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Abstract. It is well-known that quadratic or cubic nonlinearities in reaction–
diffusion–advection systems can lead to growth of solutions with small,
localized initial data and even finite time blow-up. It was recently proved,
however, that, if the components of two nonlinearly coupled reaction–
diffusion–advection equations propagate with different velocities, then
quadratic or cubic mixed-terms, i.e. nonlinear terms with nontrivial con-
tributions from both components, do not affect global existence and
Gaussian decay of small, localized initial data. The proof relied on point-
wise estimates to capture the difference in velocities. In this paper we
present an alternative method, which is better applicable to multiple
components. Our method involves a nonlinear iteration scheme that em-
ploys L1–Lp estimates in Fourier space and exploits oscillations in time
and frequency, which arise due to differences in transport. Under the as-
sumption that each component exhibits different velocities, we establish
global existence and decay for small, algebraically localized initial data in
multi-component reaction–diffusion–advection systems allowing for cubic
mixed-terms and nonlinear terms of Burgers’ type.

Mathematics Subject Classification. 35K57, 35B40, 35A01.

Keywords. Reaction–diffusion–advection systems, Long-time asymptotics,
Global existence, Small initial data, Fourier analysis.

1. Introduction

Let n ∈ N≥2. We consider reaction–diffusion–advection (RDA) systems on the
real line of the form

∂tu = D∂xxu + C∂xu + f (u, ∂xu) , u(x, t) ∈ R
n, t ≥ 0, x ∈ R, (1.1)
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where f : Rn ×R
n → R

n is a smooth nonlinearity satisfying f(0, 0),Df(0, 0) =
0 and

D := diag(d1, . . . , dn), C := diag(c1, . . . , cn),

are diagonal matrices with diffusion coefficients di > 0 and velocities ci ∈ R.
System (1.1) describes the dynamics of n diffusive species, which are each
subject to a spatial species-dependent drift, such that the interactions within
and among species are purely nonlinear. Such nonlinear interactions, as well
as differences in diffusion rates and spatial drifts, arise naturally in various
applications.

For instance, in transport-reaction problems in porous media [22] one
distinguishes between mobile species undergoing advection-diffusion and im-
mobile species. Here, mass-action kinetics leads to purely nonlinear interac-
tions [7,15]. In addition, reaction–diffusion models describing the flow down
an inclined plane [4,16] exhibit differences in velocities as perturbations of
the underlying background state are advected at a different speed than bi-
furcating periodic patterns. Here, at the onset of a hydrodynamic instability,
the reaction terms are purely nonlinear. Finally, systems of the form (1.1)
also arise in mathematical applications. For instance, they capture the criti-
cal dynamics at the Eckhaus boundary, where periodic wave-train solutions to
reaction–diffusion systems destabilize through a Hopf instability. The Eckhaus
boundary plays an important role in the theory of pattern formation [1]. We
refer to our prior paper [6] for further discussion and literature references.

We are interested in the effect of the velocities and the nonlinearity
in (1.1) on the long-time dynamics of small, localized initial data. It is ben-
eficial to label nonlinear terms depending on their (possible) effect. To each
term of the form

n∏

i=1

n∏

j=1

uai
i (∂xuj)

bj , ai, bj ∈ N≥0, (1.2)

we assign a number

p :=
n∑

i=1

ai +
n∑

j=1

2bj .

We call the nonlinear term (1.2) relevant if p < 3, irrelevant if p > 3 and mar-
ginal if p = 3. For instance, any Burgers’-type term, i.e. any term of the form
∂x(u2

i ) with i ∈ {1, . . . , n}, is marginal. Thus, any smooth nonlinearity can be
labeled relevant, marginal or irrelevant by looking at the leading-order term of
its power series expansion. Relevant and marginal terms in system (1.1) can
lead to growth and even finite-time blow-up of solutions with small, localized
initial data; see [6, Section 1.1] for references. On the other hand, if the nonlin-
earity in (1.1) is irrelevant, then solutions to (1.1) with small, localized initial
conditions always exist globally and exhibit diffusive Gaussian-like decay as
one would expect from the linear dynamics only [25,30]. This classification of
smooth nonlinearities was introduced in [2] and can be extended to d spatial
dimensions by replacing the critical threshold p = 3 by p = 1+ 2

d , see also [29,
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Section 2]. The critical threshold p = 1 + 2
d is known as the Fujita exponent

after its first occurrence in the paper [9] of Fujita.
We showed in [6] that, if (1.1) has two components that propagate with

different velocities, then there is, besides the irrelevant ones, an additional class
of nonlinear terms which are harmless. These so-called mixed-terms have con-
tributions from different components, i.e. they are of the form (1.2) such that
there exist i, j ∈ {1, . . . , n} with i �= j and (ai + bi)(aj + bj) �= 0. It was proved
in [6] that, if n = 2, all relevant and marginal terms in the nonlinearity are of
mixed type and it holds c1 �= c2, then solutions to (1.1) with exponentially or
algebraically localized initial data exist globally and decay in time with rate
t−1/2. To capture the effect of spatial transport between components, the proof
in [6] exploits pointwise estimates [18,31].

As pointed out in [6, Section 6], it is not straightforward to extend the
pointwise analysis to multiple components. In this paper, we present an alter-
native method which naturally applies to multiple component RDA systems.
We prove that, if each component propagates with a different velocity and the
nonlinearity in (1.1) contains only irrelevant terms and marginal terms, which
are either of mixed or of Burgers’ type, then small, algebraically localized ini-
tial data exist globally and decay in time with rate t−1/2. In particular, our
result applies to systems of viscous conservation laws, which arise frequently in
continuum mechanics [5,23], by taking the nonlinearity in (1.1) in divergence
form, i.e. by taking f(u, ∂xu) = ∂x (g(u)) where g : Rn → R

n is smooth with
g(0),Dg(0) = 0. Thereby, our result confirms the findings in [26] for the case
components propagate with different velocities, and goes beyond by including
marginal nonlinearities of mixed type.

Before stating our main result, we introduce the necessary functional-
analytic concepts. As usual, the (nonunitary) Fourier transform F : L2(R,Cn)
→ L2(R,Cn) and its inverse F−1 : L2(R,Cn) → L2(R,Cn) are determined by
their action on the dense subspace L1(R,Cn) ∩ L2(R,Cn) of L2(R,Cn), which
is given by

F(u)(k) =
∫

R

e−ikxu(x)dx, F−1(v)(k) =
1
2π

∫

R

eikxv(k)dk. (1.3)

Throughout the manuscript we commonly use u to denote elements in physical
space, whereas v is used to denote elements in Fourier space. We consider
algebraically localized initial data of the form F−1(v0), where v0 lies in the
weighted Sobolev space

W 1,1
β (R,Cn) :=

{
v ∈ W 1,1(R,Cn) : ‖v‖W 1,1

β
< ∞}

,

for some β ∈ [0,∞), which we endow with the norm

‖v‖W 1,1
β

=
∥∥(1 + | · |)βv

∥∥
1

+
∥∥(1 + | · |)β∂kv

∥∥
1
,

where ‖ · ‖1 denotes the L1-norm. Loosely speaking, initial data of the form
F−1(v0) with v0 ∈ W 1,1

β (R,Cn) can be characterized as being just more regular
than differentiable and exhibiting just stronger decay than 1/(1 + |x|) as x →
±∞, see Remark 3.2 for more precise statements. To ensure that the initial
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condition F−1(v0) is real valued, we require that v0 ∈ W 1,1
β (R,Cn) satisfies

the usual reality condition v0(−k) = v0(k) for all k ∈ R.
Finally, for j ∈ N≥0, α ∈ (0, 1], Ω ⊂ R

m open and X a Banach space,
we denote by Cj(Ω,X) the vector space of j-times continuously differentiable
functions f : Ω → X and let Cj,α(Ω,X) ⊂ Cj(Ω,X) be the subspace of func-
tion in Cj(Ω,X) whose j-th derivatives are (uniformly) Hölder continuous with
exponent α. The subspace Cj

b (Ω,X) ⊂ Cj(Ω,X) of functions in Cj(Ω,X) hav-
ing bounded derivatives up to order j is a Banach space when equipped with
the standard norm

‖u‖Cj = max
|β|≤j

sup
x∈Ω

∥∥Dβu(x)
∥∥

X
.

Similarly, Cj,α
b (Ω,X) := Cj

b (Ω,X) ∩ Cj,α(Ω,X) is a Banach space when en-
dowed with the Hölder norm:

‖u‖Cj,α = ‖u‖Cj + max
|β|=j

sup
x,y∈Ω
x�=y

∥∥Dβu(x) − Dβu(y)
∥∥

X

‖x − y‖α
,

where ‖ · ‖ denotes the Euclidean norm in R
m.

We are now ready to state our main result.

Theorem 1.1. Let α > 0. Let the coefficients in (1.1) satisfy di > 0 and ci �= cj

for all i, j ∈ {1, . . . , n} with i �= j. Suppose that there exist constants C ≥ 1
and r0 > 0 such that the nonlinearity f ∈ C4(Rn × R

n,Rn) in (1.1) satisfies

‖f(a, b)‖ ≤ C

⎛

⎜⎜⎝‖b‖2 + ‖a‖‖b‖ + ‖a‖4 +
n∑

i=1

n∑

j=1

∑

m∈{1,...,n},
m �=j

|ai||aj ||am|

⎞

⎟⎟⎠ ,

(1.4)

for all a, b ∈ R
n with ‖a‖, ‖b‖ ≤ r0. Then, for all ε > 0 there exists a δ > 0 such

that for each v0 ∈ W 1,1
1+α(R,Cn), satisfying ‖v0‖W 1,1

1
≤ δ and v0(−k) = v0(k)

for all k ∈ R, (1.1) has a classical global solution u ∈ C1, α
2
(
(0,∞), C3,α

b (R,Rn)
)

with initial condition u(0) = F−1(v0) enjoying the temporal decay estimates

‖u(t)‖∞ ≤ ε√
1 + t

, ‖∂xu(t)‖∞ ≤ ε

1 + t
, for t ≥ 0. (1.5)

in the L∞-norm. In addition, each component of u is polynomially localized in
an appropriate co-moving frame, i.e. the pointwise estimate

|ui(x, t)| +
√

1 + t

ln(2 + t)
|∂xui(x, t)| ≤ ε

1 + |x + cit| +
√

t
, (1.6)

holds for all x ∈ R, t ≥ 0 and i ∈ {1, . . . , n}.
We emphasize that the decay estimates obtained in Theorem 1.1 are as

expected from the linear dynamics in (1.1) only. Indeed, it is not difficult to
verify that the solution u(t) to the corresponding linear system

∂tu = D∂xxu + C∂xu, u(x, t) ∈ R
n, t ≥ 0, x ∈ R, (1.7)
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having initial condition u(0) = F−1(v0) with v0 ∈ W 1,1
1 (R,Cn), satisfies (1.5)

and (1.6); we refer to Sect. 4.3.2 for more details. On the other hand, the initial
conditions

ui(x) = e− x2
4di Ei, i ∈ {1, . . . , n},

where Ei ∈ R
n is the i-th unit vector, satisfy F(ui) ∈ W 1,1

1+α(R,Cn) and yield
the family of Gaussian solutions

ui(x, t) =
e
− (x+cit)

2

4di(1+t)

√
1 + t

Ei, i ∈ {1, . . . , n},

to (1.7) attaining the decay rates in (1.5) and (1.6) up to the ln(2 + t)-factor
in (1.6). Thus, upon taking the nonlinearity in (1.1) identically zero, one ob-
serves that the estimates in Theorem 1.1 are sharp up to the ln(2 + t)-factor
in (1.6). We strongly expect that this factor does not arise due to nonlinear
effects, and can in fact be avoided by extending our analysis as outlined in the
subsequent Remark 4.2. However, in order to prevent this work from being
overly technical, we refrain from doing so.

Thus, Theorem 1.1 shows that, if components propagate with different
velocities in (1.1), then marginal mixed-terms and Burgers’-type terms do not
affect the long-time behavior of small, algebraically localized initial data and
solutions decay as predicted by the linear dynamics. We emphasize that, in
general, marginal mixed-terms can be decisive for the long-term dynamics. For
instance, in [8] it was proved that every solution to

∂tu1 = ∂xxu1 + up1
1 uq1

2 ,

∂tu2 = ∂xxu2 + up2
1 uq2

2 ,
t ≥ 0, x ∈ R,

having initial data (u1,0, u2,0) satisfying u1,0, u2,0 ≥ 0 and u1,0u2,0 �= 0 point-
wise, blows up in finite time, if it holds pi, qi ∈ {1, 2} and pi + qi = 3 for
i = 1, 2.

Our proof of Theorem 1.1 relies on the analysis of (1.1) in Fourier space.
We exploit that a change to a co-moving frame ζi = x+cit in physical space cor-
responds to a multiplication with the exponential e−icikt in Fourier space. We
multiply each component vi(k, t) of the Fourier transform v(k, t) := (Fu)(k, t)
of u(x, t) with the appropriate exponential e−icikt. This introduces oscillatory
factors in front of those critical nonlinear terms in (1.1) which are of mixed
or of Burgers’ type. Thus, oscillatory integrals arise in Duhamel’s formulation,
whose decay properties can be exploited, as long as the velocities are different,
by integrating by parts in time or in frequency. To control derivatives with re-
spect to the frequency in Fourier space, which appear as a result of integration
by parts, we require that u(x, t) lies in a polynomially weighted Sobolev space.
Eventually, we are able to close a nonlinear iteration scheme in this space using
L1–Lp-estimates. In Sect. 2 we illustrate the main ideas behind our approach
and sketch in a simple setting how to handle the most critical nonlinear terms.
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1.1. Relationship with space-time resonances method

It is interesting to compare our approach with the so-called space-time reso-
nances method [11,12,14], which has been developed by Germain, Masmoudi
and Shatah to prove global existence of small initial data in nonlinear disper-
sive equations in R

d, such as the nonlinear Schrödinger (NLS) or nonlinear
wave equations. As in our diffusive setting, linear dispersion terms can force
solutions to decay and spread, whereas nonlinear terms can cause solutions to
grow and even blow up in finite time, cf. [13,19]. Again one can distinguish be-
tween irrelevant nonlinearities, which correspond to a sufficiently high power,
so that small solutions are governed by the linear dynamics, and relevant or
marginal nonlinearities that can contribute to the large-time behavior of small
initial data. For instance, in the case of the NLS equation, the critical threshold
is given by the Strauss exponent [28], which, as the Fujita exponent, decreases
with the spatial dimension d.

The method of space-time resonances combines the strength of two earlier
developed approaches to handle relevant or marginal nonlinearities in disper-
sive equations. More precisely, the space-time resonances method identifies the
normal form method of Shatah [27] as an integration by parts in time in the
Duhamel formula in Fourier space, whereas integration by parts in frequency
can be related to the vector field method [20,21] developed by Klainermann.
As in our approach, integration by parts of oscillatory integrals might reveal
additional decay, which can be exploited to close a nonlinear iteration scheme.
However, the integration by parts in time or frequency can introduce singu-
larities, so-called time and space resonances, in Duhamel’s formulation. The
location of the time and space resonances is largely dependent on the inter-
play between the linearity and the nonlinear terms and some nonlinear terms
might even cancel some of the singularities arising. Thus, the space-time res-
onances method has the potential to, at least partially, uncover the effect of a
large class of relevant and marginal nonlinearities on the long-time dynamics
in nonlinear dispersive equations. We refer to [10] to a short exposition of the
key ideas of the space-time resonances method in a simple setting.

1.2. Comparison with earlier result obtained with the method of pointwise
estimates

The effect of different velocities in RDA systems on the long-time dynamics
of small initial data was, to the authors’ best knowledge, first investigated in
the recent paper [6]. We compare Theorem 1.1 with the earlier results in [6],
which were obtained with the method of pointwise estimates.

Perhaps the most apparent improvement is that Theorem 1.1 applies to
multi-component RDA systems, whereas the results in [6] are restricted to two
components. As outlined in [6, Section 6], it is still open whether the method of
pointwise estimates can capture the effect of differences in velocities in general
multi-component RDA systems. The number of terms in the spatio-temporal
weight increases rapidly with the number of components, which complicates
the pointwise analysis. In addition, qualitative new terms occur, which we were
unable to control using pointwise estimates. In particular, we did not succeed
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in controlling mixed-terms in the ui-equations with contributions of the uj-th
and uk-th component for i, j, k ∈ {1, . . . , n} pairwise different, e.g. a quadratic
or cubic mixed-term of the form ujuk or u2

juk in the ui-equation.
A second difference between the results in [6] and Theorem 1.1 is that the

required localization on initial data in [6] is stronger. Besides to exponentially
localized initial data, the method of pointwise estimates can be applied to
small, algebraically localized initial data u0 ∈ C0,α(R,Rn) satisfying ‖(1 + | ·
|)ru0‖ ≤ δ � 1 for r ≥ 3. Such polynomial localization of initial data leads to
the pointwise decay estimate

|ui(x, t)| ≤ C

⎡

⎢⎣
1

(
1 + |x + cit| +

√
t
)r +

e
− (x+cit)

2

M(1+t)

√
1 + t

⎤

⎥⎦ , i = 1, 2, (1.8)

on the components of the associated solution u(x, t) to (1.1) for x ∈ R and
t ≥ 0, where C,M ≥ 1 are x- and t-independent constant. Thus, one finds
that the part of the i-th component ui(x, t), exhibiting the slowest temporal
decay, is in fact exponentially localized in the appropriate co-moving frame.
The localization required in Theorem 1.1 corresponds to the case r = 1. It
is interesting to note that the algebraic pointwise bound is then no longer
exhibiting faster temporal decay than the exponential bound on the right-
hand side of (1.8) and precisely coincides with the bound (1.6) established in
our analysis.

A third difference is that regularity conditions on initial data are more
relaxed in [6], which can be explained by the fact that all nonlinear terms with
derivatives in [6] are in divergence form, i.e. the nonlinearity in [6] takes the
form

f(u, ∂xu) = h(u) + ∂x(g(u)), (1.9)

whereas the nonlinearity in Theorem 1.1 can possess terms with derivatives
which are not in divergence form. The derivative in (1.9) can be moved onto
the Green’s function via integration by parts in Duhamel’s formula, thus re-
quiring less regular initial data to prove local existence of classical solutions. It
therefore comes as no surprise that we ‘lost’ one derivative, i.e. we need 1 + α
(fractional) derivatives in Theorem 1.1, whereas α derivatives sufficed in [6].

Finally, we compare the class of allowable marginal and relevant nonlinear
terms in [6] and Theorem 1.1. First of all, relevant mixed-terms, i.e. products
of the form uiuj with i �= j in (1.1), cannot be handled by the analysis in the
current paper, whereas those terms can be dealt with using the methods in
[6]. As outlined in the subsequent Remark 2.1, we expect that our approach
could only handle such terms, if we have control over all derivatives of each
component of the solution in the appropriate co-moving frame in Fourier space,
i.e. over all k-derivatives of e−icikt(Fu)i(k, t) for i = 1, . . . , n. This would
mean that, at least the slowest decaying part of solution u(x, t), should have a
stronger-than-polynomial localization in physical space in the appropriate co-
moving frame. We emphasize that this is precisely the control we gain using
pointwise estimates. Indeed, both for exponentially and algebraically localized
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initial data in [6], the slowest decaying part of the i-th component of the
solution to (1.1) is bounded by the drifting Gaussian

e
− (x+cit)

2

M(1+t)

√
1 + t

,

which is exponentially localized in the appropriate co-moving frame ζi = x+cit
for each fixed t ≥ 0.

Second, the nonlinearity in [6] is of the form (1.9), whereas the nonlin-
earity in Theorem 1.1 can contain terms with derivatives which are not in
divergence form. In particular, marginal terms of the ui∂x(uj) with i �= j can
be handled by the analysis in the current paper. As mentioned before, the x-
derivative in (1.9) can be moved onto the Green’s function via integration by
parts in Duhamel’s formulation. Consequently, it is not necessary to control
∂xu(x, t) in the nonlinear iteration in [6]. Thus, by incorporating the derivative
∂xu(x, t) into the nonlinear iteration scheme in [6], we expect that there are
no obstructions to handle marginal terms of the form ui∂x(uj) with i �= j,
because differences in velocities between components can be exploited.

Third, Burgers’-type terms of the form ∂x(u2
i ) are only allowed in the

ui-equation in [6]. In fact, a Burgers’-type term ∂x(u2
i ) in the uj-equation for

i �= j, can interact with, a seemingly harmless, quadratic mixed-term. In fact,
in the toy problem

∂tu1 = d1∂xxu1 + c1∂xu1 + κu1u2 + βu3
2,

∂tu2 = d2∂xxu2 + c2∂xu2 + γ∂x

(
u2

2

)
,

t ≥ 0, x ∈ R, (1.10)

with d1, d2 > 0 and c1, c2 ∈ R with c1 �= c2, global existence of solutions with
small, exponentially localized initial conditions is proved in [6, Theorem 1.5]
under the condition that

β − γκ

c2 − c1
< 0, (1.11)

is satisfied for the coefficients κ, β, γ ∈ R. Thus, in the presence of quadratic
mixed-terms, i.e. in case κ �= 0, the Burgers’-type term ∂x(u2

2) can compensate
for the ‘dangerous’ cubic term βu3

2. Indeed, in case κ = 0 and β > 0, all
solutions to (1.10) with positive initial data blow up in finite time [17]. On the
other hand, even if β = 0, the expression (1.11) suggests that the marginal
term ∂x(u2

2) might affect the long-time asymptotics. In Theorem 1.1 a Burgers’-
type term ∂x(u2

i ) in the uj-equation is allowed (even if i �= j). This is not
totally unexpected, as quadratic mixed-terms are absent in the nonlinearities
in Theorem 1.1. We note that a ∂x(u2

i )-term in the uj-equation introduces, in
case i �= j, an oscillatory term when we multiply the Fourier transform of each
component (Fu)i(k, t) with the appropriate factor e−icikt. These oscillations
can be exploited by integrating by parts in time in Duhamel’s formula, see Sect.
2. As outlined in Sect. 2.2, integration by parts in time can, in the dispersive
setting, be linked to a normal form approach. It is therefore interesting to
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note that the effect of the Burgers’-type term ∂x(u2
2) in (1.10) on the long-

time dynamics is also in [6] exposed via the normal form transform z(ζ, t) =
u1(ζ − c1t, t) + γ

c2−c1
u2(ζ − c1t, t)2.

1.3. Set-up

This paper is structured as follows. In Sect. 2, we illustrate the main ideas
behind our approach in a simple setting. Subsequently, we collect necessary
local existence and uniqueness results of solutions to (1.1) in Sect. 3. The core
of the paper entails the global analysis of solutions to (1.1) with small initial
data, which culminates in the proof of Theorem 1.1 in Sect. 4. Finally, we
provide a future outlook and discuss open problems in Sect. 5.

2. Illustration of the main ideas

This section provides a short introduction to the method employed in the
proof of Theorem 1.1. We illustrate in a simple setting how we control the
most critical nonlinear terms exploiting oscillations that arise in Fourier space
due to differences in velocities. We consider the toy model

∂tu1 = d1∂xxu1 + c1∂xu1 + (2πu1)
r
u2 + (2π)q−1

uq
2,

∂tu2 = d2∂xxu2 + c2∂xu2 + 2π∂x

(
u2

1

)
+ (2π)q−1

uq
2,

t ≥ 0, x ∈ R, (2.1)

with r ∈ N≥2, q ∈ N≥4, di > 0 and ci ∈ R with c1 �= c2. The coefficients
in (2.1) are chosen for the sake of simplicity of exposition, but their precise
values are unimportant in the further analysis. Indeed, applying the Fourier
transform (1.3) to (2.1) yields

∂tv1 = −k2d1v1 + c1ikv1 + v∗r
1 ∗ v2 + v∗q

2 ,

∂tv2 = −k2d2v2 + c2ikv2 + ikv∗2
1 + v∗q

2 ,
t ≥ 0, k ∈ R, (2.2)

where ∗ denotes the standard convolution product. Oscillatory exponentials
arise when considering each component in (2.1) in the appropriate co-moving
frame. This corresponds to the coordinate change w(k, t) = e−c1iktv1(k, t) and
z(k, t) = e−c2iktv2(k, t) in (2.2). In the new coordinates system (2.2) reads

∂tw(k, t) = −k2d1w(k, t) +

∫

R

e(c2−c1)iltw∗r(k − l, t)z(l, t)dl + e(c2−c1)iktz∗q(k, t),

∂tz(k, t) = −k2d2z(k, t) + e(c1−c2)iktikw∗2(k, t) + z∗q(k, t),

(2.3)

with t ≥ 0 and k ∈ R. We observe that, due to the difference in velocities,
oscillatory exponentials arise in front of all nonlinear coupling terms, i.e. in
front of all terms with a z-contribution in the w-equation or terms with a w-
contribution in the z-equation. The additional temporal decay induced by the
oscillations can be revealed by integrating by parts in time or in frequency in
the Duhamel formulation of (2.3).

We take small initial data (w0, z0) ∈ W 1,1
1 (R,C2) to (2.3) satisfying

‖(w0, z0)‖W 1,1
1

≤ δ � 1. We assume local existence and uniqueness of a con-
tinuous mild solution (w(t), z(t)) in W 1,1

1 (R,C2) to (2.3) with initial condition
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(w0, z0) on some maximal time interval [0, T ) with T ∈ (0,∞], so that, if
T < ∞, the W 1,1

1 -norm of (w(t), z(t)) blows up as t ↑ T . Thus, appropriate
iterative estimates on the components

∥∥| · |j∂m
k w(t)

∥∥
1
,
∥∥| · |j∂m

k z(t)
∥∥

1
, j,m = 0, 1,

of the W 1,1
1 -norm of the solution prove that such blow-up cannot occur and

yield global existence and decay, see Sect. 4.1 for more details. Such estimates
can be obtained through the Duhamel formulation (or variation of constants
formula) corresponding to (2.3), which is given by

w(k, t) = e−d1k2tw0(k) +
∫ t

0

∫

R

e−k2d1(t−s)+(c2−c1)ilsw∗r(k − l, s)z(l, s)dlds

+
∫ t

0

e−k2d1(t−s)+(c2−c1)iksz∗q(k, s)ds,

z(k, t) = e−d2k2tz0(k) +
∫ t

0

ike−k2d2(t−s)+(c1−c2)iksw∗2(k, s)ds

+
∫ t

0

e−k2d2(t−s)z∗q(k, s)ds,

(2.4)

for k ∈ R and t ∈ [0, T ).
It is not hard, cf. Sect. 4.3.2, to establish the estimate

∫

R

∣∣∣kj∂m
k e−d1k2sw(k)

∣∣∣ dk ≤ C
‖w‖W 1,1

1

(1 + s)
1+j−m

2

,

w ∈ W 1,1
1 (R,C2), j,m = 0, 1, s ≥ 0,

where C ≥ 1 is some s-independent constant. Therefore, if the nonlinear terms
in (2.3) were absent, the solution (w(s), z(s)) would decay as

∥∥| · |j∂m
k w(s)

∥∥
1
,
∥∥| · |j∂m

k z(s)
∥∥

1
≤ Cδ

(1 + s)
1+j−m

2

, j,m = 0, 1, s ≥ 0.

(2.5)

The general idea of a nonlinear iteration scheme is to employ the
bounds (2.5) on the linear terms in (2.4) to obtain estimates on the non-
linear terms in (2.4). To illustrate this principle, let us bound the last integral
in the w-component of (2.4), which corresponds to an irrelevant nonlinearity.
Thus, take t ∈ [0, T ) and assume (2.5) holds for all s ∈ [0, t). Using Young’s
convolution inequality, the fact that W 1,1(R,C) is continuously embedded in
L∞(R,C) by the fundamental theorem of calculus and the fact that q ≥ 4, we
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obtain for j = 0, 1 the estimate
∫

R

∣∣∣∣k
j∂k

∫ t

0

e−k2d1(t−s)+(c2−c1)iksz∗q(k, s)ds

∣∣∣∣ dk

≤ C

(∫ t

0

∫

R

∣∣∣kj+1(t − s)e−k2d1(t−s)z∗q(k, s)
∣∣∣ dkds

+
∫ t

0

∫

R

∣∣∣kjse−k2d1(t−s)z∗q(k, s)
∣∣∣ dkds

+
∫ t

0

∫

R

∣∣∣kje−k2d1(t−s)∂k (z∗q(k, s))
∣∣∣ dkds

)

≤ C

(∫ t

0

∫

R

kj+1(t − s)e−k2d1(t−s)dk ‖z(s)‖∞ ‖z(s)‖q−1
1 ds

+
∫ t

0

(∫

R

∣∣∣kje−k2d1(t−s)
∣∣∣
2

dk

) 1
2

‖z(s)‖ 1
2∞

(
s ‖z(s)‖q− 1

2
1

+ ‖z(s)‖q− 3
2

1 ‖∂kz(s)‖1

)
ds

)

≤ Cδ2

(∫ t

0

1

(t − s)
j
2 (1 + s)

q−1
2

ds

+
∫ t

0

1

(t − s)
1+2j

4 (1 + s)
2q−5

4

ds

)
≤ C

δ2

(1 + t)
j
2

,

(2.6)

and
∫

R

∣∣∣∣k
j

∫ t

0

e−k2d1(t−s)+(c2−c1)iksz∗q(k, s)ds

∣∣∣∣ dk

≤ C

(∫ t
2

0

∫

R

kje−k2d1(t−s)dk ‖z(s)‖∞ ‖z(s)‖q−1
1 ds

+
∫ t

t
2

sup
k∈R

(
kje−k2d1(t−s)

)
‖z(s)‖q

1 ds

)

≤ Cδ2

(∫ t
2

0

1

(t − s)
1+j
2 (1 + s)

q−1
2

ds +
∫ t

t
2

1

(t − s)
j
2 (1 + s)

q
2

ds

)

≤ C
δ2

(1 + t)
1+j
2

.

(2.7)

where we denote by C ≥ 1 any t-independent constant. Hence, we conclude
that the last integral in the z-component exhibits those decay properties as
one would expect from the linear dynamics (2.5).

To close the nonlinear iteration scheme, we need to obtain similar es-
timates on the other nonlinear terms in the Duhamel formulation (2.4). To
obtain estimate (2.7) one readily observes that it was crucial that q > 3,
whereas for estimate (2.6) we needed q ≥ 4. So, we cannot expect that a simi-
lar procedure works to bound those integrals in (2.4), which correspond to the
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marginal nonlinear terms ur
1u2 and ∂x(u2

2) in (2.1). We explain below how to
bound such integrals by either integrating by parts in time or in frequency.

2.1. Integration by parts in frequency

Take t ∈ [0, T ) and let us consider the integral

Im(k, t) :=
∫ t

0

∫

R

e−k2d1(t−s)+(c2−c1)ilsw∗r(k − l, s)z(l, s)dlds, k ∈ R,

in (2.4) corresponding to the marginal mixed-term ur
1u2 in the u1-equation

in (2.1). To avoid singularities in time, we split the domain of integration in a
part from 0 to 1, which can be bounded as in (2.7), and a more problematic
part from 1 to t. To gain additional temporal decay in the second integral for
t ≥ 2, we integrate by parts in frequency and use that w(s), z(s) ∈ W 1,1

1 (R,C)
are localized for s ∈ [0, t], to obtain

∫ t

1

∫

R

e−k2d1(t−s)+(c2−c1)ilsw∗r(k − l, s)z(l, s)dlds

= −
∫ t

1

∫

R

e−k2d1(t−s)+(c2−c1)ils∂l (w∗r(k − l, s)z(l, s))
(c2 − c1)is

dlds,

k ∈ R.

(2.8)

By assuming (2.5), identity (2.8) leads for t ≥ 2 and j = 0, 1 to the bound

∫

R

∣∣∣∣k
j

∫ t

1

∫

R

e−k2d1(t−s)+(c2−c1)ilsw∗r(k − l, s)z(l, s)dlds

∣∣∣∣dk

≤ C

(∫ t
2

1

∫

R

kje−k2d1(t−s)dk s−1 ‖w(s)‖∞ ‖w(s)‖r−2
1

(‖w(s)‖1 ‖∂kz(s)‖1

+ ‖∂kw(s)‖1 ‖z(s)‖1

)
ds

+

∫ t

t
2

sup
k∈R

(
kje−k2d1(t−s)

)
s−1 ‖w(s)‖r−1

1

(‖w(s)‖1 ‖∂kz(s)‖1

+ ‖∂kw(s)‖1 ‖z(s)‖1

)
ds

)

≤ C

(∫ t
2

1

1

s(t − s)
1+j
2 (1 + s)

r−1
2

ds +

∫ t

t
2

1

s(t − s)
j
2 (1 + s)

r
2

ds

)
≤ C

δ2

(1 + t)
1+j
2

.

Short-time bounds on Im(t) for t ≤ 2 can then be established similarly as
in (2.7). In the bounds on the k-derivative ∂kIm(t) the additional temporal
decay obtained by integrating by parts in frequency can also be exploited.
However, integrating by parts the term

Ir(k, t) :=
∫ t

0

∫

R

e−k2d1(t−s)+(c2−c1)ils∂k (w∗r(k − l, s)) z(l, s)dlds, k ∈ R,

(2.9)

arising in ∂kIm(t), leads to a double derivative ∂2
kw(·, s) in the convolution

product, whose Lp-norm is not bounded by the W 1,1
1 -norm of w(s) for any
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p ∈ [1,∞]. Instead, we bound (2.9) directly and avoid integrating by parts,
which leads, as in (2.6), for j = 0, 1 to the bound

∥∥| · |jIr(t)
∥∥

1
≤ Cδ2

∫ t

0

1

(t − s)
1+2j

4 (1 + s)
2r−1

4

ds ≤ C
δ2

(1 + t)
j
2

, (2.10)

Remark 2.1. For the last inequality in (2.10) to hold, and thus to close the
nonlinear iteration scheme, we observe that it is crucial that r ≥ 2. This
shows that quadratic mixed-term, i.e. the case r = 1, cannot be handled by
the method presented in this paper. The desired bounds on quadratic mixed-
terms would require integrating by parts in frequency once again in (2.9) in
order to obtain sufficient decay in s, which would lead to the double derivative
∂2

kw(k − l, s). At first sight, controlling the double derivative ∂2
kw(k, s) in the

nonlinear iteration scheme seems a solution to this obstruction. However, a
similar problem then occurs in bounding ∂2

kIm(t), which would then, after
integrating by parts in frequency, require control over the third derivative
∂3

kw(k − l, s). In fact, we would need control over all k-derivatives of w(k, s)
for our approach to work for quadratic mixed-terms, which would complicate
the analysis and require stronger-than-polynomially localized initial data; see
also Sect. 5.

2.2. Integration by parts in time

Take t ∈ [0, T ) and let us consider the integral

Ib(k, t) :=
∫ t

0

ike−k2d2(t−s)+(c1−c2)iksw∗2(k, s)ds

= 2
∫ t

0

∫

R

ie−k2d2(t−s)+(c1−c2)iksw(k − l, s) lw(l, s)dlds,

in (2.4), corresponding to the Burgers’-type coupling ∂x(u2
1) in the u2-equation

in (2.1). Although ∂x(u2
1) is a marginal nonlinearity, we can move the spatial

derivative onto the semigroup and proceed as in (2.7) to establish for j = 0, 1
the desired estimate

∥∥| · |jIb(t)
∥∥

1
≤ Cδ2

(∫ t
2

0

1

(t − s)1+
j
2
√

1 + s
ds +

∫ t

t
2

1

(t − s)
j
2 (1 + s)

3
2

ds

)

≤ C
η(t)2

(1 + t)
1+j
2

.

However, the k-derivative of Ib(k, t) contains the term

Jb(k, t) :=
∫ t

0

k(c2 − c1)e−k2d2(t−s)+(c1−c2)ikss w∗2(k, s)ds, k ∈ R,

which cannot be bounded as in (2.6) (we would need w∗3(k, s) instead of
w∗2(k, s) to obtain such a bound). To establish additional temporal decay, we
integrate by parts in time and find

Jb(k, t) =
i(c2 − c1)

d2k + (c1 − c2)i

(
t e(c1−c2)iktw∗2(k, t)
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−
∫ t

0

e−k2d2(t−s)+(c1−c2)iks∂s

(
s w∗2(k, s)

)
ds

)
, (2.11)

with k ∈ R. We emphasize that no singularities are introduced due to the
special divergence form of the Burgers’-type term, which vanishes at frequency
k = 0 in Fourier space, i.e. in the language of Germain, Masmoudi and Shatah,
see Sect. 1.1, the time resonance at k = 0 is canceled. We can now replace the
temporal derivative ∂sw

∗2(k, s) in (2.11) using the w-equation in (2.3). The
remaining terms in (2.11) can now be bounded more or less in the standard
way, cf. (2.7) and (2.6). We refer to Sect. 4.3.5 for further details.

3. Local existence and uniqueness

Local existence and uniqueness of classical solutions to semilinear parabolic
equations is well-esta-blished for bounded, Hölder continuous initial conditions,
see for instance [24]. We collect the necessary results for reaction–diffusion–
advection systems from [31, Section 11.3], which were obtained using the so-
called parametrix method. Subsequently, we connect these results to our global
estimates by establishing local control on the Fourier transform of solutions
to (1.1) in the weighted Sobolev space W 1,1

1 (R,Cn).
First, we observe that the method in [31, Section 11.3] is applicable to

prove local existence and uniqueness of solutions to (1.1) in the weighted
Sobolev space

W 1,∞
1 (R,Rn) :=

{
u ∈ W 1,∞(R,Rn) : ‖u‖W 1,∞

1
< ∞}

,

which is equipped with the norm

‖u‖W 1,∞
1

= ‖u‖∞ + ‖∂xu‖∞ + ‖| · |u‖∞ + ‖| · |∂xu‖∞.

Indeed, if u(x, t) solves (1.1), then the function U(x, t) = (u(x, t), xu(x, t))
solves again a RDA system with Hölder continuous coefficients and sufficiently
smooth nonlinearities. Subsequently, we employ a standard, but not readily
available, regularity argument to prove that the Fourier transform (Fu)(t) of
the obtained local solution to (1.1) in W 1,∞

1 (R,Rn) exists in W 1,1
1 (R,Cn) and

is continuous with respect to time.
All in all, we establish the following local existence result.

Proposition 3.1. Let α > 0. Suppose that the coefficients in (1.1) satisfy di > 0
and it holds f ∈ C2,α(Rn × R

n,Rn) with f(0, 0) = Df(0, 0) = 0. Take v0 ∈
W 1,1

1+α(R,Cn) satisfying the reality condition v0(−k) = v0(k) for each k ∈ R.
Then, there exists T ∈ (0,∞] such that we have a unique classical solution
u∗ ∈ C1, α

2
(
(0, T ), C3,α

b (R,Rn)
)

to (1.1) with initial condition u∗(0) = F−1(v0).
In addition, v∗ : [0, T ) → W 1,1

1 (R,Cn)
)

given by v∗(t) = F(u∗(t)) is continuous
and T > 0 is maximal in the sense that, if it holds T < ∞, then we have

lim sup
t↑T

‖v∗(t)‖W 1,1
1

= ∞. (3.1)
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Proof. Upon setting w(x) = ∂xu(x), p(x) = xu(x) and q(x) = x∂xu(x), we
rewrite (1.1) as the 4n-component system

∂tu = D∂xxu + C∂xu + f (u, w) ,

∂tw = D∂xxw + C∂xw + ∂x (f(u, w)) ,

∂tp = D∂xxp + C∂xp − 2D∂xu − Cu + xf (u, w) ,

∂tq = D∂xxq + C∂xq − 2D∂xw − Cw + ∂x (xf(u, w)) − f(u, w),

t ≥ 0, x ∈ R,

(3.2)

so that all nonlinear terms with derivatives are in divergence form and the co-
efficients and nonlinearity are C2,α-functions of x and (u,w, p, q). The relevant
initial condition to (3.2) is

U0 := (u0, ∂xu0, ρu0, ρ∂xu0) ,

with u0 := F−1(v0) and ρ : R → R given by ρ(x) = x. By [3, Proposition 5.2]
there exists a constant C ≥ 1 such that

‖ρju0‖C1,α ≤ C
(∥∥∥(−Δ)

1+α
2

(
ρju0

)∥∥∥
∞

+ ‖ρju0‖∞
)

≤ C
(∥∥∥| · |1+α∂j

kv0

∥∥∥
1

+
∥∥∥∂j

kv0

∥∥∥
1

)
≤ C‖v0‖W 1,1

1+α
,

for j = 0, 1. So, it holds U0 ∈ C0,α
b (R,R4n).

Thus, by [31, Corollary 11.4] and its proof, there exists a unique solution

U∗(x, t) = (u∗, w∗, p∗, q∗)(x, t),

U∗ ∈ C0, α
2
(
[0, T ), C0,α

b (R,R4n)
) ∩ C1, α

2
(
(0, T ), C2,α

b (R,R4n)
)
, (3.3)

to (3.2) on a maximal interval [0, T ), with T ∈ (0,∞], having initial condition
U0 ∈ C0,α

b (R,R4n). It is not difficult to verify that, by uniqueness of solutions,
it must hold w∗(x, t) = ∂xu∗(x, t), p∗(x, t) = xu∗(x, t) and q∗(x, t) = xw∗(x, t)
for each x ∈ R and t ∈ [0, T ). So, on the one hand, (3.3) entails that we
have established a classical solution u∗ ∈ C1, α

2
(
(0, T ), C3,α

b (R,Rn)
)

to (1.1)
with initial condition u∗(0) = u0. On the other hand, (3.3) also implies u∗ ∈
C0

(
[0, T ),W 1,∞

1 (R,Rn)
)
.

Note that W 1,∞
1 (R,Rn) is continuously embedded in the Sobolev space

H1(R,Rn). Hence, the Fourier transform maps W 1,∞
1 (R,Rn) continuously into

the weighted L2-space

L2
1(R,Cn) :=

{
v ∈ L2(R,Cn) : ‖v‖L2

1
< ∞}

,

which is equipped with the norm ‖v‖L2
1

= ‖(1+|·|2)1/2v‖2, where ‖·‖2 denotes
the L2-norm. The range of F in L2

1(R,Cn) is given by the subspace

X :=
{

F(u) ∈ L2
1(R,Cn) : u ∈ W 1,∞

1 (R,Rn)
}

.

Thus, the map v∗ : [0, T ) → X given by v∗(t) = F(u∗(t)) is well-defined.
Fix t ∈ [0, T ). We prove that v∗(t) lies in fact in W 1,1

1 (R,Cn). We de-
note by C ≥ 1 any constant, which is only dependent on n,D and C. We
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integrate (1.1) and apply the Fourier transform to arrive at the Duhamel for-
mulation:

v∗(k, t) = e(−k2D+Cik)tv0(k) +
∫ t

0

e(−k2D+Cik)(t−s)N (v∗(s))(k)ds, k ∈ R,

(3.4)

where N : X → H1(R,Cn) is the nonlinear operator

N (v)(k) = F [
f
(F−1v, ∂xF−1v

)]
(k).

We note that N is well-defined, because, by Taylor’s Theorem and the fact
that f(0, 0) = Df(0, 0) = 0, it holds

∥∥∥∂j
kN (F(u))

∥∥∥
2

≤ C
∥∥| · |jf (u, ∂xu)

∥∥
2

≤ C ‖u‖H1 ‖u‖W 1,∞
1

sup
(v,w)∈R

n×R
n

‖v‖,‖w‖≤‖u‖W
1,∞
1

∥∥D2f (v, w)
∥∥ , (3.5)

for u ∈ W 1,∞
1 (R,Rn) and j = 0, 1. In fact, since u∗ : [0, T ) → W 1,∞

1 (R,Rn)
is continuous, the nonlinear map N∗ : [0, t] → H1(R,Cn) given by N∗(s)(k) =
N (v∗(s))(k) is bounded. On the one hand, for j = 0, 1 we have

∫

R

∥∥∥(1 + |k|)∂j
ke(−k2D+Cik)tv0(k)

∥∥∥dk

≤ C
(∥∥∥(1 + | · |)∂j

kv0

∥∥∥
1

+
(√

t + t
)

‖(1 + | · |)v0‖1

)

≤ C (1 + t) ‖v0‖W 1,1
1

.

(3.6)

On the other hand, given a bounded map N : [0, t] → H1(R,Cn) and j = 0, 1,
we use Hölder’s inequality and the fact that x �→ p(x)e−dx2

is bounded on R

for any polynomial p : R → R and d > 0 to yield
∫

R

∫ t

0

∥∥∥(1 + |k|)∂j
ke(−k2D+Cik)(t−s)N(s)(k)

∥∥∥ dsdk

≤ C

∫

R

∫ t

0

(1 + |k|)
∥∥∥e(−k2D)(t−s)

∥∥∥
[
(|k|(t − s) + (t − s))j ‖N(s)(k)‖

+ ‖∂kN(s)(k)‖j
]
dsdk

≤ C sup
s∈[0,t]

‖N(s)‖H1

∫ t

0

(1 + t − s)
∥∥∥(1 + | · |)e− 1

2 (·)2D(t−s)
∥∥∥

2
ds

≤ C sup
s∈[0,t]

‖N(s)‖H1

∫ t

0

1 + t − s

(t − s)
1
4

(
1 +

1√
t − s

)
ds

≤ C
(
1 + t

7
4

)
sup

s∈[0,t]

‖N(s)‖H1 .

(3.7)

Hence, by (3.4), (3.5), (3.6) and (3.7), it holds v∗(t) ∈ W 1,1
1 (R,Cn) for each

t ∈ [0, T ).
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Next, we prove that v∗ : [0, T ) → W 1,1
1 (R,Cn) is continuous. Fix T0 ∈

(0, T ). It is sufficient to prove that v∗ is Hölder continuous on [0, T0]. Take
s, t ∈ [0, T0] with s ≤ t. By (3.4) we have

v∗(k, t) − v∗(k, s)

=

∫ t

s

(
−k2D + Cik

)
e(−k2D+Cik)rdrv0(k) +

∫ t

s

e(−k2D+Cik)(t−r)N (v∗(r))(k)dr

+

∫ s

0

∫ t−r

s−r

(
−k2D + Cik

)
e(−k2D+Cik)τdτN (v∗(r))(k)dr,

(3.8)

for k ∈ R. We denote by C ≥ 1 any constant, which is only dependent on
n,D, C and T0. On the one hand, for j = 0, 1 we have

∫

R

∫ t

s

∥∥∥(1 + |k|)∂j
k

(−k2D + Cik
)
e(−k2D+Cik)rv0(k)

∥∥∥ drdk

≤ C

∫ t

s

(∥∥∥(1 + | · |)1+α∂j
kv0

∥∥∥
1

∥∥∥(1 + | · |)2−αe−(·)2Dr
∥∥∥

∞

+ ‖(1 + | · |)v0‖1

∥∥∥(1 + | · |) (1 + (1 + | · |)2r) e−(·)2Dr
∥∥∥

∞

)
dr

≤ C‖v0‖W 1,1
1+α

∫ t

s

r
α
2 −1dr ≤ C‖v0‖W 1,1

1+α

(
t

α
2 − s

α
2
)
,

(3.9)

where we use r ≤ T0 for r ∈ [s, t] to bound the integrand. On the other hand,
given a bounded map N : [0, T0] → H1(R,Cn), we establish, as in (3.7), the
estimate

∫

R

∫ t

s

∥∥∥(1 + |k|)∂j
ke(−k2D+Cik)(t−r)N(r)(k)

∥∥∥drdk

≤ C sup
r∈[0,T0]

‖N(r)‖H1

∫ t

s

(1 + t − r)
∥∥∥(1 + | · |)e− 1

2 (·)2D(t−r)
∥∥∥
2
dr

≤ C sup
r∈[0,T0]

‖N(r)‖H1

∫ t

s

(t − r)− 3
4 dr ≤ C(t − s)

1
4 sup

r∈[0,T0]

‖N(r)‖H1 ,

(3.10)

where we use t − r ≤ T0 for r ∈ [s, t] to bound the integrand. Similarly, for
j = 0, 1 we arrive at
∫

R

∫ s

0

∫ t−r

s−r

∥∥∥(1 + |k|)∂j
k

(−k2D + Cik
)
e(−k2D+Cik)τN(r)(k)

∥∥∥ dτdrdk

≤ C sup
r∈[0,T0]

‖N(r)‖H1

∫ s

0

∫ t−r

s−r

∥∥∥(1 + | · |)3 (1 + | · |τ) e−(·)2Dτ
∥∥∥

2
dτdr

≤ C sup
r∈[0,T0]

‖N(r)‖H1

∫ s

0

∫ t−r

s−r

τ− 7
4 dτdr ≤ C

(
t
1
4 − s

1
4

)
sup

r∈[0,T0]

‖N(r)‖H1 ,

(3.11)
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where we use τ ≤ T0 for τ ∈ [s, t] to bound the integrand. By (3.5), (3.8), (3.9),
(3.10) and (3.11) the function v∗ : [0, T0] → W 1,1

1 (R,Cn) is Hölder continuous
for each T0 ∈ [0, T ). Hence, it holds v∗ ∈ C0

(
[0, T ),W 1,1

1 (R,Cn)
)
.

Finally, assume by contradiction that T < ∞ and (3.1) is false, so
that t �→ ‖v∗(t)‖W 1,1

1
is bounded on [0, T ). Then, since the inverse Fourier

transform maps W 1,1
1 (R,Cn) continuously into W 1,∞

1 (R,Cn) and we have
v∗(t) = F(u∗(t)) for each t ∈ [0, T ), we find that the solution U∗(x, t) to (1.1)
is bounded on [0, T ) × R. As f(0, 0) = 0, one observes that U∗(x, t) satisfies
the parabolic linear system

∂tU = D∂xxU + ∂x(G(x, t)U) + F (x, t)U, (3.12)

with D := diag(D,D,D,D) and F,G : [0, T ) × R → R
4n×4n are given by

G(x, t) :=
∫ 1

0

⎛

⎜⎜⎝

C 0 0 0
fu(γ, x, t) fw(γ, x, t) + C 0 0

−2D 0 C 0
xfu(γ, x, t) xfw(γ, x, t) − 2D 0 C

⎞

⎟⎟⎠dγ,

F (x, t) :=
∫ 1

0

⎛

⎜⎜⎝

fu(γ, x, t) fw(γ, x, t) 0 0
0 0 0 0

xfu(γ, x, t) − C xfw(γ, x, t) 0 0
−fu(γ, x, t) −fw(γ, x, t) − C 0 0

⎞

⎟⎟⎠dγ,

where we denote

fu(γ, x, t) := ∂uf(γu∗(x, t), γw∗(x, t)),

fw(γ, x, t) := ∂wf(γu∗(x, t), γw∗(x, t)).

Since U∗ is bounded on [0, T ) × R and it holds f(0, 0) = 0, it follows by the
mean value theorem that the functions F and G are bounded on [0, T )×R too.
In addition, F and G are α

2 -Hölder continuous in t and α-Hölder continuous
in x, since the same holds for U∗. Thus, by [31, Proposition 11.3] the Green’s
function G(x, y, t, s) associated to (3.12) is continuous, and differentiable with
respect to x. Moreover, it enjoys the estimate

∥∥∂j
xG(x, y, t, s)

∥∥ ≤ Ct−
j+1
2 e

− (x−y)2

M(t−s) , x, y ∈ R, 0 < s ≤ t < T, j = 0, 1,
(3.13)

for some x-, y-, s- and t-independent constants C,M > 1. Let T0 ∈ (0, T ). The
Green’s function estimate (3.13) and the fact that U∗ is bounded on [0, T )
imply that the solution

U∗(x, t) =
∫

R

G(x, y, t, T0)U∗(y, T0)dy,

can be extended from R× [T0, T ) to R× [T0, T ] such that U∗(·, T ) ∈ C1
b (R,Rn).

In particular, U∗(·, T ) lies in C0,α
b (R,R4n) and can therefore be extended by

[31, Corollary 11.4] to a solution U∗(t) in C0,α
b (R,R4n) on some interval [0, T +

τ) with τ > 0, which contradicts the maximality of T . Thus, the blow-up (3.1)
must hold if T < ∞. �
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Remark 3.2. We have established local existence of classical solutions to (1.1)
with initial data in the range Xα := {F−1(v) : v ∈ W 1,1

1+α(R,Cn), v(−k) =
v(k) for all k ∈ R} ⊂ L2(R,Rn) of the inverse Fourier transform restricted to
all v ∈ W 1,1

1+α(R,Cn) satisfying the reality condition. We note that the more
‘natural’ algebraically weighted Sobolev space

H2
1 (R,Rn) :=

{
u ∈ H2(R,Rn) : ‖u‖H2

1
< ∞}

,

equipped with the norm ‖u‖H2
1

= ‖�u‖H2 , where � : R → R denotes the smooth
algebraic weight �(x) = (1+x2)1/2, is continuously embedded in the space Xα.
Of course, initial data in H2

1 (R,Rn) are in general more regular and stronger
localized than initial data in Xα. This can be seen by looking at weighted
fractional Sobolev spaces. The standard fractional Sobolev spaces W s,p(R,Rn)
for s ∈ R>0 \ N and p ∈ (1,∞) are defined by

W s,p(R,Rn) =
{

u ∈ W 
s�,p(R,Rn) : [u]s−
s�,p < ∞
}

,

[u]θ,p :=

(∫

R

∫

R

∥∥D
s� (u(x) − u(y))
∥∥p

|x − y|θp+1
dxdy

) 1
p

,

and are equipped with the Slobodeckij norm ‖u‖W s,p = ‖u‖W �s�,p + [u]s−
s�,p

or the equivalent Bessel norm ‖u‖Hs,p =
∥∥∥(1 − Δ)

s
2 u

∥∥∥
p
, where the fractional

operator (1 − Δ)
s
2 corresponds to multiplication with �s in Fourier space. We

introduce the weighted fractional Sobolev spaces

W s,p
1 (R,Rn) = {u ∈ W s,p(R,Rn) : ‖�pu‖W s,p < ∞} ,

for s ∈ R>0 \ N and p ∈ (1,∞). We equip W s,p
1 (R,Rn) with the norm

‖u‖W s,p
1

= ‖�pu‖W s,p . One readily observes via the Hölder and Babenko-
Beckner inequalities that all spaces W 1+α,p

1 (R,Rn) with αp > 1 are continu-
ously embedded in Xα. Thus, intuitively speaking, for initial data to lie in Xα

for some α > 0, it is enough to be more regular than one time differentiable
and exhibit stronger decay than 1/(1 + |x|) as x → ±∞.

4. Global analysis: proof of Theorem 1.1

In this proof, C ≥ 1 denotes a constant, which is independent of δ and t and
that will be taken larger if necessary.

4.1. Plan of proof

Let v0 ∈ W 1,1
1+α(R,Cn) with v0(−k) = v0(k) for each k ∈ R. By Propo-

sition 3.1 there exists T > 0 such that we have a unique local solution
u ∈ C1, α

2

(
(0, T ), C3,α

b (R,Rn)
)

to (1.1) with initial condition u(0) = F−1(v0).

In addition, the function v : [0, T ) → W 1,1
1 (R,Cn) given by v(t) = F(u(t)) is
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continuous and T > 0 is maximal in the sense that, if it holds T < ∞, then
we have

lim sup
t↑T

‖v‖W 1,1
1

= ∞. (4.1)

To exploit oscillations arising in Fourier space due to differences in veloc-
ities we switch to an appropriate co-moving frame in each component. Thus,
we define the new coordinate

w(k, t) := Φ(k, t)v(k, t) = Φ(k, t) (Fu) (k, t), Φ(k, t) := e−iCkt, (4.2)

for k ∈ R and t ∈ [0, T ). We aim to establish global control on the W 1,1
1 -norm

of w(t). Thus, we introduce the temporal weight function η : [0, T ) → R given
by

η(t) = sup
s∈[0,t]

[√
1 + s‖w(s)‖1 +

√
1 + s

ln(2 + s)
‖| · |∂kw(s)‖1 + (1 + s) ‖| · |w(s)‖1

+ ‖∂kw(s)‖1 + (1 + s)
3
4 ‖| · |w(s)‖2

]
.

We show in Sect. 4.2 that η is well-defined and continuous and, in case T < ∞,
it holds

lim sup
t↑T

η(t) = ∞. (4.3)

We remark that, although W 1,1
1 (R,Cn) is continuously embedded in L2

1(R,Cn),
we need to include the ‖| · |w(s)‖2-term in η(t) in order to obtain the desired
estimates; we refer to Remark 4.1 for more details.

Our plan is to prove via a continuous induction argument that η is
bounded and, consequently, (4.3) yields T = ∞. More specifically, we prove in
Sect. 4.3 that, if we have ‖v0‖W 1,1

1
≤ δ and t ∈ [0, T ) is such that η(t) ≤ r0

(where r0 > 0 is the constant given by the hypotheses of Theorem 1.1), then
η(t) satisfies an inequality of the form

η(t) ≤ C
(
δ + η(t)2

)
. (4.4)

Since η must be continuous as long as it is bounded by (4.3), we can apply
continuous induction using (4.4). Thus, taking δ ≤ min{ 1

4C2 , r0
2C }, it follows

η(t) ≤ 2Cδ ≤ r0 for all t ≥ 0, which proves global existence. Finally, we take
δ = min{ ε

2C , 1
4C2 , r0

2C }, so that it holds

η(t) ≤ 2Cδ ≤ ε, (4.5)

for t ≥ 0. Since (4.2) implies

F−1(wi(t))(x) = ui(x − cit, t),

F−1(∂kwi(t))(x) = −ixui(x − cit, t),
t ≥ 0, x ∈ R,

for i = 1, . . . , n, the estimates (1.5) and (1.6) follow from (4.5) and the fact
that the Fourier transform maps W 1,1

1 (R,Cn) continuously into W 1,∞
1 (R,Cn)

with norm ≤ 1
2π .

Thus, all that remains is to show that η is well-defined and continuous,
that T < ∞ implies (4.3) and that η satisfies the key estimate (4.4). We prove
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the first two assertions in Sect. 4.2. The key estimate, which is the core of our
global analysis, is shown in Sect. 4.3.

4.2. Continuity and blow-up property of weight function

Since we have

‖w(t)‖W 1,1
1

= ‖(1 + | · |)v(t)‖1 + ‖(1 + | · |) (∂kv(t) − iCtv(t))‖1

≤ C(1 + t)‖v(t)‖W 1,1
1

,

for t ∈ [0, T ) and since W 1,1
1 (R,Cn) is continuously embedded into L2

1(R,Cn),
the function η is well-defined.

Next, we prove η is continuous. Since W 1,1
1 (R,Cn) is continuously em-

bedded into L2
1(R,Cn), it holds

∣∣∣
∥∥| · |jw(t)

∥∥
p

− ∥∥| · |jw(s)
∥∥

p

∣∣∣ =
∣∣∣
∥∥| · |jv(t)

∥∥
p

− ∥∥| · |jv(s)
∥∥

p

∣∣∣
≤ C‖v(t) − v(s)‖W 1,1

1
,

for s, t ∈ [0, T ), p = 1, 2 and j = 0, 1. Hence, because v : [0, T ) → W 1,1
1 (R,Cn)

is continuous, also t �→ ∥∥| · |jw(t)
∥∥

p
is continuous on [0, T ) for j = 0, 1 and

p = 1, 2. Second, we establish
∣∣∥∥| · |j∂kw(t)

∥∥
1

− ∥∥| · |j∂kw(s)
∥∥

1

∣∣

=
∣∣∥∥| · |j (∂kv(t) − iCtv(t))

∥∥
1

− ∥∥| · |j (∂kv(s) − iCsv(s))
∥∥

1

∣∣

≤ C
(∥∥| · |j∂k (v(t) − v(s))

∥∥
1

+ |t − s|∥∥| · |j (v(t) − v(s))
∥∥

1

)

≤ C (1 + |t − s|) ‖v(t) − v(s)‖W 1,1
1

,

for s, t ∈ [0, T ) and j = 0, 1. So, since v : [0, T ) → W 1,1
1 (R,Cn) is continuous,

also t �→ ∥∥| · |j∂kw(t)
∥∥

1
is continuous on [0, T ) for j = 0, 1. Therefore, η must

be continuous.
Finally, the fact that T < ∞ implies (4.3) follows from (4.1) and the

estimate

‖v(t)‖W 1,1
1

= ‖(1 + | · |)w(t)‖1 + ‖(1 + | · |) (∂kw(t) + iCtw(t))‖1

≤ C
(
1 +

√
t
)

η(t),

for t ∈ [0, T ).

4.3. Establishing the key estimate

We integrate (1.1), apply the Fourier transform and multiply with Φ(k, t) to
arrive at the Duhamel formulation:

w(k, t) = e−k2Dtv0(k) +
∫ t

0

e−k2D(t−s)Ñ (k, s)ds, k ∈ R, t ∈ [0, T ), (4.6)

with

Ñ (k, s) := Φ(k, s)F [f (u(s), ∂xu(s))] (k),
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cf. (3.4) and (4.2). It follows from (4.6) that w(k, t) is pointwise differentiable
with respect to t and satisfies the differential equation

∂tw(k, t) = −k2Dw(k, t) + Ñ (k, t), t ∈ [0, T ), k ∈ R. (4.7)

To isolate the marginal nonlinear terms we expand the nonlinearity f
in (1.1). Thus, by (1.4), the i-th component fi ∈ C4(Rn × R

n,R) of f can be
expanded as

fi(a, b) =
n∑

j=1

n∑

l=1

μijlajbl +
n∑

j=1

n∑

l=1

∑

m∈{1,...,n},
m �=l

νijlmajalam + gi(a, b),

with coefficients μijl, νijlm ∈ R and remainder gi ∈ C0(Rn × R
n,R) satisfying

‖gi(a, b)‖ ≤ C
(‖a‖4 + ‖b‖2

)
, (4.8)

for i = 1, . . . , n and a, b ∈ R
n with ‖a‖, ‖b‖ ≤ r0. Hence, the Duhamel formu-

lation of the i-th component of w reads

wi(k, t) = Ii(k, t) + Ri(k, t) +

n∑

j=1

n∑

l=1

Mijl(k, t) +

n∑

j=1

n∑

l=1

∑

m∈{1,...,n},
m�=l

Nijlm(k, t),

(4.9)

for k ∈ R and t ∈ [0, T ), with

Ňi(k, t) := Φ(k, t)F [gi (u(t), ∂xu(t))] (k),

Ii(k, t) := e−dik
2tv0,i(k),

Ri(k, t) :=
∫ t

0

e−dik
2(t−s)Ňi(k, s)ds,

and

Mijl(k, t) :=
μijl

2π

∫ t

0

∫

R

e−dik
2(t−s)+(cj−ci)iks+(cl−cj)iξswj(k − ξ, s) iξwl(ξ, s)dξds,

Nijlm(k, t) :=
νijlm

4π2

∫ t

0

∫

R

∫

R

e−dik
2(t−s)+(cj−ci)iks+(cl−cj)iξs+(cm−cl)iζs

× wj(k − ξ, s)wl(ξ − ζ, s)wm(ζ, s)dζdξds,

for i, j, l,m ∈ {1, . . . , n}. Our plan is to prove the key inequality (4.4), pro-
vided t ∈ [0, T ) is such that η(t) ≤ r0, by estimating the linear term Ii(·, t)
and nonlinear terms Ri(·, t),Mijl(·, t) and Nijlm(·, t) in (4.9) one by one in
W 1,1

1 (R,Cn) for i, j, l,m ∈ {1, . . . , n} with m �= l.

4.3.1. Embedding in L2(R,Cn) and L∞
1 (R,Cn). Take t ∈ [0, T ). To bound

those integrals in (4.9) corresponding to the nonlinear terms, we need control
over the L2

1- and L∞
1 -norm of w(s) for s ∈ [0, t]. Thus, take t ∈ [0, T ). Since
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W 1,1(R,Cn) is continuously embedded in L∞(R,Cn), we have, by definition
of the weight η, the following bounds:

‖w(s)‖∞ ≤ C‖w(s)‖W 1,1 ≤ C (‖w(s)‖1 + ‖∂kw(s)‖1) ≤ Cη(t),

‖| · |w(s)‖∞ ≤ C‖| · |w(s)‖W 1,1 ≤ C (‖| · |w(s)‖1 + ‖| · |∂kw(s)‖1 + ‖w(s)‖1)

≤ C
η(t) ln(2 + s)√

1 + s
.

(4.10)

for s ∈ [0, t]. Hence, interpolation yields

‖w(s)‖2 ≤ C
√

‖w(s)‖1‖w(s)‖∞ ≤ C
η(t)

(1 + s)
1
4
, s ∈ [0, t]. (4.11)

Remark 4.1. We expect that the bound

‖| · |w(s)‖2 ≤ C
√

‖| · |w(s)‖1 ‖| · |w(s)‖∞ ≤ C
η(t)

√
ln(2 + s)

(1 + s)
3
4

, s ∈ [0, t],

(4.12)

obtained through interpolation, is not strong enough to close the nonlinear
iteration scheme. Indeed, (4.12) would introduce a logarithm in (4.17), which
would lead to a

√
ln(2 + s)-factor in the bound on ‖∂kw(s)‖1 via (4.18) and,

thus, on ‖w(s)‖∞ in (4.10), which we expect cannot be accommodated for.
This is the reason why we include ‖| · |w(s)‖2 in our temporal weight function
η(t).

4.3.2. Linear estimates. Let i ∈ {1, . . . , n}. First, since W 1,1
1 (R,Cn) is contin-

uously embedded in L∞(R,Cn), we have for j = 0, 1 the estimate
∥∥| · |jIi(t)

∥∥
1

=
∫

R

∣∣∣kje−k2ditv0,i(k)
∣∣∣ dk

{
≤ C

∥∥| · |jv0,i

∥∥
1

≤ C‖v0‖W 1,1
1

≤ Cδ, t ∈ [0, T ),
≤ Ct−

1+j
2 ‖v0,i‖∞ ≤ Ct−

1+j
2 ‖v0‖W 1,1

1
≤ Cδt−

1+j
2 , t ∈ (0, T ).

Moreover, since W 1,1
1 (R,Cn) is continuously embedded in L∞(R,Cn) and in

L2
1(R,Cn), it holds

‖| · |Ii(t)‖2{
≤ C ‖| · |v0,i‖2 ≤ C‖v0‖W 1,1

1
≤ Cδ, t ∈ [0, T ),

≤ Ct−
3
4 ‖v0,i‖∞ ≤ Ct−

3
4 ‖v0‖W 1,1

1
≤ Cδt−

3
4 , t ∈ (0, T ).

Next, we establish

‖| · |∂kIi(t)‖1

≤ C

(∫

R

∣∣∣k2te−k2ditv0,i(k)
∣∣∣ dk +

∫

R

∣∣∣ke−k2dit∂kv0,i(k)
∣∣∣ dk

)

≤
{

C
(‖v0,i‖1 + ‖| · |∂kv0,i‖1

) ≤ C‖v0‖W 1,1
1

≤ Cδ, t ∈ [0, T ),
C√

t

(‖v0,i‖∞ + ‖∂kv0,i‖1

) ≤ C√
t
‖v0‖W 1,1

1
≤ C δ√

t
, t ∈ (0, T ).
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Finally, it holds

‖∂kIi(t)‖1

≤ C

(∫

R

∣∣∣kte−k2ditv0,i(k)
∣∣∣ dk +

∫

R

∣∣∣e−k2dit∂kv0,i(k)
∣∣∣ dk

)

≤ C
(‖v0,i‖∞ + ‖∂kv0,i‖1

) ≤ C‖v0‖W 1,1
1

≤ Cδ.

for t ∈ [0, T ). All in all, we have established the linear estimates
∥∥| · |j∂m

k Ii(t)
∥∥

1
≤ Cδ(1 + t)− 1+j−m

2 , ‖| · |Ii(t)‖2 ≤ Cδ(1 + t)− 3
4 , (4.13)

for t ∈ [0, T ), j = 0, 1, m = 0, 1 and i ∈ {1, . . . , n}.

4.3.3. Estimates on irrelevant nonlinear terms. Let i ∈ {1, . . . , n} and let t ∈
[0, T ) be such that η(t) ≤ r0. For s ∈ [0, t] and j = 0, 1, we have by (1.3), (4.2)
and (4.11) the estimate

∥∥∂j
xu(s)

∥∥
∞

≤ 1
2π

∥∥| · |jv(s)
∥∥

1
≤ ∥∥| · |jw(s)

∥∥
1

≤ η(t)

(1 + s)
1+j
2

≤ r0, (4.14)

and
∥∥∂j

xu(s)
∥∥

2
≤ C

∥∥| · |jv(s)
∥∥

2
= C

∥∥| · |jw(s)
∥∥

2
≤ C

η(t)

(1 + s)
1+2j

4

,

∥∥| · |∂j
xu(s)

∥∥
∞ ≤ C

∥∥∂k

(
(·)jv(s)

)∥∥
1

≤ C
(∥∥| · |j∂kw(s)

∥∥
1

+ ‖w(s)‖1 + s
∥∥| · |jw(s)

∥∥
1

)

≤ Cη(t)(1 + s)
1−j
2 .

(4.15)

Thus, (4.8), (4.14) and (4.15) yield
∥∥Ňi(·, s)

∥∥
∞

≤ C ‖gi (u(s), ∂xu(s))‖1 ≤ C
(‖u(s)‖2

∞‖u(s)‖2
2 + ‖∂xu(s)‖2

2

) ≤ C
η(t)2

(1 + s)
3
2
,

∥∥Ňi(·, s)
∥∥

2
≤ C ‖gi (u(s), ∂xu(s))‖2

≤ C
(‖u(s)‖3

∞‖u(s)‖2 + ‖∂xu(s)‖∞‖∂xu(s)‖2

) ≤ C
η(t)2

(1 + s)
7
4
,

(4.16)

and ∥∥∂kŇi(·, s)
∥∥

2

≤ C (s ‖gi (u(s), ∂xu(s))‖2 + ‖| · |gi (u(s), ∂xu(s))‖2)

≤ C
(
s ‖gi (u(s), ∂xu(s))‖2 + ‖| · |u(s)‖∞‖u(s)‖2

∞‖u(s)‖2

+‖| · |∂xu(s)‖∞‖∂xu(s)‖2) ≤ C
η(t)2

(1 + s)
3
4
,

(4.17)
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for s ∈ [0, t]. As in estimates (2.7) and (2.6), we estimate for j = 0, 1 using the
first equation in (4.16):

‖| · |Ri(t)‖2 ≤ C

∫ t

0

(∫

R

∣∣∣ke−dik
2(t−s)Ňi(k, s)

∣∣∣
2

dk

) 1
2

ds

≤ C

∫ t

0

η(t)2

(t − s)
3
4 (1 + s)

3
2
ds ≤ C

η(t)2

(1 + t)
3
4
,

and
∥∥| · |jRi(t)

∥∥
1

≤ C

∫ t

0

∫

R

∣∣∣kje−dik
2(t−s)Ňi(k, s)

∣∣∣ dkds

≤ Cη(t)2
(∫ t

2

0

1

(t − s)
1+j
2 (1 + s)

3
2

ds

+
∫ t

t
2

1

(t − s)
1+2j

4 (1 + s)
7
4

ds

)
≤ C

η(t)2

(1 + t)
1+j
2

.

Similarly, (4.16) and (4.17) yield

∥∥∥| · |j∂kRi(t)
∥∥∥
1

≤ C

(∫ t

0

∫

R

∣∣∣kj+1(t − s)e−dik2(t−s)Ňi(k, s)
∣∣∣dkds

+

∫ t

0

∫

R

∣∣∣kje−dik2(t−s)∂kŇi(k, s)
∣∣∣ dkds

)

≤ Cη(t)2
(∫ t

0

1

(t − s)
j
2 (1 + s)

3
2

ds +

∫ t

0

1

(t − s)
1+2j

4 (1 + s)
3
4

ds

)
≤ C

η(t)2

(1 + t)
j
2

,

(4.18)

for j = 0, 1. All in all, we have established the nonlinear estimates

∥∥| · |j∂m
k Ri(t)

∥∥
1

≤ C
η(t)2

(1 + t)
1+j−m

2

,

‖| · |Ri(t)‖2 ≤ C
η(t)2

(1 + t)
3
4
, (4.19)

for t ∈ [0, T ), j = 0, 1, m = 0, 1 and i ∈ {1, . . . , n}.

4.3.4. Short-time bounds on marginal terms with derivatives. Let i, j, l ∈
{1, . . . , n} and let t ∈ [0, T ). As in Sect. 2.1, we split our estimates on Mijl(t)
in short- and large-time estimates. In this subsection, we establish short-time
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bounds on Mijl(t). Large-time estimates are then obtained in Sects. 4.3.5 and
4.3.6. Thus, for t ≤ 2, a = 0, 1 and b = 0, 1, we establish

∥∥| · |a∂b
kMijl(t)

∥∥
1 ≤ C

(∫ t

0

∫

R

∫

R

∣∣∣kae−dik
2(t−s)∂b

kwj(k − ξ, s) ξwl(ξ, s)
∣∣∣ dξdkds

+

∫ t

0

∫

R

∫

R

∣∣∣ka (di|k|(t − s) + |cj − ci|s) e−dik
2(t−s)wj(k − ξ, s) ξwl(ξ, s)

∣∣∣ dξdkds

)

≤ Cη(t)2
∫ t

0

1

(t − s)
a

2
ds ≤ C

η(t)2

(1 + t)
1+a−b

2

,

(4.20)

and
‖| · |Mijl(t)‖2

≤ C

∫ t

0

(∫

R

(∫

R

∣∣∣ke−dik
2(t−s)wj(k − ξ, s) ξwl(ξ, s)

∣∣∣ dξ

)2

dk

) 1
2

ds

≤ Cη(t)2
∫ t

0

1
(t − s)

3
4
ds

≤ C
η(t)2

(1 + t)
3
4
.

(4.21)

4.3.5. Estimates on Burgers’-type terms. Burgers’-type terms yield integrals
of the form Mijj(t) in the Duhamel formulation (4.9), which can be rewritten
using

∫ t

0

∫

R

e−dik
2(t−s)+(cj−ci)ikswj(k − ξ, s) iξwj(ξ, s)dξds

=
ik
2

∫ t

0

e−dik
2(t−s)+(cj−ci)iksw∗2

j (k, s)ds,

(4.22)

with k ∈ R and t ∈ [0, T ). In case i �= j, we have ci �= cj due to differences
in velocities and the exponential in (4.22) is oscillatory in s. We exploit these
oscillations by integrating by parts in the temporal variable s. We emphasize
that such an integration could introduce singularities at k = 0, which are
however cancelled by the factor k in front of the integral in (4.22).

Thus, let i, j ∈ {1, . . . , n} and let t ∈ [2, T ) be such that η(t) ≤ r0. We
use Young’s convolution inequality, (4.11) and (4.22) to bound

‖| · |Mijj(t)‖2

≤ C

(∫ t
2

0

(∫

R

∣∣∣k2e−dik
2(t−s)w∗2

j (k, s)
∣∣∣
2

dk

) 1
2

ds

+
∫ t

t
2

(∫

R

∣∣∣∣ke−dik
2(t−s)

∫

R

wj(k − ξ, s) ξwj(ξ, s)dξ

∣∣∣∣ dk

) 1
2

ds

)

≤ Cη(t)2
(∫ t

2

0

1
(t − s)(1 + s)

3
4
ds +

∫ t

t
2

1
(t − s)

3
4 (1 + s)

ds

)
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≤ C
η(t)2

(1 + t)
3
4
.

Similarly, for a = 0, 1 we use (4.10) and (4.22) to estimate

‖| · |aMijj(t)‖1

≤ C

(∫ t
2

0

∫

R

∣∣∣ka+1e−dik
2(t−s)w∗2

j (k, s)
∣∣∣ dkds

+
∫ t

t
2

∫

R

∫

R

∣∣∣kae−dik
2(t−s)wj(k − ξ, s) ξwj(ξ, s)

∣∣∣ dξdkds

)

≤ Cη(t)2
(∫ t

2

0

1
(t − s)1+

a
2
√

1 + s
ds +

∫ t

t
2

1
(t − s)

a
2 (1 + s)

3
2
ds

)

≤ C
η(t)2

(1 + t)
1+a
2

.

The k-derivative of (4.22) is the sum of the following three integrals

I1,ij(k, t) :=
i
2

∫ t

0

(−2dik
2(t − s) + 1

)
e−dik

2(t−s)+(cj−ci)iksw∗2
j (k, s)ds,

I2,ij(k, t) :=
ik
2

∫ t

0

e−dik
2(t−s)+(cj−ci)iks∂k

(
w∗2

j (k, s)
)
ds,

I3,ij(k, t) :=
(ci − cj)k

2

∫ t

0

s e−dik
2(t−s)+(cj−ci)iksw∗2

j (k, s)ds,

with k ∈ R. In order to bound ‖| · |a∂kMijj(t)‖1 for a = 0, 1, we estimate these
three integrals one by one. First, by (4.11) we have

‖| · |aI1,ij(t)‖1

≤ C

∫ t

0

∫

R

∣∣∣ka
(
k2(t − s) + 1

)
e−dik

2(t−s)w∗2
j (k, s)

∣∣∣ dkds

≤ Cη(t)2
∫ t

0

1

(t − s)
1+2a

4 (1 + s)
3
4

ds

≤ C
η(t)2

(1 + t)
a
2
,

for a = 0, 1. For the second integral I2,ij(t), we have, on the one hand, the
estimate

‖I2,ij(t)‖1 ≤ C

∫ t

0

∫

R

∣∣∣ke−dik
2(t−s)∂k

(
w∗2

j (k, s)
)∣∣∣dkds

≤ C

∫ t

0

η(t)2√
t − s

√
1 + s

ds ≤ Cη(t)2.

On the other hand, by (4.11) it holds

‖| · |I2,ij(t)‖1
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≤ C

(∫ t

0

∫

R

∫

R

∣∣∣ke−dik
2(t−s)(k − ξ)∂kwj(k − ξ, s)wj(ξ, s)

∣∣∣ dξdkds

+
∫ t

0

∫

R

∫

R

∣∣∣ke−dik
2(t−s)∂kwj(k − ξ, s)ξ wj(ξ, s)

∣∣∣ dξdkds

)

≤ Cη(t)2
∫ t

0

ln(2 + s)
(t − s)

3
4 (1 + s)

3
4
ds ≤ Cη(t)2

ln(2 + t)√
1 + t

.

The last integral I3,ij(t) vanishes if i = j. If i �= j, then the exponential in
I3,ij(t) is oscillatory, since it holds ci �= cj . Thus, assume i �= j. Integration by
parts yields

I3,ij(k, t) =
1
2
ψij(k)

([
s e−dik

2(t−s)+(cj−ci)iksw∗2
j (k, s)

]t

0

−
∫ t

0

e−dik
2(t−s)+(cj−ci)iksw∗2

j (k, s)ds

−
∫ t

0

s e−dik
2(t−s)+(cj−ci)iks∂s

(
w∗2

j (k, s)
)
ds

)
,

where we denote

ψij(k) :=
ci − cj

(cj − ci)i + dik
.

Hence, because equation (4.7) holds pointwise, I3,ij(k, t) is the sum of the
following five terms

J1,ij(k, t)

:= −ψij(k)
∫ t

0

∫

R

s e−dik
2(t−s)+(cj−ci)ikswj(k − ξ, s)Ñj(ξ, s)dξds,

J2,ij(k, t)

:= dj k ψij(k)
∫ t

0

∫

R

s e−dik
2(t−s)+(cj−ci)ikswj(k − ξ, s) ξwj(ξ, s)dξds,

J3,ij(k, t)

:= −1
2
ψij(k)

∫ t

0

e−dik
2(t−s)+(cj−ci)iksw∗2

j (k, s)ds,

J4,ij(k, t)

:= −djψij(k)
∫ t

0

∫

R

s e−dik
2(t−s)+(cj−ci)iks(k − ξ)wj(k − ξ, s) ξwj(ξ, s)dξds,

J5,ij(k, t)

:=
1
2
ψij(k) t e(cj−ci)iktw∗2

j (k, t),

for k ∈ R, where we have

Ñj(k, s) := Φ(k, s)F [fj (u(s), ∂xu(s))] (k), k ∈ R, s ∈ [0, t].
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First, using (1.4), (4.14) and (4.15) we establish
∥∥∥Ñj(·, s)

∥∥∥
2

≤ C ‖fj (u(s), ∂xu(s))‖2

≤ C
(‖u(s)‖2

∞‖u(s)‖2 + ‖u(s)‖∞‖∂xu(s)‖2

+‖∂xu(s)‖∞‖∂xu(s)‖2)

≤ C
η(t)

(1 + s)
5
4
,

for s ∈ [0, t]. Hence, since ψij is bounded on R, we arrive for a = 0, 1 at

‖| · |aJ1,ij(t)‖1

≤ C

∫ t

0

∫

R

∫

R

∣∣∣kae−dik
2(t−s)swj(k − ξ, s)Ñj(ξ, s)

∣∣∣ dξdkds

≤ Cη(t)2
∫ t

0

1

(t − s)
1+2a

4 (1 + s)
3
4

ds ≤ C
η(t)2

(1 + t)
a
2
.

Second, since also k �→ kψij(k) is bounded on R, it holds

‖| · |aJ2,ij(t)‖1

≤ C

(∫ t−1

0

∫

R

∫

R

∣∣∣k1+ae−dik
2(t−s)swj(k − ξ, s) ξwj(ξ, s)

∣∣∣ dξdkds

+
∫ t

t−1

∫

R

∫

R

∣∣∣kae−dik
2(t−s)swj(k − ξ, s) ξwj(ξ, s)

∣∣∣ dξdkds

)

≤ Cη(t)2
(∫ t−1

0

1

(t − s)
1+a
2

√
1 + s

+
∫ t

t−1

1
(t − s)

a
2
√

1 + s
ds

)

≤ C
η(t)2 (ln(2 + t))a

(1 + t)
a
2

(4.23)

for a = 0, 1. Third, using (4.11), we estimate

‖| · |aJ3,ij(t)‖1

≤ C

∫ t

0

∫

R

∣∣∣kae−dik
2(t−s)+(cj−ci)iksw∗2

j (k, s)
∣∣∣ dkds

≤ Cη(t)2
∫ t

0

1

(t − s)
1+2a

4 (1 + s)
3
4

ds

≤ C
η(t)2

(1 + t)
a
2
,

and

‖| · |aJ4,ij(t)‖1

≤ C

∫ t

0

∫

R

∫

R

∣∣∣kae−dik
2(t−s)s(k − ξ)wj(k − ξ, s) ξwj(ξ, s)

∣∣∣ dξdkds

≤ Cη(t)2
∫ t

0

1

(t − s)
1+2a

4 (1 + s)
3
4

ds
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≤ C
η(t)2

(1 + t)
a
2
,

for a = 0, 1. Finally, we obtain

‖| · |aJ5,ij(t)‖1 ≤ C

∫

R

∣∣katw∗2
j (k, t)

∣∣ dk

≤ C
η(t)2

(1 + t)
a
2
,

for a = 0, 1. The estimates on Jb,ij(t) for b = 1, . . . , 5 yield

‖| · |aI3,ij(t)‖1 ≤ C
η(t)2 (ln(2 + t))a

(1 + t)
a
2

,

for a = 0, 1 and i �= j, whereas I3,ij(t) vanishes for i = j. Thus, combining the
latter with the estimates on I1,ij(t) and I2,ij(t), we arrive at

‖| · |a∂kMijj(t)‖1 ≤ C
η(t)2 (ln(2 + t))a

(1 + t)
a
2

,

for a = 0, 1. Finally, combining the estimates on Mijj(t) with the short-time
bounds (4.20) and (4.21), we establish

∥∥| · |a∂b
kMijj(t)

∥∥
1

≤ C
η(t)2 (ln(2 + t))ab

(1 + t)
1+a−b

2

,

‖| · |Mijj(t)‖2 ≤ C
η(t)2

(1 + t)
3
4
, (4.24)

for t ∈ [0, T ), a = 0, 1, b = 0, 1 and i, j ∈ {1, . . . , n}.

4.3.6. Estimates on marginal mixed-terms with derivatives. All marginal mixed-
terms with derivatives yield integrals of the form Mijl(t) with j �= l in the
Duhamel formulation (4.9). Since we have cl �= cj if j �= l due to differences
in velocities, the exponential in Mijl(t) is oscillatory in ξ. We exploit these
oscillations by integrating by parts in frequency.

Thus, let i, j, l ∈ {1, . . . , n} with j �= l and let t ∈ [2, T ). Integration by
parts yields

∫

R

e(cl−cj)iξswj(k − ξ, s) iξwl(ξ, s)dξ

= −
∫

R

e(cl−cj)iξs

(cl − cj)is
∂ξ (wj(k − ξ, s) iξwl(ξ, s)) dξ, (4.25)

for s ∈ (0, t] and k ∈ R, where we use that wj(·, s) and | · |wl(·, s) are L1-
localized as w(s) ∈ W 1,1

1 (R,Cn). We employ (4.10) and (4.25) to bound

‖| · |Mijl(t)‖2

≤ C

⎛

⎝
∫ 1

0

(∫

R

(∫

R

∣∣∣ke−dik
2(t−s)wj(k − ξ, s) ξwl(ξ, s)

∣∣∣ dξ

)2

dk

) 1
2

ds
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+
∫ t

1

(∫

R

(∫

R

∣∣∣∣
k

s
e−dik

2(t−s)∂ξ (wj(k − ξ, s) ξwl(ξ, s))
∣∣∣∣dξ

)2

dk

) 1
2

ds

⎞

⎠

≤ Cη(t)2
(∫ 1

0

1
(t − s)

3
4 (1 + s)

ds +
∫ t

1

ln(2 + s)
s(t − s)

3
4
√

1 + s
ds

)

≤ C
η(t)2

(1 + t)
3
4
,

and, similarly, for a = 0, 1 we estimate

‖| · |aMijl(t)‖1

≤ C

(∫ 1

0

∫

R

∫

R

∣∣∣kae−dik
2(t−s)wj(k − ξ, s) ξwl(ξ, s)

∣∣∣ dξdkds

+
∫ t

1

∫

R

∫

R

∣∣∣∣
ka

s
e−dik

2(t−s)∂ξ (wj(k − ξ, s) ξwl(ξ, s))
∣∣∣∣dξdkds

)

≤ Cη(t)2
(∫ 1

0

1

(t − s)
1+a
2 (1 + s)

ds +
∫ t

2

1

ln(2 + s)

s(t − s)
1+a
2

√
1 + s

ds

+
∫ t

t
2

ln(2 + s)
s(t − s)

a
2 (1 + s)

ds

)

≤ C
η(t)2

(1 + t)
1+a
2

.

The k-derivative of Mijl(t) is the sum of the following three integrals

I1,ijl(k, t)

:= −μijldi

π

∫ t

0

k(t − s)e−dik
2(t−s)+(cj−ci)iks

∫

R

e(cl−cj)iξswj(k − ξ, s) iξwl(ξ, s)dξds,

I2,ijl(k, t)

:=
μijl(cj − ci)i

2π

∫ t

0

s e−dik
2(t−s)+(cj−ci)iks

∫

R

e(cl−cj)iξswj(k − ξ, s) iξwl(ξ, s)dξds,

I3,ijl(k, t)

:=
μijl

2π

∫ t

0

e−dik
2(t−s)+(cj−ci)iks

∫

R

e(cl−cj)iξs∂kwj(k − ξ, s) iξwl(ξ, s)dξds,

which we bound one-by-one. First, using (4.10) and (4.25), we arrive for a =
0, 1 at

‖| · |aI1,ijl(t)‖1

≤ C

(∫ 1

0

∫

R

∫

R

∣∣∣ka+1(t − s)e−dik
2(t−s)wj(k − ξ, s) ξwl(ξ, s)

∣∣∣ dξdkds

+
∫ t

1

∫

R

∫

R

∣∣∣ka+1(t − s)e−dik
2(t−s)s−1∂ξ (wj(k − ξ, s) ξwl(ξ, s))

∣∣∣dξdkds

)
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≤ Cη(t)2
(∫ 1

0

1
(t − s)

a
2 (1 + s)

ds +
∫ t

1

ln(2 + s)
(t − s)

a
2 s

√
1 + s

ds

)

≤ C
η(t)2

(1 + t)
a
2
.

Second, to bound I2,ijl(t), we rewrite the ξ-derivative in (4.25) as

∂ξ (wj(k − ξ) ξwl(ξ))

= ξwl(ξ)∂ξ (wj(k − ξ)) − (k − ξ)wj(k − ξ)∂ξwl(ξ) + kwj(k − ξ)∂ξwl(ξ)

+ wj(k − ξ)wl(ξ),
(4.26)

for ξ, k ∈ R, where we suppress dependency on s ∈ [0, t]. Thus, (4.11), (4.25)
and (4.26) lead for a = 0, 1 to the estimate

‖| · |aI2,ijl(t)‖1

≤ C

(∫ t

t−1

∫

R

∫

R

∣∣∣kae−dik
2(t−s)s wj(k − ξ, s) ξwl(ξ, s)

∣∣∣ dξdkds

+
∫ t−1

0

∫

R

∫

R

∣∣∣kae−dik
2(t−s)(k − ξ)wj(k − ξ, s)∂ξwl(ξ, s)

∣∣∣ dξdkds

+
∫ t−1

0

∫

R

∫

R

∣∣∣ka+1e−dik
2(t−s)wj(k − ξ, s)∂ξwl(ξ, s)

∣∣∣ dξdkds

+
∫ t−1

0

∫

R

∣∣∣kae−dik
2(t−s)w∗2

j (k, s)
∣∣∣ dkds

)

≤ Cη(t)2
(∫ t

t−1

1
(t − s)

a
2
√

1 + s
ds +

∫ t−1

0

1

(t − s)
1+2a

4 (1 + s)
3
4

ds

+
∫ t−1

0

1

(t − s)
1+a
2

√
1 + s

ds

)

≤ Cη(t)2
(ln(2 + t))a

(1 + t)
a
2

.

(4.27)

Third, we establish

‖| · |aI3,ijl(t)‖1

≤ C

∫ t

0

∫

R

∫

R

∣∣∣kae−dik
2(t−s)∂kwj(k − ξ, s) ξwl(ξ, s)

∣∣∣ dξdkds

≤
∫ t

0

1

(t − s)
1+2a

4 (1 + s)
3
4

ds ≤ C
η(t)2

(1 + t)
a
2
,

for a = 0, 1. Hence, the bounds on Ib,ijl(t) for b = 1, 2, 3 yield

‖| · |a∂kMijl(t)‖1 ≤ C
η(t)2 (ln(2 + t))a

(1 + t)
a
2

,
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for a = 0, 1. Finally, combining the estimates on Mijl(t) with the short-time
bounds (4.20) and (4.21), we arrive at

∥∥| · |a∂b
kMijl(t)

∥∥
1

≤ C
η(t)2 (ln(2 + t))ab

(1 + t)
1+a−b

2

,

‖| · |Mijl(t)‖2 ≤ C
η(t)2

(1 + t)
3
4
, (4.28)

for t ∈ [0, T ), a = 0, 1, b = 0, 1 and i, j, l ∈ {1, . . . , n} with j �= l.

Remark 4.2. We note that the ‘artificial’ ln(2 + t)-factor in the bound on
‖| · |∂kw(t)‖1 arises in the estimates (4.23) and (4.27). We believe that such a
bound can be avoided by integrating by parts in time in J2,ij(k, t) and I2,ijl(t)
in case i �= j, which does not introduce singularities, since it holds ci �= cj and
J2,ij(k, t) and (the critical part in) I2,ijl(t) vanish at k = 0. However, in order
not to overcomplicate the analysis we refrain from doing so.

4.3.7. Estimates on marginal mixed-terms without derivatives. All marginal
mixed-terms without derivatives yield integrals of the form Nijlm(t) with l �= m
in the Duhamel formulation (4.9). Since it holds cl �= cm if l �= m, the expo-
nential occurring in Nijlm(t) is oscillatory in ζ. We exploit these oscillations
by integrating by parts in frequency. Therefore, the procedure in this section
quite similar as in §4.3.6.

Thus, let i, j, l,m ∈ {1, . . . , n} with m �= l and let t ∈ [0, T ) be such that
η(t) ≤ r0. Integration by parts yields

∫

R

e(cm−cl)iζswl(ξ − ζ, s)wm(ζ, s)dζ

= −
∫

R

e(cm−cl)iζs

(cm − cl)is
∂ζ (wl(ξ − ζ, s)wm(ζ, s)) dζ, (4.29)

for s ∈ (0, t] and ξ ∈ R, where we use that wl(·, s) and wm(·, s) are L1-localized.
In case t ≥ 2, we use (4.10) and (4.29) to estimate

‖| · |Nijlm(t)‖2

≤ C

(∫ 1

0

(∫

R

(∫

R

∫

R

∣∣∣ke−dik
2(t−s)wj(k − ξ, s)

×wl(ξ − ζ, s)wm(ζ, s)| dζdξ)2 dk
) 1

2
ds

+
∫ t

1

(∫

R

(∫

R

∫

R

∣∣∣ke−dik
2(t−s)s−1wj(k − ξ, s)

× ∂ζ (wl(ξ − ζ, s)wm(ζ, s))| dζdξ)2 dk
) 1

2
ds

)

≤ Cη(t)2
(∫ 1

0

1
(t − s)

3
4 (1 + s)

ds

+
∫ t

1

1
s(t − s)

3
4
√

1 + s
ds

)
≤ C

η(t)2

(1 + t)
3
4
,
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and, similarly, for a = 0, 1 we estimate

‖| · |aNijlm(t)‖1

≤ C

(∫ 1

0

∫

R

∫

R

∫

R

∣∣∣kae−dik
2(t−s)wj(k − ξ, s)wl(ξ − ζ, s)wm(ζ, s)

∣∣∣dζdξdkds

+

∫ t

1

∫

R

∫

R

∫

R

∣∣∣∣
ka

s
e−dik

2(t−s)wj(k − ξ, s)∂ζ (wl(ξ − ζ, s)wm(ζ, s))

∣∣∣∣ dζdξdkds

)

≤ Cη(t)2

(∫ 1

0

1

(t − s)
1+a
2 (1 + s)

ds +

∫ t
2

1

1

s(t − s)
1+a
2

√
1 + s

ds

+

∫ t

t
2

1

s(t − s)
a
2 (1 + s)

ds

)

≤ C
η(t)2

(1 + t)
1+a
2

.

Moreover, we establish via (4.11) and (4.29)

‖| · |a∂kNijlm(t)‖1

≤ C

(∫ 1

0

∫

R

∫

R

∫

R

∣∣∣ka+1di(t − s)e−dik
2(t−s)wj(k − ξ, s)wl(ξ − ζ, s)wm(ζ, s)

∣∣∣ dζdξdkds

+

∫ t

1

∫

R

∫

R

∫

R

∣∣∣ka+1di(t − s)e−dik
2(t−s)s−1wj(k − ξ, s)

× ∂ζ (wl(ξ − ζ, s)wm(ζ, s))| dζdξdkds

+

∫ t

0

∫

R

∫

R

∫

R

∣∣∣ka(cj − ci)e
−dik

2(t−s)wj(k − ξ, s)

× ∂ζ (wl(ξ − ζ, s)wm(ζ, s))| dζdξdkds

+

∫ t

0

∫

R

∫

R

∫

R

∣∣∣kae−dik
2(t−s)∂kwj(k − ξ, s)wl(ξ − ζ, s)wm(ζ, s)

∣∣∣ dζdξdkds

)

≤ Cη(t)2

(∫ 1

0

1

(t − s)
a

2 (1 + s)
ds +

∫ t

1

1

(t − s)
a

2 s
√

1 + s
ds

+

∫ t

0

1

(t − s)
1+2a

4 (1 + s)
3
4

ds

)
≤ C

η(t)2

(1 + t)
a

2
,

for a = 0, 1. In case t ≤ 2, we establish the short-time bounds

‖| · |Nijlm(t)‖2

≤ C

∫ t

0

(∫

R

(∫

R

∫

R

∣∣∣ke−dik2(t−s)wj(k − ξ, s)wl(ξ − ζ, s)wm(ζ, s)
∣∣∣dζdξ

)2

dk

) 1
2

ds

≤ Cη(t)2
∫ t

0

1

(t − s)
3
4

ds ≤ C
η(t)2

(1 + t)
3
4

,

and
∥∥∥| · |a

∂
b
kNijlm(t)

∥∥∥
1

≤ C

(∫ t

0

∫

R

∫

R

∫

R

∣∣∣ka
e

−dik2(t−s)
∂

b
kwj(k − ξ, s)wl(ξ − ζ, s)wm(ζ, s)

∣∣∣ dζdξdkds

+

∫ t

0

∫

R

∫

R

∫

R

∣∣∣ka
(|k|(t − s) + |cj − ci|s) e−dik2(t−s)

wj(k − ξ, s)wl(ξ − ζ, s)wm(ζ, s)
∣∣∣ dζdξdkds

)
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≤ Cη(t)
2
∫ t

0

1

(t − s)
a

2
ds ≤ C

η(t)2

(1 + t)
1+a−b

2

,

for a = 0, 1 and b = 0, 1. All in all, the analysis in this paragraph leads to the
following nonlinear estimates

∥∥| · |a∂b
kNijlm(t)

∥∥
1

≤ C
η(t)2

(1 + t)
1+a−b

2

, ‖| · |Nijlm(t)‖2 ≤ C
η(t)2

(1 + t)
3
4
,

(4.30)

for t ∈ [0, T ), a = 0, 1, b = 0, 1 and i, j, l,m ∈ {1, . . . , n} with l �= m.

4.3.8. Conclusion. Finally, by combining (4.9), (4.13), (4.19), (4.24), (4.28)
and (4.30) we establish that, provided v0 ∈ W 1,1

1 (R,Cn) satisfies ‖v0‖W 1,1
1

≤ δ
and t ∈ [0, T ) is such that η(t) ≤ r0, the key estimate (4.4) holds true. This
concludes, as explained in Sect. 4.1, the proof of Theorem 1.1. �

5. Future outlook

This paper provides an alternative method to capture the effect of different
velocities on the long-time dynamics of small, localized initial data in multi-
component reaction–diffusion–advection systems. In combination with the ear-
lier results in [6], we can affirm that, if each component propagates with a
different velocity, then large classes of relevant and marginal nonlinearities
in (1.1) do not affect the decay of small, localized initial data. On the other
hand, it is shown in [6, Theorem 1.4] that, even if each component exhibits
different velocities, there are still nonlinearities which could lead to finite time
blow-up of solutions with small initial data.

All in all, we are still far from a complete characterization. Perhaps the
most pressing question is whether it is possible, as in two-component RDA
systems, to include quadratic mixed-terms in the analysis for general multi-
component RDA systems. It was already mentioned in [6, Section 8] that the
method of pointwise estimates can be employed to handle quadratic mixed-
terms in n-component RDA systems for n ≥ 2, if the nonlinearity has the
special form f(u, ∂xu) = diag(u1, . . . , un)g(u, ∂xu) with g : Rn × R

n → R
n

smooth, so that each term in the i-component has a contribution from the i-th
component. However, it is still open how to handle quadratic mixed-terms in
general n-component RDA systems for n > 2.

As outlined in Remark 2.1, one could try to extend the method in this
paper to work for quadratic mixed-terms by taking stronger-than-polynomially
localized initial data and by simultaneously controlling all frequency deriva-
tives of the solution in Fourier space in the nonlinear iteration. A second, more
refined, idea is to decompose the solution in Fourier space into a principal part,
which is analytic in frequency and exhibits slow temporal decay, and a remain-
der, which decays faster in time; thus being in accordance with the algebraic-
exponential decomposition of the pointwise bound (1.8) obtained from [6]. The
contributions in the Duhamel formulation coming from the principal part of a
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quadratic mixed-term can then be integrated by parts in frequency repeatedly
to reveal additional temporal decay that arises due to differences in velocities.

Besides those future directions already discussed in [6, Section 8], it would
be interesting to extend the current method to larger classes of systems. A first
gentle step would be to stay in the parabolic framework and to allow for cross-
advection and cross-diffusion in (1.1). We expect that, after diagonalization,
the current analysis or the one in [6] can be employed. Another option would
be to allow for spatially varying coefficients in (1.1). In case the spectrum of
the linearization about the rest state u = 0 in (1.1) is marginally stable and
has multiple critical modes, differences in group velocities can, possibly after
applying mode filters, be exploited. Moreover, it would be interesting to extend
the current analysis beyond the parabolic framework. A natural first step in
this direction would be to look at hyperbolic-parabolic systems. Finally, instead
of the effect on the long-term dynamics of differences in advection between
components, one could also investigate the effect of differences in nonlinear
transport, for instance induced by nonlinear Burgers’-type terms.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.
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