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Abstract. We study the direct and inverse scattering problem for the
semilinear Schrödinger equation Δu + a(x, u) + k2u = 0 in R

d. We show
well-posedness in the direct problem for small solutions based on the
Banach fixed point theorem, and the solution has the certain asymptotic
behavior at infinity. We also show the inverse problem that the semilinear
function a(x, z) is uniquely determined from the scattering amplitude.
The idea is the linearization that by using sources with several parameters
we differentiate the nonlinear equation with respect to these parameter
in order to get the linear one.
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1. Introduction

In this paper, we study the direct and inverse scattering problem for the semi-
linear Schrödinger equation

Δu + a(x, u) + k2u = 0 in R
d, (1.1)

where d ≥ 2, and k > 0. Throughout this paper, we make the following
assumptions for the semilinear function a : Rd × C → C.

Assumption 1.1. We assume that
(i) a(x, 0) = 0 for all x ∈ R

d.
(ii) a(x, z) is holomorphic at z = 0 for each x ∈ R

d, that is, there exists η > 0
such that a(x, z) =

∑∞
l=1

∂l
za(x,0)

l! zl for |z| < η.
(iii) ∂l

za(·, 0) ∈ L∞(Rd) for all l ≥ 1. Furthermore, there exists c0 > 0 such
that

∥
∥∂l

za(·, 0)
∥
∥

L∞(Rd)
≤ cl

0 for all l ≥ 1.

(iv) There exists R > 0 such that supp∂l
za(·, 0) ⊂ BR for all l ≥ 1 where

BR ⊂ R
d is a open ball with center 0 and radius R > 0.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00030-020-00627-x&domain=pdf
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The inverse scattering problems for non-linear Schrödinger equations have
been studied in various ways. For the time dependent case, we refer to [21–23],
and for the stationary case, we refer to [1,7,9,16–18]. In stationary case, [7,9,
17] have studied the general non-linear function of the form a(x, |u|)u, which
does not include our no-nlinear function a(x, u). The function a(x, u) which
satisfies Assumption 1.1 is the generalization of, in particular, the power type
q(x)um where m ∈ N where q ∈ L∞(Rd) with compact support. If m = 1, the
problem is for linear Schrödinger equations, which has been well understood
so far by many authors. (see e.g., [6,12,13,15])

Recently in [5,10,11], the generalization of a power type has been studied
in inverse boundary value problems via using the Dirichlet-to-Neumann map.
[8] also has studied the similar type of this nonlinearity. However in inverse
scattering problems, only [1] has studied it in one dimension, which the non-
linear function is of the form a(x, u) =

∑∞
n=1 qn(x)un. Motivated by these

previous studies, our aim in this paper is to study the type of this nonlinearity
in the case of higher dimensions d ≥ 2, and a more general form a(x, u) than
[1].

We consider the incident field uin
g as the Herglotz wave function

uin
g (x) :=

∫

Sd−1
eikx·θg(θ)ds(θ), x ∈ R

d, g ∈ L2(Sd−1), (1.2)

which solves the free Schrödinger equation Δuin
g + k2uin

g = 0 in R
d. The

scattered field usc
g corresponding to the incident field uin

g is a solution of the
following Schrödinger equation perturbed by the semilinear function a(x, z)

Δug + a(x, ug) + k2ug = 0 in R
d, (1.3)

where ug is total field that is of the form ug = usc
g + uin

g , and the scattered
field usc satisfies the Sommerfeld radiation condition

lim
r→∞ r

d−1
2

(
∂usc

∂r
− ikusc

)

= 0, (1.4)

where r = |x|.
Since support of the function a(x, z) is compact, the direct scattering

problem (1.3)–(1.4) is equivalent to the following integral equation. (See e.g.,
the argument of Theorem 8.3 in [3].)

ug(x) = uin
g +

∫

Rd

Φ(x, y)a(y, ug(y))dy, x ∈ R
d, (1.5)

where Φ(x, y) is the fundamental solution for −Δ − k2 in R
d. In the following

theorem, we find a small solution usc
g of (1.5) for small g ∈ L∞(Sd−1).

Theorem 1.2. We assume that a(x, z) satisfies Assumption 1.1. Then, there ex-
ists δ0 ∈ (0, 1) such that for all δ ∈ (0, δ0) and g ∈ L∞(Sd−1) with ‖g‖L∞(Sd−1)

< δ2, there exists a unique solution usc
g ∈ L∞(Rd) with

∥
∥usc

g

∥
∥

L∞(Rd)
≤ δ such

that
usc

g (x) =
∫

Rd

Φ(x, y)a(y, usc
g (y) + uin

g (y))dy, x ∈ R
d. (1.6)
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Theorem 1.2 is proved by the Banach fixed point theorem. By the same
argument in Section 19 of [4], the solution usc

g of (1.6) has the following as-
ymptotic behavior

usc
g (x) = Cd

eikr

r
d−1
2

u∞
g (x̂) + O

(
1

r
d+1
2

)

, r := |x| → ∞, x̂ :=
x

|x| . (1.7)

where Cd := k
d−3
2 e−i π

4 (d−3)/2
d+1
2 π

d−1
2 . The function u∞

g is called the scattering
amplitude, which is of the form

u∞
g (x̂) =

∫

Rd

e−ikx̂·ya(y, ug(y))dy, x̂ ∈ S
d−1. (1.8)

We remark that in the standard linear case, that is, a(x, u) = q(x)u, the
scattering amplitude corresponding to the Herglotz wave function (1.8) can be
of the form

u∞
g (x̂) =

∫

Sd−1
ũ∞(x̂, θ)g(θ)ds(θ), x̂ ∈ S

d−1. (1.9)

where ũ∞(x̂, θ) is the scattering amplitude corresponding to plane waves eikx·θ.
This tells us that in standard linear case, the scattering amplitude of the
Herglotz wave function is equivalent to that of the plane wave.

Now, we are ready to consider the inverse problem to determine the semi-
linear function a(x, z) from scattering amplitudes u∞

g (x̂) for all g ∈ L2(Sd−1)
with ‖g‖L2(Sd−1) < δ where δ > 0 is a sufficiently small. We will show the
following theorem.

Theorem 1.3. We assume that aj(x, z) satisfies Assumption 1.1 (j = 1, 2). Let
u∞

g,j be the scattering amplitude for the following problem

Δuj,g + aj(x, uj,g) + k2uj,g = 0 in R
d, (1.10)

uj,g = usc
j,g + uin

g , (1.11)

where usc
j,g satisfies the Sommerfeld radiation (1.4), and uin

g is given by (1.2),
and we assume that

u∞
1,g = u∞

2,g, (1.12)

for any g ∈ L2(Sd−1) with ‖g‖L2(Sd−1) < δ where δ > 0 is sufficiently small.
Then, we have

a1(x, z) = a2(x, z), x ∈ R
d, |z| < η (1.13)

The idea of the proof is the linearization, which by using sources with
several parameters we differentiate the nonlinear equation with respect to these
parameter in order to get the linear equation. (For such ideas, we refer to
[5,10,11].)

There are few previous studies that the general nonlinear function is
uniquely determined from the scattering amplitude with fixed k > 0. [9] has
shown it from behaviour of scattering amplitude corresponding to plane waves
λeikxθ̇ as λ → 0. [16] has done from the scattering amplitude with fixed λ =
1, but the additional assumptions are needed. Our work shows it from the
scattering amplitude corresponding to Herglotz wave functions uin

g for all small
g instead of using plane waves.
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This paper is organized as follows. In Sect. 2, we recall the Green function
for the Helmholtz equation and its properties. We also prepare the several lem-
mas required in the forthcoming argument. In Sect. 3, we prove Theorem 1.2
based on the Banach fixed point theorem. In Sect. 4, we consider the special
solution of (1.3)–(1.4) corresponding to the incident field with several param-
eters in order to linearize problems. Finally in Sect. 5, we prove Theorem 1.3.

2. Preliminary

First, we recall the Green functions for the Helmholtz equation and its prop-
erties. We denote the Green function for −Δ − k2 in R

d by Φ(x, y), that is,
Φ(x, y) satisfies

(−Δ − k2)Φ(x, y) = δ(x − y), (2.1)

for x, y ∈ R
d, x 	= y. In the case of d = 2, 3, Φ(x, y) is of the form

Φ(x, y) =

⎧
⎨

⎩

i
4H

(1)
0 (k|x − y|) for x, y ∈ R

2, x 	= y,
eik|x−y|

4π|x − y| for x, y ∈ R
3, x 	= y,

(2.2)

respectively. Let q ∈ L∞(Rd) with compact support. We denote the Green
function for −Δ − k2 − q in R

d by Φq(x, y), that is, Φq(x, y) satisfies

(−Δ − k2 − q)Φq(x, y) = δ(x − y). (2.3)

for x, y ∈ R
d, x 	= y. It is well known that for every fixed y, Φ(x, y) and

Φq(x, y) satisfy the Sommerfeld radiation condition.
We also recall the asymptotics behavior of Φ(x, y) as |x| → ∞. In Lemma

19.3 of [4], Φ(x, y) has the following asymptotics behavior for every fixed y,

Φ(x, y) = Cd
eik|x−y|

|x − y| d−1
2

+ O

(
1

|x − y| d+1
2

)

, |x| → ∞ (2.4)

and (see the proof of Theorem 19.5 in [4])

Φ(x, y) =

{
O

(
1

|x−y|d−2

)
d ≥ 3, x 	= y

O
(∣
∣ln|x − y|∣∣) d = 2, x 	= y

(2.5)

In Theorem 19.5 of [4], for every f ∈ L∞(Rd) with compact support, u(x) =∫
Rd Φ(x, y)f(y)dy is a unique radiating solution. (That is, u satisfies the Som-

merfeld radiation condition (1.4).) Furthermore, u has the following asymptotic
behavior

u(x) = Cd
eikr

r
d−1
2

u∞(x̂) + O

(
1

r
d+1
2

)

, r = |x| → ∞, x̂ :=
x

|x| , (2.6)
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where the scattering amplitude u∞ is of the form

u∞(x̂) =
∫

Rd

e−ikx̂·yf(y)dy, x̂ ∈ S
d−1. (2.7)

The following lemma is given by the same argument as in Lemma 10.4
of [3] or Proposition 2.4 of [14].

Lemma 2.1. Let q ∈ L∞(Rd) with compact support in BR ⊂ R
d where some

R > 0. We define the Helglotz operator H : L2(Sd−1) → L2(BR) by

Hg(x) :=
∫

Sd−1
eikx·θg(θ)ds(θ), x ∈ BR, (2.8)

and define the operator Tq : L2(BR) → L2(BR) by Tqf := f + w
∣
∣
∣
BR

where w

is a radiating solution such that

Δw + k2w + qw = − qf in R
d. (2.9)

We define the subspace V of L2(BR) by

V :=
{

v
∣
∣
BR

; v ∈ L2(BR+1), Δv + k2v + qv = 0 in BR+1

}‖·‖L2(BR)

. (2.10)

Then, the range of the operator TqH is dense in V with respect to the norm
‖·‖L2(BR), that is,

TqH (L2(Sd−1))
‖·‖L2(BR) = V. (2.11)

The following result is well known. For d = 2 we refer to [2], and for d ≥ 3
we refer to [19], which corresponds to real functions. For complex functions,
see Theorem 6.2 in [20].

Lemma 2.2. Let f, q1, q2 ∈ L∞(Rd) with compact support in BR ⊂ R
d. We

assume that ∫

BR

fv1v2dx = 0, (2.12)

for all v1, v2 ∈ L2(BR+1) with Δvj + k2vj + qjvj = 0 in BR+1. (j = 1, 2.)
Then, f = 0 in BR.

3. Proof of Theorem 1.2

In Sect. 3, we will show Theorem 1.2 based on the Banach fixed point theorem.
We denote the Herglotz wave function by

vg(x) :=
∫

Sd−1
eikx·θg(θ)ds(θ), x ∈ R

d, g ∈ L2(Sd−1). (3.1)
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Let q := ∂za(·, 0). We define the operator T : L∞(Rd) → L∞(Rd) by

Tw(x) :=
∫

Rd

Φq(x, y)
[
a
(
y, w(y) + vg(y)

) − q(y)w(y)
]
dy

=
∫

Rd

Φq(x, y)

⎡

⎣
∑

l≥2

∂l
za(y, 0)

l!
(
w(y) + vg(y)

)l + q(y)vg(y)

⎤

⎦ dy, x ∈ R
d.

(3.2)

Let Xδ :=
{

u ∈ L∞(Rd) : ‖u‖L∞(Rd) ≤ δ
}

. We remark that L∞(Rd) is a Ba-

nach space, and Xδ is closed subspace in L∞(Rd). To find an unique fixed
point of T in X, we will show that T : Xδ → Xδ and T is a contraction. Let
w ∈ Xδ, and let δ ∈ (0, δ0), and let ‖g‖L∞(Sd−1) < δ2. Later, we will choose a
appropriate δ0 > 0.

By ‖g‖L∞(Sd−1) < δ2, we have

‖vg‖L∞(Rd) ≤ C ‖g‖L∞(Sd−1) ≤ Cδ2 (3.3)

where C > 0 is constant only depending on g. By (iii) (iv) of Assumption 1.1,
we have

|Tw(x)| ≤
∫

BR

|Φq(x, y)|
⎡

⎣
∑

l≥2

cl
0

l!
(
C1δ

)l + C1δ
2

⎤

⎦ dy

≤ C2δ
2

⎛

⎝
∑

l≥0

(
C1c0δ

)l

⎞

⎠
∫

BR

|Φq(x, y)|dy, (3.4)

where Cj > 0 (j = 1, 2) is constant independent of u and δ, and so is(∑
l≥0

(
C1c0δ

)l
)

when δ > 0 is sufficiently small. Furthermore, by the conti-
nuity of difference Φ(x, y)−Φq(x, y) in x and y (see the proof of Theorem 31.6
in [4]), and the estimation (2.5), we have for x ∈ R

d

∫

BR

|Φq(x, y)|dy ≤
∫

BR

(|Φ(x, y)| + |Φq(x, y) − Φ(x, y)|)dy

≤
∫

BR

(|Φ(x, y)| + C3

)
dy ≤ C4, (3.5)

which implies that |Tw(x)| ≤ Cδ2 where C,Cj > 0 (j = 3, 4) is constant
independent of u and δ. By choosing δ0 ∈ (0, 1/C), we conclude that ‖Tw‖ ≤ δ,
which means Tw ∈ Xδ.
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Let w1, w2 ∈ Xδ. Since we have
(
w1(y) + vg(y)

)l − (
w2(y) + vg(y)

)l

=
l∑

m=1

l!
(l − m)!m!

(
wm

1 (y) − wm
2 (y)

)
vl−m

g (y)

≤
l∑

m=1

l!
(l − m)!m!

(
m−1∑

h=0

wm−1−h
1 (y)wh

2 (y)

)
(
w1(y) − w2(y)

)
vl−m

g (y),

(3.6)

and |wj(x)| ≤ δ, then

|Tw1(x) − Tw2(x)|

=

∣
∣
∣
∣
∣
∣

∫

BR

Φq(x, y)
∑

l≥2

∂l
za(y, 0)

l!

[(
w1(y) + vg(y)

)l − (
w2(y) + vg(y)

)l
]
dy

∣
∣
∣
∣
∣
∣

≤
(∫

BR

|Φq(x, y)| dy

)∑

l≥2

cl
0

l!

l∑

m=1

l!
(l − m)!m!

(
m−1∑

h=0

δm−1

)

(C ′
1δ)

l−m ‖w1 − w2‖L∞(Rd)

≤ C ′
2

∑

l≥2

l∑

m=1

m

(l − m)!m!
(c0C ′

1δ)
l−1 ‖w1 − w2‖L∞(Rd)

≤ C ′
2

∑

l≥2

( ∞∑

m=1

1
(m − 1)!

)

(c0C ′
1δ)

l−1 ‖w1 − w2‖L∞(Rd)

≤ C ′
3

∑

l≥2

(c0C ′
1δ)

l−1 ‖w1 − w2‖L∞(Rd)

≤ C ′
3

⎛

⎝
∑

l≥0

(c0C ′
1δ)

l

⎞

⎠ δ ‖w1 − w2‖L∞(Rd)

≤ C ′δ ‖u1 − u2‖L∞(Rd) , x ∈ R
d. (3.7)

where C ′, C ′
j > 0 (j = 1, 2, 3) is constant independent of w1, w2 and δ. (We

remark that
(∑

l≥0 (c0C ′
1δ)

l
)

is also constant when δ > 0 is sufficiently small.)
By choosing δ0 ∈ (0, 1/C ′), we have ‖Tw1 − Tw2‖L∞(Rd) < ‖w1 − w2‖L∞(Rd).
Choosing sufficiently small δ0 ∈ (0,min(1/C, 1/C ′)) we conclude that T has a
unique fixed point in Xδ.

Let w ∈ Xδ be a unique fixed point, that is, w satisfies

w(x) =
∫

Rd

Φq(x, y)
[
a
(
y, w(y) + vg(y)

) − q(y)w(y)
]
dy, x ∈ R

d. (3.8)

Since Φq(x, y) satisfy the Sommerfeld radiation condition (e.g., see Theorem
31.6 in [4]), w is a radiating solution of Δw +a(x,w +vg)+k2w = 0 in R

d. By
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the same argument as in Theorem 8.3 of [3], this is equivalent to the integral
equation

w(x) =
∫

Rd

Φ(x, y)a
(
y, w(y) + vg(y)

)
dy, x ∈ R

d, (3.9)

which means (1.6). Therefore, Theorem 1.2 has been shown.

4. The special solution

In Sect. 4, we consider the special solution of (1.3)–(1.4) corresponding to
the incident field with several parameters in order to linearize problems. Let
N ∈ N be fixed and let gj ∈ L2(Sd−1) be fixed (j = 1, 2, . . . , N + 1). We set

vε :=
N+1∑

j=1

εjδ
2vgj

= v(δ2
∑N+1

j=1 εjgj), (4.1)

where vgj
is the Herglotz wave function defined by (1.2), and εj ∈ (0, δ). Later,

we will choose a appropriate δ = δgj ,N > 0. We remark that we can estimate
that

‖vε‖L∞(Rd) ≤ Cδ2
N+1∑

j=1

εj , (4.2)

where C > 0 is constant only depending on gj . We denote by ε = (ε1, . . . , εN+1)
∈ R

N+1. We will find a small solution uε of (1.6) that is of the form

uε = rε + vε. (4.3)

This problem is equivalent to

rε(x) =
∫

Rd

Φq(x, y)
[
a
(
y, rε(y) + vε(y)

) − q(y)rε(y)
]
dy, x ∈ R

d, (4.4)

where q := ∂za(·, 0).
We define the space for δ > 0

X̃δ :=

{

r ∈ L∞(Rd;CN+1(0, δ)N+1);
ess.supx∈Rd |r(x, ε)| ≤ ∑N+1

j=1 εj ,

‖r‖L∞(Rd;CN+1(0,δ)N+1) ≤ δ,

}

,

(4.5)
where the norm ‖·‖L∞(Rd;CN+1(0,δ)N+1) is defined by

‖r‖L∞(Rd;CN+1(0,δ)N+1) :=
∑

|α|≤N+1

supε∈(0,δ)N+1ess.supx∈Rd |∂α
ε r(x, ε)| . (4.6)

We remark that L∞(Rd;CN+1(0, δ)N+1) is a Banach space, and X̃δ is closed
subspace in L∞(Rd;CN+1(0, δ)N+1). We will show that following lemma in
the same way of Theorem 1.2.
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Lemma 4.1. We assume that a(x, z) satisfies Assumption 1.1. Then, there ex-
ists δ̃0 = δ̃0,gj ,N ∈ (0, 1) such that for all δ ∈ (0, δ̃0) there exists an unique
solution r ∈ X̃δ such that

r(x, ε) =

∫

Rd

Φq(x, y)
[
a
(
y, r(y, ε) + vε(y)

) − q(y)r(y, ε)
]
dy, x ∈ R

d, ε ∈ (0, δ)N+1.

(4.7)

Proof. We define the operator T̃ from L∞(Rd;CN+1(0, δ)N+1) into itself by

T̃ r(x, ε) :=
∫

Rd

Φq(x, y)
[
a
(
y, r(y, ε) + vε(y)

) − q(y)r(y, ε)
]
dy

=
∫

Rd

Φq(x, y)

⎡

⎣
∑

l≥2

∂l
za(y, 0)

l!
(
r(y, ε) + vε(y)

)l + q(y)vε(y)

⎤

⎦ dy

=
∫

Rd

Φq(x, y)

⎡

⎣
∑

l≥2

∂l
za(y, 0)

l!

l∑

m=0

l!
(l − m)!m!

rl−m(y, ε)vm
ε (y)

+q(y)vε(y)] dy (4.8)

Let r ∈ X̃δ. With (4.2) we have

∣
∣
∣T̃ r(x, ε)

∣
∣
∣

≤
(∫

BR

|Φq(x, y)| dy

)
⎡

⎢
⎣
∑

l≥2

cl
0

l∑

m=0

1
m!

⎛

⎝
N+1∑

j=1

εj

⎞

⎠

l−m ⎛

⎝C̃1δ
2

N+1∑

j=1

εj

⎞

⎠

m

+C̃1δ
2

N+1∑

j=1

εj

⎤

⎦

≤ C̃2

⎡

⎢
⎣
∑

l≥2

cl
0

( ∞∑

m=0

C̃m
1

m!

)⎛

⎝
N+1∑

j=1

εj

⎞

⎠

l

+ C̃1δ
2

N+1∑

j=1

εj

⎤

⎥
⎦

≤ C̃3

⎛

⎝
N+1∑

j=1

εj

⎞

⎠

2
∑

l≥2

cl
0

⎛

⎝
N+1∑

j=1

εj

⎞

⎠

l−2

+ C̃3δ

⎛

⎝
N+1∑

j=1

εj

⎞

⎠

≤ C̃δ

⎛

⎝
N+1∑

j=1

εj

⎞

⎠ , (4.9)
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where C̃, C̃j > 0 (j = 1, 2) is constant independent of r, δ, ε (but, depending
on gj and N). Furthermore, we consider for α ∈ N

N+1 with |α| ≤ N + 1

∂α
ε T̃ r(x, ε)

=

∫

Rd

Φq(x, y)∂α
ε

⎡

⎣
∑

l≥2

∂l
za(y, 0)

l!

l∑

m=0

l!

(l − m)!m!
rl−m(y, ε)vm

ε (y) + q(y)vε(y)

⎤

⎦ dy.

(4.10)

Since |∂εj
vε(x)| ≤ C̃ ′

1δ
2 and |∂α

ε rl−m(x, ε)vm
ε (x)| ≤ C̃ ′

2(l−m)!m!δl−m(C̃ ′
2δ

2)m,
we have

∣
∣
∣∂α

ε T̃ r(x, ε)
∣
∣
∣ ≤

(∫

BR

|Φq(x, y)| dy

)
⎡

⎣
∑

l≥2

cl
0

l!

l∑

m=0

l!m!(l − m)!

(l − m)!m!
δl+m(C̃′

2)m + C̃′
3δ2

⎤

⎦

≤ C̃′
4δ2

⎛

⎝
∑

l≥2

(c0δ)(l−2)
∞∑

m=0

(C̃′
2δ)m

⎞

⎠ + C̃′
4δ2 ≤ C̃′

5δ2, (4.11)

where C̃ ′
j > 0 (j = 3, 4, 5) is also constant independent of r, δ, ε (but depending

on α). Then, we have
∑

|α|≤N+1

supε∈(0,δ)N+1ess.supx∈Rd

∣
∣
∣∂α

ε T̃ r(x, ε)
∣
∣
∣ ≤ C̃ ′δ2, (4.12)

where C̃ ′ is constant independent of r, δ, ε. (Depending on gj and N .) By

choosing δ̃0 ∈
(
0,min(1/C̃, 1/C̃ ′)

)
, we conclude that T̃ r ∈ X̃δ.

Let r1, r2 ∈ X̃δ. By similar argument in (3.6) we have

T̃ r1(x, ε) − T̃ r2(x, ε)

=
∫

BR

Φq(x, y)
∑

l≥2

∂l
za(y, 0)

l!

[(
r1(y, ε) + vε(y)

)l − (
r2(y, ε) + vε(y)

)l
]
dy

=
∫

BR

Φq(x, y)
∑

l≥2

∂l
za(y, 0)

l!

l∑

m=1

l!
(l − m)!m!

vl−m
ε (y)

×
m−1∑

h=0

rm−1−h
1 (y, ε)rh

2 (y, ε) (r1(y, ε) − r2(y, ε)) dy. (4.13)

Then, we have for α ∈ N
N+1 with |α| ≤ N + 1

∣
∣
∣∂

α
ε

(
T̃ r1(x) − T̃ r2(x)

)∣
∣
∣

≤
∫

BR

|Φq(x, y)|
∑

β≤α

α!

(α − β)!β!

∑

l≥2

∣
∣∂l

za(y, 0)
∣
∣

l!

l∑

m=1

l!

(l − m)!m!

×
m−1∑

h=0

∣
∣
∣∂

β
ε

(
vl−m

ε (y)rm−1−h
1 (y, ε)rh

2 (y, ε)
)∣
∣
∣
∣
∣
∣∂

α−β
ε (r1(y, ε) − r2(y, ε))

∣
∣
∣ dy.

(4.14)
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Since
∣
∣
∣∂

β
ε

(
vl−m

ε (y)rm−1−h
1 (y, ε)rh

2 (y, ε)
)∣
∣
∣ ≤ C̃′′

1 (l−m)!(m−1−h)!h!(C̃′′
1 δ2)l−mδm−1−hδh,

(4.15)
where C̃ ′′

1 is constant independent of r1, r2 and δ (depending on β), we have
that
∣
∣
∣∂

α
ε

(
T̃ r1(x) − T̃ r2(x)

)∣
∣
∣

≤ C̃′′
2

⎛

⎝
∑

β≤α

α!

(α − β)!β!

∑

l≥2

cl
0

l!

×
l∑

m=1

m−1∑

h=0

l!(l − m)!(m − 1 − h)!h!

(l − m)!m!
δ2l−m−1(C̃′′

1 )l−m

)

‖r1 − r2‖

≤ C̃′′
3 δ

⎛

⎝
∑

l≥2

(c0δ)
l−2

l∑

m=1

(C̃′′
1 δ)l−m

m−1∑

h=0

(m − 1 − h)!h!

m!

⎞

⎠ ‖r1 − r2‖

≤ C̃′′
4 δ

⎛

⎝
∑

l≥2

(c0δ)
l−2

∞∑

p=0

(C̃′′
1 δ)p

⎞

⎠ ‖r1 − r2‖ ≤ C̃′′
5 δ ‖r1 − r2‖L∞(Rd;CN+1(0,δ)N+1) ,

(4.16)

which implies that
∑

|α|≤N+1

supε∈(0,δ)N+1ess.supx∈Rd

∣
∣
∣∂α

ε

(
T̃ r1(x, ε) − T̃ r2(x, ε)

)∣
∣
∣ ≤ C̃ ′′δ ‖r1 − r2‖ ,

(4.17)
where C̃ ′′

j , C̃ ′′ > 0 (j = 2, 3, 4) is constant independent of r1, r2 and δ. By

choosing δ̃0 ∈
(
0,min(1/C̃, 1/C̃ ′, 1/C̃ ′′)

)
, we have ‖Tr1 − Tr2‖ < ‖r1 − r2‖,

which implies that T̃ has a unique fixed point in X̃δ. Lemma 4.1 has been
shown. �

5. Proof of Theorem 1.3

In Sect. 5, we will show Theorem 1.3. Since a(x, z) is holomorphic at z = 0 by
(ii) of Assumption 1.1, it is sufficient to show that

∂l
za1(x, 0) = ∂l

za2(x, 0), x ∈ R
d, (5.1)

for all l ∈ N. Let N ∈ N and let gj ∈ L2(Sd−1) (j = 1, 2, . . . , N + 1). Let

δ ∈
(
0,min(δ0, δ̃0)

)
be chosen as sufficiently small and depending on N and

gj . (δ0, δ̃0 are corresponding to Theorem 1.2 and Lemma 4.1, respectively.)
From Section 4, we obtain the unique solution rε,j ∈ X̃δ (j = 1, 2) such that

Δrε,j + aj(x, rε,j + vε) + k2rε,j = 0 in R
d, (5.2)
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where rε,j satisfies the Sommerfeld radiation, and vε is given by (4.1). The
solution rε,j has the form

rε,j(x) =
∫

Rd

Φ(x, y)aj(y, rε,j(y) + vε(y))dy, x ∈ R
d, ε ∈ (0, δ)N+1. (5.3)

By the assumption of Theorem 1.3 we have

r∞
ε,1(x̂) = r∞

ε,2(x̂), x̂ ∈ S
d−1, ε ∈ (0, δ)N+1, (5.4)

where r∞
ε,j is a scattering amplitude for rε,j , and it has the form

r∞
ε,j(x̂) =

∫

Rd

e−ikx̂·yaj(y, rε,j(y) + vε(y))dy, x̂ ∈ S
d−1, ε ∈ (0, δ)N+1. (5.5)

In order to linearize (5.3), we will differentiate it with respect to εl (l =
1, . . . , N + 1), which is possible because rε,j ∈ X̃δ. Then, we have

∂εl
rε,j(x) =

∫

Rd

Φ(x, y)∂zaj(y, rε,j(y) + vε(y))(∂εl
rε,j(y) + δ2vgl

(y))dy. (5.6)

As ε → +0 we have by setting qj := ∂zaj(y, 0)

wl,j(x) := ∂εl
rε,j

∣
∣
∣
ε=0

(x) =
∫

Rd

Φ(x, y)qj(y)(wl,j(y) + δ2vgl
(y))dy, (5.7)

which implies that

Δwl,j + k2wl,j = − qj(wl,j + δ2vgl
) in R

d. (5.8)

By setting ul,j := wl,j + δ2vgl
we have

Δul,j + k2ul,j + qjul,j = 0 in R
d. (5.9)

By setting ul := ul,1 − ul,2(= wl,1 − wl,2) we have

Δul + k2ul + q1ul = (q2 − q1)ul,2 in R
d, (5.10)

and we also have

(q2 − q1)uh,1ul,2 = uh,1Δul − ulΔuh,1 in R
d. (5.11)

Differentiating (5.4) with respect to εl and as ε → 0 we have
∫

Rd

e−ikx̂·yq1(y)(wl,1(y)+δ2vgl
(y))dy =

∫

Rd

e−ikx̂·yq2(y)(wl,2(y)+δ2vgl
(y))dy,

(5.12)
which means that w∞

l,1 = w∞
l,2, where w∞

l,j is a scattering amplitude of wl,j . By
setting ŵl := wl,1 − wl,2 we have
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Δŵl + k2ŵl = 0 in R\BR, (5.13)

where ŵl satisfies the Sommerfeld radiation condition, and the scattering am-
plitude ŵ∞

l of ŵl vanishes. Then, we have ŵl = 0 (that is, ul = 0) in R\BR,
which implies that by the Green’s second theorem we have (l, h = 1, . . . , N+1)

0 =
∫

∂BR+1

uh,1∂νul − ul∂νuh,1ds

=
∫

BR+1

uh,1Δul − ulΔuh,1dx

=
∫

BR

(q2 − q1)uh,1ul,2dx. (5.14)

By (5.8), and definition of H and Tqj
in Section 2, ul,j can be of the form

ul,j = δ2Tqj
Hgl, (5.15)

and dividing by δ4 > 0,

0 =
∫

BR

(q2 − q1)Tq1HghTq2Hgldx. (5.16)

Combining Lemma 2.1 with Lemma 2.2, we conclude that q1 = q2.
By induction, we will show (5.1). In the first part of this section, the case

of l = 1 has been shown. We assume that
∂l

za1(x, 0) = ∂l
za2(x, 0), (5.17)

for all l = 1, 2, . . . , N . We will show the case of l = N + 1. We alredy have
shown that q1 = q2 and w∞

l,1 = w∞
l,2, which implies that by the uniqueness of

the linear Schrödinger equation (5.8) we have

wl,1 = wl,2 in R
d, (5.18)

for all l = 1, . . . , N + 1.
We set q := q1 = q2 and wl := wl,1 = wl,2. By subinduction we will show

that for all h ∈ N with 1 ≤ h ≤ N

∂h
εl1 ...εlh

rε,1

∣
∣
∣
ε=0

= ∂h
εl1 ...εlh

rε,2

∣
∣
∣
ε=0

, (5.19)

where l1, . . . , lh ∈ {1, . . . , N +1}. We already have shown that (5.19) holds for
h = 1. We assume that (5.19) holds for all h ≤ K ≤ N − 1. (If N = 1, this
subinduction is skipped.) By differentiating (5.3) with respect to ∂K+1

εl1 ...εlK+1

we have

∂K+1
εl1 ...εlK+1

rε,j(x) =
∫

Rd

Φ(x, y)

{

∂K+1
z aj(y, rε,j(y)

+vε(y))
K+1∏

h=1

(∂εlh
rε,j(y) + δ2vglh

(y))

+∂zaj(y, rε,j(y)

+vε(y))∂K+1
εl1 ...εlK+1

rε,j(y) + RK,j(y, ε)

}

dy, (5.20)
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where RK,j(y, ε) is a polynomial of ∂h
z aj(y, rε,j(y) + vε(y)) and ∂h

εl1 ...εlh

(rε,j(y) + vε(y)) for 1 ≤ h ≤ K. As ε → 0 we have

∂K+1
εl1 ...εlK+1

rε,j

∣
∣
∣
ε=0

(x) =
∫

Rd

Φ(x, y)

{

∂K+1
z aj(y, 0)

K+1∏

h=1

(wlh(y) + δ2vglh
(y))

+ q(y)∂K+1
εl1 ...εlK+1

rε,j

∣
∣
∣
ε=0

(y) + RK,j(y, 0)

}

dy. (5.21)

We set w̃K+1,j := ∂K+1
εl1 ...εlK+1

rε,j

∣
∣
∣
ε=0

and set w̃K+1 := w̃K+1,1 − w̃K+1,2. By

assumptions of induction and subinduction we have RK,1(y, 0) = RK,2(y, 0)
and ∂K+1

z a1(·, 0) = ∂K+1
z a2(·, 0), which implies that

w̃K+1(x) =
∫

Rd

Φ(x, y)q(y)w̃K+1(y)dy, (5.22)

which is equivalent to

Δw̃K+1 + k2w̃K+1 + qw̃K+1 = 0 in R
d, (5.23)

where w̃K+1 satisfies Sommerfeld radiation condition. By differentiating (5.4)
with respect to ∂K+1

εl1 ...εlK+1
and as ε → 0 we have

w̃∞
K+1,1 = w̃∞

K+1,2, (5.24)

where w̃∞
K+1,j is a scattering amplitude of w̃K+1,j . (5.24) means that w̃∞

K+1 =
0, which implies that by Rellich theorem, we conclude that w̃K+1 = 0 in R

d.
(5.19) for the case of K + 1 has been shown, and the claim (5.19) holds for all
h = 1, . . . , N by subinduction.

By differentiating (5.3) with respect to ∂N+1
ε1...εK+1

, and as ε → 0 (the same
argument in (5.20)–(5.22)) we have

w̃N+1(x) =
∫

Rd

Φ(x, y)
{
(
∂N+1

z a1(x, 0) − ∂N+1
z a2(x, 0)

)N+1∏

h=1

(wh(y) + δ2vgh
(y))

+ q(y)w̃N+1(y)
}

dy. (5.25)

where w̃N+1,j := ∂N+1
ε1...εlN+1

rε,j

∣
∣
∣
ε=0

and set w̃N+1 := w̃N+1,1 − w̃N+1,2. This is
equivalent to

Δw̃N+1 + k2w̃N+1 + qw̃N+1 = − f
N+1∏

h=1

δ2TqHgh in R
d, (5.26)

where f(x) := ∂N+1
z a1(x, 0) − ∂N+1

z a2(x, 0). By differentiating (5.4) with re-
spect to ∂N+1

ε1...εK+1
and as ε → 0 (the same argument in (5.24)) we have

w̃∞
N+1 = 0, (5.27)

where w̃∞
N+1 is a scattering amplitude of w̃N+1. Then, we have w̃N+1 = 0 in

R\BR.
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Let ṽ ∈ L2(BR+1) be a solution of Δṽ + k2ṽ + qṽ = 0 in BR+1. By the
Green’s second theorem and (5.26) we have

0 =
∫

∂BR+1

ṽ∂νw̃N+1 − ṽ∂νw̃N+1ds

=
∫

BR+1

ṽΔw̃N+1 − w̃N+1Δṽdx

=
∫

BR+1

−f
N+1∏

h=1

δ2TqHghṽdx, (5.28)

which implies that dividing by δ2 > 0
∫

BR+1

f
N+1∏

h=1

TqHghṽdx = 0. (5.29)

Let v ∈ L2(BR+1) be a solution of Δv + k2v + qv = 0 in BR+1. By Lemma 2.1
we can choose gN+1 as gN+1,j ∈ L2(BR+1) such that TqHgN+1,j → v in
L2(BR) as j → ∞. Then, we have that

∫

BR+1

f
N∏

h=1

TqHghvṽdx = 0. (5.30)

which implies that by Lemma 2.2

f

N∏

h=1

TqHgh = 0. (5.31)

By Theorem 5.1 of [20], we can choose a solution uh ∈ L2(BR+1) (h =
1, . . . , N) of Δuh + k2uh + quh = 0 in BR+1, which is of the form

uh(x) = ex·ph(1 + ψh(x, ph)), (5.32)

with ‖ψh(·, ph)‖L2(BR+1)
≤ C

|ph| where C > 0 is a constant, and ph = ah + ibh,
ah, bh ∈ R

d such that |ah| = |bh| and ah ·bh = 0 (which implies that ph ·ph = 0),
and ah 	= ah′ , bh 	= bh′ .

Multiplying (5.31) by f
∏N+1

h=1 e−x·ph we have

|f |2
N∏

h=1

e−x·phTqHgh = 0, (5.33)

which implies that
∫

BR

|f |2
(

N−1∏

h=1

e−x·phTqHgh

)

e−x·pN TqHgNdx = 0. (5.34)

By Lemma 2.1, there exists a sequence {gN,j}j∈N ⊂ L2(Sd−1) such that
TqHgN,j → uN = ex·pN (1 + ψN (x, pN )) in L2(BR) , which implies that

∫

BR

|f |2
(

N−1∏

h=1

e−x·phTqHgh

)

(1 + ψ(x, pN ))dx = 0. (5.35)

As |aN | = |bN | → ∞ in (5.35) we have
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∫

BR

|f |2
N−1∏

h=1

e−x·phTqHghdx = 0. (5.36)

Repeating the operation (5.34)–(5.36) N − 1 times, we have that
∫

BR

|f |2dx = 0, (5.37)

which conclude that f = 0. By induction, we conclude that (5.1) for all l ∈ N.
Therefore, Theorem 1.3 has been shown.
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