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Abstract. We consider the inhomogeneous nonlinear Schrödinger equation
(INLS) in R

N

i∂tu + Δu + |x|−b|u|p−1u = 0,

with initial data u0 ∈ H1(RN ) having finite variance. We extend the
dichotomy between scattering and blow-up for solutions above the mass-
energy threshold (and with arbitrarily large energy). We also show two
other blow-up criteria, which are valid in any mass-supercritical setting,
given there is local well-posedness.
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1. Introduction

We consider the initial value problem associated to the inhomogeneous non-
linear Schrödinger equation (INLS){

i∂tu + �u + |x|−b|u|p−1u = 0, t > 0, x ∈ R
N ,

u(·, 0) = u0 ∈ H1(RN ). (1.1)

This model arises naturally as a limiting problem in nonlinear optics
for the propagation of laser beams. The case b = 0 is the classical nonlinear
Schrödinger equation (NLS), extensively studied in recent years (see Sulem-
Sulem [27], Bourgain [2], Cazenave [6], Linares-Ponce [25], Fibich [15] and the
references therein).

The lower Sobolev index where one can expect well-posedness for this
model is given by scaling. If u(x, t) is a solution to (1.1), so is uλ(x, t) =
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λ
2−b
p−1 u(λx, λ2t), with initial data u0,λ(x), for all λ > 0. Computing the homo-

geneous Sobolev norm, we get

‖u0,λ‖Ḣs = λs− N
2 + 2−b

p−1 ‖u0‖Ḣs .

Thus, the scale-invariant Sobolev norm is Ḣsc(RN ), where

sc =
N

2
− 2 − b

p − 1

is called the critical Sobolev index.
In this paper, we are interested in the case sc > 0, known as mass-

supercritical. Rewriting this condition in terms of p, we obtain

p > 1 +
2(2 − b)

N
.

The local well-posedness for the INLS equation was first studied by
Genoud-Stuart in [20] (see also Genoud [17]) by the abstract theory of Cazenave
[6], without relying on Strichartz type inequalities. They analyzed the IVP
(1.1) in the sense of distributions, that is, i∂tu + Δu + |x|−b|u|p−1u = 0 in
H−1(RN ), N ≥ 1, with 0 < b < min{2, N}, and showed it is well-posed

– locally if 1 < p < p∗
b (sc < 1);

– globally for any initial data in H1(RN ) if p < 1 + 2(2−b)
N (sc < 0);

– globally for sufficiently small initial data if 1+ 2(2−b)
N ≤ p < p∗

b (0 ≤ sc <
1),

where

p∗
b =

{
∞, N ≤ 2,

1 + 2(2−b)
N−2 , N ≥ 3.

More recently, Guzmán [23], Cho and Lee [7] and Dinh [8] established local
well-posedness of the INLS in Hs(RN ) based on Strichartz estimates. In par-
ticular, they proved that, for N ≥ 2, 1 < p < p∗

b and 0 < b < min{N/2, 2},
the initial value problem (1.1) is locally well-posed in H1(RN ).

Note that the results of Guzmán [23] and Dinh [8] do not treat the case
N = 1, and the ranges of b are more restrictive than those in the results of
Genoud-Stuart [20]. However, Guzmán and Dinh give more detail information
on the solutions, showing that there exists T (‖u0‖H1) > 0 such that u ∈
Lq
(
[−T, T ];W 1,r(RN )

)
for any L2-admissible pair (q, r) satisfying

2
q

=
N

2
− N

r
,

where ⎧⎨
⎩

2 ≤ r ≤ 2N
N−2 if N ≥ 3,

2 ≤ r < +∞ if N = 2,
2 ≤ r ≤ +∞ if N = 1.



NoDEA Blowup and scattering criteria above the threshold Page 3 of 33 69

The solutions to (1.1) have the following conserved quantities

M [u(t)] =
∫

|u(t)|2dx = M [u0],

E [u(t)] =
1
2

∫
|∇u(t)|2dx − 1

p + 1

∫
|x|−b|u(t)|p+1dx = E[u0].

The blow-up theory in the INLS equation is related to the concept of
ground state, which is the unique positive radial solution of the elliptic problem

ΔQ − Q + |x|−b|Q|p−1Q = 0.

The existence of the ground state is proved by Genoud-Stuart [16,20] for
dimension N ≥ 2, and by Genoud [17] for N = 1. Uniqueness was proved in
dimension N ≥ 3 by Yanagida [30] (see also Genoud [16]), in dimension N = 2
by Genoud [18] and in dimension N = 1 by Toland [28]. The existence and
uniqueness hold for 0 < b < min{2, N} and 1 < p < p∗

b .
The ground state satisfies the following Pohozaev’s identities (see rela-

tions (1.9)-(1.10) in Farah [12])

‖∇Q‖2
L2 =

N(p − 1) + 2b

2(p + 1)

∫
|x|−b|Q|p+1 dx,

and

E[Q] =
(p − 1)sc

2(p + 1)

∫
|x|−b|Q|p+1 dx. (1.2)

Genoud [19] and Farah [12] proved the following sharp Gagliardo-Nirenberg
inequality which is valid for N ≥ 1, 0 < b < min{2, N}, and 1 < p < p∗

b∫
RN

|x|−b|f(x)|p+1 dx ≤ Cp,N‖∇f‖
N(p−1)+2b

2
L2(RN )

‖f‖p+1− (N(p−1)+2b)
2

L2(RN )
, (1.3)

where Cp,N > 0 is the sharp constant. More precisely,

Cp,N =
(

2(p + 1)
N(p − 1) + 2b

)N(p−1)+2b
4

(∫
|x|−b|Q|p+1

)1− N(p−1)+2b
4

‖Q‖p+1− N(p−1)+2b
2

L2(RN)

. (1.4)

This inequality can be seen as an extension to the case b > 0 of the classical
Gagliardo-Nirenberg inequality.

If u is a solution to (1.1) and u0 ∈ Σ =
{
f ∈ H1(RN ); |x|f ∈ L2(RN )

}
,

we define its variance at time t as

V (t) =
∫

|x|2|u(x, t)|2 dx.

The variance satisfies the virial identities (see Farah [12, Proposition 4.1])

Vt(t) = 4 Im
∫

x · ∇u(x, t)u(x, t) dx (1.5)

and

Vtt(t) = 4(N(p − 1) + 2b)E[u] − 2(N(p − 1) + 2b − 4)‖∇u‖2
L2(RN ). (1.6)
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Together with the variance, a scale-invariant quantity which plays an
important role in the global behavior is M [u0]

1−sc
sc E[u0], which we normalize

(for 0 < sc < 1) as

ME [u] = ME [u0] =
M [u0]

1−sc
sc E[u0]

M [Q]
1−sc

sc E[Q]

and call it the mass-energy.

Remark 1.1. From the identity (1.6), if u0 ∈ Σ, p > 1+ 2(2−b)
N and E [u0] < 0,

then the graph of t 	→ ∫ |x|2|u|2 lies below an inverted parabola, which becomes
negative in finite time. Therefore, the solution cannot exist globally and blows
up in finite time. Recently, [9] extended this blow-up result to the radial case,
and to the case N = 1 without symmetry or decaying assumptions. Since we
only consider initial data in Σ, in this work we focus on data with non-negative
energy, but avoid rising the energy to a fractional power in the definition of
mass-energy so that this quantity makes sense in any setting.

Other useful scale-invariant quantities are the mass-potential-energy

MP[u(t)] =
M [u0]

1−sc
sc

∫
|x|−b|u(t)|p+1

M [Q]
1−sc

sc

∫
|x|−b|Q|p+1

and the mass-kinetical-energy

MK[u(t)] =
M [u0]

1−sc
sc

∫
|∇u(t)|2

M [Q]
1−sc

sc

∫
|∇Q|2

.

1.1. Dichotomy above the mass-energy threshold

In previous works, [9,14] and [4] studied the global behavior of solutions to
(1.1) below the mass-energy threshold, i.e, in the case ME [u0] < 1. They
proved a dichotomy between blow-up and scattering, depending on the quan-
tity MK[u0].

We summarize the global behavior of solutions to (1.1) with ME [u0] < 1
in the following theorem

Theorem 1.2. ([3,4,9,14]). Let u(x, t) be a solution of (1.1) and 0 < sc < 1.
Assume ME [u0] < 1. Then

(i) If MP[u0] > 1, and either u0 ∈ Σ, or u0 is radial, or N = 1, then the
solution blows up in finite time, in both time directions.

(ii) If MP[u0] < 1, N ≥ 2, b < min
{

N
2 , 2
}
, then u scatters in both time

directions in H1(RN ).

Remark 1.3. In [14] and [9], Theorem 1.2 was proven using MK[u0] instead of
MP[u0]. We show the equivalence, in the case ME [u0] ≤ 1, in Proposition 2.1.
Therefore, by Theorem 1.2 and Theorem 1.5 below, as in the case ME [u0] >
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1 the equivalence does not hold, the quantity that governs the dichotomy
between blow-up and scattering is, in any case, MP[u0].

Remark 1.4. The case MP[u0] = 1 cannot occur if ME [u0] < 1 (see [14,
Lemma 4.2, item (ii)]).

We are interested here in criteria that include initial data above the
threshold ME [u0] = 1. The first theorem we prove is a dichotomy

Theorem 1.5. Let u be a solution of (1.1), where 1+ 2(2−b)
N < p < p∗

b . Assume
N ≥ 2, u0 ∈ Σ and

ME [u0]
(

1 − (Vt(0))2

32E[u0]V (0)

)
≤ 1. (1.7)

(i) (Blow-up) If

MP[u0] > 1 (1.8)

and

Vt(0) ≤ 0, (1.9)

then u(t) blows-up in finite positive, T+ < ∞.
(ii) (Boundedness and scattering) If

MP[u0] < 1 (1.10)

and

Vt(0) ≥ 0, (1.11)

then

lim sup
t→T+(u)

M [u0]1−sc

(∫
|x|−b|u(t)|p+1

)sc

< M [Q]1−sc

(∫
|x|−b|Q|p+1

)sc

. (1.12)

In particular, T+ = +∞. Moreover, u scatters forward in time in H1(RN ).

Remark 1.6. If ME [u0] < 1, the conclusion of Theorem 1.5 follows from The-
orem 1.2. Theorem is new only in the case ME [u0] ≥ 1.

Remark 1.7. The proof of Theorem 1.5 shows that there are two disjoint sub-
sets (defined by (1.7), (1.8) and (1.9); and by (1.7), (1.10) and (1.11)) that
are stable under the INLS flow and contain solutions with arbitrary mass and
energy (see, for example, Remark 1.11 below).

Remark 1.8. We prove in Sect. 3 that any solution of (1.1) that satisfies (1.12)
scatters for positive time. Replacing MP[u0] by MK[u0], this result is already
known (see [14]). Due to the one-sided implication (2.1), our assumption is
weaker. Therefore, Theorem 1.5 improves known results.
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Remark 1.9. The scattering statement of Theorem 1.5 is optimal in the follow-
ing sense: If u0 ∈ H1(RN ) has finite variance and scatters forward in time, then
there exists t0 ≥ 0 such that (1.7), (1.10) and (1.11) are satisfied by u(t) for

all t ≥ t0. In fact, if u(t) scatters forward in time, then
∫

|x|−b|u(t)|p+1 → 0.

This implies E[u0] > 0 and, by (1.6),

Vt(t) ≈ 16E[u0]t and V (t) ≈ 8E[u0]t2

which implies

ME [u0]
(

1 − (Vt(t))2

32E[u0]V (t)

)
→ 0, as t → +∞.

As a consequence of Theorem 1.5, we obtain

Corollary 1.10. Let γ ∈ R\{0}, v0 ∈ Σ such that ME [v0] < 1, and uγ be the
solution of (1.1) with initial data

uγ
0 = eiγ|x|2v0.

(i) If MP[v0] > 1, then for any γ < 0, uγ blows up in finite positive time;
(ii) If MP[v0] < 1, then for any γ > 0, uγ satisfies (1.12). Moreover, uγ

scatters forward in time in H1(RN ).

Remark 1.11. With the above corollary, we can predict the behavior of a class
of solutions with arbitrarily large energy. If ME [v0] < 1, then

E[uγ
0 ] = 4γ2‖xv0‖2

L2 + 4γ Im
∫

x · ∇v0v̄0 + E[v0]

and E[uγ
0 ] → +∞ as γ → ±∞.

Remark 1.12. Note that the statement of Theorem 1.5 is not symmetric in
time as the statement of Theorem 1.2. Indeed, Corollary 1.13 below shows
solutions with different behaviors in positive and negative times.

Corollary 1.13. Let γ ∈ R and Qγ be the solution to (1.1) with initial data

Qγ
0 = eiγ|x|2Q.

(i) If γ > 0, then Qγ is globally defined on [0,+∞), scatters forward in time
and blows up backwards in time.

(ii) If γ < 0, then Qγ is globally defined on (−∞, 0], scatters backward in
time and blows up forward in time.

1.2. Blow-up criteria

The blow up criterion of [29], Zakharov [31] and Glassey [21] for the NLS use
the second derivative of the variance V (t) to show that finite variance, negative
energy solutions blow up in finite time. The second derivative of the variance is
also used in [26], but with an approach based on classical mechanics, resulting
in a finer blow-up criterion. This and another criteria were proven in [24] for
the 3D cubic NLS. The argument was extended in [10] to the focusing mass-
supercritical NLS in any dimension, and examples were given to show that
these new criteria are not equivalent to the previous ones. We extend these
criteria for the focusing, mass-supercritical INLS equation in any dimension:
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Theorem 1.14. Suppose that u0 ∈ Σ and N ≥ 1. The following inequality is
a sufficient condition for blow-up in positive finite time for solutions to (1.1)
with 0 < sc < 1 and E[u0] > 0

Vt(0)
M [u0]

<
√

8Nscg

(
4

Nsc

E[u0]V (0)
M [u0]2

)
,

where

g(x) =

⎧⎨
⎩
√

1
kxk + x − (1 + 1

k ) if 0 < x ≤ 1

−
√

1
kxk + x − (1 + 1

k ) if x ≥ 1
with k =

(p − 1)sc

2
. (1.13)

Theorem 1.15. Suppose that u0 ∈ Σ and N ≥ 1. The following inequality is
a sufficient condition for blow-up in positive finite time for solutions to (1.1)
with 0 < sc < 1 and E[u0] > 0

Vt(0)
M [u0]

<
4
√

2M [u0]
1
2− p+1

N(p−1)+2b E[u0]
sc
N

C
g

(
C2 E[u0]

4
N(p−1)+2b V (0)

M [u0]
1+ 2(p+1)

N(p−1)+2b

)
,

where g is defined in (1.13),

C =
(

2(p + 1)
sc(p − 1)

(Cp,N )
N(p−1)+2b

2 +(p+1)

) 2
N(p−1)+2b

and Cp,N the a sharp constant in the interpolation inequality (1.3).

Remark 1.16. For real-valued initial data, Theorem 1.15 is an improvement of
Theorem 1.14 if

ME [u0] >

(
NscC

2

4

) N(p−1)+2b
N(p−1)+2b−4

,

since in this case the right-hand side of Theorem 1.15 is bigger.

Remark 1.17. In both theorems, the restriction sc < 1 is only needed to ensure
the local well-posedness.

This paper is structured as follows: In Sect. 2, we prove the boundedness
and blow-up part of Theorem 1.5. The scattering part is proven in Sect. 3.
In Sect. 4, we show two non-equivalent blow-up criteria for the INLS (Theo-
rems 1.14 and 1.15).

2. Boundedness and blow-up

We start this section with the proof of the equivalence between using MK[u0]
and MP[u0] in the dichotomy when ME [u0] ≤ 1.

Proposition 2.1. If f ∈ H1(RN ), then

MK[f ] < 1 =⇒ MP[f ] < 1. (2.1)

Furthermore, assume ME [f ] ≤ 1. Then

MK[f ] < 1 ⇐⇒ MP[f ] < 1. (2.2)
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Proof. We write the sharp Gagliardo-Nirenberg inequality (1.3) as

(MP[f ])
4

N(p−1)+2b ≤ MK[f ],

and (2.1) follows. Now, if MP[f ] < 1 and ME [f ] ≤ 1, then

M [Q]
1−sc

sc E[Q] ≥ M [f ]
1−sc

sc E[f ] >
1
2
M [f ]

1−sc
sc

∫
|∇f |2 dx

− 1
p + 1

M [Q]
1−sc

sc

∫
|x|−b|Q|p+1 dx

taking the first and last member, we conclude MK[f ] < 1. �

We also point out that the inequalities in (2.2) can be replaced by equalities:
we can scale f so that M [f ] = M [Q]. By similar arguments as the ones used
in proving (2.1) and (2.2), MP[f ] = 1 or MK[f ] = 1 in the case ME [f ] ≤ 1,
implies MP[f ] = MK[f ] = ME [f ] = 1. In this case, f is equal to Q up to
scaling and phase.

We now turn to the proof of Theorem 1.5. Start rewriting the Gagliardo-
Nirenberg inequality (1.3) as

(∫
|x|−b|f |p+1 dx

) 4
N(p−1)+2b

≤ CQM [f ]κ
∫

|∇u|2 dx, (2.3)

where

κ =
2(p + 1)

N(p − 1) + 2b
− 1

and

CQ := (Cp,N )
4

N(p−1)+2b =
2(p + 1)

N(p − 1) + 2b

(∫
|x|−b|Q|p+1 dx

)

M [Q]κ

4
N(p−1)+2b −1

=
(

8(p + 1)
A

) 4
N(p−1)+2b sc(p − 1)

N(p − 1) + 2b
· E[Q]
M [Q]κ

4
N(p−1)+2b −1

and

A := 2(N(p − 1) + 2b − 4) = 4(p − 1)sc.

We use the following Cauchy-Schwarz inequality, proved by Banica [1].
We include the proof here for the sake of completeness.

Lemma 2.2. Let f ∈ H1(RN ) such that |x|f ∈ L2(RN ). Then,
(

Im
∫

x · ∇f f dx

)2

≤
∫

|x|2|f |2 dx

[∫
|∇f |2 dx

− 1
CQMκ

(∫
|x|−b|f |p+1 dx

) 4
N(p−1)+2b

]
.
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Proof. Given f ∈ H1(RN ) and λ > 0, we have

∇
(
eiλ|x|2f

)
= 2iλeiλ|x|2xf + eiλ|x|2∇f = eiλ|x|2(2iλ xf + ∇f).

Thus,
∫ ∣∣∣∇(eiλ|x|2f

)∣∣∣2 dx =
∫

eiλ|x|2(2iλ xf + ∇f)e−iλ|x|2(−2iλ xf + ∇f) dx

= 4λ2

∫
|x|2|f |2 dx + 4λ Im

∫
x · ∇f f dx

+
∫

|∇f |2 dx

and from the Gagliardo-Niremberg inequality (2.3), for all λ ∈ R we get

CQM [f ]κ
[
4λ2

∫
|x|2|f |2 dx + 4λ Im

∫
x · ∇f f dx +

∫
|∇f |2 dx

]

−
(∫

|x|−b|f |p+1 dx

) 4
N(p−1)+2b

≥ 0.

Note that the left-hand side of inequality above is a quadratic polynomial in λ .
The discriminant of this polynomial is non-positive, wich yields the conclusion
of the lemma. �

Proof of Theorem 1.5. We will assume

ME [u0] ≥ 1, (2.4)

as the case ME [u0] < 1 has been proven by [14]. By (1.6), we have
∫

|∇u|2 dx =
4(N(p − 1) + 2b)E[u0] − Vtt

A
. (2.5)

Furthermore,
∫

|x|−b|u|p+1 dx = (p + 1)
8‖∇u‖2

2 − Vtt

4(N(p − 1) + 2b)

= (p + 1)
16E[u0] − Vtt

4(N(p − 1) + 2b)

+
16

4(N(p − 1) + 2b)

∫
|x|−b|u|p+1 dx.

Solving the equality above for
∫

|x|−b|u|p+1 dx, we have

∫
|x|−b|u|p+1 dx = (p + 1)

16E[u0] − Vtt

2A
. (2.6)
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Note that the expression (2.6) implies that Vtt ≤ 16E[u0] for all t. In view of
the equation (1.5), the derivative of variance V (t), and Lemma 2.2 we get,

(Vt(t))2 = 16
(

Im
∫

x · ∇u(t)u(t) dx

)2

≤ 16
∫

V (t)

[∫
|∇u(t)|2 dx

− 1
CQM [u0]κ

(∫
|x|−b|u(t)|p+1 dx

) 4
N(p−1)+2b

]
. (2.7)

If z(t) =
√

V (t), then

zt(t) =
1
2

Vt(t)√
V (t)

.

Dividing (2.7) by V (t), using (2.5), (2.6) and (2.7), we have

z2
t (t) =

1
4

(Vt(t))2

V (t)

≤ 4

[
4(N(p − 1) + 2b)E[u0] − Vtt

A

− 1
CQM [u0]κ

(
(p + 1)(16E[u0] − Vtt)

2A

) 4
N(p−1)+2b

]
,

that is,

z2
t (t) ≤ 4ϕ(Vtt), (2.8)

where

ϕ(α) =
4(N(p − 1) + 2b)E[u0] − α

A

− 1
CQM [u0]κ

(
(p + 1)(16E[u0] − α)

2A

) 4
N(p−1)+2b

is defined for α ∈ (−∞, 16E[u0]]. We have

ϕ′(α) = − 1
A

+
4(16E[u0] − α)

4
N(p−1)+2b −1

CQM [u0]κ(N(p − 1) + 2b)

(
p + 1
2A

) 4
N(p−1)+2b

.

Consider αm ∈ (−∞, 16E[u0]) such that ϕ′(αm) = 0, that is,

1
A

=
4(16E[u0] − αm)

4
N(p−1)+2b −1

CQM [u0]κ(N(p − 1) + 2b)

(
p + 1
2A

) 4
N(p−1)+2b

. (2.9)

Since sc > 0,

4
N(p − 1) + 2b

− 1 =
4 − N(p − 1) − 2b

N(p − 1) + 2b
= − 2sc

(p − 1)(N(p − 1) + 2b)
< 0,



NoDEA Blowup and scattering criteria above the threshold Page 11 of 33 69

therefore ϕ is decreasing on (−∞, αm) and increasing on (αm, 16E[u0]]. Note
that (2.9) implies

αm

8
=

(αm − 16E)(N(p − 1) + 2b)
4A

+
4(N(p − 1) + 2b)E

A
− αm

A
= ϕ(αm).

Using (2.9) and (1.4), we have

E[Q]
M [Q]κ

4
N(p−1)+2b −1

=

(
E[u0] − αm

16

)
M [u0]κ

4
N(p−1)+2b −1

,

hence raising both sides to 2(p−1)
N(p−1)+2b , we get

(
M [u0]
M [Q]

) 1−sc
sc E[u0] − αm

16

E[Q]
= 1. (2.10)

As a consequence of (2.4)

(
M [u0]
M [Q]

) 1−sc
sc E[u0] − αm

16

E[Q]
= 1 ≤ ME [u0] =

(
M [u0]
M [Q]

) 1−sc
sc E[u0]

E[Q]
,

i.e,

αm ≥ 0,

and by (1.7) and (2.10),

(zt(0))2 = −
(

1 − (Vt(0))2

32E[u0]V (0)

)
8E[u0]ME [u0]

ME [u0]
+ 8E[u0]

≥ − 8E[u0]
ME [u0]

(
M [u0]
M [Q]

) 1−sc
sc E[u0] − αm

16

E[Q]
+ 8E[u0]

=
αm

2
= 4ϕ(αm). (2.11)

We first prove case (i) of Theorem 1.5. Suppose that u ∈ Σ satisfies (1.8) and
(1.9). Note that (1.9) is equivalent to

zt(0) =
Vt(0)

2
√

V (0)
≤ 0. (2.12)

In view of (1.2), the assumption (1.8) means

(
M [u0]
M [Q]

) 1−sc
sc

A

∫
|x|−b|u0|p+1 dx

(p + 1)E[Q]
=
(

M [u0]
M [Q]

) 1−sc
sc

∫
|x|−b|u0|p+1 dx∫
|x|−b|Q|p+1 dx

> 1

and consequently, from (2.6)

Vtt(0) = − 2A

p + 1

∫
|x|−b|u0|p+1 + 16E[u0] < αm. (2.13)
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Note that, for all t > 0

ztt(t) =
d

dt

[
Vt(t)

2
√

V (t)

]
=

Vtt(t)
2
√

V (t)
− (Vt(t))2

4
√

V (t)3

=
1

z(t)

(
Vtt(t)

2
− z2

t (t)
)

. (2.14)

Hence from (2.11) and (2.13), we have

ztt(0) =
1

z(0)

(
Vtt(0)

2
− z2

t (0)
)

<
1

z(0)

(αm

2
− αm

2

)
= 0.

Suppose that ztt(t̃) ≥ 0 for some t̃ belonging to [0, T+(u)). Then, as ztt is
continuous on [0, T+(u)), by the intermediate value theorem there exists t0 ∈
(0, T+(u)) such that

∀t ∈ [0, t0), ztt(t) < 0 and ztt(t0) = 0.

Thus for (2.11) and (2.12)

∀t ∈ (0, t0], zt(t) < zt(0) ≤ −
√

4ϕ(αm).

We have, thus,

∀t ∈ (0, t0], z2
t (t) > 4ϕ(αm).

Using the inequality above and (2.8),

∀t ∈ (0, t0], 4ϕ(Vtt(t)) ≥ z2
t (t) > 4ϕ(αm).

Therefore, Vtt(t) �= αm for t ∈ (0, t0]. Since Vtt(0) < αm and by the continuity
of Vtt,

∀t ∈ [0, t0], Vtt(t) < αm. (2.15)

Since Vtt(t) �= αm and by (2.15), we get

ztt(t0) =
1

z(t0)

(
Vtt(t0)

2
− z2

t (t0)
)

<
1

z(t0)

(αm

2
− αm

2

)
,

contradicting the definition of t0. Therefore,

ztt < 0 for all t ∈ [0, T+(u)). (2.16)

By contradiction, suppose that T+(u) = +∞. From (2.12) and (2.16),

∀t > 0, zt(t) < zt(0) ≤ 0,

a contradiction with nonnegativity of z(t).
We now prove case (ii) of Theorem 1.5. We assume, besides the conditions

(1.7) and (2.4), that (1.10) and (1.11) hold. That implies, in the same way as
we did in case (i),

zt(0) ≥ 0 (2.17)

and

Vtt(0) > αm. (2.18)
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We affirm that there is t0 ≥ 0 such that

zt(t0) > 2
√

ϕ(αm). (2.19)

Indeed, by (2.11) and (2.17),

zt(0) ≥ 2
√

ϕ(αm). (2.20)

If zt(0) > 2
√

ϕ(αm), then choose t0 = 0 and we have the result. If not,

ztt(0) =
1

z(0)

(
Vtt(0)

2
− z2

t (0)
)

>
1

z(0)

(αm

2
− αm

2

)
= 0,

by (2.18) and (2.20). Hence, there is a small t0 > 0 satisfying (2.19).
Let ε0 be a positive small number and assume

zt(t0) ≥ 2
√

ϕ(αm) + 2ε0. (2.21)

We will show that, for all t ≤ t0

zt(t) > 2
√

ϕ(αm) + ε0. (2.22)

Suppose (2.22) is false, and define

t1 = inf{t ≥ t0; zt(t) ≤ 2
√

ϕ(αm) + ε0}.

By (2.21) t1 > t0. By continuity of zt,

zt(t1) = 2
√

ϕ(αm) + ε0 (2.23)

and

∀ ∈ [t0, t1], zt(t) ≥ 2
√

ϕ(αm) + ε0. (2.24)

In view of (2.8),

∀t ∈ [t0, t1], (2
√

ϕ(αm) + ε0)2 ≤ z2
t (t) ≤ 4ϕ(Vtt(t)). (2.25)

Hence, ϕ(Vtt(t)) > ϕ(αm) for all t ∈ [t0, t1], so, Vtt(t) �= αm and by continuity
Vtt(t) > αm for t ∈ [t0, t1]. Using the Taylor expansion of ϕ around α = αm,
there exists a > 0 such that, if |α − αm| ≤ 1, then

ϕ(α) ≤ ϕ(αm) + a(α − αm)2. (2.26)

We show that there exists a universal constant D > 0 such that

∀ t ∈ [t0, t1] Vtt(t) ≥ αm +
√

ε0

D
. (2.27)

Consider two cases:
a) If Vtt(t) ≥ αm + 1, then for D > 0 large, we get (2.27)
b) If αm < Vtt(t) ≤ αm + 1, then by (2.25) and (2.26), we obtain

(2
√

ϕ(αm) + ε0)2 ≤ (zt(t))2 ≤ 4ϕ(Vtt(t)) ≤ 4ϕ(αm) + 4a(Vtt(t) − αm)2.

Thus,

4
√

ϕ(αm)ε0 < 4
√

ϕ(αm)ε0 + ε2
0 ≤ 4a(Vtt − αm)2,

and choosing D =
√

a(ϕ(αm))− 1
4 , (2.27) holds.
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Furthermore, by (2.14) and (2.24)

ztt(t1) =
1

z(t1)

(
Vtt(t1)

2
− z2

t (t1)
)

≥ 1
z(t1)

(
αm

2
+

√
ε0

2D
− (2

√
ϕ(αm) + ε0)2

)

≥ 1
z(t1)

(√
ε0

2D
− 4ε

√
ϕ(αm) − ε2

0

)
> 0,

if ε0 is small enough. That is, zt is increasing close to t1, contradicting (2.23)
and(2.24). This shows (2.22). Note that we have also shown that the inequality
(2.27) holds for all t ∈ [t0, T+(u)). Hence, by (2.6), (1.2) and (2.10)

M [u0]1−sc

(∫
|x|−b|u(t)|p+1 dx

)sc

= M [u0]1−sc

[
p + 1
2A

(16E[u0] − Vtt(t))
]sc

< M [u0]1−sc

[
p + 1
2A

(16E[u0] − αm)
]sc

= M [u0]1−sc

[
8(p + 1)

A
E[Q]

]sc

= M [Q]1−sc

[∫
|x|−b|Q|p+1 dx

]sc

.

�

2.1. Dichotomy for quadratic phase initial data

We now prove Corollary 1.10, except for the scattering statement, which will
follow from the results in Sect. 3.

Proof of Corollary 1.10. Let v0 satisfy ME [v0] < 1, γ ∈ R\{0} and u be the
solution with initial data u0 = eiγ|x|2v0. We assume

ME [u0] ≥ 1

(otherwise the result follows from Theorem 1.2).
We will now show that u0 satisfies the assumption of Theorem 1.5. We

need to calculate

E[u0] = E[v0] + 2γ Im
∫

x · ∇v0v̄0 dx + 2γ2

∫
|x|2|v0|2 dx (2.28)

and

Im
∫

ū0 x · ∇u0 dx = Im
∫

v̄0 x · ∇v0 dx + 2γ

∫
|x|2|v0|2 dx.

Rewriting the above equations,

E[u0] −

(
Im
∫

ū0 x · ∇u0 dx

)2

2
∫

|x|2|u0|2 dx

= E[v0] −

(
Im
∫

v̄0 x · ∇v0 dx

)2

2
∫

|x|2|v0|2 dx

≤ E[v0], (2.29)
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or,

ME [u0]

⎡
⎢⎢⎢⎣1 −

(
Im
∫

ū0x · ∇u0

)2

2E[u0]
∫ |x|2|u0|2

⎤
⎥⎥⎥⎦ = ME [v0] ≤ 1. (2.30)

Therefore, the assumption (1.7) follows from (1.5) and (2.30).
We will assume here γ > 0 and MP[v0] < 1, as the proof of the other

case is very similar. First note that, since ME [v0] < 1 and
∫ |x|2|v0|2 > 0,

there is only one positive solution of

M [v0]
1−sc

sc

(
E[v0] + 2γ Im

∫
x · ∇v0v̄0 dx

+ 2γ2

∫
|x|2|v0|2 dx

)
= M [Q]

1−sc
sc E[Q]. (2.31)

Now, since ME [u0] ≥ 1 and γ > 0, (2.28), we have γ ≥ γ+
c , where γ+

c is the
positive solution of (2.31). Rewriting (2.31), we have

γ+
c Im

∫
x · ∇v0v̄0 dx + (γ+

c )2
∫ |x|2|v0|2 dx

M [Q]
1−sc

sc E[Q]
=

1 − ME [v0]

2M [v0]
1−sc

sc

> 0,

which implies

Im
∫

x · ∇v0v̄0 dx + γ+
c

∫
|x|2|v0|2 dx > 0.

Using that γ ≥ γ+
c , we see that

Im
∫

x · ∇u0ū0 dx = Im
∫

x · ∇v0v̄0 dx + γ

∫
|x|2|v0|2 dx > 0,

which yields (1.11). Since Theorem 1.5 applies, we conclude the proof. �

We next prove prove Corollary 1.13, except for the scattering statement.

Proof of Corollary 1.13. Given that ū(x,−t) is a solution of (1.1) if u(x, t) is
a solution, we can assume γ > 0. We only need to prove that

Im
∫

x · ∇Qγ(t0)Qγ(t0) dx ≥ 0,

MP[Qγ(t0)] < 1

and

ME[Qγ(t0)]
(

1 − (Vt(t0))2

32E[Qγ(t0)]V (t0)

)
≤ 1,

for some t0 > 0, where V (t) =
∫

|x|2|Qγ(x, t)|2 dx. First note that, for Qγ
0 =

eiγ|x|2Q, we have

∇Qγ
0 = (2iγxQ + ∇Q)eiγ|x|2
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and

�Qγ
0 = eiγ|x|2(2iNγQ + 4iγx · ∇Q − 4γ2|x|2Q + �Q). (2.32)

Thus,

Im
∫

x · ∇Qγ
0Qγ

0 dx = Im
∫

x · (2iγxQ + ∇Q)eiγ|x|2e−iγ|x|2Q dx

= Im
∫

x · (2iγxQ + ∇Q)Q dx

= 2γ

∫
|x|2Q2 dx > 0. (2.33)

which shows Im
∫

x ·∇Qγ(t0)Qγ(t0) dx > 0 for sufficiently small t0. Moreover,

using the fact that Qγ is a solution to (1.1), we have

d

dt

∫
|x|−b|Qγ |p+1 dx = (p + 1) Re

∫
|x|−b(∂tQ

γQγ)|Qγ |p−1 dx

= (p + 1) Re
∫

|x|−b(i�QγQγ)|Qγ |p−1 dx

= −(p + 1) Im
∫

|x|−b|Qγ |p−1�QγQγ dx.

Consequently, from (2.32),
[

d

dt

∫
|x|−b|Qγ |p+1 dx

] ∣∣∣∣∣
t=0

=
[
−(p + 1) Im

∫
|x|−b|Qγ |p−1�QγQγ dx

] ∣∣∣∣∣
t=0

= −2Nγ(p − 1)
∫

|x|−bQp+1 dx < 0.

Since

M [Qγ
0 ]

1−sc
sc

∫
|x|−b|Qγ

0 |p+1 dx = M [Q]
1−sc

sc

∫
|x|−b|Q|p+1 dx,

we get, for sufficiently small t0

MP[Qγ(t0)] < 1.

Now, define the function F as

F (t) = M [Qγ ]
1−sc

sc

⎡
⎢⎢⎢⎣E[Qγ ] −

(
Im
∫

x · ∇Qγ(t)Qγ(t) dx

)2

2
∫

|x|2|Qγ(t)|2 dx

⎤
⎥⎥⎥⎦

− M [Q]
1−sc

sc E[Q]. (2.34)

In view of (2.29), with v0 = Q, we conclude F (0) = 0. We just need to check
that F (t) ≤ 0 for small positive t. Let

V (t) =
∫

|x|2|Qγ(x, t)|2 dx, z(t) =
√

V (t).
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We can rewrite (2.34) as

F (t) = M [Qγ ]
1−sc

sc

(
E[Qγ ] − 1

8
(zt(t)2)

)
− M [Q]

1−sc
sc E[Q],

and thus,

Ft(t) = −1
4
M [Qγ ]

1−sc
sc zt(t)ztt(t).

Using (1.5), (1.6) and the fact that Gagliardo-Nirenberg inequality (1.3) is an
equality for f = Q = e−iγ|x|2Qγ

0 , we conclude that ztt(0) = 0. Therefore,

Ftt(0) = −1
4
M [Qγ ]

1−sc
sc

(
zt(0)zttt(0) + (ztt(0))2

)

= −1
4
M [Qγ ]

1−sc
sc zt(0)zttt(0).

On the other hand,

Vtt = 2(zt)2 + 2zztt and Vttt = 6ztztt + 2zzttt.

Thus, Vttt(0) = 2z(0)zttt(0). Hence, Ftt(0) and −Vttt(0) have the same sign,
but from (2.33) zt(0) > 0. By (2.6), we get that this sign is the same as the
one of [

d

dt

∫
|x|−b|Qγ |p+1 dx

] ∣∣∣∣∣
t=0

= − (p + 1)
2A

Vttt(0).

Therefore, Ftt(0) < 0, which shows that F (t) is negative for small t > 0. This
completes the proof. �

3. Scattering

We now prove the scattering part of theorem 1.5. We start with a lemma:

Lemma 3.1. Let 0 < a < A <

(∫
|x|−b|Q|p+1

)sc

M [Q]1−sc . Then, there ex-

ists ε0 = ε0(a,A) such that for all f ∈ H1(RN ) with

a ≤
(∫

|x|−b|f |p+1 dx

)sc

M [f ]1−sc ≤ A,

one has ∫
|∇f |2 dx − N(p − 1) + 2b

2(p + 1)

∫
|x|−b|f |p+1 dx ≥ ε0M [f ]1− 1

sc (3.1)

and

E[f ] ≥ ε0
2

M [f ]1− 1
sc . (3.2)
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Proof. Recalling the sharp Gagliardo-Nirenberg inequality, we have:

M [f ]
1

sc
−1

[∫
|∇f |2 dx − N(p − 1) + 2b

2(p + 1)

∫
|x|−b|f |p+1 dx

]

≥ 1
cQ

M [f ]
1

sc
−1−κ

(∫
|x|−b|f |p+1 dx

) 4
N(p−1)+2b

− M [f ]
1

sc
−1 N(p − 1) + 2b

2(p + 1)

∫
|x|−b|f |p+1 dx

=
y

4
N(p−1)+2b

cQ
− N(p − 1) + 2b

2(p + 1)
y. (3.3)

where y = M [f ]
1

sc
−1

∫
|x|−b|f |p+1 dx. One can check, by direct calculations,

that the function y 	→ y
4

N(p−1)+2b

cQ
− N(p−1)+2b

2(p+1) y has only one zero y∗ on (0,+∞)
and is positive in (0, y∗). Since the inequality (3.3) is an equality when f = Q,

y∗ is exactly M [Q]
1

sc
−1

∫
|x|−b|Q|p+1 dx, and (3.1) follows. Noting that

E[f ] ≥ 1
2

(∫
|∇f |2 dx − N(p − 1) + 2b

2(p + 1)

∫
|x|−b|f |p+1 dx

)
,

we get (3.2), because N(p−1)+2b
4 ≥ 1. �

Definition 3.2. If N ≥ 1 and s ∈ (0, 1), the pair (q, r) is called Ḣs-admissible
if it satisfies the condition

2
q

=
N

2
− N

r
− s,

where

2 ≤ q, r ≤ ∞, and (q, r,N) �= (2,∞, 2).

Also, considering the following closed subset of Hs-admissible pairs

As =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(q, r) is Ḣs-admissible

∣∣∣∣∣∣∣∣∣∣

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
2N

N−2s

)+

≤ r ≤
(

2N
N−2

)−
, N ≥ 3(

2
1−s

)+

≤ r ≤
((

2
1−s

)+
)′

, N = 2

2
1−2s ≤ r ≤ ∞, N = 1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

where a+ = a + ε, for a fixed, small ε > 0 and (a+)′ is defined as the number
such that

1
a

=
1

a+
+

1
(a+)′ ,

we define the scattering norm

‖u‖S(Ḣsc ) = sup
(q,r)∈Asc

‖u‖Lq
t Lr

x
.

It is already known that scattering follows from the uniform boundedness
of the H1 norm and the finiteness of the S(Ḣsc) norm (see [14, Proposition
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1.4]). The following proposition was proved in [5] and covers for the broken
translation symmetry and lack of momentum conservation.

Proposition 3.3. Suppose N ≥ 2, 0 < b < min{N
2 , 2}, and 4−2b

N < α < 4−2b
N−2 .

Let ψ ∈ H1(RN ). Suppose that tn ≡ 0 or tn → ±∞ and that |xn| → ∞. Then
for all n sufficiently large, there exists a global solution vn to (1.1) with

vn(0) = ψn := eitnΔψ(x − xn)

that scatters in H1 and obeys

‖vn‖S(Ḣsc ) + ‖vn‖S(L2) + ‖∇vn‖S(L2) ≤ C

for some C = C(‖ψ‖H1). Moreover, for any ε > 0, there exists K > 0 and
φ ∈ C∞

c (R × R
N ) such that

‖vn − φ(· − xn, · + tn)‖S(Ḣsc ) < ε for n ≥ K.

We now have all tools to upgrade the global existence to scattering.

Proposition 3.4. Define S(L,A) as the supremum of ‖u‖S(Ḣsc ) such that u is
a solution to (1.1) on [0,+∞) with

ME [u0] ≤ L (3.4)

and

sup
t∈[0,+∞)

(∫
|x|−b|u(t)|p+1 dx

)sc

M [u]1−sc ≤ A. (3.5)

If A <

(∫
|x|−bQp+1 dx

)sc

M [Q]1−sc , then S(L,A) < +∞.

Proof. The proof goes along the spirit of [10,14] and (see also [22]). We give
an outline of the proof, highlighting the main differences.

First we note that, if 0 < L < 1, by Theorem 1.2, then S(L,A) < +∞.
Assume, by contradiction, that S(L,A) = +∞ for some L ∈ R. Note that, if a

nonzero u satisfies the equation (3.5), with A <

(∫
|x|−bQp+1 dx

)sc

M [Q]1−sc ,

then by Lemma 3.1, E[u] > 0. Thus, the quantity Lc given by

Lc = Lc(A) := inf {L ∈ R s.t. S(L,A) = +∞}
is well-defined and positive.

Moreover, there exists a sequence {un} of (global) solutions such that

M [un] = 1,

‖un‖S(Ḣsc) → +∞,

ME [un] ↘ Lc,

and

sup
t∈[0,+∞)

∫
|x|−b|un|p+1 dx ≤ A.
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Therefore, using the linear profile decomposition ([11, Theorem 5.1]) for
the initial conditions un,0 (note that {un,0} is bounded in H1(RN )), the ex-
istence of wave operators for large times (see [14,22]) and Proposition 3.3, to
deal with the unbounded translation parameters, we obtain for each M ∈ N

(passing, if necessary, to a subsequence) a nonlinear profile decomposition of
the form:

un,0 =
M∑

j=1

ũj
n(0) + W̃M

n (3.6)

and an approximate solution

ũn(t) =
M∑

j=1

ũj
n(t),

where, for each pair (j, n), ũj
n is a solution to (1.1) and

1. for each (j, n), there exists T j
n > 0 such that [0, T j

n) is the maximal
(positive) interval of existence of ũj

n;

2. lim
M→+∞

[
lim

n→+∞

∥∥∥eitΔW̃M
n

∥∥∥
S(Ḣsc)

]
= 0;

3. The profiles can be ordered in such a way that
(a) The first nonlinear profile ũ1

n (corresponding to bounded space and
time translation parameters in the linear profile decomposition),
may or may not be global in time, but we can assume that it is
independent of n and often write it as ũ1 and its maximal time of
existence as [0, T 1);

(b) ũj
n, for 2 ≤ j ≤ M1 corresponding to bounded space translation, but

unbounded time translation, are obtained from the wave operators,
therefore scattering forward in time in H1 to their correspondent
linear profile and satisfying, ‖ũj

n‖S(Ḣsc ,[0,+∞)) → 0 as n → ∞;
(c) ũj

n, for M1 + 1 ≤ j ≤ M , corresponding to unbounded space trans-
lation, are obtained from Lemma 3.3, scattering in both time direc-
tions in H1 and satisfying the global space-time bounds ‖∇ũj

n‖L∞
t L2

x

≤ ‖∇ũj
n‖S(L2) ≤ C‖∇ũj

n(0)‖L2 + on(1);
4. for fixed M ∈ N and any 0 ≤ s ≤ 1, the asymptotic Pythagorean expan-

sion holds for the Ḣs norm

‖un,0‖2
Ḣs =

M∑
j=1

∥∥ũj
n (0)

∥∥2
Ḣs +

∥∥∥W̃M
n

∥∥∥2
Ḣs

+ on(1)

and for the energy

E[un,0] =
∑

E[ũj
n] + E[W̃M

n ] + on(1).

These items follow from the usual approach, as in [5,13] and [14]. Items
1-4 follow from the construction of the nonlinear profiles together with the so-
called asymptotic orthogonality of the space and time translation parameters
from the linear profile decomposition. The major difference is that we do not
have information for t > T 1 because it is not clear whether all the nonlinear
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profiles evolve into global solutions, since the quantity ME [ũ1
n(0)] may not be

small. �

Thus, in order to prove that all ũj
n(t) exist on [0,+∞), we need to track

‖∇ũj
n(t)‖L2 . Denoting by INLS(t)v0 the evolution of the datum v0 under the

flow of (1.1), we prove the following:

Lemma 3.5. (Pythagorean expansion along the bounded INLS flow). Suppose
un,0 is a bounded sequence in H1(RN ). Let T ∈ (0,+∞) be a fixed time. As-
sume that un(t) = INLS(t)un,0 exists up to time T for all n and
lim
n

‖∇un(t)‖L∞
[0,T ]L

2
x

< +∞. Consider the nonlinear profile decomposition (3.6)

and write W̃M
n (t) = INLS(t)W̃M

n . Then given any T > 0, for all j, the non-
linear profiles ũj

n(t) exist up to time T and for all t ∈ [0, T ],

‖∇un(t)‖2
L2

x
=

M∑
j=1

‖∇ũj
n(t)‖2

L2
x

+ ‖∇W̃M
n (t)‖2

L2
x

+ oM,n(1),

where oM,n(1) → 0 uniformly on 0 ≤ t ≤ T .

Proof. For fixed T > 0, define B = max{1, lim
n

‖∇un(t)‖L∞
[0,T ]L

2
x
} and let T̃ 1 be

the maximal time of existence of ũ1
n such that T̃ 1 ≤ T and ‖∇ũ1

n‖L∞
[0,T̃1]

L2
x

≤
2B. This is the only possibly “ill-behaved” profile, and we aim to show the
converse inequality T̃ 1 ≥ T . From the items 1-4 above, we estimate

‖∇ũn‖L∞
[0,T̃1]

L2
x

≤ ‖∇ũ1
n‖L∞

[0,T̃1]
L2

x
+

M1∑
j=2

‖∇ũj
n‖L∞

[0,T̃1]
L2

x

+
M∑

j=M1+1

‖∇ũj
n‖L∞

[0,T̃1]
L2

x

≤ 2B + 2
M1∑
j=2

‖∇ũj
n(0)‖L2

x
+ C

M∑
M1+1

‖∇ũj
n(0)‖L2

x
+ on(1)

≤ 2B + C‖∇un,0‖L2 + on(1),

by interpolation and Sobolev embedding,

‖ũn‖S(Ḣsc ,[0,T̃ 1]) ≤ c‖ũn‖
L∞

[0,T̃1]
L

2N
N−2sc

+ c‖ũn‖
L

2
1−sc [0,T̃ 1]L

2N
N−2

≤ c(1 + (T̃ 1)
1−sc

2 )‖ũn‖L∞
[0,T̃1]

H1
x
,

and, by construction,

‖eitΔ[un(0) − ũn(0)]‖S(Ḣsc ) = ‖eitΔW̃M
n ‖S(Ḣsc ) = oM,n(1).

Defining the error of the approximation

eM
n = (i∂t + Δ)ũn + |x|−bf(ũn) = |x|−b

⎡
⎣f

⎛
⎝ M∑

j=1

ũj
n

⎞
⎠−

M∑
j=1

f(ũj
n)

⎤
⎦ ,
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where f(z) = |z|αz, we have

‖eM
n ‖S′(Ḣ−sc ,[0,T 1]) + ‖eM

n ‖S′(L2,[0,T 1]) + ‖∇eM
n ‖S′(L2,[0,T 1]) = oM,n(1).

These estimates are obtained from the pointwise linear estimates of the
difference in the right-hand side, also making use of the asymptotic orthogo-
nality and the individual space-times bounds of each ũj

n on [0, T 1).
Note all the profiles are defined at least for t ∈ [0, T 1), since the only pro-

file with possibly finite time of existence is ũ1
n. By using long-time perturbation

and interpolation,

sup
t∈[0,T̃ 1]

∫
|x|−b|un(t) − ũn(t)|p+1 dx ≤ c‖un − ũn‖p−1

L∞
[0,T̃1]

L
2N

N−2sc

‖∇un‖2
L∞

[0,T̃1]
L2

= oM,n.

(Recall that T > 0 is fixed and T̃ 1 ≤ T ). Thus, by the asymptotic orthogonal-
ity, we get

∫
|x|−b|un(t)|p+1 dx =

M∑
j=1

∫
|x|−b|ũj

n(t)|p+1 dx + oM,n(1).

Now, energy conservation and the Pythagorean expansion for the energy at
t = 0 gives

0 = E[un,0] − E[un(t)] =
M∑

j=1

E[ũj
n(t)] + E[W̃M

n (t)] − E[un(t)] + on(1),

which in turn proves

‖∇un‖2
L∞

[0,T̃1]
L2

x
=

M∑
j=1

‖∇ũj
n‖2

L∞
[0,T̃1]

L2
x

+ ‖∇W̃M
n ‖2

L∞
[0,T̃1]

L2
x

+ oM,n(1). (3.7)

The last bound shows that ‖∇ũ1
n(t)‖L2

x
≤ B + oM,n(1) for all t ∈ [0, T̃ 1]

which in turn, by maximality of T̃ 1, shows that T̃ 1 ≥ T . In particular, u1
n(t)

exists up to time T , and we can replace T̃ 1 by T in (3.7), finishing the proof
of the lemma. �

Invoking (3.4) and (3.5) and using the orthogonality along the INLS flow, one
is able to prove that ũj

n(t) is defined on [0,+∞) as well, and satisfies, for every
j and every large n,

M [ũj
n] ≤ 1,

ME [ũj
n] ≤ Lc

and

sup
t∈[0,+∞)

(∫
|x|−b|ũj

n(t)|p+1 dx

)sc

M [ũj
n]1−sc ≤ A.

The rest of the proof follows the same lines as [10] and [14], using the
criticality of Lc to show that only the first profile, ũ1, can be non-zero, and
letting uc(t) = ũ1(t). This criticality also shows that M [uc] = 1 and ME [uc] =
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Lc. Long-time perturbation theory yields ‖uc‖S(Ḣsc) = +∞. At this point,
the classical compactness lemma follows.

Lemma 3.6. (Compactness). Assume that there exists L0 ∈ R and a positive
number

A <

(∫
|x|−b|Q|p+1 dx

)sc

M [Q]1−sc

such that S(L0, A) = +∞. Then there exists a global solution uc of (1.1) such
that the set

K = {uc(t), t ∈ [0,+∞)}
has a compact closure in H1(RN ).

Using this compactness lemma and the virial identity (1.6), we also have
the classic rigidity lemma.

Lemma 3.7. (Rigidity). There exists no solution uc of (1.1) satisfying the con-
clusion of Lemma 3.6.

The proof goes on the same lines as in [10] and [14]. �

4. Proof of the blowup criteria

In this section we prove two criteria for blow up in finite time. The first one is a
generalization of Lushnikov’s criterion in [26] and of Holmer-Platte-Roudenko
criteria in [24] for the INLS, and the second one is the modification of the
first approach, where the generalized uncertainty principle is replaced by the
interpolation inequality (4.10). The two criteria are the INLS versions of the
ones proved by Duyckaerts and Roudenko in [10].

Proof of Theorem 1.14. Integrating by parts,

‖u‖2
L2 =

∫
|u|2 dx =

1
N

N∑
j=1

∫
∂jxj |u|2 dx = − 1

N

N∑
j=1

∫
xj∂j(|u|2) dx

= − 1
N

N∑
j=1

∫
xj(∂juu + u∂ju) dx = − 2

N

N∑
j=1

Re
∫

xj∂juu dx

= − 2
N

Re
∫

(x · ∇u)u dx.

Since |z|2 = |Re z|2 + |Im z|2, using Hölder’s inequality

‖xu‖2
L2

‖∇u‖2
L2 ≥

∣∣∣∣
∫

(x · ∇u)u dx

∣∣∣∣
2

=
∣∣∣∣Re

∫
(x · ∇u)u dx

∣∣∣∣
2

+
∣∣∣∣Im

∫
(x · ∇u)u dx

∣∣∣∣
2

=
N2

4
‖u‖4

L2 +
∣∣∣∣Im

∫
(x · ∇u)u dx

∣∣∣∣
2

.
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From the definition of variance and the identity for the first derivative of the
variance (1.5), we get the uncertainty principle

N2

4
‖u0‖2

L2 +
∣∣∣∣Vt

4

∣∣∣∣
2

≤ V (t)‖∇u(t)‖2
L2 . (4.1)

Using the equation (1.6) for the second derivative of the variance, we obtain

Vtt(t) = 4(N(p − 1) + 2b)E[u0] − 4(p − 1)sc‖∇u(t)‖2
L2 . (4.2)

Substituting (4.2) in the uncertainty principle (4.1), we have

Vtt(t) ≤ 4(N(p − 1) + 2b)E[u0] − N2(p − 1)sc
(M [u0])2

V (t)
− (p − 1)sc

4
|Vt(t)|2
V (t)

.

(4.3)

Now, we rewrite equation (4.3) in order to cancel the term V 2
t . For this, define

V = B
1

α+1 , α =
(p − 1)sc

4
=

N(p − 1) − 4 + 2b

8
. (4.4)

Then,

Vt =
1

α + 1
B− α

α+1 and Vtt = − α

(α + 1)2
B− 2α+1

α+1 B2
t +

1
α + 1

B− α
α+1 Btt,

which gives

Btt ≤ 4(α + 1)N(p − 1)E[u0]B
α

α+1 − (α + 1)N2(p − 1)sc(M [u0])2B
α−1
α+1 ,

that is, for all t ∈ [0, T+(u))

Btt ≤ N(p − 1)(N(p − 1) + 4 + 2b)
2

(
E[u0]B

N(p−1)−4+2b
N(p−1)+4+2b

− Nsc

4
(M [u0])2B

N(p−1)−12+2b
N(p−1)+4+2b

)
.

In order to further simplify the inequality, let us make a rescaling. Define
B(t) = μΦ(λt), with

μ =
(

Nsc(M [u0])2

4E[u0]

)N(p−1)+4+2b
8

, λ =
8
√

2√
Nsc

E[u0]
M [u0]

. (4.5)

Then letting s = λt, we obtain

ωΦss ≤ Φγ − Φδ, s ∈ [0, T+/a), (4.6)

where

γ =
N(p − 1) − 4 + 2b

N(p − 1) + 4 + 2b
, δ =

N(p − 1) − 12 + 2b

N(p − 1) + 4 + 2b
= 2γ − 1,

ω =
64

N(p − 1)(N(p − 1) + 4 + 2b)

and since p > 1 + 4
N ,

0 < γ < 1, −1 < δ < γ.
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We rewrite (4.6) as

ωΦss +
∂U

∂Φ
≤ 0, (4.7)

for t ∈ [0, T+/a), where U(Φ) = Φδ+1

δ+1 − Φγ+1

γ+1 . Define the energy of the particle

E(s) =
ω

2
Φ2

s(s) + U(Φ(s))

which is conserved for solutions of

ωΦss +
∂U

∂Φ
= 0.

Based on the ideas of Lushnikov [26], Duyckaerts and Roudenko [10] studied
this model and showed the following proposition �

Proposition 4.1. Let Φ be a nonnegative solution of (4.7) such that one of the
following holds:
(A) E(0) < Umax and Φ(0) < 1,
(B) E(0) > Umax and Φs(0) < 0,
(C) E(0) = Umax,Φs(0) < 0 and Φ(0) < 1,

where Umax is the absolute maximum of U on the interval [0,+∞). Then we
have T+ < ∞.

Proof. For the sake of completeness of this work, we will give the proof of the
proposition. Multiplying equation (4.7) by Φs, we get

Φs(s) > 0 ⇒ Es(s) < 0, Φs(s) < 0 ⇒ Es(s) > 0. (4.8)

We argue by contradiction, assuming T+ = T+(u) = +∞.
We first assume (A). Let us prove by contradiction that

∃ s > 0, Φs(s) < 0.

If not, Φs(s) ≥ 0 for all s, and (4.8) implies that the energy decays. By (A),
E(s) ≤ E(0) < Umax for all s. Thus, |Φ(s) − 1| ≥ ε0 (where ε0 > 0 depends
on E(0)) for all s. Since by (A) Φ(0) < 1, we obtain by continuity of Φ that
Φ(s) ≤ 1−ε0 for all s. By equation (4.6), we deduce Φss ≤ −ε1 for all s, where
ε1 > 0 depends on ε0. Thus, Φ is strictly concave, a contradiction with the
fact that Φ is positive and T+ = +∞.

We have proved that there exists s > 0 such that Φs(s) < 0. Letting

t1 = inf{s > 0;Φs(s) < 0},

we get by (4.8) that the energy is nonincreasing on [0, t1]. Thus, E(s) < E(0) ≤
Umax on [0, t1], which proves that Φ(s) �= 1 on [0, t1]. Since Φ(0) < 1, we
deduce by the intermediate value theorem that Φ(t1) < 1 and by (4.6) that
Φss(t1) < 0. Since Φs(t1) ≤ 0, an elementary bootstrap argument, together
with equation (4.6) shows that Φ(s) ≤ 1 − ε0, Φs(s) < 0 and Φss(s) ≤ −ε1 for
s > t1, for some positive constants ε0, ε1. This is again a contradiction with
the positivity of Φ.

We next assume (B). Let t1 be such that Φs(s) < 0 on [0, t1]. By (4.8), E
is nondecreasing on [0, t1], and thus, E(s) ≥ E(0) > Umax for all s on [0, t1]. As
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a consequence, 1
2Φs(s)2 ≥ E(0)−Umax > 0 for all s in [0, t1], which shows that

the inequality Φs(s) ≤ −√E(0) − Umax holds on [0, t1]. Finally, an elementary
bootstrap argument shows that the inequality Φs(s) ≤ −√E(0) − Umax is
valid for all s ≥ 0, a contradiction with the positivity of Φ.

Finally, we assume (C). By bootstrap again, Φs(s) < 0, Φ(s) < 1 and
Φss(s) < 0 for all positive s, proving again that Φ is a strictly concave function,
a contradiction. �

Since

α =
(p − 1)sc

4
=

N(p − 1) − 4 + 2b

8
,

we have

2α + 1 =
N(p − 1) + 2b

4
, α + 1 =

N(p − 1) + 4 + 2b

8
,

(α + 1)(δ + 1) = 2α, (α + 1)(γ + 1) = 2α + 1 and ω =
2

(2α + 1)(α + 1)
.

By making Φ = vα+1, then

E =
ω

2
Φ2

s(s) + U(Φ(s)) =
α + 1
2α + 1

(v′)2v2α +
α + 1
2α

v2α − α + 1
2α + 1

v2α+1

and

Umax =
1
2α

α + 1
2α + 1

.

Consider the function f given for

f(x) =

√
1

kxk
+ x −

(
1 +

1
k

)
, (4.9)

where k = (p−1)sc

2 = 2α. Hence, if vs(0) satisfies the condition

vs(0) <

{
+f(v(0)), if v(0) < 1,
−f(v(0)), if v(0) ≥ 1,

then Φ = vα+1 satisfies the conditions of Proposition 4.1. Indeed, the condition
E < Umax is equivalent to

2α(v′)2v2α + (2α + 1)v2α − 2αv2α+1 < 1

that is,

|vs| < f(v).

Hence, the condition (A) means

v(0) < 1 and − f(v(0)) < vs(0) < f(v(0))

and the condition (B) holds if and only if

|vs(0)| > f(v(0)) and vs(0) < 0.

More precisely,

vs(0) < −f(v(0))
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and the condition (C) is equivalent to

v(0) < 1 and vs(0) = −f(v(0)).

Therefore, from (4.4), (4.5) and from the definition of v, we have

V (0) = (μΦ(λt))
1

α+1

∣∣∣∣∣
t=0

= μ
8

N(p−1)+4+2b v

(
8
√

2√
Nsc

E[u0]
M [u0]

t

)∣∣∣∣∣
t=0

= μ
8

N(p−1)+4+2b v(0) =
NscM

2

4E[u0]
v(0)

and

Vt(0) = μ
8

N(p−1)+4+2b
8
√

2√
Nsc

E[u0]
M [u0]

vs(0)

=
NscM

2

4E[u0]
8
√

2√
Nsc

E[u0]
M [u0]

vs(0)

= M [u0]
√

8Nscvs(0).

Furthermore,

Vt(0)
M [u0]

=
√

8Nscvs(0) <
√

8Nscg(v(0)) =
√

8Nscg

(
4

Nsc

V (0)E[u0]
M [u0]2

)
,

which completes the proof of Theorem 1.14. �
We now proceed to the proof of Theorem 1.15. For that, we consider the

following proposition.

Proposition 4.2. Let p > 1 and N ≥ 1. Then, the following inequality

‖u‖2
L2 ≤ Cp,N

(
‖xu‖

N(p−1)+2b
2

L2 ‖| · | −b
p+1 u‖p+1

Lp+1

) 2
N(p−1)+2(p+1)+2b

(4.10)

holds with the sharp constant Cp,N (depending on the nonlinearity p and di-
mension N) given by (4.14). Moreover, the equality occurs if and only if there
exists β ≥ 0, α ≤ 0 such that |u(x)| = βφ(αx), where

φ(x) =
{

|x| b
p−1 (1 − |x|2) 1

p−1 if 0 ≤ |x| < 1,
0 if |x| > 1.

The proof of Proposition 4.2 follows the ideas of [10].

Proof. Let R > 0 to be specified later. Split the mass of u as follows∫
|u(x)|2 dx =

1
R2

∫
|x|≤R

(R2 − |x|2)|u(x)|2 dx +
1

R2

∫
|x|≤R

|x|2|u(x)|2 dx

+
∫

|x|≥R

|u(x)|2 dx.
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By Hölder inequality we have

1
R2

∫
(R2 − |x|2)|u(x)|2 dx

≤ 1
R2

(∫
|x|≤R

|x| 2b
p−1 (R2 − |x|2) p+1

p−1 dx

) p−1
p+1

×
(∫

|x|−b|u(x)|p+1 dx

) 2
p+1

≤ 1
R2

(∫
|x|≤1

R
2b

p−1 |y| 2b
p−1 (R2 − R2|y|2) p+1

p−1 RN dy

) p−1
p+1

×
(∫

|x|−b|u(x)|p+1 dx

) 2
p+1

= R
N(p−1)+2b

p+1 Dp,N

∥∥∥| · |− b
p+1 u

∥∥∥2
p+1

, (4.11)

where

Dp,N =

(∫
|y|≤1

|y| 2b
p−1 (1 − |y|2) p+1

p−1 dy

) p−1
p+1

.

Furthermore,

1
R2

∫
|x|≤R

|x|2|u(x)|2 dx +
∫

|x|≥R

|u(x)|2 dx ≤ 1
R2

∫
|x|2|u(x)|2 dx.

(4.12)

Combining (4.11) and (4.12), we get

∀R > 0, ‖u‖2
L2 ≤ Dp,N

∥∥∥| · |− b
p+1 u

∥∥∥2
Lp+1

R
N(p−1)+2b

p+1 +
1

R2
‖xu‖2

L2 . (4.13)

Let F : (0,+∞) → R given by F (R) = ARα +BR−2, where A,B > 0 and α >

0. The minimum value of F is reached at R =
(

2B
αA

) 1
α+2 and

F

((
2B

αA

) 1
α+2
)

= A

(
2B

αA

) α
α+2

+ B

(
αA

2B

) 2
α+2

=
2 + α

α
(αA)

2
α+2 (2B)

α
α+2 .

Thus, by taking

R =

⎛
⎜⎝ p + 1

N(p − 1) + 2b

2‖xu‖2
L2

Dp,N

∥∥∥| · |− b
p+1 u

∥∥∥2
Lp+1

⎞
⎟⎠

p+1
N(p−1)+2(p+1)+2b

in (4.13), we have

‖u‖2
L2 ≤ C2

p,N

∥∥∥| · |− b
p+1 u

∥∥∥
4(p+1)

N(p−1)+2(p+1)+2b

Lp+1
‖xu‖

2N(p−1)+4b
N(p−1)+2(p+1)+2b

L2 ,
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where

Cp,N =
(

N(p − 1) + 2(p + 1) + 2b

2N(p − 1) + 4b

) 1
2

×
(

N(p − 1) + 2b

p + 1
Dp,N

) (p+1)
N(p−1)+2(p+1)+2b

× 2
N(p−1)+2b

2N(p−1)+4(p+1)+4b . (4.14)

Note that equality in (4.10) holds if and only if there exists R > 0 such
that (4.13) is an equality. This is equivalent to the fact that for some R > 0,
both (4.11) and (4.12) are equalities. The inequality (4.11) is an equality if and
only if, for |x| < R, |x|−b|u(x)|p+1 = c|x| 2b

p−1 (R2 − |x|2) p+1
p−1 for some constant

c ≥ 0, and inequality (4.12) is an equality if and only if u(x) = 0 for |x| ≥ R.
This completes the proof of Proposition 4.2. �

Proof of Theorem 1.15. Since the energy is

E[u0] =
1
2
‖∇u(t)‖2

L2 − 1
p + 1

∥∥∥| · |− b
p+1 u(t)

∥∥∥p+1

Lp+1
,

from (1.6), we obtain

Vtt(t) = 4(N(p − 1) + 2b)E[u0] − 2(N(p − 1) + 2b − 4)‖∇u(t)‖2
L2(RN )

= 16E[u0] − 8(p − 1)sc

p + 1

∥∥∥| · |− b
p+1 u(t)

∥∥∥p+1

Lp+1
.

Using the sharp interpolation inequality (4.10)

Vtt(t) ≤ 16E[u0] − 8(p − 1)sc

(p + 1)(Cp,N )
N(p−1)

2 +(p+1)+b

M [u0]
N(p−1)

4 + (p+1)
2 + b

2

V (t)
N(p−1)+2b

4

,

(4.15)

with Cp,N from (4.10). As done in the proof of Proposition 1.14, take v(s) with
s = at such that

V (t) = μv(λt), λ =

√
32E[u0]

μ
,

where

μ =
(

sc(p − 1)
2(p + 1)

) 4
N(p−1)+2b M [u0]

1+(p+1)( 2
N(p−1)+2b )

(Cp,N )2+(p+1)( 4
N(p−1)+2b )E[u0]

4
N(p−1)+2b

.

Hence, applying in the inequality (4.15), we have

vss(s) ≤ 1
2

(
1 − v− N(p−1)+2b

4 (s)
)

.

If the inequality in the above expression is replaced by an equality, then we
have that the following energy is conserved

E(s) =
k

1 + k

(
(v(s))2 − v(s) − 1

kv(s)k

)
,
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where as before k = (p−1)sc

2 = N(p−1)+2b
4 − 1. The maximum of the function

f(x) =
k

1 + k

(
x +

1
kxk

)
,

attained at x = 1, is −1. As we did to (A), (B) and (C), we identify the three
sufficient conditions for blow-up in finite time.

(A∗) E(0) < −1 and v(0) < 1,
(B∗) E(0) > −1 and vs(0) < 0,
(C∗) E(0) = −1, vs(0) < 0 and v(0) < 1.

If vs(0) satisfies the condition

vs(0) <

{
+f(v(0)), if v(0) < 1
−f(v(0)), if v(0) ≥ 1,

then v satisfies one of the conditions (A*), (B*) and (C*). Indeed, recalling
the function f from (4.9) and using the definition of E , we obtain

a) E < −1 if and only if |vs| < f(v).
b) E ≥ −1 if and only if |vs| ≥ f(v).

Then the previous conditions can be written in the following form:

(A∗) ⇔ v(0) < 1 and − f(v(0)) < vs(0) < f(v(0)),
(B∗) ⇔ vs(0) < −f(v(0)),
(C∗) ⇔ vs(0) = −f(v(0)), v(0) < 1.

Substituting back V (t), we obtain

Vt(0)
λμ

< g

(
V (0)

μ

)
,

where g is defined in (1.13). Hence,

Vt(0)
4
√

2

(
2(p + 1)
sc(p − 1)

(Cp,N )
N(p−1)+2b

2 +(p+1)

) 2
N(p−1)+2b

× (Cp,N )1+(p+1)( 2
N(p−1)+2b )

E[u0]
sc
N M [u0]

1
2+(p+1)( 1

N(p−1)+2b )
< g(θ),

with

θ =
(

2(p + 1)
sc(p − 1)

(Cp,N )
N(p−1)+2b

2 +(p+1)

) 4
N(p−1)+2b

× E[u0]
4

N(p−1)+2b

M [u0]
1+(p+1)( 2

N(p−1)+2b )
V (0).

This completes the proof of Theorem 1.15. �
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