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Abstract. In this paper we investigate the existence and uniqueness of
weak solutions of the nonautonomous Hamilton–Jacobi–Bellman equa-
tion on the domain (0,∞)×Ω. The Hamiltonian is assumed to be merely
measurable in time variable and the open set Ω may be unbounded
with nonsmooth boundary. The set Ω is called here a state constraint.
When state constraints arise, then classical analysis of Hamilton–Jacobi–
Bellman equation lacks appropriate notion of solution because continuous
solutions could not exist. In this work we propose a notion of weak so-
lution for which, under a suitable controllability assumption, existence
and uniqueness theorems are valid in the class of lower semicontinuous
functions vanishing at infinity.

Mathematics Subject Classification. 34A60, 49J15, 49L25, 70H20.

1. Introduction

The notion of weak (or viscosity) solution to a first-order partial differen-
tial equation was introduced in the pioneering works [8,9,20] by Crandall,
Evans, and Lions to investigate stationary and evolutionary Hamilton–Jacobi–
Bellman (H–J–B) equations, using sub/super solutions involving superdiffer-
entials and subdifferentials of continuous functions associated to C1 test func-
tions. In particular, they obtained existence and uniqueness results in the class
of continuous functions for the Cauchy problem associated to the following H–
J–B equation

−∂tV + H (t, x,−∇xV ) = 0 on (0, T ) × R
n,

when the Hamiltonian H is continuous, while in [3,26] the authors extended
the existence results to a large class of continuous Hamiltonians. When the
solution is differentiable, then it solves the H–J–B equation also in the clas-
sical sense. However, it is well known that such a kind of notion turns out
to be quite unsatisfactory for H–J–B equations arising in control theory and
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the calculus of variations (we refer to [2,20] for further discussions). Indeed,
the value function, that is a weak solution of H–J–B equation, loses the differ-
entiability property (even in the absence of state constraints) whenever there
are multiple optimal solutions at the same initial condition. When additional
state constraints are present it also loses its continuity. At most we expect
lower semicontinuity of the value function. So, subsequently, the definition of
solution was extended to lower semicontinuous functions.

For the Mayer problem (of optimal control theory) free of state con-
straints involving a continuous cost function and Lipschitz continuous dynam-
ics, the uniqueness of continuous solutions of the associated H–J–B equation
can be addressed using the notion of viscosity solution. Further, the definition
of solution can be stated equivalently in terms of “normals” to the epigraph
and the hypograph of the solution. But, when the dynamics is only measur-
able in time such equivalence may fail to be true. Nevertheless, the study of
uniqueness of weak solutions can be carried out by using the solutions concept
from [15], see also Sects. 3 and 4 below, based on “normals” to the epigraph.
Previously, to deal with Hamiltonian measurable in time, in [17] the author
proposed a new notion of weak solution (cfr. [21] for equivalent formulations
of such a kind of solutions) in the class of continuous functions, proving, by a
blow-up method, the uniqueness and existence in the stationary case on a gen-
eral open subset of Rn and for the evolutionary case on (0,∞) × R

n. The C1

test functions needed to define such solutions are more complex, involving in
addition some integrable mappings. We point out that, under the assumptions
that H is measurable in time, Lipschitz continuous in the space variable, and
convex in the last variable, the so called representation theorems (cfr. [16,22]
and the reference therein) associate to the H–J–B equation a control prob-
lem in such a way that the value function is a weak solution. This yields an
existence result for weak solutions.

To deal with discontinuous solutions, in [18], Ishii introduced the con-
cept of lower and upper semicontinuous envelopes of a function, proving that
the upper semicontinuous envelope of the value function of an optimal con-
trol problem is the largest upper semicontinuous subsolution and its lower
semicontinuous envelope is the smallest lower semicontinuous supersolution.
This approach, however, does not ensure the uniqueness of (weak) solutions
of the H–J–B equation. On the other hand the upper semicontinuous envelope
does not have any meaning in optimal control theory while dealing with min-
imization problems (the lower semicontinuous envelope determines the value
function of the relaxed problem). In [4,5,10] a different concept of solutions
was developed for the H–J–B equation associated to the Mayer optimal control
problem not involving state constraints, but having a discontinuous cost. In
this approach only subdifferentials are involved. In particular, in [10], results
are expressed using the Fréchet subdifferentials instead of C1 test functions. By
[8, Proposition 1.1], Fréchet subdifferentials of continuous functions coincide
with those defined in [9] via C1 test functions. While investigating in [15] the
merely measurable case, it became clear that in order to get uniqueness, it is
convenient to replace subdifferentials by normals to the epigraph of solutions.



NoDEA Hamilton–Jacobi–Bellman Equations Page 3 of 24 7

Such “geometric” definition of solution avoids using test functions and allows
to have a unified approach to both the continuous and the measurable case.

To deal with state constrained problems, the usual assumptions on data
may be not sufficient to derive existence and uniqueness results for the H–J–B
equations. In [25] Soner proposed a controllability assumption (the Slatter like
assumption) to investigate an autonomous control problem, recovering the con-
tinuity of the value function through an inward pointing condition (under the
assumption that the set Ω is bounded with ∂Ω ∈ C2): that is, he assumed that
for any x ∈ ∂Ω we can find a control u satisfying 〈 f(x, u), νx〉 < 0, where νx

is the outward unit normal to Ω at x and f is the dynamics of control system.
Such condition implies uniqueness of viscosity solutions. However, it cannot be
used for sets with nonsmooth boundary and the boundedness assumption on
Ω may be quite restrictive for many applied models: for instance, macroeco-
nomics models often consider cones as state constraints. To allow nonsmooth
boundaries, Ishii and Koike generalized the concept of Soner’s condition in
the framework of infinite horizon problems and continuous solutions (cfr. [19]
and the references therein). More generally, various versions of inward point-
ing condition are useful to get continuity or Lipschitz continuity of the value
function, see for instance [6]. Furthermore, in [13,14] the authors, dealing with
paratingent cones and closed set of constraints with possibly empty interior,
carry out the analysis under another controllability requirement named out-
ward pointing condition. Such condition ensures, roughly speaking, that any
boundary point of Ω can be reached by trajectories laying in the relative in-
terior of Ω. The outward pointing conditions allow furthermore to use the so
called backward neighboring feasible trajectory theorems, fundamental to ad-
dress the control systems under state constraints. It was used, in particular, in
[11], to study an H–J–B equation on finite time interval, when the Hamiltonian
is convex and positively homogeneous in the third variable.

We would like to underline here that, in contrast, the inward pointing
condition is neither needed, nor well adapted in the context of lower semi-
continuous functions because it does not imply uniqueness of solutions to the
H–J–B equation unless further regularity assumptions are imposed on the so-
lutions.

The novelty of our work consists in examining the weak solutions (in the
sense of Definition 3.2 below) of the H–J–B equation on (0,∞) × Ω (where
Ω is an open subset of R

n with possibly nonsmooth boundary) and with
time-measurable Hamiltonian (associated with an infinite horizon optimal con-
trol problem). Proofs of uniqueness make use of the geometric properties of
epigraphs of such solutions. We recover the uniqueness, from a neighboring fea-
sible trajectory theorem (cfr. [6]) under a backward controllability assumption,
in a class of lower semicontinuous functions vanishing at infinity. More pre-
cisely, we prove the existence and uniqueness of weak solutions of the following
problem

{
−∂tW + H (t, x,−∇xW ) = 0 on (0,∞) × Ω
limt→∞ supy∈domW (t,·) |W (t, y)| = 0.



7 Page 4 of 24 V. Basco and H. Frankowska NoDEA

The outline of this paper is as follows. In Sect. 2 we introduce notations
and recall some results from nonsmooth analysis. The main result is stated
in Sect. 3 whose proof is left to Sect. 4. In the last section we discuss the
particular case of the Lipschitz continuous solutions.

2. Preliminaries

We denote by | · | and 〈 ·, ·〉 the Euclidean norm and scalar product in R
k,

respectively, and by μ the Lebesgue measure. Let (X, | · |X) be a normed space,
B(x, δ) stand for the closed ball in X with radius δ > 0 centered at x ∈ X and
B = B(0, 1). For a nonempty subset C ⊂ X we denote the interior of C by
int C, the boundary of C by ∂C, the convex hull of C by co C, its closure by
co C, and the distance from x ∈ X to C by dC(x) := inf {|x − y|X : y ∈ C}. If
X = R

k, in what follows “ − ” stands for the negative polar cone of a set, i.e.,
C− =

{
p ∈ R

k : 〈 p, c〉 � 0 ∀c ∈ C
}
. Moreover, we denote the positive polar

cone of C by C+ := −C−.
Let I and J be two closed intervals in R. We denote by L1(I;J) the set

of all J-valued Lebesgue integrable functions on I. We say that f ∈ L1
loc(I;J)

if f ∈ L1(K;J) for any compact subset K ⊂ I. We denote by Lloc the set of
all functions f ∈ L1

loc([0,∞);R+) such that limσ→0 θf (σ) = 0, where θf (σ) =
sup

{∫
J

f(τ) dτ : J ⊂ [0,∞), μ(J) � σ
}
. We recall that for a function q ∈

L1
loc([0,∞);R) the integral

∫ ∞
t0

q(s) ds := limT→∞
∫ T

t0
q(s) ds, whenever this

limit exists.
Let D ⊂ R

n be nonempty and {Ah}h∈D be a family of nonempty subsets
of Rk. The upper and lower limits, in the Kuratowski-Painlevé sense, of Ah at
h0 ∈ D are the closed sets defined respectively by

Lim sup
h→Dh0

Ah =
{

v ∈ R
k : lim inf

h→Dh0
dAh

(v) = 0
}

,

Lim inf
h→Dh0

Ah =
{

v ∈ R
k : lim sup

h→Dh0

dAh
(v) = 0

}
.

Consider a nonempty subset E ⊂ R
k and x ∈ E. The contingent cone

TE(x) to E at x is defined as the set of all vectors v ∈ R
k such that lim infh→0+

dE(x + hv)
h

= 0. The limiting normal cone to E at x, written NE(x), is de-

fined by NE(x) := Lim sup y→Ex TE(y)−. It is known that NE(x)− ⊂ TE(x)
whenever E is closed. The Clarke tangent cone is defined by NE(x)−.

Let ϕ : Rk → R ∪ {±∞} be an extended real function. We write domϕ
for the domain of ϕ, epi ϕ for the epigraph of ϕ, and hypoϕ for the hypograph
of ϕ. The (Fréchet) subdifferential, respectively the (Fréchet) superdifferential,
of ϕ at x0 ∈ dom ϕ are the possibly empty sets defined by

∂−ϕ(x0) =
{

p ∈ R
k : lim inf

x→x0

ϕ(x) − ϕ(x0) − 〈 p, x − x0〉
|x − x0| � 0

}
,

∂+ϕ(x0) = −∂−(−ϕ)(x0).
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The contingent epiderivative and the contingent hypoderivative of ϕ at
x0 ∈ dom ϕ, in the direction u ∈ R

k, written D↑ϕ(x0)(u) and D↓ϕ(x0)(u),
respectively, are defined by

D↑ϕ(x0)(u) = lim inf
h→0+, u′→u

ϕ(x0 + hu′) − ϕ(x0)
h

,

D↓ϕ(x0)(u) = −D↑(−ϕ)(x0)(u).

It is well known that (cfr. [1, Proposition 6.1.4])

epi D↑ϕ(x0) = Tepiϕ(x0, ϕ(x0)) & hypoD↓ϕ(x0) = Thypoϕ(x0, ϕ(x0)).

(1)

From [7] we know that, for a measurable mapping ϕ, p ∈ ∂−ϕ(x0) if and only
if there exists a continuous function ψ : Rk → R, differentiable at x0, such that
ψ(x) < ϕ(x) for all x �= x0, ϕ(x0) = ψ(x0), and ∇ψ(x0) = p. If in addition
ϕ is continuous, then ψ can be chosen to be of class C1. In this respect for a
lower semicontinuous function ϕ the notion of the (Fréchet) subdifferential we
consider differs from the one in [9], where only continuous viscosity solutions
were investigated and C1 support functions were used. Similar remark can be
made about superdifferentials.

A set-valued map F : R
k � R

n taking nonempty values is said to be
upper semicontinuous at x ∈ R

k if for any ε > 0 there exists δ > 0 such that
F (x′) ⊂ F (x)+εB for all x′ ∈ B(x, δ). If F is upper semicontinuous at every x,
then it is said to be upper semicontinuous. F is said to be lower semicontinuous
at x ∈ R

k if Lim inf y→x F (y) ⊂ F (x). F is said to be lower semicontinuous if
F is lower semicontinuous at every x ∈ R

k. F is called continuous at x ∈ R
k if

it is lower and upper semicontinuous at x and it is continuous if it is continuous
at each point x.

Definition 2.1. A set-valued map P : I � R
k is locally absolutely continuous if

it takes nonempty closed images and for any [S, T ] ⊂ I, every ε > 0, and any
compact subset K ⊂ R

k, there exists δ > 0 such that for any finite partition
S � t1 < τ1 � t2 < τ2 � · · · � tm < τm � T of [S, T ],

m∑
i=1

(τi − ti) < δ =⇒
m∑

i=1

max
{

d̃P (ti)(P (τi) ∩ K), d̃P (τi)(P (ti) ∩ K)
}

< ε,

where d̃E(E′) := inf {β > 0 : E′ ⊂ E + βB} for any E,E′ ⊂ R
k (the infimum

over an empty set is +∞, by convention).

3. Main result

Consider the infinite horizon optimal control problem

minimize
∫ ∞

t0

L(t, x(t), u(t)) dt (2)
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over all the trajectory-control pairs of the state constrained control system on
I = [t0,∞) {

x′(t) = f(t, x(t), u(t)), u(t) ∈ U(t), for a.e. t ∈ I

x(t0) = x0, x(I) ⊂ A,
(3)

where f : [0,∞) × R
n × R

m → R
n and L : [0,∞) × R

n × R
m → R are given,

A is a nonempty closed subset of Rn, U : [0,∞) � R
m is a Lebesgue measur-

able set-valued map with closed nonempty images and (t0, x0) ∈ [0,∞) × A
is the initial datum. Every trajectory-control pair (x(·), u(·)) that satisfies the
state constrained control system (3) on an interval of the form I = [t0, T ] or
I = [t0,∞) is called feasible on I. We refer to such x(·) as a feasible trajectory.
The infimum of the cost functional in (2) over all feasible trajectory-control
pairs on I = [t0,∞), with the initial datum (t0, x0), is denoted by V (t0, x0)
(if no feasible trajectory-control pair exists at (t0, x0), or if the integral in
(2) is not defined for any feasible pair, we set V (t0, x0) = +∞). The func-
tion V : [0,∞) × A → R ∪ {±∞} is called the value function of problem
(2)–(3). We say that (x̄(·), ū(·)) is an optimal trajectory-control pair at (t0, x0)
∈ ([0,∞) × A) ∩ dom V if V (t0, x0) =

∫ ∞
t0

L(s, x̄(s), ū(s)) ds. Finally,

H (t, x, p) := sup
u∈U(t)

(〈 f(t, x, u), p〉 − L(t, x, u))

is the Hamiltonian function associated to the above problem.
We denote by (h) the following assumptions on f and L:

(h) (i) ∀x ∈ R
n the mappings f(·, x, ·) and L(·, x, ·) are Lebesgue-Borel

measurable and there exists φ ∈ L1([0,∞);R) such that L(t, x, u) �
φ(t) for a.e. t � 0 and all (x, u) ∈ R

n × R
m;

(ii) ∃ c ∈ L1
loc([0,∞);R+) such that for a.e. t � 0 and for all x ∈ R

n,
u ∈ U(t)

|f(t, x, u)| + |L(t, x, u)| � c(t)(1 + |x|);

(iii) for a.e. t � 0 and all x ∈ R
n, the set-valued map

R
n � y � {(f(t, y, u), L(t, y, u)) : u ∈ U(t)} (4)

is continuous with closed images, and the set

{(f(t, x, u), L(t, x, u) + r) : u ∈ U(t), r � 0} (5)

is convex.

We denote by (h)′ the assumptions (h) with the further requirement:

(iv) ∃ k ∈ L1
loc([0,∞);R+) such that for a.e. t � 0 and for all x, y ∈ R

n,
u ∈ U(t)

|f(t, x, u) − f(t, y, u)| + |L(t, x, u) − L(t, y, u)| � k(t)|x − y|,
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and by (h)′′ the assumptions (h)′ with the further:
(v) k ∈ Lloc;
(vi) ∃ q ∈ Lloc such that for a.e. t � 0

sup
u∈U(t)

(|f(t, x, u)| + |L(t, x, u)|) � q(t), ∀x ∈ ∂A.

Moreover, we denote by (B) and (OPC) the following assumptions:
(B) dom V �= ∅ and there exist T > 0 and ψ ∈ L1([T,∞);R+) such that for

all (t0, x0) ∈ dom V ∩([T,∞)×R
n) and any feasible trajectory-control

pair (x(·), u(·)) on I = [t0,∞), with x(t0) = x0,

|L(t, x(t), u(t))| � ψ(t) for a.e. t � t0;

(OPC) there exist η > 0, r > 0, M � 0 such that for a.e. t > 0 and any
y ∈ ∂A + ηB, and any v ∈ f(t, y, U(t)), with infn∈N1

y,η
〈n, v〉 � 0, we

can find w ∈ f(t, y, U(t)) ∩ B(v,M) satisfying

inf
n∈N1

y,η

{〈n,w〉, 〈n,w − v〉} � r,

where N1
y,η := {n ∈ ∂B : n ∈ coNA(x), x ∈ ∂A ∩ B(y, η)}.

We denote by (IPC) the condition (OPC) in which f(t, y, U(t)) is replaced by
−f(t, y, U(t)).

Remarks 3.1. (i) If L(t, x, u) = e−λtl(t, x, u), with l bounded and λ > 0,
then (B) is satisfied.

(ii) If f(t, ·, u) and L(t, ·, u) are continuous, uniformly in u ∈ U(t), then the
set-valued map in (4) is continuous for a.e. t � 0.

Define the augmented Hamiltonian H : [0,∞) × R
n × R

n × R → R by

H(t, x, p, q) = sup
u∈U(t)

(〈 f(t, x, u), p〉 − qL(t, x, u)) .

Definition 3.2. A function W : [0,∞) × A → R ∪ {+∞} is called a weak (or
viscosity) solution of H–J–B equation on (0,∞) × A if there exists a set C ′ ⊂
(0,∞), with μ(C ′) = 0, such that for all (t, x) ∈ dom W ∩ (((0,∞)\C ′) × ∂A)

−pt + H(t, x,−px,−q) � 0 ∀ (pt, px, q) ∈ TepiW (t, x,W (t, x))−
, (6)

and for all (t, x) ∈ dom W ∩ (((0,∞)\C ′) × int A)

−pt + H(t, x,−px,−q) = 0 ∀ (pt, px, q) ∈ TepiW (t, x,W (t, x))−
. (7)

The next theorem ensures the existence and uniqueness of (weak) so-
lutions of the Hamilton–Jacobi–Bellman equation in the class of the lower
semicontinuous functions vanishing at infinity.

Theorem 3.3. Assume (h)′′ and (OPC). Let W : [0,∞) × A → R ∪ {+∞} be
a lower semicontinuous function such that dom V (t, ·) ⊂ dom W (t, ·) �= ∅ for
all large t > 0 and

lim
t→∞ sup

y∈domW (t,·)
|W (t, y)| = 0. (8)

Then the following statements are equivalent:
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(i) W=V;
(ii) W is a weak solution of H–J–B equation on (0,∞)×A and t � epi W (t, ·)

is locally absolutely continuous.

Moreover, if in addition (B) holds true, then V is the unique weak solution
satisfying (8) with locally absolutely continuous t � epi V (t, ·).
Remarks 3.4. (i) The proof of Theorem 3.3 given below implies that instead

of lower semicontinuity of W we can assume that

lim inf
s→0+, y→Ax

W (s, y) = W (0, x) ∀x ∈ A,

to get the same conclusion as in Theorem 3.3.
(ii) Proposition 4.4-(v) and Remark 4.1-(i) below imply that under the as-

sumptions (h) and (OPC), if dom(V ) �= ∅, then the set-valued map
t � epi V (t, ·) is locally absolutely continuous even though V may be
discontinuous.

(iii) From the proof of implication (ii) =⇒ (i) of Theorem 3.3 given in Sect. 4,
it follows that Theorem 3.3 holds true again if the condition (8) is replaced
by the weaker requirement

lim inf
t→∞ sup

y∈domW (t,·)
|W (t, y)| = 0,

and assuming further regularity:

∃ τ > 0 : lim inf
s→t−, y→int Ax

W (s, y) = W (t, x) ∀ (t, x) ∈ (τ,∞) × A. (9)

By Proposition 4.4-(iii) given below and [6, Theorem 2], the value func-
tion V satisfies (9) whenever (h) and (OPC) hold true.

(iv) Under the assumption (OPC), if for all large t � 0 and all x ∈ A{
D↑W (t, x)(−1,−v) : v ∈ F (t, x) ∩ int (NA(x)−)

} ∩ R �= ∅,

then condition (9) is satisfied. Indeed, let τ > 0 be such that for all
t ∈ (τ,+∞) and x ∈ A there exists v̄ ∈ F (t, x) ∩ int (NA(x)−) with
finite D↑W (t, x)(−1,−v̄). Then, by [24, Theorem 2], there exists η > 0
such that x + sw ∈ A for all w ∈ B(v̄, η) and s ∈ [0, η]. Now, by the
definition of contingent epiderivative there exists α ∈ R and hi → 0+,
wi → v̄ satisfying W (t − hi, x − hiwi) − W (t, x) � αhi for all i. Since
x − hiwi ∈ int A for all large i, passing to the lower limit as i → ∞ and
using the lower semicontinuity of W , we get (9).

(v) Under the assumptions of Theorem 3.3 and that f and L are continuous,
by [23, Theorem 1], the statement (i) of Theorem 3.3 is equivalent to the
following: for all (t, x) ∈ dom W ∩ ((0,∞) × ∂A)

−pt + H (t, x,−px) � 0 ∀ (pt, px) ∈ ∂−W (t, x),

and for all (t, x) ∈ dom W ∩ ((0,∞) × intA)

−pt + H (t, x,−px) = 0 ∀ (pt, px) ∈ ∂−W (t, x).



NoDEA Hamilton–Jacobi–Bellman Equations Page 9 of 24 7

4. Proofs

For a set-valued map G : I × R
k � R

k taking nonempty values, a locally
absolutely continuous function x : I → R

k is called a G-trajectory if x′(t) ∈
G(t, x(t)) for a.e. t ∈ I.

Let us define the set-valued maps G : [0,∞)×R
n � R

n ×R, F : [0,∞)×
R

n � R
n, and G̃ : [0,∞) × R

n × R � R
n × R by

G(t, x) :={(f(t, x, u),−L(t, x, u)−r) : u∈U(t), r∈ [0, c(t)(1+|x|)−L(t, x, u)]} ,

F (t, x) := f(t, x, U(t)) & G̃(t, x, v) := G(t, x).

Remarks below follow directly from the assumptions.

Remarks 4.1. (i) Notice that, if (OPC) holds true, then

−F (t, x) ∩ TA(x) �= ∅ for a.e. t � 0, ∀x ∈ A. (10)

(ii) Let (t0, x0) ∈ [0,∞)×R
n. Then, by Gronwall’s lemma and our growth as-

sumptions, any absolutely continuous trajectory x : [t0,∞) → R
n solving

the differential equation in (3) and starting from x0 at time t0 satisfies
1 + |x(t)| � (1 + |x0|) e

∫ t
t0

c(s) ds for all t � t0. In particular, feasible tra-
jectories starting at the same initial condition are uniformly bounded on
every finite time interval. Moreover, setting for all R > 0

γR(t) := (1 + R) c(t)e
∫ t
0 c(s) ds ∀t � 0,

it follows that γR ∈ L1
loc([0,∞);R+) and for any R > 0, any (t0, x0) ∈

[0,∞)×(A∩B(0, R)), and any feasible trajectory-control pair (x(·), u(·))
on I = [t0,∞), with x(t0) = x0, we have

|f(t, x(t), u(t))| + |L(t, x(t), u(t))| � γR(t) for a.e. t � t0.

(iii) To apply the results from [15, Sections 2 and 4] we extend them to maps
with sublinear growth in the following way: letting R > 0 and T > 0, the
set-valued map G∗ : [0, T ]×R

n+1 � R
n+1 defined by G∗(t,X) = G̃(t,X)

for any (t,X) ∈ [0, T ] × B(0,M) and G∗(t,X) = G̃(t, π(X)) for any
(t,X) ∈ [0, T ] × (Rn+1\B(0,M)), where π(·) stands for the projection
operator onto B(0,M) and M = R + 2

∫ T

0
γR(s) ds, satisfies

sup
v∈G∗(t,X), X∈Rn+1

|v| � 2γR(t) for a.e. t ∈ [0, T ].

Thus, X : [t0, T ] → R
n+1, with X(t0) ∈ B(0, R), is a G∗-trajectory if and

only if it is G̃-trajectory on [t0, T ].
(iv) Since we assume that the set-valued map U(·) takes nonempty images,

so are G(·) and F (·). Moreover, (OPC) implies that A is the closure of
its interior. Similarly, for (IPC).

Proposition 4.2. Under assumption (h), for all x ∈ R
n the set-valued maps

F (·, x) and G(·, x) are Lebesgue measurable. Furthermore, for a.e. t � 0 the
set-valued maps G(t, ·) and F (t, ·) are continuous with closed convex images.
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Proof. The first statement follows from assumption (h)-(i). Notice that, by (h)-
(iii), for a.e. t � 0, F (t, ·) is continuous and F (t, x) is closed convex, since it is
the projection of the closed set in (4) and the convex set in (5). Now, consider
t � 0 and x ∈ R

n such that {(f(t, x, u), L(t, x, u)) : u ∈ U(t)} is closed and
(h)-(ii) holds true. Let (f(t, x, uk),−L(t, x, uk) − rk) → (a, b) ∈ R

n × R with
uk ∈ U(t) and rk ∈ [0, c(t)(1 + |x|) − L(t, x, uk)] for all k. Since {L(t, x, uk)}k

is bounded we deduce that {rk}k is bounded. So, we may assume that rk →
r � 0. Then (f(t, x, uk), L(t, x, uk)) → (a,−b − r), and, by closedness, there
exists u ∈ U(t) such that a = f(t, x, u) and −b − r = L(t, x, u). This proves
that G(t, x) is closed.

Now, let t ∈ [0,∞) be such that x � {(f(t, x, u), L(t, x, u)) : u ∈ U(t)}
is continuous. Then x � G1(t, x) := {(f(t, x, u),−L(t, x, u)) : u ∈ U(t)} and
x � G2(t, x) := {(f(t, x, u),−c(t)(1 + |x|) : u ∈ U(t)} are continuous. Thus
x � G1(t, x)∪G2(t, x) is continuous, and it follows that Γ : x � co (G1(t, x)∪
G2(t, x)) is continuous too (cfr. [1]). Since G(t, x) = Γ(x), we deduce that
G(t, x) is convex and G(t, ·) is continuous. �

In the same way as the proof of continuity of G(t, ·) in the above Propo-
sition, we show the next result.

Proposition 4.3. If (h)′ holds true, then for a.e. t � 0 the set-valued map
G(t, ·) is Lipschitz continuous with constant k(t) + c(t).

The following Proposition summarizes some properties satisfied by the
value function V .

Proposition 4.4. Assume (h). Then

(i) V is lower semicontinuous and for any (t, x) ∈ dom V there exists an
optimal trajectory-control pair (x̄(·), ū(·)) at (t, x). Moreover, for any x ∈
A

lim inf
s→0+, y→Ax

V (s, y) = V (0, x); (11)

(ii) there exists a set C ⊂ [0,∞), with μ(C) = 0, such that for any (t, x) ∈
dom V ∩ (([0,∞)\C) × A)

∃ ū ∈ U(t), D↑V (t, x)(1, f(t, x, ū)) � −L(t, x, ū); (12)

(iii) there exists a set C ′ ⊂ (0,∞), with μ(C ′) = 0, such that for any (t, x) ∈
dom V ∩ (((0,∞)\C ′) × int A)

∀u ∈ U(t), D↑V (t, x)(−1,−f(t, x, u)) � L(t, x, u); (13)

(iv) there exists a set C ′′ ⊂ (0,∞), with μ(C ′′) = 0, such that for any (t, x) ∈
dom V ∩ (((0,∞)\C ′′) × int A)

∀u ∈ U(t), −L(t, x, u) � D↓V (t, x)(1, f(t, x, u)); (14)

(v) if (10) holds true and dom V �= ∅ then t � epi V (t, ·) is locally absolutely
continuous.
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Remark 4.5. We would like to underline that the local absolute continuity of
t � epi V (t, ·) does not yield local absolute continuity or even continuity of
V (·, x). It implies however that lim infs→t0−, x→Ax0 V (s, x) = V (t0, x0) for all
(t0, x0) ∈ dom V ∩((0,∞)×A) and that lim infs→t0+, x→Ax0 V (s, x) = V (t0, x0)
for all (t0, x0) ∈ dom V ∩ ([0,∞) × A).

Proof of Proposition 4.4. The first two statements in (i) are well known. Let
x ∈ A. If V (0, x) = +∞ then, since V is lower semicontinuous, (11) holds true.
Suppose next that (0, x) ∈ dom V . Consider an optimal trajectory-control pair
(x̄(·), ū(·)) at (0, x). Then, by the dynamic programming principle, for all s � 0

V (s, x̄(s)) = V (0, x) −
∫ s

0

L(ξ, x̄(ξ), ū(ξ)) dξ.

So, lims→0+ V (s, x̄(s)) = V (0, x). The lower semicontinuity of V ends the proof
of (i).

To prove (ii), let j ∈ N
+. From [15, Corollary 2.7] applied to the set-

valued map G̃, there exists a set Cj ⊂ [0, j], with μ(Cj) = 0, such that for any
(t0, x0) ∈ (([0, j]\Cj) × A) ∩ dom V and any optimal trajectory-control pair
(x̄(·), ū(·)) at (t0, x0),

∅ �= Lim sup
ξ→t0+

{
1

ξ − t0

(
x̄(ξ) − x0,−

∫ ξ

t0

L(s, x̄(s), ū(s)) ds

)}
⊂ G(t0, x0).

(15)

Furthermore, by the dynamic programming principle, for all t � t0

V (t, x̄(t)) − V (t0, x0) = −
∫ t

t0

L(s, x̄(s), ū(s)) ds.

So, dividing by t − t0 this equality, passing to the lower limit as t → t0+, and
using (15), we get (12). Then (ii) follows setting C = ∪j∈N+Cj .

We prove next (iii). Let j ∈ N
+. From Remark 4.1-(iii), [15, Theorem 2.9]

applied to the set-valued map −G̃(j−·, ·, ·), and from the measurable selection
theorem, we can find a subset C ′

j ⊂ [1/j, j], with μ(C ′
j) = 0, such that for any

(t0, x0) ∈ ((1/j, j]\C ′
j)× int A and any u0 ∈ U(t0) there exist t1 ∈ [1/j, t0) and

a trajectory-control pair ((x, v), (u, r))(·) satisfying⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(x′(t), v′(t)) = (f(t, x(t), u(t)),−L(t, x(t), u(t)) − r(t)) for a.e. t ∈ [t1, t0]
(x(t0), v(t0)) = (x0, 0)
u(t) ∈ U(t), r(t) ∈ [0, c(t)(1 + |x(t)|) − L(t, x(t), u(t))] for a.e. t ∈ [t1, t0]
(x′(t0), v′(t0)) = (f(t0, x0, u0),−L(t0, x0, u0)),

(16)
and x([t1, t0]) ⊂ A. Hence, if (t0, x0) ∈ dom V , by the dynamic programming
principle it follows that for all s ∈ [t1, t0]

V (s, x(s)) − V (t0, x0)
t0 − s

� 1
t0 − s

(v(s) − v(t0)).

Passing to the lower limit when s → t0−, we have that

D↑V (t0, x0)(−1,−f(t0, x0, u0)) � L(t0, x0, u0).
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Since u0 ∈ U(t0) is arbitrary and setting C ′ = ∪j∈N+C ′
j , we get (iii). Moreover,

arguing in a similar way, we deduce that (iv) holds true as well.
Now, assume (10) and that domV �= ∅. Notice that the value function V

is bounded from the below and since it is lower semicontinuous, t � epi V (t, ·)
takes closed images. Let (t̄, x̄) ∈ dom V . Then, by the dynamic programming
principle, it follows that the set-valued map t � epi V (t, ·) takes nonempty
values on [t̄,∞). If t̄ > 0, consider τ ∈ [0, t̄).

Set P (t) = A for all t ≥ 0. From (10) it follows that ({1} × (−F (t, x)) ∩
TgraphP (t, x) �= ∅ for a.e. t ∈ (τ, t̄] and all x ∈ A. Hence, Remark 4.1-(iii), the
viability theorem [15, Theorem 4.2] applied to the set-valued map −F (t̄ − ·, ·)
and the constant tube P (·) ≡ A, and the measurable selection theorem, imply
that there exists a feasible trajectory-control pair (x̃(·), ũ(·)) on I = [τ, t̄]
satisfying x̃(t̄) = x̄. So, applying again the dynamic programming principle and
since τ ∈ [0, t̄) is arbitrary, it follows that t � epi V (t, ·) takes nonempty values
on [0, t̄]. Now, fix 0 � t1 � t0. Let K ⊂ R

n+1 be a nonempty compact subset,
(x1, v1) ∈ epi V (t1, ·) ∩ K, and put R = maxy∈K |y|. Consider an optimal
trajectory-control pair (x̄(·), ū(·)) at (t1, x1). Then

V (t1, x1) −
∫ t0

t1

φ(s) ds =
∫ ∞

t1

L(s, x̄(s), ū(s)) ds −
∫ t0

t1

φ(s) ds

�
∫ ∞

t0

L(s, x̄(s), ū(s)) ds = V (t0, x̄(t0)).

Since v1 � V (t1, x1) we get (x̄(t0), v1 − ∫ t0
t1

φ(s) ds) ∈ epi V (t0, ·). Hence we
deduce that

(x1, v1) ∈ epi V (t0, ·) +
∫ t0

t1

(γR(s) + |φ(s)|) dsB.

On the other hand, let (x0, v0) ∈ epi V (t0, ·) ∩ K. Applying again Remark 4.1-
(iii), the viability theorem [15, Theorem 4.2], and the measurable selection the-
orem, we deduce that there exists a feasible trajectory-control pair (x̃(·), ũ(·))
on I = [t1, t0] satisfying x̃(t0) = x0. So, by the dynamic programming princi-
ple, we get V (t1, x̃(t1)) � V (t0, x0)+

∫ t0
t1

L(s, x̃(s), ũ(s)) ds � v0+
∫ t0

t1
γR(s) ds,

i.e., (x̃(t1), v0+
∫ t0

t1
γR(s) ds) ∈ epi V (t1, ·). Finally, since (x0, v0) = (x̃(t1), v0+∫ t0

t1
γR(s) ds) + (x0 − x̃(t1),−

∫ t0
t1

γR(s) ds), we conclude

(x0, v0) ∈ epi V (t1, ·) + 2
∫ t0

t1

γR(s) dsB,

and so (v) follows. �

The proof of the following lemma can be found in the “Appendix”.

Lemma 4.6. Assume (h)′. Let W : [0,∞) × A → R ∪ {+∞} be such that
t � epi W (t, ·) is locally absolutely continuous. If there exists a set C ′ ⊂ (0,∞),
with μ(C ′) = 0, such that for all (t, x) ∈ dom W ∩ (((0,∞)\C ′) × intA)

−pt + H(t, x,−px,−q) � 0 ∀ (pt, px, q) ∈ TepiW (t, x,W (t, x))−
, (17)
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then for all 0 < τ0 < τ1 and any feasible trajectory-control pair (x(·), u(·)) on
I = [τ0, τ1], with x([τ0, τ1]) ⊂ int A and (τ1, x(τ1)) ∈ dom W , the solution w(·)
of {

w′(t) = −L(t, x(t), u(t)) for a.e. t ∈ [τ0, τ1]
w(τ1) = W (τ1, x(τ1))

(18)

satisfies

(x(t), w(t)) ∈ epi W (t, ·) ∀t ∈ [τ0, τ1].

Remark 4.7. By the definition of local absolutely continuity, our assumption
implies that epiW (t, ·) is a nonempty closed set for all t � 0. In particular,
dom W (t, ·) �= ∅ and W (t, ·) is lower semicontinuous for all t � 0.

Arguing in analogous way as in the proof of Lemma 4.6, we have the
following result involving the hypograph:

Lemma 4.8. Assume (h)′. Let W : [0,∞) × A → R ∪ {+∞} be such that

t � {(x, v) : v � W (t, x) �= +∞}
is locally absolutely continuous. If there exists a set C ′ ⊂ (0,∞), with μ(C ′) =
0, such that for all (t, x) ∈ dom W ∩ (((0,∞)\C ′) × int A)

−pt + H(t, x,−px,−q) � 0 ∀ (pt, px, q) ∈ ThypoW (t, x,W (t, x))+,

then for all 0 < τ0 < τ1 and any feasible trajectory-control pair (x(·), u(·)) on
I = [τ0, τ1], with x([τ0, τ1]) ⊂ int A and (τ0, x(τ0)) ∈ dom W , the solution w(·)
of {

w′(t) = −L(t, x(t), u(t)) for a.e. t ∈ [τ0, τ1]
w(τ0) = W (τ0, x(τ0))

(19)

satisfies

(x(t), w(t)) ∈ hypo W (t, ·) ∀t ∈ [τ0, τ1].

Proposition 4.9. Let W : [0,∞) × A → R∪ {+∞} be such that t � epi W (t, ·)
is locally absolutely continuous.
(i) If (h)(i)–(ii) hold true and G(t, ·) is upper semicontinuous, with closed

convex images, for a.e. t � 0, then the following two statements are
equivalent:
(a) there exists a set C ⊂ (0,∞), with μ(C) = 0, such that for all

(t, x) ∈ dom W ∩ (((0,∞)\C) × A)

∃ ū ∈ U(t), D↑W (t, x)(1, f(t, x, ū)) � −L(t, x, ū); (20)

(b) there exists a set C ′ ⊂ (0,∞), with μ(C ′) = 0, such that for all
(t, x) ∈ dom W ∩ (((0,∞)\C ′) × A)

−pt + H(t, x,−px,−q) � 0 ∀ (pt, px, q) ∈ TepiW (t, x,W (t, x))−
.

(ii) If (h)′ holds true, then the following two statements are equivalent:
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(a)′ there exists a set C ⊂ (0,∞), with μ(C) = 0, such that for all
(t, x) ∈ dom W ∩ (((0,∞)\C) × int A)

∀u ∈ U(t), D↑W (t, x)(−1,−f(t, x, u)) � L(t, x, u); (21)

(b)′ there exists a set C ′ ⊂ (0,∞), with μ(C ′) = 0, such that for all
(t, x) ∈ dom W ∩ (((0,∞)\C ′) × intA)

−pt + H(t, x,−px,−q) � 0 ∀ (pt, px, q) ∈ TepiW (t, x,W (t, x))−
.

Proof. We prove (i). Suppose (a). Fix (t, x) ∈ dom W ∩ (((0,∞)\C) × A) and
let (pt, px, q) ∈ TepiW (t, x,W (t, x))−. From (1) and (20), we have (1, f(t, x, ū),
−L(t, x, ū)) ∈ TepiW (t, x,W (t, x)). Thus pt + 〈 px, f(t, x, ū)〉 − qL(t, x, ū) � 0,
and so

−pt + H(t, x,−px,−q) � 0.

Suppose next that (b) is satisfied and let j ∈ N
+. By the separation

theorem, (b) implies that

({1} × G(t, x)) ∩ co TepiW (t, x,W (t, x)) �= ∅ (22)

for all (t, x) ∈ dom W ∩ (((0, j)\C ′) × A). By [15, Corollary 2.7] and [12,
Corollary 3.2], for a set Cj ⊂ [0, j], with μ(Cj) = 0, and for all t0 ∈ [0, j]\Cj

and all (x0, v0) ∈ epi W (t0, ·) there exists a G̃-trajectory (x, v)(·) on [t0, j],
with (x(t0), v(t0)) = (x0, v0), satisfying (x, v)(t) ∈ epiW (t, ·) for all t ∈ [t0, j]
and

∅ �= Lim sup
ξ→t0+

{
1

ξ − t0
(x(ξ) − x0, v(ξ) − v(t0))

}
⊂ G(t0, x0).

Taking v0 = W (t0, x0), by the measurable selection theorem we conclude
that there exist two measurable functions u(·) and r(·), with u(t) ∈ U(t)
and r(t) ∈ [0, c(t)(1 + |x(t)|) − L(t, x(t), u(t))] for a.e. t ∈ [t0, j], such that
v(t) = W (t0, x0) − ∫ t

t0
L(s, x(s), u(s)) ds − ∫ t

t0
r(s) ds � W (t, x(t)) for any

t ∈ [t0, j]. Then

v(t) − v(t0) � W (t, x(t)) − W (t0, x0) ∀ t ∈ [t0, j].

So, dividing by t − t0 the last inequality and passing to the lower limit as
t → t0+, (20) follows for C = ∪j∈N+Cj .

To prove (ii), suppose that (h)′ holds true. Assuming (a)′ and arguing
similarly to (i), we can conclude that there exists C ′ ⊂ (0,∞), with μ(C ′) = 0,
such that −pt + H(t, x,−px,−q) � 0 for all (pt, px, q) ∈ TepiW (t, x,W (t, x))−

and all (t, x) ∈ dom W ∩(((0,∞)\C ′)×int A). Now, assume (b)′ and let j ∈ N
+.

From Remark 4.1-(iii), Proposition 4.2, and [15, Theorem 2.9] applied to the
set-valued map G̃(j−·, ·), and the measurable selection theorem, we can find a
subset Cj ⊂ [1/j, j], with μ(Cj) = 0, such that for any (t0, x0) ∈ ((1/j, j]\Cj)×
int A and any u0 ∈ U(t0) there exist t1 ∈ [1/j, t0) and a trajectory-control pair
((x, v), (u, r))(·) satisfying (16) and x([t1, t0]) ⊂ intA. From Lemma 4.6 we
get

v(s) − v(t0) � W (s, x(s)) − W (t0, x(t0)) ∀ s ∈ [t1, t0].
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Hence, dividing by t0 − s, passing to the lower limit as s → t0−, and since
u0 ∈ U(t0) is arbitrary, we have (21) after taking C = ∪j∈N+Cj . �

Proof of Theorem 3.3. By Proposition 4.9, (ii) is equivalent to the following:

(iii) there exists a set C ⊂ (0,∞), with μ(C) = 0, such that for all (t, x) ∈
dom W ∩ (((0,∞)\C) × A)

∃ ū ∈ U(t), D↑W (t, x)(1, f(t, x, ū)) � −L(t, x, ū), (23)

for all (t, x) ∈ dom W ∩ (((0,∞)\C) × int A)

∀u ∈ U(t), D↑W (t, x)(−1,−f(t, x, u)) � L(t, x, u), (24)

and t � epi W (t, ·) is locally absolutely continuous.

Furthermore, the implication (i) =⇒ (iii) follows from Proposition 4.4. We
have to prove (ii) =⇒ (i). Fix (t0, x0) ∈ (0,∞) × A.

We first show that W (t0, x0) � V (t0, x0). If W (t0, x0) = +∞, then
W (t0, x0) � V (t0, x0). Suppose next that (t0, x0) ∈ dom W . From the separa-
tion theorem and (6) we deduce (22) for all (t, x) ∈ dom W ∩(([0,∞)\C ′)×A).
By [12, Corollary 3.2] applied with P (t) = epi W (t, ·) there exists an absolutely
continuous trajectory X0(·) = (x0(·), v0(·)) solving⎧⎪⎪⎪⎨

⎪⎪⎪⎩
X ′(t) ∈ G̃(t,X(t)) for a.e. t ∈ [t0, t0 + 1], X(t) = (x(t), v(t))
x([t0, t0 + 1]) ⊂ A

x(t0) = x0, v(t0) = W (t0, x0)
v(t) � W (t, x(t)) ∀t ∈ [t0, t0 + 1].

(25)

We claim that for any j ∈ N
+ the trajectory X0(·) admits an extension on

the interval [t0, t0 + j] to a G̃-trajectory Xj(·) satisfying (25) on [t0, t0 + j].
We proceed by the induction argument on j ∈ N

+. Let j ∈ N
+ and suppose

that Xj(·) = (xj(·), vj(·)) satisfies the claim. Then, using (22) and applying
again [12, Corollary 3.2] on the time interval [t0 + j, t0 + j + 1], we can find a
G̃-trajectory X(·) = (x(·), v(·)) satisfying⎧⎪⎪⎪⎨

⎪⎪⎪⎩
X ′(t) ∈ G̃(t,X(t)) for a.e. t ∈ [t0 + j, t0 + j + 1]
x([t0 + j, t0 + j + 1]) ⊂ A

x(t0 + j) = xj(t0 + j), v(t0 + j) = vj(t0 + j)
v(t) � W (t, x(t)) ∀t ∈ [t0 + j, t0 + j + 1].

Putting Xj+1(t) = (xj(t), vj(t)) if t ∈ [t0, t0 + j] and Xj+1(t) = (x(t), v(t)) if
t ∈ (t0+j, t0+j+1], we deduce that Xj+1(·) satisfies our claim. Now, consider
the G̃-trajectory X(t) = (x(t), v(t)) given by

X(t) = Xj(t) if t ∈ [t0 + j, t0 + j + 1].

By the measurable selection theorem, there exist two measurable functions
u(·) and r(·), with u(t) ∈ U(t) and r(t) ∈ [0, c(t)(1 + |x(t)|) − L(t, x(t), u(t))]
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for a.e. t � t0, such that v(t) = W (t0, x0) − ∫ t

t0
L(s, x(s), u(s)) ds − ∫ t

t0
r(s) ds

for all t � t0. Then

W (t0, x0) � W (t, x(t)) +
∫ t

t0

L(s, x(s), u(s)) ds ∀ t � t0. (26)

Thus (t, x(t)) ∈ dom W for all t � t0. Since L(t, ·, ·) � φ(t) for a.e. t � 0, where
φ ∈ L1([0,∞);R), it follows that the limit limt→∞

∫ t

t0
L(s, x(s), u(s)) ds exists.

So, using (8) and passing to the limit in (26) as t → ∞ yields W (t0, x0) �∫ ∞
t0

L(s, x(s), u(s)) ds. Therefore W (t0, x0) � V (t0, x0). Consequently W � V .
We show next that W (t0, x0) � V (t0, x0) for all (t0, x0) ∈ [0,∞) × A. If

V (t0, x0) = +∞, then V (t0, x0) � W (t0, x0). So, let us assume that (t0, x0) ∈
dom V . Fix ε > 0. By our assumptions, there exists T ′ > t0 such that
domV (t, ·) ⊂ domW (t, ·) for all t � T ′ and

sup
y∈domW (t,·)

|W (t, y)| � ε ∀ t � T ′. (27)

Let (x̄(·), ū(·)) be an optimal trajectory-control pair at (t0, x0) and consider
si ↑ +∞ with {si}i ⊂ (T ′,∞). Put X̄(·) = (x̄(·), z̄(·)) where z̄(t) = − ∫ t

t0
L(s, x̄(s), ū(s)) ds. For all (t, x, w) ∈ [0,∞) × R

n × R define

Q(t, x, w) := {(f(t, x, u), L(t, x, u)) : u ∈ U(t)} .

Applying [6, Theorem 2] we deduce that for any i there exists a Q-trajectory
Xi(·) = (xi(·), zi(·)) solving⎧⎪⎨

⎪⎩
X ′

i(t) ∈ Q(t,Xi(t)) for a.e. t ∈ [t0, si]
Xi(si) = (x̄(si), z̄(si))
xi(t) ∈ int A ∀ t ∈ [t0, si)

and

lim
i→∞

∥∥Xi − X̄
∥∥

∞,[t0,si]
= 0.

Hence, by the measurable selection theorem, for any i there exists a measurable
selection ui(t) ∈ U(t) such that (xi(·), ui(·)) satisfies⎧⎪⎨

⎪⎩
x′

i(t) = f(t, xi(t), ui(t)) for a.e. t ∈ [t0, si]
xi(si) = x̄(si)
xi(t) ∈ int A ∀ t ∈ [t0, si),

lim
i→∞

xi(t0) = x̄(t0), (28)

and

lim
i→∞

∫ si

t0

L(s, xi(s), ui(s)) ds =
∫ ∞

t0

L(s, x̄(s), ū(s)) ds. (29)

Now, fix i ∈ N
+ and consider {τj}j ⊂ (T ′, si) with τj → si. Note that, by the

dynamic programming principle, xi(τj) ∈ dom V (τj , ·) for all j. Consider the
solution wj(·) of the Cauchy problem
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{
w′(t) = −L(t, xi(t), ui(t)) for a.e. t ∈ [t0, τj ]
w(τj) = W (τj , xi(τj)).

From Lemma 4.6, we conclude that∫ τj

t0

L(s, xi(s), ui(s)) ds + W (τj , xi(τj)) � W (t0, xi(t0)) ∀j.

Hence, by (27),∫ τj

t0

L(s, xi(s), ui(s)) ds + ε � W (t0, xi(t0)) ∀j,

and taking the limit as j → ∞ we get
∫ si

t0
L(s, xi(s), ui(s)) ds+ε�W (t0, xi(t0)).

Passing now to the lower limit as i → ∞, using (28), (29), and the lower
semicontinuity of W , we have

∫ ∞
t0

L(s, x̄(s), ū(s)) ds + ε � W (t0, x0), i.e.,
V (t0, x0) + ε � W (t0, x0). Since ε is arbitrary, we conclude that V (t0, x0) �
W (t0, x0). Hence V = W on (0,∞) × A.

Since t � epi W (t, ·) is locally absolutely continuous and W is lower
semicontinuous, lim infs→0+, y→Ax W (s, y) = W (0, x) for all x ∈ A. So, fix
x0 ∈ A. From (11) and what precede, we have

W (0, x0) = lim inf
s→0+, y→Ax0

W (s, y) = lim inf
s→0+, y→Ax0

V (s, y) = V (0, x0).

Now, assume in addition (B). Let t̄ ∈ [0,∞) be such that dom V (t̄, ·) �= ∅.
By (OPC) this implies that domV (t, ·) �= ∅ for all t ∈ [0, t̄]. Moreover, by the
dynamic programming principle, it follows that domV (s, ·) �= ∅ for all s � t̄.
Hence,

|V (s, y)| �
∫ ∞

s

ψ(ξ) dξ ∀y ∈ dom V (s, ·), ∀ s � T.

So, we deduce that V satisfies (8). �

5. Lipschitz continuous solutions

In [6] we provided sufficient conditions for the local Lipschitz continuity of
the value function under state constraints. Before stating an existence and
uniqueness result for Lipschitz continuous solutions (in the Crandall–Lions
sense) of H–J–B equation, we show a geometric result (in the spirit of Sect. 3)
involving the hypographs of functions.

Proposition 5.1. Under all the assumptions of Theorem 3.3 suppose that the
set-valued map

t � {(x, v)∈A × R : v � W (t, x) �= +∞} is locally absolutely continuous.

(30)
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Then the following statements are equivalent:
(i) W = V ;
(ii) there exists a set C ′ ⊂ (0,∞), with μ(C ′) = 0, such that for all (t, x) ∈

dom W ∩ (((0,∞)\C ′) × A)

−pt + H(t, x,−px,−q) � 0 ∀ (pt, px, q) ∈ TepiW (t, x,W (t, x))−
,

for all (t, x) ∈ dom W ∩ (((0,∞)\C ′) × int A)

−pt + H(t, x,−px,−q) � 0 ∀ (pt, px, q) ∈ ThypoW (t, x,W (t, x))+,

and t � epi W (t, ·) is locally absolutely continuous.

Proof. Notice first of all that by the definition of locally absolutely continuous
set-valued map, the hypograph of W (t, ·) restricted to dom W (t, ·) is closed.
Assume (i). From Proposition 4.4-(iv), we can find a subset C ⊂ (0,∞),
with μ(C) = 0, such that for any (t0, x0) ∈ ((0,∞)\C) × intA we have
−L(t0, x0, u0) � D↓V (t0, x0)(1, f(t0, x0, u0)) for all u0 ∈ U(t0), i.e., recalling
(1),

(1, f(t0, x0, u0),−L(t0, x0, u0)) ∈ ThypoV (t0, x0, V (t0, x0)) ∀u0 ∈ U(t0).

So,

−pt + H(t, x,−px,−q) � 0 ∀ (pt, px, q) ∈ ThypoV (t, x, V (t, x))+.

The first inequality in (ii) follows from Theorem 3.3.
Now assume (ii). By Theorem 3.3 and the proof of (ii) =⇒ (i) of The-

orem 3.3, it is just sufficient to show (24). Arguing as in the proof of Propo-
sition 4.4-(iii), there exists C ′ ⊂ (0,∞), with μ(C ′) = 0, such that for any
(t0, x0) ∈ ((0,∞)\C ′) × intA and u0 ∈ U(t0), we can find t1 ∈ (0, t0) and a
trajectory-control pair ((x, v), (u, r))(·) satisfying (16) and x([t1, t0]) ⊂ int A.
By Lemma 4.8, taking {si}i ⊂ (t1, t0) with si → t0−, we get that for all i the
solution wi(·) of{

w′(t) = −L(t, x(t), u(t)) for a.e. t ∈ [si, t0]
w(si) = W (si, x(si)),

satisfies wi(t0) = W (si, x(si)) − ∫ t0
si

L(s, x(s), u(s)) ds � W (t0, x(t0)). Hence

W (si, x(si)) − W (t0, x0) �
∫ t0

si
L(s, x(s), u(s)) ds � v(si) for all i. Dividing by

t0 − si and passing to the lower limit as i → ∞, we have the conclusion. �

Remark 5.2. Assuming further that f , L, and W : [0,∞)×A → R are continu-
ous functions, then, using the same arguments as in the proofs of [10, Theorem
4.3 and Lemma 4.3], the assumption (30) in Proposition 5.1 can be skipped
and (i) is equivalent to the following:{

−pt + H (t, x,−px) � 0 ∀(t, x) ∈ (0,∞) × A, ∀ (pt, px) ∈ ∂−W (t, x)
−pt + H (t, x,−px) � 0 ∀ (t, x) ∈ (0,∞) × int A, ∀ (pt, px) ∈ ∂+W (t, x).

From Theorem 3.3 and Proposition 5.1 we get immediately the following
three corollaries.
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Corollary 5.3. Assume (h)′′ and (OPC). Let W : [0,∞) × A → R ∪ {+∞} be
a lower semicontinuous function such that dom V (t, ·) ⊂ dom W (t, ·) �= ∅ for
all large t > 0 and (8) holds true. Suppose that

μ{ t ∈ [0,∞) : ∃x ∈ A, (t, x) ∈ dom W,

{0} �= TepiW (t, x,W (t, x))− ⊂ R × R
n × {0} } = 0.

Then the following statements are equivalent:
(i) W = V ;
(ii) there exists a set C ′ ⊂ (0,∞), with μ(C ′) = 0, satisfying for all (t, x) ∈

dom W ∩ (((0,∞)\C ′) × ∂A)

−pt + H (t, x,−px) � 0 ∀ (pt, px) ∈ ∂−W (t, x),

for all (t, x) ∈ dom W ∩ (((0,∞)\C ′) × int A)

−pt + H (t, x,−px) = 0 ∀ (pt, px) ∈ ∂−W (t, x),

and t � epi W (t, ·) is locally absolutely continuous.

Corollary 5.4. Under all the assumptions of Corollary 5.3 suppose that the
set-valued map

t � {(x, v) ∈ A × R : v � W (t, x) �= +∞} ,

is locally absolutely continuous and

μ{ t ∈ [0,∞) : ∃x ∈ A, (t, x) ∈ dom W,

{0} �= ThypoW (t, x,W (t, x))+ ⊂ R × R
n × {0} } = 0.

Then the following statements are equivalent:
(i) W = V ;
(ii) there exists a set C ′ ⊂ (0,∞), with μ(C ′) = 0, satisfying for all (t, x) ∈

dom W ∩ (((0,∞)\C ′) × A)

−pt + H (t, x,−px) � 0 ∀ (pt, px) ∈ ∂−W (t, x),

for all (t, x) ∈ dom W ∩ (((0,∞)\C ′) × int A)

−pt + H (t, x,−px) � 0 ∀ (pt, px) ∈ ∂+W (t, x),

and t � epi W (t, ·) is locally absolutely continuous.

Remark 5.5. Let W : [0,∞)×A → R be a locally Lipschitz continuous function.
Then it is well known that{

0 �= (pt, px, q) ∈ TepiW (t, x,W (t, x))− =⇒ q �= 0
0 �= (pt, px, q) ∈ ThypoW (t, x,W (t, x))+ =⇒ q �= 0,

and if ∂−W (t, x) �= ∅, then TepiW (t, x,W (t, x))− = ∪λ�0 λ(∂−W (t, x),−1).
Similarly, if ∂+W (t, x) �= ∅, then ThypoW (t, x,W (t, x))+ = ∪λ�0 λ(∂+W
(t, x),−1).

From Corollary 5.4 and Remark 5.5, we deduce the following:
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Corollary 5.6. Assume (h)′′ and (OPC). Let W : [0,∞) × A → R be a locally
Lipschitz continuous function satisfying (8). Then the following statements are
equivalent:
(i) W = V ;
(ii) there exists a set C ′ ⊂ (0,∞), with μ(C ′) = 0, satisfying for all (t, x) ∈

dom W ∩ (((0,∞)\C ′) × A)

−pt + H (t, x,−px) � 0 ∀ (pt, px) ∈ ∂−W (t, x),

for all (t, x) ∈ dom W ∩ (((0,∞)\C ′) × int A)

−pt + H (t, x,−px) � 0 ∀ (pt, px) ∈ ∂+W (t, x).

Now, let l : [0,∞)×R
n×R

m → [0,∞) be a bounded measurable function.
Let us denote by (h)′′′ the assumptions (h)′′ with L replaced by l with the

further requirement: lim supt→∞
1
t

∫ t

0
(c(s) + k(s)) ds < ∞. For any λ > 0 we

put

L(t, x, u) = e−λtl(t, x, u). (31)

Proposition 5.7. Assume (31), (h)′′′, and (IPC).
Then, there exists λ̄ > 0 such that for all λ � λ̄ the value function V is

the unique locally Lipschitz continuous function on [0,∞) × A satisfying⎧⎪⎨
⎪⎩

−pt + H (t, x,−px) � 0 ∀ (pt, px) ∈ ∂−V (t, x), for a.e. t > 0, ∀x ∈ A

−pt + H (t, x,−px) � 0 ∀ (pt, px) ∈ ∂+V (t, x), for a.e. t > 0, ∀x ∈ int A,

limt→∞ supy∈A |V (t, y)| = 0.

(32)

Proof. From [6, Theorem 4] and the proof of [6, Corollary 1] it follows that
there exists λ̄ > 0 such that for all λ � λ̄ the value function V is locally
Lipschitz continuous on [0,∞)×A. Moreover, arguing as in the proofs (i) =⇒
(ii) of Theorem 3.3 and Proposition 5.1, and from Remarks 3.1-(i) and 5.5, we
deduce that V satisfies (32).

Now, let W : [0,∞) × A → R be a locally Lipschitz continuous function
satisfying (32). From the proof (ii) =⇒ (i) of Theorem 3.3 it follows that
W � V on (0,∞) × A. Let (t0, x0) ∈ (0,∞) × A, (x̄(·), ū(·)) be optimal at
(t0, x0), and ε > 0, T ′ > t0 such that (27) holds true. Consider si ↑ +∞ with
{si}i ⊂ (T ′,∞). Fix i ∈ N

+ and let {τj}j ⊂ (t0, s0) and {yj}j ⊂ int A be such
that τj → t0 and yj → x0. Repeating the same arguments as in the proof of
the implication (ii) =⇒ (i) of Theorem 3.3 and using [6, Theorem 2], we show
that for all j there exists a measurable selection uj(·) ∈ U(·) on [τj , si] such
that (xj(·), uj(·)) satisfies⎧⎪⎨

⎪⎩
x′

j(t) = f(t, xj(t), uj(t)) for a.e. t ∈ [τj , si]
xj(τj) = yj

xj(t) ∈ intA ∀ t ∈ [τj , si],

lim
j→∞

‖xj − x̄‖∞,[τj ,si]
= 0, (33)
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and

lim
j→∞

∫ si

τj

L(s, xj(s), uj(s)) ds =
∫ si

t0

L(s, x̄(s), ū(s)) ds. (34)

Consider the solution wj(·) of the Cauchy problem{
w′(t) = −L(t, xj(t), uj(t)) for a.e. t ∈ [τj , si]
w(τj) = W (τj , yj).

From Lemma 4.8 we get

W (τj , yj) −
∫ si

τj

L(s, xj(s), uj(s)) ds � W (si, xj(si)) ∀ j.

So, by (27), passing to the limit as j → ∞, using (33), (34), and the continuity
of W , we have W (t0, x0) �

∫ si

t0
L(s, x̄(s), ū(s)) ds + ε. Then, passing to the

limit as i → ∞ and since ε is arbitrarily small, we get W (t0, x0) � V (t0, x0).
Finally, since V = W on (0,∞) × A, from the continuity of V and W ,

the conclusion follows.
�

Remark 5.8. We would like to underline that, in light of results in [6, Section 5],
if assumptions (31) and (h)′′′ hold true, then there exists a positive constant
K such that for any t � 0 the Lipschitz constant of V (t, ·) is proportional
to e−(λ−K)t and for any λ > K and any feasible trajectory x(·) we have
limt→∞ V (t, x(t)) = 0. Hence, in order (32) to be satisfied, λ has to be larger
than K.
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Appendix

Proof of Lemma 4.6. Notice that, by the separation theorem, (17) is equiv-
alent to {−1} × (−G(t, x)) ⊂ co TepiW (t, x, v) for all v � W (t, x) and all
(t, x) ∈ (((0,∞)\C ′) × intA) ∩ dom W . Let 0 < τ0 < τ1. Thus

(1, f̃(s, x, u), L̃(s, x, u)) ∈ co TgraphQ(s, x, v) (35)

for a.e. s ∈ [0, τ1 − τ0], any (x, v) ∈ Q(s) ∩ (int A × R), and any u ∈ U(s),
where f̃(s, x, u) := −f(τ1 − s, x, u), L̃(s, x, u) := L(τ1 − s, x, u), and Q(s) :=
epi W (τ1−s, ·). Consider a trajectory-control pair (x(·), u(·)) solving (3) on I =
[τ0, τ1], with x([τ0, τ1]) ⊂ int A and (τ1, x(τ1)) ∈ dom W . Putting ũ(·) = u(τ1−
·), we claim that dQ(s)((y(s), w̃(s))) = 0 for all s ∈ [0, τ1 − τ0], where y(·) =
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x(τ1−·) and w̃(·) = w(τ1−·) are the unique solutions of y′(s) = f̃(s, y(s), ũ(s))
and w̃′(s) = L̃(s, y(s), ũ(s)) a.e. s ∈ [0, τ1 − τ0], respectively, with y(0) = x(τ1)
and w̃(0) = W (τ1, x(τ1)). Putting g(s) = dQ(s)((y(s), w̃(s))), from [15, Lemma

4.8], applied to the single-valued map s �
{

(f̃(s, y(s), ũ(s)), L̃(s, y(s), ũ(s)))
}

,
it follows that g(·) is absolutely continuous. Pick (ξ(s), r(s)) ∈ Q(s) with
g(s) = |(y(s), w̃(s)) − (ξ(s), r(s))| for all s ∈ [0, τ1−τ0]. We claim that g(·) ≡ 0
on (0, τ1 − τ0]. Indeed, otherwise, we can find T ∈ (0, τ1 − τ0] with g(T ) > 0.
Denoting t∗ = sup {t ∈ [0, T ] : g(t) = 0}, let ε > 0 be such that ξ(s) ∈ intA
and g(s) > 0 for any s ∈ (t∗, t∗ + ε]. Consider s ∈ (t∗, t∗ + ε) where g(·),
y(·), and w̃(·) are differentiable, with y′(s) = f̃(s, y(s), ũ(s)) and w̃′(s) =
L̃(s, y(s), ũ(s)). Let (θ, v) ∈ TgraphQ(s, ξ(s), r(s)) and θi → θ, vi → v, hi → 0+
satisfy

(ξ(s), r(s)) + hivi ∈ Q(s + hiθi) ∀i.

Then, setting Z = (y(s), w̃(s)) and Y = (ξ(s), r(s)), we get

g(s + hiθi) − g(s) � |(y(s + hiθi), w̃(s + hiθi)) − Y − hivi| − |Z − Y | .
Dividing this inequality by hi and passing to the limit as i → ∞ we have

g′(s)θ � 〈 p,
(
f̃(s, y(s), ũ(s)), L̃(s, y(s), ũ(s))

)
θ − v〉, (36)

where p =
Z − Y

|Z − Y | . Since (36) holds for any (θ, v) ∈ TgraphQ(s, ξ(s), r(s)),

taking convex combinations of elements in TgraphQ(s, ξ(s), r(s)) we conclude
that (36) holds for all (θ, v) ∈ co TgraphQ(s, ξ(s), r(s)). By (35) the inequality
(36) holds true for

θ = 1 & v =
(
f̃(s, ξ(s), ũ(s)), L̃(s, ξ(s), ũ(s))

)
.

Therefore g′(s) � k(s) |y(s) − ξ(s)| � k(s)g(s). From the Gronwall lemma we
conclude that g(·) ≡ 0 on [t∗, t∗ + ε], leading to a contradiction. Thus g = 0
and the proof is complete. �
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