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Abstract. The continuous coagulation equation with collisional breakage
explains the dynamics of particle growth when particles experience binary
collisions to form either a single particle via coalescence or two/more par-
ticles via breakup with possible transfer of matter. Each of these processes
may take place with a suitably assigned probability depending on the vol-
ume of particles participating in the collision. In this article, global weak
solutions to the continuous coagulation equation with collisional break-
age are formulated to the collision kernels and distribution functions ad-
mitting a singularity near the origin. In particular, the proof relies on a
classical weak L1 compactness method applied to suitably chosen approx-
imate equations. The question of uniqueness is also contemplated under
more restricted class of collision kernels.
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1. Introduction

Coagulation-fragmentation equations (CFEs) are used as models that describe
the dynamics of many physical phenomena in which two or more particles can
aggregate via a collision between particles to form bigger ones or break into
smaller pieces. The coagulation event occurs in different chemical, biological
and physical processes such as colloidal aggregation, aggregation of red blood
cells and polymerization, for instance. But, in the breakage process, at least
two different cases arise that depend on the breakage behaviour of particles.
The breakage of particles may happen either due to the collision between a pair
of particles named as nonlinear breakage/collision-induced breakage or due to
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other than the interaction between particles (external forces or spontaneously)
known as the linear breakage. The linear breakage may take place due to the
particle-wall interaction, chemical reactions or shear fluid whereas a few exam-
ples for the occurrence of the nonlinear breakage are the rain droplet breakage,
the formation of stars and planets etc. In this article, we have considered the
continuous coagulation and nonlinear collisional breakage processes.

The continuous coagulation equation with collisional breakage [5,7,22,
25,27] for the concentration g = g(μ, t) of particle of volume μ ∈ R+ := (0,∞)
at time t ≥ 0 reads as

∂g

∂t
= Bc(g) − Dcb(g) + Bb(g), (1.1)

with the following initial data

g(μ, 0) = gin(μ) ≥ 0 a.e., (1.2)

where

Bc(g)(μ, t) :=
1
2

∫ μ

0

E(μ − ν, ν)Ψ(μ − ν, ν)g(μ − ν, t)g(ν, t)dν,

Dcb(g)(μ, t) :=
∫ ∞

0

Ψ(μ, ν)g(μ, t)g(ν, t)dν,

Bb(g)(μ, t) :=
1
2

∫ ∞

μ

∫ ν

0

P (μ|ν−τ ; τ)F (ν−τ, τ)Ψ(ν−τ, τ)g(ν−τ, t)g(τ, t)dτdν,

and E(μ, ν) + F (μ, ν) = 1 with 0 ≤ E(μ, ν) = E(ν, μ), F (μ, ν) = F (ν, μ) ≤ 1
for all (μ, ν) ∈ R

2
+.

The first term, Bc of (1.1) describes the formation of particles of volume μ by
coalescence, and the last term, Bb of (1.1) represents the birth of particles of
volume μ due to the collisional breakage. The factor 1/2 appears in Bc and Bb

to neglect the double counting for the formation of particles of volume μ due to
both coalescence and collisional breakage events respectively. The second term
Dcb of (1.1) shows the death of particles of volume μ due to both coalescence
and collisional breakage. On the other hand, the term Dcb can be expressed
as

Dcb(g)(μ, t) :=
∫ ∞

0

E(μ, ν)Ψ(μ, ν)g(μ, t)g(ν, t)dν

+
∫ ∞

0

F (μ, ν)Ψ(μ, ν)g(μ, t)g(ν, t)dν.

Here, the collision kernel Ψ(μ, ν) accounts for the rate at which a particle of
volume μ and a particle of volume ν collide which is symmetric with respect
to μ and ν and a non-negative measurable function on R+ × R+. Since each
collision must result in either coalescence or breakup. Thus, let E(μ, ν) denotes
the probability that the two colliding particles of volumes μ and ν aggregate
into a single one of volume μ+ν whereas F (μ, ν) describes the probability that
the two colliding particles of volumes μ and ν break into two or more daughter
particles with possible transfer of mass or elastic collisions between two frag-
ments during the collision. The distribution function P (μ|ν; τ) describes the
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contribution for particles of volume μ produced from the collisional breakage
event arising from the interaction between a pair of particles of volumes ν
and τ which is also a nonnegative symmetric function in nature with respect
to second and third variables, i.e. P (μ|ν; τ) = P (μ|τ ; ν) ≥ 0. Clearly, this
distribution function satisfies

P (μ|ν; τ)

{
= 0, if μ > ν + τ,

≥ 0, if 0 < μ ≤ ν + τ.

A necessary condition for the mass conservation property during the collisional
breakage event is given by

∫ ν+τ

0

μP (μ|ν; τ)dμ = ν + τ, for all ν > 0 and τ > 0. (1.3)

In addition, let us mention another property of the distribution function pro-
viding the total number of daughter particles N > 0 resulting from the colli-
sional breakage process is

∫ ν+τ

0

P (μ|ν; τ)dμ = N, for all ν > 0 and τ > 0, (1.4)

where N is the size independent of ν and τ .
Now, let us consider some special cases arising from the continuous coagulation
and collisional breakage equation.

• If E ≡ 1, then Eq. (1.1) converts into the classical continuous Smolu-
chowski coagulation equation, see [6,9,16,21].

• By substituting P (μ|ν; τ) = χ[μ,∞)(ν)B(μ|ν; τ)+χ[μ,∞)(τ)B(μ|τ ; ν) and
E ≡ 0 into (1.1), it can easily be seen that (1.1) is transformed into the
pure nonlinear breakage equation, see [11–13,17].

Next, it is important to mention some physical properties i.e. moments
of the concentration of particles. Let Mq denotes the qth moment of the con-
centration g of particles which is defined as

Mq(t) = Mq(g(μ, t)) :=
∫ ∞

0

μqg(μ, t)dμ, where q ∈ (−∞,∞).

The total number of particles and the total mass of particles are denoted by
M0 and M1, respectively. In coagulation process, the total number of particles,
M0 decreases whereas in collisional breakage process, M0 increases with time.
However, the total mass (volume) of the system may or may not be conserved
during the coagulation and collisional breakage processes that depends on the
nature of the coagulation kernel (EΨ) and breakup kernel (FΨ). It is worth to
mention that the negative moments are also very useful in handling the case of
some physical singular collision kernels such as Smoluchowski collision kernel
for Brownian motion and Granulation kernel for fluidized bed etc. which have
been discussed in [8–10,14,21].
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1.1. Literature overview

Before getting into more details of the present work, let us first recall available
literature related to the coagulation equation with collisional breakage. There
is a vast literature available on the well-posedness of the continuous coagula-
tion and linear breakage equations (CLBEs). In [4,15,23,24], the authors have
discussed the existence and uniqueness of solutions to the continuous CLBEs
with nonsingular coagulation kernels under different growth conditions on frag-
mentation kernels, whereas in [3,9,10,16,21], the existence and uniqueness of
solutions to the continuous CLBEs have been established for singular coagu-
lation kernels. More precisely, the existence of self-similar solutions have been
discussed in [16,21] whereas, in [9,10], respectively, the existence and unique-
ness of weak solutions to Smoluchowski coagulation equations and CLBEs
have been shown. However, there are a few number of articles in which the
collisional breakage or nonlinear fragmentation model have been considered,
see [11–13,17]. In these articles, authors have demonstrated scaling solutions
as well as asymptotic behaviour of solutions to the pure nonlinear breakage
models. Moreover, they have also found analytical solutions for some specific
collision and breakup kernels. In 1972, Safronov has proposed a new kinetic
model which is known as the continuous coagulation and collisional breakage
model, i.e. (1.1)–(1.2), see [22] which has been further studied by Wilkins in
[27]. The Eq. (1.1) becomes the continuous nonlinear fragmentation model if
E ≡ 0. In 2001, Laurençot and Wrzosek [20] have discussed the existence and
uniqueness of weak solutions to the discrete coagulation and collisional break-
age model. The existence proof was based on a weak L1 compactness argument.
They have also studied mass conservation, gelation and large time behaviour
of solutions. Recently, in [5], Barik and Giri have shown the existence of weak
solutions for a particular classes of nonsingular unbounded collision kernels.
The main novelty of the present work is to include the singularity for small
volume particles in the collision kernel in the existence and uniqueness results
to the continuous coagulation and collisional breakage models. Here, the proof
of the uniqueness result is motivated by [24].
In order to prove the existence result, we first consider the following basic

assumptions on the collision kernel Ψ, initial data gin, probability E and the
distribution function P . Assume that the collision kernel Ψ satisfies

Ψ(μ, ν) ≤ k
(1 + μ)ω(1 + ν)ω

(μ + ν)σ
for all (μ, ν) ∈ R+ × R+, (1.5)

where σ ∈ (0, 1/2), 0 ≤ ω < 1 and some constant k ≥ 0.
Next, we assume that the probability E enjoys the following relation for

small volume particles

η(r) − 2
η(r) − 1

≤ E(μ, ν) ≤ 1, ∀(μ, ν) ∈ (0, 1) × (0, 1), (1.6)

where η(r) ≥ N ≥ 2, for r = 0, σ, 2σ and N total number of fragments is
obtained after the collision between a pair of particles given in (1.4).
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We further state the following four assumptions on the distribution function
P : recalling η(r) and r from (1.6), we have∫ ν

0

μ−rP (μ|ν − τ ; τ)dμ ≤ η(r)ν−r. (1.7)

Next, for each λ > 0 and ν ∈ (0, λ) and any small measurable subset A of
(0, λ) with |A| ≤ δ, there exists θ1 ∈ (0, 2σ] such that∫ ν

0

χA(μ)μ−σP (μ|ν − τ ; τ)dμ ≤ Ω1(λ, δ)ν−θ1 , where lim
δ→0

Ω1(λ, δ) = 0.

(1.8)

Here, |A| denotes the Lebesgue measure of A and χA is the characteristic
function on a set A. For ν + τ > λ and μ ∈ (0, λ) for some τ2 ∈ [0, 1−σ), such
that P satisfies

P (μ|ν; τ) ≤ k′(λ)μ−τ2 , where k′(λ) > 0. (1.9)

For the proof of the uniqueness of weak solutions, we need the following further
restriction on collision kernel Ψ given in (1.5)

Ψ(μ, ν) ≤ k

(μ + ν)σ
for k ≥ 0 and σ ∈ (0, 1/2). (1.10)

Finally, let us suppose that the initial data gin satisfies

gin ∈ S+, (1.11)

where S+ is the positive cone of the Banach space

S := L1(R+; (1 + μ + μ−2σ)dμ),

endowed with the norm

‖g‖S :=
∫ ∞

0

(1 + μ + μ−2σ)|g(μ)|dμ.

It can easily be seen that S is a Banach space with respect to norm ‖ · ‖S , see
[8].

This paper is organized as follows: In Sect. 2, some assumptions on the
Ψ and gin, and the definition of solution together with the main results of this
article are stated. By using a weak L1 compactness method, the existence of
weak solutions to (1.1)–(1.2) is established in Sect. 3. In the last section, a
uniqueness result of weak solutions to (1.1)–(1.2) is demonstrated for a class
of further restricted collision kernels.

2. Preliminaries and results

Let us start this section by formulating the notion of weak solutions to (1.1)–
(1.2) by means of the following definition.

Definition 2.1. A solution g of (1.1)–(1.2) is a non-negative continuous function
g : [0, T ) → S+ such that, for a.e. μ ∈ R+ and all t ∈ [0, T ),
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(i) the following integrals are finite∫ t

0

∫ ∞

0

Ψ(μ, ν)g(ν, s)dνds < ∞, and
∫ t

0

Bb(g)(μ, s)ds < ∞,

(ii) the function g satisfies the following weak formulation of (1.1)–(1.2)

g(μ, t) = gin(μ) +
∫ t

0

{Bc(g)(μ, s) − Dcb(g)(μ, s) + Bb(g)(μ, s)}ds,

where T ∈ (0,∞].

Let us consider the following example of collision kernel which satisfies
(1.5), see [1]:

Ψ(μ, ν) = k(μ1/3 + ν1/3)(μν)1/2(μ + ν)−3/2.

Next, we consider the following distribution function

P (μ|ν; τ) = (θ + 2)
μθ

(ν + τ)θ+1
, where − 2 < θ ≤ 0 and μ < ν + τ.

By inserting the above value of P into (1.4), it can easily be observed that
we get the finite number of daughter particles, only if −1 < θ ≤ 0, which
is denoted by N and written as N = θ+2

θ+1 . In particular, for θ = 0, we have
P (μ|ν; τ) = 2

ν , which gives the case of binary breakage, i.e. N = 2, once
substituted in (1.4). On the other hand, for θ ∈ (−2,−1], we get an infinite
number of daughter particles. The result presented in this article deals with the
case of finitely many daughter particles. Therefore, it is meaningful to consider
θ ∈ (2σ − 1, 0] for our settings. Now, let us verify (1.7)–(1.9) by considering
the above example of distribution function P . First, we check (1.7) as∫ ν

0

μ−rP (μ|ν − τ ; τ)dμ =
(θ + 2)
νθ+1

∫ ν

0

μθ−rdμ

=
(θ + 2)
νθ+1

μθ−r+1

(θ − r + 1)

∣∣∣∣
ν

0

, provided that θ − r + 1 > 0

=
(θ + 2)
νθ+1

νθ−r+1

(θ − r + 1)
=

(θ + 2)
(θ − r + 1)

ν−r = η(r)ν−r,

where η(r) = (θ+2)
(θ−r+1) .

Next, applying Hölder’s inequality, for p > 1, to verify (1.8) as∫ ν

0

χA(μ)μ−σP (μ|ν − τ ; τ)dμ

≤ (θ + 2)
1

νθ+1
|A| p−1

p

[ ∫ ν

0

μp(θ−σ)dμ

] 1
p

=
(θ + 2)

(p(θ − σ) + 1)1/p

1
νθ+1

|A| p−1
p νθ−σ+1/p where p(θ − σ) + 1 > 0

=
(θ + 2)

(p(θ − σ) + 1)1/p
|A| p−1

p ν−θ1 = Ω1(δ)ν−θ1 ,



NoDEA Existence and uniqueness of weak solutions Page 7 of 23 34

where θ1 := 1 + σ − 1
p ∈ (0, 2σ].

In order to check (1.9), we have

P (μ|ν; τ) = (θ + 2)
μθ

(ν + τ)θ+1
≤ (θ + 2)

μθ

λ1+θ
≤ k′(λ)μ−τ2 for λ < ν + τ,

where τ2 = −θ ∈ [0, 1 − σ) and k′(λ) ≥ θ+2
λ1+θ .

Now, we are in a position to state the following existence and uniqueness
results:

Theorem 2.2. Assume that (1.5)–(1.9) hold. Then, for gin ∈ S+, there exists
a weak solution g to (1.1)–(1.2) on [0,∞).

Theorem 2.3. Suppose gin ∈ S+. Assume that the collision kernel Ψ satisfies
(1.10) and (1.6)–(1.9) hold. Then, (1.1)–(1.2) has a unique weak solution on
[0,∞).

3. Existence of weak solutions

In this section, we first, construct a sequence of functions (Ψn) with compact
support for each 1 < n ∈ N, such that

Ψn(μ, ν) :=

{
Ψ(μ, ν), if μ + ν < n and μ, ν ≥ 1/n,

0, otherwise.
(3.1)

Next, we may argue as in [5, Proposition 1], by using the upper bound of
Ψn (≤ 4kn2+σ) from (3.1) or [26], to show that the truncated equation

∂gn

∂t
= Bn

c (gn) − Dn
cb(g

n) + Bn
b (gn), (3.2)

with initial data

gn
0 (μ) :=

{
gin(μ), if 0 < μ < n,

0, otherwise,
(3.3)

where

Bn
c (gn)(μ, t) :=

1
2

∫ μ

0

E(μ − ν, ν)Ψn(μ − ν, ν)gn(μ − ν, t)gn(ν, t)dν,

Dn
cb(g

n)(μ, t) :=
∫ n−μ

0

Ψn(μ, ν)gn(μ, t)gn(ν, t)dν,

Bn
b (gn)(μ, t) :=

1
2

∫ n

μ

∫ ν

0

P (μ|ν − τ ; τ)F (ν − τ, τ)

× Ψn(ν − τ, τ)gn(ν − τ, t)gn(τ, t)dτdν,

has a unique non-negative solution gn for each n > 1. These family of solu-
tions (gn)n>1 lie in C1([0,∞);L1((0, n), dμ)). Additionally, it enjoys the mass
conserving property for all t > 0, i.e.∫ n

0

μgn(μ, t)dμ =
∫ n

0

μgn
in(μ)dμ. (3.4)
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Furthermore, we extend the domain of truncated unique solution gn by zero
in R+ × [0,∞) as

gn(μ, t) :=

{
ĝn(μ, t), if 0 < μ < n,

0, if μ ≥ n,
(3.5)

for n > 1 and n ∈ N. For notational convenient, we drop theˆof gn.
In the coming section, we wish to apply a classical weak compactness technique
for the family of solutions (gn) to obtain required weak solutions.

3.1. Weak compactness

Here we first show the equi-boundedness of the family (gn) ⊂ S+ by means of
the following lemma.

Lemma 3.1. Given any T > 0. Then the following holds∫ n

0

(1 + μ + μ−2σ)gn(μ, t)dμ ≤ P(T ) for each n > 1 and all t ∈ [0, T ],

where P(T ) is a positive constant depending on T , η(2σ) and gin.

Proof. Let t ∈ [0, T ] and 1 < n ∈ N. Now, using (3.4), (3.3) and gin ∈ S+, we
estimate the following integral as∫ n

0

(1 + μ + μ−2σ)gn(μ, t)dμ ≤ 2
∫ 1

0

μ−2σgn(μ, t)dμ + 3‖gin‖S . (3.6)

Integrating (3.2) with respect to the volume variable μ from 0 to 1, after
multiplying μ−2σ, we find

d

dt

∫ 1

0

μ−2σgn(μ, t)dμ =
∫ 1

0

μ−2σ{Bn
c (gn)(μ, t)−Dn

cb(g
n)(μ, t)+Bn

b (gn)(μ, t)}dμ.

(3.7)

Next, we estimate each integral on the right-hand side to (3.7), individually.
Using Fubini’s theorem, the transformation μ − ν = μ′ and ν = ν′, then the
first term on the right-hand side of (3.7) can be written as

∫ 1

0

μ−2σBn
c (gn)(μ, t)dμ

=
1
2

∫ 1

0

∫ 1−μ

0

(μ + ν)−2σE(μ, ν)Ψn(μ, ν)gn(μ, t)gn(ν, t)dνdμ. (3.8)

Again, using Fubini’s theorem, the third term on the right-hand side of (3.7)
can be simplified as∫ 1

0

μ−2σBn
b (gn)(μ, t)dμ

=
1
2

∫ 1

0

∫ ν

0

∫ ν

0

μ−2σP (μ|ν − τ ; τ)F (ν − τ, τ)Ψn(ν − τ, τ)

× gn(ν − τ, t)gn(τ, t)dτdμdν
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+
1
2

∫ n

1

∫ 1

0

∫ ν

0

μ−2σP (μ|ν − τ ; τ)F (ν − τ, τ)Ψn(ν − τ, τ)

× gn(ν − τ, t)gn(τ, t)dτdμdν =: Jn
1 + Jn

2 . (3.9)

Applying the repeated applications of Fubini’s theorem, (1.7), the transforma-
tion ν − τ = ν′ and τ = τ ′ and finally replacing ν → μ and τ → ν, the integral
Jn
1 can be estimated as

Jn
1 ≤η(2σ)

2

∫ 1

0

∫ 1−μ

0

(μ + ν)−2σF (μ, ν)Ψn(μ, ν)gn(μ, t)gn(ν, t)dνdμ.

Next, by applying (1.7), replacing ν, τ by μ, ν respectively, using Fubini’s
theorem, and the transformation μ − ν = μ′ and ν = ν′, one can simplify the
second integral Jn

2 as

Jn
2 ≤ 1

2

∫ n

1

∫ ν

0

∫ ν

0

μ−2σP (μ|ν − τ ; τ)F (ν − τ, τ)

× Ψn(ν − τ, τ)gn(ν − τ, t)gn(τ, t)dμdτdν

≤ η(2σ)
2

∫ 1

0

∫ n−μ

1−μ

(μ + ν)−2σF (μ, ν)Ψn(μ, ν)gn(μ, t)gn(ν, t)dνdμ

+
η(2σ)

2

∫ n

1

∫ n−μ

0

(μ + ν)−2σF (μ, ν)Ψn(μ, ν)gn(μ, t)gn(ν, t)dνdμ.

Substituting the above estimates on Jn
1 and Jn

2 into (3.9), we obtain
∫ 1

0

μ−2σBn
b (gn)(μ, t)dμ ≤ η(2σ)

2

∫ n

0

∫ n−μ

0

(μ + ν)−2σF (μ, ν)

× Ψn(μ, ν)gn(μ, t)gn(ν, t)dνdμ. (3.10)

Further, inserting (3.8) and (3.10) into (3.7), then applying the symmetry of
E, F and Ψn, and using Fubini’s theorem, (3.7) can be rewritten as

d

dt

∫ 1

0

μ−2σgn(μ, t)dμ

≤ −2
∫ 1

0

∫ 1−μ

0

{[
1 − 1

2
E(μ, ν) − η(2σ)

2
F (μ, ν)

]
+

1
4
E(μ, ν)

}

× μ−2σΨn(μ, ν)gn(μ, t)gn(ν, t)dνdμ

−
∫ 1

0

∫ n−μ

1

μ−2σΨn(μ, ν)gn(μ, t)gn(ν, t)dνdμ

+
η(2σ)

2

∫ 1

0

∫ n

1

μ−2σF (μ, ν)Ψn(μ, ν)gn(μ, t)gn(ν, t)dνdμ

+
η(2σ)

2

∫ n

1

∫ n

0

μ−2σF (μ, ν)Ψn(μ, ν)gn(μ, t)gn(ν, t)dνdμ. (3.11)

Using the non-negativity of the first and second integrals on the right-hand
side to (3.11) guaranteed from (1.6) and then applying (1.5), (3.4), (3.3) and
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gin ∈ S+, we obtain

d

dt

∫ 1

0

μ−2σgn(μ, t)dμ

≤ kη(2σ)
∫ 1

0

∫ n

1

μ−2σ (1 + μ)ω(1 + ν)ω

(μ + ν)σ
gn(μ, t)gn(ν, t)dνdμ

+ k
η(2σ)

2

∫ n

1

∫ n

1

μ−2σ (1 + μ)ω(1 + ν)ω

(μ + ν)σ
gn(μ, t)gn(ν, t)dνdμ

≤ kη(2σ)22ω

∫ 1

0

∫ n

1

μ−2σνgn(μ, t)gn(ν, t)dνdμ

+ k
η(2σ)

2
22ω

∫ n

1

∫ n

1

μνgn(μ, t)gn(ν, t)dνdμ

≤ kη(2σ)22ω‖gin‖S

[ ∫ 1

0

μ−2σgn(μ, t)dμ +
1
2
‖gin‖S

]
. (3.12)

Then, an application of Gronwall’s inequality to (3.12) gives
∫ 1

0

μ−2σgn(μ, t)dμ ≤ P1(T ), (3.13)

where

P1(T ) := eaT ‖gin‖S +
b

a
(eaT − 1),

a := kη(2σ)22ω‖gin‖S and b := k η(2σ)
2 22ω‖gin‖2S . Finally, inserting (3.13) into

(3.6), we thus have∫ ∞

0

(1 + μ + μ−2σ)gn(μ, t)dμ ≤ 2P1(T ) + 3‖gin‖S := P(T ).

This completes the proof of Lemma 3.1. �

Next, the equi-integrability of the family of functions (gn)n>1 ⊂ S+ is
shown in the following lemma for applying the Dunford-Pettis theorem.

Lemma 3.2. Given any T > 0. Then, followings hold true:

(i) for all t ∈ [0, T ] and for any given ε > 0, there exists a positive constant

λ > max
{(

2‖gin‖S
ε

)1/(1+σ)

, 2‖gin‖S
ε

}
such that

sup
n>1

{∫ ∞

λ

(1 + μ−σ)gn(μ, t)dμ

}
< ε,

(ii) for a given ε > 0, there exists δε > 0 (depending on ε) such that, for
every small Lebesgue measurable set A ⊂ R+ with |A| ≤ δε, n > 1 and
t ∈ [0, T ], ∫

A

(1 + μ−σ)gn(μ, t)dμ < ε.



NoDEA Existence and uniqueness of weak solutions Page 11 of 23 34

Proof. (i) Let ε > 0 be given. Then, by (3.4), for each n > 1, gin ∈ S+ and for
all t ∈ [0, T ], we have

∫ ∞

λ

(1 + μ−σ)gn(μ, t)dμ ≤
[
1
λ +

(
1
λ

)σ+1] ∫ ∞
λ

μgin(μ)dμ

≤
[
1
λ +

(
1
λ

)σ+1]
‖gin‖S < ε,

which completes the proof of first part of Lemma 3.2.
(ii) Let ε > 0 be given. For A ⊂ R+, we can choose λ such that λ < n for all
n > 1 and t ∈ [0, T ], and using Lemma 3.2 (i), we have

∫ ∞

λ

(1 + μ−σ)gn(μ, t)dμ < ε. (3.14)

For n > 1, δ ∈ (0, 1) and t ∈ [0, T ], we define

ρn(δ, t) := sup
t∈[0,T ]

{∫ λ

0

χA(μ)(1 + μ−σ)gn(μ, t)dμ : A ⊂ R+ with |A| ≤ δ

}
.

For n > 1 and t ∈ [0, T ], we estimate the following term, by employing (3.2),
Leibniz’s rule, the non-negativity of gn, Fubini’s theorem and the transforma-
tion μ − ν = μ′ and ν = ν′, as

d

dt

∫ λ

0

χA(μ)(1 + μ−σ)gn(μ, t)dμ

≤ 1
2

∫ λ

0

∫ λ−μ

0

χA(μ + ν)(1 + (μ + ν)−σ)Ψn(μ, ν)gn(μ, t)gn(ν, t)dνdμ

+
1
2

{∫ λ

0

∫ ν

0

∫ ν

0

+
∫ n

λ

∫ ν

0

∫ λ

0

}
χA(μ)(1 + μ−σ)P (μ|ν − τ ; τ)

× Ψn(ν − τ, τ)gn(ν − τ, t)gn(τ, t)dμdτdν. (3.15)

We denote the first, second and third terms on the right-hand side of (3.15)
by Jn

3 (t), Jn
4 (t) and Jn

5 (t), respectively. Then, we estimate each Jn
i (t), for

i = 3, 4, 5 separately. Let us first consider Jn
3 (t) and evaluate it as

Jn
3 (t) ≤ k(1 + λ)2ω

∫ λ

0

∫ λ

0

χ(−ν+A)∩(0,λ−ν)(μ)(1 + μ−σ)

× 1
(μ + ν)σ

gn(μ, t)gn(ν, t)dμdν

≤ k(1 + λ)2ωP(T )
∫ λ

0

χ(−ν+A)∩(0,λ−ν)(μ)(1 + μ−σ)gn(μ, t)dμ. (3.16)

Since (−ν + A) ∩ (0, λ − ν) ⊂ (0, λ) and |(−ν + A) ∩ (0, λ − ν)| ≤ | − ν + A| =
|A| ≤ δ, then from (3.16), we obtain

Jn
3 (t) ≤ k(1 + λ)2P(T )ρn(δ, t).
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Next, by utilizing (1.8), Jn
4 (t) is evaluated, as

Jn
4 (t) ≤ 1

2
Ω1(δ)

∫ λ

0

∫ ν

0

{ν−θ1+σ + ν−θ1}Ψn(ν − τ, τ)gn(ν − τ, t)gn(τ, t)dτdν.

(3.17)

Applying Fubini’s theorem, then using the transformation ν − τ = ν′ and
τ = τ ′, (1.5) and Lemma 3.1 into (3.17), we have

Jn
4 (t) ≤ 1

2
kΩ1(δ)

∫ λ

0

∫ λ

0

{
(ν + τ)−θ1+σ + (ν + τ)−θ1

} (1 + ν)ω(1 + τ)ω

(ν + τ)σ

× gn(ν, t)gn(τ, t)dνdτ

≤ k

2
Ω1(δ)(1 + λ)2

∫ λ

0

∫ λ

0

{ν−θ1 + ν−θ1τ−σ}gn(ν, t)gn(τ, t)dνdτ

≤ k(1 + λ)2P(T )2Ω1(δ).

Similarly, from repeated applications of Fubini’s theorem, (1.9), ν−τ = ν′

and τ = τ ′, (1.5) and Lemma 3.1, Jn
5 (t) can be estimated as

Jn
5 (t) ≤ 1

2
k′(λ)

∫ n

λ

∫ ν

0

∫ λ

0
χA(μ)μ−τ2Ψn(ν − τ, τ)gn(ν − τ, t)gn(τ, t)dμdτdν

+
1

2
k′(λ)

∫ n

λ

∫ ν

0

∫ λ

0
χA(μ)μ−σ−τ2Ψn(ν − τ, τ)gn(ν − τ, t)gn(τ, t)dμdτdν

≤ 1

2
k′(λ)k

∫ λ

0

∫ n−τ

λ−τ

∫ λ

0
χA(μ)μ−τ2

(1 + ν)ω(1 + τ)ω

(ν + τ)σ
gn(ν, t)gn(τ, t)dμdνdτ

+
1

2
k′(λ)k

∫ n

λ

∫ n−τ

0

∫ λ

0
χA(μ)μ−τ2

(1 + ν)ω(1 + τ)ω

(ν + τ)σ

× gn(ν, t)gn(τ, t)dμdνdτ

+
1

2
k′(λ)k

∫ λ

0

∫ n−τ

λ−τ

∫ λ

0
χA(μ)μ−σ−τ2

(1 + ν)ω(1 + τ)ω

(ν + τ)σ

× gn(ν, t)gn(τ, t)dμdνdτ

+
1

2
k′(λ)k

∫ n

λ

∫ n−τ

0

∫ λ

0
χA(μ)μ−σ−τ2

(1 + ν)ω(1 + τ)ω

(ν + τ)σ

× gn(ν, t)gn(τ, t)dμdνdτ

≤ 1

2λσ
k′(λ)kP(T )2

[ ∫ λ

0
χA(μ)μ−τ2dμ +

∫ λ

0
χA(μ)μ−σ−τ2dμ

]
.

Choose u > 1 such that uτ2 < 1 and for 1+σ+τ2
1−σ−τ2

> 1, then, applying Hölder’s
inequality to above estimate, we get

Jn
5 (t) ≤ 1

2λσ
k′(λ)kP(T )2

{
|A|u−1

u

(∫ λ

0

μ−uτ2dμ

) 1
u

+ |A| 1−σ−τ2
1+σ+τ2

(∫ λ

0

μ−(1+σ+τ2)/2dμ

) 2(σ+τ2)
1+σ+τ2

}
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≤ 1
2λσ

k′(λ)kP(T )2
{

δ
u−1

u

(
λ1−uτ2

1 − uτ2

) 1
u

+ δ
1−σ−τ2
1+σ+τ2

(
λ(1−(σ+τ2))/2

(1 − σ − τ2)/2

) 2(σ+τ2)
(1+σ+τ2)

}
.

Inserting the estimates on Jn
3 (t), Jn

4 (t) and Jn
5 (t) into (3.15), we obtain

d

dt

∫ λ

0

χA(μ)(1 + μ−σ)gn(μ, t)dμ ≤ k(1 + λ)2P(T )ρn(δ, t) + k(1 + λ)2Ω1(δ)P(T )2

+
1

2λσ
k′(λ)kP(T )2

{
δ

u−1
u

(
λ1−uτ2

1 − uτ2

) 1
u

+ δ
1−σ−τ2
1+σ+τ2

(
λ(1−(σ+τ2))/2

(1 − σ − τ2)/2

) 2(σ+τ2)
(1+σ+τ2)

}
.

(3.18)

Next, integrating (3.18) with respect to time from 0 to t and taking supremum
over all A such that A ⊂ R+ with |A| ≤ δ and using gin ∈ S+, we estimate

ρn(δ, t) ≤ ρn(δ, 0) + kP(T )(1 + λ)2
∫ t

0

ρn(δ, s)ds + k(1 + λ)2Ω1(δ)P(T )2T

+
k

2λσ
k′(λ)P(T )2T

{
δ

u−1
u

(
λ1−uτ2

1 − uτ2

) 1
u

+ δ
1−σ−τ2
1+σ+τ2

(
λ(1−(σ+τ2))/2

(1 − σ − τ2)/2

) 2(σ+τ2)
(1+σ+τ2)

}
.

Now, after applying Gronwall’s inequality, it is obtained that

ρn(δ, t) ≤ C1(δ, λ) exp(kP(T )(1 + λ)2T ), t ∈ [0, T ], (3.19)

where

C1(δ, λ) := ρn(δ, 0) + k(1 + λ)2Ω1(δ)P(T )2T +
k

2λσ
k′(λ)P(T )2T

×
{

δ
u−1

u

(
λ1−uτ2

1 − uτ2

) 1
u

+ δ
1−σ−τ2
1+σ+τ2

(
λ(1−(σ+τ2))/2

(1 − σ − τ2)/2

) 2(σ+τ2)
(1+σ+τ2)

}
.

From (3.19), we thus have

sup
n

{ρn(δ, t)} → 0 as δ → 0. (3.20)

Finally, adding (3.14) and (3.20), we obtain the desired result. This completes
the proof to the second part of Lemma 3.2. �

Next, we turn to show the time equicontinuity of sequences (gn)n>1 and
(μ−σgn)n>1.

3.2. Equicontinuity in time

Set Υn(μ, t) := μ−ζgn(μ, t) for ζ = {0, σ}, μ ∈ R+ and t ∈ [0, T ]. At ζ = 0,
this gives Υn(μ, t) = gn(μ, t) and when ζ = σ, Υn(μ, t) := μ−σgn(μ, t). Let
T > 0. For any given ε > 0 and φ ∈ L∞(R+) there exists λ = λ(ε) > 1 in such
way that

2P(T )
λ1+ζ

<
ε

2‖φ‖L∞
, (3.21)
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where the constant P(T ) is defined in Lemma 3.1. Consider s, t ∈ [0, T ] with
t ≥ s. Then, for each n > 1, by Lemma 3.1 and (3.21), we have∫ ∞

λ

|Υn(μ, t) − Υn(μ, s)|dμ ≤ 1
λ

∫ ∞

λ

μ1−ζ{gn(μ, t) + gn(μ, s)}dμ

≤ 2P(T )
λ1+ζ

<
ε

2‖φ‖L∞
. (3.22)

Multiplying by μ−ζφ(μ) on both sides into (3.2), integrating with respect to
μ from 0 to λ, then using Leibniz’s rule and non-negativity of gn, we simplify
the following term as∣∣∣∣ d

dt

∫ λ

0

φ(μ)Υn(μ, t)dμ

∣∣∣∣ ≤ ‖φ‖L∞

∫ λ

0

μ−ζ

[
Bn

c (gn)(μ, t)

+ Dn
cb(g

n)(μ, t) + Bn
b (gn)(μ, t)

]
dμ. (3.23)

Now, using Fubini’s theorem, (1.7) and applying the transformation μ−ν = μ′

and ν = ν′ to (3.23), we estimate∣∣∣∣ d

dt

∫ λ

0

φ(μ)Υn(μ, t)dμ

∣∣∣∣ ≤ (3 + η(ζ))
2

‖φ‖L∞

∫ λ

0

μ−ζDn
cb(g

n)(μ, t)dμ. (3.24)

By employing Fubini’s theorem, (1.5) and Lemma 3.1 to (3.24), we evaluate
as ∣∣∣∣ d

dt

∫ λ

0

φ(μ)Υn(μ, t)dμ

∣∣∣∣ ≤ (3 + η(ζ))
2

‖φ‖L∞k(1 + λ)ωP(T )2. (3.25)

After combining the estimates in (3.22) and (3.25), finally we have∣∣∣∣
∫ ∞

0

φ(μ)[Υn(μ, t) − Υn(μ, s)]dμ

∣∣∣∣
≤ (3 + η(ζ))

2
‖φ‖L∞k(1 + λ)ωP(T )2(t − s) +

ε

2
. (3.26)

Fix δ > 0 and take s and t such that t − s < δ. Then the estimate (3.26)
implies the equicontinuity of the family {gn(t), t ∈ [0, T ]} with respect to time
variable t, in the topology L1(R+, dμ). Then according to a refined version of
the Arzelà-Ascoli Theorem, see [23, Theorem 2.1] or Arzelà-Ascoli Theorem
[2, Appendix A8.5], we conclude that there exist a subsequence (Υn) (not
relabeled) and a non-negative function Υ ∈ L∞((0, T );L1(R+, dμ)) such that

lim
n→∞ sup

t∈[0,T ]

∣∣∣∣
∫ ∞

0

[Υn(μ, t) − Υ(μ, t)] φ(μ) dμ

∣∣∣∣ = 0,

for all T > 0 and φ ∈ L∞(R+). This implies that

Υn(t) ⇀ Υ(t) in L1(R+, dμ) as n → ∞, (3.27)

uniformly for all t ∈ [0, T ] to some Υ ∈ C([0, T ];w − L1(R+, dμ)), where
C([0, T ];w − L1(R+, dμ)) is the space of all weakly continuous functions from
[0, T ] to L1(R+, dμ). Applying the weak convergence of gn(t)− gn(s) to g(t)−
g(s) in L1(R+, dμ) from (3.27), Lemma 3.1, and setting φ(μ) = sgn(Υn(μ, t)−
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Υn(μ, s)) into (3.26), we can easily improve the space from Υ ∈ C([0, T ];w −
L1(R+, dμ)) to Υ ∈ C([0, T ];L1(R+, dμ)).

By considering ζ = 0 and ζ = σ, (3.27) implies that there exist two
subsequences (gn) and (μ−σgn) such that

gn(t) ⇀ g(t) in L1(R+, dμ) as n → ∞, (3.28)

and

μ−σgn(t) ⇀ μ−σg(t) in L1(R+, dμ) as n → ∞. (3.29)

For any a > 0, t ∈ [0, T ], since gn ⇀ g, we thus obtain∫ a

0

μg(μ, t)dμ = lim
n→∞

∫ a

0

μgn(μ, t)dμ ≤ ‖gin‖S < ∞.

and ∫ a

0

μ−σg(μ, t)dμ = lim
n→∞

∫ a

0

μ−σgn(μ, t)dμ ≤ ‖gin‖S < ∞.

Equation (3.4), the non-negativity of each gnk and g, and then a → ∞ imply
that∫ ∞
0

μg(μ, t)dμ ≤ ∫ ∞
0

μgin(μ)dμ and g ∈ S+.
Next, to show that the limit function g constructed in (3.28) is actually a weak
solution to (1.1)–(1.2) in an appropriate sense i.e. as given in Definition 2.1.

3.3. Integral convergence

In the following lemma, we wish to show that the truncated integrals on the
right-hand side to (3.2) converge weakly to the original integrals on the right-
hand to (1.1).

Lemma 3.3. Let (gn)n≥1 be a bounded sequence in S+ and g ∈ S+, where
‖gn‖S ≤ P(T ) and gn ⇀ g in L1(R+, dμ) as n → ∞. Then, for each λ > 1,
we have

Bn
c (gn) ⇀ Bc(g), Dn

cb(g
n) ⇀ Dcb(g)

andBn
b (gn) ⇀ Bb(g) in L1((0, λ), dμ) as n → ∞. (3.30)

Proof. Fix λ ∈ (1, n) and μ ∈ (0, λ). Suppose φ belongs to L∞(0, λ) with
compact support included in (0, λ). We argue in the similar manner with little
modifications as in Camejo and Warnecke [10] to show that the first two terms
such that Bn

c (gn) ⇀ Bc(g) and Dn
cb(g

n) ⇀ Dcb(g) in L1((0, λ), dμ) as n → ∞.
Next, in order to show Bn

b (gn) ⇀ Bb(g) in L1((0, λ), dμ) as n → ∞, it is
sufficient to prove that∣∣∣∣

∫ λ

0

φ(μ){Bn
b (gn)(μ, t) − Bb(g)(μ, t)}dμ

∣∣∣∣ → 0, (3.31)

as n → ∞, for φ ∈ L∞(0, λ). Let us first simplify the following integral, by
using triangle inequality, the repeated applications of Fubini’s theorem and
ν − τ = ν′ and τ = τ ′, as∣∣∣∣

∫ λ

0

φ(μ)[Bn
b (gn)(μ, t) − Bb(g)(μ, t)]dμ

∣∣∣∣
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≤
∣∣∣∣
∫ λ

0

∫ λ

0

Θ(ν, τ)ν−σ{gn(ν, t)gn(τ, t) − g(ν, t)g(τ, t)}dμdνdτ

∣∣∣∣
+

∣∣∣∣
∫ λ

0

∫ ∞

λ

Θ(ν, τ)ν−σ{gn(ν, t)gn(τ, t) − g(ν, t)g(τ, t)}dμdνdτ

∣∣∣∣
+

∣∣∣∣
∫ ∞

λ

∫ ∞

0

Θ(ν, τ)ν−σ{gn(ν, t)gn(τ, t) − g(ν, t)g(τ, t)}dμdνdτ

∣∣∣∣
:= In

1 + In
2 + In

3 , (3.32)

where In
1 , In

2 and In
3 denote the first, second and third terms on the right-hand

side, respectively, to (3.32), and

Θ(ν, τ) :=
1
2
E′(ν, τ)Ψ(ν, τ)νσ

∫ min{λ,ν+τ}

0

φ(μ)P (μ|ν; τ)dμ.

One can infer from (3.1), (1.4) and F ≤ 1 that

Θ(ν, τ) ∈ L∞
(

(0, λ) × (0, λ)
)

, for (ν, τ) ∈ (0, λ) × (0, λ).

Then using [18, Lemma 2.9] or the repeated application of [19, Lemma A.2],
it can easily be obtained that

lim
n→∞ In

1 = 0. (3.33)

Next, applying (3.1), (1.4) and Lemma 3.1, we estimate that{ ∫ λ

0

∫ ∞

λ

+
∫ ∞

λ

∫ ∞

0

}
Θ(ν, τ)ν−σgn(ν, t)gn(τ, t)dμdνdτ

≤ Nk

2
‖φ‖L∞

{∫ λ

0

∫ ∞

λ

+
∫ ∞

λ

∫ ∞

0

}
(1 + ν)ω(1 + τ)ω(ν + τ)−σgn(ν, t)gn(τ, t)dνdτ

≤ Nk

λσ
‖φ‖L∞P2(T ). (3.34)

Similarly, one can evaluate{ ∫ λ

0

∫ ∞

λ

+
∫ ∞

λ

∫ ∞

0

}
Θ(ν, τ)ν−σg(ν, t)g(τ, t)dνdτ ≤ Nk

λσ
‖φ‖L∞P2(T ).

(3.35)

Then, employing (3.34) and (3.35), we have

In
2 + In

3 ≤ 2Nk

λσ
‖φ‖L∞P2(T ). (3.36)

Finally, applying (3.33) and (3.36) into (3.32), we conclude that

lim
n→∞

∣∣∣∣
∫ λ

0

φ(μ){Bn
b (gn)(μ, t) − Bb(g)(μ, t)}dμ

∣∣∣∣ ≤ 2Nk

λσ
‖φ‖L∞P2(T ). (3.37)

Since λ > 1, thus (3.37) is true for λ ∈ (1,∞). Hence, from (3.36) and (3.37),
it is clear that (3.31) holds. This completes the Proof of Lemma 3.3. �
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Now, we turn to the Proof of Theorem 2.2 with the help of above results.

Proof of Theorem 2.2. Fix T > 0 and φ ∈ L∞(R+). Then, for each s ∈ [0, t],
employing Lemma 3.3, we have∫ ∞

0

φ(μ)[(Bn
c − Dn

cb + Bn
b )(gn)(μ, s)

− (Bc − Dcb + Bb)(g)(μ, s)]dμ → 0, as n → ∞. (3.38)

Again, a repeated application of Fubini’s theorem, the transformation μ−ν =
μ′, and ν = ν′, (1.5), (1.9), (1.4) and Lemma 3.1 confirm that there exists a
positive constant C(T ) such that∣∣∣∣

∫ ∞

0

φ(μ){(Bn
c − Dn

cb + Bn
b )(gn)(μ, s)

−(Bc − Dcb + Bb)(g)(μ, s)}dμ

∣∣∣∣ ≤ C(T )‖φ‖L∞(R+), (3.39)

where

C(T ) := kP(T )2(3 + 2N).

Next, one can easily check that the left-hand side of (3.39) is in L1((0, t), ds).
Then from (3.38), (3.39) and the Lebesgue dominated convergence theorem,
we obtain ∫ t

0

∫ ∞

0

φ(μ){(Bn
c − Dn

cb + Bn
b )(gn)(μ, s)

− (Bc − Dcb + Bb)(g)(μ, s)}dμds → 0, (3.40)

as n → ∞. Since φ is arbitrary and (3.40) holds for φ ∈ L∞(R+) as n → ∞,
hence, by applying Fubini’s theorem, we get∫ t

0

(Bn
c − Dn

cb + Bn
b )(gn)(μ, s)ds

⇀

∫ t

0

(Bc − Dcb + Bb)(g)(μ, s)ds in L1((R+), dμ). (3.41)

Then, the definition of (Bn
c − Dn

cb + Bn
b ) yields that

gn(μ, t) =
∫ t

0

(Bn
c − Dn

cb + Bn
b )(gn)(μ, s)ds + gn

in(μ), for t ∈ [0, T ]. (3.42)

Next, using (3.41), (3.28) and (3.42), we thus obtain∫ ∞

0

φ(μ)g(μ, t)dμ =
∫ t

0

∫ ∞

0

φ(μ)(Bc − Dcb + Bb)(g)(μ, s)dμds

+
∫ ∞

0

φ(μ)gin(μ)dμ,

for any φ ∈ L∞(R+). Hence, for all φ ∈ L∞(R+), we have g(μ, t) is a solution
to (1.1)–(1.2). This implies that for almost any μ ∈ R+, we have

g(μ, t) =
∫ t

0

(Bc − Dcb + Bb)(g)(μ, s)ds + gin(μ).
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This completes the proof of the existence Theorem 2.2. �

In the next section, the uniqueness of weak solutions to (1.1)–(1.2) is
investigated under additional growth condition (1.10) on collision kernel Ψ.

4. Uniqueness of weak solutions

Proof of Theorem 2.3. Let g and h be two weak solutions to (1.1)–(1.2) on
[0,∞), with gin(μ) = hin(μ). Set Z := g − h. For n = 1, 2, 3, · · · , we define

Ξn(t) :=
∫ n

0

(1 + μ−σ)|Z(μ, t)|dμ

=
∫ n

0

(1 + μ−σ)sgn(Z(μ, t)){g(μ, t) − h(μ, t)}dμ. (4.1)

Substituting the value of g(μ, t) − h(μ, t) by using the Definition 2.1 (iii) into
(4.1) and simplifying it further by applying the following identity

g(μ, s)g(ν, s) − h(μ, s)h(ν, s) = g(μ, s)Z(ν, s) + h(ν, s)Z(μ, s),

using Fubini’s theorem, symmetry of Ψ, the transformation μ − ν = μ′ and
ν = ν′ and ν − τ = ν′ and τ = τ ′, we have

Ξn(t) =
1
2

∫ t

0

∫ n

0

∫ n−μ

0

[
{1 + (μ + ν)−σ} sgn (Z(μ + ν, s))E(μ, ν)

− {1 + μ−σ} sgn (Z(μ, s)) − {1 + ν−σ} sgn (Z(ν, s))
]

× Ψ(μ, ν){g(μ, s)Z(ν, s) + h(ν, s)Z(μ, s)}dνdμds

−
∫ t

0

∫ n

0

∫ ∞

n−μ

{1 + μ−σ} sgn (Z(μ, s))Ψ(μ, ν)

× {g(μ, s)Z(ν, s) + h(ν, s)Z(μ, s)}dνdμds

+
1
2

{ ∫ t

0

∫ n

0

∫ n−ν

0

∫ ν+τ

0

+
∫ t

0

∫ n

0

∫ ∞

n−ν

∫ n

0

+
∫ t

0

∫ ∞

n

∫ ∞

0

∫ n

0

}
{1 + μ−σ}F (ν, τ) sgn (Z(μ, s))P (μ|ν; τ)

× Ψ(ν, τ){g(ν, s)Z(τ, s) + h(τ, s)Z(ν, s)}dμdτdνds. (4.2)

Next, let us define the term Q as

Q(μ, ν, s) := {1 + (μ + ν)−σ}sgn(Z(μ + ν, s))E(μ, ν)

− {1 + μ−σ}sgn(Z(μ, s))

− {1 + ν−σ}sgn(Z(ν, s)).

Using the definition of Q and the properties of signum function, i.e. |Θ| =
Θsgn(Θ) into (4.2), we obtain

Ξn(t) ≤ 1
2

∫ t

0

∫ n

0

∫ n−μ

0

Q(μ, ν, s)Ψ(μ, ν){g(μ, s)Z(ν, s) + h(ν, s)Z(μ, s)}dνdμds
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+
∫ t

0

∫ n

0

∫ ∞

n−μ

{1 + μ−σ}Ψ(μ, ν)g(μ, s)|Z(ν, s)|dνdμds

−
∫ t

0

∫ n

0

∫ ∞

n−μ

{1 + μ−σ}Ψ(μ, ν)h(ν, s)|Z(μ, s)|dνdμds

+
1
2

∫ t

0

∫ ∞

0

∫ ∞

0

∫ ν+τ

0

{1 + μ−σ}P (μ|ν; τ)Ψ(ν, τ)

× {g(ν, s)|Z(τ, s)| + h(τ, s)|Z(ν, s)|}dμdτdνds. (4.3)

Due to the non-negativity of the third integral on the right-hand side to (4.3),
(1.4) and r = σ into (1.7), (4.3) can be further estimated as

Ξn(t) ≤ 1

2

∫ t

0

∫ n

0

∫ n−μ

0
Q(μ, ν, s)Ψ(μ, ν)g(μ, s)Z(ν, s)dνdμds

+
1

2

∫ t

0

∫ n

0

∫ n−μ

0
Q(μ, ν, s)Ψ(μ, ν)h(ν, s)Z(μ, s)dνdμds

+

∫ t

0

∫ n

0

∫ ∞

n−μ
{1 + μ−σ}Ψ(μ, ν)g(μ, s)|Z(ν, s)|dνdμds

+
1

2

∫ t

0

∫ n

0

∫ n

0
{N + η(σ)(ν + τ)−σ}Ψ(ν, τ)g(ν, s)|Z(τ, s)|dτdνds

+
1

2

∫ t

0

∫ n

0

∫ n

0
{N + η(σ)(ν + τ)−σ}Ψ(ν, τ)h(τ, s)|Z(ν, s)|dτdνds

+

∫ t

0

∫ ∞

0

∫ ∞

n
{N + η(σ)(ν + τ)−σ}Ψ(ν, τ){g(ν, s)|Z(τ, s)| + h(τ, s)|Z(ν, s)|}dτdνds

=:

6∑
i=1

Sn
i (t), (4.4)

where Sn
i (t), for i = 1, 2, · · · , 6 are the corresponding integrals in the preceding

line. We now solve each Sn
i (t) individually. Using properties of the signum

function, i.e. sgn(Θ1)Θ1 = |Θ1|, we consider following two bounds as

Q(μ, ν, s)Z(ν, s) =

[
{1 + (μ + ν)−σ} sgn (Z(μ + ν, s))E(μ, ν)

− {1 + μ−σ} sgn (Z(μ, s)) − {1 + ν−σ} sgn (Z(ν, s))

]
Z(ν, s)

≤ 2{1 + μ−σ}|Z(ν, s)|, (4.5)

and

Q(μ, ν, s)Z(μ, s) ≤ 2{1 + ν−σ}|Z(μ, s)|. (4.6)

Let us first estimate Sn
1 (t), by using (4.5), (1.10), Young’s inequality and the

definition of norm, as

Sn
1 (t) ≤ k

∫ t

0

∫ n

0

∫ n

0

(1 + μ−σ)(μ + ν)−σ|Z(ν, s)|g(μ, s)dνdμds

≤ k

∫ t

0

∫ n

0

∫ n

0

(1 + μ−σ)(1 + ν−σ)|Z(ν, s)|g(μ, s)dνdμds
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≤ k

2

∫ t

0

Ξn(s)
∫ n

0

(3 + μ−2σ)g(μ, s)dμds ≤ Γ1

∫ t

0

Ξn(s)ds, (4.7)

where

Γ1 =
3k

2
sup

s∈[0,t]

‖g(s)‖S .

Similarly, (1.10), (4.6), Young’s inequality and the definition of norm help to
evaluate Sn

2 (t) as

Sn
2 (t) ≤ Γ2

∫ t

0

Ξn(s)ds, (4.8)

where

Γ2 =
3k

2
sup

s∈[0,t]

‖h(s)‖S .

Again, employing the same argument as before, one can show the finite-
ness of the integral Sn

3 (t) as

Sn
3 (t) ≤ k

∫ t

0

∫ n

0

∫ ∞

n−μ

(1 + μ−σ)(μ + ν)−σg(μ, s)|Z(ν, s)|dνdμds

≤ kn−σ

∫ t

0

∫ ∞

0

∫ ∞

0

(1 + μ−σ)g(μ, s)[g(ν, s) + h(ν, s)]dνdμds

≤ 2kTn−σ sup
s∈[0,t]

[
{‖g(s)‖S + ‖h(s)‖S}‖g(s)‖S

]
< ∞.

Thus, we obtain

Sn
3 (t) → 0 as n → ∞. (4.9)

Similarly, one can easily show that Sn
6 (t) → 0 as n → ∞.

Next, Sn
4 (t) can be evaluated, by applying (1.10), (1.7), Young’s inequal-

ity and the definition of norm, as

Sn
4 (t) ≤ 1

2
kη(σ)

∫ t

0

∫ n

0

∫ n

0

{1 + (ν + τ)−σ}(ν + τ)−σg(ν, s)|Z(τ, s)|dτdνds

≤ k

2
η(σ)

∫ t

0

∫ n

0

∫ n

0

(1 + ν−σ)(1 + τ−σ)g(ν, s)|Z(τ, s)|dτdνds

≤ Γ3

∫ t

0

Ξn(s)ds, (4.10)

where

Γ3 =
3k

2
η(σ) sup

s∈[0,t]

‖g(s)‖S .

Analogous to Sn
4 (t), Sn

5 (t) can be calculated as

Sn
5 (t) ≤ Γ4

∫ t

0

Ξn(s)ds, (4.11)
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where

Γ4 =
3
2
kη(σ) sup

s∈[0,t]

‖h(s)‖S .

Now, taking n → ∞ to (4.4) and then inserting (4.7), (4.8), (4.10) and
(4.11), we have

lim
n→∞ Ξn(t) ≤

( 4∑
i=1

Γi

)
lim

n→∞

∫ t

0

Ξn(s)ds. (4.12)

The inequality (4.12) implies that
∫ ∞

0

(1 + μ−σ)|Z(μ, t)|dμ ≤
( 4∑

i=1

Γi

) ∫ t

0

∫ ∞

0

(1 + μ−σ)|Z(μ, s)|dμds. (4.13)

Then applying Gronwall’s inequality to (4.13), we obtain∫ ∞

0

(1 + μ−σ)|Z(μ, t)|dμ = 0 ∀t.

This implies g(μ, t) = h(μ, t) a.e. μ ∈ R+. This completes the Proof of
the Theorem 2.3. �
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