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1. Introduction

In this paper we study the dynamic crack growth in viscoelastic materials with
long memory. When no crack is present, important contributions in the theory
of linear viscoelasticity are due to such scientists as Maxwell, Kelvin, and
Voigt. Their names are associated with two well-known models of dissipative
solids which can be described in terms of a spring and a dash-pot in series
(Maxwell’s model) or in parallel (Kelvin–Voigt’s model), see [16]. Boltzmann
was the first to develop a three-dimensional theory of isotropic viscoelasticity
in [2], and later Volterra in [17] obtained similar results for anisotropic solids.

In literature we can find two different classes of materials in the case
of viscoelastic deformations: materials with short memory and materials with
long memory. The first case is associated to a local model, which means that
the state of stress at the instant t only depends on the strain at that instant. In
the second case, instead, the associated model is non-local in time, in the sense
that the state of stress at the instant t depends also on the past history up to
time t of the strain. According to [11,12], in the case of viscoelastic materials
with long memory the general stress-strain relation is the following

σ(t, x) := G(0, x)∇u(t, x) +
∫ t

−∞
G′(t − τ, x)∇u(τ, x)dτ, t ∈ (−∞, T ], x ∈ Ω,
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for a suitable choice of the memory kernel G, and with some prescribed bound-
ary conditions.

To describe our model we start with a short description of the standard
approach to dynamic fracture in the case of linearly elastic materials with no
viscosity. In this situation, the deformation of the elastic part of the material
evolves according to elastodynamics; for an antiplane displacement, elastody-
namics together with the stress-strain relation σ(t, x) = ∇u(t, x), leads to the
following wave equation

ü(t, x) − div σ(t, x) = f(t, x), t ∈ [0, T ], x ∈ Ω \ Γt, (1.1)

with some prescribed boundary and initial conditions. Here, Ω ⊂ R
d is a

bounded open set, which represents the cross-section of the body in the ref-
erence configuration, Γt ⊂ Ω models the cross-section of the crack at time t,
u(t, ·) : Ω \ Γt → R is the antiplane displacement, and f(t, ·) : Ω \ Γt → R is
a forcing term. From the mathematical point of view, a first step towards the
study of the evolution of fractures is to solve the wave equation (1.1) when the
time evolution of the crack is assigned, see for example [3,7,8,14].

In this paper, we consider Maxwell’s model in the case of dynamic frac-
ture, when the crack evolution t �→ Γt is prescribed. In this case, the memory
kernel G has an exponential form (see for example [16]), and the displacement
satisfies the following equation

ü(t, x) − (c1 + c2)Δu(t, x) + c2

∫ t

−∞
e−(t−τ)Δu(τ, x)dτ = f(t, x), (1.2)

t ∈ (−∞, T ], x ∈ Ω \ Γt, where c1 and c2 are two positive constants. As in
[6,11], we suppose that the past history of the displacement up to time 0 is
already known, therefore, it is convenient to write equation (1.2) as

ü(t, x) − (c1 + c2)Δu(t, x) + c2

∫ t

0

e−(t−τ)Δu(τ, x)dτ

= f(t, x) − c2

∫ 0

−∞
e−(t−τ)Δv(τ, x)dτ, (1.3)

t ∈ [0, T ], x ∈ Ω \ Γt, where the function v represents the past history, that is
v(t, x) = u(t, x) for every t ∈ (−∞, 0] and x ∈ Ω \ Γt.

The main results of this paper are Theorems 4.1 and 5.3, in which we
prove, by two different methods, the existence of a solution to (1.3). This is
done not only in the antiplane case, but also in the more general case of linear
elasticity in dimension d; that is, when the displacement is vector-valued and
the elastic energy depends on the symmetrized gradient of the displacement.

The first method, considered in Theorem 4.1, is based on a generalization
of Lax–Milgram’s Theorem [13, Chapter 3, Theorem 1.1]. We follow the lines
of the proof of Theorem 2.1 in [5]. In doing so, the main difficulty is given by
the fact that the set Ω \Γt, where equation (1.3) holds, depends on time. This
requires the introduction of suitable function spaces used to adapt the proof
in [5].



NoDEA A dynamic model for viscoelasticity in domains Page 3 of 47 67

The second method, provided by Theorem 5.3, is based on a time dis-
cretization scheme that yields a solution which, in addition, satisfies the energy-
dissipation inequality (5.51). This procedure, adopted in [7] for wave equation
(1.1) in a time-dependent domain, consists of the following steps: time dis-
cretization, construction of an approximate solution, discrete energy estimates,
and passage to the limit.

The main difficulty in applying this procedure, in the same way it was
done in [7], is the identification of the term in the energy-dissipation inequality
which corresponds to the non-local in time viscous term∫ t

0

e−(t−τ)Δu(τ, x)dτ

appearing in (1.3).
To fix this issue, we introduce an auxiliary variable w and we transform

our equation (1.3) into an equivalent system (see Definition 5.1) of two equa-
tions in the two variables u and w, without long memory terms, which has to
be solved on the time-dependent domain Ω\Γt. The advantage of this strategy
lies in the fact that we transform a non-local model (the equation) into a local
one (the system).

We discretize the time interval [0, T ] by using the time step τn := T
n .

To define the approximate solution (un, wn) at time (k + 1)τn, we solve an
incremental problem (see (5.13)) depending on the values of (un, wn) at times
(k−1)τn and kτn. Since the new system has a natural notion of energy, we also
obtain a discrete energy estimate for (un, wn). Then, we extend (un, wn) to
the whole interval [0, T ] by a suitable interpolation, and by using the energy
estimates together with a compactness result we pass to the limit, along a
subsequence of (un, wn). It is now possible to prove that the limit of this
subsequence of (un, wn) is a solution to the system, which is equivalent to our
equation (1.3). As a byproduct, from the discrete energy estimates we obtain
the energy-dissipation inequality (5.51).

The paper is organized as follows. In Sect. 2 we fix the notation adopted
throughout the paper. In Sect. 3 we list the standard assumptions on the family
of cracks {Γt}t∈[0,T ], we state the evolution problem in the general case, and
we specify the notion of solution to the problem. In Sects. 4 and 5 we deal with
the existence of a solution to the viscoelastic dynamic model; in particular in
Sect. 4, we provide a solution by means of a generalization of Lax–Milgram’s
theorem by Lions. After that, in Sect. 5, as previously anticipated, we define a
system equivalent to the equation. In particular, in Sect. 5.1 we implement the
time discretization method on such a system, and we conclude with Sect. 5.2
by showing the validity of the energy-dissipation inequality, and of the initial
conditions.

2. Notation

In this section we fix some notation that will be used throughout the paper. The
space of m × d matrices with real entries is denoted by R

m×d; in case m = d,
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the subspace of symmetric matrices is denoted by R
d×d
sym. Given a function

u : Rd → R
m, we denote its Jacobian matrix by ∇u, whose components are

(∇u)ij := ∂jui for i = 1, . . . , m and j = 1, . . . , d; when u : Rd → R
d, we use

eu to denote the symmetric part of the gradient, namely eu := 1
2 (∇u + ∇uT ).

Given a tensor field A : Rd → R
m×d, by div A we mean its divergence with

respect to rows, namely (div A)i :=
∑d

j=1 ∂jAij for i = 1, . . . , m.
We denote the d-dimensional Lebesgue measure by Ld and the (d − 1)-

dimensional Hausdorff measure by Hd−1; given a bounded open set Ω with
Lipschitz boundary, by ν we mean the outer unit normal vector to ∂Ω, which
is defined Hd−1-a.e. on the boundary. The Lebesgue and Sobolev spaces on
Ω are defined as usual; the boundary values of a Sobolev function are always
intended in the sense of traces.

The norm of a generic Banach space X is denoted by ‖ · ‖X ; when X is a
Hilbert space, we use (·, ·)X to denote its scalar product. We denote by X ′ the
dual of X and by 〈·, ·〉X′ the duality product between X ′ and X. Given two
Banach spaces X1 and X2, the space of linear and continuous maps from X1

to X2 is denoted by L (X1;X2); given A ∈ L (X1;X2) and u ∈ X1, we write
Au ∈ X2 to denote the image of u under A.

Moreover, given an open interval (a, b) ⊂ R and p ∈ [1,∞], we denote by
Lp(a, b;X) the space of Lp functions from (a, b) to X; we use Hk(a, b;X) to
denote the Sobolev space of functions from (a, b) to X with k derivatives in
L2(a, b;X). Given u ∈ H1(a, b;X), we denote by u̇ ∈ L2(a, b;X) its derivative
in the sense of distributions. When dealing with an element u ∈ H1(a, b;X)
we always assume u to be the continuous representative of its class, and there-
fore, the pointwise value u(t) of u is well defined for every t ∈ [a, b]. We use
C0

w([a, b];X) to denote the set of weakly continuous functions from [a, b] to X,
namely, the collection of maps u : [a, b] → X such that t �→ 〈x′, u(t)〉X′ is con-
tinuous from [a, b] to R, for every x′ ∈ X ′. We adopt the notation Lip([a, b];X)
to denote the space of Lipschitz functions from the interval [a, b] into the Ba-
nach space X.

3. Formulation of the evolution problem, notion of solution

Let T be a positive real number and d ∈ N. Let Ω ⊂ R
d be a bounded open

set (which represents the reference configuration of the body) with Lipschitz
boundary. Let ∂DΩ be a (possibly empty) Borel subset of ∂Ω, on which we
prescribe the Dirichlet condition, and let ∂NΩ be its complement, on which
we give the Neumann condition. Let Γ ⊂ Ω be the prescribed crack path. We
assume the following hypotheses on the geometry of the cracks:

(E1) Γ is a closed set with Ld(Γ) = 0 and Hd−1(Γ ∩ ∂Ω) = 0;
(E2) for every x ∈ Γ there exists an open neighborhood U of x in R

d such
that (U ∩ Ω) \ Γ is the union of two disjoint open sets U+ and U− with
Lipschitz boundary;

(E3) {Γt}t∈(−∞,T ] is a family of closed subsets of Γ satisfying Γs ⊂ Γt for every
−∞ < s ≤ t ≤ T .



NoDEA A dynamic model for viscoelasticity in domains Page 5 of 47 67

Notice that the set Γt represents the crack at time t. Thanks to (E1)–(E3) the
space L2(Ω \ Γt;Rd) coincides with L2(Ω;Rd) for every t ∈ (−∞, T ]. In par-
ticular, we can extend a function u ∈ L2(Ω\Γt;Rd) to a function in L2(Ω;Rd)
by setting u = 0 on Γt. Since Hd−1(Γ∩∂Ω) = 0 the trace of u ∈ H1(Ω\Γ;Rd)
is well defined on ∂Ω. Indeed, we may find a finite number of open sets with
Lipschitz boundary Uj ⊂ Ω \ Γ, j = 1, . . . k, such that ∂Ω \ Γ ⊂ ∪k

j=1∂Uj .
There exists a positive constant C, depending only on Ω and Γ, such that

‖u‖L2(∂Ω;Rd) ≤ C‖u‖H1(Ω\Γ;Rd) for u ∈ H1(Ω \ Γ;Rd). (3.1)

Similarly, we can find a finite number of open sets Vj ⊂ Ω\Γ, j = 1, . . . l, with
Lipschitz boundary, such that Ω \ Γ = ∪l

j=1Vj . By using the second Korn’s
inequality in each Vj (see, e.g., [15, Theorem 2.4]) and taking the sum over j
we can find a positive constant CK , depending only on Ω and Γ, such that

‖∇u‖2
L2(Ω;Rd×d) ≤ CK(‖u‖2

L2(Ω;Rd) + ‖eu‖2
L2(Ω;Rd×d

sym)
) (3.2)

for u ∈ H1(Ω \ Γ;Rd).
We set H := L2(Ω;Rd), Hd

s := L2(Ω;Rd×d
sym), HN := L2(∂NΩ;Rd) and

HD := L2(∂DΩ;Rd); the symbols (·, ·) and ‖ · ‖ denote the scalar product and
the norm in H or in Hd

s , according to the context. Moreover, we define the
following spaces

V := H1(Ω \ Γ;Rd) and Vt := H1(Ω \ Γt;Rd) for every t ∈ (−∞, T ].

Notice that in the definition of Vt and V , we are considering only the distri-
butional gradient of u in Ω \ Γt and in Ω \ Γ, respectively, and not the one in
Ω. Taking into account (3.2), we shall use on the set Vt (and also on the set
V ) the equivalent norm

‖u‖Vt
:= (‖u‖2 + ‖eu‖2)

1
2 for every u ∈ Vt.

Furthermore, by (3.1), we can consider for every t ∈ (−∞, T ] the set

V D
t := {u ∈ Vt : u = 0 on ∂DΩ},

which is a closed subspace of Vt.
We assume that the elasticity and viscosity tensors A and B satisfy the

following assumptions:

A,B ∈ L∞(Ω;L (Rd×d
sym;Rd×d

sym)), (3.3)

A(x)η1 · η2 = η1 · A(x)η2

B(x)η1 · η2 = η1 · B(x)η2
for a.e. x ∈ Ω and for every η1, η2 ∈ R

d×d
sym, (3.4)

A(x)η · η ≥ CA|η|2
B(x)η · η ≥ CB|η|2 for a.e. x ∈ Ω and for every η ∈ R

d×d
sym, (3.5)

for some positive constants CA and CB independent of x, and the dot denotes
the Euclidean scalar product of matrices.
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Let β a positive real number. We wish to study the following viscoelastic
dynamic system: for every t ∈ (−∞, T )

ü(t) − div((A + B)eu(t)) +
∫ t

−∞

1
β

e− t−τ
β div(Beu(τ))dτ = f(t) (3.6)

in Ω \ Γt, together with the boundary conditions

u(t) = z(t) on ∂DΩ, (3.7)
[
(A + B) eu(t) −

∫ t

−∞

1
β

e− t−τ
β Beu(τ)dτ

]
ν = N(t) on ∂NΩ, (3.8)

[
(A + B) eu(t) −

∫ t

−∞

1
β

e− t−τ
β Beu(τ)dτ

]
ν = 0 on Γt, (3.9)

where the data satisfy

(D1) f ∈ L2
loc((−∞;T ];H);

(D2) N ∈ L2
loc((−∞;T ];HN ) such that Ṅ ∈ L2

loc((−∞;T ];HN );
(D3) z ∈ L2

loc((−∞;T ];V ) such that z(t) ∈ Vt for every t ∈ (−∞, T ], and
ż ∈ L2

loc((−∞;T ];V ), z̈ ∈ L2
loc((−∞;T ];H).

Notice that in (3.6)–(3.9) the explicit dependence on x is omitted to enlighten
notation.

As usual, the Neumann boundary conditions are only formal, and their
meaning will be specified in Definition 3.1. To this aim, we define Vloc(−∞, T )
as the space of all function u ∈ L2

loc((−∞, T ];V ) such that

u̇ ∈ L2
loc((−∞, T ];H), u(t) ∈ Vt for a.e. t ∈ (−∞, T ),

and ∫ T

−∞
e

t
β ‖eu(t)‖dt < +∞. (3.10)

Now we are in position to explain in which sense we mean that u ∈
Vloc(−∞, T ) is a solution to the viscoelastic dynamic system (3.6)–(3.9). Roughly
speaking, we multiply (3.6) by a test function, we integrate by parts in time
and in space, and taking into account (3.7)–(3.9) we obtain the following def-
inition.

Definition 3.1. (Weak solution) We say that u ∈ Vloc(−∞, T ) is a weak solu-
tion to system (3.6) with boundary conditions (3.7)–(3.9) if u(t) − z(t) ∈ V D

t

for a.e. t ∈ (−∞, T ), and

−
∫ T

−∞
(u̇(t), v̇(t))dt +

∫ T

−∞

(
(A + B)eu(t) −

∫ t

−∞

1
β

e− t−τ
β Beu(τ)dτ, ev(t)

)
dt

=
∫ T

−∞
(f(t), v(t))dt +

∫ T

−∞
(N(t), v(t))HN dt

for every v ∈ C∞
c (−∞, T ;V ) such that v(t) ∈ V D

t for every t ∈ (−∞, T ].
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Now, let us consider a, b ∈ [0, T ] such that a < b. We define the spaces

V(a, b) := {u ∈ L2(a, b;V ) ∩ H1(a, b;H) : u(t) ∈ Vt for a.e. t ∈ (a, b)},

VD(a, b) := {v ∈ V(a, b) : v(t) ∈ V D
t for a.e. t ∈ (a, b)},

DD(a, b) := {v ∈ C∞
c (a, b;V ) : v(t) ∈ V D

t for every t ∈ [a, b]},

and we have the following lemma.

Lemma 3.2. The space V(a, b) is a Hilbert space with respect to the following
norm

‖ϕ‖V(a,b) :=
(
‖ϕ‖2

L2(a,b;V ) + ‖ϕ̇‖2
L2(a,b;H)

) 1
2

, ϕ ∈ V(a, b).

Moreover, VD(a, b) is a closed subspace of V(a, b), and DD(a, b) is a dense
subset of the space of functions belonging to VD(a, b) which vanish on a and b.

Proof. It is clear that ‖·‖V(a,b) is a norm induced by a scalar product on
the set V(a, b). We just have to check the completeness of this space with
respect to this norm. Let {ϕk}k ⊂ V(a, b) be a Cauchy sequence. Then, {ϕk}k

and {ϕ̇k}k are Cauchy sequences in L2(a, b;V ) and L2(a, b;H), respectively,
which are complete Hilbert spaces. Thus, there exists ϕ ∈ L2(a, b;V ) with
ϕ̇ ∈ L2(a, b;H) such that ϕk → ϕ in L2(a, b;V ) and ϕ̇k → ϕ̇ in L2(a, b;H).
In particular there exists a subsequence {ϕkj

}j such that ϕkj
(t) → ϕ(t) in V

for a.e. t ∈ (a, b). Since ϕkj
(t) ∈ Vt for a.e. t ∈ (a, b) we deduce that ϕ(t) ∈ Vt

for a.e. t ∈ (a, b). Hence ϕ ∈ V(a, b) and ϕk → ϕ in V(a, b). With a similar
argument, we can prove that VD(a, b) ⊂ V(a, b) is a closed subspace. For the
proof of the last statement we refer to [9, Lemma 2.8]. �

Now, suppose we know the past history of the system up to time 0.
In particular, let up ∈ Vloc(−∞, 0) be a weak solution to (3.6)–(3.9) on the
interval (−∞, 0) in the sense of Definition 3.1, in such a way that 0 is a
Lebesgue’s point for both up and u̇p. This implies that there exist u0 ∈ V0,
with u0 − z(0) ∈ V D

0 , and u1 ∈ H such that

lim
h→0+

1
h

∫ 0

−h

‖up(t) − u0‖2
V0

dt = 0, lim
h→0+

1
h

∫ 0

−h

‖u̇p(t) − u1‖2dt = 0.

From this assumption, by defining

F0(t) :=
1
β

e− t
β

∫ 0

−∞
e

τ
β Beup(τ)dτ,

we can reformulate (3.6)–(3.9) on the interval [0, T ] in the following way: for
every t ∈ [0, T ]

ü(t)−div ((A+B)eu(t))+
∫ t

0

1
β

e− t−τ
β div (Beu(τ))dτ = f(t)− div F0(t),

(3.11)

in Ω \ Γt, with boundary and initial conditions

u(t) = z(t) on ∂DΩ,

(3.12)
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[
(A + B) eu(t) −

∫ t

0

1
β

e− t−τ
β Beu(τ)dτ

]
ν = N(t) + F0(t)ν on ∂NΩ

(3.13)
[
(A + B) eu(t) −

∫ t

0

1
β

e− t−τ
β Beu(τ)dτ

]
ν = F0(t)ν on Γt, (3.14)

u(0) = u0, u̇(0) = u1. (3.15)

Thanks to (D1)–(D3) and (3.10) (on the interval (−∞, 0]), we have f ∈
L2(0, T ;H), F0 ∈ C∞([0, T ];Hd

s ), N ∈ H1(0, T ;HN ), and z ∈ H2(0, T ;H) ∩
H1(0, T ;V ) with z(t) ∈ Vt for every t ∈ [0, T ].

More in general, given F ∈ H1(0, T ;Hd
s ) we will study the following

viscoelastic dynamic system: for every t ∈ [0, T ]

ü(t) − div((A + B)eu(t)) +
∫ t

0

1
β

e− t−τ
β div(Beu(τ))dτ = f(t) − div F (t),

(3.16)

in Ω \ Γt, with boundary and initial conditions

u(t) = z(t) on ∂DΩ, (3.17)
[
(A + B) eu(t) −

∫ t

0

1
β

e− t−τ
β Beu(τ)dτ

]
ν = F (t)ν on ∂NΩ, (3.18)

[
(A + B) eu(t) −

∫ t

0

1
β

e− t−τ
β Beu(τ)dτ

]
ν = F (t)ν on Γt, (3.19)

u(0) = u0, u̇(0) = u1. (3.20)

Notice that system (3.11)–(3.15) is a particular case of system (3.16)–
(3.20). As we have already specified for system (3.6)–(3.9), also for (3.16)–
(3.20) the Neumann boundary conditions are only formal, and their meaning
is clarified by the following definition.

Definition 3.3. We say that u ∈ V(0, T ) is a weak solution to the viscoelastic
dynamic system (3.16)–(3.20) on the interval [0, T ] if u − z ∈ VD(0, T ),

−
∫ T

0

(u̇(t), v̇(t))dt +
∫ T

0

(
(A + B)eu(t) −

∫ t

0

1
β

e− t−τ
β Beu(τ)dτ, ev(t)

)
dt

=
∫ T

0

(f(t), v(t))dt +
∫ T

0

(F (t), ev(t))dt (3.21)

for every v ∈ DD(0, T ), and

lim
t→0+

‖u(t) − u0‖ = 0, lim
t→0+

‖u̇(t) − u1‖(V D
0 )′ = 0. (3.22)

Remark 3.4. From Lemma 3.2, if a function u ∈ V(0, T ) satisfies (3.21) for
every v ∈ DD(0, T ), then it satisfies the same equality for every v ∈ VD(0, T )
such that v(0) = v(T ) = 0.
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4. Existence by using Dafermos’ method

In this section we present an existence result which is to be considered in the
framework of functional analysis; in particular it derives from an idea of C.
Dafermos (see [5]) based on a generalization of Lax–Milgram’s Theorem by
J.L. Lions (see [13]). We start by stating the main result of this section.

Theorem 4.1. There exists a weak solution u ∈ V(0, T ) to the viscoelastic dy-
namic system (3.16)–(3.20) on the interval [0, T ] in the sense of Definition 3.3.
Moreover, there exists a positive constant C = C(T,A,B, β) such that

‖u‖V(0,T ) ≤ C
(‖f‖L2(0,T ;H) + ‖F‖H1(0,T ;Hd

s ) + ‖z̈‖L2(0,T ;H)

)
+ C

(‖z‖H1(0,T ;V ) + ‖u0‖V + ‖u1‖)
. (4.1)

Remark 4.2. Without loss of generality we may assume that the Dirichlet da-
tum and the initial displacement are identically equal to zero. Indeed, the
function u is a weak solution to the viscoelastic dynamic system (3.16)–(3.20)
according to Definition 3.3 if and only if the function u∗ defined by

u∗(t) := u(t) − u0 + z(0) − z(t),

satisfies

−
∫ T

0

(u̇∗(t), ψ̇(t))dt +
∫ T

0

(
(A + B)eu∗(t) −

∫ t

0

1
β

e− t−τ
β Beu∗(τ)dτ, eψ(t)

)
dt

=
∫ T

0

(f∗(t), ψ(t))dt +
∫ T

0

(F ∗(t), eψ(t))dt,

for every ψ ∈ DD(0, T ), and

lim
t→0+

‖u∗(t)‖ = 0, lim
t→0+

‖u̇∗(t) − u1
∗‖(V D

0 )′ = 0,

where f∗ := f − z̈, u1
∗ := u1 − ż(0), and for every t ∈ [0, T ]

F ∗(t) := F (t) +
∫ t

0

1
β

e− t−τ
β Bez(τ)dτ

− (A + B)ez(t) − (A + e− t
β B)(eu0 − ez(0)).

Moreover, if u∗ satisfies for some positive constants C∗ the following
estimate

‖u∗‖V(0,T ) ≤ C∗ (‖f∗‖L2(0,T ;H) + ‖F ∗‖H1(0,T ;Hd
s ) + ‖u1

∗‖
)
, (4.2)

then u satisfies (4.1). Indeed, since

‖f∗‖L2(0,T ;H) ≤ ‖f‖L2(0,T ;H) + ‖z̈‖L2(0,T ;H),

and for some positive constants C̄ = C(T,A,B, β) we have

‖F ∗‖H1(0,T ;Hd
s ) ≤ ‖F‖H1(0,T ;Hd

s ) +
(2

1
2

β
‖B‖∞ + ‖A + B‖∞

)
‖z‖H1(0,T ;V )

+
(
1 +

2
1
2

β

)∥∥∥
∫ ·

0

1
β

e− ·−τ
β Bez(τ)dτ

∥∥∥
L2(0,T ;Hd

s )

+ (‖A‖∞ + ‖e− ·
β ‖H1(0,T )‖B‖∞)(‖u0‖V + ‖z(0)‖V )
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≤ C̄(‖F‖H1(0,T ;Hd
s ) + ‖z‖H1(0,T ;V ) + ‖u0‖V ),

from (4.2) we deduce

‖u‖V(0,T ) ≤ ‖u∗‖V(0,T ) + T
1
2 (‖u0‖V + ‖z(0)‖V ) + ‖z‖V(0,T )

≤ C
(‖f‖L2(0,T ;H) + ‖F‖H1(0,T ;Hd

s ) + ‖z̈‖L2(0,T ;H)

)
+ C

(‖z‖H1(0,T ;V ) + ‖u0‖V + ‖u1‖)
,

where C = C(T,A,B, β) is a positive constant.

Based on Remark 4.2, we now assume that the Dirichlet datum and the
initial displacement are identically equal to zero. To prove the theorem in this
case, we first prove that our weak formulation (3.21) with initial conditions
(3.22) is equivalent to another one, which we call Dafermos’ Equality. After
that, by means of a Lions’ theorem we prove that there exists an element
which satisfies this equality. Namely, by defining for every a, b ∈ [0, T ] such
that a < b the space

ED
0 (a, b) := {ϕ ∈ C∞([a, b];V ) : ϕ(a) = 0, ϕ(t) ∈ V D

t for every t ∈ [a, b]},

we can state the following equivalence result.

Proposition 4.3. Suppose that there exists u ∈ VD(0, T ) which satisfies the
initial condition u(0) = 0 in the sense of (3.22), and such that Dafermos’
Equality holds:∫ T

0

(u̇(t), ϕ̇(t))dt +
∫ T

0

(t − T )(u̇(t), ϕ̈(t))dt

−
∫ T

0

(t − T )
(
(A + B)eu(t) −

∫ t

0

1
β

e− t−τ
β Beu(τ)dτ, eϕ̇(t)

)
dt = T (u1, ϕ̇(0))

−
∫ T

0

(t − T ) [(f(t), ϕ̇(t)) + (F (t), eϕ̇(t))] dt for ϕ ∈ ED
0 (0, T ). (4.3)

Then u satisfies (3.21), u(0) = 0 and u̇(0) coincides with u1 in (V D
0 )′. More-

over, if u ∈ VD(0, T ) is a weak solution in the sense of Definition 3.3, then it
satisfies (4.3).

At this point, we state and prove some lemmas and propositions needed
for the proof of Proposition 4.3. In particular, in the following lemma, we
highlight a useful relation between DD(0, T ) and ED

0 (0, T ).

Lemma 4.4. For every v ∈ DD(0, T ) the function defined by

ϕv(t) =
∫ t

0

v(τ)
τ − T

dτ

is well defined and satisfies ϕv ∈ ED
0 (0, T ).

Proof. Firstly, we can notice that ϕv is well defined because v is a function
with compact support, hence it vanishes in a neighborhood of T . Moreover,
ϕv(0) = 0 by definition and ϕv ∈ C∞([0, T ];V ) because it is a primitive of a
function with the same regularity. Now, we can observe that v(τ) ∈ V D

τ ⊂ V D
t
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for every τ ≤ t, therefore we have v(τ)
τ−T ∈ V D

t for every τ ≤ t, and by the
properties of Bochner’s integral we get ϕv(t) ∈ V D

t . �

In the next proposition we show that the distributional second derivative
in time of a weak solution is an element of the space L2(0, T ; (V D

0 )′). Therefore,
such a solution has an initial velocity in the space (V D

0 )′.

Proposition 4.5. Let u ∈ VD(0, T ) be a function which satisfies (3.21). Then
the distributional derivative of u̇ belongs to the space L2(0, T ; (V D

0 )′).

Proof. Let Λ ∈ L2(0, T ; (V D
0 )′) be defined in the following way: for a.e. t ∈

(0, T )

〈Λ(t), v〉 := (f(t), v) + (F (t), ev) − ((A + B)eu(t), ev)

+
∫ t

0

1
β

e− t−τ
β (Beu(τ), ev)dτ for v ∈ V D

0 , (4.4)

where 〈·, ·〉 represents the duality product between (V D
0 )′ and V D

0 .
Let us consider a test function ϕ ∈ C∞

c (0, T ), then for every v ∈ V D
0 the

function ψ(t) := ϕ(t)v belongs to the space C∞
c (0, T ;V0), and consequently

ψ ∈ DD(0, T ). Now we multiply both sides of (4.4) by ϕ(t) and we integrate
it on (0, T ). Thanks to (3.21) we can write
∫ T

0

〈Λ(t), v〉ϕ(t)dt = −
∫ T

0

(
(A + B)eu(t) −

∫ t

0

1
β

e− t−τ
β Beu(τ)dτ, eψ(t)

)
dt

+
∫ T

0

(f(t), ψ(t))dt +
∫ T

0

(F (t), eψ(t))dt

= −
∫ T

0

(u̇(t), v)ϕ̇(t)dt,

which implies
〈 ∫ T

0

Λ(t)ϕ(t)dt, v
〉

=
〈

−
∫ T

0

u̇(t)ϕ̇(t)dt, v
〉

for every v ∈ V D
0 .

Hence, we get
∫ T

0

Λ(t)ϕ(t)dt = −
∫ T

0

u̇(t)ϕ̇(t)dt for every ϕ ∈ C∞
c (0, T )

as elements of (V D
0 )′, which concludes the proof. �

Remark 4.6. Proposition 4.5 implies that u̇ ∈ H1(0, T ; (V D
0 )′), hence it admits

a continuous representative. Therefore, we can say that there exists u̇(0) ∈
(V D

0 )′ such that

lim
t→0+

‖u̇(t) − u̇(0)‖(V D
0 )′ = 0. (4.5)

In the next proposition we show how formulation (3.21) changes if we use
test functions which do not vanish at zero. In particular, we use the notation
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η(T ) to refer to the family of open neighborhoods of T , and we consider the
following spaces

LipD(0, T ) := {ψ ∈ Lip([0, T ];V ) : ψ(t) ∈ V D
t for every t ∈ [0, T ]},

LipD
0,T (0, T ) := {ψ ∈ LipD(0, T ) : ∃Iψ ∈ η(T ), ψ(t) = 0 for t ∈ Iψ ∪ {0}},

LipD
T (0, T ) := {Ψ ∈ LipD(0, T ) : Ψ(T ) = 0}.

Proposition 4.7. Let u ∈ VD(0, T ) be a function which satisfies (3.21) for every
ψ ∈ LipD

0,T (0, T ). Then u satisfies the equality

−
∫ T

0

(u̇(t), Ψ̇(t))dt +
∫ T

0

(
(A + B)eu(t) −

∫ t

0

1
β

e− t−τ
β Beu(τ)dτ, eΨ(t)

)
dt

=
∫ T

0

(f(t),Ψ(t))dt +
∫ T

0

(F (t), eΨ(t))dt + 〈u̇(0),Ψ(0)〉, (4.6)

for every Ψ ∈ LipD
T (0, T ).

Proof. Let us consider Ψ ∈ LipD
T (0, T ) and define for every ε ∈ (0, T

3 ) the
function

ψε(t) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

t
εΨ(0) t ∈ [0, ε]
Ψ(t − ε) t ∈ [ε, T − 2ε](− t

ε + T−ε
ε

)
Ψ(T − 3ε) t ∈ [T − 2ε, T − ε]

0 t ∈ [T − ε, T ].

It is easy to see that ψε ∈ LipD
0,T (0, T ), and by using ψε as test function in

(3.21) we get Iε + Im
ε + Jm

ε = 0, where the three terms Iε, Im
ε , and Jm

ε are
defined in the following way:

Iε := −
∫ T−2ε

ε

(u̇(t), Ψ̇(t − ε))dt +
∫ T−2ε

ε

((A + B)eu(t), eΨ(t − ε))dt

−
∫ T−2ε

ε

∫ t

0

1
β

e− t−τ
β (Beu(τ), eΨ(t − ε))dτdt

−
∫ T−2ε

ε

(f(t),Ψ(t − ε))dt −
∫ T−2ε

ε

(F (t), eΨ(t − ε))dt,

Im
ε := −−

∫ ε

0

(u̇(t),Ψ(0))dt + −
∫ ε

0

((A + B)eu(t), teΨ(0))dt

−−
∫ ε

0

∫ t

0

1
β

e− t−τ
β (Beu(τ), teΨ(0))dτdt

−−
∫ ε

0

(f(t), tΨ(0))dt − −
∫ ε

0

(F (t), teΨ(0))dt,

and

Jm
ε : = −

∫ T−ε

T−2ε

(u̇(t),Ψ(T − 3ε))dt

+ −
∫ T−ε

T−2ε

((A + B)eu(t), (−t + T − ε)eΨ(T − 3ε))dt
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− −
∫ T−ε

T−2ε

∫ t

0

1
β

e− t−τ
β (Beu(τ), (−t + T − ε)eΨ(T − 3ε))dτdt

− −
∫ T−ε

T−2ε

(−t + T − ε)[(f(t),Ψ(T − 3ε)) + (F (t), eΨ(T − 3ε))]dt.

Let us study the convergence of Iε, Im
ε , and Jm

ε as ε → 0+. First of all, we
notice that from the definition of ψε and the Lipschitz continuity of Ψ we have

‖ψε − Ψ‖2
L2(0,T ;V ) =

∫ ε

0

∥∥∥ t

ε
Ψ(0) − Ψ(t)

∥∥∥2

V
dt +

∫ T −2ε

ε

‖Ψ(t − ε) − Ψ(t)‖2
V dt

+

∫ T −ε

T −2ε

∥∥∥
(

− t

ε
+

T − ε

ε

)
Ψ(T − 3ε) − Ψ(t)

∥∥∥2

V
dt

≤ 2‖Ψ(0)‖2
V

∫ ε

0

t2

ε2
dt + 2

∫ ε

0
‖Ψ(t)‖2

V dt +

∫ T −2ε

ε

L2
Ψ|t − ε − t|2dt

+ 2‖Ψ(T − 3ε)‖2
V

∫ T −ε

T −2ε

(
− t

ε
+

T − ε

ε

)2
dt + 2

∫ T −ε

T −2ε

‖Ψ(t)‖2
V dt

≤ 4

3
ε‖Ψ‖2

L∞(0,T ;V ) + 2

∫ ε

0
‖Ψ(t)‖2

V dt

+ 2

∫ T −ε

T −2ε

‖Ψ(t)‖2
V dt + L2

Ψε2(T − 3ε) −−−−→
ε→0+

0. (4.7)

From (3.3), (4.7), and the absolute continuity of Lebesgue’s integral, we have

∣∣∣
∫ T−2ε

ε

((A + B)eu(t), eΨ(t − ε))dt −
∫ T

0

((A + B)eu(t), eΨ(t))dt
∣∣∣

≤
∣∣∣
∫ ε

0

((A + B)eu(t), eΨ(t))dt
∣∣∣ +

∣∣∣
∫ T

T−2ε

((A + B)eu(t), eΨ(t))dt
∣∣∣

+
∣∣∣
∫ T−2ε

ε

((A + B)eu(t), eΨ(t − ε) − eΨ(t))dt
∣∣∣

≤ ‖A + B‖∞
[ ∫ ε

0

‖u(t)‖V ‖Ψ(t)‖V dt +
∫ T

T−2ε

‖u(t)‖V ‖Ψ(t))‖V dt

+ ‖u‖L2(0,T ;V )‖ψε − Ψ‖L2(0,T ;V )

]
−−−−→
ε→0+

0. (4.8)

In the same way we can prove that
∫ T−2ε

ε

∫ t

0

1
β

e− t−τ
β (Beu(τ), eΨ(t − ε))dτdt

−−−−→
ε→0+

∫ T

0

∫ t

0

1
β

e− t−τ
β (Beu(τ), eΨ(t))dτdt, (4.9)

∫ T−2ε

ε

(f(t),Ψ(t − ε))dt −−−−→
ε→0+

∫ T

0

(f(t),Ψ(t))dt, (4.10)

∫ T−2ε

ε

(F (t), eΨ(t − ε))dt −−−−→
ε→0+

∫ T

0

(F (t), eΨ(t))dt. (4.11)
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Notice that, by virtue of the continuity of the translation operator in L2, and
again by the absolute continuity of Lebesgue’s integral, we can write

∣∣∣
∫ T−2ε

ε

(u̇(t), Ψ̇(t − ε))dt −
∫ T

0

(u̇(t), Ψ̇(t))dt
∣∣∣

≤
∣∣∣
∫ ε

0

(u̇(t), Ψ̇(t))dt
∣∣∣ +

∣∣∣
∫ T−2ε

ε

(u̇(t), Ψ̇(t − ε) − Ψ̇(t))dt
∣∣∣

+
∣∣∣
∫ T

T−2ε

(u̇(t), Ψ̇(t))dt
∣∣∣

≤
∫ ε

0

‖u̇(t)‖‖Ψ̇(t)‖dt + ‖u̇‖L2(0,T ;H)‖Ψ̇(· − ε) − Ψ̇(·)‖L2(0,T ;H)

+
∫ T

T−2ε

‖u̇(t)‖‖Ψ̇(t))‖dt −−−−→
ε→0+

0. (4.12)

Taking into account (4.8)–(4.12) we conclude that

Iε −−−−→
ε→0+

−
∫ T

0

(u̇(t), Ψ̇(t))dt +
∫ T

0

((A + B)eu(t), eΨ(t))dt

−
∫ T

0

∫ t

0

1
β

e− t−τ
β (Beu(τ), eΨ(t))dτdt

−
∫ T

0

(f(t),Ψ(t))dt −
∫ T

0

(F (t), eΨ(t))dt.

Now we analyze the limit of Im
ε as ε → 0+. By (4.5) we obtain

−
∫ ε

0

(u̇(t),Ψ(0))dt =
(
−
∫ ε

0

u̇(t)dt,Ψ(0)
)

=
〈
−
∫ ε

0

u̇(t)dt,Ψ(0)
〉

−−−−→
ε→0+

〈u̇(0),Ψ(0)〉. (4.13)

Moreover∣∣∣−
∫ ε

0

((A + B)eu(t), teΨ(0))dt
∣∣∣ ≤ ‖A + B‖∞‖Ψ(0)‖V −

∫ ε

0

t‖u(t)‖V dt

≤ ‖A + B‖∞‖Ψ‖L∞(0,T ;V )

(ε

3

) 1
2 ‖u‖L2(0,T ;V ) −−−−→

ε→0+
0. (4.14)

In the same way, we can prove that

−
∫ ε

0

∫ t

0

1
β

e− t−τ
β (Beu(τ), teΨ(0))dτdt −−−−→

ε→0+
0, (4.15)

−
∫ ε

0

(f(t), tΨ(0))dt −−−−→
ε→0+

0, (4.16)

−
∫ ε

0

(F (t), teΨ(0))dt −−−−→
ε→0+

0, (4.17)

hence, by (4.13)–(4.15) we obtain Im
ε −−−−→

ε→0+
−〈u̇(0),Ψ(0)〉.
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Finally, we study the behaviour of Jm
ε as ε → 0+. Since Ψ(T ) = 0, we

can write∣∣∣−
∫ T−ε

T−2ε

(u̇(t),Ψ(T − 3ε))dt
∣∣∣ ≤ 1

ε
1
2
‖u̇‖L2(0,T ;H)‖Ψ(T − 3ε) − Ψ(T )‖

≤ 3LΨ‖u̇‖L2(0,T ;H)ε
1
2 −−−−→

ε→0+
0. (4.18)

Moreover∣∣∣−
∫ T−ε

T−2ε

((A + B)eu(t), (−t + T − ε)eΨ(T − 3ε))dt
∣∣∣

≤ ‖A + B‖∞‖Ψ(T − 3ε)‖V

(
−
∫ T−ε

T−2ε

(T − t)‖u(t)‖V dt +
∫ T−ε

T−2ε

‖u(t)‖V dt
)

≤ ‖A + B‖∞‖Ψ‖L∞(0,T ;V )

((7
3

) 1
2

+ 1
)
ε

1
2 ‖u‖L2(0,T ;V ) −−−−→

ε→0+
0. (4.19)

By following the same strategy used in (4.19), we can prove that

−
∫ T−ε

T−2ε

∫ t

0

1
β

e− t−τ
β (Beu(τ), (−t + T − ε)eΨ(T − 3ε))dτdt −−−−→

ε→0+
0, (4.20)

−
∫ T−ε

T−2ε

(f(t), (−t + T − ε)Ψ(T − 3ε))dt −−−−→
ε→0+

0, (4.21)

−
∫ T−ε

T−2ε

(F (t), (−t + T − ε)eΨ(T − 3ε))dt −−−−→
ε→0+

0. (4.22)

Thanks to (4.18)–(4.20) we can say that Jm
ε → 0 as ε → 0+, and this concludes

the proof. �

We can now prove the equivalence result between the viscoelastic dynamic
system (3.16)–(3.20) (in the sense of Definition 3.3) and Dafermos’ Equality
(4.3), stated in Proposition 4.3.

Proof of Proposition 4.3. Let u ∈ VD(0, T ) be a function with u(0) = 0, and
which satisfies (4.3). Let us consider v ∈ DD(0, T ). By Lemma 4.4, the function
defined by

ϕv(t) =
∫ t

0

v(τ)
τ − T

dτ (4.23)

is well defined and belongs to the space ED
0 (0, T ). By taking ϕv as a test

function in (4.3) we obtain

−
∫ T

0

(u̇(t), ϕ̇v(t))dt −
∫ T

0

(t − T )(u̇(t), ϕ̈v(t))dt

+
∫ T

0

(
(A + B)eu(t) −

∫ t

0

1
β

e− t−τ
β Beu(τ)dτ, e((t − T )ϕ̇v(t))

)
dt

=
∫ T

0

(f(t), (t − T )ϕ̇v(t))dt +
∫ T

0

(F (t), e((t − T )ϕ̇v(t)))dt, (4.24)
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since ϕ̇v(0) = v(0)
−T = 0. Notice that v(t) = (t − T )ϕ̇v(t) and consequently

v̇(t) = ϕ̇v(t) + (t − T )ϕ̈v(t), by the definition of ϕv itself. This, together with
(4.24), allows us to conclude that u ∈ VD(0, T ) satisfies (3.21) for every v ∈
DD(0, T ).

Now we prove that u1 coincides with u̇(0). Since the function u satisfies
(3.21) for every v ∈ DD(0, T ), in particular, from Remark 3.4, it satisfies
the same equality for every v ∈ LipD

0,T (0, T ). Thanks to Proposition 4.7, the
function u satisfies (4.6) for every v ∈ LipD

T (0, T ), and therefore for every
function in the space

ED
T (0, T ) := {v ∈ C∞([0, T ];V ) : ∃Iv ∈ η(T ),

s.t. v(t) = 0 for t ∈ Iv, v(t) ∈ V D
t for t ∈ [0, T ]}.

Moreover, if we define ϕv as in (4.23) we have ϕv ∈ ED
0 (0, T ), and we can use

it as a test function in (4.3) to deduce

−
∫ T

0

(u̇(t), v̇(t))dt +
∫ T

0

(
(A + B)eu(t) −

∫ t

0

1
β

e− t−τ
β Beu(τ)dτ, ev(t)

)
dt

=
∫ T

0

(f(t), v(t))dt +
∫ T

0

(F (t), ev(t))dt + (u1, v(0)). (4.25)

By taking the difference between (4.6) and (4.25) we get 〈u1 − u̇(0), v(0)〉 = 0
for every v ∈ ED

T (0, T ). Since for every v ∈ V D
0 there exists a function v ∈

ED
T (0, T ) such that v(0) = v, we can obtain that 〈u1 − u̇(0), v〉 = 0 for every

v ∈ V D
0 , and so u1 − u̇(0) = 0 as element of (V D

0 )′. This proves the first part
of the proposition.

Vice versa, let u ∈ VD(0, T ) be a weak solution in the sense of Defini-
tion 3.3. Therefore, u satisfies (3.21) for every v ∈ DD(0, T ), and as we have
already shown before, u satisfies (4.6), with u1 in place of u̇(0), for every func-
tion v ∈ LipD

T (0, T ). Let us consider ϕ ∈ ED
0 (0, T ), then vϕ(t) = (t − T )ϕ̇(t) ∈

LipD
T (0, T ), and so it can be used as a test function in (4.6). By noticing that

v̇ϕ(t) = ϕ̇(t) + (t − T )ϕ̈(t) and vϕ(0) = −T ϕ̇(0) we obtain the thesis. �

In view of the previous proposition, it will be enough to prove the exis-
tence of a solution to Dafermos’ Equality (4.3). In particular, we shall prove
the existence of t0 ∈ (0, T ] and of a function u ∈ VD(0, t0) such that u(0) = 0,
and which satisfies Dafermos’ Equality on the interval [0, t0]. In order to do
this, we use an abstract result due to Lions (see [13, Chapter 3, Theorem 1.1
and Remark 1.2]). We first introduce the necessary setting. Let X be a Hilbert
space and Y ⊂ X be a linear subspace, endowed with the scalar product (·, ·)Y

which makes it a pre-Hilbert space. Suppose that the inclusion of Y in X is a
continuous map, i.e., there exists a positive constant C such that

‖u‖X ≤ C‖u‖Y for every u ∈ Y. (4.26)

Let us consider a bilinear form B : X × Y → R such that

B(·, ϕ) : X → R is a linear continuous function on X for ϕ ∈ Y, (4.27)

B(ϕ,ϕ) ≥ α‖ϕ‖2
Y for every ϕ ∈ Y, for some positive constant α. (4.28)
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Now, we can state the aforementioned existence theorem.

Theorem 4.8. (J.L. Lions) Suppose that hypotheses (4.26)–(4.28) are satisfied,
and let L : Y → R be a linear continuous map. Then there exists u ∈ X such
that

B(u, ϕ) = L(ϕ) for every ϕ ∈ Y.

Moreover, the solution u satisfies

‖u‖X ≤ C

α
sup{|L(ϕ)| : ‖ϕ‖Y = 1}. (4.29)

After defining for every a, b ∈ [0, T ] with a < b the space

VD
0 (a, b) := {u ∈ VD(a, b) : u(a) = 0},

we can state the following proposition.

Proposition 4.9. There exists t0 ∈ (0, T ] and a function u ∈ VD
0 (0, t0) which

satisfies Dafermos’ Equality (4.3) on the interval [0, t0] for every ϕ ∈ ED
0 (0, t0).

Moreover, there exists a positive constant C0 = C0(t0,A) such that

‖u‖V(0,t0) ≤ C0

(‖f‖L2(0,t0;H) + ‖F‖H1(0,t0;Hd
s ) + ‖u1‖)

. (4.30)

Proof. We fix t0 ∈ (0, T ] such that{
t0 < 1

2CA

if 1
2CA

< T

t0 = T otherwise.
(4.31)

For simplicity of notation, we denote the spaces VD
0 (0, t0) and ED

0 (0, t0) with
the symbols Vt0 and Et0 , respectively. On the space Vt0 we take the usual scalar
product, instead on the space Et0 we consider the following one

(φ, ϕ)Et0
:=

∫ t0

0

[(φ̇(t), ϕ̇(t)) + (φ(t), ϕ(t))V ]dt + t0(φ̇(0), ϕ̇(0)) for φ, ϕ ∈ Et0 ,

and we denote by ‖ · ‖Et0
the norm associated.

Let us consider the bilinear form B : Vt0 × Et0 → R defined by

B(u, ϕ) :=
∫ t0

0

(u̇(t), ϕ̇(t))dt +
∫ t0

0

(t − t0)(u̇(t), ϕ̈(t))dt

−
∫ t0

0

(t − t0)
(
(A + B)eu(t) −

∫ t

0

1
β

e− t−τ
β Beu(τ)dτ, eϕ̇(t)

)
dt,

and the linear operator L : Et0 → R represented by

L(ϕ) := t0(u1, ϕ̇(0)) +
∫ t0

0

(t − t0)(Ḟ (t), eϕ(t))dt

+
∫ t0

0

(F (t), eϕ(t))dt −
∫ t0

0

(t − t0)(f(t), ϕ̇(t))dt.

Notice that, from these definitions, Dafermos’ Equality (4.3) on the interval
[0, t0] can be rephrased as follows

B(u, ϕ) = L(ϕ) for every ϕ ∈ Et0 .
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Now we are in the framework of Theorem 4.8, and we want to show that (4.27)
and (4.28) are satisfied. Foremost, we prove the existence of a positive constant
α such that

B(ϕ,ϕ) ≥ α‖ϕ‖2
Et0

for every ϕ ∈ Et0 .

By setting

ψ(t) :=
∫ t

0

1
β

e− t−τ
β eϕ(τ)dτ,

we have

ψ̇(t) =
1
β

eϕ(t) −
∫ t

0

1
β2

e− t−τ
β eϕ(τ)dτ,

therefore

B(ϕ,ϕ) =
∫ t0

0

‖ϕ̇(t)‖2dt +
∫ t0

0

(t − t0)(ϕ̇(t), ϕ̈(t))dt

+
∫ t0

0

(t − t0)[(Bψ(t), eϕ̇(t)) − ((A + B)eϕ(t), eϕ̇(t))]dt. (4.32)

Thanks to the chain rule and to the symmetry property (3.4), we can write
1
2

d
dt

‖ϕ̇(t)‖2 = (ϕ̇(t), ϕ̈(t)),

1
2

d
dt

((A + B)eϕ(t), eϕ(t)) = ((A + B)eϕ(t), eϕ̇(t)),

d
dt

(Bψ(t), eϕ(t)) = (Bψ̇(t), eϕ(t)) + (Bψ(t), eϕ̇(t)).

By substituting this information in (4.32), we get after some integration by
parts

B(ϕ,ϕ) =
∫ t0

0

‖ϕ̇(t)‖2dt +
1
2

∫ t0

0

(t − t0)
d
dt

‖ϕ̇(t)‖2dt

− 1
2

∫ t0

0

(t − t0)
d
dt

((A + B)eϕ(t), eϕ(t))dt

+
∫ t0

0

(t − t0)
d
dt

(Bψ(t), eϕ(t))dt −
∫ t0

0

(t − t0)(Bψ̇(t), eϕ(t))dt

=
t0
2

‖ϕ̇(0)‖2 +
1
2

∫ t0

0

‖ϕ̇(t)‖2dt +
1
2

∫ t0

0

((A + B)eϕ(t), eϕ(t))dt

−
∫ t0

0

(Bψ(t), eϕ(t))dt −
∫ t0

0

(t − t0)(Bψ̇(t), eϕ(t))dt

=
t0
2

‖ϕ̇(0)‖2 +
1
2

∫ t0

0

‖ϕ̇(t)‖2dt

+
1
2

∫ t0

0

((A + B)eϕ(t), eϕ(t))dt −
∫ t0

0

(t − t0)(βBψ̇(t), ψ̇(t))dt

−
∫ t0

0

(t − t0)(Bψ̇(t), ψ(t)) −
∫ t0

0

(Bψ(t), eϕ(t))dt
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=
t0
2

‖ϕ̇(0)‖2 +
1
2

∫ t0

0

‖ϕ̇(t)‖2dt

+
1
2

∫ t0

0

(Aeϕ(t), eϕ(t))dt +
∫ t0

0

(t0 − t)(βBψ̇(t), ψ̇(t))dt

+
1
2

∫ t0

0

(B(eϕ(t) − ψ(t)), eϕ(t) − ψ(t))dt. (4.33)

From the coerciveness in (3.5) and the definition of the V -norm, we have

(Aeϕ(t), eϕ(t)) ≥ CA‖ϕ(t)‖2
V − CA‖ϕ(t)‖2 for every t ∈ [0, T ]. (4.34)

Moreover, since

ϕ(t) = ϕ(0) +
∫ t

0

ϕ̇(τ)dτ =
∫ t

0

ϕ̇(τ)dτ,

inequality (4.34) implies

1
2

∫ t0

0

(Aeϕ(t), eϕ(t))dt ≥ CA

2

∫ t0

0

‖ϕ(t)‖2
V dt − CAt0

2

∫ t0

0

‖ϕ̇(t)‖2dt. (4.35)

By (4.33), (4.35), and in view of the choice done in (4.31), we can deduce

B(ϕ,ϕ) ≥ t0
2

‖ϕ̇(0)‖2 +
1 − CAt0

2

∫ t0

0

‖ϕ̇(t)‖2dt +
CA

2

∫ t0

0

‖ϕ(t)‖2
V dt

≥ 1
4

min{1, CA}‖ϕ‖2
Et0

,

which corresponds to the hypothesis (4.28), with

α =
1
4

min{1, CA}. (4.36)

We now show the validity of assumption (4.27). We have to prove that for
every ϕ ∈ Et0 the functional B(·, ϕ) is continuous on Vt0 , and that L : Et0 → R

is a linear continuous operator on the space Et0 . To this aim, we fix ϕ ∈ Et0

and we consider {uk}k ⊂ Vt0 such that

uk

Vt0−−−−→
k→∞

u.

Therefore

Uk := uk − u
L2(0,t0;V )−−−−−−−→

k→∞
0 and U̇k := u̇k − u̇

L2(0,t0;H)−−−−−−−→
k→∞

0.

By using Cauchy-Schwarz’s inequality we get

|B(Uk, ϕ)| ≤
∫ t0

0

|(U̇k(t), ϕ̇(t))|dt + t0

∫ t0

0

|((A + B)eUk(t), eϕ̇(t))|dt

+ t0

∫ t0

0

[
|(U̇k(t), ϕ̈(t))| +

∫ t

0

1
β

e− t−τ
β |(BeUk(τ), eϕ̇(t))|dτ

]
dt

≤ ‖U̇k‖L2(0,t0;H)‖ϕ̇‖L2(0,t0;H) + t0‖U̇k‖L2(0,t0;H)‖ϕ̈‖L2(0,t0;H)

+ t0‖A + B‖∞‖Uk‖L2(0,t0;V )‖ϕ̇‖L2(0,t0;V )



67 Page 20 of 47 F. Sapio NoDEA

+
t0
β

‖B‖∞
∫ t0

0

∫ t

0

|(eUk(τ), eϕ̇(t))|dτdt. (4.37)

Notice that∫ t0

0

∫ t

0

|(eUk(τ), eϕ̇(t))|dτdt ≤ ‖ϕ̇‖L2(0,t0;V )

(∫ t0

0

( ∫ t

0

‖Uk(τ)‖V dτ
)2

dt
) 1

2

≤ t0‖ϕ̇‖L2(0,t0;V )‖Uk‖L2(0,t0;V ),

whence, by considering (4.37), we can say that there exist two positive con-
stants C1 = C1(ϕ, t0) and C2 = C2(A,B, t0, β, ϕ) such that

|B(Uk, ϕ)| ≤ C1‖U̇k‖L2(0,t0;H) + C2‖Uk‖L2(0,t0,V ) −−−−→
k→∞

0.

Now it remains to show that L is a continuous operator on Et0 , and since it is
linear it is enough to show its boundedness. Let ϕ ∈ Et0 , then

|L(ϕ)| ≤
∣∣∣
∫ t0

0

[
(t − t0)(f(t), ϕ̇(t)) − (t − t0)(Ḟ (t), eϕ(t)) − (F (t), eϕ(t))

]
dt

∣∣∣
+ t0‖u1‖‖ϕ̇(0)‖. (4.38)

In particular there exists a positive constant C = C(f, F, t0) such that
∫ t0

0

|(t − t0)(f(t), ϕ̇(t)) − (F (t), eϕ(t)) − (t − t0)(Ḟ (t), eϕ(t))|dt

≤ t0‖f‖L2(0,t0;H)‖ϕ̇‖L2(0,t0;H) + ‖(· − t0)Ḟ + F‖L2(0,t0;Hd
s )‖ϕ‖L2(0,t0;V )

≤ 2
1
2 max{t0, 1} [‖f‖L2(0,t0;H) + ‖F‖H1(0,t0;Hd

s )

] ‖ϕ‖Et0
≤ C‖ϕ‖Et0

.

(4.39)

Moreover, we have

t0‖u1‖‖ϕ̇(0)‖ ≤ t0‖u1‖t
− 1

2
0 ‖ϕ‖Et0

= t
1
2
0 ‖u1‖‖ϕ‖Et0

. (4.40)

By applying Theorem 4.8 with X = Vt0 and Y = Et0 , we have the existence of
a solution to (4.3) on the interval [0, t0].

Furthermore, we can use (4.29) and (4.36), and by means of (4.38)–(4.40)
we obtain (4.30) with

C0 :=
max{2

1
2 max{t0, 1}, t

1
2
0 }

1
4 min{1, CA} .

�

Remark 4.10. At this point, from Remark 4.2 and Propositions 4.3 and 4.9,
we can find a weak solution to the viscoelastic dynamic system (3.16)–(3.20)
on the interval [0, t0].

Now we want to show that it is possible to find a weak solution on the
whole interval [0, T ]. Let b, c ∈ [t0, T ) be two real numbers such that b < c,
then we can state the following lemma.
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Lemma 4.11. Let u ∈ VD(0, b) be a function which satisfies (3.21) on the in-
terval [0, b], then the following equality holds

〈u̇(b), ψ(b)〉 −
∫ b

0

(u̇(t), ψ̇(t))dt

+
∫ b

0

((A + B)eu(t), eψ(t))dt −
∫ b

0

∫ t

0

1
β

e− t−τ
β (Beu(τ), eψ(t))dτdt

=
∫ b

0

(f(t), ψ(t))dt +
∫ b

0

(F (t), eψ(t))dt, (4.41)

for every ψ ∈ VD(0, b) such that ψ(0) = 0.
Moreover, if u ∈ VD(b, c) is a function which satisfies (3.21) on the

interval [b, c], then the following equality holds

− 〈u̇(b),Ψ(b)〉 −
∫ c

b

(u̇(t), Ψ̇(t))dt

+
∫ c

b

((A + B)eu(t), eΨ(t))dt −
∫ c

b

∫ t

b

1
β

e− t−τ
β (Beu(τ), eΨ(t))dτdt

=
∫ c

b

(f(t),Ψ(t))dt +
∫ c

b

(F (t), eΨ(t))dt, (4.42)

for every Ψ ∈ VD(b, c) such that Ψ(c) = 0.

Proof. We begin by proving (4.41). We consider ψ ∈ VD(0, b) such that ψ(0) =
0, and we define for ε ∈ (0, b) the function

ψε(t) =

{
ψ(t) t ∈ [0, b − ε]
b−t
ε ψ(t) t ∈ [b − ε, b].

Since ψε ∈ VD(0, b) and ψε(0) = ψε(b) = 0, we can use it as a test function in
(3.21) to obtain Iε + Jε = Kε, where

Iε := −
∫ b−ε

0

(u̇(t), ψ̇(t))dt + −
∫ b

b−ε

(u̇(t), ψ(t))dt

+
∫ b−ε

0

((A + B)eu(t), eψ(t))dt −
∫ b−ε

0

∫ t

0

1
β

e− t−τ
β (Beu(τ), eψ(t))dτdt,

Jε := −−
∫ b

b−ε

(b − t)(u̇(t), ψ̇(t))dt + −
∫ b

b−ε

(b − t)((A + B)eu(t), eψ(t))dt

− −
∫ b

b−ε

(b − t)
∫ t

0

1
β

e− t−τ
β (Beu(τ), eψ(t))dτdt,

Kε :=
∫ b−ε

0

(f(t), ψ(t))dt + −
∫ b

b−ε

(b − t)(f(t), ψ(t))dt

+
∫ b−ε

0

(F (t), eψ(t))dt + −
∫ b

b−ε

(b − t)(F (t), eψ(t))dt.
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Thanks to the absolute continuity of Lebesgue’s integral and to Remark 4.6
we get

Iε −−−−→
ε→0+

−
∫ b

0

(u̇(t), ψ̇(t))dt +
∫ b

0

((A + B)eu(t), eψ(t))dt

−
∫ b

0

∫ t

0

1
β

e− t−τ
β (Beu(τ), eψ(t))dτdt + 〈u̇(b), ψ(b)〉,

Jε −−−−→
ε→0+

0, Kε −−−−→
ε→0+

∫ b

0

(f(t), ψ(t))dt +
∫ b

0

(F (t), eψ(t))dt,

which concludes the proof of (4.41).
To prove (4.42), it is enough to consider for ε ∈ (0, c − b) the function

Ψε(t) =

{
t−b
ε Ψ(t) t ∈ [b, b + ε]

Ψ(t) t ∈ [b + ε, c]

where Ψ ∈ VD(b, c) such that Ψ(c) = 0, and to repeat similar argument before
performed. �

Taking into account the previous lemma we can state and prove the
following proposition.

Proposition 4.12. Let ũ ∈ VD(0, b) be a weak solution to the viscoelastic dy-
namic system (3.16)–(3.20) in the sense of Definition 3.3 on the interval [0, b]
which satisfies for some positive constants C̃ the following estimate

‖ũ‖V(0,b) ≤ C̃
(‖f‖L2(0,b;H) + ‖F‖H1(0,b;Hd

s ) + ‖u1‖)
. (4.43)

Then, for every l ≥ 1 there exists c ∈ (b, b+ t0
l ] such that we can extend ũ to a

function u ∈ VD(0, c) which is a weak solution on the interval [0, c]. Moreover
u satisfies for some positive constants C the following estimate

‖u‖V(0,c) ≤ C
(‖f‖L2(0,c;H) + ‖F‖H1(0,c;Hd

s ) + ‖u1‖)
. (4.44)

Proof. We divide the proof into two steps. In the first one, we show how to
extend the solution. After this, in the second step, we prove (4.44). We firstly
choose b̂ ∈ (b − t0

2l , b) in such a way that

• ũ(b̂) ∈ V and

‖ũ(b̂)‖2
V ≤ −

∫ b

b− t0
2l

‖ũ(t)‖2
V dt; (4.45)

• b̂ is a Lebesgue’s point for ˙̃u, that is

lim
ε→0+

−
∫ b̂+ε

b̂

‖ ˙̃u(t) − ˙̃u(b̂)‖dt = 0, (4.46)

and ˙̃u(b̂) ∈ H satisfies

‖ ˙̃u(b̂)‖2 ≤ −
∫ b

b− t0
2l

‖ ˙̃u(t)‖2dt. (4.47)



NoDEA A dynamic model for viscoelasticity in domains Page 23 of 47 67

Notice that (4.45)–(4.47) are possible because ũ ∈ V(0, b).
Step 1. Since ũ is a weak solution on the interval [0, b], then

−
∫ b

0

( ˙̃u(t), v̇(t))dt +
∫ b

0

(
(A + B)eũ(t) −

∫ t

0

1
β

e− t−τ
β Beũ(τ)dτ, ev(t)

)
dt

=
∫ b

0

(f(t), v(t))dt +
∫ b

0

(F (t), ev(t))dt,

for every v ∈ VD(0, b) such that v(0) = v(b) = 0, and moreover ũ satisfies

lim
t→0+

‖ũ(t)‖ = 0 and lim
t→0+

‖ ˙̃u(t) − u1‖(V D
0 )′ = 0. (4.48)

We define the function G ∈ H1(b̂, c) with c := b̂ + t0
l in the following way

G(t) := F (t) +
∫ b̂

0

1
β

e− t−τ
β Beũ(τ)dτ.

Since t0
l ≤ t0, ũ(b̂) ∈ V , and ˙̃u(b̂) ∈ H, we can apply Remark 4.2, Proposi-

tions 4.3 and 4.9 on the interval [b̂, c], to find ū ∈ VD(b̂, c) which satisfies, for
every v ∈ VD(b̂, c) such that v(b̂) = v(c) = 0, the following equality

−
∫ c

b̂

( ˙̄u(t), v̇(t))dt +
∫ c

b̂

(
(A + B)eū(t) −

∫ t

b̂

1
β

e− t−τ
β Beū(τ)dτ, ev(t)

)
dt

=
∫ c

b̂

(f(t), v(t))dt +
∫ c

b̂

(G(t), ev(t))dt,

and also the following limits

lim
t→b̂+

‖ū(t) − ũ(b̂)‖ = 0, lim
t→b̂+

‖ ˙̄u(t) − ˙̃u(b̂)‖(V D
0 )′ = 0. (4.49)

Notice that the initial data ũ(b̂) and ˙̃u(b̂) are well defined because ũ ∈ C0([0, b];
H) and ˙̃u ∈ C0([0, b]; (V D

0 )′).
Now we define the function

u(t) :=

{
ũ(t) t ∈ [0, b̂]
ū(t) t ∈ [b̂, c],

(4.50)

and we claim that it is a weak solution on the interval [0, c]. Notice that,
since b̂ ≥ b − t0

2l then c > b. To prove this, let us fix ψ ∈ DD(0, c). Clearly
ψ ∈ VD(0, b̂) and ψ(0) = 0, and since ũ is a weak solution on [0, b̂], we can use
(4.41) of Lemma 4.11 to get

( ˙̃u(b̂), ψ(b̂)) −
∫ b̂

0

(u̇(t), ψ̇(t))dt

+
∫ b̂

0

((A + B)eu(t), eψ(t))dt −
∫ b̂

0

∫ t

0

1
β

e− t−τ
β (Beu(τ)dτ, eψ(t))dt

=
∫ b̂

0

(f(t), ψ(t))dt +
∫ b̂

0

(F (t), eψ(t))dt. (4.51)
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Moreover, ψ ∈ VD(b̂, c) and ψ(c) = 0, and since ū is a weak solution on [b̂, c],
by (4.42) of Lemma 4.11 we obtain

− ( ˙̄u(b̂), ψ(b̂)) −
∫ c

b̂

(u̇(t), ψ̇(t))dt

+
∫ c

b̂

((A + B)eu(t), eψ(t))dt −
∫ c

b̂

∫ t

b̂

1
β

e− t−τ
β (Beu(τ)dτ, eψ(t))dt

=
∫ c

b̂

(f(t), ψ(t))dt +
∫ c

b̂

(G(t), eψ(t))dt,

that is

− ( ˙̄u(b̂), ψ(b̂)) −
∫ c

b̂

(u̇(t), ψ̇(t))dt

+
∫ c

b̂

((A + B)eu(t), eψ(t))dt −
∫ c

b̂

∫ t

0

1
β

e− t−τ
β (Beu(τ)dτ, eψ(t))dt

=
∫ c

b̂

(f(t), ψ(t))dt +
∫ c

b̂

(F (t), eψ(t))dt. (4.52)

From (4.46) and (4.49), by summing (4.51) and (4.52), we obtain the following
equality

−
∫ c

0

(u̇(t), ψ̇(t))dt +
∫ c

0

(
(A + B)eu(t) −

∫ t

0

1
β

e− t−τ
β Beu(τ)dτ, eψ(t))dt

=
∫ c

0

(f(t), ψ(t))dt +
∫ c

0

(F (t), eψ(t))dt. (4.53)

Therefore, the function u defined in (4.50) is a weak solution to the viscoelastic
dynamic system (3.16)–(3.20) in the sense of Definition 3.3 on the interval [0, c],
since it satisfies (4.48) and (4.53).

Step 2. Now, we want to prove (4.44). We can write

‖u‖2
V(0,c) = ‖ũ‖2

V(0,b̂)
+ ‖ū‖2

V(b̂,c)
≤ ‖ũ‖2

V(0,b) + ‖ū‖2
V(b̂,c)

. (4.54)

Notice that ū− ũ(b̂) ∈ VD
0 (b̂, c) is a function which satisfies Dafermos’ Equality

(4.3) on the interval [b̂, c] with the right-hand side equal to

t0( ˙̃u(b̂), ϕ̇(0)) −
∫ c

b̂

(t − t0)
[
(f(t), ϕ̇(t)) + (G(t) − Aeũ(b̂) − e

− t−b̂
β Beũ(b̂), eϕ̇(t))

]
dt

for every ϕ ∈ ED
0 (b̂, c). Therefore, by following the estimates in (4.38)–(4.40),

we can apply (4.29) of Theorem 4.8, with X = VD(b̂, c) and Y = ED
0 (b̂, c), to

obtain the existence of a positive constant K = K(t0,A) such that

‖ū − ũ(b̂)‖V(b̂,c) ≤K
[‖f‖L2(b̂,c;H) + ‖ ˙̃u(b̂)‖]

+ K‖G − Aeũ(b̂) − e− ·−b̂
β Beũ(b̂)‖H1(b̂,c;Hd

s ) (4.55)

Now notice that

‖G‖H1(b̂,c;Hd
s )
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≤ ‖F‖H1(b̂,c;Hd
s ) +

(β

2

) 1
2
(
1 +

1
β

)
‖B‖∞

(∫ b̂

0

1
β2

e− 2(b̂−τ)
β dτ

) 1
2 ‖ũ‖L2(0,b̂;V )

≤ ‖F‖H1(b̂,c;Hd
s ) +

1
2

(
1 +

1
β

)
‖B‖∞‖ũ‖V(0,b̂), (4.56)

and

‖Aeũ(b̂) + e− ·−b̂
β Beũ(b̂)‖H1(b̂,c;Hd

s )

≤
[( t0

l

) 1
2 ‖A‖∞ + ‖B‖∞‖e− ·−b̂

β ‖H1(b̂,c)

]
‖ũ(b̂)‖V

≤
[( t0

l

) 1
2 ‖A‖∞ +

(β

2

) 1
2
(
1 +

1
β

)
‖B‖∞

]
‖ũ(b̂)‖V . (4.57)

Taking into account the information provided by (4.45)–(4.47), we can use
estimates (4.55)–(4.57) to deduce the existence of a positive constant C̄ =
C̄(t0, l,A,B, β) such that

‖ū‖V(b̂,c) ≤ C̄
(
‖f‖L2(b̂,c;H) + ‖F‖H1(b̂,c;Hd

s ) + ‖ũ‖V(0,b)

)
. (4.58)

By (4.43), (4.54), and (4.58) we obtain the final estimate (4.44). �

Now we are in position to prove the main theorem of this section.

Proof of Theorem 4.1. Let us consider u0 ∈ VD(0, t0) a weak solution to the
viscoelastic dynamic system (3.16)–(3.20) in the sense of Definition 3.3 on the
interval [0, t0], whose existence is guaranteed by Remark 4.10. Moreover, u0

satisfies (4.30). By applying a finite number of times Proposition 4.12 with
l = 1 we can extend u0 to ũ ∈ VD(0, b) which is a weak solution on the
interval [0, b], where T − b < t0. Now we select b̂ ∈ (T − t0, b) in such a way
(4.45)–(4.47) are satisfied on the interval [T − t0, b]. By choosing l = t0

T−b̂
≥ 1,

since b̂ + t0
l = T , taking into account Proposition 4.12 we can extend ũ to a

function u ∈ VD(0, T ) which is a weak solution to the viscoelastic dynamic
system (3.16)–(3.20) on the interval [0, T ]. Moreover u satisfies (4.44) on [0, T ].
Finally, by applying Remark 4.2 we get the thesis. �

5. Existence: a coupled system equivalent to the viscoelastic
dynamic system

In this section, we illustrate a second method to find solutions to the viscoelas-
tic dynamic system (3.16)–(3.20) according to Definition 3.3. This method is
based on a minimizing movement approach deriving from the theory of gra-
dient flows, and it is a classical tool used to prove the existence of solutions
in the context of fractures, see, e.g., [4,7,9]. Be means of this method, we are
also able to provide an energy-dissipation inequality satisfied by the solution,
and consequently, by means of this inequality, we prove that such a solution
satisfies the initial conditions (3.20) in a stronger sense than the one stated in
(3.22).



67 Page 26 of 47 F. Sapio NoDEA

To this aim, let us define the following coupled system{
ü(t) − div(Aeu(t)) − div(B(eu(t) − w(t))) = f(t) − div G(t)
βẇ(t) + w(t) = eu(t)

(5.1)

in Ω \ Γt, t ∈ (0, T ), with the following boundary and initial conditions

u(t) = z(t) on ∂DΩ, t ∈ (0, T ), (5.2)

[Aeu(t) + B(eu(t) − w(t))]ν = G(t)ν on ∂NΩ, t ∈ (0, T ), (5.3)

[Aeu(t) + B(eu(t) − w(t))]ν = G(t)ν on Γt, t ∈ (0, T ), (5.4)

u(0) = u0, w(0) = w0, u̇(0) = u1, (5.5)

where w0 ∈ Hd
s and G(t) := F (t) − e− t

β Bw0. Also in this case, the strong
formulation of the coupled system (5.1)–(5.5) is only formal. By setting

V := V(0, T ), VD := VD(0, T ), DD := DD(0, T ),

we give the following definition.

Definition 5.1. We say that (u,w) ∈ V × H1(0, T ;Hd
s ) is a weak solution to

the coupled system (5.1)–(5.5) if the following conditions hold:

• u − z ∈ VD and

−
∫ T

0

(u̇(t), ϕ̇(t))dt +
∫ T

0

(Aeu(t), eϕ(t))dt +
∫ T

0

(B(eu(t) − w(t)), eϕ(t))dt

=
∫ T

0

(f(t), ϕ(t))dt +
∫ T

0

(F (t), eϕ(t))dt −
∫ T

0

e− t
β (Bw0, eϕ(t))dt, (5.6)

for every ϕ ∈ DD;
• for a.e. t ∈ (0, T ) {

βẇ(t) + w(t) = eu(t)
w(0) = w0

(5.7)

where the equalities are to be understood in the sense of the Hilbert space
Hd

s ;
• the initial conditions (3.22) are satisfied.

The following result proves that the new problem is equivalent to the first
one.

Theorem 5.2. The viscoelastic dynamic system (3.16)–(3.20) is equivalent to
the coupled system (5.1)–(5.5).

Proof. Let us consider a weak solution (u,w) ∈ V×H1(0, T ;Hd
s ) to the coupled

system (5.1)–(5.5) according to Definition 5.1. In view of the theory of ordinary
differential equations valued in Hilbert spaces, by (5.7) we can write

w(t) = w0e− t
β +

∫ t

0

1
β

e− t−τ
β eu(τ)dτ for every t ∈ [0, T ]. (5.8)
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Moreover, by definition u − z ∈ VD and (5.6) holds for every ϕ ∈ DD. By
substituting (5.8) in (5.6) we obtain

−
∫ T

0

(u̇(t), ϕ̇(t))dt +
∫ T

0

((A + B)eu(t), eϕ(t))dt

−
∫ T

0

∫ t

0

1
β

e− t−τ
β (Beu(τ), eϕ(t))dτdt −

∫ T

0

e− t
β (Bw0, eϕ(t))dt

=
∫ T

0

(f(t), ϕ(t))dt +
∫ T

0

(F (t), eϕ(t))dt −
∫ T

0

e− t
β (Bw0, eϕ(t))dt.

Therefore, since, again by definition, (3.22) holds, u is a weak solution to the
viscoelastic dynamic system (3.16)–(3.20) in the sense of Definition 3.3.

Vice versa, if we consider a solution u ∈ V to the viscoelastic dynamic
system (3.16)–(3.20), then u − z ∈ VD and

−
∫ T

0

(u̇(t), ϕ̇(t))dt +
∫ T

0

(
(A + B)eu(t) −

∫ t

0

1
β

e− t−τ
β Beu(τ)dτ, eϕ(t)

)
dt

=
∫ T

0

(f(t), ϕ(t))dt +
∫ T

0

(F (t), eϕ(t))dt, (5.9)

for every ϕ ∈ DD. Let w0 ∈ Hd
s and let w be the function defined in (5.8). It

is easy to see that w ∈ H1(0, T ;Hd
s ) and by summing to both hand sides of

(5.9) the term

−
∫ T

0

e− t
β (Bw0, eϕ(t))dt,

we get (5.6). This, together with (3.22), shows that (u,w) ∈ V × H1(0, T ;Hd
s )

is a weak solution to the coupled system (5.1)–(5.5) in the sense of Definition
5.1. The proof is then complete. �

Now we are in position to state the main result of this section.

Theorem 5.3. There exists a weak solution (u,w) ∈ V × H1(0, T ;Hd
s ) to the

coupled system (5.1)–(5.5) according to Definition 5.1. Moreover, u ∈ C0
w([0, T ];

V ), u̇ ∈ C0
w([0, T ];H) ∩ H1(0, T ; (V D

0 )′), and

lim
t→0+

u(t) = u0 in V and lim
t→0+

u̇(t) = u1 in H.

The proof of this result will be given at the end of this section.

5.1. Discretization in time

In this subsection we prove Theorem 5.3 by means of a time discretization
scheme in the same spirit of [7].

Let us fix n ∈ N and set

τn :=
T

n
, F 0

n := F (0), h0
n := Bw0,

u0
n := u0, u−1

n := u0 − τnu1, w0
n := w0,

(5.10)
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We define

V k
n := V D

kτn
, zk

n := z(kτn) for k = 0, . . . , n,

F k
n := F (kτn), hk

n := e
− kτn

β Bw0, fk
n := −

∫ kτn

(k−1)τn

f(τ)dτ for k = 1, . . . , n.

For k = 1, ..., n let (uk
n, wk

n) be the minimizer in V k
n ×Hd

s of the functional

(u,w) �→ 1
2τ2

n

‖u − 2uk−1
n + uk−2

n ‖2 +
1
2
(Aeu, eu) +

1
2
(B(eu − w), eu − w)

+
β

2τ2
n

(B(w − wk−1
n ), w − wk−1

n ) − (fk
n , u) − (F k

n − hk
n, eu). (5.11)

Using the coerciveness (3.5), it is easy to see that the functional in (5.11) is
convex and bounded from below by

1
4

min
{ 1

2τ2
n

, CA,
1
τ2
n

CBβ
}

(‖u‖2
V + ‖w‖2) − Ck

n,

for a suitable positive constant Ck
n. The existence of a minimizer then follows

from the lower semicontinuity of the functional with respect to the strong (and
hence to the weak) convergence in V k

n × Hd
s .

To simplify the exposition, for k = 0, ..., n we define

δuk
n :=

uk
n − uk−1

n

τn
and δ2uk

n :=
δuk

n − δuk−1
n

τn
. (5.12)

The Euler equation for (5.11) gives

(δ2uk
n, ϕ) + (Aeuk

n, eϕ) + (B(euk
n − wk

n), eϕ − ψ)

+ β(Bδwk
n, ψ) = (fk

n , ϕ) + (F k
n − hk

n, eϕ) for (ϕ,ψ) ∈ V k
n × Hd

s , (5.13)

where δwk
n is defined for every k = 1, . . . , n as in (5.12), and δu0

n = u1 by
(5.10). Notice that by choosing as a test function the pair (ϕ, 0) with ϕ ∈ V k

n ,
we get

(δ2uk
n, ϕ) + ((A + B)euk

n − Bwk
n, eϕ) = (fk

n , ϕ) + (F k
n − hk

n, eϕ),

which is a discrete-in-time approximation of (5.6). On the other hand, if we
use as a test function in (5.13) the pair (0, ψ) with ψ ∈ Hd

s , we have

(βδwk
n + wk

n − euk
n, ψ) = 0,

whence βδwk
n + wk

n − euk
n = 0 (as element of Hd

s ), which is an approximation
in time of (5.7).

In the next lemma we show an estimate for the family {(uk
n, wk

n)}n
k=1,

which is uniform with respect to n, and it will be used later to pass to the
limit in the discrete equation (5.13).

Lemma 5.4. There exists a positive constant C, independent of n, such that

max
i=1,..,n

‖δui
n‖ + max

i=1,..,n
‖eui

n‖ + max
i=1,..,n

‖wi
n‖ +

n∑
i=1

τn‖δwi
n‖2 ≤ C. (5.14)
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Proof. To simplify our computations, we define the following two bilinear sym-
metric forms

a : (V × Hd
s ) × (V × Hd

s ) → R b : Hd
s × Hd

s → R

a((u,w), (ϕ,ψ)) := (Aeu, eϕ) + (B(eu − w), eϕ − ψ), b(w,ψ) := β(Bw,ψ).

Thanks to (3.5) we have that a((ϕ,ψ), (ϕ,ψ)) ≥ 0 and b(ψ,ψ) ≥ 0 for every
ϕ ∈ V and ψ ∈ Hd

s . Now we set ωk
n := (uk

n, wk
n) for k = 0, . . . , n, and we take

(ϕ,ψ) = τn(δuk
n − δzk

n, δwk
n) ∈ V k

n × Hd
s as a test function in (5.13), where

δz0
n := ż(0) and δzk

n is defined as in (5.12). Therefore, we obtain

‖δuk
n‖2 − (δuk−1

n , δuk
n) − τn(δ2uk

n, δzk
n) + a(ωk

n, ωk
n) − a(ωk−1

n , ωk
n)

− τna(ωk
n, (δzk

n, 0)) + τnb(δwk
n, δwk

n) = τn(fk
n , δuk

n − δzk
n)

+ τn(F k
n , eδuk

n − eδzk
n) − τn(hk

n, eδuk
n − eδzk

n). (5.15)

From the following identities

‖δuk
n‖2 − (δuk−1

n , δuk
n) =

1
2
‖δuk

n‖2 − 1
2
‖δuk−1

n ‖2 +
τ2
n

2
‖δ2uk

n‖2,

a(ωk
n, ωk

n) − a(ωk−1
n , ωk

n) =
1
2
a(ωk

n, ωk
n) − 1

2
a(ωk−1

n , ωk−1
n ) +

τ2
n

2
a(δωk

n, δωk
n),

from (5.15) we infer

1
2
‖δuk

n‖2 − 1
2
‖δuk−1

n ‖2 +
1
2
a(ωk

n, ωk
n)

− 1
2
a(ωk−1

n , ωk−1
n ) + τnb(δwk

n, δwk
n) ≤ τnW k

n , (5.16)

where

W k
n := (fk

n , δuk
n − δzk

n) + (F k
n , eδuk

n − eδzk
n)

− (hk
n, eδuk

n − eδzk
n) + (δ2uk

n, δzk
n) + a(ωk

n, (δzk
n, 0)).

We fix i ∈ {1, . . . , n} and we sum in (5.16) over k = 1, . . . , i to obtain the
following discrete energy inequality

1
2
‖δui

n‖2 +
1
2
a(ωi

n, ωi
n) +

i∑
k=1

τnb(δwk
n, δwk

n) ≤ E0 +
i∑

k=1

τnW k
n , (5.17)

where

E0 :=
1
2
‖u1‖2 +

1
2
(Aeu0, eu0) +

1
2
(B(eu0 − w0), eu0 − w0).

Let us now estimate the right-hand side of (5.17) from above. By means of
Cauchy-Schwarz and Young’s inequalities we can write

∣∣∣
i∑

k=1

τn(fk
n , δuk

n − δzk
n)

∣∣∣

≤ ‖f‖2
L2(0,T ;H) +

1
2
‖ż‖2

L2(0,T ;H) +
1
2

i∑
k=1

τn‖δuk
n‖2, (5.18)
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∣∣∣
i∑

k=1

τn(hk
n, δzk

n)
∣∣∣ ≤ 1

2

i∑
k=1

τne− 2kτn
β ‖Bw0‖2 +

1
2

i∑
k=1

τn‖δzk
n‖2

≤ T

2
‖Bw0‖2 +

1
2
‖ż‖2

L2(0,T ;H), (5.19)

∣∣∣
i∑

k=1

τn(F k
n , eδzk

n)
∣∣∣ ≤ 1

2

i∑
k=1

τn‖F k
n‖2 +

1
2

i∑
k=1

τn‖eδzk
n‖2

≤ T‖F (0)‖2 + T 2‖Ḟ‖2
L2(0,T ;Hd

s ) +
1
2
‖ż‖2

L2(0,T ;V ), (5.20)

∣∣∣
i∑

k=1

τna(ωk
n, (δzk

n, 0))
∣∣∣

≤ 1
2
‖A‖2

∞
i∑

k=1

τn‖euk
n‖2 +

1
2
‖B‖2

∞
i∑

k=1

τn‖euk
n − wk

n‖2 +
i∑

k=1

τn‖eδzk
n‖2

≤ 1
2
(‖A‖2

∞ + ‖B‖2
∞)

i∑
k=1

τn

[‖euk
n‖2 + ‖euk

n − wk
n‖2

]
+ ‖ż‖2

L2(0,T ;V ).

(5.21)

Notice that the following discrete integrations by parts hold

i∑
k=1

τn(δ2uk
n, δzk

n) = (δui
n, δzi

n) − (δu0
n, δz0

n) −
i∑

k=1

τn(δuk−1
n , δ2zk

n), (5.22)

i∑
k=1

τn(hk
n, eδuk

n) = (hi
n, eui

n) − (h0
n, eu0

n) −
i∑

k=1

τn(δhk
n, euk−1

n ), (5.23)

i∑
k=1

τn(F k
n , eδuk

n) = (F i
n, eui

n) − (F 0
n , eu0) −

i∑
k=1

τn(δF k
n , euk−1

n ), (5.24)

where δhk
n, δF k

n , and δ2zk
n are defined as in (5.12). By (5.22) and from the

following estimate

i∑
k=1

τn‖δuk−1
n ‖2 =

i−1∑
k=0

τn‖δuk
n‖2 ≤ T‖u1‖2 +

i∑
k=1

τn‖δuk
n‖2, (5.25)

we can write for every ε1 > 0

∣∣∣
i∑

k=1

τn(δ2uk
n, δzk

n)
∣∣∣

≤ 1
2ε1

‖δzi
n‖2 +

ε1

2
‖δui

n‖2 + ‖u1‖‖ż(0)‖ +
i∑

k=1

τn‖δuk−1
n ‖‖δ2zk

n‖

≤ Cε1 + ‖z̈‖2
L2(0,T ;H) +

ε1

2
‖δui

n‖2 +
1
2

i∑
k=1

τn‖δuk
n‖2, (5.26)
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where Cε1 is a positive constant depending on ε1. Thanks to (5.23) and to
(5.25) (applied to euk−1

n in place of δuk−1
n ) we have for every ε2 > 0

∣∣∣
i∑

k=1

τn(hk
n, eδuk

n)
∣∣∣

≤ 1
2ε2

‖hi
n‖2 +

ε2

2
‖eui

n‖2 + ‖eu0‖‖Bw0‖ +
i∑

k=1

τn‖δhk
n‖‖euk−1

n ‖

≤ Cε2 +
1
2β

‖Bw0‖2 +
ε2

2
‖eui

n‖2 +
1
2

i∑
k=1

τn‖euk
n‖2, (5.27)

where Cε2 is a positive constant depending on ε2. Moreover, notice that

ui
n =

i∑
k=1

τnδuk
n + u0,

hence by means of the discrete Holder’s inequality

‖ui
n‖ ≤

i∑
k=1

τn‖δuk
n‖ + ‖u0‖ ≤ T

1
2

( i∑
k=1

τn‖δuk
n‖2

) 1
2

+ ‖u0‖. (5.28)

By (5.24), (5.25) (applied again to euk−1
n in place of δuk−1

n ), and (5.28) we get
for every ε3 > 0

∣∣∣
i∑

k=1

τn(F k
n , eδuk

n)
∣∣∣

≤ 1
2ε3

‖F i
n‖2 +

ε3

2
‖eui

n‖2 + ‖F (0)‖‖eu0‖ +
i∑

k=1

τn‖δF k
n‖‖euk−1

n ‖

≤ Cε3 +
ε3

2
‖eui

n‖2 +
1
2
‖Ḟ‖2

L2(0,T ;Hd
s ) +

1
2

i∑
k=1

τn‖euk
n‖2, (5.29)

where Cε3 is a positive constant depending on ε3.
Now we consider (5.17)–(5.29). By choosing ε1 = 1

2 , ε2 = ε3 = CA

4 and
using (3.4) and (3.5) we obtain the existence of two positive constants C1 and
C2 such that

1
4
‖δui

n‖2 +
CA

4
‖eui

n‖2 +
CB

2
‖eui

n − wi
n‖2 + βCB

i∑
k=1

τn‖δwk
n‖2

≤ C1 + C2

i∑
k=1

τn

[
‖δuk

n‖2 + ‖euk
n‖2 + ‖euk

n − wk
n‖2 +

k∑
l=1

τn‖δwl
n‖2

]
.

(5.30)

By defining

ai
n := ‖δui

n‖2 + ‖eui
n‖2 + ‖eui

n − wi
n‖2 +

i∑
k=1

τn‖δwk
n‖2,
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from (5.30) we can derive

ai
n ≤ C̃1 + C̃2

i∑
k=1

τnak
n,

for two positive constants C̃1 and C̃2. Taking into account a discrete version of
Gronwall’s lemma (see, e.g., [1, Lemma 3.2.4]) we deduce that ai

n is bounded
by a positive constant C∗ independent of i and n; i.e. for every i = 1, . . . , n
and for every n ∈ N

‖δui
n‖2 + ‖eui

n‖2 + ‖eui
n − wi

n‖2 +
i∑

k=1

τn‖δwk
n‖2 ≤ C∗.

Therefore, for every i = 1, . . . , n and for every n ∈ N

‖δui
n‖2 + ‖eui

n‖2 + ‖wi
n‖2 +

i∑
k=1

τn‖δwk
n‖2 ≤ 3C∗,

and this concludes the proof. �

We now want to pass to the limit into the discrete equation (5.13) to
obtain a solution to the coupled system (5.1)–(5.5) according to Definition 5.1.
We start by defining the following interpolation sequences of our limit solution

un(t) := uk
n + (t − kτn)δuk

n

ũn(t) := δuk
n + (t − kτn)δ2uk

n

t ∈ [(k − 1)τn, kτn], k = 1, . . . , n,

u+
n (t) := uk

n, ũ+
n (t) := δuk

n t ∈ ((k − 1)τn, kτn], k = 1, . . . , n,

u−
n (t) := uk−1

n , ũ−
n (t) := δuk−1

n t ∈ [(k − 1)τn, kτn), k = 1, . . . , n,

and the same approximations wn, w+
n , w−

n for the function w. By using this
notation, we can state the following convergence lemma.

Lemma 5.5. There exists (u,w) ∈ V × H1(0, T ;Hd
s ), with u − z ∈ VD, such

that, up to a not relabeled subsequence, we have

un
H1(0,T ;H)−−−−−−−⇀

n→∞ u, u±
n

L2(0,T ;V )−−−−−−⇀
n→∞ u, ũ±

n

L2(0,T ;H)−−−−−−−⇀
n→∞ u̇, (5.31)

wn
H1(0,T ;Hd

s )−−−−−−−−⇀
n→∞ w, w±

n

L2(0,T ;Hd
s )−−−−−−−⇀

n→∞ w. (5.32)

Proof. Thanks to Lemma 5.4 the sequences

{un}n ⊂ H1(0, T ;H) ∩ L∞(0, T ;V ), {wn}n ⊂ H1(0, T ;Hd
s ) ∩ L∞(0, T ;Hd

s ),

{u±
n }n ⊂ L∞(0, T ;V ), {w±

n }n ⊂ L∞(0, T ;Hd
s ),

{ũ±
n }n ⊂ L∞(0, T ;H),

are uniformly bounded. Indeed, by means of (5.14) and (5.28) there exists a
positive constant C̄ such that ‖ui

n‖V ≤ C̄ for every n ∈ N and i = 1, .., n, and
therefore

‖un‖L∞(0,T ;V )
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≤ max
k=1,..,n

sup
t∈[(k−1)τn,kτn]

‖ (
1 − k + tτ−1

n

)
uk

n +
(
k − tτ−1

n

)
uk−1

n ‖V ≤ 2C̄.

By Banach-Alaoglu’s Theorem there exist some functions

u ∈ H1(0, T ;H), w ∈ H1(0, T ;Hd
s ), v1 ∈ L2(0, T ;V ), v2 ∈ L2(0, T ;Hd

s )

such that, up to a not relabeled sequence, we have

un
L2(0,T ;V )−−−−−−⇀

n→∞ u, u̇n
L2(0,T ;H)−−−−−−−⇀

n→∞ u̇, u+
n

L2(0,T ;V )−−−−−−⇀
n→∞ v1, (5.33)

wn
L2(0,T ;Hd

s )−−−−−−−⇀
n→∞ w, ẇn

L2(0,T ;Hd
s )−−−−−−−⇀

n→∞ ẇ, w+
n

L2(0,T ;Hd
s )−−−−−−−⇀

n→∞ v2. (5.34)

Since there exists a positive constant C such that

‖un − u+
n ‖L∞(0,T ;H) ≤ Cτn −−−−→

n→∞ 0,

‖wn − w+
n ‖L∞(0,T ;Hd

s ) ≤ Cτn −−−−→
n→∞ 0,

(5.35)

by using (5.33), (5.34) and triangle inequality, we can conclude that u = v1

and w = v2.
Moreover, given that

u−
n (t) = u+

n (t − τn), w−
n (t) = w+

n (t − τn) for t ∈ (τn, T ),

ũ−
n (t) = ũ+

n (t − τn), for t ∈ (τn, T ),

ũ+
n (t) = u̇n(t), for a.e. t ∈ (0, T ),

with (5.35) and the continuity of the translations in L2 we deduce that

u−
n

L2(0,T ;V )−−−−−−⇀
n→∞ u, ũ±

n

L2(0,T ;H)−−−−−−−⇀
n→∞ u̇, w−

n

L2(0,T ;Hd
s )−−−−−−−⇀

n→∞ w.

Now let us check that u ∈ V. To this aim, we define the following sets

Ṽ := {u ∈ L2(0, T ;V ) : u(t) ∈ Vt for a.e. t ∈ (0, T )} ⊂ L2(0, T ;V ),

ṼD := {u ∈ Ṽ : u(t) ∈ V D
t for a.e. t ∈ (0, T )} ⊂ L2(0, T ;V ).

Notice that Ṽ is a (strong) closed convex subset of L2(0, T ;V ), and so by
Hahn-Banach Theorem the set Ṽ is weakly closed. In the same way we can
prove that ṼD is also a weakly closed set. Notice that {u−

n }n ⊂ Ṽ, indeed

u−
n (t) = uk−1

n ∈ V(k−1)τn
⊂ Vt for t ∈ [(k − 1)τn, kτn), k = 1, . . . , n.

Since u−
n

L2(0,T ;V )−−−−−−⇀
n→∞ u, we conclude that u ∈ Ṽ. Moreover ũ+

n

L2(0,T ;H)−−−−−−−⇀
n→∞ u̇ and

so u̇ ∈ L2(0, T ;H), from which we have u ∈ V. Finally, to show that u−z ∈ VD

we observe that for t ∈ [(k − 1)τn, kτn) and k = 1, . . . , n we have

u−
n (t) − z−

n (t) = uk−1
n − zk−1

n ∈ V k−1
n ⊂ V D

t ,

therefore {u−
n − z−

n }n ⊂ ṼD. Since

u−
n

L2(0,T ;V )−−−−−−⇀
n→∞ u, z−

n

L2(0,T ;V )−−−−−−→
n→∞ z,

we get u − z ∈ VD. This concludes the proof. �
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With the next lemma we show that the limit identified by Lemma 5.5
is actually a weak solution to the coupled system (5.1)–(5.5) according to
Definition 5.1.

Lemma 5.6. The limit pair (u,w) ∈ V × H1(0, T ;Hd
s ) of Lemma 5.5 satisfies

(5.6) and (5.7).

Proof. We fix n ∈ N and the functions ϕ ∈ DD and ψ ∈ C∞
c (0, T ;Hd

s ). We
consider the following piecewise-constant approximating sequences

ϕk
n := ϕ(kτn) ψk

n := ψ(kτn) for k = 0, . . . , n,

δϕk
n :=

ϕk
n − ϕk−1

n

τn
δψk

n :=
ψk

n − ψk−1
n

τn
for k = 1, . . . , n,

and the approximating sequences

ϕ+
n (t) := ϕk

n, ϕ̃+
n (t) := δϕk

n t ∈ ((k − 1)τn, kτn], k = 1, . . . , n,

ψ+
n (t) := ψk

n, ψ̃+
n (t) := δψk

n t ∈ ((k − 1)τn, kτn], k = 1, . . . , n.

If we use τn(ϕk
n, 0) ∈ V k

n × Hd
s as a test function in (5.13), after summing over

k = 1, ..., n, we get
n∑

k=1

τn(δ2uk
n, ϕk

n) +
n∑

k=1

τn((A + B)euk
n − Bwk

n, eϕk
n)

=
n∑

k=1

τn(fk
n , ϕk

n) +
n∑

k=1

τn(F k
n , eϕk

n) −
n∑

k=1

τn(hk
n, eϕk

n). (5.36)

Since ϕ0
n = ϕn

n = 0 we obtain
n∑

k=1

τn(δ2uk
n, ϕk

n) =
n∑

k=1

(δuk
n, ϕk

n) −
n∑

k=1

(δuk−1
n , ϕk

n)

=
n−1∑
k=0

(δuk
n, ϕk

n) −
n−1∑
k=0

(δuk
n, ϕk+1

n )

= −
n−1∑
k=0

τn(δuk
n, δϕk+1

n )

= −
n∑

k=1

τn(δuk−1
n , δϕk

n) = −
∫ T

0

(ũ−
n (t), ϕ̃+

n (t))dt,

and from (5.36) we deduce

−
∫ T

0

(ũ−
n (t), ϕ̃+

n (t))dt +
∫ T

0

((A + B)eu+
n (t) − Bw+

n (t), eϕ+
n (t))dt

=
∫ T

0

(f+
n (t), ϕ+

n (t))dt +
∫ T

0

(F+
n (t), eϕ+

n (t))dt −
∫ T

0

(h+
n (t), eϕ+

n (t))dt.

(5.37)
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From (5.31), (5.32), and the convergences

ϕ+
n

L2(0,T ;V )−−−−−−→
n→∞ ϕ, ϕ̃+

n

L2(0,T ;H)−−−−−−−→
n→∞ ϕ̇

we can pass to the limit in (5.37), and we get that u ∈ V satisfies (5.6) for
every function ϕ ∈ DD.

If we use τn(0, ψk
n) ∈ V k

n × Hd
s as a test function in (5.13), we have

(βδwk
n + wk

n − euk
n, ψk

n) = 0,

which corresponds to

(βẇn(t) + w+
n (t) − eu+

n (t), ψ+
n (t)) = 0 t ∈ ((k − 1)τn, kτn], k = 1, . . . , n.

Therefore, for every (a, b) ⊂ (0, T ), from (5.31) and (5.32), we can write

−
∫ b

a

(βẇ(t) + w(t) − eu(t), ψ(t))dt

= lim
n→∞ −

∫ b

a

(βẇn(t) + w+
n (t) − eu+

n (t), ψ+
n (t))dt = 0. (5.38)

Now we pass to the limit in (5.38) as a → b and we obtain

(βẇ(b) + w(b) − eu(b), ψ(b)) = 0 for every b ∈ [0, T ].

Given that, fixed b ∈ (0, T ) for every p ∈ Hd
s there exists ψp(t) := (t+1−b)p ∈

H1(0, T ;Hd
s ) such that ψp(b) = p, we can say that for a.e. t ∈ (0, T ) we have

βẇ(t)+w(t)−eu(t) = 0 in Hd
s . Finally, since wn(0) = w0, taking into account

(5.32) we can conclude that w(0) = w0. �

It remains to show that the limit previously found assumes the initial
data in the sense of (3.22). Before doing this, let us recall the following result,
whose proof can be found for example in [10].

Lemma 5.7. Let X,Y be reflexive Banach spaces such that X ↪→ Y continu-
ously. Then

L∞(0, T ;X) ∩ C0
w([0, T ];Y ) = C0

w([0, T ];X).

Proposition 5.8. The limit pair (u,w) ∈ V × H1(0, T ;Hd
s ) of Lemma 5.5 is a

weak solution to the coupled system (5.1)–(5.5). Moreover, u ∈ C0
w([0, T ];V ),

u̇ ∈ C0
w([0, T ];H) and it admits a distributional derivative in the space L2(0, T ;

(V D
0 )′).

Proof. From the discrete equation (5.13) we deduce

|(δ2uk
n, ϕ)| ≤ ‖A‖∞‖euk

n‖ + ‖B‖∞‖euk
n − wk

n‖
+ β‖B‖∞‖δwk

n‖ + ‖fk
n‖ + ‖F k

n‖ + ‖hk
n‖,

for every (ϕ,ψ) ∈ V D
0 ×Hd

s ⊂ V k
n ×Hd

s such that ‖(ϕ,ψ)‖V ×Hd
s

≤ 1. Therefore,
taking the supremum over (ϕ,ψ) ∈ V D

0 ×Hd
s with ‖(ϕ,ψ)‖V ×Hd

s
≤ 1, we obtain

the existence of a positive constant C ′ such that

‖δ2uk
n‖2

(V D
0 )′ ≤ C ′(‖euk

n‖2 + ‖euk
n − wk

n‖2 + ‖δwk
n‖2 + ‖fk

n‖2 + ‖F k
n‖2 + ‖hk

n‖2).
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By multiplying this inequality by τn and then by summing over k = 1, . . . , n,
we get

n∑
k=1

τn‖δ2uk
n‖2

(V D
0 )′

≤ C ′
n∑

k=1

τn(‖euk
n‖2 + ‖euk

n − wk
n‖2 + ‖δwk

n‖2) + C ′′, (5.39)

where

C ′′ := C ′(‖f‖2
L2(0,T ;H) + ‖F‖2

L2(0,T ;Hd
s ) + T‖Bw0‖2

)
.

Thanks to (5.39) and Lemma 5.4 we conclude that there exists a positive
constant C̃, which does not depend on n, such that

n∑
k=1

τn‖δ2uk
n‖2

(V D
0 )′ ≤ C̃. (5.40)

In particular {ũn}n ⊂ H1(0, T ; (V D
0 )′) is uniformly bounded (notice that

˙̃un(t) = δ2uk
n for t ∈ ((k − 1)τn, kτn) and k = 1, . . . , n). Hence, up to ex-

tracting a further (not relabeled) subsequence from the one of Lemma 5.5, we
have

ũn
H1(0,T ;(V D

0 )′)−−−−−−−−−⇀
n→∞ v, (5.41)

and by using the following estimate

‖ũn − ũ+
n ‖2

L2(0,T ;(V D
0 )′) ≤ C̃τ2

n −−−−→
n→∞ 0,

we conclude that v = u̇.
Since H1(0, T ; (V D

0 )′) ↪→ C0([0, T ], (V D
0 )′), by using Lemma 5.5 and

Lemma 5.7 we deduce that the limit pair (u,w) ∈ V × H1(0, T ;Hd
s ) satis-

fies

u ∈ C0
w([0, T ];V ) and u̇ ∈ C0

w([0, T ];H).

By (5.31) and (5.41) we then obtain

un(t) H−−−−⇀
n→∞ u(t) and ũn(t)

(V D
0 )′

−−−−⇀
n→∞ u̇(t) for every t ∈ [0, T ], (5.42)

so that u(0) = u0 and u̇(0) = u1, since un(0) = u0 and ũn(0) = u1. By
Lemma 5.6 we get the thesis. �

5.2. Energy estimate

In this subsection, we prove an energy-dissipation inequality which holds for
the weak solution (u,w) ∈ V ×H1(0, T ;Hd

s ) to the coupled system (5.1)–(5.5),
provided by Lemma 5.5. Thanks to this, we are able to show the validity of the
initial conditions in a stronger sense. The energy-dissipation inequality give us
a relation among the mechanical energy, defined by the sum of kinetic and
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elastic energy, the dissipation and the total work exerted by external forces
and by the boundary conditions. Therefore, let us define the total energy as

Eu,w(t) :=
1
2
‖u̇(t)‖2 +

1
2
(Aeu(t), eu(t))

+
1
2
(B(eu(t) − w(t)), eu(t) − w(t)). (5.43)

Notice that Eu,w(t) is well defined for every t ∈ [0, T ] since u ∈ C0
w([0, T ];V ),

u̇ ∈ C0
w([0, T ];H) and w ∈ C0([0, T ];Hd

s ), and that

Eu,w(0) =
1
2
‖u1‖2 +

1
2
(Aeu0, eu0) +

1
2
(B(eu0 − w0), eu0 − w0).

The dissipation, on the interval [0, t], is defined by

Du,w(t) := β

∫ t

0

(Bẇ(τ), ẇ(τ))dτ, (5.44)

and the total work is given by

Wtot(t) :=
∫ t

0

[(f(τ), u̇(τ) − ż(τ)) − (Ḟ (τ), eu(τ) − ez(τ))]dτ

+ (F (t), eu(t) − ez(t)) − (F (0), eu0 − ez(0))

+
∫ t

0

[((A + B)eu(τ) − Bw(τ), eż(τ)) − (u̇(τ), z̈(τ))] dτ

+
∫ t

0

[
e− τ

β (Bw0, eż(τ)) − 1
β

e− τ
β (Bw0, eu(τ))

]
dτ

+ (u̇(t), ż(t)) − (u1, ż(0)) − e− t
β (Bw0, eu(t)) + (Bw0, eu0). (5.45)

Remark 5.9. From the classical point of view, the total work on the solution
(u,w) at time t ∈ [0, T ] is given by

WC(t) := Wload(t) + Wbdry(t), (5.46)

where Wload(t) is the work on the solution at time t ∈ [0, T ] due to the loading
term, which is defined as

Wload(t) :=
∫ t

0

(f(τ), u̇(τ))dτ −
∫ t

0

(div G(τ), u̇(τ))dτ, (5.47)

where G(t) := F (t)−e− t
β Bw0 and Wbdry(t) is the work on the solution at time

t ∈ [0, T ] due to the varying boundary conditions, which one expects to be
equal to

Wbdry(t) :=

∫ t

0

(G+(τ)ν, u̇(τ))L2(Γτ )dτ +

∫ t

0

(G−(τ)ν, u̇(τ))L2(Γτ )dτ

+

∫ t

0

(G(τ)ν, u̇(τ))HN dτ +

∫ t

0

(((A + B)eu(τ) − Bw(τ))ν, ż(τ))HDdτ,

where G+(t) and G−(t) are the traces of G(t) from above and below on Γt.
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Unfortunately, Wload(t) and Wbdry(t) are not well defined under our as-
sumptions on u, F , and w0. However, if we suppose more regularity, i.e.,

u ∈ H1(0, T ;H2(Ω \ Γ;Rd)) ∩ H2(0, T ;H),

w ∈ H1(0, T ;H1(Ω \ Γ;Rd×d
sym))), F ∈ H1(0, T ;H1(Ω \ Γ;Rd×d

sym)),

w0 ∈ V0, and that Γ is a smooth manifold, then we can deduce from (5.6),
(5.7), and (3.22) that the pair (u,w) satisfies for every t ∈ [0, T ]{

ü(t) − div(Aeu(t)) − div(B(eu(t) − w(t))) = f(t) − div G(t)

βẇ(t) + w(t) − eu(t) = 0
(5.48)

in Ω \ Γt, with boundary and initial conditions

u(t) = z(t) on ∂DΩ,

[(A + B)eu(t) − Bw(t)]ν = G(t)ν on ∂NΩ,

[(A + B)eu+(t) − Bw+(t)]ν = G+(t)ν on Γt,

[(A + B)eu−(t) − Bw−(t)]ν = G−(t)ν on Γt,

u(0) = u0, w(0) = w0, u̇(0) = u1,

In this case, ((A+B)eu−w)ν ∈ L2(0, T ;HD) and by using (5.48), together
with the divergence theorem and the integration by parts formula, we deduce

∫ t

0

(((A + B)eu(τ) − Bw(τ))ν, ż(τ))HDdτ

=

∫ t

0

[(div((A + B)eu(τ)−Bw(τ)), ż(τ))+((A + B)eu(τ)−Bw(τ), eż(τ))] dτ

−
∫ t

0

[
(G+(τ)ν, ż(τ))L2(Γτ ) + (G−(τ)ν, ż(τ))L2(Γτ ) − (G(τ)ν, ż(τ))HN

]
dτ

=

∫ t

0

[((A + B)eu(τ) − Bw(τ), eż(τ)) − (G(τ)ν, ż(τ))HN ] dτ

+

∫ t

0

[
(ü(τ), ż(τ))−(f(τ), ż(τ))+(div F (τ), ż(τ))−e

− τ
β (div(Bw0), ż(τ))

]
dτ

−
∫ t

0

[
(G+(τ)ν, ż(τ))L2(Γτ ) + (G−(τ)ν, ż(τ))L2(Γτ )

]
dτ

=

∫ t

0

[((A + B)eu(τ) − Bw(τ), eż(τ)) − (G(τ)ν, ż(τ))HN ] dτ

−
∫ t

0

[
(f(τ), ż(τ)) − (div F (τ), ż(τ)) + e

− τ
β (div(Bw0), ż(τ))

]
dτ

−
∫ t

0

(u̇(τ), z̈(τ))dτ + (u̇(t), ż(t)) − (u1, ż(0))

−
∫ t

0

[
(G+(τ)ν, ż(τ))L2(Γτ ) + (G−(τ)ν, ż(τ))L2(Γτ )

]
dτ. (5.49)

From (5.49) and the definition of Wbdry, we have

Wbdry(t) =
∫ t

0

[((A + B)eu(τ) − Bw(τ), eż(τ)) + (G(τ)ν, u̇(τ) − ż(τ))HN ] dτ
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+
∫ t

0

[
(G+(τ)ν, u̇(τ)− ż(τ))L2(Γτ ) + (G−(τ)ν, u̇(τ)− ż(τ))L2(Γτ )

]
dτ

−
∫ t

0

[(f(τ), ż(τ)) − (div G(τ), ż(τ))] dτ

−
∫ t

0

(u̇(τ), z̈(τ))dτ − (u1, ż(0)) + (u̇(t), ż(t)). (5.50)

Taking into account (5.47) and (5.50), the classical work (5.46) can be written
as

WC(t) =
∫ t

0

[(f(τ), u̇(τ) − ż(τ)) + ((A + B)eu(τ) − Bw(τ), eż(τ))] dτ

−
∫ t

0

(u̇(τ), z̈(τ))dτ + (u̇(t), ż(t)) − (u1, ż(0))

+
∫ t

0

[
(G+(τ)ν, u̇(τ)− ż(τ))L2(Γτ ) + (G−(τ)ν, u̇(τ)− ż(τ))L2(Γτ )

]
dτ

−
∫ t

0

[(div G(τ), u̇(τ) − ż(τ)) − (G(τ)ν, u̇(τ) − ż(τ))HN ] dτ

=
∫ t

0

[(f(τ), u̇(τ) − ż(τ)) + ((A + B)eu(τ) − Bw(τ), eż(τ))] dτ

−
∫ t

0

(u̇(τ), z̈(τ))dτ + (u̇(t), ż(t)) − (u1, ż(0))

+
∫ t

0

(G(τ), eu̇(τ) − eż(τ))dτ

=
∫ t

0

[(f(τ), u̇(τ) − ż(τ)) + ((A + B)eu(τ) − Bw(τ), eż(τ))] dτ

−
∫ t

0

(u̇(τ), z̈(τ))dτ + (u̇(t), ż(t)) − (u1, ż(0)) − (F (0), eu0 − ez(0))

+ (F (t), eu(t) − ez(t)) −
∫ t

0

(Ḟ (τ), eu(τ) − ez(τ))dτ

−
∫ t

0

1
β

e− τ
β (Bw0, eu(τ))dτ +

∫ t

0

e− τ
β (Bw0, eż(τ))dτ

+ (Bw0, eu0) − e− t
β (Bw0, eu(t)).

Therefore, the definition of total work given in (5.45) is coherent with the
classical one (5.46).

Now we are in position to prove the energy-dissipation inequality before
mentioned. For convenience of notation we set h(t) := e− t

β Bw0.

Theorem 5.10. The weak solution (u,w) ∈ V×H1(0, T ;Hd
s ) to the coupled sys-

tem (5.1)–(5.5), given by Lemma 5.5, satisfies for every t ∈ [0, T ] the following
energy-dissipation inequality

Eu,w(t) + Du,w(t) ≤ Eu,w(0) + Wtot(t), (5.51)
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where Eu,w, Du,w, and Wtot are defined in (5.43), (5.44), and (5.45), respec-
tively.

Proof. Fixed t ∈ (0, T ], for every n ∈ N there exists a unique j ∈ {1, . . . , n}
such that t ∈ ((j−1)τn, jτn]. In particular, denoting by �x� the superior integer
part of the number x, it reads as

j(n) =
⌈

t

τn

⌉
.

After setting tn := jτn, we can rewrite (5.17) as follows
1
2
‖ũ+

n (t)‖2 +
1
2
(Aeu+

n (t), eu+
n (t)) +

1
2
(B(eu+

n (t) − w+
n (t)), eu+

n (t) − w+
n (t))

+ β

∫ tn

0

(Bẇn(τ), ẇn(τ))dτ ≤ Eu,w(0) + W +
n (t), (5.52)

where

W +
n (t) :=

∫ tn

0

[(f+
n (τ), ũ+

n (τ) − z̃+
n (τ)) + (F+

n (τ), eũ+
n (τ) − ez̃+

n (τ))]dτ

+
∫ tn

0

[
( ˙̃un(τ), z̃+

n (τ)) − (h+
n (τ), eũ+

n (τ) − ez̃+
n (τ))

]
dτ

+
∫ tn

0

[
((A + B)eu+

n (τ) − Bw+
n (τ), ez̃+

n (τ))
]
dτ.

Thanks to (5.14) and (5.40), we have

‖wn(t) − w+
n (t)‖2 = ‖wj

n + (t − jτn)δwj
n − wj

n‖2

≤ τ2
n‖δwj

n‖2 ≤ Cτn −−−−→
n→∞ 0,

‖un(t) − u+
n (t)‖ = ‖uj

n + (t − jτn)δuj
n − uj

n‖ ≤ τn‖δuj
n‖ ≤ Cτn −−−−→

n→∞ 0,

‖ũn(t) − ũ+
n (t)‖2

(V D
0 )′ = ‖δuj

n + (t − jτn)δ2uj
n − δuj

n‖2
(V D

0 )′

≤ τ2
n‖δ2uj

n‖2
(V D

0 )′ ≤ C̃τn −−−−→
n→∞ 0.

The last convergences and (5.42) imply

u+
n (t) H−−−−⇀

n→∞ u(t), w+
n (t)

Hd
s−−−−⇀

n→∞ w(t), ũ+
n (t)

(V D
0 )′

−−−−⇀
n→∞ u̇(t),

and since ‖u+
n (t)‖V + ‖ũ+

n (t)‖ ≤ C for every n ∈ N, we get

u+
n (t) V−−−−⇀

n→∞ u(t), w+
n (t)

Hd
s−−−−⇀

n→∞ w(t), ũ+
n (t) H−−−−⇀

n→∞ u̇(t). (5.53)

By (5.53) and the lower semicontinuity property of the maps v �→ ‖v‖2, v �→
a(v) := (Av, v), and v �→ b(v) := (Bv, v), we conclude

‖u̇(t)‖2 ≤ lim inf
n→∞ ‖ũ+

n (t)‖2, (5.54)

a(eu(t)) ≤ lim inf
n→∞ a(eu+

n (t)), (5.55)

b(eu(t) − w(t)) ≤ lim inf
n→∞ b(eu+

n (t) − w+
n (t)). (5.56)
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Moreover, from Lemma 5.5, and in particular by (5.32) we get∫ t

0

b(ẇ(τ))dτ ≤ lim inf
n→∞

∫ t

0

b(ẇn(τ))dτ ≤ lim inf
n→∞

∫ tn

0

b(ẇn(τ))dτ, (5.57)

since t ≤ tn and v �→ ∫ t

0
b(v(τ))dτ is a non negative quadratic form on

L2(0, T ;Hd
s ).

Now, we study the right-hand side of (5.52). Since we have

χ[0,tn]f
+
n

L2(0,T ;H)−−−−−−−→
n→∞ χ[0,t]f and ũ+

n − z̃+
n

L2(0,T ;H)−−−−−−−⇀
n→∞ u̇ − ż,

we deduce that∫ tn

0

(f+
n (τ), ũ+

n (τ) − z̃+
n (τ))dτ −−−−→

n→∞

∫ t

0

(f(τ), u̇(τ) − ż(τ))dτ. (5.58)

In a similar way, since the following convergences hold

χ[0,tn]ez̃
+
n

L2(0,T ;Hd
s )−−−−−−−→

n→∞ χ[0,t]eż, h+
n

L2(0,T ;Hd
s )−−−−−−−→

n→∞ h,

(A + B)eu+
n − Bw+

n

L2(0,T ;Hd
s )−−−−−−−⇀

n→∞ (A + B)eu − Bw,

we obtain∫ tn

0

(h+
n (τ), ez̃+

n (τ))dτ −−−−→
n→∞

∫ t

0

(h(τ), eż(τ))dτ (5.59)
∫ tn

0

((A + B)eu+
n (τ) − Bw+

n (τ), ez̃+
n (τ))dτ

−−−−→
n→∞

∫ t

0

((A + B)eu(τ) − Bw(τ), eż(τ))dτ. (5.60)

By means of the discrete integration by parts formulas (5.22)–(5.24) we can
write ∫ tn

0

( ˙̃un(τ), z̃+
n (τ))dτ = (ũ+

n (t), z̃+
n (t)) − (u1, ż(0))

−
∫ tn

0

(ũ−
n (τ), ˙̃zn(τ))dτ, (5.61)

∫ tn

0

(h+
n (τ), eũ+

n (τ))dτ = (eu+
n (t), h+

n (t)) − (eu0, h(0))

−
∫ tn

0

(h̃+
n (τ), eu−

n (τ))dτ, (5.62)
∫ tn

0

(F+
n (τ), eũ+

n (τ) − ez̃+
n (τ))dτ = (F+

n (t), eu+
n (t) − ez+

n (t))

− (F (0), eu0 − ez(0)) −
∫ tn

0

(F̃+
n (τ), eu−

n (τ) − ez−
n (τ))dτ. (5.63)

Notice that the following convergences hold

‖z̃+
n (t) − ż(t)‖ =

∥∥∥z(jτn) − z((j − 1)τn)
τn

− ż(t)
∥∥∥
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≤
∫ jτn

(j−1)τn

‖ż(τ) − ż(t)‖dτ −−−−→
n→∞ 0,

‖h+
n (t) − h(t)‖ = ‖Bw0‖|e− jτn

β − e− t
β |

≤ 1
β2

‖Bw0‖|t − jτn| ≤ 1
β2

‖Bw0‖τn −−−−→
n→∞ 0,

‖z+
n (t) − z(t)‖V = ‖z(jτn) − z(t)‖V

≤ (jτn − t)
1
2 ‖ż‖L2(0,T ;V ) ≤ τ

1
2

n ‖ż‖L2(0,T ;V ) −−−−→
n→∞ 0,

‖F+
n (t) − F (t)‖ = ‖F (jτn) − F (t)‖

≤ (jτn − t)
1
2 ‖Ḟ‖L2(0,T ;Hd

s ) ≤ τ
1
2

n ‖Ḟ‖L2(0,T ;Hd
s ) −−−−→

n→∞ 0,

χ[0,tn]
˙̃zn

L2(0,T ;H)−−−−−−−→
n→∞ χ[0,t]z̈, χ[0,tn]h̃

+
n

L2(0,T ;Hd
s )−−−−−−−→

n→∞ χ[0,t]ḣ,

z−
n

L2(0,T ;V )−−−−−−→
n→∞ z, χ[0,tn]F̃

+
n

L2(0,T ;Hd
s )−−−−−−−→

n→∞ χ[0,t]Ḟ .

By means of these convergences, (5.53), and Lemma 5.5, we can argue as before
to deduce from (5.61)–(5.63)∫ tn

0

( ˙̃un(τ), z̃+
n (τ))dτ −−−−→

n→∞ (u̇(t), ż(t)) − (u1, ż(0))

−
∫ t

0

(u̇(τ), z̈(τ))dτ, (5.64)
∫ tn

0

(h+
n (τ), eũ+

n (τ))dτ −−−−→
n→∞ (h(t), eu(t)) − (h(0), eu0)

−
∫ t

0

(ḣ(τ), eu(τ))dτ, (5.65)
∫ tn

0

(F+
n (τ), eũ+

n (τ) − ez̃+
n (τ))dτ −−−−→

n→∞ (F (t), eu(t) − ez(t))

− (F (0), eu0 − ez(0)) −
∫ t

0

(Ḟ (τ), eu(τ) − ez(τ))dτ. (5.66)

By combining (5.52) and (5.54)–(5.66) we obtain the energy-dissipation
inequality (5.51) for t ∈ (0, T ]. Finally, for t = 0 the inequality trivially holds
since u(0) = u0 and u̇(0) = u1. �

Remark 5.11. Thanks to the last theorem and to the equivalence between
the viscoelastic dynamic system (3.16)–(3.20) and the coupled system (5.1)–
(5.5), we can derive an energy-dissipation inequality for a weak solution to our
viscoelastic dynamic system (3.16)–(3.20). As can be seen from (5.6) and the
proof of Theorem 5.2 it is not restrictive to assume w0 = 0.

Let (u,w) be the weak solution to the coupled system (5.1)–(5.5) provided
by Lemma 5.5. In this case, it satisfies the energy-dissipation inequality (5.51).
Moreover, from Theorem 5.2 the function u is a solution to the viscoelastic
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dynamic system (3.16)–(3.20) in the sense of Definition 3.3. Therefore, by
substituting (5.8) in (5.51) we get for the conservative part

Eu,w(t) =
1
2
‖u̇(t)‖2 +

1
2
(Aeu(t), eu(t)) +

1
2
(B(eu(t) − w(t)), eu(t) − w(t))

=
1
2
‖u̇(t)‖2 +

1
2
((A + B)eu(t), eu(t)) −

∫ t

0

1
β

e− t−τ
β (Beu(τ), eu(t))dτ

+
1

2β2

∫ t

0

∫ t

0

e− 2t−r−τ
β (Beu(r), eu(τ))drdτ (5.67)

and for the dissipation

Du,w(t) =
∫ t

0

(Bẇ(τ), eu(τ))dτ −
∫ t

0

(Bẇ(τ), w(τ))dτ

=
1
β

∫ t

0

(Beu(τ), eu(τ))dτ − 1
2
(Bw(t), w(t))

− 1
β2

∫ t

0

∫ τ

0

e− τ−r
β (Beu(r), eu(τ))drdτ

=
1
β

∫ t

0

(Beu(τ), eu(τ))dτ − 1
β2

∫ t

0

∫ τ

0

e− τ−r
β (Beu(r), eu(τ))drdτ

− 1
2β2

∫ t

0

∫ t

0

e− 2t−r−τ
β (Beu(r), eu(τ))drdτ. (5.68)

By substituting the same information in the total work, we obtain

Wtot(t) =
∫ t

0

[
((A + B)eu(τ), eż(τ)) −

∫ τ

0

1
β

e− τ−r
β (Beu(r), eż(τ))dr

]
dτ

+
∫ t

0

[
(f(τ), u̇(τ) − ż(τ)) − (Ḟ (τ), eu(τ) − ez(τ))

]
dτ

+ (F (t), eu(t) − ez(t)) − (F (0), eu0 − ez(0))

−
∫ t

0

(u̇(τ), z̈(τ))dτ + (u̇(t), ż(t)) − (u1, ż(0)). (5.69)

After defining the elastic energy as

E (t) :=
1
2
‖u̇(t)‖2 +

1
2
((A + B)eu(t), eu(t)) −

∫ t

0

1
β

e− t−τ
β (Beu(τ), eu(t))dτ

+
1

2β2

∫ t

0

∫ t

0

e− 2t−r−τ
β (Beu(r), eu(τ))drdτ,

and the dissipative term

D(t) :=
1
β

∫ t

0

(Beu(τ), eu(τ))dτ − 1
β2

∫ t

0

∫ τ

0

e− τ−r
β (Beu(r), eu(τ))drdτ

− 1
2β2

∫ t

0

∫ t

0

e− 2t−r−τ
β (Beu(r), eu(τ))drdτ,
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taking into account (5.67), (5.68), and (5.69) we can rephrase the energy-
dissipation inequality (5.51) as

E (t) + D(t) ≤ E (0) + Wtot(t),

where the total work Wtot now depends just on the function u.

Finally, in view of Theorem 5.10 we are ready to show that our weak
solution satisfies the initial conditions in a stronger sense than the one stated
in (3.22), that is the content of the following lemma.

Lemma 5.12. The weak solution (u,w) ∈ V × H1(0, T ;Hd
s ) to the coupled sys-

tem (5.1)–(5.5), provided by Lemma 5.5, satisfies the initial conditions in the
following sense:

lim
t→0+

u(t) = u0 in V, lim
t→0+

u̇(t) = u1 in H, lim
t→0+

w(t) = w0 in Hd
s .

(5.70)

Proof. Since u ∈ C0
w([0, T ];V ), u̇ ∈ C0

w([0, T ];H), w ∈ C0([0, T ];Hd
s ), from

the lower semicontinuity of the real valued functions

t �→ ‖u̇(t)‖2, t �→ q(u(t)) := (Aeu(t), eu(t)),

t �→ p(u(t), w(t)) := (B(eu(t) − w(t)), eu(t) − w(t)),

we can let t → 0+ into the energy-dissipation inequality (5.51) to deduce that

Eu,w(0) =
1
2
‖u1‖2 +

1
2
(Aeu0, eu0) +

1
2
(B(eu0 − w0), eu0 − w0)

≤ 1
2

lim inf
t→0+

‖u̇(t)‖2 +
1
2

lim inf
t→0+

q(u(t)) +
1
2

lim inf
t→0+

p(u(t), w(t))

≤ lim inf
t→0+

[1
2
‖u̇(t)‖2 +

1
2
q(u(t)) +

1
2
p(u(t), w(t))

]

= lim inf
t→0+

Eu,w(t) ≤ lim sup
t→0+

Eu,w(t) ≤ Eu,w(0). (5.71)

Notice that the last inequality in (5.71) holds because the right-hand side of
(5.51) is continuous in t, and u(0) = u0, u̇(0) = u1, and w(0) = w0. Therefore,
there exists limt→0+ Eu,w(t) = Eu,w(0). Moreover, we have

Eu,w(0) ≤ 1
2

lim inf
t→0+

‖u̇(t)‖2 +
1
2

lim inf
t→0+

[
q(u(t)) + p(u(t), w(t))

]

≤ 1
2

lim sup
t→0+

‖u̇(t)‖2 +
1
2

lim inf
t→0+

[
q(u(t)) + p(u(t), w(t))

]

≤ 1
2

lim sup
t→0+

[
‖u̇(t)‖2 + q(u(t)) + p(u(t), w(t))

]
= Eu,w(0),

which gives

lim
t→0+

‖u̇(t)‖2 = ‖u1‖2.

In a similar way, we can also show that

lim
t→0+

(Aeu(t), eu(t)) = (Aeu0, eu0).
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Finally, since we have

u̇(t) H−−−−⇀
t→0+

u1, eu(t)
Hd

s−−−−⇀
t→0+

eu0

and u ∈ C0([0, T ];H), we deduce (5.70). In particular, u : [0, T ] → V and
u̇ : [0, T ] → H are continuous at t = 0. �

We can finally prove the main theorem of Sect. 5.

Proof of Theorem 5.3. It is enough to combine Proposition 5.8 and Lemma
5.12. �

Remark 5.13. We have proved Theorem 5.3 for the d-dimensional linear vis-
coelastic case, namely when the displacement u is a vector-valued function.
The same result is true with identical proof in the antiplane case, that is when
the displacement u is a scalar function and satisfies (1.3).
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