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The Strichartz estimates for the damped
wave equation and the behavior of solutions
for the energy critical nonlinear equation
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Abstract. For the linear damped wave equation (DW), the Lp–Lq type
estimates have been well studied. Recently, Watanabe (RIMS Kôkyûroku
Bessatsu B 63:77–101, 2017) showed the Strichartz estimates for DW
when d = 2, 3. In the present paper, we give Strichartz estimates for DW
in higher dimensions. Moreover, by applying the estimates, we give the lo-
cal well-posedness of the energy critical nonlinear damped wave equation

(NLDW) ∂2
t u−Δu+∂tu = |u| 4

d−2 u, (t, x) ∈ [0, T )×R
d, where 3 ≤ d ≤ 5.

Especially, we show the small data global existence for NLDW. In addi-
tion, we investigate the behavior of the solutions to NLDW. Namely, we
give a decay result for solutions with finite Strichartz norm and a blow-up
result for solutions with negative Nehari functional.

Mathematics Subject Classification. 35L71, 35A01, 35B40, 35B44.

Keywords. Damped wave equation, Dissipation, Strichartz estimates,
Energy critical.

Contents

1. Introduction 2
1.1. Backgroud 2
1.2. Main results 4

2. The Strichartz estimates 9
2.1. The Strichartz estimates for low frequency part 9
2.2. The Strichartz estimates for high frequency part 11
2.3. Proof of the Strichartz estimates 20

3. Well-posedness for the energy critical nonlinear damped wave equation 22
4. Decay of global solution with finite Strichartz norm 25
Acknowledgements 27
References 27

http://crossmark.crossref.org/dialog/?doi=10.1007/s00030-019-0598-y&domain=pdf
http://orcid.org/0000-0001-9951-3890


50 Page 2 of 30 T. Inui NoDEA

1. Introduction

1.1. Backgroud

We consider the damped wave equation.{
∂2

t φ − Δφ + ∂tφ = 0, (t, x) ∈ (0,∞) × R
d,

(φ(0), ∂tφ(0)) = (φ0, φ1), x ∈ R
d,

(1.1)

where d ∈ N, (φ0, φ1) is given, and φ is an unknown complex valued function.
Matsumura [21] applied the Fourier transform to (1.1) and obtained the

formula

φ(t, x) = D(t)(φ0 + φ1) + ∂tD(t)φ0,

where D(t) is defined by

D(t) := e− t
2 F−1L(t, ξ)F

with

L(t, ξ) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

sinh(t
√

1/4 − |ξ|2)√
1/4 − |ξ|2 if |ξ| < 1/2,

sin(t
√|ξ|2 − 1/4)√|ξ|2 − 1/4

if |ξ| > 1/2.

By this formula, Matsumura [21] proved the Lp–Lq type estimate:

‖φ(t)‖Lp � 〈t〉− d
2 ( 1

q − 1
p ) ‖(φ0, φ1)‖Lq×Lq + e− t

4

(
‖φ0‖

H[ d
2 ]+1 + ‖φ1‖

H[ d
2 ]
)

,

(1.2)

where 1 ≤ q ≤ 2 ≤ p ≤ ∞ and [d/2] denotes the integer part of d/2. Such Lp–
Lq type estimates have been studied well. See [7,22,23] and references therein.
The Lp–Lq type estimates for the heat equation and the wave equation are
also well studied. We recall the Lp–Lq type estimate for the heat equation
∂tv − Δv = 0:

‖G(t)g‖Lp � t−
d
2 ( 1

q − 1
p ) ‖g‖Lq ,

where 1 ≤ q ≤ p ≤ ∞ and G(t) := F−1e−t|ξ|2F . We also refer to the Lp–Lq

type estimate for the wave equation ∂2
t w − Δw = 0:

‖W(t)g‖Lp � |t|−2d( 1
2− 1

p ) ‖g‖Ẇ γ−1,p′ ,

for 2 ≤ p < ∞ and (d + 1)(1/2 − 1/p) ≤ γ < d, where p′ denotes the Hölder
conjugate of p and W(t) := F−1 sin(t|ξ|)/|ξ|F . See [1]. Matsumura’s estimate
(1.2) shows that the solution of (1.1) behaves like the solution of the heat equa-
tion and the wave equation in some sense. More precisely, the low frequency
part of the solution to the damped wave equation behaves like the solution of
the heat equation and the high frequency part behaves like the solution of the
wave equation but decays exponentially (see [9] for another Lp–Lq estimate).
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For the heat equation and the wave equation, by using the Lp–Lq type
estimates, we obtain the space-time estimates, what we call the Strichartz
estimate. The Strichartz estimates for the heat equation are

‖v‖Lq
t (I:Lr

x(Rd)) � ‖v0‖L2 + ‖F‖
Lq̃′

t (I:Lr̃′
x (Rd))

,

where v satisfies ∂tv − Δv = F with v(0) = v0 and (q, r) and (q̃, r̃) satisfy
2/q +d/r = 2/q̃ +d/r̃ = d/2. See [2,31]. We also have the Strichartz estimates
for the wave equation as follows.

‖w‖Lq
t (I:Lr

x(Rd)) � ‖w0‖Ḣ1 + ‖w1‖L2 + ‖F‖
Lq̃′

t (I:Lr̃′
x (Rd))

,

where w satisfies ∂2
t w−Δw = F with (w(0), ∂tw(0)) = (w0, w1) and 1/q+d/r =

d/2 − 1 = 1/q̃′ + d/r̃′ − 2. See [4]. In the present paper, we give the Strichartz
estimates for the damped wave equation. Recently, Watanabe [30] obtained
the Strichartz estimates for the damped wave equation when d = 2, 3 by an
energy method. In this paper, we give the Strichartz estimates by a duality
argument for d = 2, 3 and higher dimensions.

We also consider the energy critical nonlinear damped wave equation.{
∂2

t u − Δu + ∂tu = |u| 4
d−2 u, (t, x) ∈ [0, T ) × R

d,
(u(0), ∂tu(0)) = (u0, u1), x ∈ R

d,
(NLDW)

where d ≥ 3, (u0, u1) is given, and u is an unknown complex valued function.
The corresponding wave equation ∂2

t w −Δw = |w| 4
d−2 w is invariant under the

scaling wλ(t, x) := λ(d−2)/2w(λt, λx) for λ > 0. And the Ḣ1-norm, which is
called (kinetic) energy norm, is also invariant under this scaling. Thus, the wave
equation is called energy critical. Similarly, the corresponding heat equation
∂tv −Δv = |v| 4

d−2 v is invariant under the scaling vη(t, x) := η(d−2)/2v(η2t, ηx)
for η > 0. The Ḣ1-norm is also invariant under this scaling and thus the heat
equation is also called energy critical. Equation (NLDW) is not invariant under
the scaling. However, the power of the nonlinear term is same as the energy
critical wave and heat equation. That is why we call (NLDW) energy critical.

We will show the local well-posedness for (NLDW) when 3 ≤ d ≤ 5 by
applying the Strichartz estimates. The existence of a local solution has been
studied by Ikeda and Inui [15], Ikeda and Wakasugi [8] and Kapitanskǐi [10] (see
also [12–14]). However, the small data global existence has not been known.
Using the Strichartz estimates which are proved in this paper, we can show not
only the existence of a local solution but also the small data global existence
for (NLDW).

Moreover, we discuss the global behavior of the solutions to (NLDW). For
the energy critical nonlinear heat equation, the solution with a bounded global
space-time norm decays to zero (see e.g. [6]). On the other hand, there exist
finite time blow-up solutions by Levine [19]. For the energy critical nonlinear
wave equation, the energy is conserved by the flow. There exist solutions which
scatter to the solutions of the free wave equation and finite time blow-up
solutions by Payne and Sattinger [25]. See also [16]. In the present paper, we
prove that the solution to (NLDW) with a finite space-time norm decays. And
we also show that there exist finite time blow-up solutions.
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1.2. Main results

We state main results. First, we obtain the Strichartz estimates for (1.1). The
so-called admissible pairs can be taken as same as in the heat case since the Lp–
Lq type estimate of the low frequency part is similar to the heat estimate and
the high frequency part decays exponentially in time. However, the derivative
loss appears from the high frequency part which is wave-like part.

Proposition 1.1. (Homogeneous Strichartz estimates) Let d ≥ 2, 2 ≤ r < ∞,
and 2 ≤ q ≤ ∞. Set γ := max{d(1/2 − 1/r) − 1/q, d+1

2 (1/2 − 1/r)}. Assume

d

2

(
1
2

− 1
r

)
≥ 1

q
,

Then, we have

‖D(t)f‖Lq
t (I:Lr

x(Rd)) �
∥∥∥〈∇〉γ−1

f
∥∥∥

L2
,

‖∂tD(t)f‖Lq
t (I:Lr

x(Rd)) � ‖〈∇〉γ
f‖L2 ,

∥∥∂2
t D(t)f

∥∥
Lq

t (I:Lr
x(Rd))

�
∥∥∥〈∇〉γ+1

f
∥∥∥

L2
.

Remark 1.1. We note that the homogeneous Strichartz estimate holds in the
heat end-point case i.e. (q, r) = (2, 2d/(d − 2)) when d ≥ 3.

Proposition 1.2. (Inhomogeneous Strichartz estimates) Let d ≥ 2, 2 ≤ r, r̃ <
∞, and 2 ≤ q, q̃ ≤ ∞. We set γ := max{d(1/2 − 1/r) − 1/q, d+1

2 (1/2 − 1/r)}
and γ̃ := max{d(1/2 − 1/r̃) − 1/q̃, d+1

2 (1/2 − 1/r̃)}. Assume that (q, r) and
(q̃, r̃) satisfies

d

2

(
1
2

− 1
r

)
+

d

2

(
1
2

− 1
r̃

)
>

1
q

+
1
q̃
,

d

2

(
1
2

− 1
r

)
+

d

2

(
1
2

− 1
r̃

)
=

1
q

+
1
q̃
and 1 < q̃′ < q < ∞,

or

(q, r) = (q̃, r̃) = (∞, 2).

Moreover, we exclude the wave end-point case, that is, we assume (q, r) 
=
(2, 2(d − 1)/(d − 3))) and (q̃, r̃) 
= (2, 2(d − 1)/(d − 3))) when d ≥ 4. Then, we
have ∥∥∥∥

∫ t

0

D(t − s)F (s)ds

∥∥∥∥
Lq

t (I:Lr
x(Rd))

�
∥∥∥〈∇〉γ+γ̃+δ−1

F
∥∥∥

Lq̃′
t (I:Lr̃′

x (Rd))
,

∥∥∥∥
∫ t

0

∂tD(t − s)F (s)ds

∥∥∥∥
Lq

t (I:Lr
x(Rd))

�
∥∥∥〈∇〉γ+γ̃+δ

F
∥∥∥

Lq̃′
t (I:Lr̃′

x (Rd))
,

where δ = 0 when 1
q̃ (1/2 − 1/r) = 1

q (1/2 − 1/r̃) and in the other cases δ ≥ 0
is defined in Table 1.
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T
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he

va
lu
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of

δ

δ
1 q̃

( 1 2
−

1 r

) <
1 q

( 1 2
−

1 r̃

)
1 q̃

( 1 2
−

1 r

) >
1 q

( 1 2
−

1 r̃

)
(q

,r
)

∈
A

0
0

(q̃
,r̃
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)
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d
−

1
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−

1
2

{ q
( 1 2

−
1 r

) −
q̃
( 1 2

−
1 r̃
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≥
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Remark 1.2. If (q, r) satisfies the wave admissible condition d−1
2 (1/2− 1/r) ≥

1/q, then the derivative loss is same as that in the Strichartz estimates for the
wave equation i.e. γ = d(1/2 − 1/r) − 1/q. And thus, we need more derivative
if (q, r) is the pair between the wave case and the heat case, i.e. d

2 (1/2−1/r) ≥
1/q > d−1

2 (1/2 − 1/r).

Remark 1.3. The wave end-point case is studied in the sequel paper [11].

Applying these Strichartz estimates, we will show the following local well-
posedness and small data global existence of (NLDW). For simplicity, we de-
note Lq

t,x(I) := Lq
t (I : Lq

x(Rd)).

Definition 1.1. (Solution) Let T ∈ (0,∞]. We say that u is a solution to
(NLDW) on [0, T ) if u satisfies (u, ∂tu) ∈ C([0, T ) : H1(Rd) × L2(Rd)),

〈∇〉1/2
u ∈ L

2(d+1)
d−1

t,x (I) and u ∈ L
2(d+1)

d−2
t,x (I) for any compact interval I ⊂ [0, T ),

(u(0), ∂tu(0)) = (u0, u1), and the Duhamel’s formula

u(t, x) = D(t)(u0 + u1) + ∂tD(t)u0 +
∫ t

0

D(t − s)(|u(s)| 4
d−2 u(s))ds

for all t ∈ [0, T ). We say that u is global if T = ∞.

We have the following local well-posedness result when 3 ≤ d ≤ 5.

Theorem 1.3. (Local well-posedness) Let d ∈ {3, 4, 5} and T ∈ (0,∞]. Let
(u0, u1) ∈ H1(Rd) × L2(Rd) satisfy ‖(u0, u1)‖H1×L2 ≤ A. Then, there exists
δ = δ(A) > 0 such that if

‖D(t)(u0 + u1) + ∂tD(t)u0‖
L

2(d+1)
d−2

t,x ([0,T ))

≤ δ,

then there exists a unique solution u to (NLDW) with ‖u‖
L

2(d+1)
d−2

t,x ([0,T ))

≤ 2δ.

Moreover, we have the standard blow-up criterion, that is, if the maximal exis-
tence time T+ = T+(u0, u1) is finite, then the solution satisfies
‖u‖

L
2(d+1)

d−2 ([0,T+))
= ∞.

From this, we especially get the following small data global existence.

Theorem 1.4. (Small data global existence) Let d ∈ {3, 4, 5} and (u0, u1) ∈
H1(Rd) × L2(Rd). Then, there exists a small constant δ0 > 0 such that if
‖(u0, u1)‖H1×L2 ≤ δ0, then the solution u (constructed in Theorem 1.3) is
global and satisfies ‖u‖

L
2(d+1)

d−2
t,x ([0,∞))

≤ Cδ0 for some constant C > 0.

Remark 1.4. See the sequel paper [11] for the local well-posedness and small
data global existence of (NLDW) when d ≥ 6. The difficulty of d ≥ 6 comes
from the loss of differentiability of the nonlinear term. We need to pay attention
to the difference estimate of the nonlinear terms.

Remark 1.5. The existence of local solution is well known (see [8,10]). How-
ever, the small data global existence has not been known except for low di-
mension cases (Watanabe [30] showed the small data global existence when
d = 3).
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Remark 1.6. As it is well known, we can obtain the local well-posedness of the
nonlinear damped wave equation with the more general nonlinearity in the
same way as Theorem 1.3. Namely, we find the local well-posedness for the
following equation.{

∂2
t u − Δu + ∂tu = N (u), (t, x) ∈ (0,∞) × R

d,
(u(0), ∂tu(0)) = (u0, u1), x ∈ R

d.
(1.3)

Assume that the nonlinearity N : C → C is continuously differentiable and
obeys the power type estimates

N (z) = O(|z|1+ 4
d−2 ),

Nz(z),Nz̄(z) = O(|z| 4
d−2 ),

Nz(z) − Nz(w),Nz̄(z) − Nz̄(w) = O(|z − w|min{1, 4
d−2}(|z| + |w|)max{0, 6−d

d−2}),

where Nz and Nz̄ are the usual derivatives

Nz :=
1
2

(
∂N
∂x

− i
∂N
∂y

)
, Nz :=

1
2

(
∂N
∂x

+ i
∂N
∂y

)

for z = x + iy. The typical examples are N (u) = λ|u|1+4/(d−2) or λ|u|4/(d−2)u
with λ ∈ C\{0}.

We have the energy E of (NLDW), which is defined by

E(u, ∂tu) =
1
2

‖∇u‖2
L2 +

1
2

‖∂tu‖2
L2 − d − 2

2d
‖u‖

2d
d−2

L
2d

d−2
.

If u is a solution to (NLDW), then the energy satisfies
d

dt
E(u(t), ∂tu(t)) = −‖∂tu(t)‖2

L2

for all t ∈ (0, Tmax). This means the energy decay. This observation shows
us that some global solutions may decay. Indeed, we can prove that a global
solution with a finite Strichartz norm decays to 0 in the energy space as follows.

Theorem 1.5. Let u be a global solution of (NLDW) and we assume that the
solution u satisfies ‖u‖

L
2(d+1)

d−2
t,x ([0,∞))

< ∞, then u satisfies

lim
t→∞ (‖u(t)‖H1 + ‖∂tu(t)‖L2) = 0.

Remark 1.7. This is similar to the energy critical nonlinear heat equation. See
Gustafson and Roxanas [6].

Remark 1.8. Theorem 1.5 holds for all dimensions d ≥ 3 since we need to treat
the estimate of the difference unlike the local well-posedness.

At last, we show the blow-up of the solutions to (NLDW). We set

J(ϕ) :=
1
2

‖∇ϕ‖2
L2 − d − 2

2d
‖ϕ‖

2d
d−2

L
2d

d−2
,

K(ϕ) := ‖∇ϕ‖2
L2 − ‖ϕ‖

2d
d−2

L
2d

d−2
.
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Then, it is well known that the minimal energy

μ := inf
{

J(ϕ) : ϕ ∈ Ḣ1\{0},K(ϕ) = 0
}

is well-defined and positive (see [29] for more information). Then, we have the
following blow-up result.

Theorem 1.6. (Ohta [24]) Let (u0, u1) ∈ H1(Rd) × L2(Rd) belong to

B := {(u0, u1) ∈ H1(Rd) × L2(Rd) : E(u0, u1) < μ,K(u0) < 0}.

Then the solution to (NLDW) blows up in finite time.

Remark 1.9. The proof of Theorem 1.6 is essentially given by Ohta [24]. He
showed the blow-up result for abstract setting by the method of an ordinary
differential inequality instead of by the so-called concavity argument which is
well applied to wave or Klein-Gordon equation. We omit the proof.

Notation 1.1. We collect some notations. For the exponent p, we denote the
Hölder conjugate of p by p′. The bracket 〈·〉 is Japanese bracket i.e. 〈a〉 :=
(1 + |a|2)1/2.

We use A � B to denote the estimate A ≤ CB with some constant
C > 0. The notation A ∼ B stands for A � B and A � B.

Let χ≤1 ∈ C∞
0 (R) be a cut-off function satisfying χ≤1(r) = 1 for |r| ≤ 1

and χ≤1(r) = 0 for |r| ≥ 2 and let χ>1 = 1 − χ≤1.
For a function f : R

n → C, we define the Fourier transform and the
inverse Fourier transform by

F [f ](ξ) = f̂(ξ) = (2π)−n/2

∫
Rn

e−ixξf(x) dx,

F−1[f ](x) = (2π)−n/2

∫
Rn

eixξf(ξ) dx.

For a measurable function m = m(ξ), we denote the Fourier multiplier
m(∇) by

m(∇)f(x) = F−1
[
m(ξ)f̂(ξ)

]
(x).

For s ∈ R and 1 ≤ p ≤ ∞, we denote the usual Sobolev space by

W s,p(Rd) :=
{
f ∈ S ′(Rd) : ‖f‖W s,p = ‖〈∇〉sf‖Lp < ∞} .

We write Hs(Rd) := W s,2(Rd) for simplicity. Let Ẇ s,p(Rd) and Ḣs(Rd) denote
the corresponding homogeneous Sobolev spaces.

We define P≤1 := F−1χ≤1F , P>1 := F−1χ>1F , and

PN = F−1

(
χ≤1

(
ξ

N

)
− χ≤1

(
2ξ

N

))
F

for N ∈ 2Z. For a time interval I and F : I × R
d → C, we set

‖F‖Lq(I:Lr(Rd)) :=
(∫

I

‖F (t, ·)‖q
Lr(Rd) dt

)1/q
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and ‖F‖Lq
t,x(I) := ‖F‖Lq(I:Lq(Rd)). The space of functions with finite this norm

are denoted by Lq(I : Lr(Rd)) (or Lq
t,x(I) if q = r). We sometimes use Lp

s and
Lp

t to uncover time variables s and t.

This paper is structured as follows. Section 2 is devoted to show the
Strichartz estimates. In particular, we give the Strichartz estimates for low
frequency part in Sect. 2.1 and those for high frequency part in Sect. 2.2.
In Sect. 3, we prove the local well-posedness of (NLDW) by the Strichartz
estimates. Section 4 is devoted to discuss the decay of the global solutions to
(NLDW) with a finite space-time norm.

2. The Strichartz estimates

We split D to low frequency part Dl and high frequency part Dh as follows.

Dl(t) := D(t)P≤1,

Dh(t) := D(t)P>1.

In this section, we prove the Strichartz estimates for low and high frequency
parts respectively.

2.1. The Strichartz estimates for low frequency part

We have the Lp–Lq type estimates for low frequency part. These estimates are
similar to those of the heat equation.

Lemma 2.1. (Lr–Lr̃ estimate for low frequency part [9, Proposition 2.4]) Let
1 ≤ r̃ ≤ r ≤ ∞ and σ ≥ 0. Then, we have

‖|∇|σDl(t)f‖Lr � 〈t〉− d
2 ( 1

r̃ − 1
r )− σ

2 ‖f‖Lr̃ ,

for any t > 0 and f ∈ Lr̃(Rd). We also have

‖|∇|σ∂tDl(t)f‖Lr � 〈t〉− d
2 ( 1

r̃ − 1
r )− σ

2 −1 ‖f‖Lr̃ ,∥∥|∇|σ∂2
t Dl(t)f

∥∥
Lr � 〈t〉− d

2 ( 1
r̃ − 1

r )− σ
2 −2 ‖f‖Lr̃ .

By these Lp–Lq type estimates, we obtain the following homogeneous
Strichartz estimate.

Lemma 2.2. (Homogeneous Strichartz estimate for low frequency part) Let
σ ≥ 0. Let 1 ≤ r̃ ≤ r ≤ ∞ and 1 ≤ q ≤ ∞. Assume that they satisfy

d

2

(
1
r̃

− 1
r

)
>

1
q
,

or
d

2

(
1
r̃

− 1
r

)
=

1
q
and q > r̃ > 1.

Then, for any f ∈ Lr̃(Rd),

‖〈∇〉σ Dl(t)f‖Lq(I:Lr(Rd)) � ‖f‖Lr̃ ,



50 Page 10 of 30 T. Inui NoDEA

where I ⊂ [0,∞) is a time interval and the implicit constant is independent of
I. Moreover, we also have

‖〈∇〉σ
∂tDl(t)f‖Lq(I:Lr(Rd)) � ‖f‖Lr̃ ,∥∥〈∇〉σ
∂2

t Dl(t)f
∥∥

Lq(I:Lr(Rd))
� ‖f‖Lr̃ .

Proof. These Strichartz estimates are same as those of the heat equation. Thus,
the same proof does work. However, we give the proof for reader’s convenience.

We first consider the case of d
2 (1/r̃ − 1/r) > 1/q. By the Lr–Lr̃ estimate

(Lemma 2.1),

‖〈∇〉σ Dl(t)f‖Lr � ‖Dl(t)f‖Lr + ‖|∇|σDl(t)f‖Lr

� 〈t〉− d
2 ( 1

r̃ − 1
r ) ‖f‖Lr̃ + 〈t〉− d

2 ( 1
r̃ − 1

r )− σ
2 ‖f‖Lr̃

� 〈t〉− d
2 ( 1

r̃ − 1
r ) ‖f‖Lr̃ .

Then, we obtain

‖〈∇〉σ Dl(t)f‖Lq(I:Lr(Rd)) �
∥∥∥〈t〉− d

2 ( 1
r̃ − 1

r ) ‖f‖Lr̃

∥∥∥
Lq([0,∞))

� ‖f‖Lr̃ .

Next, we consider the second case. We set Tf := ‖〈∇〉σ Dl(t)f‖Lr(Rd) and
(q1, r1) := (∞, r) and (q2, r2) = (ρ, γ), where (ρ, γ) satisfies d

2 (1/γ − 1/r) =
1/ρ and ρ, γ > 1. Then T is sub-additive and we have T : Lrj (Rd) →
Lqj ,∞([0,∞)) for j = 1, 2. Indeed, we have

‖Tf(t)‖L∞(I) � ‖〈∇〉σ Dl(t)f‖L∞(I:Lr(Rd)) � ‖f‖Lr ,

‖Tf(t)‖Lρ,∞(I) � ‖〈∇〉σ Dl(t)f‖Lρ,∞(I:Lr(Rd)) � ‖f‖Lγ .

If ρ ≥ γ, we can use the Marcinkiewicz interpolation theorem so that we have

‖Dl(t)f‖Lq(I:Lr(Rd)) � ‖f‖Lr̃ ,

for (q, r̃) satisfying q > r̃ > 1 and
1
q

=
1 − θ

q1
+

θ

q2
,

1
r̃

=
1 − θ

r1
+

θ

r2
, 0 < θ < 1.

This means that the desired inequality holds for (q, r) such that d
2 (1/r̃−1/r) =

1/q and q > r̃ > 1. See also [2,31]. In the same way, we get the second and
the third inequalities. �
Remark 2.1. We exclude the end-point case in Lemma 2.2 since it is not clear
whether the end-point Strichartz estimate holds or not for q = r̃ and r̃ 
= 2. We
will show the heat end-point Strichartz estimate for r̃ = 2 (see Lemma 2.11)
as stated in Remark 1.1.

Lemma 2.3. (Inhomogeneous Strichartz estimate for low frequency part) Let
σ ≥ 0. Let 1 ≤ r̃′ ≤ r ≤ ∞ and 1 ≤ q, q̃ ≤ ∞. Assume that they satisfy

d

2

(
1
2

− 1
r

)
+

d

2

(
1
2

− 1
r̃

)
>

1
q

+
1
q̃
,

d

2

(
1
2

− 1
r

)
+

d

2

(
1
2

− 1
r̃

)
=

1
q

+
1
q̃
and 1 < q̃′ < q < ∞,
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or

(q, r) = (q̃, r̃) = (∞, 2).

Then it holds that∥∥∥∥〈∇〉σ
∫ t

0

Dl(t − s)F (s)ds

∥∥∥∥
Lq(I:Lr(Rd))

� ‖F‖Lq̃′ (I:Lr̃′ (Rd)) ,

∥∥∥∥
∫ t

0

∂tDl(t − s)F (s)ds

∥∥∥∥
Lq(I:Lr(Rd))

� ‖F‖Lq̃′ (I:Lr̃′ (Rd)) ,

where I ⊂ [0,∞) is a time interval such that 0 ∈ I and the implicit constant
is independent of I.

Proof. We only show the first estimate since the second can be proved similarly.
Applying the Lr–Lr̃ estimate (Lemma 2.1), we obtain∥∥∥∥〈∇〉σ

∫ t

0

Dl(t − s)F (s)ds

∥∥∥∥
Lq(I:Lr(Rd))

�
∥∥∥∥
∫ t

0

‖〈∇〉σ Dl(t − s)F (s)‖Lr ds

∥∥∥∥
Lq(I)

�
∥∥∥∥
∫ t

0

〈t − s〉− d
2 ( 1

r̃′ − 1
r ) ‖F (s)‖Lr̃′ ds

∥∥∥∥
Lq(I)

.

When d
2

(
1
2 − 1

r

)
+ d

2

(
1
2 − 1

r̃

)
> 1

q + 1
q̃ , by the Young inequality, we obtain

∥∥∥∥
∫ t

0

〈t − s〉− d
2 ( 1

r̃′ − 1
r ) ‖F (s)‖Lr̃′ ds

∥∥∥∥
Lq(I)

�
∥∥∥〈t〉− d

2 ( 1
r̃′ − 1

r )
∥∥∥

L
qq̃

q̃+q
‖F‖Lq̃′ (I:Lr̃′ (Rd))

� ‖F‖Lq̃′ (I:Lr̃′ (Rd)) .

On the other hand, when d
2

(
1
2 − 1

r

)
+ d

2

(
1
2 − 1

r̃

)
= 1

q + 1
q̃ and 1 < q̃′ < q < ∞,

applying the Hardy–Littlewood–Sobolev inequality, we obtain∥∥∥∥
∫ t

0

〈t − s〉− d
2 ( 1

r̃′ − 1
r ) ‖F (s)‖Lr̃′ ds

∥∥∥∥
Lq(I)

� ‖F‖Lq̃′ (I:Lr̃′ (Rd)) .

When (q, r) = (q̃, r̃) = (∞, 2), the inequality is trivial. This completes the
proof. �

2.2. The Strichartz estimates for high frequency part

Since we have

Dh(t) = e− t
2 F−1 eit

√
|ξ|2−1/4 − e−it

√
|ξ|2−1/4

2i
√|ξ|2 − 1/4

χ>1(ξ)F ,

it is enough to estimate

e−t/2e±it
√

−Δ−1/4P>1.
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Lemma 2.4. (Homogeneous Strichartz estimate for high frequency part) Let
d ≥ 2. Let 2 ≤ r < ∞ and 2 ≤ q ≤ ∞. Then, we have∥∥∥e−t/2e±it

√
−Δ−1/4P>1f

∥∥∥
Lq(I:Lr(Rd))

� ‖|∇|γf‖L2

where I ⊂ [0,∞) is a time interval and the implicit constant is independent of
I. In particular, we have

‖Dh(t)f‖Lq(I:Lr(Rd)) �
∥∥∥|∇|γ 〈∇〉−1

f
∥∥∥

L2
,

‖∂tDh(t)f‖Lq(I:Lr(Rd)) � ‖|∇|γf‖L2 ,∥∥∂2
t Dh(t)f

∥∥
Lq(I:Lr(Rd))

�
∥∥|∇|γ+1f

∥∥
L2 .

Proof. First, we consider eit
√

−Δ−1/4. We note that

eit
√

−Δ−1/4 = eit|∇|eit
(√

−Δ−1/4−|∇|
)
.

Since we have∣∣∣√|ξ|2 − 1/4 − |ξ|
∣∣∣ = 1

4(
√|ξ|2 − 1/4 + |ξ|) ≈ |ξ|−1,

a simple calculation shows∣∣∣∣∂α
ξ e

it
(√

|ξ|2−1/4−|ξ|
)∣∣∣∣ � 〈t〉|α| |ξ|−|α|

for ξ 
= 0 and α ∈ Z
n
≥0. Thus, the Mihlin–Hörmander multiplier theorem (see

[5, Theorem 6.2.7]) gives∥∥∥eit
√

−Δ−1/4P>1f
∥∥∥

Lr
� 〈t〉δr

∥∥∥eit|∇|f
∥∥∥

Lr

for some δr > 0. Therefore, we obtain∥∥∥e−t/2eit
√

−Δ−1/4P>1f
∥∥∥

Lq(I:Lr(Rd))
=
∥∥∥e−t/2

∥∥∥eit
√

−Δ−1/4P>1f
∥∥∥

Lr

∥∥∥
Lq(I)

�
∥∥∥e−t/2 〈t〉δr

∥∥∥eit|∇|f
∥∥∥

Lr

∥∥∥
Lq(I)

�
∥∥∥eit|∇|f

∥∥∥
Lq̃(I:Lr(Rd))

,

where we have used the Hölder inequality in the last inequality and we take q̃
such that

q̃ =

{
q if d−1

2

(
1
2 − 1

r

) ≥ 1
q ,{

d−1
2

(
1
2 − 1

r

)}−1
if d−1

2

(
1
2 − 1

r

)
< 1

q .

Then, (q̃, r) is a wave admissible pair. Namely, it satisfies
1
q̃

+
d − 1
2r

≤ d − 1
4

, q̃, r, d ≥ 2, and (q, r, d) 
= (2,∞, 3)

and
1
q̃

+
d

r
=

d

2
− γ,
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where we note that γ ≥ 0. Therefore, by the Strichartz estimate for the free
wave equation (see [4] or [18, Corollary 2.5 in p.233]), we get∥∥∥e−t/2eit

√
−Δ−1/4P>1f

∥∥∥
Lq(I:Lr(Rd))

�
∥∥∥eit|∇|f

∥∥∥
Lq̃(I:Lr(Rd))

� ‖|∇|γf‖L2 .

Similarly, we also have∥∥∥e−t/2e−it
√

−Δ−1/4P>1f
∥∥∥

Lq(I:Lr(Rd))
� ‖|∇|γf‖L2 .

Combining them with the formula of Dh, we obtain

‖Dh(t)f‖Lq(I:Lr(Rd)) �
∥∥∥|∇|γ 〈∇〉−1

f
∥∥∥

L2
,

where we use
√|ξ|2 − 1/4 ≈ 〈ξ〉 for |ξ| ≥ 1. Moreover, we also get the estimates

related to ∂tDh(t) and ∂2
t Dh(t). �

Remark 2.2. We can also obtain the homogeneous Strichartz estimates for
high frequency part when 1 ≤ q < 2. Indeed, taking

q̃ =

⎧⎨
⎩

2 if d−1
2

(
1
2 − 1

r

) ≥ 1
2 ,

{
d−1
2

(
1
2 − 1

r

)}−1
if d−1

2

(
1
2 − 1

r

)
< 1

2 ,

(q̃, r) is a wave admissible pair and thus the above argument does work. We
note that, in this case, we need to redefine γ such that

γ := max
{

d + 1
2

(
1
2

− 1
r

)
, d

(
1
2

− 1
r

)
− 1

2

}
≥ 0.

To prove inhomogeneous Strichartz estimates for high frequency part, we
show the Lp–Lq type estimate.

Lemma 2.5. (Lr–Lr′
estimate for high frequency part) Let d ≥ 1. Let 2 ≤ r <

∞. Then, it holds that∥∥∥e±it
√

−Δ−1/4P>1PNf
∥∥∥

Lr
� 〈t〉δr (1 + |t|N)− d−1

2 (1− 2
r )Nd(1− 2

r ) ‖PNf‖Lr′

for any t > 0 and N ∈ 2Z, where δr is a positive constant.

Proof. Combining the Lp–Lq type estimate for free wave equation (see [1] or
[18, Lemma 2.1 in p.230]) and the Mihlin–Hörmander multiplier theorem, we
get the statement. �

Lemma 2.6. (Inhomogeneous Strichartz estimate for high frequency part) Let
d ≥ 2. Let 2 ≤ r < ∞ and 2 ≤ q ≤ ∞. We exclude the wave end-point case,
that is, we assume that (q, r) 
= (2, 2(d − 1)/(d − 3)) when d ≥ 4. Then, we
have ∥∥∥∥

∫ t

0

e− t−s
2 e±i(t−s)

√
−Δ−1/4P>1PNF (s)ds

∥∥∥∥
Lq(I:Lr(Rd))

� N2γ ‖PNF‖Lq′ (I:Lr′ (Rd)) ,
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where I ⊂ [0,∞) is a time interval such that 0 ∈ I and the implicit constant
is independent of I.

Proof. By the Lr–Lr′
estimate for high frequency part, Lemma 2.5, we get∥∥∥∥

∫ t

0

e− t−s
2 e±i(t−s)

√
−Δ−1/4P>1PNF (s)ds

∥∥∥∥
Lq(I:Lr(Rd))

� Nd(1− 2
r )
∥∥∥∥
∫ t

0

e− t−s
4 (1 + |t − s|N)− d−1

2 (1− 2
r ) ‖PNF (s)‖Lr′ ds

∥∥∥∥
Lq(I)

.

(2.1)

Here, by the Young inequality, we obtain

Nd(1− 2
r )
∥∥∥∥
∫ t

0

e− t−s
4 (1 + |t − s|N)− d−1

2 (1− 2
r ) ‖PNF (s)‖Lr′ ds

∥∥∥∥
Lq(I)

� Nd(1− 2
r )
∥∥∥e− ·

4 (1 + | · |N)− d−1
2 (1− 2

r )
∥∥∥

Lq/2([0,∞))
‖PNF‖Lq′ (I:Lr′ (Rd)) .

(2.2)

In the case of d−1
2 (1 − 2/r) > 2/q, since we have
∥∥∥e− ·

4 (1 + | · |N)− d−1
2 (1− 2

r )
∥∥∥q/2

Lq/2([0,∞))

≤
∫ ∞

0

(1 + |t|N)− d−1
2 (1− 2

r ) q
2 dt � N−1,

we obtain, from (2.1) and (2.2),

(L.H.S. of (2.1)) � N2{d( 1
2− 1

r )− 1
q } ‖PNF‖Lq′ (I:Lr′ (Rd))

= N2γ ‖PNF‖Lq′ (I:Lr′ (Rd)) .

On the other hand, in the case of d−1
2 (1 − 2/r) < 2/q, we have

∥∥∥e− ·
4 (1 + | · |N)− d−1

2 (1− 2
r )
∥∥∥q/2

Lq/2([0,∞))

=
∫ ∞

0

e− q
8 t(1 + |t|N)− d−1

2 (1− 2
r ) q

2 dt

≤ N− d−1
2 (1− 2

r ) q
2

∫ ∞

0

e− q
8 tt−

d−1
2 (1− 2

r ) q
2 dt

≤ N− d−1
2 (1− 2

r ) q
2

(∫ 1

0

t−
d−1
2 (1− 2

r ) q
2 dt +

∫ ∞

1

e− q
8 tdt

)

� N− d−1
2 (1− 2

r ) q
2 .

Therefore, we obtain, from (2.1) and (2.2),

(L.H.S. of (2.1)) � N2{ d+1
2 ( 1

2− 1
r )} ‖PNF‖Lq′ (I:Lr′ (Rd))

= N2γ ‖PNF‖Lq′ (I:Lr′ (Rd)) .
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At last, we consider the case of d−1
2 (1 − 2/r) = 2/q. Then, we have

Nd(1− 2
r )
∥∥∥∥
∫ t

0

e− t−s
4 (1 + |t − s|N)− d−1

2 (1− 2
r ) ‖PNF (s)‖Lr′ ds

∥∥∥∥
Lq(I)

� Nd(1− 2
r )N− d−1

2 (1− 2
r )
∥∥∥∥
∫ t

0

|t − s|− d−1
2 (1− 2

r ) ‖PNF (s)‖Lr′ ds

∥∥∥∥
Lq(I)

= N2γ

∥∥∥∥
∫ t

0

|t − s|− d−1
2 (1− 2

r ) ‖PNF (s)‖Lr′ ds

∥∥∥∥
Lq(I)

(2.3)

and it follows from the Hardy–Littlewood–Sobolev inequality that
∥∥∥∥
∫ t

0

|t − s|− d−1
2 (1− 2

r ) ‖PNF (s)‖Lr′ ds

∥∥∥∥
Lq(I)

� ‖PNF (s)‖Lq′ (I:Lr′ (Rd)) , (2.4)

since (q, r) is not the end-point. Combining (2.1), (2.3), and (2.4), we get the
desired inequality. �

Remark 2.3. In the previous lemma, we exclude the end-point case. However,
we can obtain the Strichartz estimate in the end-point case. See the sequel
paper [11].

Lemma 2.7. (L∞
t L2

x–L
q′
t Lr′

x estimate for high frequency part) Let d ≥ 2. Let
2 ≤ r < ∞ and 2 ≤ q ≤ ∞. We assume that (q, r) 
= (2, 2(d−1)/(d−3)) when
d ≥ 4. Then, we have

∥∥∥∥
∫ t

0

e− t−s
2 e±i(t−s)

√
−Δ−1/4P>1PNF (s)ds

∥∥∥∥
L∞(I:L2(Rd))

� Nγ ‖PNF‖Lq′ (I:Lr′ (Rd)) ,

where I ⊂ [0,∞) is a time interval such that 0 ∈ I and the implicit constant
is independent of I.

Proof. We set W±
N (t − s) := e±i(t−s)

√
−Δ−1/4P>1PN for simplicity. Now, we

have
∥∥∥∥
∫ t

0

e− t−s
2 e±i(t−s)

√
−Δ−1/4P>1PNF (s)ds

∥∥∥∥
2

L2

=
〈∫ t

0

e− t−s
2 W±

N (t − s)F (s)ds,

∫ t

0

e− t−τ
2 W±

N (t − τ)F (τ)dτ

〉
L2

=
∫ t

0

∫ s

0

〈
e− t−s

2 W±
N (t − s)F (s), e− t−τ

2 W±
N (t − τ)F (τ)

〉
L2

dτds

+
∫ t

0

∫ τ

0

〈
e− t−s

2 W±
N (t − s)F (s), e− t−τ

2 W±
N (t − τ)F (τ)

〉
L2

dsdτ

= I + II.
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By the symmetry, it is enough to estimate I. By the Hölder inequality, e− t−s
2

e− t−τ
2 = e−(t−s)e− s−τ

2 , and e−(t−s) ≤ 1 for s ∈ [0, t] we obtain

I =
∫ t

0

〈
e− t−s

2 W±
N (t − s)F (s),

∫ s

0

e− t−τ
2 W±

N (t − τ)F (τ)dτ

〉
L2

ds

≤
∫ t

0

e−(t−s)

〈
|PNF (s)| ,

∣∣∣∣
∫ s

0

e− s−τ
2 W±

N (s − τ)P>1F (τ)dτ

∣∣∣∣
〉

L2

ds

≤ ‖PNF‖Lq′ (I:Lr′ (Rd))

∥∥∥∥
∫ s

0

e− s−τ
2 W±

N (s − τ)P>1F (τ)dτ

∥∥∥∥
Lq

s((0,t):Lr(Rd))

.

By Lemma 2.6, we obtain

I ≤ N2γ ‖PNF‖2
Lq′ (I:Lr′ (Rd)) .

Thus, it follows that∥∥∥∥
∫ t

0

e− t−s
2 e±i(t−s)

√
−Δ−1/4P>1PNF (s)ds

∥∥∥∥
2

L2

� N2γ ‖PNF‖2
Lq′ (I:Lr′ (Rd)) .

This finishes the proof. �

Remark 2.4. Let T > 0, 2 ≤ r < ∞ and 2 ≤ q ≤ ∞, γ := max{d(1/2 − 1/r) −
1/q, d+1

2 (1/2 − 1/r)}, and (q, r) 
= (2, 2(d − 1)/(d − 3)) when d ≥ 4. Then, we
have the following inequality by the same argument as in Lemma 2.6.∥∥∥∥

∫ t

s

e−(τ−s)e− t−τ
2 e∓i(t−τ)

√
−Δ−1/4P>1PNF (τ)dτ

∥∥∥∥
Lq

t ((s,T ):Lr(Rd))

� N2γ ‖PNF‖Lq′ (I:Lr′ (Rd)) , (2.5)

where s < T is a parameter. Moreover, we also have the following estimate
from (2.5) and the similar argument to Lemma 2.7.∥∥∥∥∥

∫ T

s

e− t−s
2 e±i(t−s)

√
−Δ−1/4P>1PNF (t)dt

∥∥∥∥∥
L∞

s ([0,T ):L2(Rd))

� Nγ ‖PNF‖Lq′ ([0,T ):Lr′ (Rd)) . (2.6)

Lemma 2.8. (Lq
tL

r
x–L

1
t L

2
x estimate for high frequency part) Let 2 ≤ r < ∞

and 2 ≤ q ≤ ∞. We assume that (q, r) 
= (2, 2(d − 1)/(d − 3)) when d ≥ 4.
Then, we have∥∥∥∥

∫ t

0

e− t−s
2 e±i(t−s)

√
−Δ−1/4P>1PNF (s)ds

∥∥∥∥
Lq(I:Lr(Rd))

� Nγ ‖PNF‖L1(I:L2(Rd)) ,

where I ⊂ [0,∞) is a time interval such that 0 ∈ I and the implicit constant
is independent of I.

Proof. We may write I = [0, T ). We use a standard duality argument. Let
G ∈ C∞

0 (I ×R
d) and P̃N := PN/2 + PN + P2N . Since we have P̃NPN = PN , it

follows from the Fubini theorem and Hölder inequality that
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∫ T

0

〈∫ t

0

e− t−s
2 e±i(t−s)

√
−Δ−1/4P>1PNF (s)ds,G(t)

〉
dt

=
∫ T

0

∫ t

0

e− t−s
2

〈
e±i(t−s)

√
−Δ−1/4P>1PNF (s), G(t)

〉
dsdt

=
∫ T

0

∫ T

s

e− t−s
2

〈
PNF (s), e∓i(t−s)

√
−Δ−1/4P>1P̃NG(t)

〉
dtds

=
∫ T

0

〈
PNF (s),

∫ T

s

e− t−s
2 e∓i(t−s)

√
−Δ−1/4P>1P̃NG(t)dt

〉
ds

≤ ‖PNF‖L1(I:L2(Rd))

∥∥∥∥∥
∫ T

s

e− t−s
2 e∓i(t−s)

√
−Δ−1/4P>1P̃NG(t)dt

∥∥∥∥∥
L∞(I:L2(Rd))

(2.7)

By (2.6) in Remark 2.4, we get∥∥∥∥∥
∫ T

s

e− t−s
2 e∓i(t−s)

√
−Δ−1/4P>1P̃NG(t)dt

∥∥∥∥∥
L∞(I:L2(Rd))

≤
∑

j=N/2,N,2N

∥∥∥∥∥
∫ T

s

e− t−s
2 e∓i(t−s)

√
−Δ−1/4P>1PjG(t)dt

∥∥∥∥∥
L∞(I:L2(Rd))

� Nγ
∑

j=N/2,N,2N

‖PjG‖Lq′ (I:Lr′ (Rd))

� Nγ ‖G‖Lq′ (I:Lr′ (Rd)) . (2.8)

Since we have the duality

‖F‖Lq(I:Lr(Rd))

= sup
{∫

I

〈F (t), G(t)〉 dt : G ∈ C∞
0 (I × R

d), ‖G‖Lq′ (I:Lr′ (Rd)) = 1
}

,

the desired estimate follows from (2.7) and (2.8). �
Combining these estimates, we obtain the following Strichartz estimates

when (1/q, 1/r) and (1/q̃, 1/r̃) are on a same line.

Lemma 2.9. Let 2 ≤ r, r̃ < ∞ and 2 ≤ q, q̃ ≤ ∞. Assume that
1
q̃

(
1
2

− 1
r

)
=

1
q

(
1
2

− 1
r̃

)
.

We also assume that (q, r) 
= (2, 2(d−1)/(d−3)) and (q̃, r̃) 
= (2, 2(d−1)/(d−
3)) when d ≥ 4. Then, we have∥∥∥∥

∫ t

0

e− t−s
2 e±i(t−s)

√
−Δ−1/4P>1F (s)ds

∥∥∥∥
Lq(I:Lr(Rd))

�
∥∥|∇|γ+γ̃F

∥∥
Lq̃′ (I:Lr̃′ (Rd))

,

where I ⊂ [0,∞) is a time interval such that 0 ∈ I and the implicit constant
is independent of I.
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Proof. We set

Ψ[F ](t, x) :=
∫ t

0

e− t−s
2 e±i(t−s)

√
−Δ−1/4P>1F (s)ds.

First, we consider the case of 2 ≤ r ≤ r̃. Then, q̃ ≤ q and thus there exists
θ ∈ [0, 1] such that

1
q

=
θ

q̃
+

1 − θ

∞ ,
1
r

=
θ

r̃
+

1 − θ

2
.

By this formula, we have θγ̃ = γ. Therefore, by the Hölder inequality, Lem-
mas 2.6 and 2.7, we obtain

‖Ψ[F ]‖Lq(I:Lr(Rd))

� ‖Ψ[F ]‖θ
Lq̃(I:Lr̃(Rd)) ‖Ψ[F ]‖1−θ

L∞(I:L2(Rd))

�
(
N2γ̃ ‖PNF‖Lq̃′ (I:Lr̃′ (Rd))

)θ (
N γ̃ ‖PNF‖Lq̃′ (I:Lr̃′ (Rd))

)1−θ

≈ Nγ+γ̃ ‖PNF‖Lq̃′ (I:Lr̃′ (Rd)) ,

where we use θγ̃ = γ.
At second, we consider the case of 2 ≤ r̃ ≤ r. Then, we have q̃ ≥ q. Let

η ∈ [0, 1] satisfy
1
q̃′ =

1 − η

1
+

η

q′ ,
1
r̃′ =

1 − η

2
+

η

r′ .

Then, we have ηγ = γ̃. By the interpolation, Lemmas 2.6, and 2.8, we get the
desired inequality, where we note that N (1−η)γNη2γ = Nγ+γ̃ . Taking summa-
tion for dyadic number N gives the statement. �

We can get Strichartz estimates even when (1/q, 1/r) and (1/q̃, 1/r̃) are
not on a same line by permitting more derivative loss.

Lemma 2.10. Let d ≥ 2. Let 2 ≤ r, r̃ < ∞ and 2 ≤ q, q̃ ≤ ∞. Assume that
1
q̃

(
1
2

− 1
r

)

= 1

q

(
1
2

− 1
r̃

)
.

We also assume that (q, r) 
= (2, 2(d−1)/(d−3)) and (q̃, r̃) 
= (2, 2(d−1)/(d−
3)) when d ≥ 4. Then, we have∥∥∥∥

∫ t

0

e− t−s
2 e±i(t−s)

√
−Δ−1/4P>1F (s)ds

∥∥∥∥
Lq(I:Lr(Rd))

�
∥∥|∇|γ+γ̃+δF

∥∥
Lq̃′ (I:Lr̃′ (Rd))

,

where δ ≥ 0 is defined in Table 1 (see Proposition 1.2). Moreover, we have∥∥∥∥
∫ t

0

Dh(t − s)F (s)ds

∥∥∥∥
Lq(I:Lr(Rd))

�
∥∥∥|∇|γ+γ̃+δ 〈∇〉−1

F
∥∥∥

Lq̃′ (I:Lr̃′ (Rd))
,

∥∥∥∥
∫ t

0

(∂tDh)(t − s)F (s)ds

∥∥∥∥
Lq(I:Lr(Rd))

�
∥∥|∇|γ+γ̃+δF

∥∥
Lq̃′ (I:Lr̃′ (Rd))

.

Proof. We consider the following cases respectively.
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1. 1
q̃

(
1
2 − 1

r

)
< 1

q

(
1
2 − 1

r̃

)
2. 1

q̃

(
1
2 − 1

r

)
> 1

q

(
1
2 − 1

r̃

)
a. d−1

2

(
1
2 − 1

r

) ≥ 1
q and d−1

2

(
1
2 − 1

r̃

) ≥ 1
q̃

b. d−1
2

(
1
2 − 1

r

) ≥ 1
q and d−1

2

(
1
2 − 1

r̃

)
< 1

q̃

c. d−1
2

(
1
2 − 1

r

)
< 1

q and d−1
2

(
1
2 − 1

r̃

) ≥ 1
q̃

d. d−1
2

(
1
2 − 1

r

)
< 1

q and d−1
2

(
1
2 − 1

r̃

)
< 1

q̃

It is easy to show that Cases (1)-(b) and (2)-(c) do not occur.

Case(1). We treat the case of 1
q̃

(
1
2 − 1

r

)
< 1

q

(
1
2 − 1

r̃

)
. Since 1

q̃

(
1
2 − 1

r

)
<

1
q

(
1
2 − 1

r̃

)
, there exists r1 ∈ [2, r̃) such that

1
q̃

(
1
2

− 1
r

)
=

1
q

(
1
2

− 1
r1

)
.

Let γ1 be the derivative loss for the pair (q̃, r1). Then, by Lemma 2.9 and the
Bernstein inequality, we get

‖Ψ[F ]‖Lq
t Lr

x
� Nγ+γ1 ‖PNF‖

Lq̃′
t L

r′
1

x

� Nγ+γ1N
d

(
1
r̃′ − 1

r′
1

)
‖PNF‖

Lq̃′
t Lr̃′

x
.

Case(1)-(a). If d−1
2

(
1
2 − 1

r

) ≥ 1
q , which also gives d−1

2

(
1
2 − 1

r1

)
≥ 1

q̃ , we have
γ1 = d(1/2 − 1/r1) − 1/q̃. Thus, we obtain

γ + γ1 + d

(
1
r̃′ − 1

r′
1

)
= γ + d

(
1
2

− 1
r1

)
− 1

q1
+ d

(
1
r̃′ − 1

r′
1

)

= γ + d

(
1
2

− 1
r̃

)
− 1

q̃

= γ + γ̃.

Case(1)-(c). d−1
2

(
1
2 − 1

r

)
< 1

q gives d−1
2

(
1
2 − 1

r1

)
< 1

q̃ . Then, we have γ1 =
d+1
2 (1/2−1/r1). Moreover, since d−1

2

(
1
2 − 1

r̃

) ≥ 1
q̃ , we have γ̃ = d(1/2−1/r̃)−

1/q̃. Therefore, we obtain

γ + γ1 + d

(
1
r̃′ − 1

r′
1

)
= γ + γ̃ + γ1 − γ̃ + d

(
1
r̃′ − 1

r′
1

)

= γ + γ̃ +
q

q̃

{
1
q

− d − 1
2

(
1
2

− 1
r

)}
,

where we use q
(

1
2 − 1

r

)
= q̃

(
1
2 − 1

r1

)
in the last equality.
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Case(1)-(d). We have γ1 = d+1
2 (1/2 − 1/r1) since d−1

2

(
1
2 − 1

r

)
< 1

q . Since
d−1
2

(
1
2 − 1

r̃

)
< 1

q̃ , we have γ̃ = d+1
2 (1/2 − 1/r̃) and thus we obtain

γ + γ1 + d

(
1
r̃′ − 1

r′
1

)
= γ + γ̃ + γ1 − γ̃ + d

(
1
r̃′ − 1

r′
1

)

= γ + γ̃ +
1
q̃

d − 1
2

{
q̃

(
1
2

− 1
r̃

)
− q

(
1
2

− 1
r

)}
,

where we use 1
q̃

(
1
2 − 1

r

)
= 1

q

(
1
2 − 1

r1

)
in the last equality.

Case(2). We treat the case of 1
q̃

(
1
2 − 1

r

)
> 1

q

(
1
2 − 1

r̃

)
. Since 1

q̃

(
1
2 − 1

r

)
>

1
q

(
1
2 − 1

r̃

)
, there exists r2 ∈ [2, r) such that

1
q̃

(
1
2

− 1
r2

)
=

1
q

(
1
2

− 1
r̃

)
.

Let γ2 be the derivative loss for the pair (q, r2). Then, by the Bernstein in-
equality and Lemma 2.9, we get

‖Ψ[F ]‖Lq
t Lr

x
� N

d
(

1
r2

− 1
r

)
‖Ψ[F ]‖Lq

t L
r2
x

� N
d
(

1
r2

− 1
r

)
Nγ2+γ̃ ‖PNF‖

Lq̃′
t Lr̃′

x
.

By the symmetric argument, we get the desired statements. �

2.3. Proof of the Strichartz estimates

Proof of Proposition 1.1. We only show the inequality for D since the similar
argument works for ∂tD and ∂2

t D. We have

‖D(t)f‖Lq(I:Lr(Rd)) ≤ ‖Dl(t)f‖Lq(I:Lr(Rd)) + ‖Dh(t)f‖Lq(I:Lr(Rd)) .

Let (q, r) satisfy the assumption of Proposition 1.1 and (q, r) 
= (2, 2d/(d− 2))
when d ≥ 3. By the assumption of (q, r), we can apply Lemma 2.2 to the first
term as r̃ = 2 and σ = 1 and Lemma 2.4 to the second term. Then it follows
that

‖D(t)f‖Lq(I:Lr(Rd)) ≤ ‖Dl(t)f‖Lq(I:Lr(Rd)) + ‖Dh(t)f‖Lq(I:Lr(Rd))

�
∥∥∥〈∇〉−1

f
∥∥∥

L2
+
∥∥∥|∇|γ 〈∇〉−1

f
∥∥∥

L2

≈ ‖f‖Hγ−1

This finishes the proof except for the heat end-point case. Next, we show the
heat end-point estimate (q, r) = (2, 2d/(d − 2)) for d ≥ 3. Watanabe [30]
obtained the following heat end-point estimate.
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Lemma 2.11. [Homogeneous Strichartz estimate in the heat end-point case
(see [30, Lemma 2.8])] Let d ≥ 3. Then, we have

‖D(t)f‖
L2

t (I:L
2d

d−2
x (Rd))

� ‖f‖L2 ,

‖∂tD(t)f‖
L2

t (I:L
2d

d−2
x (Rd))

� ‖〈∇〉 f‖L2 ,

∥∥∂2
t D(t)f

∥∥
L2

t (I:L
2d

d−2
x (Rd))

�
∥∥∥〈∇〉2 f

∥∥∥
L2

.

By the first estimate in Lemma 2.11, we have

‖〈∇〉σ D(t)P≤1f‖
L2

t (I:L
2d

d−2
x (Rd))

� ‖〈∇〉σ
P≤1f‖L2 � ‖f‖L2 ,

for σ ≥ 0. Therefore, it follows from this inequality and Lemma 2.4 that

‖D(t)f‖
L2

t (I:L
2d

d−2
x (Rd))

≤ ‖Dl(t)f‖
L2

t (I:L
2d

d−2
x (Rd))

+ ‖Dh(t)f‖
L2

t (I:L
2d

d−2
x (Rd))

�
∥∥∥〈∇〉−1

f
∥∥∥

L2
+
∥∥∥|∇|γ 〈∇〉−1

f
∥∥∥

L2

≈ ‖f‖Hγ−1 .

This completes the proof of the heat end-point homogeneous Strichartz esti-
mate. �

Proof of Proposition 1.2. We only show the inequality for D since the similar
argument works for ∂tD. By the integral inequality, we get

∥∥∥∥
∫ t

0

D(t − s)F (s)ds

∥∥∥∥
Lq(I:Lr(Rd))

≤
∥∥∥∥
∫ t

0

Dl(t − s)F (s)ds

∥∥∥∥
Lq(I:Lr(Rd))

+
∥∥∥∥
∫ t

0

Dh(t − s)F (s)ds

∥∥∥∥
Lq(I:Lr(Rd))

By the assumption of (q, r), we can apply Lemma 2.3 to the first term as r̃ = 2
and σ = 1 and Lemmas 2.9, 2.10 to the second term. Then it follows that

∥∥∥∥
∫ t

0

D(t − s)F (s)ds

∥∥∥∥
Lq(I:Lr(Rd))

≤
∥∥∥∥
∫ t

0

Dl(t − s)F (s)ds

∥∥∥∥
Lq(I:Lr(Rd))

+
∥∥∥∥
∫ t

0

Dh(t − s)F (s)ds

∥∥∥∥
Lq(I:Lr(Rd))

�
∥∥∥〈∇〉−1

F
∥∥∥

Lq̃′ (I:Lr̃′ (Rd))
+
∥∥∥|∇|γ+γ̃+δ 〈∇〉−1

F
∥∥∥

Lq̃′ (I:Lr̃′ (Rd))

≈ ‖F‖Lq̃′ (I:W γ+γ̃+δ−1,r̃′ (Rd))

This is the desired estimate. �
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3. Well-posedness for the energy critical nonlinear damped
wave equation

In this section, we prove local well-posedness for (NLDW), Theorem 1.3, by
contraction mapping principle. We define the complete metric space

X(T,L,M)

:=

{
v on [0, T ) × R

d :
∥∥∥〈∇〉 1

2 v
∥∥∥

L
2(d+1)

d−1
t,x ([0,T ))

≤ L, ‖v‖
L

2(d+1)
d−2

t,x ([0,T ))

≤ M

}
.

Remark 3.1. (q, r) = (2(d + 1)/(d − 1), 2(d + 1)/(d − 1)) and (2(d + 1)/(d −
2), 2(d + 1)/(d − 2)) satisfy the assumptions of the Strichartz estimates in
Propositions 1.1 and 1.2. Moreover, γ = 1/2 when (q, r) = (2(d + 1)/(d −
1), 2(d+1)/(d−1)) and γ = 1 when (q, r) = (2(d+1)/(d−2), 2(d+1)/(d−2)).
We note that these exponents are same as in the local well-posedness for the
critical nonlinear wave equation.

We define

Φ[u](t) = Φu0,u1 [u](t) := D(t)(u0 + u1) + ∂tD(t)u0 +
∫ t

0

D(t − s)N (u(s))ds.

Proof of Theorem 1.3. As stated in Remark 3.1, the exponents are same as
in the argument for the energy critical nonlinear wave equation. Thus, the
proof if similar so that we only give sketch of the proof. See [3,16,26,27]
for details. Since (u0, u1) ∈ H1(Rd) × L2(Rd), by the Strichartz estimates
in Proposition 1.1, we obtain

‖D(t)(u0 + u1) + ∂tD(t)u0‖X(T )

≤
∥∥∥〈∇〉 1

2 D(t)(u0 + u1)
∥∥∥

L
2(d+1)

d−1
t,x ([0,T ))

+
∥∥∥〈∇〉 1

2 ∂tD(t)u0

∥∥∥
L

2(d+1)
d−1

t,x

+ ‖D(t)(u0 + u1)‖
L

2(d+1)
d−2

t,x ([0,T ))

+ ‖∂tD(t)u0‖
L

2(d+1)
d−2

t,x ([0,T ))

� ‖u0‖H1 + ‖u1‖L2 < A < ∞. (3.1)

We estimate the nonlinear term as follows. By the Strichartz estimates in
Proposition 1.2 and the fractional Leibnitz rule (see [16, Lemma 2.5] and ref-
erences therein), we get

∥∥∥∥〈∇〉 1
2

∫ t

0

D(t − s)N (u(s))ds

∥∥∥∥
L

2(d+1)
d−1

t,x ([0,T ))

�
∥∥∥〈∇〉 1

2 N (u)
∥∥∥

L
2(d+1)

d+3
t,x ([0,T ))

� ‖u‖
4

d−2

L
2(d+1)

d−2
t,x ([0,T ))

∥∥∥〈∇〉 1
2 u
∥∥∥

L
2(d+1)

d−1
t,x ([0,T ))

(3.2)
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and ∥∥∥∥
∫ t

0

D(t − s)N (u(s))ds

∥∥∥∥
L

2(d+1)
d−2

t,x ([0,T ))

�
∥∥∥〈∇〉 1

2 N (u)
∥∥∥

L
2(d+1)

d+3
t,x ([0,T ))

� ‖u‖
4

d−2

L
2(d+1)

d−2
t,x ([0,T ))

∥∥∥〈∇〉 1
2 u
∥∥∥

L
2(d+1)

d−1
t,x ([0,T ))

. (3.3)

Combining (3.1) and (3.2), we obtain
∥∥∥〈∇〉 1

2 Φ[u]
∥∥∥

L
2(d+1)

d−1
t,x ([0,T ))

≤
∥∥∥〈∇〉 1

2 D(t)(u0 + u1) + ∂tD(t)u0

∥∥∥
L

2(d+1)
d−1

t,x ([0,T ))

+
∥∥∥∥〈∇〉 1

2

∫ t

0

D(t − s)N (u(s))ds

∥∥∥∥
L

2(d+1)
d−1

t,x ([0,T ))

≤CA + CLM
4

d−2

≤L

if we choose L = 2CA and M such that CM4/(d−2) ≤ 1/2. By (3.1) and (3.3),
we get

‖Φ[u]‖
L

2(d+1)
d−2

t,x ([0,T ))

≤‖D(t)(u0 + u1) + ∂tD(t)u0‖
L

2(d+1)
d−2

t,x ([0,T ))

+
∥∥∥∥
∫ t

0

D(t − s)N (u(s))ds

∥∥∥∥
L

2(d+1)
d−2

t,x ([0,T ))

≤δ + CLM
4

d−2

≤M

if we choose δ = M/2 and L ≤ (2C)−1M (d−6)/(d−2) (which is possible if
3 ≤ d ≤ 5). Thus, Φ is a mapping on X(T,L,M).
∥∥∥〈∇〉 1

2 (Φ[u] − Φ[v])
∥∥∥

L
2(d+1)

d−1
t,x ([0,T ))

+ ‖Φ[u] − Φ[v]‖
L

2(d+1)
d−2

t,x ([0,T ))

�
∥∥∥〈∇〉 1

2 (N (u) − N (v))
∥∥∥

L
2(d+1)

d+3
t,x ([0,T ))

�
(

‖u‖
4

d−2

L
2(d+1)

d−2
t,x ([0,T ))

+ ‖v‖
4

d−2

L
2(d+1)

d−2
t,x ([0,T ))

)∥∥∥〈∇〉 1
2 (u − v)

∥∥∥
L

2(d+1)
d−1

t,x ([0,T ))

+

(
‖u‖

6−d
d−2

L
2(d+1)

d−2
t,x ([0,T ))

+ ‖v‖
6−d
d−2

L
2(d+1)

d−2
t,x ([0,T ))

)

×
(∥∥∥〈∇〉 1

2 u
∥∥∥

L
2(d+1)

d−1
t,x ([0,T ))

+
∥∥∥〈∇〉 1

2 v
∥∥∥

L
2(d+1)

d−1
t,x ([0,T ))

)
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× ‖u − v‖
L

2(d+1)
d−2

t,x ([0,T ))

≤ CM
4

d−2

∥∥∥〈∇〉 1
2 (u − v)

∥∥∥
L

2(d+1)
d−1

t,x ([0,T ))

+ CM
6−d
d−2 L ‖u − v‖

L
2(d+1)

d−2
t,x ([0,T ))

.

Taking L and M sufficiently small, Φ is a contraction mapping on X(T,L,M).
By the Banach fixed point theorem, we obtain the solution such that u = Φ[u].
Then, (u, ∂tu) belongs to C([0, T );H1(Rd)×L2(Rd)) because of the Strichartz
estimates (Proposition 1.1 and 1.2) and the nonlinear estimates (for example

〈∇〉 1
2 N (u) ∈ L

2(d+1)
d+3

t,x ). We give a proof of the standard blow-up criterion. We
suppose that T+ = T+(u0, u1) < ∞ and ‖u‖

L
2(d+1)/d−2
t,x ([0,T+))

< ∞. Take τ and
T arbitrary such that 0 < τ < T < T+. By the Duhamel formula, we have

u(t) = D(t − τ)(u(τ) + ∂tu(τ)) + ∂tD(t − τ)u(τ) +
∫ t

τ

D(t − s)N (u(s))ds,

for t > τ . By the Strichartz estimates, we obtain∥∥∥〈∇〉 1
2 u
∥∥∥

L
2(d+1)

d−1
t,x ((τ,T ))

� ‖(u(τ), ∂tu(τ))‖H1×L2 +
∥∥∥∥
∫ t

τ

〈∇〉 1
2 D(t − s)N (u(s))ds

∥∥∥∥
L

2(d+1)
d−1

t,x ((τ,T ))

� ‖(u(τ), ∂tu(τ))‖H1×L2 +
∥∥∥〈∇〉 1

2 N (u(s))
∥∥∥

L
2(d+1)

d+3
t,x ((τ,T ))

� ‖(u(τ), ∂tu(τ))‖H1×L2 + ‖u‖
4

d−2

L
2(d+1)

d−2
t,x ((τ,T ))

∥∥∥〈∇〉 1
2 u
∥∥∥

L
2(d+1)

d−1
t,x ((τ,T ))

.

Since ‖u‖
L

2(d+1)
d−2

t,x ((τ,T ))

� 1 for τ close to T+, we obtain

∥∥∥〈∇〉 1
2 u
∥∥∥

L
2(d+1)

d−1
t,x ((τ,T ))

� ‖(u(τ), ∂tu(τ))‖H1×L2 .

Fix such τ . Since T is arbitrary, we get∥∥∥〈∇〉 1
2 u
∥∥∥

L
2(d+1)

d−1
t,x ((τ,T+))

� ‖(u(τ), ∂tu(τ))‖H1×L2 . (3.4)

Take a sequence {tn} such that tn → T+ and tn > τ . Then, by the integral
formula, the Strichartz estimates the assumption, and 3.4, we have

‖D(t − tn)(u(tn) + ∂tu(tn)) + ∂tD(t − tn)u(tn)‖
L

2(d+1)
d−2

t,x ([tn,T+))

� ‖u‖
L

2(d+1)
d−2

t,x ([tn,T+))

+
∥∥∥∥
∫ t

tn

D(t − s)N (u(s))ds

∥∥∥∥
L

2(d+1)
d−2

t,x ([tn,T+))

� ‖u‖
L

2(d+1)
d−2

t,x ([tn,T+))

+ ‖u‖
4

d−2

L
2(d+1)

d−2
t,x ([tn,T+))

∥∥∥〈∇〉 1
2 u
∥∥∥

L
2(d+1)

d−1
t,x ([tn,T+))

→ 0 as n → ∞,
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Thus, ‖D(t − tn)(u(tn) + ∂tu(tn)) + ∂tD(t − tn)u(tn)‖
L

2(d+1)/(d−2)
t,x ([tn,T+))

< δ/2 is true for large n. Then, for some ε > 0, we get

‖D(t − tn)(u(tn) + ∂tu(tn)) + ∂tD(t − tn)u(tn)‖
L

2(d+1)/(d−2)
t,x ([tn,T++ε))

< δ.

The local well-posedness derives a contradiction. �

Proof of Theorem 1.4. By the Strichartz estimate (Proposition 1.1), we have

‖D(t)(u0 + u1) + ∂tD(t)u0‖
L

2(d+1)
d−2

t,x ([0,∞))

≤ C ‖(u0, u1)‖H1×L2 .

Thus, if we take δ0 satisfying Cδ0 < δ, where δ is in Theorem 1.3, then we get
a global solution from Theorem 1.3. Moreover, the solution u satisfies

‖u‖
L

2(d+1)
d−2

t,x ([0,∞))

� ‖D(t)(u0 + u1) + ∂tD(t)u0‖
L

2(d+1)
d−2

t,x ([0,∞))

� δ0.

�

4. Decay of global solution with finite Strichartz norm

In this section, we give a proof of Theorem 1.5.

Lemma 4.1. If u is a global solution of (NLDW) with ‖u‖
L

2(d+1)
d−2

t,x ([0,∞))

< ∞,

then u satisfies ∥∥∥〈∇〉 1
2 u
∥∥∥

L
2(d+1)

d−1
t,x ([0,∞))

< ∞

Proof. The proof is very similar to the proof of the standard blow-up criterion.
Take 0 < τ < T < ∞ arbitrary. We know that the global solution belongs to

L
2(d+1)

d−1
t,x (K) for any compact interval K ⊂ [0,∞). It follows from the Duhamel’s

formula and the Strichartz estimates that∥∥∥〈∇〉 1
2 u
∥∥∥

L
2(d+1)

d−1
t,x ((τ,T ))

� ‖(u(τ), ∂tu(τ))‖H1×L2

+ ‖u‖
4

d−2

L
2(d+1)

d−2
t,x ((τ,T ))

∥∥∥〈∇〉 1
2 u
∥∥∥

L
2(d+1)

d−1
t,x ((τ,T ))

.

Since ‖u‖
L

2(d+1)
d−2

t,x ((τ,T ))

� 1 for large τ , we obtain

∥∥∥〈∇〉 1
2 u
∥∥∥

L
2(d+1)

d−1
t,x ((τ,T ))

� ‖(u(τ), ∂tu(τ))‖H1×L2

for large τ > 0. Fix such τ . Since T is arbitrary, we obtain∥∥∥〈∇〉 1
2 u
∥∥∥

L
2(d+1)

d−1
t,x ((τ,∞))

� ‖(u(τ), ∂tu(τ))‖H1×L2 .

Thus, we obtain
∥∥∥〈∇〉 1

2 u
∥∥∥

L
2(d+1)

d−1
t,x ([0,∞))

< ∞. �



50 Page 26 of 30 T. Inui NoDEA

Proof of Theorem 1.5. We have
(

u
∂tu

)
= A(t)

(
u0

u1

)
+
∫ t

0

A(t − s)
(

0
N (u(s))

)
ds,

where

A(t) =
( D(t) + ∂tD(t) D(t)

∂tD(t) + ∂2
t D(t) ∂tD(t)

)
.

We set

I := A(t)
(

u0

u1

)
,

II :=
∫ τ

0

A(t − s)
(

0
N (u(s))

)
ds,

III :=
∫ t

τ

A(t − s)
(

0
N (u(s))

)
ds.

We begin with the estimate of I. Approximating (u0, u1) by (ψ0, ψ1) ∈
(C∞

0 (Rd))2 in H1(Rd) × L2(Rd), we obtain

‖I‖H1×L2 =
∥∥A(t)(u0, u1)T

∥∥
H1×L2

≤ ∥∥A(t){(u0, u1) − (ψ0, ψ1)}T
∥∥

H1×L2 +
∥∥A(t)(ψ0, ψ1)T

∥∥
H1×L2 ,

where T denotes transposition. By [9, Theorem 1.1], we have the following
Lp–Lq type estimates:

‖D(t)f‖H1 � 〈t〉− d
2 ( 1

q − 1
2 ) ‖f‖Lq + e− t

2 〈t〉δ ‖f‖L2 ,

‖∂tD(t)f‖L2 � 〈t〉− d
2 ( 1

q − 1
2 )−1 ‖f‖Lq + e− t

2 〈t〉δ ‖f‖L2 ,

‖∂tD(t)f‖H1 � 〈t〉− d
2 ( 1

q − 1
2 )−1 ‖f‖W 1,q + e− t

2 〈t〉δ ‖f‖H1 ,∥∥∂2
t D(t)f

∥∥
L2 � 〈t〉− d

2 ( 1
q − 1

2 )−2 ‖f‖Lq + e− t
2 〈t〉δ ‖〈∇〉 f‖L2 ,

for any q ∈ [1, 2] and some δ > 0. Therefore, applying these as q = 2, we get
∥∥A(t){(u0, u1) − (ψ0, ψ1)}T

∥∥
H1×L2 � ‖(u0, u1) − (ψ0, ψ1)‖H1×L2 .

Thus, this can be made arbitrary small by the approximation. Applying the
above Lp–Lq type estimates as q = 1, we obtain∥∥A(t)(ψ0, ψ1)T

∥∥
H1×L2

≤ ‖D(t)(ψ0 + ψ1)‖H1 + ‖∂tD(t)ψ0‖H1

+ ‖∂tD(t)(ψ0 + ψ1)‖L2 +
∥∥∂2

t D(t)ψ0

∥∥
L2

� 〈t〉− d
4 (‖ψ0‖W 1,1 + ‖ψ1‖L1) + e− t

4 (‖ψ0‖H1 + ‖ψ1‖L2)
→ 0 as t → ∞.
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Next, we consider the estimate of III. By the Strichartz estimates, we have

‖III‖H1×L2 =
∥∥∥∥〈∇〉

∫ t

τ

D(t − s)N (u(s))ds

∥∥∥∥
L2

+
∥∥∥∥
∫ t

τ

∂tD(t − s)N (u(s))ds

∥∥∥∥
L2

�
∥∥∥〈∇〉 1

2 N (u)
∥∥∥

L
2(d+1)

d+3
t,x ((τ,t))

� ‖u‖
4

d−2

L
2(d+1)

d−2
t,x ((τ,t))

∥∥∥〈∇〉 1
2 u
∥∥∥

L
2(d+1)

d−1
t,x ((τ,t))

. (4.1)

Therefore, the term is arbitrary small taking τ sufficiently close to t. At last,
we calculate II. We note that

II =
∫ τ

0

A(t − s)
(

0
N (u(s))

)
ds = A(t − τ)

∫ τ

0

A(τ − s)
(

0
N (u(s))

)
ds.

Since by (4.1) we know∫ τ

0

A(τ − s)
(

0
N (u(s))

)
∈ H1(Rd) × L2(Rd),

approximating it by �ψ ∈ (C∞
0 (Rd)2), we obtain

‖II‖H1×L2 ≤
∥∥∥∥A(t − τ)

{∫ τ

0

A(τ − s)
(

0
N (u(s))

)
ds − �ψ

}∥∥∥∥
H1×L2

+
∥∥∥A(t − τ) �ψ

∥∥∥
H1×L2

.

In the smae way as I, the first term is arbitrary small by the approximation
and the second term tends to 0 as t → ∞. Combining the estimates of I, II,
and III, we get the decay. �

Acknowledgements

The author would like to express deep appreciation to Professor Masahito
Ohta and Professor Yuta Wakasugi for many useful suggestions, valuable com-
ments and warm-hearted encouragement. The author was partially supported
by JSPS Grant-in-Aid for Early-Career Scientists JP18K13444.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

References

[1] Brenner, P.: On Lp–Lp′
estimates for the wave-equation. Math. Z. 145(3), 251–

254 (1975)

[2] Giga, Y.: Solutions for semilinear parabolic equations in Lp and regularity of
weak solutions of the Navier–Stokes system. J. Differ. Equ. 62(2), 186–212 (1986)



50 Page 28 of 30 T. Inui NoDEA

[3] Ginibre, J., Soffer, A., Velo, G.: The global Cauchy problem for the critical
nonlinear wave equation. J. Funct. Anal. 110(1), 96–130 (1992)

[4] Ginibre, J., Velo, G.: Generalized Strichartz inequalities for the wave equation.
J. Funct. Anal. 133(1), 50–68 (1995)

[5] Loukas, G.: Classical Fourier Analysis. Graduate Texts in Mathematics, vol. 249,
3rd edn. Springer, New York (2014)

[6] Gustafson, S., Roxanas, D.: Global, decaying solutions of a focusing energy-
critical heat equation in R

4. J. Differ. Equ. 264(9), 5894–5927 (2018)

[7] Hosono, T., Ogawa, T.: Large time behavior and Lp–Lq estimate of solutions of
2-dimensional nonlinear damped wave equations. J. Differ. Equ. 203(1), 82–118
(2004)

[8] Masahiro, I., Takahisa, I.: A Remark on Non-existence Results for the Semi-
linear Damped Klein–Gordon Equations, Harmonic Analysis and Nonlinear Par-
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in J. Soviet Math. 49(5), 1166–1186 (1990)

[13] Lev, K.: The Cauchy problem for the semilinear wave equation. II, (Russian)
Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 182 (1990),
Kraev. Zadachi Mat. Fiz. i Smezh. Voprosy Teor. Funktsĭı. 21, 38–85, 171; trans-
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