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Abstract. This paper deals with the asymptotic behavior of solutions to
the delayed monostable equation: (∗) ut(t, x) = uxx(t, x)−u(t, x)+g(u(t−
h, x)), x ∈ R, t > 0; here h > 0 and the reaction term g : R+ →
R+ is Lipschitz continuous and has exactly two fixed points (zero and
κ > 0). Under certain condition on the derivative of g at κ (without
assuming classic KPP condition for g) the global stability of fast semi-
wavefronts is proved. Also, when the Lipschitz constant Lg is equal to
g′(0) the stability of all semi-wavefronts (e.g., critical, non-critical and
asymptotically periodic semi-wavefronts) on each interval in the form
(−∞, N ], N ∈ R, to (∗) is established, which includes classic equations
such as the Nicholson’s model.
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1. Main results and discussion

In this work, the main object of study is the equation:

ut(t, x) = uxx(t, x) − u(t, x) + g(u(t − h, x)), x ∈ R, t > 0, (1)

where h > 0 and the nonlinear reaction term g : R+ → R+ is Lipschitz con-
tinuous with Lipschitz constant Lg which satisfies the monostability condition
Lg ≥ g′(0) > 1 and has exactly two fixed points: 0 and κ > 0. The Eq. (1) is
frequently considered to model problems of population dynamics. In this case
g stands for the birth rate function, h is the age when the individual reaches
the sexual maturity and u(t, x) is the adult population at location x and time
t. The diffusion and death rates have been normalized. In this framework is rel-
evant the stability properties of the positive equilibrium κ and the existence of
colonization waves so-called wavefronts (see [2,12,21,28,34,35] and references
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therein). Wavefronts with speed c are non-negative entire bounded solutions
u(t, x) = ψc(x + ct) such that the profile ψc : R → R satisfies ψc(−∞) = 0
and ψc(+∞) = κ. It is well known that when g is monotone and h ≥ 0 then
there exists a positive number c∗ = c∗(h) so-called critical speed or minimal
speed such that (1) has wavefronts if and only if c ≥ c∗ [18,40,43]; wavefronts
with speed c∗ are called critical wavefronts. Moreover, these wavefronts are
monotone and unique modulo translation. The main tool to obtain the sta-
bility and existence of wavefronts is to construct sub and super- solutions by
using monotony arguments.

However, when g is non-monotone the associated semi-flow is non-
monotone in general and wavefronts are replaced by positive bounded solu-
tions u(t, x) = ψc(x + ct) such that ψc(−∞) = 0 and lim infx→+∞ ψc(x) > 0
which are called semi-wavefronts. For g satisfying the subtangency condition
g(u) ≤ g′(0)u, for all u ≥ 0, has been demonstrated the existence of a mini-
mal speed c∗ = c∗(h) for the existence of semi-wavefronts to (1) for all h ≥ 0
(see [37, Theorems 4.5 and 5.4] and [13,43]). Under the Diekmann- Kaper (D-
K, for short) condition Lg = g′(0) (see [11, Theorem 6.4]) Aguerrea, Gomez
and Trofimchuk demonstrated the uniqueness modulo translation of all semi-
wavefronts of (1). In the general case Lg ≥ g′(0) it is necessary to consider the
following characteristic equation

Ec(λ) := λ2 − cλ − 1 + Lg e−λch = 0, (2)

for which it has been showed that there exits a speed c∗ = c∗(Lg) defined as

c∗ = c∗(Lg) := inf{c > 0 : Ec(λ) has a positive root}, (3)

such that Ec has exactly two positive zeros λ1(c) ≤ λ2(c), also λ1(c) = λ2(c)
if and only if c = c∗ (for a more detailed study of (2) see [16, Lemma 22]).
Thus, the authors in [1, Theorem 4] showed that for c ≥ c∗ semi-wavefronts
have the following representation

ψc(z) = Aψc
(−z)jceλ1(c)z + e(λ1(c)+ε)z r(z), (4)

where Aψc
, ε ∈ R+, r ∈ L2(R) ∩ C(R) and jc = 0, 1 with jc = 1 if and only

if Lg = g′(0), moreover, semi-wavefronts are unique (modulo translation) for
all c > c∗ and h ≥ 0 [1, Theorem 8]. We should mention that when Lg in
(2) is replaced by g′(0) the speed c∗ in (3) coincides with the definition of the
so-called linear speed c# and

c# ≤ c∗ ≤ c∗, (5)

(see [37, Theorem 4.5 and Theorem 5.4]), also when g is subtangential then c#
coincides with the critical speed c∗ for the existence of semi-wavefronts (see
[43, Theorem 4.4]). In particular, if g satisfies the D-K condition Lg = g′(0)
then g is subtangential and c∗ = c∗ = c#. One of the main results of this work
is show the stability of semi-wavefronts (with unbounded exponential weights)
for c ≥ c∗(h) for all delay h ≥ 0 (the same conditions for c and h to establish
the uniqueness of semi-wavefronts in [1]).
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In order to overcome the non-monotony of some reaction–diffusion
equations with delay a quasi-monotonicity condition is assumed which usu-
ally requires the monotony of the delayed argument. Indeed, in a pioneer-
ing work, Schaaf [29] considered the following parabolic functional differential
equation

ut(t, x) = uxx(t, x) + f(u(t, x), u(t − h, x)), x ∈ R, t > 0. (6)

Schaaf proved that for a concave nonlinearity f with exactly two equilib-
ria (0 and 1) satisfying a certain positivity condition (see [29, Section 2.1])
and

∂2f(u, v) ≥ 0 for allu, v ∈ R+ (quasi-monotonicity condition) (7)

wavefronts are linearly stable for small delay h [29, Theorem 4.13].
After the pioneering work by Schaaf, a series of other studies appeared

where the KPP condition |g′(u)| ≤ g′(0), for all u ≥ 0, or the concave condition
g′′(u) ≤ 0, for all u ≥ 0, was instrumental for the stability analysis. Among
these studies, we would like to distinguish an important contribution [24] by
Mei, Ou and Zhao where the authors proved the global stability of monotone
wavefronts (critical as well as non-critical ones, see [24, Theorem 2.2]) of the
following non-local equation

ut(t, x) = uxx(t, x) − u(t, x) +
∫
R

K(y)g(u(t − h, x − y))dy x ∈ R, t > 0,

(8)

for monotone and concave g and K a heat kernel; here the perturbations are
taken in weighted Sobolev spaces. At the same time, Lv and Wang [20] proved
the global stability of non-critical wavefronts of (6) for monostable f (with
exactly two equilibria: 0 and κ > 0) satisfying (7) and the concavity con-
dition: ∂ijf(u, v) ≤ 0 (i, j = 1, 2), for all u, v ∈ [0, κ]. The authors in [20]
also study (6) with non-local reaction term (which includes (8), for mono-
tone g) and demonstrated the stability of non-critical monotone wavefronts in
Sobolev spaces with exponential weights; this result can also be obtained by
our approach to (1) even to non-monotone wavefronts, see Remark 17 (for the
non-local equation (8) see our recent work [31]).

With respect to non-monotone wavefronts, we should mention a work of
Wu et al. [41, Theorem 2.4] where the authors take some type non-monotone
g ∈ C2([0, κ],R) (‘crossing monostable’ nonlinearity) satisfying |g′(κ)| < 1
and prove the local stability of wavefronts with speed c for c > 2

√
2(Lg − 1)

and for all h ≥ 0. Additionally, by assuming the KPP condition and |g′(κ)|
sufficiently small they prove the local stability of wavefronts with speed c
for all c > c∗ and h ≥ 0 [41, Theorem 2.6]; here the existence of non-
monotone wavefronts can be deduced, e.g., from [36] and [15]. Our second
result for non-linear stability of wavefronts generalizes these results (see Re-
mark 10). In this regard, for unimodal g (i.e., g has exactly one critical point
which is the absolute maximum point) satisfying the KPP condition and
|g′(κ)| < 1, Lin et al. [19] proved the local stability of non-critical wavefronts
for all h ≥ 0 (monotone or non-monotone) which includes well-known models
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such as Nicholson’s model (see [15,19,33] and references therein) described
by

ut(t, x) = uxx(t, x) − δu(t, x) + ρu(t − h, x)e−u(t−h,x), t > 0, x ∈ R, (9)

where ρ, δ > 0, or the Mackey–Glass model [1,3,19,23,24] given by

ut(t, x) = uxx(t, x) − τ u(t, x) +
abnu(t − h, x)

bn + un(t − h, x)
, t > 0, x ∈ R. (10)

where τ, a, b > 0 and n ∈ Z+. These stability results were stablished in
weighted Sobolev spaces to initial data with a suitable convergence to κ at
x = +∞.

When ρ/δ ∈ (1, e] in (9) wavefronts are monotone and by [24] they (criti-
cal as well as non-critical ones) are globally stable. The authors in [19] proved
the local stability of (monotone and non-monotone) non-critical wavefronts to
(9) when ρ/δ ∈ (e, e2) for all h ≥ 0 and for small delay h when ρ/δ ∈ (1,+∞).
Then, assuming |g′(κ)| < 1, Chern et al. [8, Theorem 2.3] have demonstrated
the local stability of critical wavefronts (monotone or non-monotone) in the
same Sobolev spaces.

Next, for Lipschitz continuous function g satisfying the D-K condition
Lg = g′(0) and |g′(u)| < 1 in some neighborhood of κ, Solar and Trofimchuk
have established the global stability of (monotone or non-monotone) non-
critical wavefronts [33, Corollary 3]. In particular, they obtained the global
stability of non-critical wavefronts for (9) when ρ/δ ∈ (1, e2) for all h ≥ 0.
Here initial data are not required to convergence to κ at x = +∞ as above
mentioned works. Then, in a recent work, for unimodal g ∈ C2[0,+∞) satis-
fying the KPP condition, Mei et al. [22] have generalized the results in [8,19]
for a global perturbation in the same Sobolev spaces.

On the other hand, non-subtangential models have recently attracted a
lot of interest because of their connection to the so-called Allee effect in pop-
ulation dynamics [6,7,10,26]. More precisely, if we only consider as benefit
to species a greater availability of resources then the per capita growth rate
g(u)/u attains its maximum at u = 0, however if animal behavior is cooperative
then individuals obtain benefits for intermediate densities u > 0 (individual
fitness) which are not generated for low densities (u = 0), so that the per
capita growth rate g(u)/u attains its maximum at some u0 > 0. In this case
model is said to have an Allee effect [9, Chapter 1] (since in our case the per
capita growth birth rate g(u)/u is non-decreasing in a neighborhood of u = 0
model is said to have a weak Allee effect). In contrast to subtangential case,
for a model with Allee effect it could occur c∗ > c#, critical wavefronts with
speed c∗ > c# are called pushed wavefronts. In this direction, for monotone g
(necessarily non-subtangential), it has been possible to establish the stability
of pushed wavefronts (see [32] and [42]) as well as that of non-critical wave-
fronts [33, Theorem 1]. These results show that pushed wavefronts are more
attractive than critical wavefronts with speed c∗ = c#, for instance pushed
wavefronts attract (orbitally) to the solution of (1) generated by the Heavi-
side step function while a critical wavefront (which is not a pushed wavefront)
requires a logarithmic correction to attract this solution (see e.g. [12,39] for
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h = 0 and [4] for h > 0). It is important to mention that the problem of the
existence of semi-wavefronts for non-subtangential models is not completely
solved (e.g., see [36, Corollary 4]: of course, in the available literature there
are some partial results on the existence of semi-wavefronts for certain sub-
classes of equations, e.g., see [37, Theorem 2.4]).

Hence, in the above mentioned works, we can find stability results for
Eq. (1) only when g either is monotone or meets the sub-tangency condition.
In this work we study the stability of semi-wavefronts without assuming the
quasi-monotonicity nor the sub-tangency condition on g. Our approach uses
ideas from [33] and a suitable Fourier analysis for partial functional differential
equations. In the particular case when g is unimodal and satisfies the KPP
condition, i.e. Lg = g′(0) and g ∈ C1[0,+∞), our estimates (in different
spaces) are similar than [8,19,22,24] for perturbations of wavefronts, but our
Fourier analysis (for wavefronts and proper semi-wavefronts) is different in
many aspects, for instance by our approach Fourier transforms are estimated
by means of a Halanay inequality on Banach spaces (see Lemma 12) instead
of finite-dimensional spaces while the non-critical case c > c∗ (for wavefronts
and proper semi-wavefronts) does not require Fourier analysis as in [19] (see
Corollary 20 and Remark 17 below). However, approach used in [8,19,22,24]
allows us to obtain stability results of wavefronts on the real line when |g′(κ)| >
1 for small h whenever the initial datum u0(s, x) converges to κ at x = +∞.
In this regard, we obtain a general stability result for semi-wavefronts on each
semi-infinite interval (−∞, N ], N ∈ R, without assume the restriction |g′(κ)| <
1 for all h ≥ 0 (Theorem 3) which also includes critical semi-wavefronts and
asymptotically periodic semi-wavefronts (see, e.g [36, Theorem 3]). This kind
of stability seems to be transversal to another models, indeed in a recent work
[5] Benguria and Solar have stablished the stability of a class of non-monotone
semi-wavefronts for the Hutchinson diffusive equation

ut(t, x) = uxx(t, x) + u(t, x)(1 − u(t − h, x)), t > 0, x ∈ R, (11)

on each semi-infinite interval (−∞, N ].
More precisely, by a suitable Fourier analysis we can show that for c ≥ c∗,

an initial perturbation

u0(s, x + cs) − ψc(x + cs) = eλ(x+cs) r(s, x), for all (s, x) ∈ [−h, 0] × R,

with r ∈ C([−h, 0], L1(R)) and λ satisfying Ec(λ) ≤ 0 [according to definition
(2)], evolves as

u(t, x + ct) − ψc(x + ct) = O(t−1/2eγt), for all t ≥ −h,

uniformly for x + ct ∈ (−∞, N ], N ∈ R and some γ = γ(λ) ≤ 0. Moreover,
γ = 0 if and only if E(λ) = 0, i.e. λ = λ1(c) or λ = λ2(c).

On the other hand, in our second main result we study the convergence
of perturbations of wavefronts on the remaining domain (N,+∞), N ∈ R.
In this case it is necessary to assume the stability condition |g′(κ)| < 1 in
order to establish (without assuming monotonicity or sub-tangency condition
on g) the local stability of wavefronts with c > c∗ on whole the real line
(−∞,+∞) (Corollary 20). Additionally, assuming |g′(u)| < 1 for u in a suitable
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neighborhood of κ we obtain the global stability of wavefronts with c > c∗ on
whole real line (−∞,+∞) (see Theorem 9 below).

In order to obtain these stability results we study the decay of solutions
of the constant coefficient linear equation with delay,

ut(t, x) = uxx(t, x) + mux(t, x) + pu(t, x) + qu(t − h, x + d), x ∈ R, t > 0,

(12)

where the parameters m, p, q y d are real numbers.
For an initial datum u0 ∈ C([−h, 0], L1(R)), let us denote Cu0 :=

sups∈[−h,0] ||u0(s, ·)||L1 .

Theorem 1. Suppose that −p ≥ q ≥ 0 and m, d ∈ R. Let γ ≤ 0 be the only real
solution of the following equation:

γ − p = qe−hγ . (13)

If the initial datum u0 belongs to C([−h, 0];L1(R)) then the solution u(t, x) of
(12) satisfies the estimate:

sup
x∈R

|u(t, x)| < A0
eγt

√
t
, for all t > h, (14)

where A0 = Cu0/2
√

1 + h(γ − p).

We note that in the special case −p = q (which implies γ = 0) an
exponential estimate is no longer available. In some cases, it can be established
that the decay is not faster than that given by (14). For instance, if d = 0 for
the evolution equation (12), the behavior of the solutions in the L1(R) phase
space with an appropriate weight can be specified. In fact, we obtain the exact
behavior which is embodied in Theorem below

Theorem 2. (Asymptotic behavior) Let us consider (12) with m, p ∈ R, q ≥ 0
and d = 0. Let u(t, x) be the solution generated by the initial data u(s, ·) =
eσsu0 where u0 is such that e

m
2 · u0 ∈ L1(R) and σ is the only real solution of

qe−σh = σ +
m2

4
− p, (15)

then

lim
t→∞

√
te−σtu(t, x + o(

√
t)) =

√
1 + hqe−σh

2
√

π
e− m

2 x

∫
R

e
m
2 yu0(y)dy, (16)

for all x ∈ R.

Now, for the study of the stability of semi-wavefronts with speed c , the
following equation should be considered

vt(t, z) = vzz(t, z) − cvz(t, z) − v(t, z) + g(v(t − h, z − ch)), t > 0, z ∈ R.

(17)

For c ≥ c∗ let us fix λc ∈ [λ1(c), λ2(c)] and let us denote by ξc(z) := e−λcz.
Now, the first main result of this article can be set out.
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Theorem 3. (Stability with weight) Assume that c ≥ c∗. Let v0(s, z) and
ψ0(s, z) be two initial data to (17) such that v0, ψ0 ∈ C([−h, 0];L∞(R) ∩
C0,α(R)), some α ∈ (0, 1], and

u0(s, z) := ξc(z)|v0(s, z) − ψ0(s, z)| ∈ C([−h, 0], L1(R)), (18)

then there are unique solutions v(t, z) and ψ(t, z) of (17) with initial data v0
and ψ0, respectively, and these solutions satisfies v(· + kh, ·), ψ(· + kh, ·) ∈
C([−h, 0];L∞(R) ∩ C0,α(R)) for all k ∈ Z+. Moreover, if u(t, z) satisfies (12)
with initial data u0(s, z) and with parameters m = m(λc) = 2λc − c, p =
p(λc) = λ2

c − cλc − 1, q = q(λc) = Lge
−λcch and d = −ch, then

ξc(z)|v(t, z) − ψ(t, z)| ≤ u(t, z), for all t ≥ −h, z ∈ R, (19)

in particular

|v(t, z) − ψ(t, z)| ≤ A0 ξc(−z)
eγt

√
t
, for all t > h, z ∈ R (20)

where γ = γ(λc) is defined by (13) with p = p(λc) and q = q(λc).

Corollary 4. (Uniqueness) If ψc(z) and φc(z) are two semi-wavefronts with
speed c ≥ c∗ satisfying (18) then there exists z∗ ∈ R such that ψc(z+z∗) = φc(z)
for all z ∈ R.

Remark 5. If h = 0 in (1) then semi-wavefronts are monotone wavefronts and
by taking a wavefront ψ(t, z) = ψc(z) in Theorem 3 we get the stability of
the wavefront on the sets (−∞, N ], N ∈ R, which is comparable to a result
obtained by Uchiyama [39, Theorem 4.1].

It has recently been showed that the estimation u(t, x) = O(t−1/2) in
(19)—(20) for critical semi-wavefronts, in the D-K case, is actually u(t, x) =
o(t−1/2) for all h ≥ 0 (see [4, Corollary 1.2]). Also, since Theorem 3 does not
assume some stability condition on κ then semi-wavefronts could be asymp-
totically periodic at +∞ [36, Theorem 3] and oscillations around κ can be ap-
proximated by the solution v(t, z) on each interval in the form (−∞, N ] with
N ∈ R. The Corollary 4 refers essentially to the fact that semi-wavefronts are
equal (up to translation) if they have the same one-order asymptotic terms at
z = −∞, i.e., the condition (18).

By the change of variable t′ := δ−1t and x′ := δ−1/2x Eq. (9) can be
reduced to (1) with delay h′ := hδ so that by Theorem 3 we obtain the stability
of semi-wavefronts with speed c for the Nicholson’s model,

Corollary 6. (Nicholson Model) Let ρ/δ ∈ [1,+∞) be in (9). Consider N ∈ R

and the initial datum satisfying the conditions of Theorem 3, if c ≥ c∗ and
λc ∈ [λ1(c), λ2(c)] then

sup
z∈(−∞,N ]

|v(t, z) − ψc(z)| = O(t−1/2eγt),

where γ = γ(λc) ≤ 0 is determined by (13).
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It is well known that if ρ/δ ∈ (e, e2) then there are non-monotone wave-
fronts (see [15, Theorem 2.3]). Moreover, for some critical value ν0 = 2.808 . . .
and some delay h0 if ρ/δ ∈ [ν0,+∞) then each minimal wavefront has oscil-
lations around κ at +∞ and there exist a critical value c∗ (a extended real
number) such that each semi-wavefront with speed c > c∗ has non-decaying
slow oscillations [36, Theorem 3].

Nevertheless, the semi-wavefronts of Theorem 3 could exhibit a type of
convective instability due to the positive equilibrium (e.g., see [27]), however
by controlling the size of the slope of g at the positive equilibrium, the sta-
bility of the semi-wavefront on the remaining domain [N,+∞), N ∈ R, can
be obtained. In this framework, it is necessary to assume some additional hy-
potheses in order to establish the existence of semi-wavefronts, such as the
following condition.
(M) The function g : R+ → R+ is such that the equation g(x) = x has exactly
two solutions on [0,+∞) : 0 and κ > 0. Moreover, g is C1-smooth in some
δ0-neighborhood of the equilibria where g′(0) > 1 > g′(κ). In addition, there
are C > 0, θ ∈ (0, 1], such that |g′(u) − g′(0)| + |g′(κ) − g′(κ − u)| ≤ Cuθ for
u ∈ (0, δ0].

We note that for g satisfying (M), there are real numbers 0 < ζ1 ≤ ζ2
such that
(B1) g([ζ1, ζ2]) ⊂ [ζ1, ζ2] and g([0, ζ1]) ⊂ [0, ζ2];
(B2) minζ∈[ζ1,ζ2] g(ζ) = g(ζ1);
(B3) g(x) > x for x ∈ [0, ζ1] and 1 < g′(0) ≤ g∗

+ := sups≥0 g(s)/s < ∞;
(B4) In [0, ζ2], the equation g(x) = x has exactly two solutions 0 and κ.

Thus, from [37, Theorem 4.5] we obtain the following result to the exis-
tence of semi-wavefronts.

Proposition 7. (Existence of semi-wavefronts) Let g satisfy (M). Then, for
each c > c∗(g∗

+) (according to definition (3)) Eq, (1) has semi-wavefronts with
speed c. Moreover, if 0 < ζ1 ≤ ζ2 meet (B1)–(B4) then each semi-wavefront
ψc satisfies:

ζ1 ≤ lim inf
z→−∞ ψc(z) ≤ lim sup

z→+∞
ψc(z) ≤ ζ2, for all z ∈ R.

Remark 8. (Minimal speed for semi-wavefronts) Due [16, Theorem 18], in the
case that g∗

+ = g′(0) the number c∗(g∗
+) is actually the minimal speed for the

existence of semi-wavefronts.

Now, let us introduce some notation. If I ⊂ R+ = Dom(g), let us denote
by

Lg(I) := sup
x�=y; x,y∈I

|g(x) − g(y)|
|x − y| ,

and for b ∈ R, let us denote by ηb(z) = min{1, eλc(z−b)}, with λc ∈ [λ1(c), λ2(c)].
With these notations, the second main result of this paper can be established

Theorem 9. (Global stability) Let c > c∗ and ḡ be a non decreasing function
satisfying (M) with equilibrium K such that ḡ(u) ≥ g(u) for all u ∈ R+ such
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that Lḡ ≤ Lg. We denote by mK = minu∈[κ,K] g(u) and IK := [mK ,K] and
we suppose that Lg(IK) < 1. If for some q0 > 0 and z0 ∈ R the initial datum
satisfies

v0(s, z) ≥ q0 for all (s, z) ∈ [−h, 0] × [z0,+∞) (21)

and for some wavefront ψc, b ∈ R and q > 0

|v0(s, z) − ψc(z)| ≤ qηb(z) for all (s, z) ∈ [−h, 0] × R, (22)

then there exists C = C(ḡ,mK , b) > 0 and γ0 ≥ 0 satisfying

− λ2
c + cλc + 1 ≥ γ0 + Lge

γ0he−λcch and Lg(IK) ≤ e−γ0h(1 − γ0), (23)

such that

|v(t, z) − ψc(z)| ≤ Cqe−γ0t, for all (t, z) ∈ [−h,∞) × R. (24)

Remark 10. (Crossing-monostable case) In [41] Wu et al. established the local
stability for sufficiently fast wavefronts of the so-called crossing-monostable
case. Theorem 9 generalizes those results by including global perturbations of
wavefronts. More precisely, we suppose that for some positive number K ≥ κ,
the birth function g is such that

(C1) g satisfies (M)
(C2) g(u) ≤ ḡ(u) := max{g′(0)u,K} for all u ≥ 0 and
(C3) Lg(IK) < 1,

then the non decreasing function ḡ(u) clearly satisfies Lḡ = g′(0) ≤ Lg,
therefore g satisfies the conditions of Theorem 9. Hence if g satisfies (C1)-
(C3) then (22) implies (24). Note that the condition (A3) in [41, Theorem
2.4] is essentially our condition (C3). Moreover, by (2) and the definition
of c∗(h) we have c∗(h) is a non-increasing function of h, therefore we have
c∗(h) ≤ c∗(0) = 2

√
Lg − 1 for all h ≥ 0, so that we have improved the mini-

mal speed c̃ := 2
√

2(Lg − 1) given in [41] for the local stability of wavefronts
with speed c > c̃.

Now, if we take ḡ(u) = maxs∈[0,u] g(s) then we have that K = Mg :=
maxs∈[0,κ] g(s) and by writing mg = minu∈[κ,Mg] g(u) and IK = Ig := [mg,Mg]
the following global stability result is obtained

Corollary 11. Let g satisfy (M) such that Lg(Ig) < 1. If ψc is a semi-wavefront
with speed c > c∗, then ψc is globally stable in the sense of Theorem 9.

Corollary 11 generalizes results for wavefronts which assume the D-K
condition (see, e.g. [33]). In the Allee case with monotone g, Corollary 11 is an
improvement, in terms of the globality of the disturbance, of [33, Theorem 2]
for wavefronts with a speed greater than c∗ and it also gives us an exponential
convergence rate for these waves. In this regard, exponential (in the time)
stability as in (24) for pushed wavefronts was not studied in [32] but a recent
work [42] by Wu, Niu and Hsu, has given a positive answer to this problem.

This paper is organized as follows. The linear theorems (Theorems 1 and
2) are proven in Sect. 2. Finally, results on the stability of semi-wavefronts are
proven in Sect. 3.
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2. Proof of Linear Theorems

In order to demonstrate both Theorems 1 and 2, the following two lemmas will
be needed. The first one is an abstract version of the Halanay type inequalities
[17]

Lemma 12. (Halanay Type Inequality) Let X be a complex Banach space. Sup-
pose that σ, k ∈ C and h > 0. If r ∈ C([−h,∞),X) is a function satisfying:

rt(t) = σr(t) + kr(t − h), a.e.,

then

|r(t)|X ≤ sup
s∈[−h,0]

|r(s)|X emax{0,λ}h eλt, for all t > −h, (25)

where λ is the only real root of the equation :

λ = Re(σ) + |k|e−λh. (26)

Moreover
(i) λ ≤ 0 ⇐⇒ −Re(σ) ≥ |k|.
(ii) λ = 0 ⇐⇒ −Re(σ) = |k|.

Proof. It is clear that:
d

dt
(r(t)e−σt) = ke−σtr(t − h) a.e.

and from here, it is obtained that |r(t)|X meets the following inequality:

x(t) ≤ |k|
∫ t

0

eRe(σ)(t−s)x(s − h)ds + x(0)eRe(σ)t for all t > 0 (27)

We note that for A ∈ R the function eA(t) = Aeλt meets (27) with equality.
Now, for A := sups∈[−h,0] |r(s)|X emax{0,λ}h the function δ(t) = |r(t)|X − eA

satisfies (27) for t ∈ [0, h] and therefore δ(t) ≤ 0 for all t ∈ [0, h]. Similarly, it
is concluded that δ(t) ≤ 0 for the intervals [h, 2h], [2h, 3h] . . . This proves (25).

Let us prove (i). If −Re(σ) ≥ |k| then: λ ≤ |k|(e−hλ−1) which necessarily
implies that λ ≤ 0. Otherwise, if λ ≤ 0 let us suppose that −Re(σ) < b, then
λ > |k|(e−hλ − 1) which is a contradiction.

In order to prove (ii) let us note that since the derivative of f(λ) :=
λ − Re(σ) − |k|e−hλ is always positive then f(λ) has at most one zero. So, if
Re(σ) = |k| then λ = 0 is the only solution of (26), this proves (ii). �

Now, let us consider the function λ : R → R defined by

λ(ζ) = −ζ2 + p + qe−hλ(ζ), (28)

where q ≥ 0. Next, we proceed to estimate the even function λ(ζ).
For εh = 1

1+h(γ−p) we define the function

αh(ζ) := − 1
h

log(1 + hεhζ2).

Here γ ∈ R is defined by (13) for any p ∈ R and q ≥ 0.
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Lemma 13. If λ is defined by (28) then

− εhζ2 + γ ≤ λ(ζ) ≤ αh(ζ) + γ for all ζ ∈ R. (29)

Moreover, if q > 0 then

lim
|ζ|→∞

q−1ζ2 ehλ(ζ) = 1. (30)

Remark 14. The function αh is a generalization of the function α0(ζ) :=
−ζ2 = limh→0 αh(ζ) for each ζ ∈ R. Also, when h = 0 then γ = p + q
[according to definition (13)] therefore λ(ζ) = −ζ2 + γ in (28). Thus, by pass-
ing the limit h → 0 in (29) we have the equality −ζ2 = λ(ζ) − γ = α0(ζ). In
this regard, the estimates in (29) are sharp.

Proof. Let us denote β(ζ) = λ(ζ) − α(ζ) − γ. Then β(ζ) satisfies the following
equation

β(ζ) = −ζ2 +
1
h

log(1 + hεhζ2) − γ + p + qe−hγ(1 + hεhζ2)e−hβ(ζ).

From Lemma 12 we have that β(ζ) ≤ 0 if and only if:

ζ2 − 1
h

log(1 + hεhζ2) + γ − p ≥ qe−hγ(1 + hεhζ2). (31)

Now, using log(1 + x) ≤ x, fo rall x ≥ 0, in order to obtain (31) it is enough
to have

ζ2 − εhζ2 + γ − p ≥ qe−hγ(1 + hεhζ2) for all ζ ∈ R

⇐⇒ (1 − εh − qhεhe−hγ)ζ2 + γ − p − qe−hγ ≥ 0 for all ζ ∈ R,

which is a consequence of definition of γ and εh. So that, this proves the upper
estimate in (29)

To complete left hand side of (29) we note that due to (28), (13) and
upper estimate in (29)

λ(ζ) ≥ −ζ2 + γ − q−γh + qe−hγ [1 + hεhζ2]
= −εhζ2 + γ.

Next, by multiplying (28) by ehλ(ζ) and by using that λ(ζ) → −∞ as |ζ| → +∞
[which is obtained from upper estimation in (29)] we conclude

lim
ζ→±∞

ehλ(ζ)ζ2 = p

which implies (30). �

Consider the following equation

ut(t, z) = uzz(t, z) + d1uz(t, z) + d2u(t, z) + e−λzg(eλ(z−ch)u(t − h, z − ch))
(32)

where d1, d2, λ ∈ R
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Proposition 15. If u0 ∈ C([−h, 0];L∞(R) ∩ C0,α(R)), some α ∈ (0, 1], then
there is a unique solution u(t, z) of (32) with initial data u0 and this solution
satisfies u(· + kh, ·) ∈ C([−h, 0];L∞(R) ∩ C0,α(R)) for all k ∈ Z+. Moreover,
if u0 ∈ C([−h, 0];L1(R)) and λ = 0 in (32) then u(t, ·), uz(t, ·) ∈ L1(R) for all
t ≥ 0 and uzz(t, ·) ∈ L1(R) for all t > h.

Proof. By defining

d3(t, z) := e−λchg(eλ(z−ch)u(t − h, z − ch))/eλ(z−ch)u(t − h, z − ch)

we have d3 ∈ L∞(R+ × R) and the function u satisfies

ut(t, z) = uzz(t, z) + d1uz(t, z) + d2u(t, z) + d3(t, z)u(t − h, z − ch) (33)

By making the change of variables ū(t, z) := u(t, z − d1t)e−d2t the equation
(33) is reduced to an inhomogeneous heat equation

ūt(t, z) = ūzz(t, z) + f(t, z), (34)

where

f(t, z) = e−d2hd3(t, z − d1t)ū(t − h, z − h(c + d1)), (35)

Now, note that for 1 ≤ p ≤ ∞
|f(t, ·)|Lp(R) ≤ e−d2h|d3|L∞ max

s∈[−h,0]
|ū0(s, ·)|Lp(R) for all t ∈ [0, h]. (36)

Similarly, by using the definition of d3, we get

|f(t, ·)|C0,α(R) ≤ Lg e−d2h max
s∈[−h,0]

|ū0(s, ·)|C0,α(R) for all t ∈ [0, h]. (37)

So that, by [14, Chapter 1, Theorems 12 and 16] there exist a unique
solution to (32) and this solution satisfies

ū(t) := Γt ∗ ū(0) +
∫ t

0

Γt−s ∗ f(s)ds, (38)

where Γt is the one-dimensional heat kernel.
Now, we take 1 ≤ p ≤ ∞. Then, for t ∈ [0, h] and tn → t we have

|ū(t) − ū(tn)|Lp ≤ |Γt − Γtn
|L1 |ū(0)|Lp +

∫ t

0

|Γt−s − Γtn−s|L1 |f(s)|Lpds

+
∫ tn

t

|Γtn−s|L1 |f(s)|Lpds, (39)

and by using (36),

|ū(t) − ū(tn)|Lp ≤ (|Γt − Γtn
|L1

+
∫ t

0

|Γt−s − Γtn−s|L1ds + |t − tn|)R max
s∈[−h,0]

|ū0(s, ·)|Lp(R), (40)

where R = max{1, e−d2h|d3|L∞}. Since |Γtn
|L1 = |Γt|L1 = 1 the last inequality

implies |ū(t) − ū(tn)| → 0 as tn → t, therefore if u0(·, ·) ∈ C([−h, 0];Lp(R))
then u(· + h, ·) ∈ C([−h, 0];Lp(R)). Similarly, we get u(· + h, ·) ∈ C([−h, 0];
C0,α(R)) whenever u0(·, ·) ∈ C([−h, 0];C0,α(R))
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Analogously, by using the initial data u(t+h, ·), u(t+2h, ·) . . . we obtain
u(·+kh, ·) ∈ C([−h, 0];Lp(R)∩C0,α(R)) for k = 2, 3 . . . Therefore, with p = ∞
we obtain the first assertion of the Proposition 15.

Otherwise, if u0 ∈ C([−h, 0], L1(R)) then with p = 1 we get u(·+kh, ·) ∈
C([−h, 0];L1(R)) for all k ∈ Z+. Then, note that by (38) for t > 0 we get

ūz(t, z) =
∫
R

(y − z)e−(z−y)2/4t

4t3/2
√

π
u0(0, y)dy

+
∫ t

0

∫
R

(y − z)e−(z−y)2/4(t−s)

4(t − s)3/2
√

π
f(s, y)dyds, (41)

and using (36) with p = 1 for t ∈ (0, h] we obtain

|ūz(t, ·)|L1(R) ≤ |u0(0, ·)|L1(R)√
πt

∫
R

|y|e−y2
dy

+2

√
t

π

∫
R

|y|e−y2
dy max

s∈[−h,0]
|f(s, ·)|L1(R)

≤ (
1√
t

+ 2
√

te−d2h|d3|L∞(R+×R))
1√
π

max
s∈[−h,0]

|ū0(s, ·)|L1(R)

(42)

and by using the initial data ū(t+h, ·), ū(t+2h, ·) . . ., with t ∈ (0, h], we obtain
ūz(t + kh, ·) ∈ L1(R) for k ∈ Z+ and t ∈ (0, h]. Moreover, if we differentiate in
(32) and proceed as in (39) and (40) then we have |ūz(t, ·)|L1(R) continuously
depends on t ∈ R+.

Finally, if T > h then ū(T + ·, ·) ∈ C([−h, 0];L1(R)), by taking λ = 0, we
obtain ūz(t, z) satisfies (33) with d3(t, z) = g′(ū(t − h, z − ch)) and taking as
initial datum the function ū(T + s, z) and using (42) (replacing ūz by ūzz) we
obtain ūzz(T +t, ·) ∈ L1(R) for all t ∈ (0, h]. Similarly, by using the initial data
ūz(t+h, ·), ūz(t+2h, ·) . . ., with t ∈ (0, h], we obtain ūzz(t+T +kh, ·) ∈ L1(R)
for k ∈ Z+ and t ∈ (0, h], which completes the proof. �

Remark 16. Since by Proposition 15 u(· + hk, ·) ∈ C([−h, 0], L∞(R)) for all
k ∈ Z then for each t > 0 we have f(·, ·) ∈ C([0, t], L∞(R)), therefore∣∣∣∣∣

∫
R

(y − z)e−(z−y)2/4(t−s)

4(t − s)3/2
√

π
f(s, y)dy

∣∣∣∣∣ ≤ C√
t − s

for all t > s,

for some constant C > 0 (which does not depend on (z, t, s)) so that from (41)
we conclude u(t, ·) ∈ C1(R) for all t > 0.

Proof of Theorem 1. By using Proposition 15 with d1 = m, d2 = p, λ = 0
and g(u) = qu we get u(t, ·), uz(t, ·), uzz(t, ·) ∈ L1(R) for all t > h. Next, by
applying the Fourier transform, here

û(z) :=
1
2π

∫
R

e−izyu(y)dy,

to Eq. (12) we have

ût(t, ζ) = σ(ζ)û(t, ζ) + k(ζ)û(t − h, ζ) for all t > h,
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where σ(ζ) = −ζ2 + imζ + p and k(ζ) = qe−idζ .
Since −Re(σ(ζ)) ≥ |k(ζ)|, by Lemma 12 we obtain λ(ζ) ≤ 0 for all ζ ∈ R

and :

|û(t, ζ)| ≤ Cu0e
λ(ζ)t for all ζ ∈ R.

If t > h then by the Fourier’s inversion formula (since by Remark 16 u(t, ·) ∈
C1(R) for t > 0) and Lemma 13, we have

|u(t, x)| ≤ 1
2π

∫
R

|û(t, ζ)|dζ ≤ Cu0

2π

∫
R

eλ(ζ)tdζ ≤ Cu0

2π
eγt

∫
R

dζ

(1 + εζ2)
t
h

.

Moreover, by Bernoulli’s inequality, we conclude that
∫
R

dζ

(1 + εζ2)
t
h

≤
∫
R

dζ

1 + tε
h ζ2

=
1√
t

[√
h

ε

∫
R

dζ

1 + ζ2

]
=

1√
t

√
h

ε
π.

�

Proof of Theorem 2. If we make the change of variable v(t, x) = e
m
2 xu(t, x),

then v(t, x) solves

vt(t, x) = vxx(t, x) +
(

p − m2

4

)
v(t, x) + qv(t − h, x). (43)

By applying the Fourier transform to (43) we get

v̂t(t, z) =
(

−z2 + p − m2

4

)
v̂(t, z) + qv̂(t − h, z) for all t > 0 (44)

Let us note that due to q ≥ 0, we have that (44) satisfies the Comparison
Principle; that is, if for each z ∈ R we consider two solutions v(s) and w(s) of
(44) defined on [−h,+∞) then, by denoting (û(t)) = u1(t),�(û(t)) = u2(t),
the inequality

vi(s) ≤ wi(s) for all s ∈ [−h, 0] and i = 1, 2.

implies

vi(s) ≤ wi(s) for all s ∈ [−h,+∞) and i = 1, 2

Let us denote by eA(t, z) = Aeλ(z)t, where λ(z) satisfies

λ(z) = −z2 + p − m2

4
+ qe−λ(z)h. (45)

Let us note that eA(t, z) satisfies (44) for all A ∈ C. Also, let us denote that

mi(z) = min
s∈[−h,0]

(vi(s, z)e−λ(z)s) and

Mi(z) = max
s∈[−h,0]

(vi(s, z)e−λ(z)s) i = 1, 2

then we have that

emi
(s, z) ≤ vi(s, z) ≤ eMi

(s, z) for all (s, z) ∈ [−h, 0] × R; i = 1, 2.
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By the comparison principle applied to real and imaginary part in (44), we
have that

emi
(t, z) ≤ vi(t, z) ≤ eMi

(t, z) for all (t, z) ∈ [−h,∞) × R; i = 1, 2
(46)

or

mi(z)eλ(z)t ≤ vi(t, z) ≤ Mi(z)eλ(z)t for all (t, z) ∈ [−h,∞) × R; i = 1, 2
(47)

Now, by the Fourier inversion formula, we have that

v(t, x) =
1√
t

∫
R

e
xy√

t v̂(t, y/
√

t)dy. (48)

However, if we apply Lemma 13 to (45) with γ = σ we have

lim
t→∞ t[λ(y/

√
t) − σ] = − y2

1 + hqe−σh
. (49)

and due to v(s, ·) ∈ L1(R) by the Lebesgue’s dominated convergence theorem

lim
t→∞ M1(y/

√
t) = lim

t→∞ m1(y/
√

t) =
∫
R

e
m
2 xv(s, x)dx

and

lim
t→∞ M2(y/

√
t) = lim

t→∞ m2(y/
√

t) = 0.

Therefore by (47)

lim
t→∞ v̂(t, y/

√
t) = e

− y2

1+hqe−σh

∫
R

e
m
2 xv(s, x)dx (50)

However, by (25) there exists C(p, q,m) > 0 such that

|v̂(t, y/
√

t)| ≤ C sup
s∈[−h,0]

|v̂(s, y/
√

t)|eλ(y/
√

t)t

but by (29) and Bernoulli’s Inequality

|v̂(t, y/
√

t)| ≤ Ce|σ|h||em
2 ·u0(·)||L1(R)

1 + εhy2
for all t > 0. (51)

Finally, by (48), (51), Lebesgue’s dominated convergence theorem and (50),
the result obtained. �

3. Proof of results of stability of semi-wavefronts

Proof of Theorem 3. The first assertion follows from Proposition 15 with λ =
0. Next, for a solution w(t, z) of (17), let us denote the function w̃(t, z) =
ξc(z)w(t, z) which satisfies

w̃t(t, z) = w̃zz(t, z) + mw̃z(t, z) + pw̃(t, z)
+ξc(z)g(ξc(−z + ch)w̃(t − h, z − ch)).
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We consider the linear operator

Lδ(t, z) := δzz(t, z) + mδz(t, z) + pδ(t, z) − δt(t, z).

If δ±(t, z) := ±[ṽ(t, z)− ψ̃(t, z)]−u(t, z), then by (18): δ±(s, z) ≤ 0 for (s, z) ∈
[−h, 0] × R. For (t, z) ∈ [0, h] × R by (17) and (18) we have

Lδ±(t, z) = ∓ξ(z)[g(ξ(−z + ch)ψ̃(t − h, z − ch))
−g(ξ(−z + ch)ṽ(t − h, z − ch))] − Lu(t, z)

≥ −Lge
−λch|ṽ(t − h, z − ch) − ψ̃(t − h, z − ch)| − Lu(t, z)

≥ −Lge
−λchu(t − h, z − ch) − Lu(t, z) = 0.

Now, by Proposition 15, w̃(· + kh, ·) ∈ C([−h, 0];L∞(R)) for all k ∈ Z+ there-
fore by using the Phragmèn–Lindelöf principle from [25, Chapter 3, Theorem
1], we have δ±(t, z) ≤ 0 for (t, z) ∈ [0, h] × R. The argument is repeated for
intervals [h, 2h], [2h, 3h] . . . to conclude (19). Finally, the estimate in (20) is
obtained using Theorem 1. �

Remark 17. Note that in Proof of Theorem 3 it was only necessary to have
an initial datum u0 exponentially bounded to apply the Phragmèn–Lindelöf
principle in order to obtain estimate (20). So, we could use the elementary
exponential solutions of (12) of the form u(t, z) = Beγt+r z, with r and γ
satisfying

q(λc)e−rch e−γh = −r2 − (2λc − c)r − p(λc) + γ. (52)

Here, γ ≤ 0 if and only if

− r2 − (2λc − c)r − p(λc) ≥ q(λc) e−rch, (53)

with γ = 0 if and only if (53) holds with equality. Thus, for c > c∗ and
λc ∈ (λ1(c), λ2(c)) we have −p(λc) > q(λc) and therefore by taking r = 0 in
(53) we obtain γ < 0 in (52) and therefore the asymptotic stability of non-
critical is obtained. However, when c = c∗ we have λc∗ = λ1(c∗) = λ2(c∗) and
−p(λc∗) = q(λc∗) in (53), also due to the curves −λ2+cλ+1 and Lg e−λch in (2)
are tangent at λ = λc∗ the function Θ(r) := q(λc∗) e−rc∗h + r2 +(2λc∗ − c∗)r +
p(λc∗) holds Θ ′(0) = 0. Consequently, since Θ is strictly convex and Θ(0) = 0
we conclude r = 0 is the only solution in (53) and therefore −p(λc∗) = q(λc∗)
implies γ = 0 in (52). Thus, this approach does not allow us to obtain the
asymptotic stability of critical semi-wavefronts.

Theorem 18. Let v(t, z) and ψ(t, z) be solutions of equation (17) for c ≥ c∗.
Assume that for some compact interval I ⊂ R, such that Lg(I) < 1, and b ∈ R

we have

ψ(t, z), v(t, z) ∈ I for all (t, z) ∈ [−h,∞) × [b − ch,∞), (54)

and for some q > 0 and λc ∈ [λ1(c), λ2(c)]

|v0(s, z) − ψ0(s, z)| ≤ qηb(z) for all (s, z) ∈ [−h, 0] × R. (55)

If γ0 ≥ 0 satisfies

− λ2
c + cλc + 1 ≥ γ0 + Lge

γ0he−λcch and Lg(I) ≤ e−γ0h(1 − γ0), (56)
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then

|v(t, z) − ψ(t, z)| ≤ qe−γ0tηb(z) for all (t, z) ∈ [−h,∞) × R. (57)

Proof. We define η(t, z) = qe−γ0tηb(z) and write the operator

L0δ(t, z) := δzz(t, z) − cδz(t, z) − δ(t, z) − δt(t, z).

Note that by (55) if δ±(t, z) := ±[v(t, z) − ψ(t, z)] − η(t, z) then δ±(s, z) ≤ 0
for (s, z) ∈ [−h, 0] × R. Now, for (t, z) ∈ [0, h] × (−∞, b] due to (17), (22) and
(56) we have that

L0δ±(t, z) = ±[−g(v(t − h, z − ch)) + g(ψ(t − h, z − ch))] − L0η(t, z)

≥ qe−γ0t+λc(z−b)[−Lge
γ0he−λch − (λ2

c − cλc − 1 + γ0)] ≥ 0.

Similarly, if (t, z) ∈ [0, h] × [b,∞) we obtain:

L0δ±(t, z) = ±[−g(v(t − h, z − ch)) + g(ψ(t − h, z − ch))] − L0η(t, z)

≥ qe−γ0t[−Lg(I)eγ0hη(z − ch) − (−1 + γ0)]

≥ qe−γ0t[−Lg(I)eγ0h + 1 − γ0] ≥ 0.

Now, as in the proof of the [33, Lemma 1], due to

∂δ±(t, b+)
∂z

− ∂δ±(t, b−)
∂z

> 0, (58)

we have that δ±(t, z) ≤ 0 for all t ∈ [0, h], z ∈ R. Indeed, otherwise there exists
r0 > 0 such that δ(t, z) restricted to any rectangle Πr = [−r, r] × [0, h] with
r > r0, reaches its maximum positive value Mr > 0 at some point (t′, z′) ∈ Πr.

We claim that (t′, z′) belongs to the parabolic boundary ∂Πr of Πr. In-
deed, suppose on the contrary, that δ(t, z) reaches its maximum positive value
at some point (t′, z′) of Πr \ ∂Πr. Then clearly z′ �= z∗ because of (58). Sup-
pose, for instance that z′ > z∗. Then δ(t, z) considered on the subrectan-
gle Π = [z∗, r] × [0, h] reaches its maximum positive value Mr at the point
(t′, z′) ∈ Π\∂Π. Then the classical results [25, Chapter 3, Theorems 5,7] show
that δ(t, z) ≡ Mr > 0 in Π, a contradiction.

Hence, the usual maximum principle holds for each Πr, r ≥ r0, so that
we can appeal to the proof of the Phragmèn–Lindelöf principle from [25] (see
Theorem 10 in Chapter 3 of this book), in order to conclude that δ(t, z) ≤ 0
for all t ∈ [0, h], z ∈ R.

We can again repeat the above argument on the intervals [h, 2h], [2h, 3h],
. . . establishing that the inequality w−(t, z) ≤ w(t, z) ≤ w+(t, z), z ∈ R, holds
for all t ≥ −h. �

Remark 19. We can generalize the function ηb(z) for b = +∞ and, thus, have
η∞(z) = ξc(−z). In this proof, it was not necessary to use the condition (54)
for z ≤ b so by replacing ξc(−z) by ηb(z) it can be concluded that (55) implies
(57).

Corollary 20. (Local stability) Suppose that there exist M, b ∈ R and l0 > 0,
such that:

ψ(t, z) ∈ [M − l0,M + l0] for all (t, z) ∈ [−h,∞) × [b − ch,∞), (59)
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and that for some l1 > l0 the initial data satisfy

|v0(s, z) − ψ0(s, z)| < (l1 − l0)e−γ0sηb(z) for all (s, z) ∈ [−h, 0] × R.

(60)

where γ0 ≥ 0 is defined by (56). If Lg(I1) < 1, where I1 := [M − l1,M + l1],
then

|v(t, z) − ψ(t, z)| ≤ (l1 − l0)e−γ0tηb(z) for all (t, z) ∈ [−h,∞) × R. (61)

Proof. Clearly, ψ(t, z) ∈ I1 for all (t, z) ∈ [−h,∞) × [b − ch,∞). Now if we
suppose that the inequality in (60) is satisfied for v0(s, z) = v(hk + s, z) and
ψ0(s, z) = ψ(hk + s, z), with k ∈ Z+, then v(hk + t − h, z) ∈ I1 for all
(t, z) ∈ [0, h] × R and, arguing as in the proof of Theorem 18, we get

L0 δk
±(t, z) ≤ 0 for all (t, z) ∈ [0, h] × R,

where δk
±(t, z) = ±[v(hk + t, z) − ψ(hk + t, z)] − (l1 − l0)e−γ0(hk+t)ηb(z) and

from [33, Lemma 1] we conclude

δk
±(t, z) ≤ 0 for all (t, z) ∈ [0, h] × R. (62)

But (62) implies v((k + 1)h + t − h, z) ∈ I1 for all (t, z) ∈ [0, h] × R and,
arguing as above, by using (62) we obtain δk+1

± (t, z) ≤ 0 for all (t, z) ∈ [0, h] ×
R. Therefore, it is sufficient to suppose (60) in order to conclude (61) for
(t, z) ∈ [0, h]×R and then we procede inductively to obtain (61) for all (t, z) ∈
[−h,∞) × R. �

To prove Theorem 9, we will use the following lemma

Lemma 21. Suppose that functions g1, g2 : D ⊂ R+ → R+ satisfy: g1(u) ≤
g2(u) for all u ∈ D. Let v1(t, z), v2(t, z) : [−h,∞) × R → D be solutions to
(17), with g = g1 and g = g2, respectively, such that: v1(s, z) ≤ v2(s, z) for
(s, z) ∈ [h, 0] × R. If g1 or g2 is a non decreasing function, then we have :
v1(t, z) ≤ v2(t, z) for all (t, z) ∈ R+ × R.

Proof. We take δ(t, z) = v1(t, z)−v2(t, z). Let us note that if (t, z) ∈ [0, h]×R

then

L0δ(t, z) = g2(v2(t − h, z − ch)) − g1(v1(t − h, z − ch)) ≥ 0,

because if g2 is a non decreasing function we have that

g2(v2(t − h, z − ch)) − g1(v1(t − h, z − ch))
≥ g2(v1(t − h, z − ch)) − g1(v1(t − h, z − ch)) ≥ 0,

or if g1 is a non decreasing function, we have

g2(v2(t − h, z − ch)) − g1(v1(t − h, z − ch))
≥ g2(v2(t − h, z − ch)) − g1(v2(t − h, z − ch)) ≥ 0

Now, as δ(t, z) ≤ 0 for all (t, z) ∈ [−h, 0]×R the Phragmèn–Lindelöf principle
from [25][Chapter 3, Theorem 10] implies that δ(t, z) ≤ 0 for (t, z) ∈ [0, h]×R.
The argument is repeated for intervals [h, 2h], [2h, 3h] . . . �
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Proof Theorem 9. Let us take ε > 0 such that Lg(Iε) < 1, where Iε :=
[mK − ε,K + ε] ⊂ R+.Then, there is an increasing function ḡε satisfying (M)
with positive equilibrium κ+ ∈ (K,K + ε), c∗(Lḡε

) ≤ c∗(Lg) and g ≤ ḡε. Fur-
thermore, there is also an increasing g

ε
function meeting (M) with positive

equilibrium κ− ∈ (mK − ε,mK) and c∗(Lg
ε
) ≤ c∗(Lg) such that: g

ε
(x) ≤ g(x)

for x ∈ [0,K + ε].
Now, if v̄(t) is the homogenous solution of (17) replacing g by ḡε with

initial datum v0(s) = q, s ∈ [−h, 0], and c > c∗(Lg) then by Lemma 21 and
the global stability of κ+ there is a number T > 0 such that

v(t, z) ≤ v̄(t) ≤ K + ε for all (t, z) ∈ [T,+∞) × R. (63)

Next, by (63)

sup
(t,z)∈R+×R

v(t, z) =: v∞ < ∞,

and by denoting κ∗ := minu∈[κ,u∞] g(u) we take an increasing function g∞
satisfying (M) with equilibrium κ∞ ∈ (κ∗ − ε, κ∗), c∗(Lg∞) ≤ c∗(Lg) and
g∞(u) ≤ g(u) for all u ∈ [0, u∞]. Next, without loss of generality we take
q∞ := κ∞ − q0 > 0. Then, by [1, Theorem 3], (21) and (22) there exist a
monotone wavefront φ∞

c to (17) (with nonlinearity g∞) such that

φ∞
c (z) − qηb(z) ≤ v0(s, z) (s, z) ∈ [−h, 0] × R (64)

thus by [32, Lemma 2.1] there are C0 > 0 and γ ≥ 0 such that

φ∞
c (z − C0q) − q−γtηb(z) ≤ v∞(t, z) (t, z) × [−h,∞) × R (65)

where v∞(t, z) is the solution generated by the initial datum v(s, z) to Eq. (17).
Now, by applying Lemma 21 with D = [0, u∞]

φ∞
c (z − C0q) − q−γtηb(z) ≤ v(t, z) (t, z) × [−h,∞) × R.

So, there are z′
0 and q′

0 > 0 such that

v(t, z) ≥ q′
0 > 0 (t, z) ∈ [−h,∞) × [z′

0,∞) (66)

Otherwise, denoting v(t, z) the solution of (17) replacing g by g
ε

with initial
data v0(s, z) = v(s + T + h, z). Due to (66) and Remark 19 the initial datum
v0 satisfies (21) and (22). Next, if we denote by v(t) the homogenous solution
of (17) replacing g by g

ε
with initial datum v0(s) = K + ε, s ∈ [−h, 0], then by

[30, Corollary 2.2,p.82] v(t) converges monotonically to κ−, therefore

v(t, z) ≤ v(t) ≤ K + ε for all (t, z) ∈ [−h,+∞) × R

So, for c > c(Lg) by Lemma 21 (with D = [0,K + ε]), Proposition 7 and [33,
Theorem 1] there is a wavefront φ

c
and T0 > 0 such that

mK − ε ≤ φ
c
(z) + ε/2 ≤ v(t, z) ≤ v(t, z) for all (t, z) ∈ [T0,∞)2. (67)

Thus there is Tv such that the function ṽ(t, z) := v(t + Tv + h, z) satisfies (54)
with b = tv + ch and I = Iε. Analogously, for some Tψc

we have ψc(z) ∈ Iε

for all z ≥ Tψc
. Finally, by applying Theorem 18 we conclude (24) with C :=

maxz∈R ηb(z)/ηt0+ch(z) where t0 := max{Tv, Tψc
}. �
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Casilla 306
Santiago 22
Chile

and
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