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Abstract. We study viscosity solutions to parabolic p(x, t)-Laplacian equa-
tions on Riemannian manifolds under the assumption that a continuous
exponent function p is Lipschitz continuous with respect to spatial vari-
ables, and satisfies 1 < p− ≤ p(x, t) ≤ p+ < ∞ for some constants
1 < p− ≤ p+ < ∞. Using Ishii–Lions’ method, a Lipschitz estimate of
viscosity solutions is established on Riemannian manifolds with sectional
curvature bounded from below.
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1. Introduction

In this paper, we consider viscosity solutions to the parabolic p(x, t)-Laplacian
equation

Δp(x,t)u + |∇u|p(x,t)−2+q〈V,∇u〉 − ∂tu = f (1.1)

over a complete Riemannian manifold M of dimension n. Here an exponent
function p : M × [0,∞) → R satisfies that 1 < p− ≤ p(x, t) ≤ p+ < ∞ for
some constants 1 < p− ≤ p+ < ∞, q ∈ [0, 1) is a constant, and V is a bounded
vector field on M × (0,∞). The p(x, t)-Laplacian operator defined by

Δp(x,t)u := div
(
|∇u|p(x,t)−2∇u

)

appears in the study of motions of the non-Newtonian fluids, particularly
electro-rheological fluids. There is an extensive literature on elliptic/parabolic
problems with a variable exponent of nonlinearity in the context of divergent
equations (in the Euclidean space); for instance, we refer to [1–4,42,43] for
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parabolic problems. With regard to regularities of weak solutions for the par-
abolic p(x, t)-Laplacian equations, a local boundedness and a Hölder estimate
have been established in [19,44] in the framework of Orlicz–Sobolev spaces,
provided that p is logarithmic Hölder continuous in space-time variables with
1 < p− ≤ p+ < ∞. A Hölder estimate for the spatial gradient of weak solutions
was proved in [2,15,45] under the assumption that p is Hölder continuous with
max

(
1, 2n

n+2

)
< p− ≤ p+ < ∞ (see also [25] for partial regularity). Lastly,

we mention [5,9,14,26,46] and references therein for Calderón–Zygmund esti-
mates and higher integrability results.

The p(x, t)-Laplacian operator can be expressed in non-divergence form
as follows:

Δp(x,t)u = |∇u|p(x,t)−2 tr
{(

I +
(
p(x, t) − 2

) ∇u

|∇u| ⊗ ∇u

|∇u|
)

D2u

}

+ |∇u|p(x,t)−2 log |∇u|
〈
∇p,∇u

〉
,

(1.2)

provided that p is differentiable with respect to spatial variables. The p(x, t)-
Laplacian operator becomes degenerate at a point (x, t) where the gradient
of u vanishes with p(x, t) > 2 while it is singular at a point (y, s) with zero
gradient of u and 1 < p(y, s) < 2. In this paper, we are concerned with
a Lipschitz estimate of viscosity solutions to the parabolic p(x, t)-Laplacian
equation (1.1) on M × (0,∞) with a non-homogenous right-hand side, under
the assumption that a continuous exponent function p is Lipschitz continuous
in spatial variables; see the condition (1.3).

In the Euclidean space, Ishii and Lions in [31] proved a Lipschitz regular-
ity of viscosity solutions to fully nonlinear elliptic/parabolic equations, which
are continuous with respect to all variables including ∇u and D2u, and pos-
sibly degenerate. Ishii–Lions’ method based on a doubling variable technique
was adapted by Imbert–Jin–Silvestre in [30] to prove a Lipschitz estimate
for viscosity solutions to the singular/degenerate parabolic p-Laplacian type
equation ∂tu = |∇u|γ Δpu with the constants p > 1 and γ > −p. Moreover, a
Hölder estimate for the spatial gradient of viscosity solutions was also obtained
in [30] provided with the constants p > 1 and γ > 1 − p. We also mention [35]
for the result on parabolic normalized p-Laplacian operators (when γ = 2−p),
and refer to [12,13,22,28–30] and references therein for relevant results in the
context of non-divergent p-Laplacian equations.

To show a Lipschitz estimate of viscosity solutions to (1.1) on M ×(0,∞),
we employ the approach in [30] which relies on Ishii–Lions’ method [31], with
the help of Jensen’s sup- and inf-convolutions. When we deal with viscosity
solutions on Riemannian manifolds, there is a smoothness issue of test func-
tions such that the squared distance function from a point is not smooth on
the cut locus of the point, as well as the non-smoothness of viscosity solutions.
In order to overcome difficulties from the non-smoothness of viscosity solu-
tions and test functions in the Riemannian case, an appropriate regularization
would be required, and Jensen’s regularization by sup- and inf-convolutions
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plays a role in this paper. Jensen’s regularization is a standard approxima-
tion in the context of viscosity solutions (see [17,33,34] for the Euclidean
case) and was studied in the setting of Riemannian manifolds in order to
establish regularities of viscosity solutions in [39], where a geometric property
of sup- and inf-convolutions: semi-convexity and semi-concavity respectively,
was useful in dealing with the non-smoothness of test functions due to the cut
locus. We mention [16,38–40] for Krylov–Safonov type Harnack inequalities
and Hölder estimates on Riemannian manifolds, where certain non-divergent
techniques in the Euclidean space have been adapted for the operators includ-
ing p-Laplacian elliptic operators and uniform parabolic operators. It is worth
noting that a lower bound of Ricci curvature of the underlying manifold is a
natural assumption for Harnack inequalities of the p-Laplacian operator (with
a constant exponent p > 1) in [40] and the heat operator in [38], whereas
sectional curvature bounded from below is taken into account for the analysis
of p(x, t)-Laplacian operators owing to nonlinearity of a variable exponent.

Compared to Jensen’s regularization used in this paper, the authors in
[30] considered a smooth solution uδ (δ > 0) of the approximating equation

∂tuδ =
(|∇uδ|2 + δ2

) γ+p−2
2 tr

{(
I + (p − 2)

∇uδ ⊗ ∇uδ

|∇uδ|2 + δ2

)
D2uδ

}

in Ω × (0, T ) ⊂ R
n × [0,∞) with the Dirichlet boundary data uδ = u on the

parabolic boundary ∂p

(
Ω × (0, T ]

)
. Here, Ω ⊂ R

n is a bounded domain, and u
is a viscosity solution of ∂tu = |∇u|γ Δpu. They established uniform gradient
estimates for uδ with respect to δ > 0, and then such gradient estimates hold
for the solution u by utilizing results on existence, uniqueness and stability
of approximating solutions uδ (see also [41]). On an arbitrary Riemannian
manifold which may be compact, it is not always possible to construct smooth
solutions uδ as above which approximate a viscosity solution to (1.1), so we
apply Ishii–Lions’ method to regularized solutions by Jensen’s sup- and inf-
convolutions in the Riemannian case.

Regarding the notion of viscosity solutions to the parabolic p(x, t)-
Laplacian equation (1.1) (see Definition 2.1), we adapt the definition by
Demengel in [23]. A main difficulty in defining viscosity solutions for singular
operators lies in the fact that one can not test functions at a point where the
gradient of a solution is zero, which has been dealt with by many authors
in [10,18,27,32,37,41]. In particular, Demengel in [23] obtained existence and
regularity results on viscosity solutions of the parabolic p-Laplacian equations
with non-homogenous right-hand sides in the Euclidean space (for a constant
exponent p ∈ (1,∞)). Moreover, she proved equivalence between a viscosity
solution introduced in [23] and a viscosity solution defined by Ohnuma–Sato
[41] in the case of the homogeneous parabolic p-Laplacian equation (f ≡ 0 and
V ≡ 0 in (1.1)). We remark that the authors in [41] defined viscosity solutions
utilizing a certain class of admissible test functions when the gradient of a
solution vanishes, which was employed in [30].

We end the introduction by stating our main result. Below and hereafter,
let (M, g) be a smooth, complete Riemannian manifold of dimension n, where
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g is the Riemannian metric. We denote 〈X,Y 〉 := g(X,Y ) and |X|2 := 〈X,X〉
for X,Y ∈ TxM , where TxM is the tangent space at x ∈ M . Let d(·, ·) be the
distance function on M . For a given point y ∈ M , dy(·) denotes the distance
function from y, i.e., dy(x) = d(x, y). Throughout this paper, a continuous
function p is assumed to be differentiable with respect to spatial variables,
and to satisfy

| p(x, t) − p(y, s) | ≤ θ d(x, y) + ω0 (|t − s|) (1.3)

for x, y ∈ B2R(z0) ⊂ M and t, s ∈ (0, T ], where θ is a positive constant and
ω0 : [0,∞) → [0,∞) is a non-negative function with ω0(0+) = 0, and

1 < p− ≤ p(x, t) ≤ p+ < ∞ (1.4)

for any (x, t) ∈ B2R(z0) × (0, T ] with some constants p− and p+.

Theorem 1.1. Assume that sectional curvature is bounded from below by −κ
for κ ≥ 0, i.e., Sec ≥ −κ. Let 0 < R ≤ R0 < ∞, T > 0, and p : B2R(z0) ×
(0, T ] ⊂ M × [0,∞) → R satisfy (1.3) and (1.4) on B2R(z0) × (0, T ]. Let
u ∈ C (B2R(z0) × (0, T ]) be a viscosity solution of

Δp(x,t)u + |∇u|p(x,t)−2+q〈V,∇u〉 − ∂tu = R−p(x,t) f (1.5)

in B2R(z0) × (0, T ] for a constant q ∈ [0, 1) and a vector field V with
‖V ‖L∞(B2R(z0)×(0,T ]) ≤ β. Then we have that for any x, y ∈ BR(z0) and
t, s ∈ ( T/2, T ],

|u(x, t) − u(y, s)| ≤ C

(
d(x, y)

R
+

|t − s|1/2

T 1/2

)

where a constant C > 0 depends only on n, p−, p+, q,
√

κR0, θ max(e,R0 log
R0), βR1−q

0 , T−1 max (Rp− , Rp+), T max (R−p− , R−p+), ‖u‖L∞(B2R(z0)×(0,T ]),
and ‖f‖L∞(B2R(z0)×(0,T ]).

Consider a modulus of continuity ω0 in time for a variable exponent p in
(1.3) given by

ω0(τ) =

⎧
⎨
⎩

c0

1 + | log τ | ∀ 0 < τ < 1;

c0 ∀ τ ≥ 1;
(1.6)

with a nonnegative constant c0. Letting p0 := p(z0, 0), we observe that for any
(x, t), (y, s) ∈ B2R(z0) × [0, Rp0 ],

Rp(x,t)−p(y,s) ≤ max
(
1, e4θ max(e,R0 log R0)+c0 max(1, log R0)

)

in light of (1.3) and (1.6) since

|p(x, t) − p(y, s)| · | log R| ≤ 4θR| log R| + ω0(|t − s|)| log R|
≤ 4θ max (e,R0 log R0) + c0 max (1, log R0) .

Thus it holds that

T−1Rp(x,t) = Rp(x,t)−p0 ≤ C and TR−p(x,t) = Rp0−p(x,t) ≤ C

for a constant C > 0 depending on θ max (e,R0 log R0) and c0 max (1, log R0)
and hence a locally uniform estimate follows:
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Corollary 1.2. Assume that Sec ≥ −κ for κ ≥ 0. Let 0 < R ≤ R0 < ∞, and p :
B2R(z0)× [0, Rp0 ] → R satisfy (1.3) with (1.6) and (1.4) on B2R(z0)× [0, Rp0 ],
where p0 := p(z0, 0). Let u ∈ C (B2R(z0) × (0, Rp0 ]) be a viscosity solution of
(1.5) in B2R(z0) × (0, Rp0 ] for a constant q ∈ [0, 1) and a vector field V with
‖V ‖L∞(B2R(z0)×(0,Rp0 ]) ≤ β. Then we have that for any x, y ∈ BR(z0) and
t, s ∈ ( Rp0/2, Rp0 ],

|u(x, t) − u(y, s)| ≤ C

(
d(x, y)

R
+

|t − s|1/2

Rp0/2

)

where a constant C > 0 depends only on n, p−, p+, q,
√

κR0, θ max(e,
R0 log R0), c0 max (1, log R0), βR1−q

0 , ‖u‖L∞(B2R(z0)×(0,Rp0 ]), and
‖f‖L∞(B2R(z0)×(0,Rp0 ]).

This result can be seen as a generalization of a scaling-invariant Lipschitz
estimate for parabolic p-Laplacian equations with a constant p > 1 in the
Euclidean space. Moreover, considering the parabolic p-Laplacian equation
with a constant p > 1 on M with nonnegative sectional curvature, we have a
Liouville type theorem for eternal solutions.

Corollary 1.3. Assume that M has nonnegative sectional curvature: Sec ≥ 0.
If u is a bounded viscosity solution to the parabolic p-Laplacian equation with
a constant p > 1:

Δpu − ∂tu = 0 on M × R,

then u is a constant.

The rest of the paper is organized as follows. In Sect. 2, we give a notion of
viscosity solutions and some known results on Jensen’s regularization that are
used in the paper. Section 3 is devoted to proving a logarithmic-type Lipschitz
estimate in spatial variables to show a Lipschitz estimate of Theorem 1.1. In
Sect. 4, we prove an 1/2-Hölder estimate in time variable.

2. Viscosity solutions

We present a refined definition of viscosity solutions for singular parabolic
operators, which is adapted from [23].

Definition 2.1. (Viscosity solution) Let Ω be an open set in M and T > 0.
Define

G
(
x, t,∇u,D2u

)
:= Δp(x,t)u + |∇u|p(x,t)−2+q〈V,∇u〉

with the p(x, t)-Laplacian operator Δp(x,t)u as in (1.2) in non-divergence form.
For a function f : Ω × (0, T ] → R, we say that u ∈ C (Ω × (0, T ]) is a viscosity
supersolution (respectively subsolution) of the equation

G
(
x, t,∇u,D2u

)− ∂tu = f in Ω × (0, T ]

if the following holds: for any (x̄, t̄) ∈ Ω × (0, T ],
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(i) either if any function ϕ ∈ C2,1 (Ω × (0, T ]) satisfies that u−ϕ has a local
minimum (respectively maximum) at (x̄, t̄) in Ω×(0, t̄ ] with ∇ϕ(x̄, t̄) �= 0,
then it holds that

G
(
x̄, t̄,∇ϕ(x̄, t̄ ),D2ϕ(x̄, t̄ )

)− ∂tϕ(x̄, t̄ ) ≤ f(x̄, t̄ ) (respectively ≥);

(ii) or, if there exist ε > 0 and h ∈ C1
(
(t̄ − ε, t̄ ]

)
such that

⎧
⎪⎨
⎪⎩

inf
t∈(t̄−ε, t̄ ]

{
u(x̄, t) − h(t)

}
= u(x̄, t̄) − h(t̄) (respectively sup); and

inf
t∈(t̄−ε, t̄ ]

{
u(x, t) − h(t)

}
is locally constant in a neighborhood of x̄ (respectively sup),

then −h′(t̄ ) ≤ f(x̄, t̄ ) (respectively ≥).
We say that u is a viscosity solution if u is both a viscosity subsolution and a
viscosity supersolution.

Remark 2.2. (a) When a viscosity solution is independent of time variable,
the definition above is equivalent to the one for singular elliptic operators
given in [11,40].

(b) Assuming that either p > 2 in Ω × (0, T ] or p ≡ 2, the operator
G
(
x, t,∇u,D2u

)
is considered a continuous operator with respect to all

variables x, t, ∇u, and D2u by setting

G
(
x, t, 0, Q

)
=

{
0 when p > 2 in Ω × (0, T ];

trQ when p ≡ 2.
(2.1)

Then u is a usual parabolic viscosity supersolution of (1.1) if and only
if u is a viscosity supersolution of (1.1) in the sense of Definition 2.1,
provided that f is continuous.

When M = R
n, the above equivalence can be proved by a similar

argument to the proof of Lemma 2 in Appendix 2 of [23]. Indeed, in
light of (2.1), it is clear that a usual parabolic viscosity supersolution
is a viscosity supersolution in the sense of Definition 2.1. For the proof
of the converse, the condition (ii) of Definition 2.1 is useful as well as
the continuity of the operator G and the Lipschitz continuity of p with
respect to x. In the Riemannian setting, one can modify a proof of the
Euclidean case employing some arguments for the elliptic operators on
manifolds in [40, Lemma 3.2].

Remark 2.3. The notion of parabolic viscosity solutions in Definition 2.1 is
slightly different from the one introduced in Definition 1 of [23] (cf. [7,30,41]).
The difference with [23, Definition 1] is that for our refined parabolic viscosity
solutions, we do not impose any condition on what is to happen after t = t̄ for
admissible test functions; refer to [36,39].

Considering continuous parabolic operators (with respect to all variables
x, t, ∇u and D2u) on M = R

n, Juutinen in [36] called a viscosity solution
ignoring what happens after time t̄, a parabolic viscosity solution. The equiva-
lence between a parabolic viscosity solution and the one in the usual sense (as
for elliptic operators as in Definition 1 of [23]) was proved in [36, Theorem 1]
for continuous parabolic operators, where a crucial ingredient of the proof is
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the comparison principle for viscosity solutions in the usual sense. Due to the
(possible) singularity of the operator G (the condition (ii) of Definition 2.1)
and a variable exponent p, the approach of [36] seems not directly applicable
to the proof of the equivalence between Definition 2.1 and [23, Definition 1],
which we believe is worth further investigation.

The following technical lemma will be used in the proof of a Hölder
estimate in time (Lemma 4.1). The proof is similar to the one of Lemma 1 of
[23]; we omit it.

Lemma 2.4. Let u ∈ C (Ω × (0, T ]) be a subsolution of

Δp(x,t)u + β|∇u|p(x,t)−1+q − ∂tu ≥ f in Ω × (0, T ]

for constants β ∈ R and q ≥ 0, where f is a continuous function on Ω× (0, T ].
Suppose that for a point

(
x̄, t̄
) ∈ Ω × (0, T ] and a function h ∈ C1 ((0, t̄ ]), it

holds that

sup
Bε(x̄)×(t̄−ε, t̄ ]

{
u(x, t) − h(t) − C d k(x, x̄)

}
= u(x̄, t̄) − h(t̄ )

with some constants ε > 0, C ∈ R, and k > max
(

2, 1 +
1

p− − 1

)
. Then, we

have that −h′(t̄ ) ≥ f(x̄, t̄ ).

As mentioned in the introduction, we make use of sup- and inf-
convolutions by Jensen [33,34] in order to approximate viscosity solutions (see
also [17, Chapter 5]). Recall the definition of sup- and inf-convolutions from
[39]. For a bounded open set Ω ⊂ M and T2 > T0, let u be a continuous
function on Ω × [T0, T2]. For ε > 0, the inf-convolution of u (with respect to
Ω × (T0, T2]), denoted by uε, is defined as follows: for (x, t) ∈ Ω × [T0, T2],

uε(x, t) := inf
(y,s)∈Ω×[T0,T2]

{
u(y, s) +

1
2ε

(
d2(y, x) + |s − t|2)

}
.

In a similar way, we define the sup-convolution uε of u by

uε(x, t) := sup
(y,s)∈Ω×[T0,T2]

{
u(y, s) − 1

2ε

(
d2(y, x) + |s − t|2 )

}
.

For properties of sup- and inf-convolutions such as uniform convergence to u
as ε tends to 0, we refer to Section 3 of [39]. Below and hereafter, the same
notations as in [39] will be used. For example, SymTM denotes the bundle of
symmetric 2-tensors over M , and P2,±u stand for the second order parabolic
super- and sub-jets of u.

In the following lemma, we are concerned with a link between a viscosity
solution and its sup- and inf-convolutions. Before stating the lemma, limiting
parabolic super- and sub-jets P2,±

u of u at (x, t) ∈ Ω × (T0, T2] are defined as
follows:
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P2,±
u(x, t) :=

{
(a, ζ, A) ∈ R × TxM × Sym TMx : ∃ (xk, tk, ak, ζk, Ak)

∈ Ω × (T0, T2] × R × Txk
M × Sym TMxk

s. t. (ak, ζk, Ak) ∈ P2,±u(xk, tk), and

lim
k→∞

(xk, tk, ak, ζk, Ak) = (x, t, a, ζ, A)
}

;

see [6,7] for slightly stronger definitions of P2,±u and P2,±
u for a function

u defined on Ω × (T0, T2). The following lemma can be deduced from the
proof of [39, Proposition 3.3] considering the limiting sub-jet P2,−

u instead of
the sub-jet P2,−u. Similar properties for the limiting super-jet P2,+

u can be
obtained by using the facts that uε = − (−u)ε and P2,+

uε = −P2,−
(−uε) =

−P2,−
(−u)ε .

Lemma 2.5. Assume that Sec ≥ −κ on M for κ ≥ 0. Let H and Ω be bounded
open sets in M such that H ⊂ Ω, and T0 < T1 < T2. Let u ∈ C

(
Ω × [T0, T2]

)
,

and let ω be a modulus of continuity of u on Ω × [T0, T2]. Then there exists
ε0 > 0 depending only on ||u||L∞(Ω×[T0,T2]),H,Ω, T0, and T1, such that if 0 <

ε < ε0, then the following statements hold. Let (x0, t0) ∈ H × [T1, T2] and let
(a, ζ, A) ∈ P2,−

uε(x0, t0).
(a) There exists a point (y0, s0) ∈ Ω × (T0, T2] such that

y0 = expx0
(−εζ), s0 ∈ [t0 − 2

√
εm, t0 + 2

√
εm
] ∩ (T0, T2],

and

uε(x0, t0) = u(y0, s0) +
1
2ε

{
d2(y0, x0) + |s0 − t0|2

}
.

Here uε denotes the inf-convolution of u with respect to Ω × (T0, T2] for
ε > 0, and m := ||u||L∞(Ω×[T0,T2]).

(b) y0 �∈ Cut(x0), and there is a unique minimizing geodesic joining x0 to y0

which is contained in Ω. Moreover,

d2(y0, x0) = ε2 |ζ|2 ≤ 2ε ω
(
2
√

εm
)
.

(c)
(
a, Lx0,y0ζ, Lx0,y0A − κ min

{
ε |ζ|2, 2ω

(
2
√

εm
)}

I
) ∈ P2,−

u(y0, s0).

Here Lx0,y0 denotes the parallel transport along the unique minimizing
geodesic joining x0 to y0, and Lx0,y0A is a symmetric bilinear form on
Ty0M defined by

〈(Lx0,y0A) · ξ, ξ〉y0
:= 〈A · (Ly0,x0ξ) , Ly0,x0ξ〉x0

∀ξ ∈ Ty0M.

3. Lipschitz estimate

In order to prove a Lipschitz estimate for viscosity solutions to the parabolic
p(x, t)-Laplacian equation (1.5) on a Riemannian manifold M , we follow the
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proof of a Lipschitz estimate in [30] (in the Euclidean space) based on Ishii–
Lions’ method [31] with the use of a regularization of Jensen by sup- and
inf-convolutions. Firstly, we establish a logarithmic-type Lipschitz estimate
for viscosity solutions.

Proposition 3.1. Assume that Sec ≥ −κ on B2R(z0) for κ ≥ 0. Let 0 < R ≤
R0 < ∞, T > 0, and u ∈ C (B2R(z0) × (0, T ]) be a viscosity solution of (1.5)

in B2R(z0) × (0, T ] with 0 ≤ q < 1,

‖u‖L∞(B2R(z0)×(0,T ]) ≤ 1, ‖f‖L∞(B2R(z0)×(0,T ]) ≤ 1 and
‖V ‖L∞(B2R(z0)×(0,T ]) ≤ β (3.1)

for β ≥ 0. Then we have that for any x, y ∈ BR(z0) and t ∈ (T/2, T ],

|u(x, t) − u(y, t)| ≤ A1
d(x, y)

R

∣∣∣∣log
(

d(x, y)
R

)∣∣∣∣
2

+A2

{
1

R2
d2

z0
(x) +

1
R2

d2
z0

(y) +
1

T 2
(t − T )2

}
. (3.2)

Here constants A1 > 0 and A2 > 0 depend only on n, p−, p+, q,
√

κR0,
θ max (e,R0 log R0), βR1−q

0 , and T−1 max (Rp− , Rp+).

Proof. For 0 < ε < 1, we denote by uε and uε the inf- and sup-convolutions of
u with respect to B3R/2(z0) × [T/8, T ], respectively. Define a function Φ by

Φ(x, y, t) := A1φ

(
d(x, y)

R

)
+ A2

{
1

2R2
d2

z0
(x) +

1
2R2

d2
z0

(y) +
1

2T 2
(t − T )2

}
,

with φ given by

φ(r) =

{
r
∣∣ log r

∣∣2 for r ∈ [0, e−2
)
;

4e−2 for r ∈ [e−2,∞) .

Here positive constants A1 and A2 will be determined later. We consider

mε := sup
x,y∈BR(z0), T/2<t<T

{
uε(x, t) − uε(y, t) − Φ(x, y, t)

}
. (3.3)

Let ν ∈ (0, 1) be a constant. Once we have proved that mε ≤ ν for sufficiently
small ε > 0, we conclude that for any x, y ∈ BR(z0) and T/2 ≤ t ≤ T ,

u(x, t) − u(y, t) ≤ ν + A1φ

(
d(x, y)

R

)

+A2

{
1

2R2
d2

z0
(x) +

1
2R2

d2
z0

(y) +
1

2T 2
(t − T )2

}

using uniform convergence of uε and uε to u in B3R/2(z0)× [T/8, T ] as ε tends
to 0. This implies (3.2) since ν > 0 is arbitrary. Thus it suffices to show that
mε ≤ ν for sufficiently small ε > 0. Here ε > 0 may depend on u, ν and R.

Suppose to the contrary that mε > ν for small ε > 0. Let (x̄, ȳ, t̄) ∈
BR(z0) × BR(z0) × [T/2, T ] be a point such that

mε = uε(x̄, t̄ ) − uε(ȳ, t̄ ) − Φ(x̄, ȳ, t̄ ). (3.4)
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Then we have that

ν + A1φ

(
d(x̄, ȳ)

R

)
+ A2

{
1

2R2
d2

z0
(x̄) +

1
2R2

d2
z0

(ȳ) +
1

2T 2
(t̄ − T )2

}

< uε(x̄, t̄) − uε(ȳ, t̄) ≤ 3 (3.5)

for sufficiently small ε > 0 by uniform convergence of uε and uε to u and the
assumption (3.1). Selecting A2 > 1 large enough yields that

dz0(x̄)
R

+
dz0(ȳ)

R
≤ 2
√

6
A2

<
1
2

and |t̄ − T | ≤
√

6
A2

T <
1
4

T.

Here and below, we fix such a large constant A2 > 1, and hence we see that
(x̄, ȳ, t̄ ) ∈ BR(z0) × BR(z0) × (T/2, T ]. In light of (3.5), we obtain that

4δ

R
≤ φ

(
δ

R

)
≤ 3

A1
< e−4 with δ := d(x̄, ȳ), (3.6)

by choosing A1 > 1 large enough.
Let ω be a modulus of continuity of u on B3R/2(z0) × [T/8, T ] such that

ω : [0,∞) → [0,∞) is strictly increasing with ω(0+) = 0. Since

uε(x̄, t̄) − uε(ȳ, t̄) ≤ u(x̄, t̄) − u(ȳ, t̄) + ν/2

for sufficient small ε > 0 by uniform convergence of uε and uε to u in
B3R/2(z0) × [T/8, T ] as ε → 0, it follows from (3.5) that

ν < uε(x̄, t̄) − uε(ȳ, t̄) ≤ u(x̄, t̄) − u(ȳ, t̄) + ν/2 ≤ ω(δ) + ν/2. (3.7)

In light of (3.7), it holds that for sufficiently small ε > 0 satisfying that
ω
(
4
√

ε + θ−1ω0 (4
√

ε)
)

< ν/2,

4
√

ε + θ−1ω0

(
4
√

ε
)

< ω−1 (ν/2) < δ. (3.8)

In particular, we notice that δ > 0, that is, x̄ �= ȳ for sufficiently small ε >
0. �

Claim 3.2. x̄ �∈ {ȳ} ∪ Cut(ȳ) ∪ Cut(z0), and ȳ �∈ {x̄} ∪ Cut(x̄) ∪ Cut(z0).

We postpone the proof of Claim 3.2 after the proof of this proposition,
whose proof uses semi-convexity of uε and −uε, and the contacting property
(3.4) together with (3.3).

Since uε(·, t̄ ) and −uε(·, t̄ ) are semi-convex in BR(z0), it follows from the
contacting property (3.4) with (3.3), and Claim 3.2 that uε(·, t̄ ) and −uε(·, t̄ )
are differentiable at x̄ and ȳ, respectively, and

ξ := ∇uε(x̄, t̄ ) = ∇xΦ(x̄, ȳ, t̄) = A1
R φ′

(
δ

R

)
∇dȳ(x̄) + A2

2R2 ∇d2
z0

(x̄);

ζ := ∇uε(ȳ, t̄ ) = −∇yΦ(x̄, ȳ, t̄) = −A1
R φ′

(
δ

R

)
∇dx̄(ȳ) − A2

2R2 ∇d2
z0

(ȳ).

(3.9)

This implies that

ξ = Lȳ,x̄ ζ + η with η :=
A2

2R2
∇d2

z0
(x̄) +

A2

2R2
Lȳ,x̄∇d2

z0
(ȳ) (3.10)
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since ∇dȳ(x̄) = −Lȳ,x̄∇dx̄(ȳ). Choosing A1 > 1 large such that 8A2 ≤ A1, we
use (3.6), (3.9) and (3.10) to obtain

0 <
A1

2R
φ′
(

δ

R

)
≤ |ξ| , |ζ| ≤ 3A1

2R
φ′
(

δ

R

)
and |η| ≤ |ξ|

2
(3.11)

since

1 <
1
2

| log r|2 ≤ φ′(r) = | log r| ( | log r| − 2) ≤ | log r|2 ∀r ∈ (0, e−4
)
.

(3.12)
Here we also used the fact that |∇dx̄(ȳ)| = 1 = |∇dȳ(x̄)|.

In light of Claim 3.2, the test function Φ is of class C2,1
(
O
)

for a small

neighborhood O of (x̄, ȳ, t̄) and we notice that mε = sup(x,y,t)∈O, t≤T

{
uε(x, t)−

uε(y, t) − Φ(x, y, t)
}

from the contacting property (3.4) with (3.3). Utilizing
this fact and Theorem 3.8 of [7], the following claim which is a Riemannian
version of Jensen–Ishii’s lemma holds true; refer to [21] for the Euclidean case.
For the reader’s convenience, a sketch of the proof of Claim 3.3 is provided
after the proof of this proposition.

Claim 3.3. For any μ > 0, there exist

(a, ξ, P ) ∈ P2,+
uε(x̄, t̄) and (b, ζ,Q) ∈ P2,−

uε(ȳ, t̄) (3.13)

such that

−
(

1
μ

+
∥∥D2

x,yΦ(x̄, ȳ, t̄)
∥∥
)
I≤
(

P 0
0 −Q

)
≤ D2

x,yΦ(x̄, ȳ, t̄)+μ
(
D2

x,yΦ(x̄, ȳ, t̄)
)2

(3.14)
and

a − b ≥ A2

T 2

(
t̄ − T

)
(the equality holds if t̄ < T ). (3.15)

In light of (3.14), it holds that for any X ∈ Tx̄M ,

〈(Lx̄,ȳP − Q) · Lx̄,ȳX, Lx̄,ȳX〉 =
〈
P · X, X

〉
− 〈Q · Lx̄,ȳX, Lx̄,ȳX〉

≤
〈{

D2
x,yΦ(x̄, ȳ, t̄) + μ

(
D2

x,yΦ(x̄, ȳ, t̄)
)2} · (X,Lx̄,ȳX) , (X,Lx̄,ȳX)

〉
.

(3.16)
Setting ψ(s) := A1φ (

√
s/R) for s ≥ 0, we have that for any X ∈ Tx̄M ,〈

D2
x,yΦ(x̄, ȳ, t̄) · (X,Lx̄,ȳX) , (X,Lx̄,ȳX)

〉

=
〈
D2

x,y

(
ψ ◦ d2

)
(x̄, ȳ) · (X,Lx̄,ȳX) , (X,Lx̄,ȳX)

〉

+
〈

D2

(
A2

2R2
d2

z0

)
(x̄) · X, X

〉
+
〈

D2

(
A2

2R2
d2

z0

)
(ȳ) · Lx̄,ȳX, Lx̄,ȳX

〉
.

Then it holds that〈
D2

x,yΦ(x̄, ȳ, t̄) · (X,Lx̄,ȳX) , (X,Lx̄,ȳX)
〉

≤ 〈D2
x,y

(
ψ ◦ d2

)
(x̄, ȳ) · (X,Lx̄,ȳX) , (X,Lx̄,ȳX)

〉

+
2A2

R2

√
κR0 coth

(√
κR0

) |X|2
(3.17)
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by recalling a Hessian estimate for squared distance functions in [20, Lemma
3.12]:

〈
D2

(
1
2
d2

z0

)
(x̄) · X, X

〉
,

〈
D2

(
1
2
d2

z0

)
(ȳ) · Lx̄,ȳX, Lx̄,ȳX

〉

≤ √
κR0 coth

(√
κR0

) |X|2 (3.18)

provided that Sec ≥ −κ on B2R(z0) for κ ≥ 0. Here we used the fact that
|X| = |Lx̄,ȳX|, x̄, ȳ ∈ BR(z0) ⊂ BR0(z0), and the function τ �→ τ coth τ is
nondecreasing in [0,∞).

Employing the chain rule, we have that for X ∈ Tx̄M ,
〈
D2

x,y

(
ψ ◦ d2

)
(x̄, ȳ) · (X,Lx̄,ȳX) , (X,Lx̄,ȳX)

〉

=
A1

2Rδ
φ′
(

δ

R

)〈
D2

x,yd2(x̄, ȳ) · (X,Lx̄,ȳX) , (X,Lx̄,ȳX)
〉

+ ψ′′ (δ2
) 〈∇x,yd2(x̄, ȳ), (X,Lx̄,ȳX)

〉2

since ψ′(s) =
A1

2R
√

s
φ′ (

√
s/R). As in Section 3 of [6], using the first variation

formula of length, we can prove that

d

ds

∣∣∣∣
s=0

d
(
expx̄ sX, expȳ sLx̄,ȳX

)
= 0 ∀X ∈ Tx̄M

since x̄ �∈ Cut(ȳ) by Claim 3.2 and the parallel transport preserves inner
products. This equality yields that

〈∇x,yd2(x̄, ȳ), (X,Lx̄,ȳX)
〉2 = 0, and hence

we deduce〈
D2

x,y

(
ψ ◦ d2

)
(x̄, ȳ) · (X,Lx̄,ȳX) , (X,Lx̄,ȳX)

〉

=
A1

2Rδ
φ′
(

δ

R

)〈
D2

x,yd2(x̄, ȳ) · (X,Lx̄,ȳX) , (X,Lx̄,ȳX)
〉

≤ A1

2Rδ
φ′
(

δ

R

)
· 2κδ2 |X|2.

(3.19)

Here, we used [6, Proposition 3.3] for the last inequality of (3.19). Thus the
estimates (3.17) and (3.19) imply that

〈
D2

x,yΦ(x̄, ȳ, t̄) · (X, Lx̄,ȳX) , (X, Lx̄,ȳX)
〉 ≤ 1

R2

{
κR2

0 · A1φ
′
(

δ

R

)
· δ

R
+ C1

}
|X|2

≤ C1

R2

{
A1φ

′
(

δ

R

)
· δ

R
+ 1

}
|X|2

(3.20)
for some constant C1 > 0 depending on

√
κR0 which may vary from line to

line. Hereafter, unless specifically stated, a constant C1 > 0 may depend on n,
p−, p+, q,

√
κR0, θ max (e,R0 log R0), βR1−q

0 , and T−1 max (Rp− , Rp+), and
vary from line to line.

Since
∣∣Lx̄,ȳX

∣∣2 = |X|2 and
∣∣(X,Lx̄,ȳX

)∣∣2 = 2|X|2,
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it holds from (3.16) and (3.20) that

Lx̄,ȳP − Q ≤ C1

R2

{
A1φ

′
(

δ

R

)
· δ

R
+ 1

}
I + 2μ

∥∥∥ (D2
x,yΦ(x̄, ȳ, t̄)

)2 ∥∥∥ I

as symmetric bilinear forms, that is,

〈(Lx̄,ȳP − Q) · Y, Y 〉 ≤ C1

R2

{
A1φ

′
(

δ

R

)
· δ

R
+ 1

}
|Y |2

+ 2μ
∥∥∥ (D2

x,yΦ(x̄, ȳ, t̄)
)2 ∥∥∥ |Y |2, ∀Y ∈ TȳM.

With the choice of

μ = R−2 ·
{

1 +
∥∥∥ (D2

x,yΦ(x̄, ȳ, t̄)
)2 ∥∥∥

}−1

(3.21)

in Claim 3.3, we deduce that

Lx̄,ȳP − Q ≤ C1

R2

{
A1φ

′
(

δ

R

)
· δ

R
+ 1

}
I (3.22)

for some constant C1 > 0 depending on
√

κR0.
Since

φ′′(r) = −2| log r|
r

(
1 − 1

| log r|
)

≤ −3| log r|
2r

< 0 ∀r ∈ (0, e−4
)
,

(3.23)
a direct computation with the use of Claim 3.2, (3.12) and a Hessian estimate
for squared distance functions in [20, Lemma 3.12] (see also (3.18)) implies
that

D2
xΦ(x̄, ȳ, t̄) =

A1

R2
φ′′
(

δ

R

)
∇dȳ ⊗ ∇dȳ(x̄) +

A1

R
φ′
(

δ

R

)
1
δ

×
{

1
2
D2d2

ȳ(x̄) − ∇dȳ ⊗ ∇dȳ(x̄)
}

+
A2

2R2
D2d2

z0
(x̄)

≤ A1

2R2
φ′
(

δ

R

)
R

δ
D2d2

ȳ(x̄) +
A2

2R2
D2d2

z0
(x̄)

≤ C1

R2

{
A1 φ′

(
δ

R

)
R

δ
+ 1

}
I,

(3.24)

where we recall from (3.6) that d(x̄, ȳ) = δ < R ≤ R0. By the choice of μ as
(3.21), it follows from (3.14) and (3.24) that

P ≤ C1

R2

{
A1 φ′

(
δ

R

)
R

δ
+ 1

}
I (3.25)

for some constant C1 > 0 depending on
√

κR0. Similarly, we have that

Q ≥ −C1

R2

{
A1 φ′

(
δ

R

)
R

δ
+ 1

}
I. (3.26)



27 Page 14 of 32 S. Kim NoDEA

In view of (3.13) and Lemma 2.5, we find two points (x∗, t∗), (y∗, s∗) ∈
B3R/2(z0) × (T/8, T ] such that

x∗ = expx̄ (ε ξ) , y∗ = expȳ (−ε ζ), t∗, s∗ ∈ [t̄ − 2
√

ε, t̄ + 2
√

ε
] ∩ (T/8, T ],

with d2(x∗, x̄) = ε2|ξ|2 ≤ 2ε ω
(
2
√

ε
)
, d2(y∗, ȳ) = ε2|ζ|2 ≤ 2ε ω

(
2
√

ε
)
,

(3.27)
and (

a, Lx̄,x∗ξ, Lx̄,x∗P + 2κω
(
2
√

ε
)
I
)

∈ P2,+
u(x∗, t∗);

(
b, Lȳ,y∗ζ, Lȳ,y∗Q − 2κω

(
2
√

ε
)
I
)

∈ P2,−
u(y∗, s∗);

(3.28)

for sufficiently small ε > 0. Here we used the facts that P2,+
uε = −P2,−(−u

)
ε
,

and ‖u‖L∞(B2R(z0)×(0,T ]) ≤ 1. Notice that x∗ �∈ Cut(x̄) and y∗ �∈ Cut(ȳ) from
Lemma 2.5. Since u satisfies (1.5) in B2R(z0)×(0, T ] in the viscosity sense and
the p(x, t)-Laplacian operator (1.2) in non-divergence form is continuous with
respect to x, t,∇u and D2u except when ∇u = 0, utilizing (3.11) and (3.28)
yields that

|ξ|p(x∗,t∗)−2 tr

[(
I +

(
p(x∗, t∗) − 2

) ξ

|ξ| ⊗ ξ

|ξ|
)

P

]
− a

≥ − |ξ|p(x∗,t∗)−2
{

2κ ω
(
2
√

ε
)
(n + p+ − 2) + θ|ξ|∣∣ log |ξ|∣∣+ β|ξ|1+q

}
−R−p(x∗,t∗);

|ζ|p(y∗,s∗)−2 tr

[(
I +

(
p(y∗, s∗) − 2

) ζ

|ζ| ⊗ ζ

|ζ|
)

Q

]
− b

≤ |ζ|p(y∗,s∗)−2
{

2κ ω
(
2
√

ε
)(

n + p+ − 2
)
+ θ|ζ|∣∣ log |ζ|∣∣+ β|ζ|1+q

}
+ R−p(y∗,s∗) .

(3.29)
Here we used the facts that |ξ| = |Lx̄,x∗ξ|, P and Lx̄,x∗P have the same
eigenvalues, and

〈
(Lx̄,x∗ξ ⊗ Lx̄,x∗ξ) Lx̄,x∗P · X, X

〉
x∗

=
〈

(ξ ⊗ ξ) P · Lx∗,x̄X, Lx∗,x̄X
〉

x̄
∀X ∈ Tx∗M. (3.30)

Now we will estimate |P | with the use of (3.25), (3.26) and (3.29).
Employing (3.11) and (3.29), we obtain that

tr

[(
I +

(
p(x∗, t∗) − 2

) ξ

|ξ| ⊗ ξ

|ξ|
)

P

]
− a |ξ|2−p(x∗,t∗)

≥ −
{

2κ ω
(
2
√

ε
)
(n + p+ − 2) + θ|ξ|∣∣ log |ξ|∣∣+ β|ξ|1+q

}
− R−p(x∗,t∗) |ξ|2−p(x∗,t∗)

≥ −C1

R2

{
κR2

0 + θR A1φ
′
(

δ

R

)[
log 2 + log

[
A1φ

′
(

δ

R

)]
+ |log R|

]

+ βR1−q
0

[
A1φ

′
(

δ

R

)]1+q

+

[
A1φ

′
(

δ

R

)]2−p−
}

≥ −C1

R2
A1φ

′
(

δ

R

){
log

[
A1φ

′
(

δ

R

)]
+

[
A1φ

′
(

δ

R

)]q}

(3.31)
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for sufficiently small ε > 0 and sufficiently large A1 > 1, where we used that
θR, θR| log R| ≤ θ max (e,R0 log R0), A1φ

′ ( δ
R

) � 1, A1 � 1 and p− > 1.
Here and hereafter, a constant C1 > 0 may depend on n, p−, p+, q,

√
κR0,

θ max (e,R0 log R0), βR1−q
0 , and T−1 max (Rp− , Rp+), and vary from line to

line. Utilizing this estimate together with (3.15) and (3.29) implies that

tr

[(
I +

(
p(x∗, t∗) − 2

) ξ

|ξ| ⊗ ξ

|ξ|
)

P

]

≥ − C1

R2
A1φ′

(
δ

R

){
log

[
A1φ′

(
δ

R

)]

+

[
A1φ′

(
δ

R

)]q}
+ (a − b) |ξ|2−p(x∗,t∗) + b |ξ|2−p(x∗,t∗)

≥ − C1

R2
A1φ′

(
δ

R

){
log

[
A1φ′

(
δ

R

)]
+

[
A1φ′

(
δ

R

)]q}

− A2

T
|ξ|2−p(x∗,t∗) + |ξ|2−p(x∗,t∗)|ζ|p(y∗,s∗)−2 tr

[(
I +

(
p(y∗, s∗) − 2

) ζ

|ζ| ⊗ ζ

|ζ|
)

Q

]

− |ξ|2−p(x∗,t∗)|ζ|p(y∗,s∗)−2 { 2κω
(
2
√

ε
)
(n + p+ − 2)

+θ|ζ|∣∣ log |ζ|∣∣+ β|ζ|1+q + R−p(y∗,s∗)|ζ|2−p(y∗,s∗)
}

.

Using (3.26) and arguing similarly as for (3.31), we deduce that

tr
[(

I +
(
p(x∗, t∗) − 2

) ξ

|ξ| ⊗ ξ

|ξ|
)

P

]

≥ −C1

R2
A1φ

′
(

δ

R

){
log
[
A1φ

′
(

δ

R

)]
+
[
A1φ

′
(

δ

R

)]q

+ T−1Rp(x∗,t∗)

}

− Rp(x∗,t∗)−p(y∗,s∗)

[
A1φ

′
(

δ

R

)]p(y∗,s∗)−p(x∗,t∗)
C1

R2

{
A1φ

′
(

δ

R

)
R

δ
+ 1

}

− Rp(x∗,t∗)−p(y∗,s∗)

[
A1φ

′
(

δ

R

)]1+p(y∗,s∗)−p(x∗,t∗)
C1

R2

{
log
[
A1φ

′
(

δ

R

)]

+
[
A1φ

′
(

δ

R

)]q}

(3.32)
for sufficiently small ε > 0 and sufficiently large A1 > 1.

In order to estimate |P | with the use of (3.32) and (3.25), we will establish
some estimates regarding the difference between p(x∗, t∗) and p(y∗, s∗). Using
the assumption (1.3) on Lipschitz continuity of p, it holds that

Rp(x∗,t∗)−p(y∗,s∗), Rp(y∗,s∗)−p(x∗,t∗) ≤ max
{

1, eθ max(e, R0 log R0)
}

. (3.33)

Indeed, we only consider the case when Rp(x∗,t∗)−p(y∗,s∗) > 1 since the other
is similar. In light of (3.27) and (3.8), we have that
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δ∗ : = d(x∗, y∗) + θ−1ω0 (|t∗ − s∗|) ≤ d(x∗, x̄) + d(x̄, ȳ)

+ d(ȳ, y∗) + θ−1ω0

(
4
√

ε
)

≤ δ + 2
√

2ε ω
(
2
√

ε
)

+ θ−1ω0

(
4
√

ε
)

≤ δ + 4
√

ε + θ−1ω0

(
4
√

ε
)

< 2δ

(3.34)

for sufficiently small ε > 0. Hence the assumption (1.3) on p together with
(3.34) and (3.6) yields that

log Rp(x∗,t∗)−p(y∗,s∗) = |p(x∗, t∗) − p(y∗, s∗)| · | log R| ≤ θδ∗| log R|
≤ θR| log R| ≤ θ max (e,R0 log R0)

for large A1 > 1 and small ε > 0, which proves (3.33).
With the use of (3.34) and (3.6), it holds that

|p(x∗, t∗) − p(y∗, s∗)| ≤ θδ∗ ≤ 2θδ ≤ 2θR A−1
1 (3.35)

for sufficiently small ε > 0 and large A1 > 1. Moreover, we show that
[
φ′
(

δ

R

)]|p(x∗,t∗)−p(y∗,s∗)|
≤
[
φ′
(

δ

R

)]θδ∗

≤ C1. (3.36)

In fact, by (3.35), it follows that

θδ∗ log φ′
(

δ

R

)
≤ 2θR · δ

R
log φ′

(
δ

R

)

for large A1 > 1 and small ε > 0. The right-hand side of the above estimate
is uniformly bounded in light of (3.6) and (3.12), which yields (3.36). Here we
also used that θR ≤ θ max (e, R0 log R0).

From (3.32), (3.33), (3.35) and (3.36), it follows that for sufficiently small
ε > 0,

tr
[(

I + (p(x∗, t∗) − 2)
ξ

|ξ| ⊗ ξ

|ξ|
)

P

]

≥ −C1

R2
A1+θδ∗

1 φ′
(

δ

R

){
R

δ
+ log

[
A1φ

′
(

δ

R

)]
+
[
A1φ

′
(

δ

R

)]q}

(3.37)
with sufficiently large A1 > 1 depending on n, p−, p+, q,

√
κR0, θ max(e,R0 log

R0), βR1−q
0 , and T−1 max (Rp− , Rp+), since

T−1Rp(x∗,t∗) ≤ T−1 max (Rp− , Rp+) . (3.38)

Here we used the assumption that 1 < p− ≤ p(x∗, t∗) ≤ p+ < ∞. The estimate
(3.37) combines with (3.25), (3.12) and (3.6) to obtain

|P | ≤ C1

R2
A1+θδ∗

1 φ′
(

δ

R

){
R

δ
+ log

[
A1φ

′
(

δ

R

)]
+
[
A1φ

′
(

δ

R

)]q}

≤ C1

R2
A1+θδ∗

1 φ′
(

δ

R

)
· R

δ
.

(3.39)

Here we used the assumption that q < 1, and the fact that A1 ≤ R/δ from
(3.6).
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Employing estimates (3.29), (3.11), (3.31) and (3.15), we deduce that

|ξ|p(x∗,t∗)−2 tr
[(

I +
(
p(x∗, t∗) − 2

) ξ

|ξ| ⊗ ξ

|ξ|
)

P

]

− |ζ|p(y∗,s∗)−2 tr
[(

I +
(
p(y∗, s∗) − 2

) ζ

|ζ| ⊗ ζ

|ζ|
)

Q

]

≥ −C1R
2−p(x∗,t∗)

[
A1φ

′
(

δ

R

)]p(x∗,t∗)−2

· 1
R2

A1φ
′
(

δ

R

)

×
{

log
[
A1φ

′
(

δ

R

)]
+
[
A1φ

′
(

δ

R

)]q}

− C1R
2−p(y∗,s∗)

[
A1φ

′
(

δ

R

)]p(y∗,s∗)−2 1
R2

A1φ
′
(

δ

R

)

×
{

log
[
A1φ

′
(

δ

R

)]
+
[
A1φ

′
(

δ

R

)]q}
+ a − b

≥ −C1R
−p(y∗,s∗)

[
A1φ

′
(

δ

R

)]p(y∗,s∗)−1

·
{

1 + Rp(y∗,s∗)−p(x∗,t∗)

[
A1φ

′
(

δ

R

)]p(x∗,t∗)−p(y∗,s∗)
}

·
{

log
[
A1φ

′
(

δ

R

)]
+
[
A1φ

′
(

δ

R

)]q}
− A2T

−1

and hence in light of (3.33), (3.35), (3.36), and (3.38), it follows that

|ξ|p(x∗,t∗)−2 tr
[(

I +
(
p(x∗, t∗) − 2

) ξ

|ξ| ⊗ ξ

|ξ|
)

P

]

− |ζ|p(y∗,s∗)−2 tr
[(

I +
(
p(y∗, s∗) − 2

) ζ

|ζ| ⊗ ζ

|ζ|
)

Q

]

≥ −C1R
−p(y∗,s∗)

[
A1φ

′
(

δ

R

)]p(y∗,s∗)−1

Aθδ∗
1

×
{

log
[
A1φ

′
(

δ

R

)]
+
[
A1φ

′
(

δ

R

)]q}

(3.40)

for sufficiently small ε > 0 and sufficiently large A1 > 1. Now we decompose
the first line of (3.40) into T1 + T2 + T3 + T4, where Tj for j = 1, 2, 3, 4 are
given by

T1 :=
{

|ξ|p(x∗,t∗)−2 − |ξ|p(y∗,s∗)−2
}

tr
[(

I +
(
p(x∗, t∗) − 2

) ξ

|ξ| ⊗ ξ

|ξ|
)

P

]
;

T2 := |ξ|p(y∗,s∗)−2
(
p(x∗, t∗) − p(y∗, s∗)

)
tr
(

ξ

|ξ| ⊗ ξ

|ξ| P

)
;

T3 := |ξ|p(y∗,s∗)−2 tr
[(

I +
(
p(y∗, s∗) − 2

) ξ

|ξ| ⊗ ξ

|ξ|
)

P

]
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−|Lȳ,x̄ζ|p(y∗,s∗)−2 tr
[(

I +
(
p(y∗, s∗) − 2

) Lȳ,x̄ζ

|Lȳ,x̄ζ| ⊗ Lȳ,x̄ζ

|Lȳ,x̄ζ|
)

P

]
;

T4 := |ζ|p(y∗,s∗)−2 tr
[(

I +
(
p(y∗, s∗) − 2

) ζ

|ζ| ⊗ ζ

|ζ|
)(

Lx̄,ȳP − Q
)]

Here we used the facts that |ζ| = |Lȳ,x̄ζ|, and P and Lx̄,ȳP have the same
eigenvalues, and the equality (3.30).

Estimate for T1. For T1, we use the mean value theorem, (3.11) and (3.39)
with a similar argument for (3.33) to deduce that

|T1| ≤ C1|ξ|p(y∗,s∗)−2 ·
∣∣∣ |ξ|p(x∗,t∗)−p(y∗,s∗) − 1

∣∣∣ · |P |

≤ C1 |ξ|p(y∗,s∗)−2 ·
[
A1φ

′
(

δ

R

)]|p(x∗,t∗)−p(y∗,s∗)|

∣∣ log |ξ|∣∣ · ∣∣p(x∗, t∗) − p(y∗, s∗)
∣∣ · 1

R2
A1+θδ∗

1 φ′
(

δ

R

)
· R

δ
.

Then utilizing (3.11), (3.35), (3.36), and (3.34) shows that

|T1| ≤ C1

[
A1

R
φ′
(

δ

R

)]p(y∗,s∗)−2 [
A1φ′

(
δ

R

)]θδ∗
{

log

[
A1φ′

(
δ

R

)]
+
∣∣ log R

∣∣
}

· θδ∗ · 1

R2
A1+θδ∗

1 φ′
(

δ

R

)
· R

δ

≤ C1

Rp(y∗,s∗)

[
A1φ′

(
δ

R

)]p(y∗,s∗)−1

· A2θδ∗
1

{
log

[
A1φ′

(
δ

R

)]
+
∣∣ log R

∣∣
}

· θδ∗ · R

δ

≤ C1

Rp(y∗,s∗)

[
A1φ′

(
δ

R

)]p(y∗,s∗)−1

· A2θδ∗
1

{
log

[
A1φ′

(
δ

R

)]
+
∣∣ log R

∣∣
}

· θR

(3.41)
for sufficiently small ε > 0. Selecting A1 > 1 sufficiently large, (3.41) together
with (3.35) yields that

|T1| ≤ C1

Rp(y∗,s∗)

[
A1φ

′
(

δ

R

)]p(y∗,s∗)−1

Aq0
1

[
log A1 + log φ′

(
δ

R

)]
.

(3.42)
for q0 := 1

2 (1−q) > 0. Here we used that θR, θR| log R| ≤ θ max (e,R0 log R0).

Estimate for T2. As in the estimate for T1, it holds that

|T2| ≤ C1|ξ|p(y∗,s∗)−2
∣∣p(x∗, t∗) − p(y∗, s∗)

∣∣ · |P |

≤ C1

[
A1

R
φ′
(

δ

R

)]p(y∗,s∗)−2

· θδ∗ · 1
R2

A1+θδ∗
1 φ′

(
δ

R

)
· R

δ

≤ C1

Rp(y∗,s∗)

[
A1φ

′
(

δ

R

)]p(y∗,s∗)−1

Aθδ∗
1 · θδ∗ · R

δ

≤ C1

Rp(y∗,s∗)

[
A1φ

′
(

δ

R

)]p(y∗,s∗)−1

Aq0
1

(3.43)
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by choosing A1 > 1 sufficiently large and ε > 0 sufficiently small.

Estimate for T3. Employing the mean value theorem, (3.10), (3.11), and (3.39),
we obtain

|T3| ≤ C1

[
A1

R
φ′
(

δ

R

)]p(y∗,s∗)−3

· |η| · |P |

≤ C1

[
A1

R
φ′
(

δ

R

)]p(y∗,s∗)−3

· 1
R

· 1
R2

A1+θδ∗
1 φ′

(
δ

R

)
· R

δ

≤ C1

Rp(y∗,s∗)

[
A1φ

′
(

δ

R

)]p(y∗,s∗)−2

Aθδ∗
1 · R

δ

(3.44)

since |η| ≤ 2A2 R−1 in light of (3.10). Thus we conclude from (3.35) that

|T3| ≤ C1

Rp(y∗,s∗)

[
A1φ

′
(

δ

R

)]p(y∗,s∗)−2

Aq0
1 · R

δ
(3.45)

for sufficiently large A1 > 1 and sufficiently small ε > 0.

Estimate for T4. Since ∇dȳ(x̄) is an eigenvector of 1
2D2d2

ȳ(x̄) associated with
eigenvalue 1, the first line of (3.24) and a Hessian estimate for squared distance
functions in Lemma 3.12 of [20] (see (3.18)) imply that
〈
D2

xΦ(x̄, ȳ, t̄) · ∇dȳ,∇dȳ(x̄)
〉

=
1

R2

[
A1φ

′′
(

δ

R

)
+

A2

2
〈
D2d2

z0
· ∇dȳ,∇dȳ(x̄)

〉]

≤ 1
R2

[
A1φ

′′
(

δ

R

)
+ C1

]

which is negative in view of (3.23) and (3.6) by selecting A1 > 1 sufficiently
large. This yields from (3.14) that

〈P · ∇dȳ,∇dȳ(x̄)〉 ≤ 1
R2

[
A1φ

′′
(

δ

R

)
+ C1

]
(3.46)

since we have chosen μ as (3.21). In a similar fashion, it holds that

−
〈
Q · ∇dx̄,∇dx̄(ȳ)

〉
≤ 1

R2

[
A1φ

′′
(

δ

R

)
+ C1

]
. (3.47)

Since ∇dȳ(x̄) = −Lȳ,x̄∇dx̄(ȳ), estimates (3.46) and (3.47) imply that
〈

(Lx̄,ȳP − Q) · ∇dx̄(y),∇dx̄(ȳ)
〉

≤ 2
R2

[
A1φ

′′
(

δ

R

)
+ C1

]
. (3.48)

Therefore by (3.11), (3.22) and (3.48) , we deduce that

T4= |ζ|p(y∗,s∗)−2 tr

[(
I +

(
p(y∗, s∗) − 2

) ζ

|ζ| ⊗ ζ

|ζ|
)(

Lx̄,ȳP − Q
) ]

≤ C0

Rp(y∗,s∗)

[
A1φ

′
(

δ

R

)]p(y∗,s∗)−2 [
A1φ

′′
(

δ

R

)
+ C1A1φ

′
(

δ

R

)
· δ

R
+ C1

]
,

(3.49)
where a constant C0 > 0 depends only on p− and p+.
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Utilizing (3.35), (3.40), (3.42), (3.43), (3.45) and (3.49), it follows that

−A1φ
′′
(

δ

R

)
≤ C1

[
log A1 + log φ′

(
δ

R

)]

·
{

A1+q0
1 φ′

(
δ

R

)
+ Aq0

1 · R

δ
+ A1+q+q0

1

[
φ′
(

δ

R

)]1+q
}

(3.50)
for sufficiently large A1 > 1 and small ε > 0. Letting q1 := 1 + q + q0, and
recalling (3.12) and (3.23), we conclude from (3.50) and (3.6) that

A1
1+q1/2

(
R

δ

)1−q1/2

+ A1

(
log

R

δ

)
· R

δ

≤ C1

(
log A1 + log log

R

δ

)
·
{

Aq1
1

(
log

R

δ

)4

+ Aq0
1 · R

δ

}
.

This gives a contradiction by choosing A1 > 1 sufficiently large since 0 < q0 =
1
2 (1 − q) < 1 and q1 = 1 + q + q0 < 2. Therefore we have proved that mε ≤ ν
for sufficiently small ε > 0 provided that positive constants A1 and A2 are
sufficiently large.

Lastly, we will give the proofs of Claim 3.2 and Claim 3.3

Proof of Claim 3.2. In light of the assumption that mε > ν, we recall that
x̄ �= ȳ. By the contacting property (3.4) with (3.3), we have that for any
x ∈ BR(z0),

uε(x, t̄)−A1φ

(
dȳ(x)

R

)
− A2

2R2
d2

z0
(x) ≤ uε(x̄, t̄)−A1φ

(
dȳ(x̄)

R

)
− A2

2R2
d2

z0
(x̄).

(3.51)
If x̄ is a cut point of ȳ, then Corollary 2.8 of [40] implies that there is a unit
vector X ∈ Tx̄M such that

lim inf
τ→0

1
τ2

{
ψ
(
d2

ȳ (expx̄ τX)
)

+ ψ
(
d2

ȳ (expx̄ −τX)
)− 2ψ

(
d2

ȳ(x̄)
)}

= −∞,

where a function ψ(s) = A1φ (
√

s/R) (for s ≥ 0) is smooth near s = δ2 > 0
with ψ′(δ2) > 0 by (3.6). On the other hand, semi-convexity of uε(·, t̄ ) and
semi-concavity of d2

z0
in BR(z0) (see a upper Hessian bound in Lemma 3.12 of

[20]) with (3.51) yield that

lim inf
τ→0

1
τ2

{
ψ
(
d2

ȳ (expx̄ τX)
)

+ ψ
(
d2

ȳ (expx̄ −τX)
)− 2ψ

(
d2

ȳ(x̄)
)}

≥ lim inf
τ→0

1
τ2

{
uε (expx̄ τX, t̄ ) + uε (expx̄ −τX, t̄ ) − 2uε (x̄, t̄ )

}

− A2

2R2
lim sup

τ→0

1
τ2

{
d2

z0
(expx̄ τX) + d2

z0
(expx̄ −τX) − 2d2

z0
(x̄)
}

> −∞,

which is a contradiction. Therefore we conclude that x̄ �∈ Cut(ȳ) ∪ {ȳ}. More-
over, a similar argument above using (3.51) and the fact that x̄ �∈ Cut(ȳ)∪{ȳ}
gives that x̄ is not a cut point of z0 since d2

z0
fails to be semi-convex at a cut

point of z0; refer to [20, Proposition 2.5]. Similarly, it can be proved that ȳ �∈
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{x̄} ∪ Cut(x̄) ∪ Cut(z0) with the help of semi-convexity of −uε(·, t̄ ) in BR(z0)
and the contacting property (3.4). This finishes the proof of Claim 3.2. �

Proof of Claim 3.3. If t̄ < T , Claim 3.3 follows from Theorem 3.8 of [7] since
uε and uε are Lipschitz continuous in B3R/2(z0) × [T/8, T ]. Now we assume
that t̄ = T and we will use a similar argument as in the proof of Theorem 9 of
[24] to prove Claim 3.3 in the case. Here we will use Lipschitz continuity of uε

and uε for a simpler proof; refer to the proof of Theorem 9 of [24] for general
viscosity sub-/supersolutions.

For a given sequence {sk}∞
k=1 such that T/2 < sk < T and lim

k→∞
sk = T ,

consider

mk := sup
x,y∈BR(z0), T/2<t<T

{
uε(x, t) − uε(y, t) − Φk(x, y, t)

}
,

where

Φk(x, y, t) := Φ(x, y, t) + d4
x̄(x) + d4

ȳ(y) + (t − T )2 +
(T − sk)2

T − t
.

Since t̄ = T and

mε ≥ mk ≥ uε(x̄, sk) − uε(ȳ, sk) − Φ(x̄, ȳ, sk) − (sk − T )2 − (T − sk),

it follows from (3.4) that
lim

k→∞
mk = mε . (3.52)

Let (xk, yk, tk) ∈ BR(z0) × BR(z0) × [T/2, T ) be a point such that

mk = uε(xk, tk) − uε(yk, tk) − Φk(xk, yk, tk).

Note that tk �= T . Then utilizing (3.52), (3.3) and (3.4), it can be checked
that (xk, yk, tk) converges to (x̄, ȳ, T ) as k tends to ∞. Note that (xk, yk, tk) ∈
BR(z0) × BR(z0) × (T/2, T ), and Φk is smooth near the point (xk, yk, tk) for
sufficiently large k ∈ N. Applying Theorem 3.8 of [7] to the functions uε, uε

and Φk near the point (xk, yk, tk) for large k ∈ N, we find
(
ak,∇xΦk(xk, yk, tk), Pk

)
∈ P2,+

uε(xk, tk) and
(
bk,−∇yΦk(xk, yk, tk), Qk

)
∈ P2,−

uε(yk, tk)

which satisfies (3.14) with (Pk, Qk,Φk) at the point (xk, yk, tk) replacing
(P,Q,Φ) at the point (x̄, ȳ, t̄), and

ak − bk =
A2

T 2
(tk − T ) + 2(tk − T ) +

(T − sk)2

(T − tk)2
.

Here we note that ak and bk are uniformly bounded with respect to k by
Lipschitz continuity of uε and uε, and then limk→∞ ak =: a and limk→∞ bk =: b
exist up to a subsequence. Therefore this combines with a diagonal argument
(in view of the definition of the limiting sub-and super-jets) to conclude the
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proof of Claim 3.3 since (xk, yk, tk) converges to (x̄, ȳ, T ) as k tends to ∞. We
only remark that

a − b ≥ lim
k→∞

{
A2

T 2
(tk − T ) + 2(tk − T )

}
= 0

which gives (3.15). �
Therefore, the proof of Proposition 3.1 is finished. �

In light of the proof of Proposition 3.1, we have the following corollary.
It should be noted that our viscosity solution is not influenced by what is to
happen in the future.

Corollary 3.4. Assume that Sec ≥ −κ on B2R(z0) for κ ≥ 0. Let 0 < R ≤
R0 < ∞, T > 0, and u ∈ C (B2R(z0) × (0, T ]) be a viscosity solution of (1.5)
in B2R(z0) × (0, T ] with 0 ≤ q < 1 and

‖V ‖L∞(B2R(z0)×(0,T ]) ≤ β

for β ≥ 0. Then we have that for any x, y ∈ BR(z0) and t ∈ (T/2, T ],

|u(x, t) − u(y, t)| ≤ C0
d(x, y)

R

∣∣∣∣log
(

d(x, y)
R

)∣∣∣∣
2

.

Here a constant C0 > 0 depends only on ‖u‖L∞(B2R(z0)×(0,T ]),
‖f‖L∞(B2R(z0)×(0,T ]), n, p−, p+, q,

√
κR0, θ max (e,R0 log R0), βR1−q

0 , and
T−1 max (Rp− , Rp+).

By uniform convergence of uε and uε to u as ε tends to 0, we get the
following Corollary.

Corollary 3.5. With the same assumption as Corollary 3.4, let ν ∈ (0, 1) be a
constant. Then there exists a small constant ε0 > 0 such that if 0 < ε < ε0,
then

|uε(x, t) − uε(y, t)| ≤ C0
d(x, y)

R

∣∣∣∣log
(

d(x, y)
R

)∣∣∣∣
2

+ ν

for any x, y ∈ BR(z0) and t ∈ [T/2, T ].

Now we will prove a Lipschitz estimate using a logarithmic-type Lipschitz
estimate in Proposition 3.1.

Lemma 3.6. (Lipschitz estimate) With the same assumption as Proposi-
tion 3.1, we have that for any x, y ∈ BR(z0) and t ∈ (T/2, T ],

|u(x, t) − u(y, t)| ≤ A1
d(x, y)

R
+ A2

{
1

R2
d2

z0
(x)

+
1

R2
d2

z0
(y) +

1
T 2

(t − T )2
}

.

Here constants A1 > 0 and A2 > 0 depend only on n, p−, p+, q,
√

κR0,
θ max (e,R0 log R0), βR1−q

0 , and T−1 max (Rp− , Rp+).
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Proof. We follow the proof of Proposition 3.1 in order to show a Lipschitz
estimate. Let

q0 =
1
4

(1 − q) ∈ (0, 1/4] , and σ :=
3
2

− 1
4

(1 + q + q0) ∈ (1, 3/2) .

Define a function Φ by

Φ(x, y, t) := A1φ

(
d(x, y)

R

)
+ A2

{
1

2R2
d2

z0
(x) +

1
2R2

d2
z0

(y) +
1

2T 2
(t − T )2

}

with

φ(r) =

⎧
⎪⎨
⎪⎩

r − 1
σ

rσ for r ∈ [0, 1);

1 − 1
σ

for r ∈ [1,∞);
(3.53)

for some constants A1 > 1 and A2 > 1 to be chosen later. With the same
notation as in the proof of Proposition 3.1, consider

mε := sup
x,y∈BR(z0), T/2<t<T

{
uε(x, t) − uε(y, t) − Φ(x, y, t)

}
.

Let ν ∈ (0, 1) be a constant. Then it suffices to prove that mε ≤ ν for suffi-
ciently small ε > 0 by uniform convergence of uε and uε to u as ε → 0.

Suppose to the contrary that mε > ν for sufficiently small ε > 0. Let
(x̄, ȳ, t̄) ∈ BR(z0) × BR(z0) × [T/2, T ] be a point such that

mε = uε(x̄, t̄) − uε(ȳ, t̄) − Φ(x̄, ȳ, t̄), and δ := d(x̄, ȳ).

Then by the assumption that mε > ν, and Corollary 3.5, it follows that

A1φ

(
δ

R

)
+ A2

{
1

2R2
d2

z0
(x̄) +

1
2R2

d2
z0

(ȳ) +
1

2T 2
(t̄ − T )2

}
+ ν

< uε(x̄, t̄) − uε(ȳ, t̄)

≤ C0
δ

R

(
log

R

δ

)2

+ ν.

(3.54)

for sufficiently small 0 < ε < ε0. Here constants C0 > 0 and ε0 > 0 are
the constants appearing in Corollary 3.5. Arguing similarly as in the proof
of Proposition 3.1, we see that (x̄, ȳ, t̄) ∈ BR(z0) × BR(z0) × (T/2, T ] and
Claim 3.2 holds true for sufficiently large constants A1 > 1 and A2 > 1, and
sufficiently small ε > 0. With the use of (3.10) and (3.54), it follows that

|η| ≤ A2

R2
dz0(x̄) +

A2

R2
dz0(ȳ) ≤ C1

R

√
δ

R
· log

R

δ
(3.55)

for some constant C1 > 0 depending on n, p−, p+, q,
√

κR0, θ max (e,R0

log R0), βR1−q
0 , and T−1 max (Rp− , Rp+). Since

1
2

≤ φ′(r) < 1 ∀r ∈
(
0, 2−1/(σ−1)

)
, (3.56)

the estimate (3.11) holds with the function φ given by (3.53) for sufficiently
large A1 > 1.



27 Page 24 of 32 S. Kim NoDEA

As in the estimate (3.42), we have

|T1| ≤ C1

Rp(y∗,s∗)
A

p(y∗,s∗)−1+q0
1 log A1 (3.57)

by using (3.56) and selecting A1 > 1 sufficiently large and ε > 0 sufficiently
small. In light of (3.43) and (3.57), we get

|T2| ≤ C1

Rp(y∗,s∗)
A

p(y∗,s∗)−1+q0
1 (3.58)

For the estimate of T3, we use (3.44), (3.39), (3.35) and (3.55) to deduce
that

|T3| ≤ C1

[
A1

R
φ′
(

δ

R

)]p(y∗,s∗)−3

· |η| · |P |

≤ C1

Rp(y∗,s∗)
A

p(y∗,s∗)−2+q0
1 ·

√
R

δ
· log

R

δ
.

(3.59)

By (3.49), it holds that

T4 ≤ C0

Rp(y∗,s∗)
A1

p(y∗,s∗)−2

[
A1φ

′′
(

δ

R

)
+ C1A1 · δ

R
+ C1

]
.

This combined with (3.40), (3.35), (3.57), (3.58) and (3.59) implies that

−A1φ
′′
(

δ

R

)
≤ C1

{
A1+q0

1 log A1 + Aq0
1

√
R

δ
· log

R

δ
+ A1+q+q0

1

}
(3.60)

for sufficiently large A1 > 1. Let q2 := (1 + q + q0) /2 ∈ (1/2, 1). Since (3.54)
implies that

δ

2R
≤ φ

(
δ

R

)
≤ 3

A1
� 1

for sufficiently large A1 > 1 and small ε > 0 (see (3.6)), it follows from (3.60)
that

A1+q2
1

(
R

δ

)2−σ−q2

+ A1

(
R

δ

)2−σ

≤ C1

{
A2q2

1 log A1 + Aq0
1

√
R

δ
· log

R

δ

}
,

where we note that 1 < σ < 3/2. This gives a contradiction for sufficiently
large A1 > 0 since q2 < 1, 2 − σ − q2 = (1 − q2)/2 > 0, and q0 < 1. Therefore
we have shown that mε ≤ ν for sufficiently small ε > 0 provided that positive
constants A1 and A2 are sufficiently large, completing the proof. �

In view of the proof of Lemma 3.6, the following corollary holds.

Corollary 3.7. (Lipschitz estimate in spatial variables) With the same assump-
tion as Corollary 3.4, we have that for any x, y ∈ BR(z0) and t ∈ (T/2, T ],

|u(x, t) − u(y, t)| ≤ C0
d(x, y)

R
.

Here a constant C0 > 0 depends only on ‖u‖L∞(B2R(z0)×(0,T ]),
‖f‖L∞(B2R(z0)×(0,T ]), n, p−, p+, q,

√
κR0, θ max (e,R0 log R0), βR1−q

0 , and
T−1 max (Rp− , Rp+).
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Using Corollary 3.7 and uniform convergence of uε and uε to u as ε tends
to 0, we have the following corollary.

Corollary 3.8. With the same assumption as Proposition 3.1, let ν ∈ (0, 1) be
a constant. Then there exists a small constant ε0 > 0 such that if 0 < ε < ε0,
then

|uε(x, t) − uε(y, t)| ≤ C0
d(x, y)

R
+ ν

for any x, y ∈ BR(z0) and t ∈ [T/2, T ].

4. 1/2-Hölder estimate in time variable

Using a comparison argument as in [8] with the help of a Lipschitz estimate
in spatial variables, we prove an 1/2-Hölder continuity with respect to time
variable for viscosity solutions.

Lemma 4.1. Under the same assumption as Proposition 3.1, we have

|u(x, t) − u(x, s)| ≤ C T−1/2 |t − s|1/2

for any x ∈ BR(z0) and t, s ∈ (T/2, T ]. Here a constant C > 0 depends only
on n, p−, p+, q,

√
κR0, θ max (e,R0 log R0), βR1−q

0 , T−1 max (Rp− , Rp+), and
T max (R−p− , R−p+).

Proof. Fix (x0, t0) ∈ BR(z0) × (T/2, T ), and let

σ0 := max
(

2, 1 +
1

p− − 1

)
.

Let ν be a constant in (0, 1) and let σ be a constant such that σ0 < σ < σ0 +1.
For each constant η > 0, consider

ϕ(x, t) := ν +
η

T
+ A1(t − t0) + A2

[
dx0(x)

R

]σ

∀(x, t) ∈ BR/4(x0) × [t0, T ]

with some constants A1 > 0 and A2 > 0 to be determined later.
Firstly, we select A2 large enough such that

A2 = Cσ0+1
0

{( η

T

)1−σ

+ 1
}

(4.1)

for a large constant C0 > 1, where a constant C0 > 1 will be chosen later
depending only on n, p−, p+, q,

√
κR0, θ max (e,R0 log R0), βR1−q

0 , and
T−1 max (Rp− , Rp+). With the same notation as in the proof of Proposition 3.1,
we deduce in light of Corollary 3.8, and (4.1) that

uε(x, t0) − uε(x0, t0) ≤ C0
dx0(x)

R
+ ν < ϕ(x, t0) ∀x ∈ BR/4(x0)

for sufficiently small ε > 0 and large C0 > 1. Hence using the assumption
(3.1), it follows that

uε(x, t)−uε(x0, t0) < ϕ(x, t) ∀(x, t) ∈
{

BR/4(x0)×{t0}
}

∪
{

∂BR/4(x0)×[t0, T ]
}

(4.2)



27 Page 26 of 32 S. Kim NoDEA

for a sufficiently large constant C0 > 1 and any positive constant A1. If A1 > 1
is sufficiently large, it can be checked that

uε(x, t) − uε(x0, t0) ≤ ϕ(x, t) ∀(x, t) ∈ BR/4(x0) × [t0, T ]. (4.3)

We choose the minimal constant A1 satisfying (4.3), and let (x̄, t̄) ∈ BR/4(x0)×
[t0, T ] be a point such that

uε(x̄, t̄) − uε(x0, t0) = ϕ(x̄, t̄). (4.4)

We claim that for each η > 0, the minimal constant A1 has a uniform
upper bound which is independent of small constants ε and ν, and a constant
σ ∈ (σ0, σ0 + 1). Here a uniform upper bound for A1 may depend on η. Obvi-
ously, for a fixed η > 0, the minimal constant A1 is either bounded from above
by 2max (R−p+ , R−p−) or bigger than 2max (R−p+ , R−p−).

Case 1: A1 ≤ 2max ( R−p+ , R−p−) for a given η > 0. In the case, it is imme-
diate from (4.3) that

uε(x0, t) − uε(x0, t0) ≤ ν +
η

T
+ 2max

(
R−p+ , R−p−

)
(t − t0) ∀t ∈ [t0, T ].

(4.5)
Case 2: A1 > 2max ( R−p+ , R−p−) for a given η > 0. Firstly, (4.2) implies
that (x̄, t̄ ) ∈ BR/4(x0) × (t0, T ], and we see that x̄ �∈ Cut(x0) by employing
semi-convexity of uε, and [40, Corollary 2.8]; refer to the proof of Claim 3.2.
In light of the contacting property (4.4) with (4.3), it holds that(

∂tϕ(x̄, t̄ ),∇ϕ(x̄, t̄ ),D2ϕ(x̄, t̄ )
) ∈ P2,+uε(x̄, t̄ ),

and hence by Proposition 3.3 of [39], there exists a point (ȳ, s̄ ) ∈ B3R/2(z0) ×
(T/8, T ] such that

ȳ = expx̄ ε∇ϕ(x̄, t̄) and s̄ ∈ [ t̄ − 2
√

ε, T
] ⊂ (3T/8, T ] , (4.6)

satisfying

uε(x̄, t̄ ) = u(ȳ, s̄ ) − 1
2ε

{
d2(ȳ, x̄) + | s̄ − t̄ |2} (4.7)

and (
∂tϕ(x̄, t̄), Lx̄,ȳ∇ϕ(x̄, t̄), Lx̄,ȳD2ϕ(x̄, t̄)

+κ min
{

ε |∇ϕ(x̄, t̄)|2, 2ω
(
2
√

ε
)}

I
) ∈ P2,+u(ȳ, s̄) (4.8)

for sufficiently small ε > 0.
We first consider the case when x̄ = x0. Since σ > 2, we have that

|∇ϕ(x̄, t̄ )| = |∇ϕ(x0, t̄ )| = 0, which combined with (4.6) and (4.7) yields that
x̄ = ȳ and

uε(x0, t̄ ) = u(x0, s̄ ) − 1
2ε

| s̄ − t̄ |2. (4.9)

On the other hand, by (4.3) and the definition of uε, we obtain that

u(x, t + s̄ − t̄) − 1
2ε

|s̄ − t̄|2 ≤ uε(x, t) ≤ ϕ(x, t) + uε(x0, t0) (4.10)

for any (x, t) ∈ BR/4(x0) × (t0 + (t̄ − t0)/2, t̄
]

since

t + s̄ − t̄ ∈ (s̄ − (t̄ − t0)/2, s̄
] ⊂ (s̄ − T/4, s̄ ] ⊂ (T/8, T ] .
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Setting

ψ(x, s) := ϕ(x, s − s̄ + t̄) + uε(x0, t0) +
1
2ε

|s̄ − t̄|2 ,

the contacting property (4.4) with the use of (4.9) and (4.10) implies that
{

u(x, s) ≤ ψ(x, s) ∀(x, s) ∈ BR/4(x0) × (s̄ − (t̄ − t0)/2, s̄
]
;

u(x0, s̄) = ψ(x0, s̄).
(4.11)

Since u is a viscosity subsolution of (1.5) and σ > σ0, we deduce in light of
(4.11) and Lemma 2.4 that

−A1 ≥ −R−p(x0,s̄),

which is a contradiction to the assumption that A1 > 2max ( R−p+ , R−p−).
Thus we have proved that x̄ �= x0 when A1 > 2max ( R−p+ , R−p−).

Since x̄ �= x0, it follows from Definition 2.1, and (4.8) that

|∇ϕ(x̄, t̄)|p(ȳ,s̄)−2 tr
[(

I +
(
p(ȳ, s̄) − 2

) ∇ϕ

|∇ϕ| ⊗ ∇ϕ

|∇ϕ|
)

{
D2ϕ(x̄, t̄) + κ

√
2εω

(
2
√

ε
) ∣∣∇ϕ(x̄, t̄)

∣∣ I
}]

≥ A1 − R−p(ȳ,s̄) − β|∇ϕ(x̄, t̄)|p(ȳ,s̄)−1+q

− θ|∇ϕ(x̄, t̄)|p(ȳ,s̄)−1
∣∣log

∣∣∇ϕ(x̄, t̄)
∣∣∣∣ .

Here we used the facts that |∇ϕ(x̄, t̄)| = |Lx̄,ȳ∇ϕ(x̄, t̄)| > 0, and D2ϕ(x̄, t̄) and
Lx̄,ȳD2ϕ(x̄, t̄) have the same eigenvalues and the equality (3.30). Moreover,
using (4.8) and arguing similarly as for the proof of Corollary 3.7, it holds
that

σA2

R

[
dx0(x̄)

R

]σ−1

= |∇ϕ(x̄, t̄)| =
∣∣Lx̄,ȳ∇ϕ(x̄, t̄)

∣∣ ≤ C0

R
(4.12)

for some constant C0 > 1 since x̄ �∈ {x0} ∪ Cut(x0) and (ȳ, s̄ ) ∈ B3R/2(z0) ×
(T/8, T ]. Therefore we conclude that

A1 ≤ R−p(ȳ,s̄) + βR1−q
0 R−p(ȳ,s̄) C

p(ȳ,s̄)−1+q
0

+ θR−p(ȳ,s̄)+1
[
C

p(ȳ,s̄)−1
0 log C0 + C

p(ȳ,s̄)−1
0 | log R|

]

+ (n + p+ − 2)κ
√

2εω
(
2
√

ε
)
R−p(ȳ,s̄)+1 C

p(ȳ,s̄)−1
0

+ |∇ϕ(x̄, t̄)|p(ȳ,s̄)−2 tr

[(
I +

(
p(ȳ, s̄) − 2

) ∇ϕ

|∇ϕ| ⊗ ∇ϕ

|∇ϕ|
)

D2ϕ(x̄, t̄)

]

≤ C1R−p(ȳ,s̄) + |∇ϕ(x̄, t̄)|p(ȳ,s̄)−2 tr

[(
I +

(
p(ȳ, s̄) − 2

) ∇ϕ

|∇ϕ| ⊗ ∇ϕ

|∇ϕ|
)

D2ϕ(x̄, t̄)

]

(4.13)
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(for sufficiently small ε > 0 which depends on ν and R) since 0 ≤ q < 1 and
1 < p− ≤ p(ȳ, s̄) ≤ p+ < ∞. If p− ≥ 2, then p(ȳ, s̄) ≥ 2 and thus it holds that

|∇ϕ(x̄, t̄)|p(ȳ,s̄)−2 tr
[(

I +
(
p(ȳ, s̄) − 2

) ∇ϕ

|∇ϕ| ⊗ ∇ϕ

|∇ϕ|
)

D2ϕ(x̄, t̄)
]

≤ C1R
−p(ȳ,s̄)C

p+−2
0 · σ0(σ0 + 1)A2

[
dx0(x̄)

R

]σ−2

≤ C1R
−p(ȳ,s̄)A2,

since d(x0, x̄) ≤ R/4 and σ > 2. Here we used a Hessian estimate for squared
distance functions in [20, Lemma 3.12]. When 1 < p− < 2, we use (4.12) to
obtain that

|∇ϕ(x̄, t̄)|p(ȳ,s̄)−2 tr
[(

I +
(
p(ȳ, s̄) − 2

) ∇ϕ

|∇ϕ| ⊗ ∇ϕ

|∇ϕ|
)

D2ϕ(x̄, t̄)
]

≤ C1σ0 (σ0 + 1)p(ȳ,s̄)−1
R−p(ȳ,s̄)A

p(ȳ,s̄)−1
2

[
dx0(x̄)

R

](σ−1)(p(ȳ,s̄)−1)−1

≤ C1R
−p(ȳ,s̄)A

p(ȳ,s̄)−1
2

[
dx0(x̄)

R

](σ−1)
(
p(ȳ,s̄)−p−

)
·
[
dx0(x̄)

R

](σ−1)(p−−1)−1

≤ C1R
−p(ȳ,s̄)A

p(ȳ,s̄)−1
2

(
C0

σ0 A2

)p(ȳ,s̄)−p−

≤ C1

(
C0

σ0

)p+−p−

R−p(ȳ,s̄) A
p−−1
2

since (σ − 1)(p− − 1) > (σ0 − 1)(p− − 1) ≥ 1. Therefore we deduce that

|∇ϕ(x̄, t̄)|p(ȳ,s̄)−2 tr
[(

I +
(
p(ȳ, s̄) − 2

) ∇ϕ

|∇ϕ| ⊗ ∇ϕ

|∇ϕ|
)

D2ϕ(x̄, t̄)
]

≤ C1R
−p(ȳ,s̄) min

(
A2, A

p−−1
2

)
,

from which (4.13) yields that

A1 ≤ C1 max
(
R−p+ , R−p−

)
Aσ1

2 with σ1 := min
(
1, p− − 1

)
(4.14)

in the case when A1 > 2max ( R−p+ , R−p−) for a given η > 0. Recalling the
definition of ϕ and using (4.3), (4.1), and (4.14), we obtain that for t ∈ [t0, T ]

uε(x0, t) − uε(x0, t0) ≤ ν +
η

T

+ C1 max
(
R−p+ , R−p−

){
1 +

( η

T

)−(σ−1)σ1
}

(t − t0)
(4.15)

when A1 > 2max ( R−p+ , R−p−) for a given η > 0.
With the use of (4.5), the estimate (4.15) holds true for any cases: either

A1 ≤ 2max ( R−p+ , R−p−) or A1 > 2max ( R−p+ , R−p−). In order to optimize
the above estimate (4.15) with respect to η > 0, we choose

η

T
=
[
C1 max

(
R−p+ , R−p−

) · (t − t0)
]γ

with γ =
1

1 + (σ − 1)σ1

and then it follows that
uε(x0, t) − uε(x0, t0) ≤ ν + C1 max

(
R−p+ , R−p−

)
(t − t0)

+
[
C1 max

(
R−p+ , R−p−

)
(t − t0)

]γ
.



NoDEA Lipschitz regularity Page 29 of 32 27

Letting ε → 0, ν → 0 and σ → σ0, the proof is finished since (σ0−1)σ1 = 1. �

Proof of Corollary 1.3. For any x, y ∈ M and t, s ∈ R, Corollary 1.2 implies
that

|u(x, t) − u(y, s)| ≤ C

(
d(x, y)

R
+

|t − s|1/2

Rp/2

)

for sufficiently large R > 0, where a constant C > 0 depends only on n, p, and
‖u‖L∞(M×R). Letting R → ∞, the result follows. �
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[15] Bögelein, V., Duzaar, F.: Hölder estimates for parabolic p(x, t)-Laplacian system.
Math. Ann. 354(3), 907–938 (2012)
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