‖2

H2
μ

≤ ε

∫
RN

|∇u|2
|x|2(|x|2 + δ)

dμ + Cε

∫
RN

|∇Lu|2dμ + M‖u‖2
H2

μ

for all u ∈ D(L) with Lu ∈ H1
μ(RN ). Choosing ε = 1

2 we get∫
RN

|∇u|2
|x|2(|x|2 + δ)

dμ ≤ε

∫
RN

|∇u|2
|x|2(|x|2 + δ)

dμ + Cε

∫
RN

|∇Lu|2dμ + M‖u‖2
H2

μ

for all u ∈ D(L) with Lu ∈ H1
μ(RN ) and some constants C, M > 0 indepen-

dent of u. Letting δ → 0 in the above estimate, Fatou’s lemma gives (5.7).
This ends the proof. �

The following results shows that D(L2) ⊂ H3
μ(RN ).

Corollary 5.8. Assume that N ≥ 7 and μ satisfies (H1), (H2) and (H3)(i).
Then

H3
μ(RN ) = {u ∈ H2

μ(RN ) : Lu ∈ H1
μ(RN )}.

In particular, D(L2) ⊂ H3
μ(RN ).

Proof. Let u ∈ H3
μ(RN ). Then, by (H3)(i), Proposition 5.1 and (5.6), we

deduce that ∇μ
μ · ∇u ∈ H1

μ(RN ) and∥∥∥∥∇μ

μ
· ∇u

∥∥∥∥ ≤ C‖u‖H3
μ
.

So, Lu ∈ H1
μ(RN ).

Conversely, let us consider u ∈ H2
μ(RN ) with Lu ∈ H1

μ(RN ). Since, by The-
orem 5.4, D(L) = H2

μ(RN ), we have to prove that Dku ∈ D(L) for any
k = 1, . . . , N . Integrating by parts, we obtain∫

RN

∇(Dku) · ∇ϕ dμ = −
∫
RN

(DkLu)ϕ dμ +
∫
RN

∇u · ∇
(

Dkμ

μ

)
ϕ dμ
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for all ϕ ∈ C∞
c (RN ). So, since C∞

c (RN ) is a core for L, to show that Dku ∈
D(L) it suffices to prove that ∇u ·∇

(
Dkμ

μ

)
∈ L2

μ(RN ), which can be obtained
by using (H3)(i), Proposition 5.1 and (5.7). Moreover,

LDku = DkLu − ∇
(

Dkμ

μ

)
· ∇u. (5.10)

�

For the complete description of D(A) we need the following versions of
higher order Rellich’s inequalities.

Lemma 5.9. Assume that N ≥ 7 and μ satisfies (H1) − (H3). Then
∫
RN

|∇u|2
|x|6 dμ ≤ C1

(∫
RN

|Au|2dμ + ‖u‖2
H3

μ

)
(5.11)

and ∫
RN

|D2u|2
|x|4 dμ ≤ C2

(∫
RN

|Au|2dμ + ‖u‖H3
μ

)
(5.12)

for any u ∈ D(L2) and some constants C1, C2 > 0.

Proof. Similar computations as in the proof of Proposition 5.7 yield∫
RN

|∇ϕ|2
|x|2(|x|2 + δ)2

dμ ≤ −C

∫
RN

∇ϕ · ∇Lϕ

(|x|2 + δ)2
dμ

+ M

(∫
RN

|∇ϕ|2
|x|2 + δ

∣∣∣∣∇μ

μ

∣∣∣∣
2

dμ +
∫
RN

|∇ϕ|2
(|x|2 + δ)2

dμ

)

(5.13)

for all ϕ ∈ C∞
c (RN ) and some constants C, M > 0 independent of ϕ. To show

that (5.13) remains valid for u ∈ D(L2), as in the proof of Proposition 5.7, we
consider ϕn ∈ C∞

c (RN ) such that limn→∞ ‖ϕn − u‖H2
μ

= 0. Using (4.3), it is
easy to see that

lim
n→∞

∫
RN

|∇ϕn|2
|x|2(|x|2 + δ)2

dμ =
∫
RN

|∇u|2
|x|2(|x|2 + δ)2

dμ and

lim
n→∞

∫
RN

|∇ϕn|2
(|x|2 + δ)2

dμ =
∫
RN

|∇u|2
(|x|2 + δ)2

dμ.

To compute limn→∞
∫
RN

|∇ϕn|2
|x|2+δ

∣∣∣∇μ
μ

∣∣∣2 dμ we remark that, by Proposition 5.1,
we have
∫
RN

|Dkv|2
|x|2 + δ

∣∣∣∣∇μ

μ

∣∣∣∣
2

dμ ≤ C

(∫
RN

∣∣∣∣∇
(

Dkv

(|x|2 + δ)1/2

)∣∣∣∣
2

dμ +
∫
RN

|Dkv|2
|x|2 + δ

dμ

)

≤ C

(∫
RN

|D2v|2
|x|2 + δ

dμ +
∫
RN

|∇v|2
(|x|2 + δ)2

dμ +
∫
RN

|∇v|2
|x|2 + δ

dμ

)
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for any v ∈ H2
μ(RN ) and k = 1, . . . , N . Hence,

lim
n→∞

∫
RN

|∇(ϕn − u)|2
|x|2 + δ

∣∣∣∣∇μ

μ

∣∣∣∣
2

dμ ≤ C lim
n→∞

( ∫
RN

|D2(ϕn − u)|2
(|x|2 + δ)2

dμ

+
∫
RN

|∇(ϕn − u)|2
(|x|2 + δ)2

dμ +
∫
RN

|∇(ϕn − u)|2
|x|2 + δ

dμ

)
= 0.

The last limit

lim
n→∞

∫
RN

∇ϕn · ∇Lϕn

(|x|2 + δ)2
dμ =

∫
RN

∇u · ∇Lu

(|x|2 + δ)2
dμ

follows as in the proof of (5.7). Thus, (5.13) holds true for all u ∈ D(L2).
Now, using (H3)(i), (4.3), Proposition 5.1 and (5.6), we can see that

∫
RN

|∇u|2
|x|2 + δ

∣∣∣∣∇μ

μ

∣∣∣∣
2

dμ +
∫
RN

|∇u|2
(|x|2 + δ)2

dμ ≤ M‖u‖H3
μ

holds for all u ∈ D(L2) and some constant M > 0 independent of u, since,
by Corollary 5.8, we know that u ∈ H3

μ(RN ) whenever u ∈ D(L2). Thus, by
Young’s inequality,
∫
RN

|∇u|2
|x|2(|x|2 + δ)2

dμ ≤ −C

∫
RN

∇u · ∇Lu

(|x|2 + δ)2
dμ + M‖u‖H3

μ

≤ ε

∫
RN

|∇u|2
(|x|2 + δ)3

dμ + Cε

∫
RN

|∇Lu|2
|x|2 + δ

dμ + M‖u‖H3
μ
.

Thus, by choosing ε small enough and (4.3), we have
∫
RN

|∇u|2
|x|2(|x|2 + δ)2

dμ ≤ C

∫
RN

|∇Lu|2
|x|2 + δ

dμ + M‖u‖H3
μ

≤ C

∫
RN

|∇Lu|2
|x|2 dμ + M‖u‖H3

μ

≤ C1

(∫
RN

|D2Lu|2dμ +
∫
RN

|∇Lu|2dμ

)
+ M‖u‖H3

μ

≤ C2

(∫
RN

|Au|2dμ + ‖u‖H3
μ

)
.

Thus, (5.11) follows by applying Fatou’s lemma.
Finally, Estimate (5.12) follows by applying (5.11), (5.7), (5.10) and tak-

ing into account assumption (H3). �

We can now give a characterization of D(A).

Theorem 5.10. Assume that N ≥ 7 and μ satisfies Hypotheses (H1), (H2) and
(H3) then

D(A) = H4
μ(RN ).
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Proof. By Theorem 5.4 we know that L with domain H2
μ(RN ) is selfadjoint

and hence generates an analytic semigroup of angle π
2 . Moreover, since L is

dissipative it follows that

‖T (z)‖L(L2
μ(RN )) ≤ 1, for all z ∈ C with �z > 0, (5.14)

(cf. [4, Example 3.7.5]). Using (5.14) we deduce from [4, Proposition 3.9.1 and
Remark 3.9.3] that iL generates a C0-group on L2

μ(RN ). Thus it follows from [4,
Corollary 3.7.15] that (iL)2 generates an analytic contraction C0-semigroup of
angle π

2 . Since D(L2) ⊂ D(A) and both −L2 and −A are generators, it follows
that A = L2. Hence,

D(A) = {u ∈ H2
μ(RN ); Lu ∈ H2

μ(RN )}.

Let us prove now that D(A) = H4
μ(RN ).

To this purpose let us observe first, by (H3), we have
∫
RN

∣∣∣∣Di

(∇μ

μ

)∣∣∣∣
2

ϕ2dμ ≤ C

(
ε

∫
RN

1
|x|4 ϕ2dμ +

∫
RN

∣∣∣∣∇μ

μ

∣∣∣∣
2

ϕ2dμ

)
.

(5.15)

Hence, using the weighted Rellich inequality (4.2) and Proposition 5.1 we de-
duce that

∣∣∣Di

(
∇μ
μ

)∣∣∣ ϕ ∈ L2
μ(RN ) for ϕ ∈ H2

μ(RN ). By the same arguments

we have
∣∣∣Dij

(
∇μ
μ

)∣∣∣ ψ ∈ L2
μ(RN ) for all ψ ∈ H3

μ(RN ), since

∫
RN

∣∣∣∣Dij

(∇μ

μ

)∣∣∣∣
2

ψ2dμ ≤ C

(
ε

∫
RN

1
|x|6 ψ2dμ +

∫
RN

∣∣∣∣∇μ

μ

∣∣∣∣
2

ψ2dμ

)
.

(5.16)

Thus, observing that, for u ∈ H4
μ(RN ),

DkLu = LDku + Dk

(∇μ

μ

)
· ∇u (5.17)

and

DhkLu = LDhku + Dhk

(∇µ

µ

)
· ∇u + Dh

(∇µ

µ

)
· ∇(Dku) + Dk

(∇µ

µ

)
· ∇(Dhu),

(5.18)

it follows from (5.15), (5.16), (5.6), (5.8), and Proposition 5.1 that DkLu and
DhkLu belong to L2

μ(RN ) for all h, k ∈ {1, 2, . . . , N}. Thus Lu ∈ H2
μ(RN ) and

hence H4
μ(RN ) ⊂ D(A).

For the other inclusion, since by Theorem 5.4, D(L) = H2
μ(RN ), we have

to prove that Dhku ∈ D(L) for any h, k = 1, . . . , N whenever u ∈ D(A). To
this purpose let us consider u ∈ D(A). Integrating by parts, we get∫

RN

∇(Dhku) · ∇ϕ dμ = −
∫
RN

DhkLuϕ dμ +
∫

RN

Dhk

(∇μ

μ

)
· ∇uϕ dμ

+
∫
RN

Dh

(∇μ

μ

)
· ∇(Dku)ϕ dμ
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+
∫
RN

Dk

(∇μ

μ

)
· ∇(Dhu)ϕ dμ

for all ϕ ∈ C∞
c (RN ). So, as in the proof of Corollary 5.8, we have only to prove

that Dhk

(
∇μ
μ

)
· ∇u and Dk

(
∇μ
μ

)
· ∇(Dhu) belong to L2

μ(RN ).

Using (H3)(ii), (5.11) and Proposition 5.1, one can see that Dhk

(
∇μ
μ

)
·∇u ∈

L2
μ(RN ). By (H3)(i), (5.12), Proposition 5.1 and Corollary 5.8, one deduces

that Dk

(
∇μ
μ

)
·∇(Dhu) ∈ L2

μ(RN ). Thus, Dhku ∈ D(L) for any h, k = 1, . . . , N

and hence u ∈ H4
μ(RN ). This ends the proof. �

From the above proof one can deduce that the graph norm of A is equiv-
alent to the H4

μ(RN )-norm.

Remark 5.11. One has

C−1‖u‖H4
μ

≤ ‖Au‖L2
μ

+ ‖u‖L2
μ

≤ C‖u‖H4
μ

for all u ∈ D(A) and some constant C > 0.

6. The bi-Ornstein-Uhlenbeck operator

In this section we consider the Gaussian measure μ(x) = γe− |x|2
2 for x ∈ R

N ,
where γ = (2π)−N/2. In this case the operator L is the classical symmetric
Ornstein-Uhlenbeck operator

Lf = Δf − x · ∇f

f ∈ D(L) = H2
μ(RN ).

It is easy to see that μ satisfies all the assumptions of the previous sections.
So, all the previous results can be applied to the above Ornstein-Uhlenbeck
operator. In particular we deduce from (4.2) and Theorem 4.4 the following
Rellich inequality for the Ornstein-Uhlenbeck operator.

Theorem 6.1. Assume that N ≥ 5 and μ(x) = γe− |x|2
2 . Then for any u ∈

H2
μ(RN ) we have

(C0 − 1)2
∫
RN

|u(x)|2
|x|4 dμ ≤

∫
RN

|Lu(x)|2dμ + C1

∫
RN

|∇u(x)|2dμ

+C2

∫
RN

|u(x)|2dμ (6.1)

for some positive constants C1, C2 and (C0 − 1)2 =
(

N(N−4)
4

)2

is the best
constant.

Remark 6.2. Let us notice that the symmetric Ornstein-Uhlenbeck operator L
is isometrically isomorphic to the harmonic oscillator by the transformation

T : L2
μ(RN ) → L2(RN ); (Tf)(x) :=

√
γe− |x|2

4 f(x), x ∈ R
N .
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Indeed, a simple computation shows that

(TLT−1)f = Δf −
( |x|2

4
− N

2

)
f

for all f ∈ L2(RN ) such that T−1f ∈ D(L). Hence, using the methods of [9,10],
the constants in the right-hand side of (6.1) can be improved to optimal ones.

Since we know without any restriction on N that D(L) = H2
μ(RN ),

one can, by direct computations, characterize the domain of the bi-Ornstein-
Uhlenbeck operator for any N ≥ 1. Moreover the following result shows that
the corresponding semigroup is given by an explicit kernel.

Theorem 6.3. For any N ≥ 1,

Af = Δ2f − 2x · ∇(Δf) + Tr(x ⊗ xD2f) − 2Δf + x · ∇f

f ∈ D(A) = H4
μ(RN ).

Moreover,

e−tAf(x) =
∫
RN

k(t, x, y)f(y) dy, x ∈ R
N , t > 0, f ∈ L2

μ(RN ),

where

k(t, x, y) = (4πt)− 1
2

∫ ∞

0

e− s2
4t (p(is, x, y) + p(−is, x, y)) ds

=
√

2(8π)− N+1
2

∫ ∞

0

e− s2
4 (sin(s

√
t))−N/2e− |e−is

√
tx−y|2
8 ·

cos

(
N

2
(s

√
t − π

2
) +

|e−is
√

tx − y|2
8 tan(s

√
t)

)
ds

for t > 0 and x, y ∈ R
N .

Proof. For the characterization of D(A) we recall that D(L) = H2
μ(RN ) and

hence

D(A) = {u ∈ H2
μ(RN ); Lu ∈ H2

μ(RN )}.

An easy computation shows that Di

(
∇μ
μ

)
= −ei and Dij

(
∇μ
μ

)
= 0, where

ei is the i-th canonical vector of R
N .

Thus, by (5.17) and (5.18), we have

DkLu = LDku − Dku and DhkLu = LDhku − 2Dhku

for any u ∈ H4
μ(RN ). So, DkLu and DhkLu belong to L2

μ(RN ) for all h, k ∈
{1, 2, . . . , N}. Thus Lu ∈ H2

μ(RN ) and hence H4
μ(RN ) ⊂ D(A).

For the other inclusion, since D(L) = H2
μ(RN ), we have to prove that

Dhku ∈ D(L) for any h, k = 1, . . . , N whenever u ∈ D(A). To this purpose let
us consider u ∈ D(A). As in the proof of Theorem 5.10, integrating by parts,
we get ∫

RN

∇(Dhku) · ∇ϕ dμ = −
∫
RN

[DhkLu + 2Dhku]ϕ dμ
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for all ϕ ∈ C∞
c (RN ). So to conclude we just have to observe that DhkLu +

2Dhku ∈ L2
μ(RN ).

For the last statement we recall (see [6, Chapter 9], [25], [27]) that L
generates the analytic C0-semigroup T (t) of angle π

2 given by

T (t)f(x) = (4π(1 − e−2t))− N
2

∫
RN

e
− |e−tx−y|2

4(1−e−2t) f(y) dy, t > 0, x ∈ R
N .

Moreover, it follows from [6, Theorem 9.3.25] that

‖T (z)‖L(L2
μ(RN )) ≤ 1, ∀z ∈ C with �z ≥ 0.

Thus, applying [4, Proposition 3.9.1 and Remark 3.9.3], we deduce that iL
generates a C0-group on L2

μ(RN ) given by

T (it)f(x) = lim
ε→0+

(4π(1 − e−2(ε+it)))− N
2

∫
RN

e
− |e−(ε+it)x−y|2

4(1−e−2(ε+it)) f(y) dy

=
∫
RN

p(it, x, y)f(y) dy, t ∈ R \ πZ, x ∈ R
N ,

where

p(it, x, y) = (4π(1 − e−2it))− N
2 e

− |e−itx−y|2
4(1−e−2it) , t ∈ R \ πZ, x, y ∈ R

N . (6.2)

Thus, by [4, Corollary 3.7.15], the semigroup (e−tA) generated by the bi-
Ornstein-Uhlenbeck operator −A = (iL)2 on L2

μ(RN ) is given by

e−tAf(x) = (4πt)− 1
2

∫ ∞

0

e− s2
4t (T (is) + T (−is))f(x) ds,

for x ∈ R
N , t > 0, f ∈ L2

μ(RN ). Thus, (e−tA) is given by a kernel k with

k(t, x, y) = (4πt)− 1
2

∫ ∞

0

e− s2
4t (p(is, x, y) + p(−is, x, y)) ds

for t > 0 and x, y ∈ R
N . So, the explicit formula of k follows from (6.2). This

ends the proof of the theorem. �

To conclude the section we provide some examples of measures giving
rise to a singular drift that satisfy our standing assumptions.

Example 6.4. 1. Let us consider the density

μ(x) = C
1 + |x|α
1 + |x|β , x ∈ R

N ,

where α, β > 0, β > α+N and C is a normalizing factor. These conditions
imply that μ ∈ L1(RN ) and μ(dx) := μ(x)dx is a probability measure.
Let us compute the gradient of μ: we have

∇μ = Cα
|x|α−2x

1 + |x|β − Cβ
(1 + |x|α)|x|β−2x

(1 + |x|β)2
, x ∈ R

N \ {0},

and

Δμ = Cα
(α − 2 + N)|x|α−2

1 + |x|β − Cβ(1 + |x|α)
(β − 2 + N)|x|β−2

(1 + |x|β)2
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− 2Cαβ
|x|α+β−2

(1 + |x|β)2
+ 2Cβ2(1 + |x|α)

|x|2β−2

(1 + |x|β)3
,

for x ∈ R
N \ {0}. It follows that

∇μ

μ
= α

|x|α−2x

1 + |x|α − β
|x|β−2x

1 + |x|β , x ∈ R
N \ {0},

and ∣∣∣∣Δμ

μ

∣∣∣∣ ∼ |α(α + N − 2)||x|α−2, |x| → 0.

Hence, assumptions (H1) and (H2) are verified. The associated Kol-
mogorov type operator is

Lu = Δu +
(

α
|x|α−2

1 + |x|α − β
|x|β−2

1 + |x|β
)

x · ∇u.

Let us now prove (H3). We notice that there exist R1, C > 0 such that∣∣∣∣∇μ

μ

∣∣∣∣ ≥ C

(
|x|α−1χBR1

(x) +
|x|β−1

1 + |x|β χBc
R1

(x)
)

, x ∈ R
N \ {0}. (6.3)

It is not hard to see that there exist K0, C0 > 0 such that for any i, j =
1, . . . , N we have∣∣∣∣Di

(∇μ

μ

)∣∣∣∣ ≤ C0|x|α−2χBR1
(x) + K0

1
|x|2 χBc

R1
(x), x ∈ R

N \ {0}, (6.4)
∣∣∣∣Dij

(∇μ

μ

)∣∣∣∣ ≤ C0|x|α−3χBR1
(x) + K0

1
|x|3 χBc

R1
(x), x ∈ R

N \ {0}. (6.5)

From (6.3), (6.4) and (6.5) it follows that also (H3) is satisfied.
2. Consider μ = κe−|x|m , where m > 0 and κ is a normalising factor. By

simple computations one has μ ∈ H1
loc(R

N ) and

∇μ

μ
= −m|x|m−2x, x ∈ R

N \ {0},

so that μ satisfies Hypothesis (H1). Then, the associated Kolmogorov
type operator L is

Lu = Δu − m|x|m−2x · ∇u.

Furthermore, Δμ ∈ L1
loc(R

N ) and

U = −1
4
m2|x|2m−2 +

1
2
m(N + m − 2)|x|m−2, x ∈ R

N \ {0}.

Hence, Hypothesis (H2) is satisfied. Finally,∣∣∣∣Di

(
Djμ

μ

)∣∣∣∣ ≤ C|x|m−2, x ∈ R
N \ {0},

∣∣∣∣Dij

(
Dkμ

μ

)∣∣∣∣ ≤ C1|x|m−3, x ∈ R
N \ {0}.

Therefore, also Hypothesis (H3) is fulfilled.
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As a consequence, also the measure in Example 3.10 satisfies (H1),
(H2) and (H3).
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