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Abstract. We study the periodic boundary value problem associated with
the φ-Laplacian equation of the form (φ(u′))′+f(u)u′ +g(t, u) = s, where
s is a real parameter, f and g are continuous functions, and g is T -periodic
in the variable t. The interest is in Ambrosetti–Prodi type alternatives
which provide the existence of zero, one or two solutions depending on
the choice of the parameter s. We investigate this problem for a broad
family of nonlinearities, under non-uniform type conditions on g(t, u) as
u → ±∞. We generalize, in a unified framework, various classical and
recent results on parameter-dependent nonlinear equations.
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1. Introduction

In this paper, we study the problem of existence, non-existence, and multi-
plicity of T -periodic solutions of periodic boundary value problems associated
with the φ-Laplacian generalized Liénard equation

(φ(u′))′ + f(u)u′ + g(t, u) = s, (Es)

where s is a real parameter. Our aim is to unify, in a generalized setting,
different classical and recent results obtained in this area concerning the tri-
chotomy given by zero/one/two solutions by varying the parameter s. Such
kind of alternative can be traced back to the pioneering work by Ambrosetti
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e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM).
The first author is supported by the project ERC Advanced Grant 2013 n. 339958 “Complex
Patterns for Strongly Interacting Dynamical Systems—COMPAT”.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00030-019-0585-3&domain=pdf
http://orcid.org/0000-0002-9953-5026
http://orcid.org/0000-0003-4085-9103
http://orcid.org/0000-0001-9105-3084


38 Page 2 of 27 G. Feltrin et al. NoDEA

and Prodi [2]. In more detail, we discuss several configurations of g related to
the works by Fabry et al. [8], Bereanu and Mawhin [5].

Looking at [8], the Authors considered the parameter-dependent Liénard
equation

u′′ + f(u)u′ + g(t, u) = s, (1.1)

with g a continuous function, T -periodic in t, and satisfying

lim
|u|→+∞

g(t, u) = +∞, uniformly in t,

In this framework, they proved the existence of a value s0 ∈ R such that the
T -periodic problem associated with (1.1) satisfies

Alternative by Ambrosetti–Prodi (AP): there exist zero, at
least one or at least two solutions, provided that s < s0, s = s0 or
s > s0.

Actually, this kind of theorems has been extended to more general equations.
In particular, the study in [16] concerns nonlinear differential operators such
as the φ-Laplacians and considers (Es) as well. A typical application of the
results in [16] can be written for the weighted equation

(φ(u′))′ + f(u)u′ + a(t)q(u) = s + e(t), (WE s)

for q satisfying lim|u|→+∞ q(u) = +∞, and a, e : R → R continuous T -periodic
functions with min a > 0.

It is interesting to observe that phenomena similar to the one in (AP)
have been discovered also for different kinds of nonlinearities q. In this regard,
we refer to the work by Bereanu and Mawhin in [5] for the equation

(φ(u′))′ + q(u) = s + e(t), (1.2)

with
∫ T

0
e = 0 and q satisfying q(u) > 0 for all u, along with

lim
|u|→+∞

q(u) = 0.

Indeed, in [5] the Authors, extending a previous work by Ward [27], proved
the existence of a value s0 ∈ R such that the T -periodic problem associated
with (1.2) satisfies

Alternative by Bereanu–Mawhin (BM): there exist zero, at
least one or at least two solutions, provided that s > s0, s = s0 or
0 < s < s0.

Moreover, they proved that there are no solutions also for s < 0. The same
conclusion in (BM) was obtained in [3] for the p-Laplacian Liénard equation

(φp(u′))′ + f(u)u′ + q(u) = s + e(t),

where φp(ξ) := |ξ|p−2ξ, with p > 1.
At this point, we observe that such a kind of results suggests the fact that

an Ambrosetti–Prodi type alternative of the form zero, at least one or at least
two solutions, may occur for a broad class of nonlinearities which reflect the
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behavior of parabola/bell-shaped functions. To be more precise, we consider
nonlinearities g(t, u) which include, as special cases, functions of the form

g(t, u) = a(t)q(u) − e(t), (1.3)

with q having the following behavior:
Nonlinearity of type I. There exist ω± := limu→±∞ q(u) with
q(u) < ω± for u in a neighborhood of ±∞.
Nonlinearity of type II. There exist ω± := limu→±∞ q(u) with
q(u) > ω± for u in a neighborhood of ±∞.

We notice that if ω± = +∞ then q is a nonlinearity of type I, while, if ω± =
−∞ then q is a nonlinearity of type II.

Moreover, when g has the form as in (1.3), we allow the weight a(t) to be
non-negative but possibly vanishing on sets of positive measure, so that the
uniform condition min a > 0 is no longer required. As a consequence, we deal
with situations involving non-uniform conditions on g(t, u) as u → ±∞.

From now on, we focus our attention on the periodic boundary value
problem associated with (Es) where φ : R → φ(R) = R is an increasing homeo-
morphism such that φ(0) = 0, the map f : R → R is continuous, and the func-
tion g : [0, T ] × R → R satisfies the Carathéodory conditions (cf. [13, p. 28]).
By a solution to (Es) we mean a function u : [0, T ] → R of class C1 such that
φ(u′) is an absolutely continuous function and the equation (Es) is satisfied for
almost every t. Moreover, when u(0) = u(T ) and u′(0) = u′(T ), we say that
u is a T -periodic solution. One could equivalently consider the function g(t, u)
defined for a.e. t ∈ R and T -periodic in t. In this case, one looks for solutions
u : R → R which are T -periodic and satisfy (Es), as described above.

It is worth noting that equation (Es) concerns the φ-Laplacian operator
which includes all the qualitative properties of the classical p-Laplacian oper-
ator φp or even some more general differential operators, such as the (p, q)-
Laplacian operator defined as φp,q(ξ) := (|ξ|p−2 + |ξ|q−2)ξ, with 1 < p < q.
Such kinds of differential operators are extensively studied in the literature for
their relevance in many physical and mechanical models (cf. [14,15,23]).

We present now some new results concerning the T -periodic BVP asso-
ciated with equation (WE s). In this introductory summary, for sake of conve-
nience, we assume that a, e ∈ L∞(0, T ) are such that a(t) ≥ 0 for a.e. t ∈ [0, T ]
with ā := 1

T

∫ T

0
a(t) dt = 1 and ē := 1

T

∫ T

0
e(t) dt = 0.

Theorem 1.1. Assume that ω± = +∞. Then, there exists s0 ∈ R such that:
• for s < s0, equation (WE s) has no T -periodic solutions;
• for s = s0, equation (WE s) has at least one T -periodic solution;
• for s0 < s, equation (WE s) has at least two T -periodic solutions.

The above theorem extends the recent result in [25] to the case of φ-
Laplacian operators. Actually, Theorem 1.1 follows from a more general result
dealing with equation (Es), which extends some results in [16] to locally coer-
cive nonlinearities.

Theorem 1.2. Assume that ω± = ω ∈ R and q(u) > ω for all |u| sufficiently
large. Then, there exists s0 ∈ ]ω,+∞[ such that:
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• for s > s0, equation (WE s) has no T -periodic solutions;
• for s = s0, equation (WE s) has at least one T -periodic solution;
• for ω < s < s0, equation (WE s) has at least two T -periodic solutions.

Moreover, if q(u) > ω for all u, then, for s ≤ ω, equation (WE s) has no
T -periodic solutions.

The above theorem allows to consider the situation of [3,5] in a nonlocal
setting.

Theorem 1.3. Assume that ω− = +∞ and q(u) ↗ ω+ ∈ R for u → +∞.
Then, there exists s0 ∈ ]−∞, ω+[ such that:

• for s < s0, equation (WE s) has no T -periodic solutions;
• for s = s0, equation (WE s) has at least one T -periodic solution;
• for s0 < s < ω+, equation (WE s) has at least two T -periodic solutions;
• for s ≥ ω+, equation (WE s) has at least one T -periodic solution.

As far as we know, the above theorem covers some situations which are
not treated in the literature from the point of view of the Ambrosetti–Prodi
type alternatives.

We notice that Theorems 1.1 and 1.3 concern nonlinearities of type I,
instead Theorem 1.2 is about nonlinearities of type II. These theorems can
be considered as a model to produce different related results by means of
symmetries or change of variables (see the foregoing sections). Moreover, they
are all consequences of a general theorem given in Sect. 3.

The plan of the paper is as follows. In Sect. 2 we introduce some pre-
liminary results based on continuation theorems and topological degree tools
developed by Manásevich and Mawhin [15]. Moreover, taking into account [25],
we adapt Villari’s type conditions to our setting. Section 3 is devoted to our
main results for the parameter-dependent equation (Es). The key ingredient
for the proofs is Theorem 2.2 in Sect. 2, combined with arguments inspired
from [5,8,16]. In the same section, following [18,21], we also recall a result of
Amann, Ambrosetti and Mancini type on bounded nonlinearities (cf. [1]). In
Sect. 4, we illustrate some applications of the main results achieved in Sect. 3
to the weighted Liénard equation (WE s) and Neumann problems for radially
symmetric solutions. The paper ends with Sect. 5 containing a few remarks
and possible directions for future developments.

2. Preliminary results

In this section we deal with the differential equation

(φ(u′))′ + f(u)u′ + h(t, u) = 0, (2.1)

where φ : R → R is an increasing homeomorphism with φ(0) = 0, f : R → R

is a continuous function and h : [0, T ] × R → R is a Carathéodory function.
We denote by C1

T := {u ∈ C1([0, T ]) : u(0) = u(T ), u′(0) = u′(T )}, and by AC
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the set of absolutely continuous functions. By a T -periodic solution to (2.1)
we mean a function

u ∈ D :=
{
u ∈ C1

T : φ(u′) ∈ AC
}
,

satisfying Eq. (2.1) for a.e. t. Our purpose is to introduce the main tools for
the discussion in the subsequent section.

2.1. Definitions and technical lemmas

We start by introducing two concepts: the Villari’s type conditions, which are
inspired by [26] (cf. also [4,15,19]), and the upper/lower solutions (cf. [16]).

Definition 2.1. A Carathéodory function h(t, u) satisfies the Villari’s condition
at +∞ (at −∞, respectively) if there exists δ = ±1 and d0 > 0 such that

δ

∫ T

0

h(t, u(t)) dt > 0 (2.2)

for each u ∈ C1
T such that u(t) ≥ d0 (u(t) ≤ −d0, respectively) for every

t ∈ [0, T ].

Definition 2.2. Let α, β ∈ D. We say that α is a strict lower solution to (2.1),
if

(φ(α′(t)))′ + f(α(t))α′(t) + h(t, α(t)) > 0, for a.e. t ∈ [0, T ], (2.3)

and if u is any T -periodic solution to (2.1) with u(t) ≥ α(t) for all t ∈ [0, T ],
then u(t) > α(t) for all t ∈ [0, T ]. We say that β is a strict upper solution to
(2.1), if

(φ(β′(t)))′ + f(β(t))β′(t) + h(t, β(t)) < 0, for a.e. t ∈ [0, T ], (2.4)

and if u is any T -periodic solution to (2.1) with u(t) ≤ β(t) for all t ∈ [0, T ],
then u(t) < β(t) for all t ∈ [0, T ].

Following [7, Chapter 3, Proposition 1.5], we present now a useful cri-
terion that guarantees when a function α satisfying (2.3) is a strict lower
solution.

Lemma 2.1. Let h : [0, T ] × R → R be a Carathéodory function satisfying
(A0) for all t0 ∈ [0, T ], u0 ∈ R and ε > 0, there exists δ > 0 such that if
|t − t0| < δ, |u − u0| < δ, then |h(t, u) − h(t, u0)| < ε for a.e. t.

Let a > 0 and α ∈ D be such that

(φ(α′(t)))′ + f(α(t))α′(t) + h(t, α(t)) ≥ a, for a.e. t ∈ [0, T ],

then α is a strict lower solution to (2.1).

Proof. Let u be a T -periodic solution to (2.1) with u(t) ≥ α(t) for every
t ∈ [0, T ]. Since α is not a solution to Eq. (2.1), there exists t0 ∈ [0, T ] such
that u(t0) > α(t0). Suppose by contradiction that there exists a maximal
interval [t1, t2] in [0, T ] containing t0 such that u(t) > α(t) for all t ∈ ]t1, t2[
with u(t1) = α(t1) or u(t2) = α(t2). Since u(t) − α(t) ≥ 0 for all t ∈ [0, T ],
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then u′(t1) = α′(t1) or u′(t2) = α′(t2). First, let us suppose that u(t1) = α(t1).
In this manner, for a.e. t ∈ [0, T ], we have

(φ(u′(t)))′ − (φ(α′(t)))′ ≤
≤ −a − f(u(t))u′(t) − h(t, u(t)) + f(α(t))α′(t) + h(t, α(t)).

From condition (A0), for ε = a/4, there exists δ > 0 such that, if |t − t1| < δ,
|u − u(t1)| < δ, then |h(t, u) − h(t, u(t1))| < a/4 for a.e. t. Furthermore, by
continuity, let η < δ be such that |u(t) − u(t1)| < δ, |α(t) − α(t1)| < δ and
|f(u(t))u′(t) − f(α(t))α′(t)| < a/2, for all t ∈ [t1, t1 + η]. Then, we have
(φ(u′(t)))′ − (φ(α′(t)))′ ≤ 0 and, by an integration on [t1, t] ⊆ [t1, t1 + η], we
obtain φ(u′(t)) − φ(α′(t)) ≤ 0 for a.e. t ∈ [t1, t1 + η]. It follows that u′(t) ≤
α′(t) and so u(t) ≤ α(t), for all t ∈ [t1, t1 + η]. Then a contradiction with
the definition of the interval [t1, t2] occurs. Lastly, if u(t2) = α(t2), then a
contradiction is reached in the same way. Finally, α is a strict lower solution
to (2.1). �

A similar result holds for strict upper solutions.

Lemma 2.2. Let h : [0, T ] × R → R be a Carathéodory function satisfying con-
dition (A0). Let b > 0 and β ∈ D be such that

(φ(β′(t)))′ + f(β(t))β′(t) + h(t, β(t)) ≤ −b, for a.e. t ∈ [0, T ],

then β is a strict upper solution to (2.1).

Our approach is based on continuation theorems, hence we focus our
attention on the parameter depended equation

(φ(u′))′ + λf(u)u′ + λh(t, u) = 0, (2.5)

with λ ∈ ]0, 1]. In particular, the detection of some a priori bounds for solutions
to (2.5) leads to the following.

Lemma 2.3. Let h : [0, T ] × R → R be a Carathéodory function. If there exists
d1 > 0 such that

∫ T

0

h(t, u(t)) dt 	= 0 (2.6)

for each u ∈ C1
T such that u(t) ≥ d1 for every t ∈ [0, T ], then any T -periodic

solution u of (2.5) with λ ∈ ]0, 1] satisfies min u < d1. If there exists d2 > 0
such that (2.6) holds for each u ∈ C1

T such that u(t) ≤ −d2 for every t ∈ [0, T ],
then any T -periodic solution u of (2.5) with λ ∈ ]0, 1] satisfies max u > −d2.

Proof. Let u be a T - periodic solution to (2.5) with λ ∈ ]0, 1]. By integrating,
we have

0 =
∫ T

0

[
(φ(u′(t)))′ + λf(u(t))u′(t) + λh(t, u(t))

]
dt = λ

∫ T

0

h(t, u(t)) dt.

Suppose by contradiction that either u(t) ≥ d1 or u(t) ≤ −d2 for all t ∈ [0, T ],
then a contradiction follows with respect to (2.6). �
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Lemma 2.4. Let h : [0, T ] × R → R be a Carathéodory function satisfying the
following property:
(AI

1) there exists γ ∈ L1([0, T ],R+) such that h(t, u) ≥ −γ(t) for a.e. t ∈
[0, T ] and for all u ∈ R.

Then, there exists a constant K0 = K0(γ) such that any T -periodic solution u
to (2.5) with λ ∈ ]0, 1] satisfies

max u − min u ≤ K0 and ‖u′‖L1 ≤ K0.

Moreover, for any �1, �2 ∈ R with �1 < �2 there exists K1 > 0 such that any
T -periodic solution u to (2.5) with λ ∈ ]0, 1] such that �1 ≤ u(t) ≤ �2 for all
t ∈ [0, T ] satisfies ‖u′‖∞ ≤ K1.

Proof. Let λ ∈ ]0, 1] and let u be a T -periodic solution to (2.5). Let t∗ be such
that u(t∗) = max u and define v(t) := max u − u(t), which satisfies v′ = −u′.
By hypothesis (AI

1), we deduce that for almost every t ∈ [0, T ]

(φ(u′(t)))′ = −λf(u(t))u′(t) − λh(t, u(t)) ≤ λf(u(t))v′(t) + γ(t). (2.7)

Up to an extension of h(·, u) by T -periodicity on R, we notice that
∫ t∗+T

t∗
f(u(ξ))v(ξ)v′(ξ) dξ = 0.

Multiplying (2.7) by v(t) ≥ 0 and integrating on [t∗, t∗ + T ], we obtain
∫ t∗+T

t∗
(φ(u′(ξ)))′v(ξ) dξ ≤ ‖γ‖L1‖v‖∞.

At this point, from the properties of φ it follows straightway that for every
b > 0 there exists Kb > 0 such that φ(ξ)ξ ≥ b|ξ| − Kb, for every ξ ∈ R. In this
manner, via an integration by parts, it follows that

∫ t∗+T

t∗
(φ(u′(ξ)))′v(ξ) dξ =

∫ t∗+T

t∗
φ(u′(ξ))u′(ξ) dξ =

∫ T

0

φ(u′(ξ))u′(ξ) dξ

≥
∫ T

0

(
b|u′(ξ)| − Kb

)
dξ = b‖u′‖L1 − KbT = b‖v′‖L1 − KbT.

Finally, we obtain

b‖v′‖L1 ≤ ‖γ‖L1‖v‖∞ + KbT ≤ ‖γ‖L1‖v′‖L1 + KbT = ‖γ‖L1‖u′‖L1 + KbT.

Then, taking b > ‖γ‖L1 and K0 := KbT/(b − ‖γ‖L1), we have ‖u′‖L1 ≤ K0

and hence max u − min u ≤ K0.
Let �1, �2 ∈ R with �1 < �2. Let u be such that �1 ≤ u(t) ≤ �2 for

all t ∈ [0, T ]. By the Carathéodory condition on h and the boundedness of
u, there exists a constant c > 0 (independent of u and λ ∈ ]0, 1]) such that
u′(t) ∈ φ−1([−c, c]), and so there exists K1 > 0 such that ‖u′‖∞ ≤ K1. �

Lemma 2.5. Let h : [0, T ] × R → R be a Carathéodory function satisfying the
following property:
(AII

1 ) there exists γ ∈ L1([0, T ],R+) such that h(t, u) ≤ γ(t) for a.e. t ∈ [0, T ]
and for all u ∈ R.
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Then, there exists a constant K0 = K0(γ) such that any T -periodic solution u
to (2.5) with λ ∈ ]0, 1] satisfies

max u − min u ≤ K0 and ‖u′‖L1 ≤ K0.

Moreover, for any �1, �2 ∈ R with �1 < �2 there exists K1 > 0 such that any
T -periodic solution u to (2.5) with λ ∈ ]0, 1] such that �1 ≤ u(t) ≤ �2 for all
t ∈ [0, T ] satisfies ‖u′‖∞ ≤ K1.

Proof. Let λ ∈ ]0, 1] and let u be a T -periodic solution to (2.5). We enter in
the same setting of Lemma 2.4 via the change of variable x := −u which leads
to the study of

(φ̃(x′))′ + λf̃(x)x′ + λh̃(t, x) = 0,

where φ̃(ξ) = −φ(−ξ), f̃(ξ) = f(−ξ), and h̃(t, ξ) = −h(t,−ξ). �
2.2. Continuation theorem and abstract results

We introduce the fixed point operator and the continuation theorem for the
more general periodic boundary value problem

(φ(u′))′ + F (t, u, u′) = 0, u(0) = u(T ), u′(0) = u′(T ), (2.8)

where F : [0, T ] × R × R → R is a Carathéodory function. We consider the
following Banach spaces X := C1

T , endowed with the norm ‖u‖X := ‖u‖∞ +
‖u′‖∞, and Z := L1(0, T ), with the standard norm ‖ · ‖L1 . In the same spirit
of [15], we define the continuous projectors P : X → X by Pu := u(0), and
Q : Z → Z by Qu := 1

T

∫ T

0
u(t) dt. In the sequel, we also denote by Q the

mean value operator defined on subspaces of Z. We introduce the following
Nemytskii operator N : X → Z by (Nu)(t) := −F (t, u(t), u′(t)) for t ∈ [0, T ].

At this point, following [15], one has that u is a solution of problem (2.8) if
and only if u is a fixed point of the completely continuous operator G : X → X
defined as

Gu := Pu + QNu + KNu, u ∈ X,

where K : Z → X is the map which, to any w ∈ Z, associates the unique
T -periodic solution u(t) of the problem

(φ(u′))′ = w(t) − 1
T

∫ T

0

w(t) dt, u(0) = 0.

Let us consider the periodic parameter-dependent problem

(φ(u′))′ + λF (t, u, u′) = 0, u(0) = u(T ), u′(0) = u′(T ), λ ∈ ]0, 1].
(2.9)

We are now ready to state the following continuation theorem, adapted from
[15], where by dLS(Id−G,Ω, 0) we denote the Leray–Schauder degree of Id−G
in Ω, with Ω ∈ X an open bounded set, and by dB we indicate the finite-
dimensional Brouwer degree. We refer to [15, Theorem 3.1] for the proof of the
following theorem (see also [9, Sect. 3]).

Theorem 2.1. Let Ω be an open bounded set in X such that the following con-
ditions hold:
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• for each λ ∈ ]0, 1] problem (2.9) has no solution on ∂Ω;
• the equation F#(ξ) := 1

T

∫ T

0
F (t, ξ, 0) dt = 0 has no solution on ∂Ω ∩ R.

Then, dLS(Id − G,Ω, 0) = dB(F#,Ω ∩ R, 0). Moreover, if the Brouwer degree
dB(F#,Ω ∩ R, 0) 	= 0, then problem (2.1) has a solution in Ω.

Dealing with Eq. (2.1), we consider now the special form of the
Carathéodory function F (t, u, u′) = f(u)u′ + h(t, u) and the following result
holds.

Theorem 2.2. Let f : R → R be a continuous function. Let h : [0, T ] × R → R

be a Carathéodory function satisfying (AI
1) and the Villari’s condition at −∞

with δ = 1. Suppose there exists β ∈ D which is a strict upper solution for
Eq. (2.1). Then, (2.1) has at least a T -periodic solution ũ such that ũ < β.
Moreover, there exist R0 ≥ d0 and K1 > 0, such that for each R > R0 and
K > K1, we have

dLS(Id − G,Ω, 0) = −1

for Ω = ΩI(R, β,K) := {u ∈ C1
T : −R < u(t) < β(t), ∀ t ∈ [0, T ], ‖u′‖∞ < K}.

Proof. First of all, we introduce the truncated function

ĥ(t, u) :=

{
h(t, u), if u ≤ β(t),
h(t, β(t)), if u ≥ β(t),

and consider the parameter-dependent equation

(φ(u′))′ + λf(u)u′ + λĥ(t, u) = 0, λ ∈ ]0, 1]. (2.10)

By the assumptions on h, it is easy to prove that ĥ satisfies condition (AI
1).

Then, we can apply Lemma 2.4 and obtain that any T -periodic solution u
to (2.10) with λ ∈ ]0, 1] satisfies max u − min u ≤ K0 and ‖u′‖L1 ≤ K0, for
some constant K0. Let d2 > max{d0, ‖β‖∞}. By Lemma 2.3 we deduce that
max u > −d2 and so min u > −K0 − d2 =: −R0.

We claim that, for any T -periodic solution u to (2.10) with λ ∈ ]0, 1], there
exists t̂ ∈ [0, T ] such that u(t̂) < β(t̂). Indeed, if by contradiction u(t) ≥ β(t)
for all t ∈ [0, T ], then u is a T -periodic solution to

(φ(u′))′ + λf(u)u′ + λh(t, β(t)) = 0, λ ∈ ]0, 1].

By an integration, we have
∫ T

0
h(t, β(t)) dt = 0. The strict upper solution β is

T -periodic and satisfies (2.4), then we obtain
∫ T

0
h(t, β(t)) dt < 0, a contradic-

tion. Therefore min u < ‖β‖∞ and so max u < ‖β‖∞ + K0 < R0.
An application of Lemma 2.4 in the framework of (2.10) (with �1 = −R0,

�2 := ‖β‖∞+K0) guarantees the existence of a constant K̂0 such that ‖u′‖∞ ≤
K̂0, for any T -periodic solution u to (2.10) with λ ∈ ]0, 1].

We deduce that the Leray–Schauder degree dLS(Id − Ĝ,Γ, 0) is well-
defined on any open and bounded set

Γ :=
{
u ∈ C1

T : − R < u(t) < C, ∀ t ∈ [0, T ], ‖u′‖∞ < K̂}
for any R > R0, C ≥ ‖β‖∞ + K0 and K̂ > K̂0.
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Now we introduce the average scalar map ĥ# : R → R, defined by
ĥ#(ξ) := 1

T

∫ T

0
ĥ(t, ξ) dt, for ξ ∈ R. We notice that ĥ#(−R) > 0, by the

Villari’s condition at −∞, and ĥ#(c) < 0, taking c ≥ ‖β‖∞. As a consequence
of Theorem 2.1, we have

dLS(Id − Ĝ,Γ, 0) = dB(F̂#,Γ ∩ R, 0) = −1,

and so problem (2.10) with λ = 1 has at least a solution ũ in Γ, more precisely
ũ satisfies −R < ũ(t) < C, for all t ∈ [0, T ], and ‖ũ′‖∞ < K̂.

We claim that ũ(t) ≤ β(t) for all t ∈ [0, T ]. We have already proved that
there exists t∗ ∈ [0, T ] such that ũ(t∗) < β(t∗). Suppose by contradiction that
there exists t∗ ∈ [0, T ] such that ũ(t∗) > β(t∗). Let ]t1, t2[ be the maximal open
interval containing t∗ such that ũ > β. Then ũ(t1) = β(t1) and ũ(t2) = β(t2).
Moreover ũ′(t1) ≥ β′(t1) and ũ′(t2) ≤ β′(t2), and so φ(ũ′(t1)) ≥ φ(β′(t1)) and
φ(ũ′(t2)) ≤ φ(β′(t2)), due to the monotonicity of the homeomorphism φ. Next,
by an integration and recalling the definition of ĥ, we have

0 ≥
∫ t2

t1

[
(φ(ũ′(t)))′ − (φ(β′(t)))′] dt

>

∫ t2

t1

[
f(ũ(t))ũ′(t) − f(β(t))β′(t)

]
dt +

∫ t2

t1

[
ĥ(t, ũ(t)) − ĥ(t, β(t))

]
dt = 0

and a contradiction is found. Then ũ(t) ≤ β(t) for all t ∈ [0, T ]. Hence, ũ is
a solution of (2.1) and, since β is a strict upper solution, ũ(t) < β(t) for all
t ∈ [0, T ].

As a final step, we apply Lemma 2.4 in the framework of (2.1) and we
obtain a constant K1 > 0 such that ‖u′‖∞ ≤ K1, for any T -periodic solution
u to (2.1). We reach the thesis via the excision property of the topological
degree. �

Analogously we obtain the following result.

Theorem 2.3. Let f : R → R be a continuous function. Let h : [0, T ] × R → R

be a Carathéodory function satisfying (AII
1 ) and the Villari’s condition at +∞

with δ = −1. Suppose there exists α ∈ D which is a strict lower solution for
Eq. (2.1). Then, (2.1) has at least a T -periodic solution ũ such that ũ > α.
Moreover, there exist R0 ≥ d0 and K1 > 0, such that for each R > R0 and
K > K1, we have

dLS(Id − G,Ω, 0) = −1

for Ω = ΩII(R,α,K) := {u ∈ C1
T : α(t) < u(t) < R, ∀ t ∈ [0, T ], ‖u′‖∞ < K}.

Remark 2.1. Assuming (A0) and given β ∈ D an upper solution to (2.1) (or
in other words satisfying the weaker form of (2.4)), one can still prove the
existence of a T -periodic solution ũ with ũ ≤ β under the weaker inequality
in (2.2), namely

∫ T

0
h(t, u(t)) dt ≥ 0 for each u ≤ −c0. To this purpose, we

introduce the auxiliary function

hε(t, u) := h(t, u) + ε min{1,max{−1,−u − ‖β‖∞ − 1}}, for ε > 0.
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Now β becomes a strict upper solution for the modified equation (φ(u′))′ +
f(u)u′ + hε(t, u) = 0 (for each ε > 0). Moreover, the Villari’s condition holds
in the original strict form (for u ≤ −d0 with d0 > max{c0, ‖β‖∞ + 1}). It is
easy to check that Theorem 2.2 can be applied to obtain the existence of a T -
periodic solution ũε to (φ(u′))′+f(u)u′+hε(t, u) = 0 such that −R0 < ũε ≤ β.
The constants R0 and K1 can be chosen uniformly with respect to ε due to
particular form of the (bounded) perturbation. An application of Ascoli–Arzelà
theorem leads to the existence of a solution ũ for (2.1). An analogous weaker
formulation of Theorem 2.3 holds too. �

3. Main results

In this section we present our main results concerning T -periodic solutions to
the parameter-dependent equation

(φ(u′))′ + f(u)u′ + g(t, u) = s. (Es)

Along the section, we assume that φ : R → R is an increasing home-
omorphism with φ(0) = 0, the map f : R → R is continuous, the function
g : [0, T ] × R → R satisfies Carathéodory conditions, and s ∈ R. Furthermore,
we introduce the following condition.
(H0) For all t0 ∈ [0, T ], u0 ∈ R and ε > 0, there exists δ > 0 such that if

|t − t0| < δ, |u − u0| < δ, then |g(t, u) − g(t, u0)| < ε for a.e. t.
In the first result, the following hypotheses will be considered as well.
(HI

1) There exists γ0 ∈ L1([0, T ],R+) such that g(t, u) ≥ −γ0(t), for all u ∈ R

and a.e. t ∈ [0, T ].
(HI

2) There exist u0, g0 ∈ R such that g(t, u0) ≤ g0 for a.e. t ∈ [0, T ].
(HI

3) There exist σ > max{0, g0} and d > 0 such that 1
T

∫ T

0
g(t, u(t)) dt > σ

for each u ∈ C1
T such that u(t) ≤ −d for all t ∈ [0, T ].

(HI
4) There exist σ > max{0, g0} and d > 0 such that 1

T

∫ T

0
g(t, u(t)) dt > σ

for each u ∈ C1
T such that u(t) ≥ d for all t ∈ [0, T ].

We are now in position to state and prove our first main result.

Theorem 3.1. Assume (H0), (HI
1), (HI

2) and (HI
3) and let

σ∗ := sup
{
σ ∈ ]g0,+∞[ : (HI

3) is satisfied
}
. (3.1)

Then, there exists s0 ∈ ]−∞, σ∗[ such that:
• for s0 < s < σ∗, equation (Es) has at least one T -periodic solution;
• for s < s0, equation (Es) has no T -periodic solutions.

Moreover, if (HI
4) holds, then for

σ∗∗ := sup
{
σ ∈ ]g0, σ

∗] : (HI
4) is satisfied

}

it follows that:
• for s = s0, equation (Es) has at least one T -periodic solution;
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• for s0 < s < σ∗∗, equation (Es) has at least two T -periodic solutions.

Proof. We split the proof into two steps. In the first one, we prove that there
are no solutions to (Es) if the parameter s is sufficiently small. Moreover,
we show that the set of the parameters s for which (Es) has at least one T -
periodic solution is an interval. In the second one, we discuss the existence
and the multiplicity of solutions to (Es) in dependence of the parameter s. We
follow the approach in [8], by adapting also some arguments from [25]. We
consider hs(t, u) := g(t, u) − s to deal with an equation of the form (2.1).
Step 1. If u is a T -periodic solution to (Es), then we have 1

T

∫ T

0
g(t, u(t)) dt = s,

taking the average of the equation on [0, T ]. Hence, from condition (HI
1), it

follows that equation (Es) has no T -periodic solutions for

s < s# := − 1
T

∫ T

0

γ0(t) dt. (3.2)

It is worth noting that assumption (H0) implies that the function hs

satisfies (A0). For each s > g0, the constant function β ≡ u0 is a strict upper
solution to (Es). Indeed, we observe that

(φ(β′(t)))′ + f(β(t))β′(t) + hs(t, β(t)) = g(t, u0) − s ≤ g0 − s < 0

and so, by Lemma 2.2 we have the claim.
Let σ1 satisfying assumption (HI

3) so that the Villari’s condition at −∞
with δ = 1 holds. Therefore, we are in position to apply Theorem 2.2 and we
obtain the existence of at least one T -periodic solution u of (Es) for s = σ1

with u < u0.
We claim now that if w is a T -periodic solution to (Es) for some s =

σ̃ < σ1, then (Es) has a T -periodic solution for each s ∈ [σ̃, σ1]. Indeed, let
s ∈ ]σ̃, σ1[, then by applying Lemma 2.2, we notice that w is a strict upper
solution to (Es), since

(φ(w′(t)))′ + f(w(t))w′(t) + g(t, w(t)) − s = σ̃ − s < 0.

Moreover, as observed above, for σ ∈ [σ̃, σ1], assumption (HI
3) implies again

the Villari’s condition at −∞ with δ = 1. In this manner, by Theorem 2.2
there exists at least one T -periodic solution u of (Es) for s = σ with u < w.

Recalling (3.2), we have deduced that the set of the parameters s ≤ σ1

for which equation (Es) has T -periodic solutions is an interval bounded from
below (by s#). Let

s0 := inf
{
s ∈ R : (Es) has at least one T -periodic solution

}
.

By the arbitrary choice of σ1 and the definition of σ∗, we conclude that there
exists at least a T -periodic solution to (Es) for each s ∈ ]s0, σ

∗[.
Step 2. Let Ns the Nemytskii operator associated with f(u)u′+hs(t, u), namely
(Nsu)(t) := f(u(t))u′(t) + hs(t, u(t)), u ∈ X. Defining

Gλ,su := Pu + λQNsu + λKNsu, u ∈ X, λ ∈ ]0, 1].

we obtain that problem (2.9) is equivalent to u = Gλ,su.
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Let σ1 satisfy assumptions (HI
3) and (HI

4). We claim that there exists
a positive constant Λ = Λ(σ1) such that for each s ≤ σ1 any solution of
u = Gλ,su, with 0 < λ ≤ 1, satisfies ‖u‖∞ < Λ.

An application of Lemma 2.3 ensures that max u > −d and minu < d,
for any possible T -periodic solution u to

(φ(u′(t)))′ + λf(u(t))u′(t) + λhs(t, u(t)) = 0, λ ∈ ]0, 1]. (3.3)

Moreover, by (HI
1) and s ≤ σ1, it follows that hs(t, u) ≥ −γ0(t) − σ1, for

a.e. t ∈ [0, T ]. Now we apply Lemma 2.4 with γ(t) := γ0(t)+ |σ1|, and so there
exists a positive constant K0 = K0(σ1) such that max u−min u ≤ K0, for any
possible T -periodic solution u to (3.3). Thus the claim follows, since by the
above inequalities, we have that ‖u‖∞ < Λ(σ1) := K0(σ1) + d.

Let us fix now a constant σ2 < s#. Let also ρg be a non-negative L1-
function such that |hs(t, u)| ≤ ρg(t) + max{σ1, |σ2|}, for a.e. t ∈ [0, T ], for
all s ∈ [σ2, σ1], for all u ∈ [−Λ(σ1),Λ(σ1)]. From Lemma 2.4 there exists a
constant K1 = K1(σ1, σ2) > 0 such that, for each s ∈ [σ2, σ1], any solution of
u = Gλ,su with 0 < λ ≤ 1 satisfies ‖u′‖∞ < K1.

By considering the homotopic parameter s ∈ [σ2, σ1] and defining

Ω1 = Ω1(R0, R1) :=
{
u ∈ C1

T : ‖u‖∞ < R0, ‖u′‖∞ < R1

}
,

we obtain that

dLS(Id − G1,σ1 ,Ω1, 0)=dLS(Id − G1,σ2 ,Ω1, 0)=0, ∀R0≥Λ(σ1), ∀R1≥K1.

(3.4)

From the conclusions achieved in Step 1, (Es) has a T -periodic solution
for every s ∈ ]s0, σ

∗∗[ ⊆ ]s0, σ
∗[.

Let ũ1 be a T -periodic solution to (Es) for some s = σ̃1 ∈ ]s0, σ
∗∗[. Let us

fix s ∈ ]σ̃1, σ
∗∗[ and claim that a second solution to (Es) exists. Clearly, since

s > σ̃1, it follows that ũ1 is a strict upper solution to (Es).
By the validity of the Villari’s condition at −∞ with δ = 1 and an

application of Theorem 2.2 we have

dLS(Id − G1,s,ΩI(R0, w,R1), 0) = −1, (3.5)

where R0 ≥ Λ(σ1) + 1 and R1 ≥ K1.
Now, from (3.4), (3.5) and ΩI(R0, w,R1) ⊆ Ω1, we obtain that there

exists also a second solution to (Es) contained in Ω1 \ ΩI(R0, w,R1), via the
additivity property of the topological degree.

We conclude the proof by showing that for s = s0 there is at least one
T -periodic solution.

Let us fix σ1, σ2 with σ2 < s0 < σ1 < σ∗∗. Let (sn)n ⊆ ]s0, σ1] be a
decreasing sequence with sn → s0. By the above estimates, for each n there
exists at least one T -periodic solution wn to

(φ(w′
n(t)))′ + f(wn(t))w′

n(t) + g(t, wn(t)) = sn

with ‖wn‖∞ ≤ Λ(σ1) and ‖w′
n‖∞ ≤ K1(σ1, σ2). Passing to the limit as n → ∞

and applying Ascoli–Arzelà theorem, we achieve the existence of at least one
T -periodic solution to (Es) for s = s0, concluding the proof. �
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The following hypotheses will be assumed in the next result.

(HII
1 ) There exists γ0 ∈ L1([0, T ],R+) such that g(t, u) ≤ γ0(t), for all u ∈ R

and a.e. t ∈ [0, T ].
(HII

2 ) There exist u0, g0 ∈ R such that g(t, u0) ≥ g0 for a.e. t ∈ [0, T ].
(HII

3 ) There exist ν < min{0, g0} and d > 0 such that 1
T

∫ T

0
g(t, u(t)) dt < ν

for each u ∈ C1
T such that u(t) ≤ −d for all t ∈ [0, T ].

(HII
4 ) There exist ν < min{0, g0} and d > 0 such that 1

T

∫ T

0
g(t, u(t)) dt < ν

for each u ∈ C1
T such that u(t) ≥ d for all t ∈ [0, T ].

Our second main result is the following, which can be viewed as a “dual”
version of Theorem 3.1.

Theorem 3.2. Assume (H0), (HII
1 ), (HII

2 ) and (HII
4 ) and let

ν∗ := inf
{
ν ∈ ]−∞, g0[ : (HII

4 ) is satisfied
}
.

Then, there exists s0 ∈ ]ν∗,+∞[ such that:

• for ν∗ < s < s0, equation (Es) has at least one T -periodic solution;
• for s > s0, equation (Es) has no T -periodic solutions.

Moreover, if (HII
3 ) holds, then for

ν∗∗ := sup
{
ν ∈ [ν∗, g0[ : (HII

3 ) is satisfied
}

it follows that:

• for s = s0, equation (Es) has at least one T -periodic solution;
• for ν∗∗ < s < s0, equation (Es) has at least two T -periodic solutions.

Proof. As in the proof of Lemma 2.5, the change of variable x := −u transforms
(Es) to

(φ̃(x′))′ + f̃(x)x′ + g̃(t, x) = −s, (3.6)

where φ̃(ξ) = −φ(−ξ), f̃(ξ) = f(−ξ), and g̃(t, ξ) = −g(t,−ξ). Then we apply
Theorem 3.1 to the T -periodic problem associated with (3.6). Precisely, there
exists s̃0 ∈ ]−∞, σ∗[ such that Eq. (3.6) has: no T -periodic solutions, for s < s̃0;
at least one T -periodic solution, for s = s̃0; at least one T -periodic solution,
for s̃0 < s < σ∗; at least two T -periodic solutions, for s̃0 < s < σ∗∗ ≤ σ∗.
Defining s0 := −s̃0 and observing that ν∗ = −σ∗ and ν∗∗ = −σ∗∗, the thesis
follows. �

Remark 3.1. We stress that conditions (HI
2) and (HII

2 ) ensure the existence of a
strict upper/lower solution to (Es), respectively, which is given by the constant
function u0. In place of those conditions, one can assume the following.

(H�
2 ) There exist a function u0 ∈ D and g0 ∈ R such that

(φ(u′
0))

′ + f(u0)u′
0 + g(t, u0) = g0.

Indeed, by assuming condition (H�
2 ), we immediately have the existence of a

T -periodic solution u0 to (Es) for s = g0, which in turns is a strict upper/lower
to (Es) for s > g0 and for s < g0, respectively. �
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We conclude the section by proving that (H�
2 ) holds for semi-bounded

nonlinearities g (see Proposition 3.2).
As a first step, recalling the definitions of the Banach spaces Z and D,

and of the projector Q given in Sect. 2.2, we introduce the following subspaces

Z̃ :=
{
w ∈ Z : Qz = 0}, D̃ :=

{

u ∈ D :
∫ T

0

u(t) dt = 0
}

.

We state the following result, which is a minor variant of [15, Lemma 2.1],
where the operator K̃ in our context takes the form K̃ = K − QK (with the
notation introduced in Sect. 2.2).

Lemma 3.1. For every w ∈ Z̃ there exists unique u ∈ D̃ such that

(φ(u′))′ = w. (3.7)

Furthermore, let K̃ : Z̃ → D̃ be the operator which associates to w the unique
solution u to (3.7). Then, K̃ is continuous, maps bounded sets on bounded sets,
and sends equi-integrable sets into relatively compact sets.

As a second step, for u ∈ D let ū := 1
T

∫ T

0
u(t) dt. Then, we have that

u = ū + ũ, with ũ ∈ D̃. We deal now with the problem
⎧
⎨

⎩
(φ(ũ′))′ = λ

(

F (t, ū + ũ, ũ′) − 1
T

∫ T

0

F (ξ, ū + ũ(ξ), ũ′(ξ)) dξ

)

,

ũ ∈ D̃, λ ∈ [0, 1],
(3.8)

which can be equivalently written as a fixed point problem of the form

ũ = Ñ (ū, ũ;λ) := K̃(λF(ū + ũ)), ũ ∈ D̃, λ ∈ [0, 1],

where (Fu)(t) = F (t, u(t), u′(t)) − QF (·, u, u′)(t), for t ∈ [0, T ]. In this setting
the following result adapted from [21] holds (see also [1,11,18]).

Lemma 3.2. Suppose that there exists ū0 ∈ R such that for ū = ū0 the set of
solutions ũ to (3.8) with λ ∈ [0, 1] is bounded. Moreover, assume that for any
M > 0 there exists M ′ > 0 such that if |ū| ≤ M then ‖ũ‖C1 ≤ M ′, where
(ū, ũ) is a solution pair to (3.8) for λ = 1. Then, there exists a closed and
connected set C ⊆ R×C1

T of solutions pairs (ū, ũ) to (3.8) for λ = 1 such that
{ū ∈ R : (ū, ũ) ∈ C } = R.

As a third step, we present an application of Lemma 3.2 for problem
⎧
⎨

⎩
(φ(ũ′))′ + f(ū + ũ)ũ′ + λg(t, ū + ũ) − λ

T

∫ T

0

g(ξ, ū + ũ(ξ)) dξ = 0,

ũ ∈ D̃, λ ∈ [0, 1].
(3.9)

Proposition 3.1. Assume that there exists a function ρ ∈ L1([0, T ],R+) such
that |g(t, u)| ≤ ρ(t) for a.e. t ∈ [0, T ] and for all u ∈ R. Then, the following
results hold.

(i) There exists K = K(φ, ρ) > 0 such that any solution pair (ū, ũ) to (3.9)
satisfies ‖ũ′‖L1 ≤ K and ‖ũ‖∞ ≤ K.
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(ii) For any M > 0 there exists M ′ = M ′(φ, f, ρ) > 0 such that if |ū| ≤ M
then ‖ũ‖C1 ≤ M ′, where (ū, ũ) is a solution pair to (3.9) for λ = 1.

Proof. Let λ ∈ [0, 1] and let (ū, ũ) be a solution pair to (3.9). We proceed
similarly as in the proof of Lemma 2.4. Multiplying (3.9) by ũ and integrating
on [0, T ], we obtain

∫ T

0

(φ(ũ′(ξ)))′ũ(ξ) dξ ≤ ‖ρ‖L1‖ũ‖∞.

We notice that for every b > 0 there exists Kb > 0 such that φ(ξ)ξ ≥ b|ξ|−Kb,
for every ξ ∈ R. Hence, via an integration by parts, it follows that

∫ T

0

(φ(ũ′(ξ)))′ũ(ξ) dξ =
∫ T

0

φ(ũ′(ξ))ũ′(ξ) dξ

≥
∫ T

0

(
b|ũ′(ξ)| − Kb

)
dξ = b‖ũ′‖L1 − KbT.

Finally, we obtain

b‖ũ′‖L1 ≤ ‖ρ‖L1‖ũ‖∞ + KbT ≤ ‖ρ‖L1‖ũ′‖L1 + KbT.

Then, taking b > ‖ρ‖L1 and K = K(φ, ρ) := KbT/(b − ‖ρ‖L1), we have
‖ũ′‖L1 ≤ K and so ‖ũ‖∞ ≤ K. Hence, (i) is proved.

Let (ū, ũ) be a solution pair to (3.9) for λ = 1. Let M > 0 and suppose
that |ū| ≤ M . By the assumptions on f and g, and the above remarks, we have
that f(ū + ũ)ũ′ + g(t, ū + ũ) − 1

T

∫ T

0
g(ξ, ū + ũ(ξ)) dξ is bounded in L1. Next,

proceeding as in the last step of the proof of Lemma 2.4, we have ‖ũ′‖∞ ≤ K1

and so, from (i), ‖ũ‖C1 ≤ M ′ := K + K1. The proof of (ii) is completed. �

In the next proposition we combine the results of Proposition 3.1 with
an argument exploited in [5].

Proposition 3.2. Assume that there exists a function ρ ∈ L1([0, T ],R+) such
that |g(t, u)| ≤ ρ(t) for a.e. t ∈ [0, T ] and for all u ≥ 0 (or for all u ≤ 0,
respectively). Then, for every d > 0 there exists g0 ∈ R such that equation (Es)
for s = g0 has a T -periodic solution u0 with u0(t) ≥ d for all t ∈ [0, T ] (or
with u0(t) ≤ −d for all t ∈ [0, T ], respectively).

Proof. Let us suppose that |g(t, u)| ≤ ρ(t) for a.e. t ∈ [0, T ] and for all u ≥ 0.
Let us define the nonlinearity ĝ : [0, T ] × R → R as follows

ĝ(t, u) :=

{
g(t, 0), if u ≤ 0,

g(t, u), if u ≥ 0.

We notice that |ĝ(t, u)| ≤ ρ(t) for a.e. t ∈ [0, T ] and for all u ∈ R. Let us
consider the equation

(φ(u′))′ + f(u)u′ + ĝ(t, u) = s. (Ês)
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As a direct application of Lemma 3.2 and Proposition 3.1, we obtain that
there exists a continuum C ⊆ R× D̃ of solution pairs (ū, ũ) to (3.9) for λ = 1
such that {ū ∈ R : (ū, ũ) ∈ C } = R. As a consequence, for every ū ∈ R there
exists a solution ũ ∈ D̃ to (3.9) for λ = 1 and satisfying conditions (i) and (ii).
Let ū0 ≥ d + K and let ũ0 be the corresponding solution to (3.9) for λ = 1.
Let us define u0 := ū0 + ũ0. We notice that u0 is a T -periodic solution to (Ês)
for s = g0 := 1

T

∫ T

0
ĝ(t, u0(t)) dt. Moreover, u0(t) ≥ d + K − ‖ũ0‖∞ > d, for all

t ∈ [0, T ]. Then u0 is a T -periodic solution to (Es) for s = g0 with u0(t) ≥ d,
for all t ∈ [0, T ].

If we assume that |g(t, u)| ≤ ρ(t) for a.e. t ∈ [0, T ] and for all u ≤ 0, one
can proceed in a similar manner. The theorem is thus proved. �

4. Applications

In this section, we present two consequences of the theorems illustrated in
Sect. 3. More precisely, first we show some results in the framework of T -
periodic forced Liénard-type equations for which theorems illustrated in the
introduction are straightforward corollaries. Secondly, we analyse Neumann
problems in the framework of radially symmetric solutions to partial differen-
tial equations.

4.1. Weighted periodic problems

We deal with the T -periodic forced Liénard-type equation

(φ(u′))′ + f(u)u′ + a(t)q(u) = s + e(t), (WE s)

where s ∈ R is a parameter, φ : R → R is an increasing homeomorphism
such that φ(0) = 0, the functions f, q : R → R are continuous. We also assume
a ∈ L∞(0, T ) and e ∈ L1(0, T ). Moreover, we suppose a(t) ≥ 0 for a.e. t ∈ [0, T ]
with ā := 1

T

∫ T

0
a(t) dt > 0. When the limits of the continuous function q at

±∞ exist, we set

lim
u→−∞ q(u) = ω−, lim

u→+∞ q(u) = ω+. (4.1)

In the sequel we apply the general results achieved in Sect. 3 to the
broadest class of nonlinear terms q. In order to do this, we observe that it
is not restrictive to assume that ē := 1

T

∫ T

0
e(t) dt = 0, and, moreover, that

min{ω−, ω+} > 0, if q is bounded from below, or that max{ω−, ω+} < 0, if
q is bounded from above. Indeed, if necessary, one can include in the forcing
term e(t) the function a(t)(− inf q + ε) (or a(t)(− sup q − ε), respectively) for
some ε > 0, and, next, add the mean value ē in the parameter s.

We are now in position to present some corollaries of Theorems 3.1 and 3.2
and their variants. In more detail, we are interested in applications which
always involve (AP) or (BM) alternatives, where the existence of at least two
T -periodic solutions to (WE s) is considered. Beside these results, we warn that
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even partial alternatives, concerning only the existence of at least one or non-
existence of T -periodic solutions, could be performed within our framework.

For nonlinearities q bounded from below, the following result holds true.

Theorem 4.1. Assume that there exists a number u0 ∈ R such that

0 ≤ q(u0) < min{ω−, ω+}
and

ā min{ω−, ω+} > ‖a‖∞q(u0) + ‖e−‖∞. (4.2)

Then, there exists s0 ∈ ]−∞, āω−[ such that:

• for s < s0, equation (WE s) has no T -periodic solutions;
• for s = s0, equation (WE s) has at least one T -periodic solution;
• for s0 < s < āω−, equation (WE s) has at least one T -periodic solution;
• for s0 < s < ā min{ω−, ω+}, equation (WE s) has at least two T -periodic

solutions.

Proof. We apply Theorem 3.1 for g(t, u) := a(t)q(u) − e(t). We notice that,
since q is continuous and a ∈ L∞, condition (H0) is satisfied. Moreover, since
q(u0) < min{ω−, ω+}, we obtain that q0 := min q ∈ R is well defined. Then,
defining γ0 as the negative part of a(t)q0 −e(t), condition (HI

1) holds. Further-
more, for g0 = ‖a‖∞q(u0) + ‖e−‖∞, (HI

2) is satisfied too.
Lastly, we need that both Villari’s type conditions (HI

3) and (HI
4) are

satisfied as well. Let σ ∈ ]g0, āω−[ and notice that the interval is well defined
and non-empty, since by hypothesis we have g0 < āω−. From (4.1) it follows
that there exists κσ > 0 such that āq(ξ) > σ, for all ξ ≤ −κσ. Let d = κσ and
let u ∈ C1

T be such that u(t) ≤ −d for every t ∈ [0, T ]. From the generalized
mean value theorem, there exists t̃ ∈ [0, T ] such that the following holds

1
T

∫ T

0

g(t, u(t)) dt =
1
T

∫ T

0

a(t)q(u(t)) dt = āq(u(t̃)) > σ

and so (HI
3) is satisfied. By the arbitrary choice of σ we have that (HI

3) is
satisfied for every σ ∈ ]g0, āω−[. Recalling the definition of σ∗ in (3.1), we
claim that σ∗ = āω−. Indeed, if ω− = +∞, then the claim is straightforward
verified. If ω− < +∞, the claim is reached by noticing that (HI

3) is not true for
σ > āω−. Analogously, one can prove that (HI

4) holds for every σ ∈ ]g0, σ
∗∗[,

with σ∗∗ = ā min{ω−, ω+}. The thesis follows. �

Applying the variant of Theorem 3.1 introduced in Remark 3.1 we have
the following result.

Theorem 4.2. Assume that there exists D > 0 such that

q(u) < ω−, for u ≤ −D, and q(u) < ω+, for u ≥ D. (4.3)

Moreover, suppose that min{ω−, ω+} < +∞. Then, the conclusion of Theo-
rem 4.1 holds.
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Proof. Let us suppose that min{ω−, ω+} = ω− < +∞. We apply Theorem 3.1
for g(t, u) := a(t)q(u) − e(t). The conditions (H0) and (HI

1) are verified as
in the proof of Theorem 4.1. Furthermore, an application of Proposition 3.2
ensures that condition (H�

2 ) is satisfied for some g0 ∈ R and u0 ∈ C1
T . Indeed,

since ω− < +∞, it follows that there exist g0 ∈ R and u0 ∈ C1
T such that

u0(t) ≤ −D for every t ∈ [0, T ], with D > 0 as in the statement. Then, on the
light of Remark 3.1, one has only to verify the Villari’s type conditions (HI

3)
and (HI

4). In order to do this, we first observe that

g0 =
1
T

∫ T

0

a(t)q(u0(t)) dt < āω− ≤ āω+.

Then, as in the proof of Theorem 4.1, we have that (HI
3) is satisfied for every

σ ∈ ]g0, āω−[ and (HI
4) is verified too for every σ ∈ ]g0, ā min{ω−, ω+}[.

On the other hand, if we suppose that min{ω−, ω+} = ω+ < +∞, we
achieve the thesis in a similar way. �

Analogously, the following results for nonlinearities q bounded from above
can be obtained as an application of Theorem 3.2 (cf. also Remark 3.1).

Theorem 4.3. Assume that there exists a number u0 ∈ R such that

0 ≥ q(u0) > max{ω+, ω−}
and

āmax{ω−, ω+} < ‖a‖∞q(u0) − ‖e+‖∞. (4.4)

Then, there exists s0 ∈ ]āω−,+∞[ such that:
• for s > s0, equation (WE s) has no T -periodic solutions;
• for s = s0, equation (WE s) has at least one T -periodic solution;
• for āω− < s < s0, equation (WE s) has at least one T -periodic solution;
• for āmax{ω−, ω+} < s < s0, equation (WE s) has at least two T -periodic

solutions.

Theorem 4.4. Assume that there exists D > 0 such that

q(u) > ω−, for u ≤ −D, and q(u) > ω+, for u ≥ D. (4.5)

Moreover, suppose that max{ω−, ω+} > −∞. Then, the conclusion of Theo-
rem 4.3 holds.

We conclude the discussion concerning the T -periodic forced Liénard-type
equation (WE s) by presenting some examples. In this manner, we highlight
the potentiality of the results proposed in this paper that, acting in a unified
framework, lead to a generalization of some classical theorems. Furthermore,
our approach allows us to treat more general situations by considering several
types of nonlinearities (cf. Table 1).

Example 4.1. Let us consider q : R → R defined as q(u) := |u|. We notice
that ω± = +∞. This nonlinearity is of type I and characterizes the classical
Ambrosetti–Prodi periodic problem. An application of Theorem 4.1 ensures
the existence of s0 ∈ R such that (WE s) has zero, at least one or at least two
T -periodic solutions according to s < s0, s = s0 or s > s0.
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Table 1. Illustration of the graphs of the nonlinearities q
considered in the examples presented in Sect. 4.1
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Example 4.2. Let us consider q : R → R defined as q(u) := e−u2
. We notice

that q is a Gaussian function with ω± = 0, so that is of type II, and corresponds
to the classical problem by Ward. An application of Theorem 4.4 ensures the
existence of s0 ∈ R such that (WE s) has zero, at least one or at least two
T -periodic solutions according to s > s0, s = s0 or 0 < s < s0. Moreover, by
an integration on a period, one can observe that for s ≤ 0 equation (WE s) has
no T -periodic solutions.

We notice that, if we consider q(u) := e−u2
+ κ with κ 	= 0, then the

(BM) alternative holds without assuming a uniform condition in the limits.
More precisely, there are zero, at least one or at least two T -periodic solutions
according to s > s0, s = s0 or āκ < s < s0. In the same context, one could be
also driven to apply Theorem 4.3. However, this an example of the difference
between these results. Indeed, if for example κ = −1, then Theorem 4.3 ensures
the existence of s0 ∈ ]−ā,+∞[ such that (WE s) satisfies the above alternative
under the additional hyphotesis ā > ‖e+‖∞ (cf. condition (4.4)).

Example 4.3. Let us consider q : R → R defined as

q(u) :=
(eu + 1)u2

u2 + 1
,

where ω− = 1 and ω+ = +∞. An application of Theorem 4.2 guarantees the
existence of s0 ∈ R such that (WE s) has zero, at least one or at least two
T -periodic solutions according to s < s0, s = s0 or s0 ≤ s < āω−. On the
other hand, since ω− ∈ ]0,+∞], whether the terms a, e satisfy the additional
condition (4.2), the same alternative can be proved via Theorem 4.1.

Example 4.4. Let us consider q : R → R defined as q(u) := u e−u2
, where ω± =

0. We notice that either condition (4.3) or condition (4.5) are not satisfied,
so that, both Theorems 4.2 and 4.4 cannot be applied in such a framework.
However, one can recover an (AP) alternative through Theorem 4.1 for the
auxiliary equation (φ(u′))′ + f(u)u′ + a(t)q1(u) = � + e1(t), where q1(u) =
q(u) − min q, e1(t) = e(t) − ē − (a(t) − ā)min q, and � = s + ē − ā min q. In
this way a, e1 satisfy (4.2). On the other hand, in a similar manner, one can
recover a (BM) alternative through Theorem 4.3.

Example 4.5. Let us consider q : R → R defined as

q(u) :=
(e−u2

+ 2)(u6 − u4 − u2 + 1)
u6 + 1

+ 5e−u2 − 3,

where ω± = −1. We notice that condition (4.3) is satisfied, so that from
Theorem 4.2 we can prove that there exists s0 < −ā such that (WE s) has
zero, at least one or at least two T -periodic solutions according to s < s0,
s = s0 or s0 < s < −ā. On the other hand, if condition (4.4) is satisfied too,
then an application of Theorem 4.3 gives the existence of s1 > −ā such that
(WE s) has zero, at least one or at least two T -periodic solutions according to
s > s1, s = s1 or −ā < s < s1. In this manner, a combination of the classical
(AP) and (BM) alternatives hold simultaneously, leading to an interesting
phenomenon of 0 1 2 - 2 1 0 solutions to the periodic problem associated with
(WE s).
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Example 4.6. Let us consider q : R → R defined as q(u) := u2n+1, with n ∈
N, or q(u) := arctan(u). In these cases, q is a non-decreasing function, and
consequently, the above theorems do not apply. However, when the nonlinearity
is bounded, one could achieve the existence of at least a T -periodic solution
for some ranges of the parameter s (cf. [18,21]).

4.2. Radial Neumann problem on annular domains

Let us consider the open annular domain

A :=
{
x ∈ R

N : Ri < |x| < Re

}
, with 0 < Ri < Re,

where | · | denotes the usual Euclidean norm in R
N , with N ≥ 2. In the present

section we study non-existence, existence and multiplicity of (classical) radially
symmetric solutions to the parameter-dependent Neumann problem

⎧
⎨

⎩

∇ · (A(|∇u|)∇u) + G(|x|, u) = s in A,
∂u

∂ν
= 0 on ∂A,

(4.6)

where A : ]0,+∞[ → ]0,+∞[ is a continuous function such that the map
φ(ξ) = A(|ξ|)ξ for ξ 	= 0 and φ(0) = 0 is a homeomorphism on the real
line, G : [Ri, Re] ×R → R is a continuous map, and s ∈ R. In this manner, we
pursue the study started in [24,25] for Neumann problems with local coercive
nonlinearities.

When dealing with radially symmetric solutions to (4.6), one is led to
define r = |x|, v(r) = v(|x|) = u(x), and so to study the problem

{
(rN−1A(|v′|)v′)′ + rN−1G(r, v) = rN−1s,

v′(Ri) = v′(Re) = 0.
(4.7)

We notice that the map ξ �→ A(|ξ|)ξ is an increasing homeomorphism. Hence,
looking at solutions to (4.7), we now present our result in the framework of a
more general problem. Namely, we deal with a Neumann problem of the form

{
(ζ(t)φ(u′))′ + g(t, u(t)) = p(t)s,
u′(b1) = u′(b2) = 0,

(4.8)

where b1 < b2, ζ, p : [b1, b2] → ]0,+∞[ are continuous functions, φ : R → R is
an increasing homeomorphism such that φ(0) = 0, g : [b1, b2]×R → R satisfies
Carathéodory conditions, and s ∈ R.

First of all, let X :=
{
u ∈ C1([b1, b2]) : u′(b1) = u′(b2) = 0

}
be the

Banach space endowed with the norm ‖u‖X := ‖u‖∞ + ‖u′‖∞. Next we define
the completely continuous operator G : X → X as

(Gu)(t) := u(b1)− 1
b2 − b1

∫ b2

b1

h(t, u(t)) dt+
∫ t

b1

φ−1

(

− 1
ζ(t)

∫ s

b1

h(ξ, u(ξ)) dξ

)

ds,

where h(t, u) := g(t, u) − p(t)s. One can easily verify that u is a solution to
problem (4.8) if and only if u is a fixed point of G (cf. [12, Sect. 2]).

In this setting, up to minimal changes in the discussion in Sects. 2 and 3,
all the results presented therein hold for problem (4.8), too.
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Taking into account that
∫

Ω

G(|x|, u(x)) dx = ωN−1

∫ Re

Ri

rN−1G(|r|, u(r)) dr,

where ωN−1 is the area of the unit sphere in R
N (cf. [10, Sect. 2.7]), we

obtain the following theorem for radially symmetric solutions to the Neumann
problem (4.6).

Theorem 4.5. Assume that
(G1) there exists C0 > 0 such that G(|x|, u) ≥ −C0, for all u ∈ R and x ∈ Ω;
(G2) there exists u0, g0 ∈ R such that G(|x|, u0) ≤ g0, for all x ∈ Ω;
(G3) for each σ there exists dσ > 0 such that 1

|Ω|
∫
Ω

G(|x|, u(x)) dx > σ for
each radially symmetric u ∈ C0(Ω) ∩ C1(Ω) with u(x) ≤ −dσ for all
x ∈ Ω;

(G4) for each σ there exists dσ > 0 such that 1
|Ω|

∫
Ω

G(|x|, u(x)) dx > σ for
each radially symmetric u ∈ C0(Ω)∩C1(Ω) with u(x) ≥ dσ for all x ∈ Ω.

Then, there exists s0 ∈ R such that
• for s < s0, problem (4.6) has no radially symmetric solutions;
• for s = s0, problem (4.6) has at least one radially symmetric solution;
• for s > s0, problem (4.6) has at least two radially symmetric solutions.

A direct application of Theorem 4.5 is the following one.

Corollary 4.1. Let a ∈ C([Ri, Re],R+) be such that a(ξ0) > 0 for some ξ0 ∈
[Ri, Re]. Let q ∈ C(R) be such that lim|u|→+∞ q(u) = +∞. Let G(|x|, u) :=
a(|x|)q(u). Then, the conclusion of Theorem 4.5 holds.

5. Final remarks

In this work we have proposed a generalization of the Ambrosetti–Prodi type
results for φ-Laplacian second order equations with periodic boundary condi-
tions, trying to extend and unify different results in the literature. Clearly, due
to the great number of contributions in this area, there are several important
aspects which have not been considered in the present paper. This final sec-
tion is dedicated to report some related topics which could be of interest for a
future investigation.

A first question concerns the choice of the map φ as a global homeo-
morphism of the real line. The case of homeomorphisms φ : I → J, with I, J
open intervals not necessarily equal to R, has also attracted the interest of
the mathematical community. Typical examples in this direction are singular
φ-Laplacians, namely those with bounded domain, and bounded φ-Laplacians,
namely those with bounded image (see [6,17] for this terminology). An impor-
tant representative for the first class is the operator u �→ d

dt

(
u′√

1−u′2

)
which

arises in models where the Newtonian acceleration is replaced by a relativistic
one. The problem of extending our results to the case of singular φ-Laplacians
can be tackled by observing that the main tools exploited in our proofs, namely
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the theory of upper and lower solutions and a version of the coincidence degree
to write problem (2.8) as a fixed point operator equation in a Banach space,
are already developed for singular operators in previous works (see [17] and
the references therein). Thus, in principle, our approach and consequent results
can be adapted to the singular case. On the other hand, it is not clear how to
extend this kind of results to the case of bounded φ-Laplacians, such as the
curvature operator u �→ d

dt

(
u′√

1+u′2

)
, due to the presence of possibly discon-

tinuous solutions (cf. [20]).
One of the main contributions of the present article is to show, follow-

ing also [25], that the Ambrosetti–Prodi phenomenon still occurs when the
nonnegative periodic weight coefficient a(t) in equation (WE s) can vanish on
some open intervals. An interesting problem is the investigation of what hap-
pens when a(t) changes sign. Generally speaking, we should observe that if we
allow a(t) to take also negative values, then the assumptions in our main the-
orems are not satisfied. However, we could partially recover some results using
the stability of the Leray–Schauder degree with respect to small perturbations
of the operators. This approach needs to rewrite (WE s) as

(φ(u′))′ + f(u)u′ + a+(t)q(u) = s + e(t) + a−(t)q(u), (5.1)

where a(t) = a+(t) − a−(t). So that, Eq. (5.1) appears as a perturbation of

(φ(u′))′ + f(u)u′ + a+(t)q(u) = s + e(t) (5.2)

having a nonnegative weight with
∫ T

0
a+(t) dt > 0. We consider the T -periodic

problems associated with (5.1) and (5.2) as equivalent operator equations u −
G(1)

s (u) = 0 and u−G(2)
s (u) = 0, respectively. Then we can apply our estimates

of the degree on suitable open bounded sets of X = C1
T for Eq. (5.2) and hence

for Id − G(2)
s . Given an open bounded set Ω ⊆ X, the same degree values hold

for Id − G(1)
s , provided that ‖a−‖L1 is small enough. As a conclusion, using

a compactness argument, we can produce a result of the following type for
Eq. (5.1).

Proposition 5.1. Let a ∈ L1(0, T ) be such that a+ ∈ L∞(0, T ) with
∫ T

0
a+(t) dt > 0 and suppose ω± = +∞. Let s0 be the constant coming

from Theorem 1.1 applied to Eq. (5.2). Then, for every compact interval
[s1, s2] ⊆ ]s0,+∞[ there exists a constant ε = ε[s1,s2] > 0 such that Eq. (5.1)
has at least two T -periodic solutions for each s ∈ [s1, s2], provided that
‖a−‖L1 < ε.

Analogous versions of Proposition 5.1 can be stated with respect to Theo-
rems 1.2 and 1.3. To our knowledge, obtaining an Ambrosetti–Prodi type result
for the periodic problem associated with (WE s) and involving a general sign-
changing weight is an open problem, even for φ(ξ) = ξ.

A final question concerns the exact number of solutions, which was
obtained in the original work of Ambrosetti–Prodi for a Dirichlet problem
and by Ortega in [22] in the periodic context, for the equation

u′′ + cu′ + q(u) = p(t),
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with c > 0 and p(t) a T -periodic forcing term. In [22, Sect. 4] the stability of
the two T -periodic solutions was studied as well, under suitable conditions on
q′(±∞), proving that one solution is asymptotically stable and the other is
unstable. In the φ-Laplacian framework, Cid and Torres in [6] dealt with the
periodic problem for

(φ(u′))′ + cu′ + q(u) = s + e(t),

and obtained precise results on the stability. In more detail, inspired by a
pendulum-like equation, in [6] the crucial assumptions require to have intervals
where q′ > 0 or q′ < 0. This, in principle, could be useful to treat problems
with more general nonlinear functions q like the ones considered here. Both
the Ambrosetti–Prodi approach and the study of the stability involve a careful
analysis of the linearized equation

(ψ1(t)v′)′ + cv′ + a(t)ψ2(t)v = 0,

where ψ1(t) := φ′(u′
0(t)) and ψ2(t) := q′(u0(t)), for u0(t) a suitable T -periodic

solution of

(φ(u′))′ + cu′ + a(t)q(u) = s + e(t). (5.3)

The linearized form of (WE s) leads to a more complicated equation, thus, the
proof of the exact number of solutions, along with their stability, looks an
interesting but difficult problem.
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