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Abstract. Let (M, g) be a smooth compact Riemannian manifold of di-
mension n ≥ 3. Denote by Pg the GJMS (Graham–Jenne–Mason–Sparling)
operator. In this paper, we introduce the GJMS invariant µ and we define
the first GJMS invariant µ1 as the infimum of the first eigenvalue of Pg

over the metrics conformal to g and of volume 1. We study when it is
attained and whether is equal to µ . As an application, we show that the
nonlinear GJMS equation Pgv = µ1|v|N−2v has nodal (sign-changing)
solution. When g is Einstein, the above equation has positive solutions if
the scalar curvature Sg > 0.
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1. Introduction

Let (M, g) be a compact Riemannian manifold of dimension n ≥ 3, and let k be
an integer such that k ≥ 1 and 2k ≤ n. In 1992, in [15] Graham–Jenne–Mason–
Sparling have defined a family of conformally invariant differential operators
defined for any Riemannian metric (GJMS operators for short). The construc-
tion of these operators is based on the ambient metric of Fefferman–Graham
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[13]. More precisely, for any Riemannian metric g on M , there exists a local,
formally self-adjoint, conformally covariant operator

Pg : C∞(M) −→ C∞(M),

such that for all u ∈ C∞(M), the GJMS operator Pg is given by :

Pgu = Δk
gu + lot (1)

where Δg is the Laplace-Beltrami operator, and lot denotes differential terms of
lower order. For more detail about Pg, we refer the reader to Robert [24]. This
operator enjoys nice conformal invariance properties. Indeed, let ϕ ∈ C∞(M)
be a positive function and N = 2n

n−2k . If n �= 2k, then any metric g written

in the form ϕ
4

n−2k g is a conformal metric to g and therefore, for any metric g
conformal to g, the operator Pg is conformally invariant in the following sense:
for all u ∈ C∞(M), we have Pg(uϕ) = ϕN−1Pg(u). By taking u ≡ 1, we get

Pgϕ =
n − 2k

2
Qgϕ

N−1 (2)

where

Qg =
2

n − 2k
Pg(1).

The scalar Qg is called the Q-curvature and is a Riemannian invariant asso-
ciated to this operator. Historically, the notion of the Q-curvature is due to
Branson’s 1995 article in Transactions of the AMS see [7]. He also defined it
in the critical case n = 2k. Now when k = 1, Pg is the conformal Laplacian
operator and Qg is the scalar curvature Sg (up to a constant). The problem of
prescribing a constant scalar curvature is known as the Yamabe problem, the
classical reference for this problem is a survey by Lee-Parker [19]. When k = 2,
Pg is the Paneitz-Branson operator introduced by Paneitz in [22] and the Q-
curvature was introduced by Branson-Ørsted [8]. Results for the prescription of
the Q-curvature problem for the Paneitz operator are in Djadli-Hebey-Ledoux
[10], Robert [23], Esposito-Robert [12], Hang-Yang [17], Gursky-Malchiodi [16]
and Benalili-Boughazi [3]. Moreover, concerning fourth-order problems, there
has been also an intensive literature on the question, we refer the reader to
[3,5,9,23]. Solving the problem of prescribing Q-curvature for the GJMS oper-
ator is a very difficult problem and its underlying analysis is intricate, we refer
to Robert [24] and Mazumdar [21] for some particular situations. The simple
case of these problems is prescribing constant Q-curvature which is equivalent
to finding a positive smooth solution u of the following equation

Pgu = C|u|N−2u (3)

where C is a constant. In order to obtain solutions, we define the quantity

μ = inf
u∈C∞(M),u>0

I(u) (4)

where

I(u) =

∫
M

uPgudvg

(
∫

M
|u|Ndvg)

2
N

. (5)
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As in the Yamabe problem, the constant μ will be called the GJMS invariant.
In particular, if u ∈ C∞(M), u > 0 and satisfy I(u) = μ, clearly u is solution
of (3) and g = u

4
n−2k g is the desired metric of constant Q-curvature. It is well

known that the operator Pg is elliptic, self-adjoint with respect to the inner
product in L2(M) [24] and has discrete spectrum with eigenvalues

λ1(g) ≤ λ2(g) ≤ λ3(g) · · · ≤ λk(g) → +∞
appear with their multiplicities. The variational characterization of the first
eigenvalue λ1(g) of Pg is given by:

λ1(g) = inf
v∈H2

k(M),u �=0

∫
M

vPgvdvg∫
M

v2dvg
. (6)

where the space H2
k(M) is the completion of C∞(M) for the norm

‖u‖H2
k

=

(∫

M

k∑

l=0

|∇lu|2dvg

) 1
2

. (7)

Now by referring to Ammann-Humbert [1], we introduce an invariant μ1 that
we will call the first GJMS invariant and we will define it by:

μ1 = inf
g∈[g]

λ1(g)vol(M, g)
2k
n (8)

where the set [g] = {g = u
4

n−2k g, u ∈ C∞(M) and u > 0} is the confor-
mal class of the metric g and vol(M, g) =

∫
M

uNdvg denotes the Riemannian
volume of M with respect to the metric g.

In order to find minimizers, we enlarge the conformal class [g] to what we
call the class of generalized metrics conformal to g. We say that g = u

4
n−2k g is

a generalized metric of the Riemannian metric g if u ∈ LN (M), u ≥ 0 and u is
not identically null. By the standard minimax method via Rayleigh quotients
for defining eigenvalues combined with conformal covariance of Pg, one sees
that for any generalized metric g = u

4
n−2k g, the first eigenvalue λ1(g) of the

GJMS opreator Pg is characterized by

λ1(g) = inf
V ∈Gru

1 (H
2
k(M))

sup
v∈V \{0}

∫
M

vPgvdvg∫
M

uN−2v2dvg
(9)

where the Grassmannian Gru
1 (H2

k(M)) is given in the Definition (2.2).
The purpose of this paper is to study the first eigenvalue λ1(g) for any

generalized metric g and the main problem is whether the first GJMS invariant
μ1 is attained by a generalized metric (or conformal metric) and is equal to
the GJMS invariant μ. To solve this problem, we will use the ideas from [1–
6,11,18]. More precisely, the method we would like to apply is introduced in
[1] for studying the second Yamabe invariant μ2 (see Definition (2.1) for μ2)
and generalized for the Paneitz-Branson operator on Einstein manifolds by
Benalili and Boughazi in [3]. For clarity purposes, we state our main generic
theorem and after we give some results about this method in the next section:
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Theorem 1.1. Let (M, g) be a compact Riemannian manifold of dimension n ≥
3. Assume that λ1(g) > 0 and μ < K0

−1 where μ is the GJMS invariant and
K0 is the best constant in the Sobolev embedding of H2

k(M). Then there exists
a nontrivial function v ∈ C2k(M) which satisfies Pgv = μ1|v|N−2v. In other
words, μ1 is attained by the generalized metric g = |v| 4

n−2k g and in particular,
if Qg ≤ 0, v is a nodal (sign-changing) solution. Moreover, if g is Einstein
and Sg > 0, the solution v > 0 and v ∈ C∞(M) and this implies that μ = μ1

and means that g is a conformal metric. Consequently, in the latter case μ1 is
attained by the desired metric g of constant Q-curvature: Qg = 2

n−2kμ1.

Note that this theorem is a consequence of Theorem (3.1), Proposition
(3.2) and Theorems (4.1), (5.1) and (6.1). The remainder of this paper is
organized as follows: In Sect. 2, we give a short motivation by recalling some
results and we quote some facts which we will use in the sequel. In Sect. 3, we
establish some results concerning the eigenvalues; in particular, if λ1(g) > 0,
for all generalized metric g = u

4
n−2k g, the first eigenvalue λ1(g) is achieved,

we also show that the linear equation Pgv = λ1(g)uN−2v has nodal (sign-
changing) solution if Qg ≤ 0 and if λ1(g) < 0, we show that there exists a
generalized metric g such that λ1(g) = −∞ which implies that μ1 = −∞.
In Sect. 4, we study the first GJMS invariant μ1 in case λ1(g) > 0, we will
prove that μ1 is attained by a generalized metric if 1 − μK0 > 0 where μ is
the GJMS invariant and K0 is the best constant in the Sobolev embedding see
(20). In Sect. 5, we show that the nonlinear GJMS equation Pgv = μ1|v|N−2v
has a nodal solution if Qg ≤ 0. In Sect. 6, we deal with Einstein manifold. In
particular, when Sg > 0, we will prove that the solution v of the latter equation
is positive, μ1 = μ and is attained by a conformal metric g which leads to a
metric with constant Q-curvature and in the case Sg < 0, the solution v is
nodal. At the end, we show that K0 = (μ(Sn, h))−1 where μ(Sn, h) is the
GJMS invariant of the standard unit n-sphere of R

n+1 and there are certain
manifolds such that the assumption 1 − μK0 > 0 holds.

Note that when (M, g) is Einstein manifold with positive scalar curvature,
the Q-curvature Qg = n−2k

2 (
∏k

l=1 cl)(Sg)k, is constant and positive [the reals
cl are given in (17)]. Therefore it is easy to see that u = 1 is solution of
Pgu = μ1u

N−1 if μ1 = n−2k
2 Qg, in other word μ1 is achieved by the metric

g. If μ1 �= n−2k
2 Qg and 1 − μK0 > 0 Theorem (6.1) proves the existence of

u ∈ C∞(M), u > 0 solution to the latter equation. In particular, it follows the
existence of a metric g = u

4
n−2k g which is different from the initial g and such

that Qg is constant. But it is not clear whether the solution u is different from
the trivial constant solution. This question seems to be hard. However, when
Pg is the conformal Laplacian operator the reader is refereed to [18] for more
detail on the question.

2. Motivation and generality

We start by giving a short motivation by recalling some results. Indeed, in [1]
Ammann and Humbert defined the Yamabe invariant of high order μp by
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Definition 2.1.

μp = inf
g∈[g]

λp(g) [vol(M, g)]
2
n

where

λp(g) = inf
V ∈Gru

p (H2
k(M))

sup
v∈V \{0}

∫
M

vPgvdvg∫
M

uN−2v2dvg

is the pth eigenvalue of the conformal Laplacian Pg, g = u
4

n−2k g is a generalized
metric, p ∈ N

∗ and the Grassmannian Gru
p (H2

k(M)) is given in the Definition
(2.2).

The authors studied the second Yamabe invariant μ2 in the case μ ≥ 0
where μ is the Yamabe invariant. In particular, they obtained the following
theorem:

Theorem 2.1. Let (M, g) be a compact Riemannian manifold of dimension n ≥
3. Assume that μ2 is attained by a generalized metric. Then the following
equation Pgw = μ2u

N−2w has a nodal solution w ∈ C2(M) such that u = |w|.
Inspired by the previous results. In [3], Benalili and Boughazi generalize

this method to the Paneitz-Branson operator on Einsteinian manifolds. Under
some assumptions, they studied μ, μ1 and μ2 in the case Sg > 0 and after ten
years the authors in [5] extend these results to the case Sg < 0. For more detail
and similar work, we refer the readers to Benalili-Boughazi [4], Boughazi [6]
and S. Elsayed [11]. We also specify a very interesting result proven in [11]
which states that the sign of eigenvalue λp(g) is conformal invariant. Clearly,
in this paper we try to find similar results with the GJMS operator. More
precisely, we study μ1 and we show in which case we can get μ1 = μ. Note
that the study of μ2 seems to be much more difficult.

In the following, we quote some facts which will be used in this pa-
per. Put LN

+ (M) = {u ∈ LN (M), u ≥ 0 and u �= 0} and C∞
+ (M) = {u ∈

C∞(M), u > 0}.

Definition 2.2. For all u ∈ LN
+ (M), p ∈ N

∗, the Grassmannian Gru
p (H2

k(M)) is
the set of all subspaces of H2

k(M) of dimension p and such that the restriction
operator to M\u−1(0) is injective. More explicitly, we have the subspace V =
span(v1, . . . , vp) ∈ Gru

p (H2
k(M)) if and only if the functions v1, . . . , vp are

linearly independent on M\u−1(0). Sometimes it will be convenient to use
the equivalent statement that the functions u

4
n−2k v1, u

4
n−2k v2, . . . , u

4
n−2k vp are

linearly independent.

Remark 2.1. The number N = 2n
n−2k is known as the critical exponent of the

Sobolev embedding which [18], asserts that the space H2
k(M) ⊂ Lq(M) where

1 < q ≤ N and this embedding is compact when q < N .

Definition 2.3. A generalized metric conformal to g is a metric of the form
g = u

4
n−2k g such that u ∈ LN

+ (M) where the space LN
+ (M) is defined in the

bottom of the previous page.
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Now, we give some properties of the GJMS operator. For the proofs, the
reader is refereed to Robert [24] and the references therein. The operator Pg

can be written (partially) in divergence form, we precise this divergence form
that will be useful in the sequel:

Proposition 2.1. Let Pg be the conformal GJMS operator. Then for any l ∈
{1, . . . , k − 1}, there exists A(l)(g) a smooth T 0

2l-tensor field on M such that

Pgv = Δk
gv +

k−1∑

l=1

Al,g(v) +
n − 2k

2
Qgv (10)

where
Al,g(v) = (−1)l∇jl...j1(A(l)(g)i1...ilj1...jl

∇i1...ilv). (11)
Indices are raised via the musical isomorphism. In addition for any
l ∈ {1, . . . , k−1}, A(l)(g) is symmetric in the following sense: A(l)(g)(X,Y ) =
A(l)(g)(Y,X) for all T l

0-tensors X,Y on M . In particular, for all u, v ∈ C∞(M)
we have

∫

M

vPgudvg =
∫

M

uPgvdvg =
∫

M

Δ
k
2
g uΔ

k
2
g v +

k−1∑

l=0

A(l)(g)(∇lu,∇lv)dvg (12)

where for l = 0, A(0)(g)(∇0u,∇0v) = n−2k
2 Qguv. Here, we have adopted the

convention

Δ
k
2
g (u) =

{
Δm

g (u) if k = 2m is even
∇Δm

g (u) if k = 2m + 1 is odd

and, when k = 2m + 1 is odd, Δ
k
2
g uΔ

k
2
g v = (∇Δm

g u,∇Δm
g v).

Since A(l)(g) are smooth, then for any l ∈ {0, . . . , k − 1}, there exist
Cl > 0 such that for all u ∈ H2

k(M), one has

|
∫

M

k−1∑

l=0

A(l)(g)(∇lu,∇lu)dvg| ≤
k−1∑

l=0

Cl

∫

M

|∇lu|2dvg ≤ max(Cl)‖u‖2H2
k−1

(13)
As a consequence of (12), we get that the bilinear form (u, v) �→ ∫

M
uPgvdvg

extends to a continuous symmetrical bilinear form on the space H2
k(M) ×

H2
k(M).

We say that Pg is coercive if there exists C > 0 such that
∫

M

vPgvdvg ≥ C‖v‖22 ∀v ∈ H2
k(M). (14)

Proposition 2.2. For all u ∈ H2
k(M), we define the semi-norm ‖u‖Pg

by

‖u‖Pg
=

(∫

M

uPgudvg

) 1
2

. (15)

Assume that Pg is coercive. Then ‖.‖Pg
is a norm on H2

k(M) equivalent to the
standard norm ‖.‖H2

k
. In addition, if (vm)m is a sequence in H2

k(M) such that
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vm −→ 0 weakly in H2
k(M), and vm −→ 0 strongly in H2

k−1(M), then from
Bochner-Lichnerowicz-Weitzenbock type formula, one gets that

∫

M

(|Δ k
2
g (vm)|2dvg =

∫

M

|∇kvm|2dvg + o(1), (16)

The next definition can be found in [18].

Definition 2.4. A Riemannian manifold (M, g) is Einstein, if and only if there
exists a real λ such that the Ricci tensor writes Ricg = λg. Here λ = Sg

n , where
Sg is the scalar curvature and is constant in this case.

The reader is refereed to [14] for the two following propositions:

Proposition 2.3. Assume that (M, g) is Einstein, then Pg expresses as an ex-
plicit product of second-order operators with constant coefficients that depend
only on the scalar curvature. In other words, the GJMS operator Pg is given
by

Pg =
k∏

l=1

(Δg + clSg) where cl =
(n + 2l − 2)(n − 2l)

4n(n − 1)
. (17)

Moreover, by calculating one can write

Pg = Δk
g +

k−2∑

l=0

bk−l−1(Sg)l+1Δk−l−1
g + b0(Sg)k (18)

where bk−1, . . . , b1, b0 are positive real numbers obtained from cl.
In addition, formula (12) implies that
∫

M

uPgudvg =
∫

M

(|Δ k
2
g (u)|2 +

k−1∑

l=0

bk−l−1(Sg)l+1|∇k−l−1u|2)dvg. (19)

Proposition 2.4. Assume that the metric g is Einstein with Sg > 0 and n > 2k,
then Pg is coercive and for all u ∈ C2k(M) such that Pgu ≥ 0, either u > 0
or u ≡ 0.

In this definition, we are going to introduce the best constant in the
Sobolev embedding D2

k(Rn) ⊂ LN (Rn). The reader is refereed to Lions [20].

Definition 2.5. Let D2
k(Rn) be the space defined as the completion of C∞

c (Rn)
for the norm ‖Δ

k
2 u‖2. It is well know that

K0
−1 = inf

u∈D2
kR

n)−{0}

∫
Rn |Δ k

2 u|2dvg

(
∫
Rn |u|Ndvg)

2
N

(20)

and K0 is the best constant in the Sobolev’s continuous embedding D2
k(Rn) ⊂

LN (Rn). It follows from Sobolev’s embedding theorem that K0 > 0. Moreover,
the infimum is achieved by U : x �−→ (1 + |x|2)k− n

2 , and that all minimizers
are compositions of U by translations, homotheties and dilatations.

We also introduce the following results. For the proofs, the reader is
refereed to Mazumdar [21].
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Theorem 2.2. Let (M, g) be a compact Riemannian manifold of dimension n
and let k be a positive integer such that 2k < n. For any ε > 0, there exists
Bε > 0 such that for all u ∈ H2

k(M) one has

‖u‖2N ≤ (K0 + ε)
∫

M

|Δ k
2
g (u)|2dvg + Bε‖u‖2H2

k−1
. (21)

where K0 is given by formula (20).

Moreover, for all v ∈ C∞(M), there exists C > 0 (depend on ‖v‖∞) such
that ∫

M

|Δ k
2
g (vu)|2dvg ≤ C

∫

M

|Δ k
2
g (u)|2dvg + ‖u‖2H2

k−1
(22)

where u ∈ H2
k(M).

Proposition 2.5. Let (M, g) be a closed manifold of dimension n and let k be
a positive integer such that 2k < n. Let f ∈ C0,α(M) a Hölder continuous
function. Suppose that u ∈ H2

k(M) be a weak solution of Pgu = f |u|N−2u.
Then u ∈ C2k(M), and is a classical solution of the above equation. Further
if u > 0 and f ∈ C∞(M), then u ∈ C∞(M).

3. Generalized metrics and the first eigenvalue

Theorem 3.1. For any generalized metric g = u
4

n−2k g, assume that u > 0.
Then any normalized minimizing sequence of λ1(g) is bounded in H2

k(M).

Proof. Let (vm)m be a minimizing sequence of λ1(g), in other words

λ1(g) = lim
m−→+∞ λ1,m where λ1,m =

∫
M (|Δ

k
2
g (vm)|2 +

k−1∑

l=0
A(l)(g)(∇lvm, ∇lvm))dvg

∫
M uN−2v2

mdvg
.

It is easy to see that (λvm)m is also a minimizing sequence, then if we choose
λ = (

∫
M

uN−2v2
mdvg)− 1

2 , it follows that
∫

M
uN−2(λvm)2dvg = λ2

∫
M

uN−2v2
m

dvg = 1, hence the sequence (λvm)m is renormalized. Without loss of general-
ity, we assume that the sequence (vm)m is such that

∫

M

uN−2v2
mdvg = 1. (23)

1) If λ1(g) > 0, then for all v in H2
k(M) � {0}, one has

∫

M

vPgvdvg ≥ λ1(g)
∫

M

uN−2v2dvg

≥ λ1(g)min
x∈M

u(x)N−2

︸ ︷︷ ︸
C

∫

M

v2dvg since u > 0

≥ C‖v‖22
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this means that Pg is coercive. Then Proposition (2.2) implies that ‖.‖Pg
is

a norm on H2
k(M) equivalent to the standard norm ‖.‖H2

k
, then for m large

enough, one has

λ1,m =
∫

M

vmPgvmdvg = ‖vm‖2Pg
≤ λ1(g) + 1,

hence the sequence (vm)m is bounded in H2
k(M) and λ1,m ≥ 0.

2) If λ1(g) < 0, the GJMS operator is not necessarily coercive, then we
will assume that (vm)m is not bounded in H2

k(M), in other words ‖vm‖H2
k

−→
+∞ and we let

v′
m =

vm

‖vm‖H2
k

.

Clearly ‖v′
m‖H2

k
= 1, this means that the sequence (v′

m)m is bounded in H2
k(M)

and after restriction to a subsequences still labeled (v′
m)m, we may assume that

there exists v′ ∈ H2
k(M) such that v′

m −→ v′ weakly in H2
k(M) and v′

m −→ v′

strongly in H2
k−1(M).

On the other hand, the sequence (v′
m)m satisfies the following equation:

∫

M

(|Δ k
2
g (v′

m)|2dvg +
k−1∑

l=0

∫

M

A(l)(g)(∇lv′
m,∇lv′

m)dvg = λ1,m

∫

M

uN−2v′2
mdvg.

(24)
Now from the weak convergence, we have

lim
∫

M

uN−2v′v′
mdvg =

∫

M

uN−2(v′)2dvg,

and since

0 ≤
∫

M
uN−2(v′ − v′

m)2dvg =

∫

M
uN−2(v′)2dvg − 2

∫

M
uN−2v′v′

mdvg +

∫

M
uN−2(v′

m)2dvg

one has,
∫

M

uN−2(v′)2dvg ≤
∫

M

uN−2(v′
m)2dvg =

∫
M

uN−2v2
mdvg

‖vm‖2
H2

k

=
1

‖vm‖2
H2

k

−→ 0.

(25)
Consequently,

∫

M

uN−2(v′)2dvg = 0

and since u > 0, it is easy to see that

v′ ≡ 0.

It follows that v′
m −→ 0 weakly in H2

k(M) and v′
m −→ 0 strongly in H2

k−1(M)
therefore,

∫

M

k−1∑

l=0

|∇lv′
m|2dvg −→ 0 (26)
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then by (26) and using (13), one has also
k−1∑

l=0

∫

M

A(l)(g)(∇lv′
m,∇lv′

m)dvg −→ 0. (27)

Again by (26), the following equality

1 = ‖v′
m‖2H2

k
=

∫

M

|∇kv′
m|2dvg +

∫

M

k−1∑

l=0

|∇lv′
m|2dvg

leads necessarily to
∫

M

|∇kv′
m|2dvg −→ 1.

Independently, from formula (16) i.e
∫

M

(|Δ k
2
g (v′

m)|2dvg =
∫

M

|∇kv′
m|2dvg + o(1),

this implies that ∫

M

(|Δ k
2
g (v′

m)|2dvg −→ 1. (28)

Since λ1(g) < 0, then for m large enough λ1,m < 0, it follows from (24), (25),
(27) and (28) that the sequence (v′

m)m is such that
∫

M

(|Δ k
2
g (v′

m)|2dvg

︸ ︷︷ ︸
−→1

+
k−1∑

l=0

∫

M

A(l)(g)(∇lv′
m,∇lv′

m)dvg

︸ ︷︷ ︸
−→0

= λ1,m

∫

M

uN−2(v′
m)2dvg

︸ ︷︷ ︸
−→a

,

where a ≤ 0 or does not exist, in all cases this gives a contradiction. This
proves that (vm)m is bounded in H2

k(M).
Moreover, we have

−
∫

M

|∇kvm|2dvg ≤
∫

M

(|Δ k
2
g (vm)|2dvg,

which lead to

−
∫

M

|∇kvm|2dvg − max(Cl)‖u‖2H2
k−1

≤
∫

M

(|Δ k
2
g (vm)|2dvg

+
k−1∑

l=0

∫

M

A(l)(g)(∇lvm,∇lvm)dvg

where max(Cl) is given by (13), this means that

min(−1,−max(Cl))‖vm‖2H2
k

≤
∫

M

(|Δ k
2
g (vm)|2 +

k−1∑

l=0

∫

M

A(l)(g)(∇lvm,∇lvm)dvg

In other words,

λ1,m ≥ min(−1,−max(Cl))‖vm‖2H2
k



NoDEA The first GJMS invariant Page 11 of 27 7

and since (vm)m is bounded, then there exists M > 0 such that

λ1,m ≥ min(−1,−max(Cl))M > −∞.

�

Proposition 3.1. Assume that λ1(g) < 0, then there exists u ∈ LN
+ (M) such

that λ1(g) = −∞ where g = u
4

n−2k g.

Proof. Since λ1(g) < 0, there exist a function v ∈ C∞(M) such that
∫

M
vPgvdvg <

0. Fix a point p in M . For ε > 0, let φε be a cut-off function adapted to our
context, in other words a smooth function such that :

⎧
⎪⎪⎨

⎪⎪⎩

0 ≤ φε ≤ 1
φε = 0 on Bε(p) and φε = 1 on M\B2ε(p)
|∇lφε| ≤ cl

εl for all l in {1, 2, ..., k − 1} (281)

|Δ k
2
g φε| ≤ ck

εk (282)

where Bε(p) is the open ball centered at p and of radius ε and cl > 0 are
constants that do not depend on ε.

We claim that:

lim
ε→0

∫

M

(φεv)Pg(φεv)dvg =
∫

M

vPgvdvg < 0.

Indeed:
Set Aε(p) = B2ε(p)\Bε(p), then one has

∫

M

(φεv1)Pn
g (φεv1)dvg =

∫

Bε(p)

(φεv)Pg(φεv)dvg

︸ ︷︷ ︸
I1

+
∫

Aε(p)

(φεv)Pg(φεv)dvg

︸ ︷︷ ︸
I2

+
∫

M\B2ε(p)

(φεv)Pg(φεv)dvg

︸ ︷︷ ︸
I3

.

Clearly the first integral I1 = 0 (since φε = 0 on the ball Bε(p)). For the second
integral I2 since v ∈ C∞(M), we can find a constant C > 0 such that

|I2| ≤
∫

Aε(p)

(|Δ k
2
g (φεv)|2 +

k−1∑

l=0

|A(l)(g)(∇lφεv,∇lφεv)|)dvg

≤ C

(∫

Aε(p)

(|Δ k
2
g (φε)|2 +

k−1∑

l=0

|∇l(φε)|2)dvg

)

. (29)

The latter inequality (29) is a direct consequence of formula (22).
Using (281), (282), (29) and passing to the polar coordinates, we can

easily find constants Ck, Ck−1, . . . , C0 > 0 such that,

|I2| ≤ Ck

ε2k

∫ 2ε

ε

rn−1dr +

(
k−1∑

l=0

Cl

ε2l

)∫ 2ε

ε

rn−1dr −→
ε→0

0 since n > 2k
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which means that the second integral:

I2 −→
ε→0

0.

And finally since φε = 1 on M\B2ε(p), the third integral I3 =
∫

M\B2ε(p)
vPgvdvg.

This implies that:

lim
ε→0

∫

M

(φεv)Pg(φεv)dvg = lim
ε→0

(I1 + I2 + I3) = lim
ε→0

I3 =
∫

M

vPgvdvg < 0.

If we put w = φεv, for ε small enough, we still have
∫

M
wPgwdvg < 0.

Now, let uε ≥ 0 be a smooth function with support in Bε(p) and let

g = u
N−2

k
ε g since

λ1(g) = inf
v∈H2

k(M),v �=0

∫
M

vPgvdvg
∫

M
uN−2

ε v2dvg

it follows that for any real α > 0, one has

λ1(g) � lim
α−→0

∫
M

(w + α)Pg(w + α)dvg
∫

M
uN−2

ε (w + α)2dvg

= −∞.

Indeed

lim
α→0

∫

M

uN−2
ε (w + α)2dvg = 0

and

lim
α→0

(
∫

M

(w + α)Pg(w + α)dvg =
∫

M

wPgwdvg < 0.

�

Theorem 3.2. Let g = u
4

n−2k g be any generalized metric to g such that u > 0.
Assume that λ1(g) > 0. Then there exists a nontrivial function v in H2

k(M)
such that, in the weak sense, v satisfy :

Pgv = λ1(g)uN−2v and
∫

M

uN−2v2dvg = 1 (30)

Moreover, if u ∈ C∞(M), then v ∈ C∞(M) and if (M, g) is Einstein and
Sg > 0, the solution v > 0.

Proof. Let (vm)m be a minimizing sequence for λ1(g). In other words, the
sequence (vm)m ∈ H2

k(M), u
N−2

2 vm �= 0 and such that

lim
m

∫
M

vmPgvmdvg∫
M

uN−2v2
mdvg

= λ1(g). (31)

Without loss of generality, we can always normalize vm by
∫

M
uN−2v2

mdvg = 1.
Since λ1(g) > 0, Pg is coercive. Then Theorem (3.1) implies that the

sequence (vm) is bounded in H2
k(M), and after restriction to a subsequence

we may assume that there exists v in H2
k(M) such that vm → v weakly in

H2
k(M), strongly in H2

k−1(M) and almost everywhere in M . Again since Pg is
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coercive, Proposition (2.2) implies that ‖.‖Pg
is a norm on H2

k(M) equivalent
to the standard norm ‖.‖H2

k
, then by standard argument, one has

∫

M

vPgvdvg ≤ lim inf
∫

M

vmPgvmdvg = λ1(g),

as in [6] from (Lemma (4)), we get
∫

M

uN−2|v2 − v2
m| dvg → 0 i.e

∫

M

uN−2v2dvg = 1

and since λ1(g) is the infimum, one gets
∫

M

vPgvdvg = λ1(g).

Consequently v is a non-trivial weak minimizer of the functional associated
to λ1(g). Writing the Euler-Lagrange equation, we find that v satisfies in the
weak sense the equation

Pgv = λ1(g)uN−2v.

Moreover, since v is nontrivial, we have

λ1(g) =
∫

M

vPgvdvg = ‖v‖2Pg
> 0. (32)

If u ∈ C∞
+ (M), we get λ1(g)uN−2v ∈ H2

k(M), then Pgv ∈ H2
k(M) and by

regularity theorems v ∈ H2
3k(M), it follows by successive iterations that v ∈

H2
l (M) where l is large enough and finally if 1

2 < l−m
n , one gets

H2
l (M) ⊂ Cm(M)

so we can take m = 2k i.e

v ∈ C2k(M), therefore v ∈ C∞(M).

In particular, if (M, g) is Einstein and Sg > 0, from [6] (Proposition (7)), one
has

v > 0.

�

Remark 3.1. Let v be the solution of the Eq. (30). Then there exists a non-
trivial function w in H2

k(M) such that, in the weak sense one has :

Pgw = λ′
2(g)uN−2w

with the constraints
∫

M
uN−2w2dvg = 1 and

∫
M

uN−2vwdvg = 0 where

λ′
2(g) = inf

∫
M

vPgvdvg∫
M

uN−2v2dvg

and the infimum is taken over the set

E =

{

w ∈ H
2
k(M) such that u

N−2
2 w �= 0,

∫

M

u
N−2

w
2
dvg = 1 and

∫

M

u
N−2

wvdvg = 0

}

.
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Proof. Let (wm)m be a minimizing sequence for λ′
2(g), with the same method

as above, we find non trivial minimizer w to λ′
2(g) such that Pgw = λ′

2(g)uN−2w
in the weak sens with

∫
M

uN−2w2dvg = 1. Now writing
∫

M

uN−2wvdvg =
∫

M

uN−2wmv − uN−2wmv + uN−2wvdvg

=
∫

M

uN−2v(w − wm)dvg +
∫

M

uN−2wmvdvg = 0.

As the sequence wm ∈ E,
∫

M
uN−2wmvdvg = 0, and by using the weak con-

vergence of wm to w in LN (M) and since uN−2v ∈ L
N

N−1 (M) where L
N

N−1 (M)
is the dual space of LN (M), we get

∫
M

uN−2v(w − wm)dvg → 0 thus,
∫

M

uN−2wvdvg = 0.

If u ∈ C∞
+ (M), one also gets w ∈ C2k(M) and finally, as in [6] it follows that

λ′
2(g) = λ2(g). �

Proposition 3.2. Let (M, g) be a compact Riemannian manifold of dimension
n ≥ 3. Assume that g is a conformal metric and λ1(g) > 0. If Qg ≤ 0, then
the solution v of (30) is nodal.

Proof. By Theorem (3.2), v satisfies the equation Pgv = λ1(g)uN−2v,
then from (10), one can write

Δk
gv +

k−1∑

l=1

Al,g(v) +
n − 2k

2
Qgv = λ1(g)uN−2v

Integrating over M, we get that
∫

M

Δk
gvdvg +

k−1∑

l=1

∫

M

Al,g(v)dvg +
∫

M

n − 2k

2
Qgvdvg = λ1(g)

∫

M

uN−2vdvg.

Since g is conformal, again from Theorem (3.2), v ∈ C∞(M) and this implies
that
∫

M

Δk
gvdvg

︸ ︷︷ ︸
=0

+
k−1∑

l=1

∫

M

Al,g(v)dvg

︸ ︷︷ ︸
=0

+
∫

M

n − 2k

2
Qgvdvg = λ1(g)

∫

M

uN−2vdvg.

Since λ1(g) > 0 and Qg ≤ 0, hence if v ≥ 0, one has
∫

M

Qgvdvg

︸ ︷︷ ︸
≤0

=
∫

M

λ1(g)uN−2vdvg

︸ ︷︷ ︸
>0

this makes a contradiction, if v ≤ 0, one has
∫

M

Qgvdvg

︸ ︷︷ ︸
≥0

=
∫

M

λ1(g)uN−2vdvg

︸ ︷︷ ︸
<0
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and this is also a contradiction. Consequently, v changes the sign.
If λ1(g) < 0 and Qg ≥ 0. With the same method, we get the same thing.

�

4. Existence of a minimum of µ1

In this section, we study the first GJMS invariant μ1 in case λ1(g) > 0. We
will prove that μ1 is attained by a generalized metric. However, if λ1(g) < 0,
Proposition (3.1) implies that μ1 is not well defined. In other words, from the
variational characterization of μ1, one has

μ1 = −∞.

In order to prove Theorem (4.1), we prove some useful lemmas.

Definition 4.1. In this definition, we precise the formula (9). Indeed, by using
the definition of λ1(g) formula (8), the first GJMS invariant μ1 is given by

μ1 = inf
g∈[g]

λ1(g)V ol(M, g)
2k
n

= inf
u∈C∞

+ (M)

V ∈Gru
1 (H2

k
(M))

sup
v∈V ∗

∫
M

vPgvdvg∫
M

uN−2v2dvg

(∫

M

uNdvg

) 2k
n

.

Lemma 4.1. We have:
μ1 ≤ μ (33)

where μ is the GJMS invariant, see (4).

Proof.

μ1 = inf
g∈[g]

λ1(g)V ol(M, g)
2k
n

= inf
g∈[g]

λ1(u
N−2

k g)V ol(M, g)
2k
n

= inf
u∈C∞

+ (M)

(

inf
V ∈Gru

1 (H
2
k(M))

sup
v∈V ∗

∫
M

vPgvdvg∫
M

uN−2v2dvg

)(∫

M

uNdvg

) 2k
n

where V ∗ = V \{0}.
From the embedding C∞

+ (M) ⊂ H2
k(M), one can write

μ1 ≤ inf
u∈C∞

+ (M)
V ∈Gru

1 (C∞
+ (M))

sup
v∈V ∗

∫
M

vPgvdvg∫
M

uN−2v2dvg

(∫

M

uNdvg

) 2k
n

in particular for u = v, one has

μ1 ≤ inf
u∈C∞

+ (M)
V ∈Gru

1 (C∞
+ (M))

sup
v∈V ∗

∫
M

vPgvdvg∫
M

vN−2v2dvg

(∫

M

vNdvg

) 2k
n
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≤ inf
u∈C∞

+ (M)
V ∈Gru

1 (C∞
+ (M))

sup
v∈V ∗

∫
M

vPgvdvg

(
∫

M
vNdvg)1− 2k

n

≤ inf
u∈C∞

+ (M)
V ∈Gru

1 (C∞
+ (M))

sup
v∈V ∗

∫
M

vPgvdvg

(
∫

M
vNdvg)

2
N

.

Since V ∈ Gru
1 (C∞

+ (M), V = {λv, λ ∈ R
∗} where v ∈ C∞

+ (M), then we deduce
that:

sup
v∈V ∗

∫
M

vPgvdvg

(
∫

M
vNdvg)

2
N

= sup
λ∈R∗

∫
M

(λv)Pg(λv)dvg
(∫

M
(λv)Ndvg

) 2
N

=

∫
M

vPgvdvg

(
∫

M
vNdvg)

2
N

.

This implies that

μ1 ≤ inf
v∈C∞

+ (M)

∫
M

vPgvdvg
(∫

M
vNdvg

) 2
N

= μ.

�

Lemma 4.2. Let (vm) and (um) be two sequences such that vm → v weakly in
H2

k(M), um → u weakly in LN (M) and checking
∫

M
uN−2

m v2
mdvg = 1. Then

∫

M

uN−2
m (vm − v)2dvg = 1 −

∫

M

uN−2v2dvg + o(1).

Proof. Writing
∫

M

uN−2
m (vm − v)2dvg =

∫

M

uN−2
m vm

2dvg +
∫

M

uN−2
m v2dvg −

∫

M

2uN−2
m vmvdvg

= 1 +
∫

M

uN−2
m v2dvg −

∫

M

2uN−2
m vmvdvg.

The sequence uN−2
m is bounded in L

N
N−2 (M) and converges almost everywhere

to uN−2 on M , hence uN−2
m → uN−2 weakly in L

N
N−2 (M).

This means that for all φ in L
N
2 (M), one gets

∫
M

uN−2
m φdvg

→ ∫
M

uN−2φdvg.
In particular for φ = v2, we obtain

∫

M

uN−2
m v2dvg →

∫

M

uN−2v2dvg.

On the other hand since
∫

M

uN−2
m

N
N−1 v

N
N−1
m dvg ≤

(∫

M

um
Ndvg

)N−2
N−1

(∫

M

vN
mdvg

) 1
N−1

this means that the sequence uN−2
m vm is also bounded in L

N
N−1 (M) and since

uN−2
m vm goes to uN−2v almost everywhere, one has uN−2

m vm → uN−2v weakly
in L

N
N−1 (M), then for all φ ∈ LN (M), one has

∫
M

uN−2
m vmφdvg

→ ∫
M

uN−2vφdvg. In particular for φ = v ∈ LN (M), we obtain
∫

M

uN−2
m vmvdvg →

∫

M

uN−2v2dvg
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Consequently,
∫

M

uN−2
m (vm − v)2dvg = 1 −

∫

M

uN−2v2dvg + o(1). (34)

�

Theorem 4.1. Let (M, g) be a compact Riemannian manifold of dimension n ≥
3. Assume that λ1(g) > 0 and

1 − μK0 > 0 (35)

where μ is the GJMS invariant and K0 is given by (20). Then there exist two
nontrivial functions u ∈ LN

+ (M) and v ∈ H2
k(M) such that in the weak sense,

we have

Pgv = μ1u
N−2v and

∫

M

uN−2v2dvg = 1. (36)

In other words, μ1 is attained by a generalized metric.

Proof. let gm = u
4

n−2k
m g be a minimizing sequence of conformal metrics of μ1,

a sequence of metrics such that um ∈ C∞(M), um > 0 and

μ1 = lim
m

λ1(gm)vol(M, gm)
2k
n

For more clarity we set : λ1(gm) = λ1,m.
Without loss of generality, we may assume that

vol(M, gm) =
∫

M

uN
mdvg = 1. (37)

Indeed, since

2kN

n
=

2k2n

n(n − 2k)
=

2n

n − 2k
− 2 = N − 2,

it follows that for any λ > 0, one gets

I(λu, v) =

∫
M

vPgvdvg∫
M

(λu)N−2v2dvg

(∫

M

(λu)Ndvg

) 2k
n

= I(u, v).

This means that if (um) is a minimizing sequence, (λum)m is also is a mini-
mizing sequence, just choose λ = (

∫
M

uN
mdvg)− 1

N . i.e

μ1 = lim
m

λ1,m.

Step 1: Firstly, (37) implies that the sequence (um)m is bounded in LN (M),
hence there exists u ∈ LN (M), u ≥ 0 such that um → u weakly in LN (M)
and by standard argument, we get

∫

M

uNdvg ≤ lim inf
∫

M

uN
mdvg = 1. (38)

Now, we are going to prove that the generalized metric u
4

n−2k g with u ∈
LN (M), u ≥ 0 and u �= 0 minimizes μ1.
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Since λ1(g) > 0, Pg is coercive. Then for all um ∈ C∞(M), Theorem(3.2)
implies the existence of vm ∈ C∞(M) such that

Pgvm = λ1,muN−2
m vm and

∫

M

uN−2
m v2

mdvg = 1.

Now for m large enough, we may assume that

λ1,m ≤ μ1 + 1

which implies that

‖vm‖2Pg
=

∫

M

vmPgvmdvg = λ1,m ≤ μ1 + 1.

Hence the sequence (vm)m is bounded in H2
k(M), then there exists v ∈ H2

k(M)
such that vm −→ v weakly in H2

k(M) and vm −→ v strongly in H2
k−1(M). This,

together with the weak convergence of (um)m, imply that the function v is a
weak solution of the following equation

Pgv = μ1u
N−2v. (39)

Step 2: we show that u, v are not identically null.
Letting ϕm = vm − v and

A =
∫

M

uN−2
m ϕ2

mdvg. (40)

Clearly ϕm → 0 and the strong convergence of ϕm in H2
k−1(M) implies that

∫

M

k−1∑

l=0

|∇l(ϕm)|2dvg = o(1) and
k−1∑

l=0

∫

M

A(l)(g)(∇lϕm,∇lϕm)dvg = o(1).

Then by Hölder inequality, Theorem (2.2) and Brezis-Lieb lemma, one has

A ≤
(∫

M

(um)N−2 N
N−2 dvg

)N−2
N

(∫

M

(ϕm

)N
2 2

dvg)
2
N

≤ ‖ϕm‖2N

≤ (K0 + ε)
∫

M

|Δ k
2
g ϕm|2dvg + Bε

∫

M

k−1∑

l=0

|∇lϕm|2dvg

≤ (K0 + ε)
∫

M

|Δ k
2
g (vm)|2 − |Δ k

2
g (v)|2dvg + o(1).

Therefore,

A ≤ (K0 + ε)
∫

M

(|Δ k
2
g (vm)|2 − |Δ k

2
g (v)|2)dvg

+
k−1∑

l=0

∫

M

A(l)(g)(∇lϕm,∇lϕm)dvg + o(1).
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Again from the strong convergence in H2
k−1(M), one also gets

k−1∑

l=0

∫

M

A(l)(g)(∇lϕm,∇lϕm)dvg =
k−1∑

l=0

∫

M

A(l)(g)(∇lvm,∇lvm)dvg

−
k−1∑

l=0

∫

M

A(l)(g)(∇lv,∇lv)dvg + o(1),

then

A ≤ (K0 + ε)
[∫

M

(|Δ k
2
g (vm)|2 − |Δ k

2
g (v)|2)dvg

+
k−1∑

l=0

∫

M

A(l)(g)(∇lvm,∇lvm)dvg −
k−1∑

l=0

∫

M

A(l)(g)(∇lv,∇lv)dvg

]

+ o(1).

Since
∫

M

vPgvdvg =
∫

M

(|Δ k
2
g (v)|2 +

k−1∑

l=0

∫

M

A(l)(g)(∇lv,∇lv)dvg,

We deduce that

A ≤ (K0 + ε)
(∫

M

vmPgvm − vPgvdvg

)

+ o(1)

≤ (K0 + ε)
(

λ1,m −
∫

M

vPgvdvg

)

+ o(1)

≤ (K0 + ε)
(

λ1,m − μ1

∫

M

uN−2v2dvg)
)

+ o(1)

Independently, with Lemma (4.2) formula (34), we have

A = 1 −
∫

M

uN−2v2dvg + o(1)

then it follows that

1 −
∫

M

uN−2v2dvg ≤ (K0 + ε)
(

λ1,m − μ1

∫

M

uN−2v2dvg)
)

+ o(1).

Now when m → +∞, one gets

1 −
∫

M

uN−2v2dvg ≤ (K0 + ε)(μ1 − μ1

∫

M

uN−2v2dvg)

therefore,

1 − (K0 + ε)μ1 ≤
∫

M

uN−2v2dvg − (K0 + ε)μ1

∫

M

uN−2v2dvg

and this leads that

1 − K0μ1 ≤ (1 − K0μ1)
∫

M

uN−2v2dvg + εμ1(1 −
∫

M

uN−2v2dvg). (41)
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Now, by using Lemma (4.1) formula (33) and the assumption (35), one easily
has 1 − K0μ1 > 0 and as we can choose ε sufficiently small enough, (41)
necessarily implies that ∫

M

uN−2v2dvg ≥ 1.

Fatou’s lemma, implies that
∫

M

uN−2v2dvg ≤ lim inf
∫

M

uN−2
m v2

mdvg = 1

then we deduce that ∫

M

uN−2v2dvg = 1.

This implies that v and u are not identically null which means that μ1 is
attained by the generalized metric u

4
n−2k g. Moreover, we obtain

μ1 = ‖v‖2g =
∫

M

vPgvdvg > 0. (42)

�

5. Nonlinear GJMS equation and nodal solution

In this section, we show that the equation Pgv = μ1|v|N−2v has a nodal
solution if Qg ≤ 0.

Theorem 5.1. Let (M, g) be a compact Riemannian manifold of dimension
n ≥ 3. Assume that μ1 is attained by the generalized metric u

4
n−2k g where

u ∈ LN
+ (M). Then u = |v| where v ∈ H2

k(M), v is a solution weak of
Pgv = μ1u

N−2v and such that
∫

M
uN−2v2dvg = 1. Moreover, the function

v ∈ C2k(M) and if Qg ≤ 0, then v changes the sign.

Proof. Let the function h = a|v| ∈ LN
+ (M) with a > 0 chosen such that∫

M
hNdvg = 1, by definition

μ1 ≤
∫

M
vPgvdvg∫

M
hN−2v2dvg

=
μ1

∫
M

uN−2v2dvg∫
M

hN−2v2dvg
=

a2μ1

∫
M

uN−2v2dvg

a2
∫

M
hN−2v2dvg

=
μ1

∫
M

uN−2(av)2dvg∫
M

(a|v|)N−2(av)2dvg
=

μ1

∫
M

uN−2(av)2dvg∫
M

hNdvg
= μ1

∫

M

uN−2(a|v|)2dvg.

By using (38) and Hölder’s inequality, it follows that

μ1 ≤ μ1

(∫

M

uN−2 N
N−2 dvg

)N−2
N

(∫

M

(a|v|)2N
2 dvg

) 2
N

≤ μ1

(∫

M

uNdvg

)N−2
N

(∫

M

hNdvg

) 2
N

≤ μ1

(∫

M

uNdvg

)N−2
N

≤ μ1, (43)
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this implies that we have both equality in the Hölder inequality. The equality
in the Hölder inequality implies that there exists a constant b > 0 such that :

u = b|v|.
From the equality 1 =

∫
M

uN−2v2dvg = bN−2
∫

M
|v|Ndvg, we obtain

1
bN−2

=
∫

M

|v|Ndvg.

(43) implies that
∫

M
uNdvg = 1, then it follows that

bN

∫

M

|v|Ndvg = 1

which leads to
1

bN−2
=

∫

M

|v|Ndvg =
1

bN
.

Therefore

b = 1 and u = |v|.
Hence, v is a weak solution of

Pgv = μ1|v|N−2v (44)

and from standard regularity see Proposition(2.5), we get that v ∈ C2k(M). In
addition, since μ1 > 0 and Qg ≤ 0, by following the same proof of Proposition
(3.2), we deduce that the function v changes the sign. �

6. Case of Einsteinian manifold and positive solution

In this section, on Einstein manifold when Sg > 0, we will prove that the
solution v of Eq. (44) is positive, μ1 = μ and is attained by a conformal
metric which leads to the existence of a metric g conformal to g such that the
Q-curvature is constant. In the case Sg < 0, and k is odd, the solution is nodal.

Theorem 6.1. Let (M, g) be a compact Einstein manifold of dimension n ≥ 3.
Assume that Sg > 0 and 1−μK0 > 0 where μ is the GJMS invariant and K0 is
given by formula (20). Then μ1 is attained by the conformal metric u

4
n−2k g. In

other words, there exists u ∈ C∞(M), u > 0 solution to the following equation

Pgu = μ1u
N−1 such that

∫

M

vNdvg = 1.

Proof. We follow the same proof of Theorem (4.1).

Let gm = u
4

n−2k
m g be a minimizing sequence of conformal metrics of μ1, a

sequence of metrics such that um ∈ C∞(M), um > 0 and

μ1 = lim
m

λ1,m and
∫

M

uN
mdvg = 1. (45)

Firstly, (45) implies that the sequence (um)m is bounded in LN (M), hence
there exists u ∈ LN (M), u ≥ 0 such that um → u weakly in LN (M).
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Since (M, g) is Einstein and Sg > 0, Pg is coercive. Then for all um ∈
C∞(M), Theorem(3.2) implies the existence of vm ∈ C∞(M) such that vm > 0
and

Pgvm = λ1,muN−2
m vm and

∫

M

uN−2
m v2

mdvg = 1.

Now for m large enough, we may assume that

λ1,m ≤ μ1 + 1

which implies that

‖vm‖2Pg
=

∫

M

vmPg(vm)dvg = λ1,m ≤ μ1 + 1.

Hence the sequence (vm)m is bounded in H2
k(M), then there exists v ∈ H2

k(M)
such that v ≥ 0, vm −→ v weakly in H2

k(M) and vm −→ v strongly in
H2

k−1(M). This, together with the weak convergence of (um)m, imply that the
function v is a weak solution of the following equation

Pgv = μ1u
N−2v. (46)

and in particular
v ≥ 0.

Since 1−μK0 > 0, by step (2) of the poof of Theorem (4.1), the functions u, v
satisfy

∫
M

uN−2v2dvg = 1 and are not identically null. Since v ≥ 0, we let the
function h = av ∈ LN

+ (M) where a > 0 chosen such that
∫

M
hNdvg = 1 and

by following the same proof of Theorem (5.1), one has

u = v.

Therefore, v is a weak solution of

Pgv = μ1v
N−1

and from standard regularity see Proposition (2.5), we get that v ∈ C2k(M).
In particular since v ≥ 0 and μ1 > 0, one has Pgv ≥ 0 and since v �= 0, it
follows from Proposition (2.4) that v > 0 and again by regularity v ∈ C∞(M).

Now since
∫

M
vPgvdvg = μ1,

∫
M

|v|Ndvg = 1 and from the definition of
μ, one has

μ ≤
∫

M
vPgvdvg

(
∫

M
|v|Ndvg)

2
N

= μ1. (47)

It follows that
μ ≤ μ1,

and by Lemma (4.1) formula (33), we get that

μ1 = μ.

Therefore, the infimum μ1 is achieved by the conformal metric g = u
4

n−2k g
and this means that metric g is such that the Q-curvature

Qg =
2

n − 2k
μ1.

�
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A more interesting situation on Einstein manifold is when Sg < 0, this
implies that

∫
M

vPgvdvg can be negative or positive and consequently the
eigenvalues follow same thing contrary to the case Sg > 0 which implies only
the positivity of eigenvalues.

Corollary 6.1. Let (M, g) be a smooth compact Einstein manifold of dimension
n ≥ 3, assume that Sg < 0, λ1(g) > 0 and 1 − μK0 > 0. If k is odd, the
following equation

Pgv = μ1|v|N−2v (48)
has a nodal solution v ∈ C2k(M).

Proof. Since λ1(g) > 0 and 1 − μK0 > 0, Theorem (4.1) implies that μ1 is
attained by a generalized metric and since (M, g) is Einstein, by using (18),
(48) can be written as

Δk
gu +

k−2∑

l=0

bk−l−1(Sg)l+1Δk−l−1
g u + b0(Sg)ku = μ1u

N−2v

where bk−1, . . . , b1, b0 are positive real numbers. Therefore, if k is odd, b0(Sg)k <

0 and by applying Theorem (5.1) with n−2k
2 Qg = b0(Sg)k, we get the result.

�

Proposition 6.1. Let (Sn, h) be the standard unit n-sphere of R
n+1. Then the

GJMS invariant of S
n is such that

μ(Sn) = inf
u∈C∞(Sn),u �=0

∫
Sn uPh(u)dvh

(
∫
Sn |u|Ndvh)

2
N

= K0
−1.

Proof. We follow the same proof of Proposition (1.1) in [10]. Just note here
that the choice of functions ϕ and φε must be adapted to our context, thus
ϕ ∈ H2

k(M) and is chosen such that

ϕ(x) =
(

1 + |x|2
2

)k− n
2

and φε is given in Proposition (3.1).
Indeed, let x0 be some point on Sn, and let φ : S

n\{x0} −→ R
n be the

stereographic projection of pole x0. If δ stands for the Euclidean metric of R
n,

then

(φ−1)∗h = ϕ
N−2

k δ.

By conformal invariance of Pg, we get that for all u ∈ D2
k(Rn),

∫
Rn uPh̃(u)dvh̃

(
∫
Rn |u|Ndvh̃)

2
N

=

∫
Rn |Δ k

2 (uϕ)|2dx

(
∫

Rn

|uϕ|Ndx)
2
N

(49)

where D2
k(Rn) is given in Definition(2.4) and h̃ = (φ−1)∗h. Suppose now that

inf
u∈C∞(Sn),u �=0

∫
Sn uPh(u)dvh

(
∫
Sn |u|Ndvh)

2
N

< K0
−1 (50)
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and let u0 ∈ C∞(Sn), u0 �= 0, be such that
∫

Sn u0Ph(u0)dvh

(
∫
Sn |u0|Ndvh)

2
N

< K0
−1.

Fix a point p in S
n. For ε > 0, let φε be cut-off function i.e. a family of smooth

functions on S
n such that :

⎧
⎪⎪⎨

⎪⎪⎩

0 ≤ φε ≤ 1
φε = 0 on Bε(p) and φε = 1 on S

n\B2ε(p)
|∇lφε| ≤ cl

εl for all l ∈ {1, 2, ..., k − 1}
|Δ k

2
g φε| ≤ ck

εk

where Bε(p) is the open ball centered at p and of radius ε and cl are constants
that do not depend on ε. In order to get such a family, we might fix some φε0 as
above, for instance, radially symmetric, and set then, for ε ≤ ε0, φε = φε0(

r
ε )

where r is the distance on S
n from x0 to x. Let uε = φεu0, one easily gets

lim
ε−→0

∫
Sn uεPh(uε)dvh

(
∫
Sn |uε|Ndvh)

2
N

=

∫
Sn u0Ph(u0)dvh

(
∫
Sn |u0|Ndvh)

2
N

.

As in the proof of Proposition (3.1), one has

lim
ε−→0

1
ε2k

Vh(B2ε(p)\Bε(p)) = 0 since n > 2k,

where V (Ω) stands for the volume of Ω with respect to h. Choosing ε suffi-
ciently small, it follows from (49) and (50) that there exists ũε ∈ D2

k(Rn) of
the form

ũε = (uε ◦ φ−1)ϕ,

such that
∫
Rn |Δ k

2 ũε|2dx

(
∫
Rn |ũε|Ndx)

2
N

< K0
−1

and this contradicts (20) see the definition (2.4). Consequently,

inf
u∈C∞(Sn),u �=0

∫
Sn uPh(u)dvh

(
∫

Sn |u|Ndvh)
2
N

= K0
−1.

�

In the following proposition, we are going to show that there are certain
manifolds such that the assumption 1 − μK0 > 0 holds.

Proposition 6.2. Let (Sn, h) be the standard unit n-sphere of R
n+1 and let Gp

be the subgroup of O(n+1) of R
n+1. Let Mp = S

n/Gp be the quotient manifold
and hp is the quotient metric on Mp. Then the GJMS invariant of Mp satisfy
the following inequality

μ(Mp, hp) < K0
−1. (51)
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Proof. Writing n = 2m + 1, we let {zj}, be the natural complex coordinates
on C where j = 1, . . . , m + 1. Given p ≥ 2 integer and let Gp be the subgroup
of O(n + 1) generated by

zj −→ e
2πi

p .

It is easily seen that Gp acts freely on S
n. We let Mp = S

n/Gp be the quotient
manifold. We let up = u/Gp be the quotient function induced by u on Mp

where u is a smooth function on S
n. Noting that

∫

Mp

|Tup|s =
1
p

∫

Sn

|Tu|s (52)

where s is any real number, and T is either the identity operator, the gradient
operator, or the Laplace-beltrami operator. From (52) and for any p ≥ 2, one
gets

μ(Mp, hp) = inf
up∈C∞(Mp),up �=0

∫
Mp

upPhp
(up)dvhp

(
∫
Mp

|up|Ndvhp
)

2
N

=
1
p

( 1p )
2
N

inf
u∈C∞(Sn),u�=0

∫
Sn uPh(u)dvh

(
∫
Sn |u|Ndvh)

2
N

≤ 1

2
2k
n

inf
u∈C∞(Sn),u�=0

∫
Sn uPh(u)dvh

(
∫
Sn |u|Ndvh)

2
N

< inf
u∈C∞(Sn),u�=0

∫
Sn uPh(u)dvh

(
∫
Sn |u|Ndvh)

2
N

since n > 2k.

By Proposition(6.1), we get that μ(Mp, hp) < K0
−1. This ends the proof of

the proposition. �

It is natural to conjecture that one has the following inequality μ < K0
−1

for all compact Riemannian manifold but at our knowledge, this problem is
still open and seems to be hard. However, we think that is very easy to prove
the large inequality μ ≤ K0

−1 by following Aubin’s strategy and we have
equality in this inequality if and only if (M, g) is the standard unit n-sphere
S

n of R
n+1 equipped with its round metric.
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