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1. Introduction

Let Ω be a C1,1 bounded domain of R
n (n ≥ 2) with boundary Γ. Fix c =

(c0, c1, c) with c0 > 0, c1 > 0 and 0 ≤ c < λ1(Ω), where λ1(Ω) denotes the first
eigenvalue of the Laplace operator on Ω with Dirichlet boundary condition.

We denote by A (c, α), with α ≥ 0, the set of continuously differentiable
functions a : R → R satisfying the following two assumptions

|a(t)| ≤ c0 + c1|t|α for all t ∈ R, (1.1)

and

a′(t) ≥ −c for all t ∈ R. (1.2)

In the present article, the ball of a normed space X at center 0 with
radius M > 0 is denoted by BX(M). Also, cΩ denotes a generic constant only
depending on Ω.

Unless otherwise stated all the functions we use are assumed to real-
valued.

Consider the following non-homogenous semilinear boundary value prob-
lem {−Δu + a ◦ u = 0 in Ω,

u = f on Γ.
(1.3)

Henceforth we use the abbreviation BVP for boundary value problem.
For the formulation of our inverse problem, we need the well-posedness of the
BVP (1.3), which is stated as follows:

Theorem 1.1. Assume that α is arbitrary if n = 2 and α ≤ n/(n− 2) if n ≥ 3.
Let a ∈ A (c, α). Then, for any f ∈ H3/2(Γ), the BVP (1.3) has a unique
solution ua(f) ∈ H2(Ω). Furthermore,

‖ua(f)‖H2(Ω) ≤ C, for any f ∈ BH3/2(Γ)(M), (1.4)

where C = C(Ω,M, c, α) > 0 is a constant. That is f → ua(f) maps bounded
set of H3/2(Γ) into bounded set of H2(Ω).

An example of a function a fulfilling the assumptions in the above theorem
is the linear case a(t) = −kt with k < c, which models the time-harmonic
acoustic wave propagation at the wavenumber k > 0. The semilinear equation
also covers the Schrödinger equation.

Hereafter, the derivative in the direction of the unit exterior normal vector
field ν on Γ of a function u is denoted by ∂νu.

Theorem 1.2. (i) Assume that α is arbitrary if n = 2 and α ≤ 3 if n = 3. If
a ∈ A (c, α) then we can define the mapping

Λa : H3/2(Γ) → H1/2(Γ) : f �→ ∂νua(f).

Moreover, for arbitrarily given M > 0, we have

‖Λa(f)‖H1/2(Γ) ≤ C, for any f ∈ BH3/2(Γ)(M), (1.5)

where C = C(Ω,M, c, α) is a constant.
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(ii) Assume that n > 4. Let n/2 < p < n and α ≤ q/p with q = 2n/(n − 4).
If a ∈ A (c, α) then we can define

Λa : W 2−1/p,p(Γ) → ∂νua(f) ∈ W 1−1/p,p(Γ) : f �→ ∂νua(f).

Furthermore, for arbitrarily given M > 0, we have

‖Λa(f)‖W 1−1/p,p(Γ) ≤ C, for any f ∈ BW 2−1/p,p(Γ)(M). (1.6)

Here C = C(Ω,M, c, p, α) > 0 is a constant.
(iii) Assume that n = 4. Let 2 < p < 4, 1 ≤ r < 2, q = 2r/(2 − r) and

α ≤ q/p. If a ∈ A (c, α) then we can define

Λa : W 2−1/p,p(Γ) → W 1−1/p,p(Γ) : f �→ ∂νua(f).

Moreover, for any M > 0, we have

‖Λa(f)‖W 1−1/p,p(Γ) ≤ C, for any f ∈ BW 2−1/p,p(Γ)(M), (1.7)

where C = C(Ω,M, c, p, r, α) > 0 is a constant.

We call the (nonlinear) operator Λa in Theorem 1.2 the Dirichlet-to-
Neumann map associated to a.

We are concerned with the inverse problem of determining the nonlin-
ear term a from the corresponding Dirichlet-to-Neumann map Λa. The main
purpose is the stability issue.

For most of inverse problems, the solutions of the inverse problem do not
necessarily depend on data continuously by conventional choices of topologies
even if the uniqueness holds. It is often that if we suitably reduce an admissible
set of unknowns, then we can recover the stability for the inverse problem.

Thus we define Ã (c, α) as an admissible set of functions a ∈ A (c, α)
satisfying the additional condition: for any R > 0, there exists a constant κR

so that

|a′(u) − a′(v)| ≤ κR|u − v|, |u|, |v| ≤ R. (1.8)

Note that condition (1.8) means that the first derivative of a is Lipschitz
continuous on bounded sets of R. Also, we observe that the constant κR in
(1.8) may depend on a.

Within this class, we can linearize the inverse problem under considera-
tion. Precisely, we have the following proposition in which, for j = 0, 1,

Xj = H3/2−j(Γ) if n = 2, 3 and Xj = W 2−j−1/p,p(Γ) if n ≥ 4,

and the space

Y = B(X0,X1)

denotes the set of bounded linear operators mapping X0 into X1.
The proposition below states that the linearization of the Dirichlet-to-

Neumann map Λa is the Dirichlet-to-Neumann map of the linearized problem.
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Proposition 1.1. Under the assumptions and the notations of Theorem 1.2, if
a ∈ Ã (c, α), then Λa is Fréchet differentiable at any f ∈ X0 with Λ′

a(f)(h) =
∂νva,f (h), where h ∈ X0 and va,f (h) is the unique solution of the BVP{−Δv + a′ ◦ ua(f)v = 0 in Ω,

v = h on Γ.

Moreover, for any M > 0, we have

‖Λ′
a(f)‖Y ≤ C, for any f ∈ BX0(M).

Here the constant C > 0 is as Theorem 1.2.

Henceforward |Γ| denotes the Lebesgue measure of Γ.
The main result of this paper is the following theorem.

Theorem 1.3. Assume that n ≥ 3 and the assumptions of Theorem 1.2 hold for
a, ã ∈ Ã (c, α) satisfying a(0) = ã(0) and let β = 1/2 if n = 3 and β = 2−n/p
if n ≥ 4. Let 0 < s < min(1/2, β). Then

max
|λ|≤M

|a(λ) − ã(λ)| ≤ CMΨ

⎛
⎝ sup

‖f‖X 0≤
√

|Γ|M
‖Λ′

a(f) − Λ′
ã(f)‖Y

⎞
⎠ ,

where the constant CM = C is as in Theorem 1.2, and

Ψ(t) =
{ | ln t|−[2 min(1/2,s/n)β]/(n+2β) + t if t > 0,

0 if t = 0.

Theorem 1.3 immediately yields

Corollary 1.1. If a, ã ∈ Ã (c, α) satisfy a(0) = ã(0) and Λa = Λã then a = ã.

This corollary corresponds to the uniqueness result in [12] which considers
more general equations −Δu + a(x, u(x)) = 0.

Remark 1.1. (a) Consider the Fréchet space C(R) equipped with the family
of semi-norms (pj)j≥1:

pj(h) = max
|t|≤j

|h(t)|, h ∈ C(R).

Let C1
loc(X0,X1) be the vector space of Fréchet differentiable functions

Λ : X0 → X1

so that Λ and Λ′ are locally bounded. A natural topology on C1
loc(X0,X1) is

induced by the following family of semi-norms

qj(Λ) = sup
f∈BX 0 (j|Γ|)

(‖Λ(f)‖X1 + ‖Λ′(f)‖Y ) , Λ ∈ C1
loc(X0,X1).

We observe that the estimate in Theorem 1.3 can be rewritten in the form

pj(a − ã) ≤ CjΨ(qj(Λa − Λã)), j ≥ 1.

(b) A natural distance on Ã (c, α) is given by

d(a, ã) = sup
|t|≤1

|a(t) − ã(t)| + sup
|t|≥1

|t−α(a(t) − ã(t))|, a, ã ∈ Ã (c, α).
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One can then ask whether it is possible to prove a stability estimate when
Ã (c, α) is endowed with distance d. They are two obstructions to get such
kind of estimate. The first obstruction is due to the fact the natural space
of Dirichlet-to-Neumann maps (defined in (a)) is a locally convex metrizable
topological vector space which is not normable. The second obstruction comes
from the fact the local modulus of continuity in Theorem 1.3 is logarithmic.

It is worth mentioning that the proof of Theorem 1.3 can be adapted to
a partial Dirichlet-to-Neumann map of Λa. Here, with fixed compact subsets
Γ′,Γ′′ of Γ, a partial Dirichlet-to-Neumann map means a mapping

f ∈ {h ∈ H3/2(Γ); supp(h) ⊂ Γ′} → ∂νua(f)|Γ′′ ∈ H1/2(Γ′′).

A double logarithmic stability inequality for the linearized problem, with
a partial Dirichlet-to-Neumann map, was recently established by Caro, Dos
Santos Ferreira and Ruiz [1]. One can expect by [1] that Theorem 1.3 can be
extended with suitable partial Dirichlet-to-Neumann maps. We refer to [13] for
the first uniqueness result in determining semilinear terms by partial Cauchy
data on arbitrary subboundary.

Uniqueness results for recovering semilinear terms from full Cauchy data
were obtained by Isakov and Sylvester [12] in three dimensions and by Isakov
and Nachman [11] in two dimensions. These results apply to nonlinearities of
the form a = a(x, u). For the sake of simplicity we only consider here the
case a = a(u). However we can expect that Theorem 1.3 can be extended to
cover completely the uniqueness result in [12], possibly under some additional
conditions.

We point out that the uniqueness results for smooth semilinear terms
using partial data in R

n (n ≥ 2) were contained in the recent papers by
Krupchyk and Uhlmann [15], and Lassas, Liimatainen, Lin and Salo [18]. These
two references make use of higher order linearization procedure and contain a
detailed overview of semilinear elliptic inverse problems together with a rich
list of references. Without being exhaustive, we refer to [13,14,17,20,22,23]
for other results concerning the unique determination of the nonlinear term
in semilinear and quasilinear elliptic BVP’s from boundary measurements.
Similar inverse problem was studied in [10] for a semilinear parabolic equation
and in [2] for a quasilinear parabolic equation. Inverse problems for hyperbolic
equations with various type of nonlinearities were considered in [3,9,16,24].

To our knowledge there are few stability results for the problem of de-
termining the nonlinear term, appearing in partial differential equations, from
boundary measurements. The determination of the nonlinear term in a semi-
linear parabolic equation, from the corresponding Dirichlet-to-Neumann map,
was studied by the first author and Kian [5]. In [5] the authors establish a
logarithmic stability estimate. A stability inequality of the determination of a
nonlinear term in a parabolic equation from a single measurement was proved
by the first and third authors and Ouhabaz in [6].

The rest of this article is organized as follows. In Sect. 2 we give the proof
of Theorem 1.1 and in Sect. 3 we prove Theorem 1.2. Section 4 is devoted to
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establish a stability estimate for the linearized inverse problem. In Sect. 5, we
give the proof of Proposition 1.1 and Theorem 1.3 on the basis of Sect. 4.

2. Analysis of the semilinear BVP

Prior to introducing the definition of variational solution of the BVP (1.3), we
prove the following lemma.

Lemma 2.1. Assume that α is arbitrary if n = 2 and α ≤ (n + 2)/(n − 2) if
n ≥ 3. Let a ∈ A (c, α) and ϕ ∈ Lαq∗

(Ω), where q∗ = 2n/(n + 2) denotes the
conjugate component of q = 2n/(n − 2). Then the linear form on H1

0 (Ω) given
by

�(φ) =
∫

Ω

a(ϕ(x))φ(x)dx, φ ∈ H1
0 (Ω),

is bounded with

‖�‖H−1(Ω) ≤ C(1 + Mα), for any ϕ ∈ BLαq∗ (M), (2.1)

where C = C(Ω, c0, c1, α) > 0 is a constant.

Proof. Consider first the case n ≥ 3. In that case H1
0 (Ω) is continuously em-

bedded in Lq(Ω) with q = 2n/(n − 2). We have in light of (1.1)∣∣∣∣
∫

Ω

a(ϕ(x))φ(x)dx

∣∣∣∣ ≤ c0

∫
Ω

|φ|dx + c1

∫
Ω

|ϕ|α|φ|dx.

Applying Hölder’s inequality, we have
∫

Ω

|ϕ|α||φ|dx ≤
(∫

Ω

|ϕ|αq∗
dx

)1/q∗ (∫
|φ|qdx

)1/q

.

Hence ∣∣∣∣
∫

Ω

a(ϕ(x))φ(x)dx

∣∣∣∣ ≤ c0‖φ‖L1(Ω) + c1‖ϕ‖α
Lαq∗ (Ω)‖φ‖Lq(Ω) (2.2)

≤ cΩ

(
c0 + c1‖ϕ‖α

Lαq∗ (Ω)

)
‖φ‖H1

0 (Ω)

≤ cΩ(c0 + c1M
α)‖φ‖H1

0 (Ω),

where we used that H1
0 (Ω) is continuously embedded in Lr(Ω) for any r ∈ [1, q].

Taking the supremum over φ ∈ BH1
0 (Ω)(1) in both sides of (2.2) in order to

obtain (2.1).
The case n = 2 can be carried out similarly by using that H1

0 (Ω) is
continuously embedded in Lr(Ω) for any r ≥ 1. �

Let f ∈ H1/2(Γ). We say that u ∈ H1(Ω) is a variational solution of the
BVP (1.3) if u|Γ = f (in the trace sense) and∫

Ω

∇u(x) · ∇φ(x)dx +
∫

Ω

a(u(x))φ(x)dx = 0, φ ∈ H1
0 (Ω).
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For f ∈ H1/2(Ω), let E f ∈ H1(Ω) be its harmonic extension. That is,
v = E f is the unique solution of the BVP{−Δv = 0 in Ω,

v = f on Γ.

Assume that we can find w ∈ H1
0 (Ω) satisfying∫

Ω

∇w(x) · ∇φ(x) = −
∫

Ω

a(w(x) + v(x))φ(x)dx, for any φ ∈ H1
0 (Ω),

(2.3)

An integration by parts yields

0 =
∫

Ω

Δv(x)φ(x)dx = −
∫

Ω

∇v(x) · ∇φ(x)dx, for any φ ∈ C∞
0 (Ω).

Since H1
0 (Ω) is the closure of C∞

0 (Ω) in H1(Ω), we deduce that∫
Ω

∇v(x) · ∇φ(x)dx = 0, for any φ ∈ H1
0 (Ω).

We then obtain in light of (2.3)∫
Ω

∇(w(x) + v(x)) · ∇φ(x) = −
∫

Ω

a(w(x) + v(x))φ(x)dx, for any φ ∈ H1
0 (Ω).

In other words, u = w + v is a variational solution of (1.3).

Theorem 2.1. Assume that α is arbitrary if n = 2 and α < (n + 2)/(n − 2) if
n ≥ 3. Let a ∈ A (c, α) and f ∈ H1/2(Γ). Then the BVP (1.3) has a unique
variational solution ua(f) ∈ H1(Ω). Moreover, for any M > 0, we have

‖ua(f)‖H1(Ω) ≤ C(1 + Mα), for any f ∈ BH1/2(Γ)(M), (2.4)

where C = C(Ω, c, α) > 0 is a constant.

Proof. In light of the previous discussion, it is enough to prove that (2.3) has
a solution w ∈ H1

0 (Ω) and (2.4) holds with ua(f) substituted by w.
Fix w ∈ Lαq∗

(Ω) and consider the variational problem: find ψ ∈ H1
0 (Ω)

satisfying∫
Ω

∇ψ(x) · ∇φ(x) = −
∫
Ω

a(w(x) + v(x))φ(x)dx, for any φ ∈ H1
0 (Ω). (2.5)

From Lemma 2.1 it follows that

� : φ �→ �(φ) = −
∫

Ω

a(w(x) + v(x))φ(x)dx

defines a bounded linear form on H1
0 (Ω). Then Lax-Milgram’s lemma, which

we apply to the functional on the left-hand side, guarantees that (2.5) has a
unique solution ψ ∈ H1

0 (Ω).
Let q = 2n/(n − 2) and q∗ = 2n/(n + 2) be its conjugate exponent to q

and define

T : Lαq∗
(Ω) → Lαq∗

(Ω) : w �→ Tw = ψ,

where ψ ∈ H1
0 (Ω) is the unique solution of the variational problem (2.5).
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Assume that H1
0 (Ω) is endowed with the norm ‖∇h‖L2(Ω). We obtain by

taking φ = ψ in (2.5)

‖ψ‖H1
0 (Ω) ≤ ‖�‖H−1(Ω).

This and inequality (2.1) in Lemma 2.1 yield

‖Tw‖H1
0 (Ω) = ‖ψ‖H1

0 (Ω) ≤ C(1 + Mα), for any w ∈ BLαq∗ (Ω)(M),

where C = C(Ω, c, α) > 0 is a constant. That is, T maps each bounded
set of Lαq∗

(Ω) into a bounded set in H1
0 (Ω). Hence, according to Rellich-

Kondrachov’s theorem, H1
0 (Ω) is compactly embedded in Lαq∗

(Ω). Therefore,
T is a compact operator.

We are now going to show, with the help of Leray-Schauder’s fixed point
theorem, that T has a fixed point. The crucial step consists in proving that
the set

K = {w ∈ Lαq∗
(Ω); there exists μ ∈ [0, 1] so that w = μTw}

is bounded in Lαq∗
(Ω).

Pick w ∈ K and let μ ∈ [0, 1] so that w = μTw. According to the
definition of T , w (∈ H1

0 (Ω)) satisfies∫
Ω

|∇w(x)|2dx = −μ

∫
Ω

a(w(x) + v(x))w(x)dx. (2.6)

On the other hand, we have, for almost everywhere x ∈ Ω,

a(w(x) + v(x)) = a(v(x)) +
∫ 1

0

a′(sw(x) + v(x))w(x)ds.

This in (2.6) yields
∫

Ω

|∇w(x)|2dx = −µ

∫
Ω

a(v(x))w(x)dx − µ

∫
Ω

(∫ 1

0

a′(sw(x) + v(x))ds

)
w(x)2dx.

In light of assumption (1.2) we obtain∫
Ω

|∇w(x)|2dx ≤ −μ

∫
Ω

a(v(x))w(x)dx + c

∫
Ω

w(x)2dx

which combined with Poincaré’s inequality gives∫
Ω

|∇w(x)|2dx ≤ −μ

∫
Ω

a(v(x))w(x)dx + cλ1(Ω)−1

∫
Ω

|∇w(x)|2dx.

Or equivalently

(1 − cλ1(Ω)−1)
∫

Ω

|∇w(x)|2dx ≤ −μ

∫
Ω

a(v(x))w(x)dx.

We then apply again Lemma 2.1 in order to obtain

‖w‖Lαq∗ (Ω) ≤ C0‖w‖H1
0 (Ω) ≤ C(1+Mα), (2.7)

for any w ∈ K and f ∈ BH1/2(Γ)(M),

where C0 = C0(Ω, α) > 0 and C = C(Ω, c, α) > 0 are constants.
In light of this inequality we can apply [7, Theorem 11.3, p. 280] to deduce

that there exists w∗ ∈ H1
0 (Ω) so that w∗ = Tw∗. That is w∗ is the solution of
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the variational problem (1.3). Furthermore, for any f ∈ BH1/2(Γ)(M), we have
from (2.7)

‖w∗‖H1
0 (Ω) ≤ C(1 + Mα),

where C = C(Ω, c, α) > 0 is a constant.
We complete the proof by showing that (1.3) has at most one solution.

To this end, let u, ũ ∈ H1
0 (Ω) be two solutions of (1.3) and set v = u − ũ.

Taking into account that, for almost everywhere x ∈ Ω, we have

a(u(x)) − a(ũ(x)) = b(x)v(x),

with

b(x) =
∫ 1

0

a′(x, ũ(x) + s(u(x) − ũ(x)))ds,

we find that v is the solution of the BVP{−Δv + bv = 0 in Ω,
v = 0 on Γ.

Green’s formula then yields∫
Ω

|∇v(x)|2dx +
∫

Ω

b(x)v(x)2dx = 0.

Hence∫
Ω

|∇v(x)|2dx = −
∫

Ω

b(x)v(x)2dx ≤ c

∫
Ω

v(x)2dx ≤ cλ1(Ω)−1

∫
Ω

|∇v(x)|2dx.

By assumption cλ1(Ω)−1 < 1, we reach v = 0. �
Theorem 1.1 will then follow from the following lemma.

Lemma 2.2. Assume that α is arbitrary if n = 2 and α ≤ n/(n − 2) if n ≥ 3.
Let a ∈ A (c, α) and f ∈ H3/2(Γ). Then ua(f) ∈ H2(Ω) and

‖ua(f)‖H2(Ω) ≤ C(1 + M + Mα), for any f ∈ BH3/2(Γ)(M), (2.8)

where C = C(Ω, c, α) > 0 is a constant.

Proof. In this proof C = C(Ω, c, α) > 0 is a generic constant.
Consider the case n ≥ 3. By (1.1) we have, for almost everywhere x ∈ Ω,

[a ◦ ua(f)(x)]2 ≤ 2c2
0 + 2c2

1|ua(f)(x)|2α.

Using that 2α ≤ 2n/(n − 2) and H1(Ω) is continuously embedded in L2α(Ω),
we deduce that a ◦ ua(f) ∈ L2(Ω) and from (2.4), we obtain

‖a ◦ ua(f)‖L2(Ω) ≤ C(1 + Mα). (2.9)

From the elliptic regularity (e.g., [19, Theorem 5.4, p. 165]), we deduce that
ua(f) ∈ H2(Ω) and

‖ua(f)‖H2(Ω) ≤ cΩ

(‖f‖H3/2(Γ) + ‖a ◦ ua(f)‖L2(Ω)

)
. (2.10)

Thus, inequalities (2.9) and (2.10) yield (2.8) in a straightforward man-
ner.

The case n = 2 can be treated similarly using that H1(Ω) is continuously
embedded in Lr(Ω) for any r ≥ 1. �
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3. Dirichlet-to-Neumann map

We first observe that by the help of Theorem 2.1 and Lemma 2.2 we can define
the Dirichlet-to-Neumann map associated to a ∈ A (c, α). Precisely we have
the following corollary.

Corollary 3.1. Assume that α is arbitrary if n = 2 and α ≤ n/(n−2) if n ≥ 3.
For any a ∈ A (c, α) and j = 0, 1, we can define the mapping

Λa : Hj+1/2(Γ) → Hj−1/2(Γ) : f �→ ∂νua(f).

Moreover, for any M > 0,

‖Λa(f)‖Hj−1/2(Γ) ≤ C(1 + M + Mα), for any f ∈ BHj+1/2(Γ)(M) (3.1)

where C = C(Ω, c, α) is a constant.

We recall that C0,θ(Ω), 0 < θ ≤ 1, is the usual vector space of func-
tions that are Hölder continuous on Ω with exponent θ. This space is usually
endowed with its natural norm

‖w‖C0,θ(Ω) = ‖w‖C(Ω) + sup
x,y∈Ω, x 	=y

|w(x) − w(y)|
|x − y|θ .

Taking into account that H2(Ω) is continuously embedded in C0,1/2(Ω),
for n = 2, 3, in view of Lemma 2.2 we obtain:

Corollary 3.2. Assume that α is arbitrary if n = 2 and α ≤ 3 if n = 3. Let
a ∈ A (c, α), M > 0 and f ∈ BH3/2(Γ)(M). Then ua(f) ∈ C0,1/2(Ω) and

‖ua(f)‖C0,1/2(Ω) ≤ C(1 + M + Mα), (3.2)

where C = C(Ω, c, α) > 0 is a constant.

Lemma 3.1. (i) Assume that n > 4, n/2 < p < n and α ≤ q/p with q =
2n/(n − 4). Let a ∈ A (c, α), M > 0 and f ∈ BW 2−1/p,p(Γ)(M). Then
ua(f) ∈ W 2,p(Ω) ∩ C0,β(Ω), with β = 2 − n/p, and

‖ua(f)‖W 2,p(Ω) + ‖ua(f)‖C0,β(Ω) ≤ C(1 + M + Mα), (3.3)

where C = C(Ω, c, α, p) is a constant.
(ii) Assume that n = 4, 2 < p < 4, 1 ≤ r < 2, q = 2r/(2−r) and α ≤ q/p. Let

a ∈ A (c, α), M > 0 and f ∈ BW 2−1/p,p(Γ)(M). Then ua(f) ∈ W 2,p(Ω) ∩
C0,β(Ω), with β = 2 − 4/p, and

‖ua(f)‖W 2,p(Ω) + ‖ua(f)‖C0,β(Ω) ≤ C(1 + M + Mα), (3.4)

where C = C(Ω, c, α, p, r) > 0 is a constant.

Proof. (i) In this part C = C(Ω, c, α, p) > 0 is a generic constant.
Noting that q/p < n/(n − 2), we obtain from Lemma 2.2 that

ua(f) ∈ H2(Ω) and, since H2(Ω) is continuously embedded in Lq(Ω)
with q = 2n/(n−4), ua(f) ∈ Lq(Ω). Consequently, using (1.1), (2.8) and
the assumption on α, we obtain a ◦ ua(f) ∈ Lp(Ω) and

‖a ◦ ua(f)‖Lp(Ω) ≤ C(1 + M + Mα). (3.5)



NoDEA Stability estimate for a semilinear elliptic inverse problem Page 11 of 26 37

We obtain by applying [7, Theorem 9.15, p. 241] that ua(f) ∈ W 2,p(Ω)
and, since W 2,p(Ω) is continuously embedded in C0,β(Ω), we conclude
that ua(f) ∈ C0,β(Ω).

A combination of [7, (9.46), p. 242] and (3.5) yields in straightfor-
ward manner

‖ua(f)‖W 2,p(Ω) ≤ C(1 + M + Mα).

Hence (3.3) follows.
(ii) Let n = 4 and 1 ≤ r < 2. As q/p < 2, we obtain from Lemma 2.2

that ua(f) ∈ H2(Ω). Since H2(Ω) is continuously embedded in W 2,r(Ω)
and W 2,r(Ω) is continuously embedded in Lq(Ω) with q = 2r/(2 − r),
we conclude that H2(Ω) is continuously embedded in Lq(Ω). Hence, if
αp ≤ q, for some 2 < p < 4, then u ◦ ua(f) is in Lp(Ω). The rest of the
proof is quite similar to that of (i). �

We end this section by noting that Theorem 1.2 follows readily from
Corollary 3.2 and Lemma 3.1.

4. Linearized inverse problem

Some parts of this section are borrowed from [4]. The main novelty of the re-
sults in this section consists in constructing complex geometric optic solutions
in W 2,r(Ω) for any r ∈ [2,∞).

All functions we consider in this section are assumed to be complex-
valued.

Fix ξ ∈ S
n, q ∈ L∞(Ω) and, for h > 0, consider the operator

Ph = Ph(q, ξ) = ex·ξ/hh2(−Δ + q)e−x·ξ/h.

Clearly we can write Ph in the form

Ph = −h2Δ + 2hξ · ∇ − 1 + h2q.

Lemma 4.1. (Carleman inequality) Let M > 0. Then there exists a constant
cΩ > 0 so that, for any q ∈ BL∞(Ω)(M), 0 < h < h0 = cΩ/(2M) and u ∈
C∞

0 (Ω), we have

h‖u‖L2(Ω) ≤ 2c−1
Ω ‖Phu‖L2(Ω). (4.1)

Proof. Let P 0
h = Ph(0, ξ). For u ∈ C∞

0 (Ω), we have

‖P 0
hu‖2

L2(Ω) = ‖(h2Δ + 1)u‖2
L2(Ω) (4.2)

− 4h�((h2Δ + 1)u, ξ · ∇u)L2(Ω) + h2‖ξ · ∇u‖2
L2(Ω).

Simple integrations by parts yields

�((h2Δ + 1)u, ξ · ∇u)L2(Ω) = 0.

This in (4.2) gives

‖P 0
hu‖2

L2(Ω) ≥ h2‖ξ · ∇u‖2
L2(Ω). (4.3)
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From Poincaré’s inequality and its proof, we have

‖ξ · ∇u‖2
L2(Ω) ≥ cΩ‖u‖L2(Ω).

This and (4.3) imply

‖P 0
hu‖L2(Ω) ≥ cΩh‖u‖L2(Ω). (4.4)

Pick q ∈ BL∞(Ω)(M). Since

‖P 0
h‖L2(Ω) ≤ ‖Phu‖L2(Ω) + h2M‖u‖L2(Ω),

we obtain from (4.6)

cΩh‖u‖L2(Ω) ≤ ‖Phu‖L2(Ω) + h2M‖u‖L2(Ω).

This inequality yields (4.1) in a straightforward manner. �

Proposition 4.1. Let M > 0. There exists a constant cΩ > 0 so that, for any
q ∈ BL∞(Ω)(M) and 0 < h < h0 = cΩ/(2M), we find w ∈ L2(Ω) satisfying[

ex·ξ/h(−Δ + q)e−x·ξ/h
]
w = f

and

‖w‖L2(Ω) ≤ 2c−1
Ω h‖f‖L2(Ω). (4.5)

Proof. Pick q ∈ BL∞(Ω)(M) and ξ ∈ S
n−1. Let H = P ∗

h (C∞
0 (Ω)) that we

consider as a subspace of L2(Ω). We observe that if Ph = Ph(q, ξ) then P ∗
h =

Ph(q,−ξ). Therefore inequality (4.1) holds when Ph is substituted by P ∗
h .

Let f ∈ L2(Ω) and define on H the linear form

�(P ∗
hv) = (v, h2f)L2(Ω), v ∈ C∞

0 (Ω).

From Lemma 4.1, � is bounded with

|�(P ∗
hv)| ≤ h2‖f‖L2(Ω)‖v‖L2(Ω) ≤ 2c−1

Ω h‖f‖L2(Ω)‖P ∗
hv‖L2(Ω).

Hence, according to the Hahn-Banach extension theorem, there exists a linear
form L extending � to L2(Ω) so that ‖L‖[L2(Ω)]′ = ‖�‖H . In consequence

‖L‖[L2(Ω)]′ ≤ 2c−1
Ω h‖f‖L2(Ω). (4.6)

Applying Riesz’s representation theorem, we find w ∈ L2(Ω) such that

‖w‖L2(Ω) = ‖L‖[L2(Ω)]′ (4.7)

and

(P ∗
hv, w)L2(Ω) = L(P ∗

hv) = �(P ∗
hv) = (v, h2f)L2(Ω), v ∈ C∞

0 (Ω).

Hence [
ex·ξ/h(−Δ + q)e−x·ξ/h

]
w = f.

We complete the proof by noting that (4.5) is obtained by combining (4.6) and
(4.7). �
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Proposition 4.2. Let O � Ω, M > 0, q ∈ BL∞(Ω)(M) and u ∈ L2(O) satisfy-
ing

(−Δ + qχΩ)u = 0 in D ′(O).

(i) We have u ∈ H1
loc(O) and, for any Ω � Ω1 � Ω2 � O, we have the

following interior Caccioppoli type inequality

‖u‖H1(Ω1) ≤ C(1 + M)‖u‖L2(Ω2),

where C = C(Ω,O, d) > 0 is a constant with d = dist(Ω1, ∂Ω2).
(ii) We have u ∈ W 2,r

loc (O) for any 1 < r < ∞,

‖u‖W 2,r(Ω) ≤ C(1 + M)2‖u‖L2(O),

where C = C(Ω,O, r) > 0 is a constant.

Proof. Fix φ ∈ C∞
0 (O). Then v = φu is the solution of the BVP{−Δv = −qχΩφu − 2∇u · ∇φ − Δφu in O,

v = 0 on ∂O.

Since

−qχΩφu − 2∇u · ∇φ − Δφu ∈ H−1(O),

we obtain φu ∈ H1
0 (O).

Next, pick ψ ∈ C∞
0 (Ω2) satisfying 0 ≤ ψ ≤ 1, ψ = 1 in a neighborhood of

Ω1 and |∇ψ| ≤ κ, where κ > 0 is a constant only depending on dist(Ω1, ∂Ω2).
Let (vk) be a sequence in C∞

0 (Ω2) converging to ψ2u in H1(Ω2). We pass to
the limit in the identity∫

Ω2

∇u · ∇vkdx +
∫

Ω2

quvkdx = 0

in order to obtain∫
Ω2

∇u · ∇(ψ2u)dx +
∫

Ω2

qψ2|u|2dx = 0.

Hence ∫
Ω2

|ψ∇u|2dx = −2
∫

Ω2

ψ∇u · u∇ψ −
∫

Ω2

qψ2|u|2dx. (4.8)

For any ε > 0, we have

|ψ∇u · u∇ψ| ≤ (ε/2)|ψ∇u|2 + (1/(2ε))|u|2|∇ψ|2.
The particular choice ε = 1/2 yields

|ψ∇u · u∇ψ| ≤ (1/4)|ψ∇u|2 + |u|2|∇ψ|2.
This inequality together with (4.8) give∫

Ω1

|∇u|2dx ≤
∫

Ω2

|ψ∇u|2dx ≤ 2(M + κ2)
∫

Ω2

|u|2dx.
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(ii) Let Ω � Ω1 � Ω′ � Ω2 � O be subdomains. Let ψ ∈ C∞
0 (Ω′) satisfying

0 ≤ ψ ≤ 1, ψ = 1 in a neighborhood of Ω1. Then ψu is the solution of the
BVP {−Δ(ψu) = −qχΩu − 2∇u · ∇ψ − Δψu in Ω′,

u = 0 on ∂Ω′.

From H2 interior estimates (see for instance [21, Section 8.5]) u = ψu ∈
H2(Ω1) and there exists a constant cΩ > 0 so that

‖u‖H2(Ω1) ≤ cΩ‖qχΩu + 2∇u · ∇ψ + Δψu‖L2(Ω′).

Hence

‖u‖H2(Ω1) ≤ C(1 + M)‖u‖H1(Ω′),

where C = C(Ω,O,Ω1,Ω′) > 0 is a constant.
This inequality combined with (i) yields

‖u‖H2(Ω1) ≤ C(1 + M)‖u‖L2(Ω2),

where C = C(Ω,O,Ω1,Ω′,Ω2) > 0 is a constant.
Assume n > 2 and set r0 = (2n)/(n − 2). As H1(Ω′) is continuously

embedded in Lr(Ω′) for r ∈ [1, r0], we have

−qχΩu − 2∇u · ∇ψ − Δψu ∈ Lr(Ω′),

We then obtain by applying [7, Theorem 9.15, p. 241] that u ∈ W 2,r(Ω).
Furthermore, [7, Lemma 9.17, p. 242] gives

‖u‖W 2,r(Ω1) ≤ C‖qχΩu + 2∇u · ∇ψ + Δψu‖Lr(Ω′)

≤ C(1 + M)‖u‖H2(Ω′)

≤ C(1 + M)2‖u‖L2(Ω2),

where C = C(Ω,O,Ω1,Ω′,Ω2) > 0 is a constant.
If r0 < n, we set r1 = (nr0)/(n − r0) and we repeat the preceding step

where r0 is substituted by r1. We obtain that u ∈ W 2,r(Ω1) for r ∈ [1, r1] and

‖u‖W 2,r(Ω1) ≤ C(1 + M)2‖u‖L2(Ω2).

If r0 < n and r1 < n, r2 given by r2 = (nr1)/(n − r1) satisfies

r2 = r1 +
r2
1

n − r1
≥ r0 + 2

r2
0

n − r0
,

where we used that the mapping t ∈ [0, n[�→ t2/(n − t) is increasing. By
induction in k ≥ 1, if rj < n for 0 ≤ j ≤ k we set rk+1 = (nrk)/(n − rk). In
that case we have

rk+1 ≥ r0 + (k + 1)
r2
0

n − r0
.

Since the right hand side of this inequality tends to ∞ when k goes to ∞, we
find a non negative integer kn so that rj < n if 0 ≤ j ≤ kn − 1 and rkn

≥ n.
We repeat the preceding arguments from r0 until rkn−1. We obtain u ∈

W 2,r(Ω1) with r ∈ [1, rkn−1]. If rkn
> n, we complete the proof since W 1,rkn (Ω)
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is continuously embedded in L∞(Ω). Otherwise rkn+1 > n and we end up get-
ting the expected result by a last step. �

Theorem 4.1. Let M > 0 and 1 < r < ∞. Then there exist C = C(Ω, r),
cΩ > 0, κ = κ(Ω) so that, for any q ∈ BL∞(Ω)(M), ξ, ζ ∈ S

n−1 satisfying ξ⊥ζ
and 0 < h ≤ h0 = cΩ/(2M), the equation

(−Δ + q)u = 0 in Ω

admits a solution u ∈ W 2,r(Ω) of the form

u = e−x·(ξ+iζ)/h(1 + v),

where v ∈ W 2,r(Ω) satisfies

‖v‖L2(Ω) ≤ 2c−1
Ω h.

Moreover, we have

‖u‖W 2,r(Ω) ≤ C(1 + M)2eκ/h.

Proof. Fix O � Ω arbitrary. We first consider the equation

(−Δ + qχΩ)u = 0 in O. (4.9)

If u = e−x·(ξ+iζ)/h(1 + v) then v should verify[
ex·ξ/h(−Δ + qχΩ)e−x·ξ/h

] (
e−ix·ζ/hv

)

= −
[
ex·ξ/h(−Δ + q)e−x·ξ/h

] (
e−ix·ζ/h

)
= −qχΩe−ix·ζ/h.

By Proposition 4.1, with Ω and q substituted respectively by O and qχΩ, we
find w ∈ L2(O) so that[

ex·ξ/h(−Δ + qχΩ)e−x·ξ/h
]
w = −qχΩe−ix·ζ/h

and

‖w‖L2O) ≤ 2c−1
Ω h.

Let v = eix·ζ/hw. Then

‖v‖L2(O) ≤ 2c−1
Ω h

and u = e−x·(ξ+iζ)/h(1 + v) is a solution of (4.9). Furthermore, we apply
Proposition 4.2 in order to obtain

‖u‖W 2,r(Ω) ≤ C(1 + M)‖e−x·(ξ+iζ)/h(1 + v)‖L2(O)

≤ C(1 + M)eκ/h.

This completes the proof. �

When q ∈ L∞(Ω) satisfies q ≥ −c almost everywhere, we can easily verify,
with the help of Poincaré’s inequality, that 0 does not belong to the spectrum
of −Δ + q under Dirichlet boundary condition. For notational convenience we
set

Qc = {q ∈ L∞(Ω); q ≥ −c almost everywhere}.
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Theorem 4.2. Let M > 0 and 2 ≤ r < ∞. For any q ∈ Qc ∩ BL∞(Ω)(M) and
f ∈ W 2−1/r,r(Γ), the BVP

{
(−Δ + q)u = 0 in Ω,
u = f on Γ.

(4.10)

admits a unique solution uq(f) ∈ W 2,r(Ω). Furthermore

‖uq(f)‖W 2,r(Ω) ≤ C(1 + M)‖f‖W 2−1/r,r(Γ), (4.11)

where C = C(Ω, c, r) > 0 is a constant.

Sketch of the proof. Let 2 ≤ r ≤ ∞, f ∈ W 2−1/r,r(Γ) and pick F ∈ W 2,r(Ω)
so that F = f on Γ and ‖F‖W 2,r(Ω) ≤ 2‖f‖W 2−1/r,r(Γ). If u is a solution of
(4.10) then v = u − F must be a solution of the BVP

{
(−Δ + q)v = g := ΔF − qF in Ω,
v = 0 on Γ.

(4.12)

According to [21, Sections 8.5 and 8.6], the BVP (4.12) has a unique solution
v ∈ H2(Ω) so that

‖v‖H2(Ω) ≤ cΩ

(‖qu‖L2(Ω) + ‖g‖L2(Ω)

)
(4.13)

≤ C
(‖qu‖L2(Ω) + ‖g‖Lr(Ω)

)
≤ C(1 + M)

(‖u‖L2(Ω) + ‖f‖W 2−1/r,r(Γ)

)
,

where C = C(Ω, c, r) > 0 is a constant.
On the other hand from (4.12) we obtain

∫
Ω

|∇u|2dx = −
∫

Ω

q|u|2dx +
∫

Ω

gvdx

≤ c

∫
Ω

|u|2dx + ‖g‖L2(Ω)‖u‖L2(Ω).

From Poincaré’s inequality

λ1(Ω)
∫

Ω

|u|2dx ≤
∫

Ω

|∇u|2dx.

Hence

‖u‖L2(Ω) ≤ (λ1(Ω) − c)−1‖g‖L2(Ω).

This in (4.13) gives

‖v‖H2(Ω) ≤ C(1 + M)‖f‖W 2−1/r,r(Γ).

Here and henceforward C = C(Ω, c, r) > 0 is a generic constant.
As in Proposition 4.2 we discuss separately cases n = 2, 3, n = 4 and

n > 4. If n > 4, we know that H2(Ω) is continuously embedded in Ls(Ω) for
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s ∈ [2, (2n)/(n − 4)]. We then apply [21, Theorem 9.15 p. 241 and Theorem
9.17 p. 242]. We conclude that v ∈ W 2,s(Ω) with

‖v‖W 2,s(Ω) ≤ C‖ − qv + g‖Ls(Ω)

≤ C(‖v‖Ls(Ω) + ‖g‖Lr(Ω))

≤ C(‖v‖H2(Ω) + ‖g‖Lr(Ω))

≤ C(1 + M)‖f‖W 2−1/r,r(Γ).

The rest of the proof is quite similar to that Proposition 4.2. That is based on
the iterated W 2,s regularity and the corresponding a priori estimate. Finally,
once we proved

‖v‖W 2,r(Ω) ≤ C(1 + M)‖f‖W 2−1/r,r(Γ),

we end up getting the expected inequality by noting that

‖u‖W 2,r(Ω) ≤ ‖v‖W 2,r(Ω) + ‖F‖W 2,r(Ω).

The proof in then complete. �
In light of Theorem 4.2, we can define the Dirichlet-to-Neumann map

associated to r ∈ [2,∞) and q ∈ Qc as follows

Λr
q : f ∈ W 2−1/r,r(Γ) �→ ∂νuq(f) ∈ W 1−1/r,r(Γ).

Additionally, estimate (4.11) yields

‖Λr
q‖ ≤ C(1 + M), for any q ∈ Qc ∩ BL∞(Ω)(M),

where C = C(Ω, c, r) > 0 is a constant and ‖Λr
q‖ denotes the norm of Λr

q in
B(W 2−1/r,r(Γ),W 1−1/r,r(Γ)).

We also define, for q ∈ Qc and r ∈ [2,∞),

S r
q = {u ∈ W 2,r(Ω); (−Δ + q)u = 0 in Ω}.

Lemma 4.2. (Integral identity) For r ∈ [2,∞), q, q̃ ∈ Qc, u ∈ S r
q and ũ ∈ S r

q̃ ,
we have ∫

Ω

(q̃ − q)uũdx =
∫

Γ

(Λr
q̃ − Λr

q)(u|Γ)ũdσ(x). (4.14)

Proof. Let v = uq̃(u|Γ). We obtain by applying Green’s formula∫
Γ

∂ν(u − v)ũdσ(x) =
∫

Ω

(qu − q̃v)ũdx +
∫

Ω

∇(u − v) · ∇ũdx (4.15)

and

0 =
∫

Γ

∂ν ũ(u − v)dσ(x) =
∫

Ω

q̃ũ(u − v)dx +
∫

Ω

∇ũ · ∇(u − v)dx. (4.16)

Identity (4.16) yields∫
Ω

∇ũ · ∇(u − v)dx = −
∫

Ω

q̃ũ(u − v)dx.

This inequality in (4.15) gives∫
Γ

∂ν(u − v)ũdσ(x) =
∫

Ω

(q − q̃)uũdx.
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We end up getting the expected identity because∫
Γ

∂ν(u − v)ũdσ(x) =
∫

Γ

(Λr
q̃ − Λr

q)(u|Γ)ũdσ(x).

�

The following observation will be useful in the sequel: if w ∈ Ht(Ω),
0 < t < 1/2, then wχΩ ∈ Ht(Rn) (see [8, p. 31]).

Theorem 4.3. Let M > 0, r ∈ [2,∞) and 0 < s < 1/2 and assume that n ≥ 3.
Then there exist two constants C = C(Ω, r, s) > 0 and ρ0 = ρ0(Ω,M) so that,
for any q, q̃ ∈ BHs(Ω)∩L∞(Ω)(M) ∩ Qc, we have

C‖q − q̃‖L2(Ω) ≤ 1/ργ + D(1 + M)4eκρ, ρ ≥ ρ0.

with γ = min(1/2, s/n) and

D = ‖Λr
q − Λr

q̃‖B(W 2−1/r,r(Γ),W 1−1/r,r(Γ)).

Proof. Pick q, q̃ ∈ BHs(Ω)∩L∞(Ω)(M) ∩ Qc. Let k, k̃ ∈ R
n \ {0} and ξ ∈ S

n−1

so that k⊥k̃, k⊥ξ and k̃⊥ξ (this is possible because n ≥ 3). We assume that
|k̃| = ρ with ρ ≥ ρ0 = h−1

0 where h0 is as Theorem 4.1. Let then

h = h(ρ) =
1

(|k|2/4 + ρ2)1/2
(≤ h0).

Set

ζ = h(k/2 + k̃), ζ̃ = h(k/2 − k̃)

As we have seen in the proof of Theorem 4.1, ζ, ζ̃ ∈ S
n−1, ζ⊥ξ, ζ̃⊥ξ and

ζ + ζ̃ = hk.
By Theorem 4.1, the equation

(−Δ + q)u = 0 in Ω

admits a solution u ∈ W 2,r(Ω) of the form

u = e−x·(ξ+iζ)/h(1 + v)

so that, for some constants C = C(Ω, r) > 0 and κ = κ(Ω),

‖v‖L2(Ω) ≤ Ch (4.17)

and

‖u‖W 2,r(Ω) ≤ C(1 + M)2eκ/h. (4.18)

Similarly, the equation

(−Δ + q̃)u = 0 in Ω

admits a solution ũ ∈ W 2,r(Ω) of the form

ũ = e−x·(−ξ+iζ̃)/h(1 + ṽ),

with

‖ṽ‖L2(Ω) ≤ Ch (4.19)
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and

‖ũ‖W 2,r(Ω) ≤ C(1 + M)2eκ/h. (4.20)

We use the following temporary notations

w = (v + ṽ + vṽ)e−ix·k, g = u|Γ, g̃ = ũ|Γ.

We find by applying the integral identity (4.14)
∫

Ω

(q − q̃)e−ix·kdx = −
∫

Ω

(q − q̃)wdx +
∫

Γ

(Λr
q − Λr

q̃)(g)g̃dσ(x).

Hence, in light of (4.17) and (4.19), we deduce that

|p̂(k)| ≤ Ch(ρ) + D‖g‖W 2−1/r,r(Γ)‖g̃‖W 2−1/r,r(Γ), k ∈ R
n \ {0}, ρ ≥ ρ0,

(4.21)

with p = (q − q̃)χΩ (in Hs(Rn)).
On the other hand, inequalities (4.18) and (4.20) yield

‖g‖W 2−1/r,r(Γ) ≤ C0‖u‖W 2,r(Ω) ≤ C(1 + M)2eκ/h,

‖g̃‖W 2−1/r,r(Γ) ≤ C0‖ũ‖W 2,r(Ω) ≤ C(1 + M)2eκ/h,

where C0 = C0(Ω, r) > 0 is a constant
These estimates in (4.21) yield

C|p̂(k)| ≤ h(ρ) + D(1 + M)4eκ/h(ρ), k ∈ R
n \ {0}, ρ ≥ ρ0.

That is we have

C|p̂(k)| ≤ 1/ρ + D(1 + M)4eκ(|k|/2+ρ), k ∈ R
n \ {0}, ρ ≥ ρ0.

Hence

C

∫
|k|≤ρ1/n

|p̂(k)|2dk ≤ 1/ρ + D(1 + M)4eκρ, ρ ≥ ρ0. (4.22)

Moreover,∫
|k|≥ρ1/n

|p̂(k)|2dk ≤ ρ−2s/n

∫
|k|≥h−α

|k2s|p̂(k)|2dk (4.23)

≤ ρ−2s/n‖p‖2
Hs(Rn).

Now inequalities (4.22) and (4.23) together with Planchel-Parseval’s iden-
tity give

C‖q − q̃‖L2(Ω) ≤ 1/ργ + D(1 + M)4eκρ, ρ ≥ ρ0. (4.24)

with γ = min (1/2, s/n) and C = C(Ω, r, s) > 0 is a constant. �
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5. Proof of the main result

Before we proceed to the proof of Proposition 1.1, we establish a lemma. To
this end, let X = H2(Ω) if n ≤ 3 and X = W 2,p(Ω) if n ≥ 4, where p is as in
Theorem 1.2.

Lemma 5.1. For any a ∈ A (c, α), the mapping

f ∈ X0 �→ ua(f) ∈ X

is continuous.

Proof. Pick f, h ∈ X0. If u = ua(f +h)−ua(f) then simple computations give
that u is the solution of the BVP{−Δu + ru = 0 in Ω,

u = h on Γ,

where

r(x) =
∫ 1

0

a′(ua(f)(x) + s[ua(f + h) − ua(f)](x))ds.

We can then mimic the proof of Theorem 4.2 in order to find a constant C > 0
independent on h so that

‖u‖X ≤ ‖h‖X0 .

Thus the continuity of f ∈ X0 �→ ua(f) ∈ X follows. �

Proof of Proposition 1.1. We give the proof in case (i). The proof for cases (ii)
and (iii) is quite similar.

Since the trace operator

w ∈ H2(Ω) �→ ∂νwΓ ∈ H1/2(Γ)

is bounded, it is sufficient to prove that

f ∈ H3/2(Γ) �→ ua(f) ∈ H2(Ω)

is Fréchet differentiable.
Fix N > 0 and let f ∈ BH3/2(Γ)(N). Then, for any h ∈ BH3/2(Γ)(1), we

have f + h ∈ BH3/2(Γ)(M), with M = N + 1.
Let v = va,f (h) and

w = ua(f + h) − ua(f) − v.

It is then straightforward to verify that w is the solution of the BVP
{−Δw = F in Ω,

w = 0 on Γ,
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with

F (x) = −a(ua(f + h))(x) + a(ua(f))(x) + a′(ua(f)(x))v(x)

= −
∫ 1

0

{a′(ua(f)(x) + s[ua(f + h)(x) − ua(f)(x)])

× [ua(f + h)(x) − ua(f)(x)] − a′(ua(f)(x))v(x)}ds

= −
∫ 1

0

a′(ua(f)(x) + s[ua(f + h)(x) − ua(f)(x)])w(x)ds

+
∫ 1

0

{a′(ua(f)(x) + s[ua(f + h)(x) − ua(f)(x)])

− a′(ua(f)(x))}v(x)ds,

where v = va,f (h).
We decompose F as F = −qw + G, where

q(x) =
∫ 1

0

a′(ua(f)(x) + s[ua(f + h)(x) − ua(f)(x)])ds,

G(x) =
∫ 1

0

{a′(ua(f)(x) + s[ua(f + h)(x) − ua(f)(x)])

− a′(ua(f)(x))}v(x)ds.

Under these new notations, we see that w is the solution of the BVP{−Δw + qw = G in Ω,
w = 0 on Γ.

According to Corollary 3.2, we have

‖ua(f + h)‖L∞(Ω) ≤ C,

where C = C(Ω, c, α,M) > 0 is a constant.
Using (1.8) for estimating the integrand of the definition of q(x) and

applying triangle’s inequality, we obtain

‖q‖L∞(Ω) ≤ ‖a′(0)‖L∞(Ω) + κCC := C̃.

We obtain from the usual a priori H2-estimate (e.g., [21, Sections 8.5 and 8.6])
that

‖w‖H2(Ω) ≤ Ĉ‖G‖L2(Ω),

where Ĉ = Ĉ(Ω, a, c, α,M) is a constant. But

‖G‖L2(Ω) ≤ κC‖ua(f + h) − ua(f)‖L2(Ω)‖v‖L∞(Ω)

≤ κCcΩ‖ua(f + h) − ua(f)‖L2(Ω)‖v‖H2(Ω).

Therefore, again from H2 a priori estimates for v, we have

‖w‖H2(Ω) ≤ ĈκCcΩ‖ua(f + h) − ua(f)‖L2(Ω)‖h‖H3/2(Γ).

Now we complete the proof of the differentiability of f �→ ua(f) by using that,
according to Lemma 5.1, the mapping

f ∈ H3/2(Γ) �→ ua(f) ∈ H2(Ω)
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is continuous. �

Define

qa,f := a′ ◦ ua(f).

In order to apply the results of the preceding section we need to extend
Λqa,f

to complex-valued functions from H3/2(Γ). As qa,f is real-valued, this
extension is obviously given by

Λqa,f
(f + ig) = Λqa,f

(f) + iΛqa,f
(g), f, g ∈ H3/2(Γ) real-valued.

It is then useful to observe that this extension is entirely determined by it
restriction to real-valued functions from H3/2(Γ).

Proceeding as in the proof of Proposition 1.1, we prove the following
result.

Lemma 5.2. Let β be as in Theorem 1.3. Under the assumptions and the no-
tations of Proposition 1.1, we have qa,f ∈ C0,β(Ω) and

‖qa,f‖C0,β(Ω) ≤ C. (5.1)

Here the constant C > 0 is so that C = C(Ω, c, α,M) if n = 2 or n = 3 ;
C = C(Ω, c, α, p, r) if n = 4 ; C = C(Ω, c, α,M, p) if n > 4.

Following [8, Definition 1.3.2.1, p. 16], the space Ht(Ω), 0 < t < 1,
consists of functions w ∈ L2(Ω) satisfying∫

Ω

∫
Ω

|w(x) − w(y)|2
|x − y|n+2t

dxdy < ∞.

Let 0 < t < θ ≤ 1 and w ∈ C0,θ(Ω). Then

|w(x) − w(y)|2
|x − y|n+2t

≤ [w]2θ
|x − y|n+2t−2θ

, (5.2)

where

[w]θ = sup{|w(x) − w(y)|/|x − y|θ; x, y ∈ Ω, x �= y}.

On the other hand, for any ε > 0, we have∫
B(x,ε)

1
|x − y|n+2t−2θ

dy =
∫
Sn−1

dω

∫ ε

0

1
t2t−2θ+1

dt. (5.3)

Consequently, since the integral in (5.3) is convergent by 2t − 2θ + 1 < 1,
in terms of inequality (5.2) we can directly see that C0,θ(Ω) is continuously
embedded in Ht(Ω). Hence an immediate consequence of the previous lemma
is the following corollary.

Corollary 5.1. Let β be as in Theorem 1.3. Under the assumptions and the
notations of Proposition 1.1, we have qa,f ∈ C0,β(Ω) ∩ Hs(Ω) for 0 < s <
min(1/2, β) and

‖qa,f‖C0,β(Ω) + ‖qa,f‖Hs(Ω) ≤ C, (5.4)

where the constant C > 0 can be described as C = C(Ω, c, α,M) if n = 2 or
n = 3; C = C(Ω, c, α, p, r) if n = 4 ; C = C(Ω, c, α,M, p) if n > 4.
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Proof of Theorem 1.3. In this proof C > 0, ρ0 > 0 and κ > 0 are generic
constants only depending : on (Ω, c, α,M, s) if n = 2, 3, (Ω, c, α,M, s, p, r) if
n = 4, (Ω, c, α,M, s, p) if n > 4. The constants p and r are the same as in
Theorem 1.3.

Using (5.4) for both a and ã, we obtain by applying Theorem 4.3

C‖qa,f − q̃ã,f‖L2(Ω) ≤ 1/ργ + D(f)eκρ, ρ ≥ ρ0, (5.5)

where γ = min(1/2, s/n) and

D(f) = ‖Λ′
a(f) − Λ′

ã(f)‖Y .

Now the interpolation inequality in [5, Lemma B.1] gives

‖qa,f − q̃ã,f‖C(Ω) ≤ C0‖qa,f − q̃ã,f‖n/(n+2β)

C0,β(Ω)
‖qa,f − q̃ã,f‖2β/(n+2β)

L2(Ω) . (5.6)

Inequalities (5.6) and (5.4) both for a and ã imply

‖qa,f − q̃ã,f‖C(Ω) ≤ C‖qa,f − q̃ã,f‖2β/(n+2β)
L2(Ω) . (5.7)

We find by putting (5.7) in (5.5)

C‖qa,f − q̃ã,f‖(n+2β)/(2β)

C(Ω)
≤ 1/ργ + D(f)eκρ, ρ ≥ ρ0.

Using this inequality with f = λ such that |λ| ≤ M , we have

C

[
max

|λ|≤M
|a′(λ) − ã′(λ)|

](n+2β)/(2β)

≤ 1/ργ + DMeκρ, ρ ≥ ρ0, (5.8)

with

DM = sup
‖f‖X 0≤

√
|Γ|M

D(f).

Since a(0) = ã(0), we have

max
|λ|≤M

|a(λ) − ã(λ)| ≤ max
|λ|≤M

|a′(λ) − ã′(λ)|.

This in (5.8) yields

C

[
max

|λ|≤M
|a(λ) − ã(λ)|

](n+2β)/(2β)

≤ 1/ργ + DMeκρ, ρ ≥ ρ0. (5.9)

For completing the proof we choose ρ ≥ ρ0 which makes the right-hand
side nearly minimum. Let τ = ρ0e

κ0 . Since the mapping ρ ∈ [0,∞) �→ ργeκρ

is increasing, we see that if DM < μ = min(1, τ−1), then we can find ρ1 ≥ ρ0

so that 1/ργ
1 = DMeκρ1 . Therefore, by taking ρ = ρ1 in (5.9), we find

C

[
max

|λ|≤M
|a(λ) − ã(λ)|

](n+2β)/(2β)

≤ 1/ργ
1 .

Now elementary computations show that ρ−1
1 ≤ (κ + γ)| lnDM |−1. Hence

max
|λ|≤M

|a(λ) − ã(λ)| ≤ C| lnDM |−(2βγ/(n+2β).

When DM ≥ μ, we have

max
|λ|≤M

|a(λ) − ã(λ)| ≤ C ≤ Cμ−1DM .
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We complete the proof by putting together the last two inequalities. �
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