Nonlinear Differ. Equ. Appl. (2018) 25:27 -c 2018 Springer International Publishing AG, part of Springer Nature 1021-9722/18/040001-32 *published online* June 6, 2018 https://doi.org/10.1007/s00030-018-0519-5

Nonlinear Differential Equations and Applications NoDEA

Lipschitz regularity for viscosity solutions to parabolic $p(x, t)$ **-Laplacian equations on Riemannian manifolds**

 \overline{S}

Abstract. We study viscosity solutions to parabolic $p(x, t)$ -Laplacian equations on Riemannian manifolds under the assumption that a continuous exponent function p is Lipschitz continuous with respect to spatial variables, and satisfies $1 \leq p_{-} \leq p(x,t) \leq p_{+} < \infty$ for some constants $1 < p_- \leq p_+ < \infty$. Using Ishii–Lions' method, a Lipschitz estimate of viscosity solutions is established on Riemannian manifolds with sectional curvature bounded from below.

Mathematics Subject Classification. 35K92, 58J35, 35D40, 35B65.

Keywords. $p(x, t)$ -Laplacian operator, Lipschitz regularity, Viscosity solutions, Riemannian manifold.

1. Introduction

In this paper, we consider viscosity solutions to the parabolic $p(x, t)$ -Laplacian equation

$$
\Delta_{p(x,t)}u + |\nabla u|^{p(x,t)-2+q} \langle V, \nabla u \rangle - \partial_t u = f \tag{1.1}
$$

over a complete Riemannian manifold M of dimension n . Here an exponent function $p : M \times [0, \infty) \to \mathbb{R}$ satisfies that $1 < p_- \leq p(x, t) \leq p_+ < \infty$ for some constants $1 < p_- \leq p_+ < \infty$, $q \in [0,1)$ is a constant, and V is a bounded vector field on $M \times (0,\infty)$. The $p(x,t)$ -Laplacian operator defined by

$$
\Delta_{p(x,t)}u:=\mathrm{div}\left(|\nabla u|^{p(x,t)-2}\nabla u\right)
$$

appears in the study of motions of the non-Newtonian fluids, particularly electro-rheological fluids. There is an extensive literature on elliptic/parabolic problems with a variable exponent of nonlinearity in the context of divergent equations (in the Euclidean space); for instance, we refer to $\left[1-4, 42, 43\right]$ $\left[1-4, 42, 43\right]$ $\left[1-4, 42, 43\right]$ for

parabolic problems. With regard to regularities of weak solutions for the parabolic $p(x, t)$ -Laplacian equations, a local boundedness and a Hölder estimate have been established in [\[19](#page-29-0)[,44](#page-31-0)] in the framework of Orlicz–Sobolev spaces, provided that p is logarithmic Hölder continuous in space-time variables with $1 < p₋ < p₊ < \infty$. A Hölder estimate for the spatial gradient of weak solutions was proved in $[2,15,45]$ $[2,15,45]$ $[2,15,45]$ $[2,15,45]$ under the assumption that p is Hölder continuous with $\max\left(1, \frac{2n}{n+2}\right) < p_- \leq p_+ < \infty$ (see also [\[25\]](#page-29-2) for partial regularity). Lastly, we mention $[5,9,14,26,46]$ $[5,9,14,26,46]$ $[5,9,14,26,46]$ $[5,9,14,26,46]$ $[5,9,14,26,46]$ $[5,9,14,26,46]$ $[5,9,14,26,46]$ and references therein for Calderón–Zygmund estimates and higher integrability results.

The $p(x, t)$ -Laplacian operator can be expressed in non-divergence form as follows:

$$
\Delta_{p(x,t)} u = |\nabla u|^{p(x,t)-2} \operatorname{tr} \left\{ \left(\mathbf{I} + \left(p(x,t) - 2 \right) \frac{\nabla u}{|\nabla u|} \otimes \frac{\nabla u}{|\nabla u|} \right) D^2 u \right\} + |\nabla u|^{p(x,t)-2} \log |\nabla u| \left\langle \nabla p, \nabla u \right\rangle, \tag{1.2}
$$

provided that p is differentiable with respect to spatial variables. The $p(x, t)$ -Laplacian operator becomes degenerate at a point (x, t) where the gradient of u vanishes with $p(x, t) > 2$ while it is singular at a point (y, s) with zero gradient of u and $1 \leq p(y, s) \leq 2$. In this paper, we are concerned with a Lipschitz estimate of viscosity solutions to the parabolic $p(x, t)$ -Laplacian equation [\(1.1\)](#page-0-0) on $M \times (0,\infty)$ with a non-homogenous right-hand side, under the assumption that a continuous exponent function p is Lipschitz continuous in spatial variables; see the condition [\(1.3\)](#page-3-0).

In the Euclidean space, Ishii and Lions in [\[31\]](#page-30-2) proved a Lipschitz regularity of viscosity solutions to fully nonlinear elliptic/parabolic equations, which are continuous with respect to all variables including ∇u and D^2u , and possibly degenerate. Ishii–Lions' method based on a doubling variable technique was adapted by Imbert–Jin–Silvestre in [\[30](#page-30-3)] to prove a Lipschitz estimate for viscosity solutions to the singular/degenerate parabolic p -Laplacian type equation $\partial_t u = |\nabla u|^\gamma \Delta_p u$ with the constants $p > 1$ and $\gamma > -p$. Moreover, a Hölder estimate for the spatial gradient of viscosity solutions was also obtained in [\[30\]](#page-30-3) provided with the constants $p > 1$ and $\gamma > 1 - p$. We also mention [\[35](#page-30-4)] for the result on parabolic normalized p-Laplacian operators (when $\gamma = 2-p$), and refer to [\[12](#page-29-5)[,13](#page-29-6),[22,](#page-29-7)[28](#page-30-5)[–30\]](#page-30-3) and references therein for relevant results in the context of non-divergent p-Laplacian equations.

To show a Lipschitz estimate of viscosity solutions to (1.1) on $M \times (0, \infty)$, we employ the approach in [\[30\]](#page-30-3) which relies on Ishii–Lions' method [\[31\]](#page-30-2), with the help of Jensen's sup- and inf-convolutions. When we deal with viscosity solutions on Riemannian manifolds, there is a smoothness issue of test functions such that the squared distance function from a point is not smooth on the cut locus of the point, as well as the non-smoothness of viscosity solutions. In order to overcome difficulties from the non-smoothness of viscosity solutions and test functions in the Riemannian case, an appropriate regularization would be required, and Jensen's regularization by sup- and inf-convolutions plays a role in this paper. Jensen's regularization is a standard approximation in the context of viscosity solutions (see [\[17](#page-29-8),[33,](#page-30-6)[34\]](#page-30-7) for the Euclidean case) and was studied in the setting of Riemannian manifolds in order to establish regularities of viscosity solutions in [\[39\]](#page-30-8), where a geometric property of sup- and inf-convolutions: semi-convexity and semi-concavity respectively, was useful in dealing with the non-smoothness of test functions due to the cut locus. We mention [\[16,](#page-29-9)[38](#page-30-9)[–40](#page-30-10)] for Krylov–Safonov type Harnack inequalities and Hölder estimates on Riemannian manifolds, where certain non-divergent techniques in the Euclidean space have been adapted for the operators including p-Laplacian elliptic operators and uniform parabolic operators. It is worth noting that a lower bound of Ricci curvature of the underlying manifold is a natural assumption for Harnack inequalities of the p-Laplacian operator (with a constant exponent $p > 1$ in [\[40\]](#page-30-10) and the heat operator in [\[38](#page-30-9)], whereas sectional curvature bounded from below is taken into account for the analysis of $p(x, t)$ -Laplacian operators owing to nonlinearity of a variable exponent.

Compared to Jensen's regularization used in this paper, the authors in [\[30](#page-30-3)] considered a smooth solution u_{δ} ($\delta > 0$) of the approximating equation

$$
\partial_t u_\delta = \left(|\nabla u_\delta|^2 + \delta^2 \right)^{\frac{\gamma + p - 2}{2}} \text{tr}\left\{ \left(\mathbf{I} + (p - 2) \frac{\nabla u_\delta \otimes \nabla u_\delta}{|\nabla u_\delta|^2 + \delta^2} \right) D^2 u_\delta \right\}
$$

in $\Omega \times (0,T) \subset \mathbb{R}^n \times [0,\infty)$ with the Dirichlet boundary data $u_{\delta} = u$ on the parabolic boundary $\partial_p(\Omega \times (0,T])$. Here, $\Omega \subset \mathbb{R}^n$ is a bounded domain, and u is a viscosity solution of $\partial_t u = |\nabla u|^\gamma \Delta_p u$. They established uniform gradient estimates for u_{δ} with respect to $\delta > 0$, and then such gradient estimates hold for the solution u by utilizing results on existence, uniqueness and stability of approximating solutions u_{δ} (see also [\[41](#page-30-11)]). On an arbitrary Riemannian manifold which may be compact, it is not always possible to construct smooth solutions u_{δ} as above which approximate a viscosity solution to [\(1.1\)](#page-0-0), so we apply Ishii–Lions' method to regularized solutions by Jensen's sup- and infconvolutions in the Riemannian case.

Regarding the notion of viscosity solutions to the parabolic $p(x, t)$ -Laplacian equation (1.1) (see Definition [2.1\)](#page-4-0), we adapt the definition by Demengel in [\[23\]](#page-29-10). A main difficulty in defining viscosity solutions for singular operators lies in the fact that one can not test functions at a point where the gradient of a solution is zero, which has been dealt with by many authors in [\[10](#page-28-6)[,18](#page-29-11)[,27](#page-30-12),[32,](#page-30-13)[37,](#page-30-14)[41](#page-30-11)]. In particular, Demengel in [\[23\]](#page-29-10) obtained existence and regularity results on viscosity solutions of the parabolic p-Laplacian equations with non-homogenous right-hand sides in the Euclidean space (for a constant exponent $p \in (1,\infty)$. Moreover, she proved equivalence between a viscosity solution introduced in [\[23](#page-29-10)] and a viscosity solution defined by Ohnuma–Sato [\[41](#page-30-11)] in the case of the homogeneous parabolic p-Laplacian equation ($f \equiv 0$ and $V \equiv 0$ in [\(1.1\)](#page-0-0)). We remark that the authors in [\[41\]](#page-30-11) defined viscosity solutions utilizing a certain class of admissible test functions when the gradient of a solution vanishes, which was employed in [\[30](#page-30-3)].

We end the introduction by stating our main result. Below and hereafter, let (M, g) be a smooth, complete Riemannian manifold of dimension n, where

g is the Riemannian metric. We denote $\langle X, Y \rangle := g(X, Y)$ and $|X|^2 := \langle X, X \rangle$ for $X, Y \in T_xM$, where T_xM is the tangent space at $x \in M$. Let $d(\cdot, \cdot)$ be the distance function on M. For a given point $y \in M$, $d_u(\cdot)$ denotes the distance function from y, i.e., $d_y(x) = d(x, y)$. Throughout this paper, a continuous function p is assumed to be differentiable with respect to spatial variables, and to satisfy

$$
|p(x,t) - p(y,s)| \leq \theta \, d(x,y) + \omega_0 \left(|t - s| \right) \tag{1.3}
$$

for $x, y \in B_{2R}(z_0) \subset M$ and $t, s \in (0, T]$, where θ is a positive constant and $\omega_0 : [0, \infty) \to [0, \infty)$ is a non-negative function with $\omega_0(0+) = 0$, and

$$
1 < p_- \le p(x, t) \le p_+ < \infty \tag{1.4}
$$

for any $(x, t) \in B_{2R}(z_0) \times (0, T]$ with some constants $p_-\$ and p_+ .

Theorem 1.1. *Assume that sectional curvature is bounded from below by* $-\kappa$ *for* $\kappa \geq 0$, *i.e.*, $\text{Sec } \geq -\kappa$ *. Let* $0 < R \leq R_0 < \infty$, $T > 0$, and $p : B_{2R}(z_0) \times$ $(0, T] \subset M \times [0, \infty) \to \mathbb{R}$ *satisfy* (1.3) *and* (1.4) *on* $B_{2R}(z_0) \times (0, T]$ *. Let* $u \in C(B_{2R}(z_0) \times (0,T])$ *be a viscosity solution of*

$$
\Delta_{p(x,t)}u + |\nabla u|^{p(x,t)-2+q} \langle V, \nabla u \rangle - \partial_t u = R^{-p(x,t)} f \tag{1.5}
$$

in $B_{2R}(z_0) \times (0,T]$ *for a constant* $q \in [0,1)$ *and a vector field* V *with* $||V||_{L^{\infty}(B_{2R}(z_0)\times(0,T])} \leq \beta$. Then we have that for any $x, y \in B_R(z_0)$ and $t, s \in (T/2, T],$

$$
|u(x,t) - u(y,s)| \le C\left(\frac{d(x,y)}{R} + \frac{|t-s|^{1/2}}{T^{1/2}}\right)
$$

where a constant $C > 0$ *depends only on* $n, p_-, p_+, q, \sqrt{\kappa}R_0, \theta \max(e, R_0 \log e)$ R_0)*,* βR_0^{1-q} , T^{-1} max (R^{p_-}, R^{p_+}) , T max (R^{-p_-}, R^{-p_+}) , $||u||_{L^{\infty}(B_{2R}(z_0)\times(0,T])}$ *,*
and $||f||_{L^{\infty}(\mathbb{R}^n)}$ *and* $||f||_{L^{\infty}(B_{2R}(z_0)\times(0,T])}$.

Consider a modulus of continuity ω_0 in time for a variable exponent p in (1.3) given by

$$
\omega_0(\tau) = \begin{cases}\n\frac{c_0}{1 + |\log \tau|} & \forall 0 < \tau < 1; \\
c_0 & \forall \tau \ge 1;\n\end{cases}
$$
\n(1.6)

with a nonnegative constant c_0 . Letting $p_0 := p(z_0, 0)$, we observe that for any $(x, t), (y, s) \in B_{2R}(z_0) \times [0, R^{p_0}],$

$$
R^{p(x,t)-p(y,s)} \le \max\left(1, e^{4\theta \max(e, R_0 \log R_0) + c_0 \max(1, \log R_0)}\right)
$$

in light of (1.3) and (1.6) since

$$
|p(x,t) - p(y,s)| \cdot |\log R| \le 4\theta R |\log R| + \omega_0(|t-s|) |\log R|
$$

$$
\le 4\theta \max(e, R_0 \log R_0) + c_0 \max(1, \log R_0).
$$

Thus it holds that

$$
T^{-1}R^{p(x,t)} = R^{p(x,t)-p_0} \le C \quad \text{and} \quad TR^{-p(x,t)} = R^{p_0-p(x,t)} \le C
$$

for a constant $C > 0$ depending on θ max $(e, R_0 \log R_0)$ and $c_0 \max(1, \log R_0)$ and hence a locally uniform estimate follows:

Corollary 1.2. *Assume that* $\text{Sec } \geq -\kappa$ *for* $\kappa \geq 0$ *. Let* $0 < R \leq R_0 < \infty$ *, and* p : $B_{2R}(z_0) \times [0, R^{p_0}] \to \mathbb{R}$ *satisfy* [\(1.3\)](#page-3-0) *with* [\(1.6\)](#page-3-2) *and* [\(1.4\)](#page-3-1) *on* $B_{2R}(z_0) \times [0, R^{p_0}]$ *, where* $p_0 := p(z_0, 0)$ *. Let* $u \in C(B_{2R}(z_0) \times (0, R^{p_0})$ *be a viscosity solution of* (1.5) *in* $B_{2R}(z_0) \times (0, R^{p_0}]$ *for a constant* $q \in [0, 1)$ *and a vector field* V *with* $||V||_{L^{\infty}(B_{2R}(z_0)\times(0,R^{p_0}])} \leq \beta$. Then we have that for any $x, y \in B_R(z_0)$ and $t, s \in (R^{p_0}/2, R^{p_0}]$,

$$
|u(x,t) - u(y,s)| \le C\left(\frac{d(x,y)}{R} + \frac{|t-s|^{1/2}}{R^{p_0/2}}\right)
$$

where a constant $C > 0$ *depends only on* $n, p_-, p_+, q, \sqrt{\kappa} R_0, \theta \max(e, R_0 \log R_0), c_0 \max(1, \log R_0), \beta R_0^{1-q}, \|u\|_{L^{\infty}(B_{2R}(z_0) \times (0, B_0^p))}, and$ $R_0 \log R_0$)*,* $c_0 \max(1, \log R_0)$, βR_0^{1-q} , $||u||_{L^{\infty}(B_{2R}(z_0)\times(0, R^{p_0}])}$ *, and* $\|f\|_{L^{\infty}(B_{2R}(z_0)\times(0,R^{p_0}])}.$

This result can be seen as a generalization of a scaling-invariant Lipschitz estimate for parabolic p-Laplacian equations with a constant $p > 1$ in the Euclidean space. Moreover, considering the parabolic p-Laplacian equation with a constant $p > 1$ on M with nonnegative sectional curvature, we have a Liouville type theorem for eternal solutions.

Corollary 1.3. Assume that M has nonnegative sectional curvature: $\text{Sec} > 0$. *If* u *is a bounded viscosity solution to the parabolic* p*-Laplacian equation with a* constant $p > 1$:

$$
\Delta_p u - \partial_t u = 0 \qquad on \ M \times \mathbb{R},
$$

then u *is a constant.*

The rest of the paper is organized as follows. In Sect. [2,](#page-4-1) we give a notion of viscosity solutions and some known results on Jensen's regularization that are used in the paper. Section [3](#page-7-0) is devoted to proving a logarithmic-type Lipschitz estimate in spatial variables to show a Lipschitz estimate of Theorem [1.1.](#page-3-4) In Sect. [4,](#page-24-0) we prove an $1/2$ -Hölder estimate in time variable.

2. Viscosity solutions

We present a refined definition of viscosity solutions for singular parabolic operators, which is adapted from [\[23](#page-29-10)].

Definition 2.1. (*Viscosity solution*) Let Ω be an open set in M and $T > 0$. Define

$$
G(x, t, \nabla u, D^2 u) := \Delta_{p(x, t)} u + |\nabla u|^{p(x, t) - 2 + q} \langle V, \nabla u \rangle
$$

with the $p(x, t)$ -Laplacian operator $\Delta_{p(x, t)} u$ as in (1.2) in non-divergence form. For a function $f : \Omega \times (0,T] \to \mathbb{R}$, we say that $u \in C(\Omega \times (0,T])$ is a viscosity supersolution (respectively subsolution) of the equation

$$
G(x, t, \nabla u, D^2 u) - \partial_t u = f \quad \text{in } \Omega \times (0, T]
$$

if the following holds: for any $(\bar{x}, \bar{t}) \in \Omega \times (0, T],$

$$
G\left(\bar{x}, \bar{t}, \nabla\varphi(\bar{x}, \bar{t}), D^2\varphi(\bar{x}, \bar{t})\right) - \partial_t\varphi(\bar{x}, \bar{t}) \le f(\bar{x}, \bar{t}) \quad \text{(respectively } \ge \text{)};
$$
\n(ii) or, if there exist $\epsilon > 0$ and $h \in C^1\left((\bar{t} - \epsilon, \bar{t})\right)$ such that

 \int \overline{I} $inf_{t \in (\bar{t} - \epsilon, \bar{t})} \{ u(\bar{x}, t) - h(t) \} = u(\bar{x}, \bar{t}) - h(\bar{t})$ (respectively sup); and $inf_{t \in (\bar{t} - \epsilon, \bar{t})} \{u(x, t) - h(t)\}\$ is locally constant in a neighborhood of \bar{x} (respectively sup),

then $-h'(\bar{t}) \leq f(\bar{x}, \bar{t})$ (respectively \geq).

We say that u is a viscosity solution if u is both a viscosity subsolution and a viscosity supersolution.

- **Remark 2.2.** (a) When a viscosity solution is independent of time variable. the definition above is equivalent to the one for singular elliptic operators given in $[11, 40]$ $[11, 40]$.
	- (b) Assuming that either $p > 2$ in $\Omega \times (0, T]$ or $p \equiv 2$, the operator $G(x,t,\nabla u, D^2u)$ is considered a continuous operator with respect to all variables x, t, ∇u , and D^2u by setting

$$
G(x,t,0,Q) = \begin{cases} 0 & \text{when } p > 2 \text{ in } \Omega \times (0,T]; \\ \text{tr } Q & \text{when } p \equiv 2. \end{cases}
$$
 (2.1)

Then u is a usual parabolic viscosity supersolution of (1.1) if and only if u is a viscosity supersolution of (1.1) in the sense of Definition [2.1,](#page-4-0) provided that f is continuous.

When $M = \mathbb{R}^n$, the above equivalence can be proved by a similar argument to the proof of Lemma 2 in Appendix 2 of [\[23\]](#page-29-10). Indeed, in light of [\(2.1\)](#page-5-0), it is clear that a usual parabolic viscosity supersolution is a viscosity supersolution in the sense of Definition [2.1.](#page-4-0) For the proof of the converse, the condition (ii) of Definition 2.1 is useful as well as the continuity of the operator G and the Lipschitz continuity of p with respect to x. In the Riemannian setting, one can modify a proof of the Euclidean case employing some arguments for the elliptic operators on manifolds in $[40, \text{Lemma } 3.2].$ $[40, \text{Lemma } 3.2].$

Remark 2.3. The notion of parabolic viscosity solutions in Definition [2.1](#page-4-0) is slightly different from the one introduced in Definition 1 of [\[23](#page-29-10)] (cf. [\[7,](#page-28-7)[30](#page-30-3)[,41](#page-30-11)]). The difference with [\[23,](#page-29-10) Definition 1] is that for our refined parabolic viscosity solutions, we do not impose any condition on what is to happen after $t = \bar{t}$ for admissible test functions; refer to [\[36,](#page-30-15)[39\]](#page-30-8).

Considering continuous parabolic operators (with respect to all variables x, t, ∇u and D^2u) on $M = \mathbb{R}^n$, Juutinen in [\[36](#page-30-15)] called a viscosity solution ignoring what happens after time \bar{t} , *a parabolic viscosity solution*. The equivalence between a parabolic viscosity solution and the one in the usual sense (as for elliptic operators as in Definition 1 of [\[23\]](#page-29-10)) was proved in [\[36,](#page-30-15) Theorem 1] for continuous parabolic operators, where a crucial ingredient of the proof is

the comparison principle for viscosity solutions in the usual sense. Due to the (possible) singularity of the operator G (the condition (ii) of Definition 2.1) and a variable exponent p , the approach of $[36]$ seems not directly applicable to the proof of the equivalence between Definition [2.1](#page-4-0) and [\[23,](#page-29-10) Definition 1], which we believe is worth further investigation.

The following technical lemma will be used in the proof of a Hölder estimate in time (Lemma [4.1\)](#page-24-1). The proof is similar to the one of Lemma 1 of [\[23](#page-29-10)]; we omit it.

Lemma 2.4. *Let* $u \in C(\Omega \times (0,T])$ *be a subsolution of*

$$
\Delta_{p(x,t)} u + \beta |\nabla u|^{p(x,t)-1+q} - \partial_t u \ge f \quad \text{in } \Omega \times (0,T]
$$

for constants $\beta \in \mathbb{R}$ *and* $q \geq 0$ *, where* f *is a continuous function on* $\Omega \times (0, T]$ *.* $Suppose that for a point $(\bar{x}, \bar{t}) \in \Omega \times (0, T]$ and a function $h \in C^1((0, \bar{t}]), it$$ *holds that*

$$
\sup_{B_{\epsilon}(\bar{x}) \times (\bar{t}-\epsilon, \bar{t})} \left\{ u(x,t) - h(t) - C d^{k}(x,\bar{x}) \right\} = u(\bar{x},\bar{t}) - h(\bar{t})
$$

with some constants $\epsilon > 0$, $C \in \mathbb{R}$, and $k > \max\left(2, 1 + \frac{1}{n}\right)$ $p_+ - 1$ *. Then, we have that* $-h'(\bar{t}) \geq f(\bar{x}, \bar{t}).$

As mentioned in the introduction, we make use of sup- and infconvolutions by Jensen [\[33](#page-30-6)[,34\]](#page-30-7) in order to approximate viscosity solutions (see also [\[17,](#page-29-8) Chapter 5]). Recall the definition of sup- and inf-convolutions from [\[39](#page-30-8)]. For a bounded open set $\Omega \subset M$ and $T_2 > T_0$, let u be a continuous function on $\overline{\Omega} \times [T_0, T_2]$. For $\varepsilon > 0$, the inf-convolution of u (with respect to $\Omega \times (T_0, T_2]$, denoted by u_{ε} , is defined as follows: for $(x, t) \in \overline{\Omega} \times [T_0, T_2]$,

$$
u_{\varepsilon}(x,t) := \inf_{(y,s)\in\overline{\Omega}\times[T_0,T_2]} \left\{ u(y,s) + \frac{1}{2\varepsilon} \left(d^2(y,x) + |s-t|^2 \right) \right\}.
$$

In a similar way, we define the sup-convolution u^{ε} of u by

$$
u^{\varepsilon}(x,t) := \sup_{(y,s)\in\overline{\Omega}\times[T_0,T_2]} \left\{ u(y,s) - \frac{1}{2\varepsilon} \left(d^2(y,x) + |s-t|^2 \right) \right\}.
$$

For properties of sup- and inf-convolutions such as uniform convergence to u as ε tends to 0, we refer to Section 3 of [\[39\]](#page-30-8). Below and hereafter, the same notations as in $[39]$ $[39]$ will be used. For example, Sym TM denotes the bundle of symmetric 2-tensors over M, and $\mathcal{P}^{2,\pm}u$ stand for the second order parabolic super- and sub-jets of u .

In the following lemma, we are concerned with a link between a viscosity solution and its sup- and inf-convolutions. Before stating the lemma, limiting parabolic super- and sub-jets $\overline{\mathcal{P}}^{2,\pm}u$ of u at $(x,t) \in \Omega \times (T_0, T_2]$ are defined as follows:

$$
\overline{\varphi}^{2,\pm}u(x,t) := \left\{ (a,\zeta,A) \in \mathbb{R} \times T_x M \times \text{Sym} \, TM_x : \exists (x_k, t_k, a_k, \zeta_k, A_k) \in \Omega \times (T_0, T_2] \times \mathbb{R} \times T_{x_k} M \times \text{Sym} \, TM_{x_k} \text{ s. t. } (a_k, \zeta_k, A_k) \in \mathcal{P}^{2,\pm} u(x_k, t_k), \text{ and } \lim_{k \to \infty} (x_k, t_k, a_k, \zeta_k, A_k) = (x, t, a, \zeta, A) \right\};
$$

see [\[6](#page-28-8)[,7](#page-28-7)] for slightly stronger definitions of $\mathcal{P}^{2,\pm}u$ and $\overline{\mathcal{P}}^{2,\pm}u$ for a function u defined on $\Omega \times (T_0, T_2)$. The following lemma can be deduced from the proof of [\[39](#page-30-8), Proposition 3.3] considering the limiting sub-jet $\overline{\mathcal{P}}^{2,-}u$ instead of the sub-jet $\mathcal{P}^{2,-}u$. Similar properties for the limiting super-jet $\overline{\mathcal{P}}^{2,+}_{2,-}u$ can be obtained by using the facts that $u^{\varepsilon} = -(-u)_{\varepsilon}$ and $\overline{\mathcal{P}}^{2,+}u^{\varepsilon} = -\overline{\mathcal{P}}^{2,-}(-u^{\varepsilon}) =$ $-\overline{\mathcal{P}}^{2,-}(-u)$ _c.

Lemma 2.5. *Assume that* $\text{Sec } \geq -\kappa$ *on* M *for* $\kappa \geq 0$ *. Let* H *and* Ω *be bounded open sets in* M such that $H \subset \Omega$, and $T_0 < T_1 < T_2$. Let $u \in C(\Omega \times [T_0, T_2])$, *and let* ω *be a modulus of continuity of u on* $\overline{\Omega} \times [T_0, T_2]$ *. Then there exists* $\varepsilon_0 > 0$ depending only on $||u||_{L^{\infty}(\overline{\Omega}\times[T_0,T_2])}$, H, Ω , T_0 , and T_1 , such that if $0 <$ $\varepsilon < \varepsilon_0$, then the following statements hold. Let $(x_0, t_0) \in \overline{H} \times [T_1, T_2]$ and let $(a, \zeta, A) \in \overline{\mathcal{P}}^{2,-}u_{\varepsilon}(x_0, t_0).$

(a) There exists a point $(y_0, s_0) \in \Omega \times (T_0, T_2]$ such that

$$
y_0 = \exp_{x_0}(-\varepsilon \zeta), \quad s_0 \in [t_0 - 2\sqrt{\varepsilon m}, t_0 + 2\sqrt{\varepsilon m}] \cap (T_0, T_2],
$$

and

$$
u_{\varepsilon}(x_0, t_0) = u(y_0, s_0) + \frac{1}{2\varepsilon} \left\{ d^2(y_0, x_0) + |s_0 - t_0|^2 \right\}.
$$

Here u_{ε} *denotes the inf-convolution of* u *with respect to* $\Omega \times (T_0, T_2)$ *for* $\varepsilon > 0$ *, and* $m := ||u||_{L^{\infty}(\overline{\Omega} \times [T_0, T_2])}$.

(b) $y_0 \notin \text{Cut}(x_0)$, and there is a unique minimizing geodesic joining x_0 to y_0 *which is contained in* Ω. *Moreover,*

$$
d^2(y_0, x_0) = \varepsilon^2 |\zeta|^2 \leq 2\varepsilon \,\omega \left(2\sqrt{\varepsilon m}\right).
$$

$$
(c)
$$

$$
(a, L_{x_0,y_0}\zeta, L_{x_0,y_0}A-\kappa\min\{\epsilon|\zeta|^2, 2\omega(2\sqrt{\epsilon m})\}\mathbf{I}) \in \overline{\mathcal{P}}^{2,-}u(y_0,s_0).
$$

Here L_{x_0,y_0} *denotes the parallel transport along the unique minimizing geodesic joining* x_0 *to* y_0 *, and* $L_{x_0, y_0}A$ *is a symmetric bilinear form on* $T_{y_0}M$ *defined by*

$$
\left\langle \left(L_{x_0,y_0}A\right)\cdot \xi,\,\xi\right\rangle_{y_0}:=\,\left\langle A\cdot \left(L_{y_0,x_0}\xi\right),\,L_{y_0,x_0}\xi\right\rangle_{x_0}\quad \, \forall \xi\in T_{y_0}M.
$$

3. Lipschitz estimate

In order to prove a Lipschitz estimate for viscosity solutions to the parabolic $p(x, t)$ -Laplacian equation [\(1.5\)](#page-3-3) on a Riemannian manifold M, we follow the

proof of a Lipschitz estimate in [\[30\]](#page-30-3) (in the Euclidean space) based on Ishii– Lions' method [\[31\]](#page-30-2) with the use of a regularization of Jensen by sup- and inf-convolutions. Firstly, we establish a logarithmic-type Lipschitz estimate for viscosity solutions.

Proposition 3.1. *Assume that* Sec $\geq -\kappa$ *on* $B_{2R}(z_0)$ *for* $\kappa \geq 0$ *. Let* $0 < R \leq$ $R_0 < \infty$, $T > 0$, and $u \in C(B_{2R}(z_0) \times (0,T])$ be a viscosity solution of [\(1.5\)](#page-3-3) *in* $B_{2R}(z_0) \times (0,T]$ *with* $0 \leq q < 1$ *,*

$$
||u||_{L^{\infty}(B_{2R}(z_0)\times(0,T])} \leq 1, \quad ||f||_{L^{\infty}(B_{2R}(z_0)\times(0,T])} \leq 1 \quad and
$$

$$
||V||_{L^{\infty}(B_{2R}(z_0)\times(0,T])} \leq \beta
$$
 (3.1)

for $\beta \geq 0$ *. Then we have that for any* $x, y \in B_R(z_0)$ *and* $t \in (T/2, T]$ *,*

$$
|u(x,t) - u(y,t)| \le A_1 \frac{d(x,y)}{R} \left| \log \left(\frac{d(x,y)}{R} \right) \right|^2 + A_2 \left\{ \frac{1}{R^2} d_{z_0}^2(x) + \frac{1}{R^2} d_{z_0}^2(y) + \frac{1}{T^2} (t-T)^2 \right\}.
$$
 (3.2)

Here constants $A_1 > 0$ *and* $A_2 > 0$ *depend only on n,* $p_-, p_+, q, \sqrt{\kappa}R_0$, θ max (e, R_0 log R_0), βR_0^{1-q} , and T^{-1} max (R^{p-} , R^{p+}).

Proof. For $0 < \varepsilon < 1$, we denote by u_{ε} and u^{ε} the inf- and sup-convolutions of u with respect to $B_{3R/2}(z_0) \times [T/8, T]$, respectively. Define a function Φ by

$$
\Phi(x, y, t) := A_1 \phi \left(\frac{d(x, y)}{R} \right) + A_2 \left\{ \frac{1}{2R^2} d_{z_0}^2(x) + \frac{1}{2R^2} d_{z_0}^2(y) + \frac{1}{2T^2} (t - T)^2 \right\},\
$$

with ϕ given by

$$
\phi(r) = \begin{cases} r \left| \log r \right|^2 & \text{for } r \in [0, e^{-2}) \, ; \\ 4e^{-2} & \text{for } r \in [e^{-2}, \infty) \, . \end{cases}
$$

Here positive constants A_1 and A_2 will be determined later. We consider

$$
m_{\varepsilon} := \sup_{x,y \in B_R(z_0), T/2 < t < T} \left\{ u^{\varepsilon}(x,t) - u_{\varepsilon}(y,t) - \Phi(x,y,t) \right\}.
$$
\n(3.3)

Let $\nu \in (0,1)$ be a constant. Once we have proved that $m_{\varepsilon} \leq \nu$ for sufficiently small $\varepsilon > 0$, we conclude that for any $x, y \in \overline{B_R(z_0)}$ and $T/2 \le t \le T$,

$$
u(x,t) - u(y,t) \le \nu + A_1 \phi \left(\frac{d(x,y)}{R} \right)
$$

$$
+ A_2 \left\{ \frac{1}{2R^2} d_{z_0}^2(x) + \frac{1}{2R^2} d_{z_0}^2(y) + \frac{1}{2T^2} (t - T)^2 \right\}
$$

using uniform convergence of u^{ε} and u_{ε} to u in $\overline{B_{3R/2}(z_0)} \times [T/8, T]$ as ε tends to 0. This implies [\(3.2\)](#page-8-0) since $\nu > 0$ is arbitrary. Thus it suffices to show that $m_{\varepsilon} \leq \nu$ for sufficiently small $\varepsilon > 0$. Here $\varepsilon > 0$ may depend on u, ν and R.

Suppose to the contrary that $m_{\varepsilon} > \nu$ for small $\varepsilon > 0$. Let $(\bar{x}, \bar{y}, \bar{t}) \in$ $B_R(z_0) \times B_R(z_0) \times [T/2, T]$ be a point such that

$$
m_{\varepsilon} = u^{\varepsilon}(\bar{x}, \bar{t}) - u_{\varepsilon}(\bar{y}, \bar{t}) - \Phi(\bar{x}, \bar{y}, \bar{t}). \tag{3.4}
$$

Then we have that

$$
\nu + A_1 \phi \left(\frac{d(\bar{x}, \bar{y})}{R} \right) + A_2 \left\{ \frac{1}{2R^2} d_{z_0}^2(\bar{x}) + \frac{1}{2R^2} d_{z_0}^2(\bar{y}) + \frac{1}{2T^2} (\bar{t} - T)^2 \right\}
$$

<
$$
< u^{\varepsilon}(\bar{x}, \bar{t}) - u_{\varepsilon}(\bar{y}, \bar{t}) \le 3
$$
 (3.5)

for sufficiently small $\varepsilon > 0$ by uniform convergence of u^{ε} and u_{ε} to u and the assumption (3.1) . Selecting $A_2 > 1$ large enough yields that

$$
\frac{d_{z_0}(\bar{x})}{R} + \frac{d_{z_0}(\bar{y})}{R} \le 2\sqrt{\frac{6}{A_2}} < \frac{1}{2} \quad \text{and} \quad |\bar{t} - T| \le \sqrt{\frac{6}{A_2}}T < \frac{1}{4}T.
$$

Here and below, we fix such a large constant $A_2 > 1$, and hence we see that $(\bar{z}, \bar{z}, \bar{t}) \in B_-(z) \times B_-(z) \times (T/2, T]$. In light of $(2, 5)$, we obtain that $(\bar{x}, \bar{y}, \bar{t}) \in B_R(z_0) \times B_R(z_0) \times (T/2, T]$. In light of [\(3.5\)](#page-9-0), we obtain that

$$
\frac{4\delta}{R} \le \phi\left(\frac{\delta}{R}\right) \le \frac{3}{A_1} < e^{-4} \quad \text{with} \quad \delta := d(\bar{x}, \bar{y}),\tag{3.6}
$$

by choosing $A_1 > 1$ large enough.

Let ω be a modulus of continuity of u on $\overline{B_{3R/2}(z_0)} \times [T/8, T]$ such that $\omega : [0, \infty) \to [0, \infty)$ is strictly increasing with $\omega(0+) = 0$. Since

$$
u^{\varepsilon}(\bar{x},\bar{t}) - u_{\varepsilon}(\bar{y},\bar{t}) \le u(\bar{x},\bar{t}) - u(\bar{y},\bar{t}) + \nu/2
$$

for sufficient small $\varepsilon > 0$ by uniform convergence of u^{ε} and u_{ε} to u in $B_{3R/2}(z_0) \times [T/8, T]$ as $\varepsilon \to 0$, it follows from (3.5) that

$$
\nu < u^{\varepsilon}(\bar{x}, \bar{t}) - u_{\varepsilon}(\bar{y}, \bar{t}) \le u(\bar{x}, \bar{t}) - u(\bar{y}, \bar{t}) + \nu/2 \le \omega(\delta) + \nu/2. \tag{3.7}
$$

In light of [\(3.7\)](#page-9-1), it holds that for sufficiently small $\varepsilon > 0$ satisfying that $\omega\left(4\sqrt{\varepsilon}+\theta^{-1}\omega_0\left(4\sqrt{\varepsilon}\right)\right)<\nu/2,$

$$
4\sqrt{\varepsilon} + \theta^{-1}\omega_0 \left(4\sqrt{\varepsilon}\right) < \omega^{-1} \left(\nu/2\right) < \delta. \tag{3.8}
$$

In particular, we notice that $\delta > 0$, that is, $\bar{x} \neq \bar{y}$ for sufficiently small $\varepsilon > 0$. \Box

Claim 3.2. $\bar{x} \notin {\bar{y}} \cup \text{Cut}(\bar{y}) \cup \text{Cut}(z_0)$, and $\bar{y} \notin {\bar{x}} \cup \text{Cut}(\bar{x}) \cup \text{Cut}(z_0)$.

We postpone the proof of Claim [3.2](#page-9-2) after the proof of this proposition, whose proof uses semi-convexity of u^{ε} and $-u_{\varepsilon}$, and the contacting property (3.4) together with (3.3) .

Since $u^{\varepsilon}(\cdot, \bar{t})$ and $-u_{\varepsilon}(\cdot, \bar{t})$ are semi-convex in $B_R(z_0)$, it follows from the contacting property [\(3.4\)](#page-8-2) with [\(3.3\)](#page-8-3), and Claim [3.2](#page-9-2) that $u^{\varepsilon}(\cdot,\bar{t})$ and $-u_{\varepsilon}(\cdot,\bar{t})$ are differentiable at \bar{x} and \bar{y} , respectively, and

$$
\xi := \nabla u^{\varepsilon}(\bar{x}, \bar{t}) = \nabla_x \Phi(\bar{x}, \bar{y}, \bar{t}) = \frac{A_1}{R} \phi' \left(\frac{\delta}{R}\right) \nabla d_{\bar{y}}(\bar{x}) + \frac{A_2}{2R^2} \nabla d_{z_0}^2(\bar{x});
$$
\n
$$
\zeta := \nabla u_{\varepsilon}(\bar{y}, \bar{t}) = -\nabla_y \Phi(\bar{x}, \bar{y}, \bar{t}) = -\frac{A_1}{R} \phi' \left(\frac{\delta}{R}\right) \nabla d_{\bar{x}}(\bar{y}) - \frac{A_2}{2R^2} \nabla d_{z_0}^2(\bar{y}).
$$
\n(3.9)

This implies that

$$
\xi = L_{\bar{y},\bar{x}} \zeta + \eta \quad \text{with} \quad \eta := \frac{A_2}{2R^2} \nabla d_{z_0}^2(\bar{x}) + \frac{A_2}{2R^2} L_{\bar{y},\bar{x}} \nabla d_{z_0}^2(\bar{y}) \tag{3.10}
$$

since $\nabla d_{\bar{y}}(\bar{x}) = -L_{\bar{y},\bar{x}} \nabla d_{\bar{x}}(\bar{y})$. Choosing $A_1 > 1$ large such that $8A_2 \leq A_1$, we use (3.6) , (3.9) and (3.10) to obtain

$$
0 < \frac{A_1}{2R} \phi' \left(\frac{\delta}{R} \right) \le |\xi| \,, \quad |\zeta| \le \frac{3A_1}{2R} \phi' \left(\frac{\delta}{R} \right) \quad \text{and} \quad |\eta| \le \frac{|\xi|}{2} \tag{3.11}
$$

since

$$
1 < \frac{1}{2} |\log r|^2 \le \phi'(r) = |\log r| \left(|\log r| - 2 \right) \le |\log r|^2 \quad \forall r \in (0, e^{-4}) \,.
$$
\n(3.12)

Here we also used the fact that $|\nabla d_{\bar{x}}(\bar{y})| = 1 = |\nabla d_{\bar{y}}(\bar{x})|$.

In light of Claim [3.2,](#page-9-2) the test function Φ is of class $C^{2,1}(\mathcal{O})$ for a small neighborhood O of $(\bar{x}, \bar{y}, \bar{t})$ and we notice that $m_{\varepsilon} = \sup_{(x,y,t) \in O, t \leq T} \left\{ u^{\varepsilon}(x,t)$ $u_{\varepsilon}(y,t) - \Phi(x,y,t)$ from the contacting property [\(3.4\)](#page-8-2) with [\(3.3\)](#page-8-3). Utilizing this fact and Theorem 3.8 of [\[7\]](#page-28-7), the following claim which is a Riemannian version of Jensen–Ishii's lemma holds true; refer to [\[21](#page-29-13)] for the Euclidean case. For the reader's convenience, a sketch of the proof of Claim [3.3](#page-10-0) is provided after the proof of this proposition.

Claim 3.3. For any $\mu > 0$, there exist

$$
(a,\xi,P) \in \overline{\mathcal{P}}^{2,+} u^{\varepsilon}(\bar{x},\bar{t}) \quad \text{and} \quad (b,\zeta,Q) \in \overline{\mathcal{P}}^{2,-} u_{\varepsilon}(\bar{y},\bar{t}) \tag{3.13}
$$

such that

$$
-\left(\frac{1}{\mu} + \left\|D_{x,y}^2 \Phi(\bar{x}, \bar{y}, \bar{t})\right\|\right) \mathbf{I} \le \begin{pmatrix} P & 0\\ 0 & -Q \end{pmatrix} \le D_{x,y}^2 \Phi(\bar{x}, \bar{y}, \bar{t}) + \mu \left(D_{x,y}^2 \Phi(\bar{x}, \bar{y}, \bar{t})\right)^2
$$
\n(3.14)

and

$$
a - b \ge \frac{A_2}{T^2} \left(\bar{t} - T \right) \qquad \text{(the equality holds if } \bar{t} < T\text{)}.
$$

In light of [\(3.14\)](#page-10-1), it holds that for any $X \in T_{\bar{x}}M$,

$$
\langle (L_{\bar{x},\bar{y}}P - Q) \cdot L_{\bar{x},\bar{y}}X, L_{\bar{x},\bar{y}}X \rangle = \langle P \cdot X, X \rangle - \langle Q \cdot L_{\bar{x},\bar{y}}X, L_{\bar{x},\bar{y}}X \rangle
$$

\n
$$
\leq \langle \left\{ D_{x,y}^2 \Phi(\bar{x},\bar{y},\bar{t}) + \mu \left(D_{x,y}^2 \Phi(\bar{x},\bar{y},\bar{t}) \right)^2 \right\} \cdot (X, L_{\bar{x},\bar{y}}X), (X, L_{\bar{x},\bar{y}}X) \rangle.
$$
\n(3.16)

Setting $\psi(s) := A_1 \phi \left(\sqrt{s}/R \right)$ for $s \ge 0$, we have that for any $X \in T_{\bar{x}}M$, $\langle D_{x,y}^2 \Phi(\bar{x}, \bar{y}, \bar{t}) \cdot (X, L_{\bar{x}, \bar{y}}X), (X, L_{\bar{x}, \bar{y}}X) \rangle$

$$
\langle D_{x,y}^2 \Phi(\bar{x}, \bar{y}, \bar{t}) \cdot (X, L_{\bar{x}, \bar{y}} X), (X, L_{\bar{x}, \bar{y}} X) \rangle
$$

= $\langle D_{x,y}^2 (\psi \circ d^2) (\bar{x}, \bar{y}) \cdot (X, L_{\bar{x}, \bar{y}} X), (X, L_{\bar{x}, \bar{y}} X) \rangle$
+ $\langle D^2 \left(\frac{A_2}{2R^2} d_{z_0}^2 \right) (\bar{x}) \cdot X, X \rangle + \langle D^2 \left(\frac{A_2}{2R^2} d_{z_0}^2 \right) (\bar{y}) \cdot L_{\bar{x}, \bar{y}} X, L_{\bar{x}, \bar{y}} X \rangle.$
then it holds that

Then it holds that

$$
\langle D_{x,y}^2 \Phi(\bar{x}, \bar{y}, \bar{t}) \cdot (X, L_{\bar{x}, \bar{y}} X), (X, L_{\bar{x}, \bar{y}} X) \rangle
$$

\n
$$
\leq \langle D_{x,y}^2 (\psi \circ d^2) (\bar{x}, \bar{y}) \cdot (X, L_{\bar{x}, \bar{y}} X), (X, L_{\bar{x}, \bar{y}} X) \rangle
$$

\n
$$
+ \frac{2A_2}{R^2} \sqrt{\kappa} R_0 \coth (\sqrt{\kappa} R_0) |X|^2
$$
\n(3.17)

by recalling a Hessian estimate for squared distance functions in [\[20](#page-29-14), Lemma 3.12]:

$$
\left\langle D^2 \left(\frac{1}{2} d_{z_0}^2 \right) (\bar{x}) \cdot X, X \right\rangle, \left\langle D^2 \left(\frac{1}{2} d_{z_0}^2 \right) (\bar{y}) \cdot L_{\bar{x}, \bar{y}} X, L_{\bar{x}, \bar{y}} X \right\rangle
$$

\$\leq \sqrt{\kappa} R_0 \coth \left(\sqrt{\kappa} R_0 \right) |X|^2\$ (3.18)

provided that Sec $\geq -\kappa$ on $B_{2R}(z_0)$ for $\kappa \geq 0$. Here we used the fact that $|X| = |L_{\bar{x},\bar{y}}X|, \bar{x},\bar{y} \in B_R(z_0) \subset B_{R_0}(z_0),$ and the function $\tau \mapsto \tau \coth \tau$ is nondecreasing in $[0, \infty)$.

Employing the chain rule, we have that for $X \in T_{\bar{x}}M$,

$$
\langle D_{x,y}^2 (\psi \circ d^2) (\bar{x}, \bar{y}) \cdot (X, L_{\bar{x}, \bar{y}} X), (X, L_{\bar{x}, \bar{y}} X) \rangle
$$

= $\frac{A_1}{2R\delta} \phi' \left(\frac{\delta}{R} \right) \langle D_{x,y}^2 d^2 (\bar{x}, \bar{y}) \cdot (X, L_{\bar{x}, \bar{y}} X), (X, L_{\bar{x}, \bar{y}} X) \rangle$
+ $\psi'' (\delta^2) \langle \nabla_{x,y} d^2 (\bar{x}, \bar{y}), (X, L_{\bar{x}, \bar{y}} X) \rangle^2$

since $\psi'(s) = \frac{A_1}{2R\sqrt{s}}\phi'(\sqrt{s}/R)$. As in Section 3 of [\[6](#page-28-8)], using the first variation formula of length, we can prove that

$$
\left. \frac{d}{ds} \right|_{s=0} d\left(\exp_{\bar{x}} sX, \, \exp_{\bar{y}} sL_{\bar{x},\bar{y}} X\right) = 0 \qquad \forall X \in T_{\bar{x}} M
$$

since $\bar{x} \notin \text{Cut}(\bar{y})$ by Claim [3.2](#page-9-2) and the parallel transport preserves inner products. This equality yields that $\langle \nabla_{x,y} d^2(\bar{x}, \bar{y}), (X, L_{\bar{x}, \bar{y}}X) \rangle^2 = 0$, and hence we deduce

$$
\langle D_{x,y}^2 (\psi \circ d^2) (\bar{x}, \bar{y}) \cdot (X, L_{\bar{x}, \bar{y}} X), (X, L_{\bar{x}, \bar{y}} X) \rangle
$$

= $\frac{A_1}{2R\delta} \phi' \left(\frac{\delta}{R} \right) \langle D_{x,y}^2 d^2 (\bar{x}, \bar{y}) \cdot (X, L_{\bar{x}, \bar{y}} X), (X, L_{\bar{x}, \bar{y}} X) \rangle$
 $\leq \frac{A_1}{2R\delta} \phi' \left(\frac{\delta}{R} \right) \cdot 2\kappa \delta^2 |X|^2.$ (3.19)

Here, we used $[6,$ Proposition 3.3 for the last inequality of (3.19) . Thus the estimates (3.17) and (3.19) imply that

$$
\langle D_{x,y}^2 \Phi(\bar{x}, \bar{y}, \bar{t}) \cdot (X, L_{\bar{x}, \bar{y}} X), (X, L_{\bar{x}, \bar{y}} X) \rangle \le \frac{1}{R^2} \left\{ \kappa R_0^2 \cdot A_1 \phi' \left(\frac{\delta}{R} \right) \cdot \frac{\delta}{R} + C_1 \right\} |X|^2
$$

$$
\le \frac{C_1}{R^2} \left\{ A_1 \phi' \left(\frac{\delta}{R} \right) \cdot \frac{\delta}{R} + 1 \right\} |X|^2
$$
(3.20)

for some constant $C_1 > 0$ depending on $\sqrt{\kappa}R_0$ which may vary from line to line. Hereafter, unless specifically stated, a constant $C_1 > 0$ may depend on n, $p_-, p_+, q, \sqrt{\kappa} R_0, \theta \max(e, R_0 \log R_0), \beta R_0^{1-q}$, and $T^{-1} \max(R^{p_-}, R^{p_+}),$ and p_0 is the sum line to line vary from line to line.

Since

$$
|L_{\bar{x},\bar{y}}X|^2 = |X|^2
$$
 and $|(X,L_{\bar{x},\bar{y}}X)|^2 = 2|X|^2$,

it holds from (3.16) and (3.20) that

$$
L_{\bar{x},\bar{y}}P-Q \leq \frac{C_1}{R^2} \left\{ A_1 \phi' \left(\frac{\delta}{R} \right) \cdot \frac{\delta}{R} + 1 \right\} \mathbf{I} + 2\mu \left\| \left(D_{x,y}^2 \Phi(\bar{x},\bar{y},\bar{t}) \right)^2 \right\| \mathbf{I}
$$

as symmetric bilinear forms, that is,

$$
\langle (L_{\bar{x},\bar{y}}P - Q) \cdot Y, Y \rangle \le \frac{C_1}{R^2} \left\{ A_1 \phi' \left(\frac{\delta}{R} \right) \cdot \frac{\delta}{R} + 1 \right\} |Y|^2
$$

+2 $\mu \left\| \left(D_{x,y}^2 \Phi(\bar{x}, \bar{y}, \bar{t}) \right)^2 \right\| |Y|^2, \quad \forall Y \in T_{\bar{y}}M.$

With the choice of

$$
\mu = R^{-2} \cdot \left\{ 1 + \left(\left(D_{x,y}^2 \Phi(\bar{x}, \bar{y}, \bar{t}) \right)^2 \right) \right\}^{-1}
$$
 (3.21)

in Claim [3.3,](#page-10-0) we deduce that

$$
L_{\bar{x},\bar{y}}P - Q \le \frac{C_1}{R^2} \left\{ A_1 \phi' \left(\frac{\delta}{R} \right) \cdot \frac{\delta}{R} + 1 \right\} \mathbf{I}
$$
 (3.22)

for some constant $C_1 > 0$ depending on $\sqrt{\kappa}R_0$.

Since

$$
\phi''(r) = -\frac{2|\log r|}{r} \left(1 - \frac{1}{|\log r|}\right) \le -\frac{3|\log r|}{2r} < 0 \quad \forall r \in (0, e^{-4}),
$$
\n(3.23)

a direct computation with the use of Claim [3.2,](#page-9-2) [\(3.12\)](#page-10-4) and a Hessian estimate for squared distance functions in $[20, \text{ Lemma } 3.12]$ $[20, \text{ Lemma } 3.12]$ (see also (3.18)) implies that

$$
D_x^2 \Phi(\bar{x}, \bar{y}, \bar{t}) = \frac{A_1}{R^2} \phi''\left(\frac{\delta}{R}\right) \nabla d_{\bar{y}} \otimes \nabla d_{\bar{y}}(\bar{x}) + \frac{A_1}{R} \phi'\left(\frac{\delta}{R}\right) \frac{1}{\delta}
$$

$$
\times \left\{\frac{1}{2} D^2 d_{\bar{y}}^2(\bar{x}) - \nabla d_{\bar{y}} \otimes \nabla d_{\bar{y}}(\bar{x})\right\} + \frac{A_2}{2R^2} D^2 d_{z_0}^2(\bar{x})
$$

$$
\leq \frac{A_1}{2R^2} \phi'\left(\frac{\delta}{R}\right) \frac{R}{\delta} D^2 d_{\bar{y}}^2(\bar{x}) + \frac{A_2}{2R^2} D^2 d_{z_0}^2(\bar{x})
$$

$$
\leq \frac{C_1}{R^2} \left\{ A_1 \phi'\left(\frac{\delta}{R}\right) \frac{R}{\delta} + 1 \right\} \mathbf{I},
$$
 (3.24)

where we recall from [\(3.6\)](#page-9-3) that $d(\bar{x}, \bar{y}) = \delta < R \le R_0$. By the choice of μ as (3.21) , it follows from (3.14) and (3.24) that

$$
P \le \frac{C_1}{R^2} \left\{ A_1 \phi' \left(\frac{\delta}{R} \right) \frac{R}{\delta} + 1 \right\} \mathbf{I}
$$
 (3.25)

for some constant $C_1 > 0$ depending on $\sqrt{\kappa}R_0$. Similarly, we have that

$$
Q \ge -\frac{C_1}{R^2} \left\{ A_1 \, \phi' \left(\frac{\delta}{R} \right) \frac{R}{\delta} + 1 \right\} \mathbf{I}.\tag{3.26}
$$

$$
x_* = \exp_{\bar{x}} (\varepsilon \xi), \quad y_* = \exp_{\bar{y}} (-\varepsilon \zeta), \quad t_*, s_* \in [\bar{t} - 2\sqrt{\varepsilon}, \bar{t} + 2\sqrt{\varepsilon}] \cap (T/8, T],
$$

with
$$
d^2(x_*, \bar{x}) = \varepsilon^2 |\xi|^2 \le 2\varepsilon \omega (2\sqrt{\varepsilon}), \quad d^2(y_*, \bar{y}) = \varepsilon^2 |\zeta|^2 \le 2\varepsilon \omega (2\sqrt{\varepsilon}),
$$
(3.27)

and

$$
\left(a, L_{\bar{x},x_*}\xi, L_{\bar{x},x_*}P + 2\kappa\omega\left(2\sqrt{\varepsilon}\right)\mathbf{I}\right) \in \overline{\mathcal{P}}^{2,+}u(x_*, t_*);
$$
\n
$$
\left(b, L_{\bar{y},y_*}\zeta, L_{\bar{y},y_*}Q - 2\kappa\omega\left(2\sqrt{\varepsilon}\right)\mathbf{I}\right) \in \overline{\mathcal{P}}^{2,-}u(y_*, s_*);
$$
\n
$$
(3.28)
$$

for sufficiently small $\varepsilon > 0$. Here we used the facts that $\overline{\mathcal{P}}^{2,+}u^{\varepsilon} = -\overline{\mathcal{P}}^{2,-}(-u)_{\varepsilon}$, and $||u||_{L^{\infty}(B_{2R}(z_0)\times(0,T])} \leq 1$. Notice that $x_* \notin \text{Cut}(\bar{x})$ and $y_* \notin \text{Cut}(\bar{y})$ from
Lamma 2.5. Since u otticies (1.5) in $B_{1.5}(z_0)\times(0,T]$ in the viscosity same and Lemma [2.5.](#page-7-1) Since u satisfies [\(1.5\)](#page-3-3) in $B_{2R}(z_0) \times (0, T]$ in the viscosity sense and the $p(x, t)$ -Laplacian operator (1.2) in non-divergence form is continuous with respect to x, t, ∇u and D^2u except when $\nabla u = 0$, utilizing [\(3.11\)](#page-10-6) and [\(3.28\)](#page-13-0) yields that

$$
\begin{split}\n|\xi|^{p(x_*,t_*)-2} &\text{tr}\left[\left(\mathbf{I}+\left(p(x_*,t_*)-2\right)\frac{\xi}{|\xi|}\otimes\frac{\xi}{|\xi|}\right)P\right]-a \\
&\geq -|\xi|^{p(x_*,t_*)-2}\left\{2\kappa\,\omega\,(2\sqrt{\varepsilon})\,(n+p_+-2)+\theta|\xi|\left|\log|\xi|\right|+\beta|\xi|^{1+q}\right\}-R^{-p(x_*,t_*)}; \\
|\zeta|^{p(y_*,s_*)-2} &\text{tr}\left[\left(\mathbf{I}+\left(p(y_*,s_*)-2\right)\frac{\zeta}{|\zeta|}\otimes\frac{\zeta}{|\zeta|}\right)Q\right]-b \\
&\leq |\zeta|^{p(y_*,s_*)-2}\left\{2\kappa\,\omega\,(2\sqrt{\varepsilon})\,(n+p_+-2)+\theta|\zeta|\left|\log|\zeta|\right|+\beta|\zeta|^{1+q}\right\}+R^{-p(y_*,s_*)}.\n\end{split} \tag{3.29}
$$

Here we used the facts that $|\xi| = |L_{\bar{x},x_*} \xi|$, P and $L_{\bar{x},x_*} P$ have the same eigenvalues, and

$$
\left\langle \left(L_{\bar{x},x*} \xi \otimes L_{\bar{x},x*} \xi \right) L_{\bar{x},x*} P \cdot X, X \right\rangle_{x_*}
$$
\n
$$
= \left\langle \left(\xi \otimes \xi \right) P \cdot L_{x_*,\bar{x}} X, L_{x_*,\bar{x}} X \right\rangle_{\bar{x}} \quad \forall X \in T_{x_*} M. \tag{3.30}
$$

Now we will estimate $|P|$ with the use of (3.25) , (3.26) and (3.29) . Employing (3.11) and (3.29) , we obtain that

$$
\operatorname{tr}\left[\left(\mathbf{I}+\left(p(x_*,t_*)-2\right)\frac{\xi}{|\xi|}\otimes\frac{\xi}{|\xi|}\right)P\right]-a|\xi|^{2-p(x_*,t_*)}
$$
\n
$$
\geq -\left\{2\kappa\omega\left(2\sqrt{\varepsilon}\right)(n+p_{+}-2)+\theta|\xi||\log|\xi||+\beta|\xi|^{1+q}\right\}-R^{-p(x_*,t_*)}|\xi|^{2-p(x_*,t_*)}
$$
\n
$$
\geq -\frac{C_1}{R^2}\left\{\kappa R_0^2+\theta R A_1\phi'\left(\frac{\delta}{R}\right)\left[\log 2+\log\left[A_1\phi'\left(\frac{\delta}{R}\right)\right]+|\log R|\right]\right\}
$$
\n
$$
+\beta R_0^{1-q}\left[A_1\phi'\left(\frac{\delta}{R}\right)\right]^{1+q}+\left[A_1\phi'\left(\frac{\delta}{R}\right)\right]^{2-p}\right\}
$$
\n
$$
\geq -\frac{C_1}{R^2}A_1\phi'\left(\frac{\delta}{R}\right)\left\{\log\left[A_1\phi'\left(\frac{\delta}{R}\right)\right]+\left[A_1\phi'\left(\frac{\delta}{R}\right)\right]^{q}\right\}
$$
\n(3.31)

for sufficiently small $\varepsilon > 0$ and sufficiently large $A_1 > 1$, where we used that $\theta R, \theta R | \log R | \leq \theta \max(e, R_0 \log R_0), A_1 \phi'(\frac{\delta}{R}) \gg 1, A_1 \gg 1 \text{ and } p_- > 1.$
Here and benefits a constant $C > 0$ may depend on $x, x_0, x_0 \in R$ Here and hereafter, a constant $C_1 > 0$ may depend on $n, p_-, p_+, q, \sqrt{\kappa}R_0$, θ max (e, R_0 log R_0), βR_0^{1-q} , and T^{-1} max (R^{p_-}, R^{p_+}), and vary from line to line. If this estimate together with (3.15) and (3.29) implies that line. Utilizing this estimate together with [\(3.15\)](#page-10-7) and [\(3.29\)](#page-13-1) implies that

$$
\begin{split}\n&\text{tr}\left[\left(\mathbf{I}+\left(p(x_*,t_*)-2\right)\frac{\xi}{|\xi|}\otimes\frac{\xi}{|\xi|}\right)P\right] \\
&\geq -\frac{C_1}{R^2}A_1\phi'\left(\frac{\delta}{R}\right)\left\{\log\left[A_1\phi'\left(\frac{\delta}{R}\right)\right] \\
&+\left[A_1\phi'\left(\frac{\delta}{R}\right)\right]^q\right\} + (a-b)\left|\xi\right|^{2-p(x_*,t_*)} + b\left|\xi\right|^{2-p(x_*,t_*)} \\
&\geq -\frac{C_1}{R^2}A_1\phi'\left(\frac{\delta}{R}\right)\left\{\log\left[A_1\phi'\left(\frac{\delta}{R}\right)\right] + \left[A_1\phi'\left(\frac{\delta}{R}\right)\right]^q\right\} \\
&-\frac{A_2}{T}\left|\xi\right|^{2-p(x_*,t_*)} + \left|\xi\right|^{2-p(x_*,t_*)}\left|\zeta\right|^{p(y_*,s_*)-2}\text{tr}\left[\left(\mathbf{I}+\left(p(y_*,s_*)-2\right)\frac{\zeta}{|\zeta|}\otimes\frac{\zeta}{|\zeta|}\right)Q\right] \\
&- \left|\xi\right|^{2-p(x_*,t_*)}\left|\zeta\right|^{p(y_*,s_*)-2}\left\{2\kappa\omega\left(2\sqrt{\varepsilon}\right)(n+p_*-2) \\
&+\theta|\zeta|\left|\log|\zeta|\right|+\beta|\zeta|^{1+q}+R^{-p(y_*,s_*)}|\zeta|^{2-p(y_*,s_*)}\right\}.\n\end{split}
$$

Using (3.26) and arguing similarly as for (3.31) , we deduce that

$$
\begin{split} \n\text{tr}\left[\left(\mathbf{I}+\left(p(x_{*},t_{*})-2\right)\frac{\xi}{|\xi|}\otimes\frac{\xi}{|\xi|}\right)P\right] \\ \n&\geq -\frac{C_{1}}{R^{2}}A_{1}\phi'\left(\frac{\delta}{R}\right)\left\{\log\left[A_{1}\phi'\left(\frac{\delta}{R}\right)\right]+\left[A_{1}\phi'\left(\frac{\delta}{R}\right)\right]^{q}+T^{-1}R^{p(x_{*},t_{*})}\right\} \\ \n&-R^{p(x_{*},t_{*})-p(y_{*},s_{*})}\left[A_{1}\phi'\left(\frac{\delta}{R}\right)\right]^{p(y_{*},s_{*})-p(x_{*},t_{*})}\frac{C_{1}}{R^{2}}\left\{\right. A_{1}\phi'\left(\frac{\delta}{R}\right)\frac{R}{\delta}+1\right\} \\ \n&-R^{p(x_{*},t_{*})-p(y_{*},s_{*})}\left[A_{1}\phi'\left(\frac{\delta}{R}\right)\right]^{1+p(y_{*},s_{*})-p(x_{*},t_{*})}\frac{C_{1}}{R^{2}}\left\{\log\left[A_{1}\phi'\left(\frac{\delta}{R}\right)\right]\right\} \\ \n&+\left[A_{1}\phi'\left(\frac{\delta}{R}\right)\right]^{q}\right\} \n\end{split} \tag{3.32}
$$

for sufficiently small $\varepsilon > 0$ and sufficiently large $A_1 > 1$.

In order to estimate $|P|$ with the use of (3.32) and (3.25) , we will establish some estimates regarding the difference between $p(x_*, t_*)$ and $p(y_*, s_*)$. Using the assumption (1.3) on Lipschitz continuity of p, it holds that

$$
R^{p(x_*,t_*)-p(y_*,s_*)}, R^{p(y_*,s_*)-p(x_*,t_*)} \le \max\left\{1, e^{\theta \max(e, R_0 \log R_0)}\right\}.
$$
 (3.33)

Indeed, we only consider the case when $R^{p(x_{*},t_{*})-p(y_{*},s_{*})} > 1$ since the other is similar. In light of (3.27) and (3.8) , we have that

for sufficiently small $\varepsilon > 0$. Hence the assumption [\(1.3\)](#page-3-0) on p together with (3.34) and (3.6) yields that

$$
\log R^{p(x_*,t_*)-p(y_*,s_*)} = |p(x_*,t_*)-p(y_*,s_*)| \cdot |\log R| \le \theta \delta_* |\log R|
$$

$$
\le \theta R |\log R| \le \theta \max(e, R_0 \log R_0)
$$

for large $A_1 > 1$ and small $\varepsilon > 0$, which proves [\(3.33\)](#page-14-1).

With the use of (3.34) and (3.6) , it holds that

$$
|p(x_*, t_*) - p(y_*, s_*)| \le \theta \delta_* \le 2\theta \delta \le 2\theta R A_1^{-1}
$$
 (3.35)

for sufficiently small $\varepsilon > 0$ and large $A_1 > 1$. Moreover, we show that

$$
\left[\phi'\left(\frac{\delta}{R}\right)\right]^{|p(x_*,t_*)-p(y_*,s_*)|} \le \left[\phi'\left(\frac{\delta}{R}\right)\right]^{\theta\delta_*} \le C_1. \tag{3.36}
$$

In fact, by [\(3.35\)](#page-15-1), it follows that

$$
\theta \delta_* \log \phi' \left(\frac{\delta}{R} \right) \leq 2\theta R \cdot \frac{\delta}{R} \log \phi' \left(\frac{\delta}{R} \right)
$$

for large $A_1 > 1$ and small $\varepsilon > 0$. The right-hand side of the above estimate is uniformly bounded in light of (3.6) and (3.12) , which yields (3.36) . Here we also used that $\theta R \leq \theta$ max $(e, R_0 \log R_0)$.

From (3.32) , (3.33) , (3.35) and (3.36) , it follows that for sufficiently small $\varepsilon > 0$,

$$
\operatorname{tr}\left[\left(\mathbf{I} + (p(x_*,t_*) - 2) \frac{\xi}{|\xi|} \otimes \frac{\xi}{|\xi|}\right) P\right] \n\geq -\frac{C_1}{R^2} A_1^{1 + \theta \delta_*} \phi' \left(\frac{\delta}{R}\right) \left\{\frac{R}{\delta} + \log \left[A_1 \phi' \left(\frac{\delta}{R}\right)\right] + \left[A_1 \phi' \left(\frac{\delta}{R}\right)\right]^q\right\}
$$
\n(3.37)

with sufficiently large $A_1 > 1$ depending on $n, p_-, p_+, q, \sqrt{\kappa} R_0, \theta \max(e, R_0 \log q_0)$ R_0), βR_0^{1-q} , and T^{-1} max (R^{p_-}, R^{p_+}) , since

$$
T^{-1}R^{p(x_*,t_*)} \le T^{-1} \max\left(R^{p-}, R^{p+}\right). \tag{3.38}
$$

Here we used the assumption that $1 < p_-\leq p(x_*, t_*) \leq p_+ < \infty$. The estimate (3.37) combines with (3.25) , (3.12) and (3.6) to obtain

$$
|P| \leq \frac{C_1}{R^2} A_1^{1+\theta\delta_*} \phi' \left(\frac{\delta}{R}\right) \left\{ \frac{R}{\delta} + \log \left[A_1 \phi' \left(\frac{\delta}{R} \right) \right] + \left[A_1 \phi' \left(\frac{\delta}{R} \right) \right]^q \right\}
$$

$$
\leq \frac{C_1}{R^2} A_1^{1+\theta\delta_*} \phi' \left(\frac{\delta}{R} \right) \cdot \frac{R}{\delta}.
$$
 (3.39)

Here we used the assumption that $q < 1$, and the fact that $A_1 \leq R/\delta$ from $(3.6).$ $(3.6).$

Employing estimates (3.29) , (3.11) , (3.31) and (3.15) , we deduce that

$$
|\xi|^{p(x_*,t_*)-2} \operatorname{tr}\left[\left(\mathbf{I} + \left(p(x_*,t_*) - 2 \right) \frac{\xi}{|\xi|} \otimes \frac{\xi}{|\xi|} \right) P \right] - |\zeta|^{p(y_*,s_*)-2} \operatorname{tr}\left[\left(\mathbf{I} + \left(p(y_*,s_*) - 2 \right) \frac{\zeta}{|\zeta|} \otimes \frac{\zeta}{|\zeta|} \right) Q \right] \geq -C_1 R^{2-p(x_*,t_*)} \left[A_1 \phi' \left(\frac{\delta}{R} \right) \right]^{p(x_*,t_*)-2} \cdot \frac{1}{R^2} A_1 \phi' \left(\frac{\delta}{R} \right) \times \left\{ \log \left[A_1 \phi' \left(\frac{\delta}{R} \right) \right] + \left[A_1 \phi' \left(\frac{\delta}{R} \right) \right]^q \right\} - C_1 R^{2-p(y_*,s_*)} \left[A_1 \phi' \left(\frac{\delta}{R} \right) \right]^{p(y_*,s_*)-2} \frac{1}{R^2} A_1 \phi' \left(\frac{\delta}{R} \right) \times \left\{ \log \left[A_1 \phi' \left(\frac{\delta}{R} \right) \right] + \left[A_1 \phi' \left(\frac{\delta}{R} \right) \right]^q \right\} + a - b \geq -C_1 R^{-p(y_*,s_*)} \left[A_1 \phi' \left(\frac{\delta}{R} \right) \right]^{p(y_*,s_*)-1} \cdot \left\{ 1 + R^{p(y_*,s_*)-p(x_*,t_*)} \left[A_1 \phi' \left(\frac{\delta}{R} \right) \right]^{p(x_*,t_*)-p(y_*,s_*)} \right\} \cdot \left\{ \log \left[A_1 \phi' \left(\frac{\delta}{R} \right) \right] + \left[A_1 \phi' \left(\frac{\delta}{R} \right) \right]^q \right\} - A_2 T^{-1}
$$

and hence in light of (3.33) , (3.35) , (3.36) , and (3.38) , it follows that

$$
|\xi|^{p(x_*,t_*)-2} \operatorname{tr}\left[\left(\mathbf{I} + \left(p(x_*,t_*) - 2 \right) \frac{\xi}{|\xi|} \otimes \frac{\xi}{|\xi|} \right) P \right] - |\zeta|^{p(y_*,s_*)-2} \operatorname{tr}\left[\left(\mathbf{I} + \left(p(y_*,s_*) - 2 \right) \frac{\zeta}{|\zeta|} \otimes \frac{\zeta}{|\zeta|} \right) Q \right] \geq -C_1 R^{-p(y_*,s_*)} \left[A_1 \phi' \left(\frac{\delta}{R} \right) \right]^{p(y_*,s_*)-1} A_1^{\theta \delta_*} \times \left\{ \log \left[A_1 \phi' \left(\frac{\delta}{R} \right) \right] + \left[A_1 \phi' \left(\frac{\delta}{R} \right) \right]^q \right\}
$$
\n(3.40)

for sufficiently small $\varepsilon > 0$ and sufficiently large $A_1 > 1$. Now we decompose the first line of (3.40) into $\mathcal{T}_1 + \mathcal{T}_2 + \mathcal{T}_3 + \mathcal{T}_4$, where \mathcal{T}_j for $j = 1, 2, 3, 4$ are given by

$$
\mathcal{T}_1 := \left\{ |\xi|^{p(x_*,t_*)-2} - |\xi|^{p(y_*,s_*)-2} \right\} \text{tr}\left[\left(\mathbf{I} + \left(p(x_*,t_*) - 2 \right) \frac{\xi}{|\xi|} \otimes \frac{\xi}{|\xi|} \right) P \right];
$$
\n
$$
\mathcal{T}_2 := |\xi|^{p(y_*,s_*)-2} \left(p(x_*,t_*) - p(y_*,s_*) \right) \text{tr}\left(\frac{\xi}{|\xi|} \otimes \frac{\xi}{|\xi|} P \right);
$$
\n
$$
\mathcal{T}_3 := |\xi|^{p(y_*,s_*)-2} \text{tr}\left[\left(\mathbf{I} + \left(p(y_*,s_*) - 2 \right) \frac{\xi}{|\xi|} \otimes \frac{\xi}{|\xi|} \right) P \right]
$$

$$
-|L_{\bar{y},\bar{x}}\zeta|^{p(y_*,s_*)-2} \operatorname{tr}\left[\left(\mathbf{I}+\left(p(y_*,s_*)-2\right)\frac{L_{\bar{y},\bar{x}}\zeta}{|L_{\bar{y},\bar{x}}\zeta|}\otimes\frac{L_{\bar{y},\bar{x}}\zeta}{|L_{\bar{y},\bar{x}}\zeta|}\right)P\right];
$$

$$
\mathcal{T}_4:=|\zeta|^{p(y_*,s_*)-2} \operatorname{tr}\left[\left(\mathbf{I}+\left(p(y_*,s_*)-2\right)\frac{\zeta}{|\zeta|}\otimes\frac{\zeta}{|\zeta|}\right)\left(L_{\bar{x},\bar{y}}P-Q\right)\right]
$$

Here we used the facts that $|\zeta| = |L_{\bar{y},\bar{x}}\zeta|$, and P and $L_{\bar{x},\bar{y}}P$ have the same eigenvalues, and the equality [\(3.30\)](#page-13-4).

Estimate for \mathcal{T}_1 . For \mathcal{T}_1 , we use the mean value theorem, (3.11) and (3.39) with a similar argument for (3.33) to deduce that

$$
|\mathcal{T}_1| \leq C_1 |\xi|^{p(y_*, s_*)-2} \cdot \left| |\xi|^{p(x_*, t_*)-p(y_*, s_*)} - 1 \right| \cdot |P|
$$

\n
$$
\leq C_1 |\xi|^{p(y_*, s_*)-2} \cdot \left[A_1 \phi' \left(\frac{\delta}{R} \right) \right]^{|p(x_*, t_*)-p(y_*, s_*)|}
$$

\n
$$
|\log |\xi| |\cdot |p(x_*, t_*) - p(y_*, s_*)| \cdot \frac{1}{R^2} A_1^{1+\theta \delta_*} \phi' \left(\frac{\delta}{R} \right) \cdot \frac{R}{\delta}.
$$

Then utilizing (3.11) , (3.35) , (3.36) , and (3.34) shows that

$$
|\mathcal{T}_{1}| \leq C_{1} \left[\frac{A_{1}}{R} \phi' \left(\frac{\delta}{R} \right) \right]^{p(y_{*}, s_{*})-2} \left[A_{1} \phi' \left(\frac{\delta}{R} \right) \right]^{\theta \delta_{*}} \left\{ \log \left[A_{1} \phi' \left(\frac{\delta}{R} \right) \right] + |\log R| \right\}
$$

$$
\cdot \theta \delta_{*} \cdot \frac{1}{R^{2}} A_{1}^{1+\theta \delta_{*}} \phi' \left(\frac{\delta}{R} \right) \cdot \frac{R}{\delta}
$$

$$
\leq \frac{C_{1}}{R^{p(y_{*}, s_{*})}} \left[A_{1} \phi' \left(\frac{\delta}{R} \right) \right]^{p(y_{*}, s_{*})-1} \cdot A_{1}^{2\theta \delta_{*}} \left\{ \log \left[A_{1} \phi' \left(\frac{\delta}{R} \right) \right] + |\log R| \right\} \cdot \theta \delta_{*} \cdot \frac{R}{\delta}
$$

$$
\leq \frac{C_{1}}{R^{p(y_{*}, s_{*})}} \left[A_{1} \phi' \left(\frac{\delta}{R} \right) \right]^{p(y_{*}, s_{*})-1} \cdot A_{1}^{2\theta \delta_{*}} \left\{ \log \left[A_{1} \phi' \left(\frac{\delta}{R} \right) \right] + |\log R| \right\} \cdot \theta R
$$
(3.41)

for sufficiently small $\varepsilon > 0$. Selecting $A_1 > 1$ sufficiently large, [\(3.41\)](#page-17-0) together with [\(3.35\)](#page-15-1) yields that

$$
|\mathcal{T}_1| \le \frac{C_1}{R^{p(y_*,s_*)}} \left[A_1 \phi' \left(\frac{\delta}{R} \right) \right]^{p(y_*,s_*)-1} A_1^{q_0} \left[\log A_1 + \log \phi' \left(\frac{\delta}{R} \right) \right].
$$
\n(3.42)

for $q_0 := \frac{1}{2}(1-q) > 0$. Here we used that $\theta R, \theta R | \log R | \le \theta \max(e, R_0 \log R_0)$.

Estimate for \mathcal{T}_2 . As in the estimate for \mathcal{T}_1 , it holds that

$$
|\mathcal{T}_2| \leq C_1 |\xi|^{p(y_*,s_*)-2} |p(x_*,t_*) - p(y_*,s_*)| \cdot |P|
$$

\n
$$
\leq C_1 \left[\frac{A_1}{R} \phi' \left(\frac{\delta}{R} \right) \right]^{p(y_*,s_*)-2} \cdot \theta \delta_* \cdot \frac{1}{R^2} A_1^{1+\theta \delta_*} \phi' \left(\frac{\delta}{R} \right) \cdot \frac{R}{\delta}
$$

\n
$$
\leq \frac{C_1}{R^{p(y_*,s_*)}} \left[A_1 \phi' \left(\frac{\delta}{R} \right) \right]^{p(y_*,s_*)-1} A_1^{\theta \delta_*} \cdot \theta \delta_* \cdot \frac{R}{\delta}
$$

\n
$$
\leq \frac{C_1}{R^{p(y_*,s_*)}} \left[A_1 \phi' \left(\frac{\delta}{R} \right) \right]^{p(y_*,s_*)-1} A_1^{q_0}
$$

\n(3.43)

by choosing $A_1 > 1$ sufficiently large and $\varepsilon > 0$ sufficiently small.

Estimate for \mathcal{T}_3 . Employing the mean value theorem, (3.10) , (3.11) , and (3.39) , we obtain

$$
|\mathcal{T}_3| \leq C_1 \left[\frac{A_1}{R} \phi' \left(\frac{\delta}{R} \right) \right]^{p(y_*, s_*)-3} \cdot |\eta| \cdot |P|
$$

\n
$$
\leq C_1 \left[\frac{A_1}{R} \phi' \left(\frac{\delta}{R} \right) \right]^{p(y_*, s_*)-3} \cdot \frac{1}{R} \cdot \frac{1}{R^2} A_1^{1+\theta\delta_*} \phi' \left(\frac{\delta}{R} \right) \cdot \frac{R}{\delta}
$$
 (3.44)
\n
$$
\leq \frac{C_1}{R^{p(y_*, s_*)}} \left[A_1 \phi' \left(\frac{\delta}{R} \right) \right]^{p(y_*, s_*)-2} A_1^{\theta\delta_*} \cdot \frac{R}{\delta}
$$

since $|\eta| \leq 2A_2 R^{-1}$ in light of [\(3.10\)](#page-9-5). Thus we conclude from [\(3.35\)](#page-15-1) that

$$
|\mathcal{T}_3| \le \frac{C_1}{R^{p(y_*,s_*)}} \left[A_1 \phi' \left(\frac{\delta}{R} \right) \right]^{p(y_*,s_*)-2} A_1^{q_0} \cdot \frac{R}{\delta} \tag{3.45}
$$

for sufficiently large $A_1 > 1$ and sufficiently small $\varepsilon > 0$.

Estimate for \mathcal{T}_4 . Since $\nabla d_{\bar{y}}(\bar{x})$ is an eigenvector of $\frac{1}{2}D^2 d_{\bar{y}}^2(\bar{x})$ associated with eigenvalue 1, the first line of (3.24) and a Hessian estimate for squared distance eigenvalue 1, the first line of [\(3.24\)](#page-12-1) and a Hessian estimate for squared distance functions in Lemma 3.12 of $[20]$ (see (3.18)) imply that

$$
\langle D_x^2 \Phi(\bar{x}, \bar{y}, \bar{t}) \cdot \nabla d_{\bar{y}}, \nabla d_{\bar{y}}(\bar{x}) \rangle = \frac{1}{R^2} \left[A_1 \phi''\left(\frac{\delta}{R}\right) + \frac{A_2}{2} \langle D^2 d_{z_0}^2 \cdot \nabla d_{\bar{y}}, \nabla d_{\bar{y}}(\bar{x}) \rangle \right]
$$

$$
\leq \frac{1}{R^2} \left[A_1 \phi''\left(\frac{\delta}{R}\right) + C_1 \right]
$$

which is negative in view of (3.23) and (3.6) by selecting $A_1 > 1$ sufficiently large. This yields from [\(3.14\)](#page-10-1) that

$$
\langle P \cdot \nabla d_{\bar{y}}, \nabla d_{\bar{y}}(\bar{x}) \rangle \le \frac{1}{R^2} \left[A_1 \phi''\left(\frac{\delta}{R}\right) + C_1 \right] \tag{3.46}
$$

since we have chosen μ as (3.21) . In a similar fashion, it holds that

$$
-\left\langle Q \cdot \nabla d_{\bar{x}}, \nabla d_{\bar{x}}(\bar{y}) \right\rangle \le \frac{1}{R^2} \left[A_1 \phi''\left(\frac{\delta}{R}\right) + C_1 \right].
$$
 (3.47)

Since $\nabla d_{\bar{y}}(\bar{x}) = -L_{\bar{y},\bar{x}} \nabla d_{\bar{x}}(\bar{y})$, estimates [\(3.46\)](#page-18-0) and [\(3.47\)](#page-18-1) imply that

$$
\left\langle \left(L_{\bar{x},\bar{y}} P - Q \right) \cdot \nabla d_{\bar{x}}(y), \nabla d_{\bar{x}}(\bar{y}) \right\rangle \le \frac{2}{R^2} \left[A_1 \phi''\left(\frac{\delta}{R}\right) + C_1 \right]. \tag{3.48}
$$

Therefore by (3.11) , (3.22) and (3.48) , we deduce that

$$
\mathcal{T}_4 = |\zeta|^{p(y_*,s_*)-2} \operatorname{tr}\left[\left(\mathbf{I} + \left(p(y_*,s_*) - 2 \right) \frac{\zeta}{|\zeta|} \otimes \frac{\zeta}{|\zeta|} \right) \left(L_{\bar{x},\bar{y}} P - Q \right) \right] \n\leq \frac{C_0}{R^{p(y_*,s_*)}} \left[A_1 \phi' \left(\frac{\delta}{R} \right) \right]^{p(y_*,s_*)-2} \left[A_1 \phi'' \left(\frac{\delta}{R} \right) + C_1 A_1 \phi' \left(\frac{\delta}{R} \right) \cdot \frac{\delta}{R} + C_1 \right],
$$
\n(3.49)

where a constant $C_0 > 0$ depends only on $p_-\,$ and p_+ .

Utilizing [\(3.35\)](#page-15-1), [\(3.40\)](#page-16-0), [\(3.42\)](#page-17-1), [\(3.43\)](#page-17-2), [\(3.45\)](#page-18-3) and [\(3.49\)](#page-18-4), it follows that $-A_1\phi''\left(\frac{\delta}{R}\right)$ R $\left(\int_{0}^{R} \right) \leq C_1 \left[\log A_1 + \log \phi' \left(\frac{\delta}{R} \right) \right]$ R \setminus · $\left\{ A_1^{1+q_0} \phi' \left(\frac{\delta}{R} \right) \right\}$ R $+ A_1^{q_0} \cdot$ $\frac{R}{\delta} + A_1^{1+q+q_0}$ $\phi'(\frac{\delta}{\tau})$ R \bigcap^{1+q} (3.50)

for sufficiently large $A_1 > 1$ and small $\varepsilon > 0$. Letting $q_1 := 1 + q + q_0$, and recalling (3.12) and (3.23) , we conclude from (3.50) and (3.6) that

$$
A_1^{1+q_1/2} \left(\frac{R}{\delta}\right)^{1-q_1/2} + A_1 \left(\log \frac{R}{\delta}\right) \cdot \frac{R}{\delta}
$$

$$
\leq C_1 \left(\log A_1 + \log \log \frac{R}{\delta}\right) \cdot \left\{A_1^{q_1} \left(\log \frac{R}{\delta}\right)^4 + A_1^{q_0} \cdot \frac{R}{\delta}\right\}.
$$

This gives a contradiction by choosing $A_1 > 1$ sufficiently large since $0 < q_0 = \frac{1}{2}(1-q) < 1$ and $q_1 = 1 + q + q_0 < 2$. Therefore we have proved that $m_{\varepsilon} \le \nu$ for sufficiently small $\varepsilon > 0$ provided that positive cons for sufficiently small $\varepsilon > 0$ provided that positive constants A_1 and A_2 are sufficiently large.

Lastly, we will give the proofs of Claim [3.2](#page-9-2) and Claim [3.3](#page-10-0)

Proof of Claim [3.2.](#page-9-2) In light of the assumption that $m_{\epsilon} > \nu$, we recall that $\bar{x} \neq \bar{y}$. By the contacting property [\(3.4\)](#page-8-2) with [\(3.3\)](#page-8-3), we have that for any $x \in B_R(z_0),$

$$
u^{\varepsilon}(x,\bar{t}) - A_1 \phi\left(\frac{d_{\bar{y}}(x)}{R}\right) - \frac{A_2}{2R^2} d_{z_0}^2(x) \leq u^{\varepsilon}(\bar{x},\bar{t}) - A_1 \phi\left(\frac{d_{\bar{y}}(\bar{x})}{R}\right) - \frac{A_2}{2R^2} d_{z_0}^2(\bar{x}).
$$
\n(3.51)

If \bar{x} is a cut point of \bar{y} , then Corollary 2.8 of [\[40](#page-30-10)] implies that there is a unit vector $X \in T_{\bar{x}}M$ such that

$$
\liminf_{\tau \to 0} \frac{1}{\tau^2} \left\{ \psi \left(d_{\bar{y}}^2 \left(\exp_{\bar{x}} \tau X \right) \right) + \psi \left(d_{\bar{y}}^2 \left(\exp_{\bar{x}} - \tau X \right) \right) - 2\psi \left(d_{\bar{y}}^2(\bar{x}) \right) \right\} = -\infty,
$$

where a function $\psi(s) = A_1 \phi \left(\sqrt{s}/R \right)$ (for $s \ge 0$) is smooth near $s = \delta^2 > 0$
with $\psi(s^2) > 0$ by (2.6). On the other hand, some convergity of $\psi(\vec{s})$ and with $\psi'(\delta^2) > 0$ by [\(3.6\)](#page-9-3). On the other hand, semi-convexity of $u^{\varepsilon}(\cdot,\bar{t})$ and semi-concavity of $d_{z_0}^2$ in $B_R(z_0)$ (see a upper Hessian bound in Lemma 3.12 of $[20]$ $[20]$) with (3.51) yield that

$$
\liminf_{\tau \to 0} \frac{1}{\tau^2} \left\{ \psi \left(d_{\bar{y}}^2 \left(\exp_{\bar{x}} \tau X \right) \right) + \psi \left(d_{\bar{y}}^2 \left(\exp_{\bar{x}} - \tau X \right) \right) - 2\psi \left(d_{\bar{y}}^2(\bar{x}) \right) \right\}
$$
\n
$$
\geq \liminf_{\tau \to 0} \frac{1}{\tau^2} \left\{ u^{\varepsilon} \left(\exp_{\bar{x}} \tau X, \bar{t} \right) + u^{\varepsilon} \left(\exp_{\bar{x}} - \tau X, \bar{t} \right) - 2u^{\varepsilon} \left(\bar{x}, \bar{t} \right) \right\}
$$
\n
$$
- \frac{A_2}{2R^2} \limsup_{\tau \to 0} \frac{1}{\tau^2} \left\{ d_{z_0}^2 \left(\exp_{\bar{x}} \tau X \right) + d_{z_0}^2 \left(\exp_{\bar{x}} - \tau X \right) - 2d_{z_0}^2(\bar{x}) \right\} > -\infty,
$$

which is a contradiction. Therefore we conclude that $\bar{x} \notin \mathrm{Cut}(\bar{y}) \cup \{\bar{y}\}\.$ More-over, a similar argument above using [\(3.51\)](#page-19-1) and the fact that $\bar{x} \notin \text{Cut}(\bar{y}) \cup \{\bar{y}\}\$ gives that \bar{x} is not a cut point of z_0 since $d_{z_0}^2$ fails to be semi-convex at a cut point of z_0 ; refer to [\[20](#page-29-14), Proposition 2.5]. Similarly, it can be proved that $\bar{y} \notin$

 $\{\bar{x}\} \cup \text{Cut}(\bar{x}) \cup \text{Cut}(z_0)$ with the help of semi-convexity of $-u_\varepsilon(\cdot,\bar{t})$ in $B_R(z_0)$
and the contacting property $(3,4)$. This finishes the proof of Claim $3,2$. and the contacting property (3.4) . This finishes the proof of Claim [3.2.](#page-9-2)

Proof of Claim [3.3.](#page-10-0) If $\bar{t} < T$, Claim [3.3](#page-10-0) follows from Theorem 3.8 of [\[7](#page-28-7)] since u^{ε} and u_{ε} are Lipschitz continuous in $\overline{B_{3R/2}(z_0)} \times [T/8, T]$. Now we assume that $\bar{t} = T$ and we will use a similar argument as in the proof of Theorem 9 of [\[24](#page-29-15)] to prove Claim [3.3](#page-10-0) in the case. Here we will use Lipschitz continuity of u^{ε} and u_{ε} for a simpler proof; refer to the proof of Theorem 9 of [\[24](#page-29-15)] for general viscosity sub-/supersolutions.

For a given sequence $\{s_k\}_{k=1}^{\infty}$ such that $T/2 < s_k < T$ and $\lim_{k \to \infty} s_k = T$, consider

$$
m_k := \sup_{x,y \in B_R(z_0), T/2 < t < T} \left\{ u^{\varepsilon}(x,t) - u_{\varepsilon}(y,t) - \Phi_k(x,y,t) \right\},
$$

where

$$
\Phi_k(x, y, t) := \Phi(x, y, t) + d_x^4(x) + d_y^4(y) + (t - T)^2 + \frac{(T - s_k)^2}{T - t}.
$$

Since $\bar{t} = T$ and

$$
m_{\varepsilon} \ge m_k \ge u^{\varepsilon}(\bar{x}, s_k) - u_{\varepsilon}(\bar{y}, s_k) - \Phi(\bar{x}, \bar{y}, s_k) - (s_k - T)^2 - (T - s_k),
$$

it follows from [\(3.4\)](#page-8-2) that

$$
\lim_{k \to \infty} m_k = m_{\varepsilon} \,. \tag{3.52}
$$

Let $(x_k, y_k, t_k) \in \overline{B_R(z_0)} \times \overline{B_R(z_0)} \times [T/2, T)$ be a point such that

$$
m_k = u^{\varepsilon}(x_k, t_k) - u_{\varepsilon}(y_k, t_k) - \Phi_k(x_k, y_k, t_k).
$$

Note that $t_k \neq T$. Then utilizing [\(3.52\)](#page-20-0), [\(3.3\)](#page-8-3) and [\(3.4\)](#page-8-2), it can be checked that (x_k, y_k, t_k) converges to (\bar{x}, \bar{y}, T) as k tends to ∞ . Note that $(x_k, y_k, t_k) \in$ $B_R(z_0) \times B_R(z_0) \times (T/2, T)$, and Φ_k is smooth near the point (x_k, y_k, t_k) for sufficiently large $k \in \mathbb{N}$. Applying Theorem 3.8 of [\[7](#page-28-7)] to the functions u^{ε} , u_{ε} and Φ_k near the point (x_k, y_k, t_k) for large $k \in \mathbb{N}$, we find

$$
\left(a_k, \nabla_x \Phi_k(x_k, y_k, t_k), P_k\right) \in \overline{\mathcal{P}}^{2,+} u^{\varepsilon}(x_k, t_k) \quad \text{and}
$$

$$
\left(b_k, -\nabla_y \Phi_k(x_k, y_k, t_k), Q_k\right) \in \overline{\mathcal{P}}^{2,-} u_{\varepsilon}(y_k, t_k)
$$

which satisfies [\(3.14\)](#page-10-1) with (P_k, Q_k, Φ_k) at the point (x_k, y_k, t_k) replacing (P, Q, Φ) at the point $(\bar{x}, \bar{y}, \bar{t})$, and

$$
a_k - b_k = \frac{A_2}{T^2}(t_k - T) + 2(t_k - T) + \frac{(T - s_k)^2}{(T - t_k)^2}.
$$

Here we note that a_k and b_k are uniformly bounded with respect to k by Lipschitz continuity of u^{ε} and u_{ε} , and then $\lim_{k\to\infty} a_k =: a$ and $\lim_{k\to\infty} b_k =: b$ exist up to a subsequence. Therefore this combines with a diagonal argument (in view of the definition of the limiting sub-and super-jets) to conclude the proof of Claim [3.3](#page-10-0) since (x_k, y_k, t_k) converges to (\bar{x}, \bar{y}, T) as k tends to ∞ . We only remark that

$$
a - b \ge \lim_{k \to \infty} \left\{ \frac{A_2}{T^2} (t_k - T) + 2(t_k - T) \right\} = 0
$$

which gives (3.15) .

Therefore, the proof of Proposition [3.1](#page-8-4) is finished. \Box

In light of the proof of Proposition [3.1,](#page-8-4) we have the following corollary. It should be noted that our viscosity solution is not influenced by what is to happen in the future.

Corollary 3.4. *Assume that* $\text{Sec } \geq -\kappa$ *on* $B_{2R}(z_0)$ *for* $\kappa \geq 0$ *. Let* $0 < R \leq$ $R_0 < \infty$, $T > 0$, and $u \in C(B_{2R}(z_0) \times (0,T])$ be a viscosity solution of (1.5) *in* $B_{2R}(z_0) \times (0,T]$ *with* $0 \leq q < 1$ *and*

$$
||V||_{L^{\infty}(B_{2R}(z_0)\times(0,T])}\leq\beta
$$

for $\beta \geq 0$ *. Then we have that for any* $x, y \in B_R(z_0)$ *and* $t \in (T/2, T]$ *,*

$$
|u(x,t) - u(y,t)| \leq C_0 \frac{d(x,y)}{R} \left| \log \left(\frac{d(x,y)}{R} \right) \right|^2.
$$

Here a constant C_0 > 0 *depends only on* $||u||_{L^{\infty}(B_{2R}(z_0)\times(0,T])}$ *,* $||f||_{L^{\infty}(B_{2R}(z_0)\times(0,T])}, n, p_-, p_+, q, \sqrt{\kappa}R_0, \theta \max(e, R_0 \log R_0), \beta R_0^{1-q}, \text{ and}$
T⁻¹ may (*PP*-*PP*+) T^{-1} max (R^{p_-}, R^{p_+}) .

By uniform convergence of u^{ε} and u_{ε} to u as ε tends to 0, we get the following Corollary.

Corollary 3.5. *With the same assumption as Corollary* [3.4](#page-21-0)*, let* $\nu \in (0,1)$ *be a constant. Then there exists a small constant* $\varepsilon_0 > 0$ *such that if* $0 < \varepsilon < \varepsilon_0$, *then*

$$
|u^{\varepsilon}(x,t) - u_{\varepsilon}(y,t)| \leq C_0 \frac{d(x,y)}{R} \left| \log \left(\frac{d(x,y)}{R} \right) \right|^2 + \nu
$$

for any $x, y \in \overline{B_R(z_0)}$ *and* $t \in [T/2, T]$ *.*

Now we will prove a Lipschitz estimate using a logarithmic-type Lipschitz estimate in Proposition [3.1.](#page-8-4)

Lemma 3.6. (Lipschitz estimate) *With the same assumption as Proposition* [3.1,](#page-8-4) we have that for any $x, y \in B_R(z_0)$ and $t \in (T/2, T]$,

$$
|u(x,t) - u(y,t)| \le A_1 \frac{d(x,y)}{R} + A_2 \left\{ \frac{1}{R^2} d_{z_0}^2(x) + \frac{1}{R^2} d_{z_0}^2(y) + \frac{1}{T^2} (t - T)^2 \right\}.
$$

Here constants $A_1 > 0$ *and* $A_2 > 0$ *depend only on* n, p_, p₊, q, $\sqrt{\kappa}R_0$, θ max $(e, R_0 \log R_0)$, βR_0^{1-q} , and T^{-1} max (R^{p_-}, R^{p_+}) .

Proof. We follow the proof of Proposition [3.1](#page-8-4) in order to show a Lipschitz estimate. Let

$$
q_0 = \frac{1}{4} (1 - q) \in (0, 1/4],
$$
 and $\sigma := \frac{3}{2} - \frac{1}{4} (1 + q + q_0) \in (1, 3/2).$

Define a function Φ by

$$
\Phi(x, y, t) := A_1 \phi \left(\frac{d(x, y)}{R} \right) + A_2 \left\{ \frac{1}{2R^2} d_{z_0}^2(x) + \frac{1}{2R^2} d_{z_0}^2(y) + \frac{1}{2T^2} (t - T)^2 \right\}
$$

with

$$
\phi(r) = \begin{cases} r - \frac{1}{\sigma}r^{\sigma} & \text{for } r \in [0, 1); \\ 1 - \frac{1}{\sigma} & \text{for } r \in [1, \infty); \end{cases}
$$
(3.53)

for some constants $A_1 > 1$ and $A_2 > 1$ to be chosen later. With the same notation as in the proof of Proposition [3.1,](#page-8-4) consider

$$
m_{\varepsilon} := \sup_{x,y \in B_R(z_0), T/2 < t < T} \left\{ u^{\varepsilon}(x,t) - u_{\varepsilon}(y,t) - \Phi(x,y,t) \right\}.
$$

Let $\nu \in (0,1)$ be a constant. Then it suffices to prove that $m_{\varepsilon} \leq \nu$ for sufficiently small $\varepsilon > 0$ by uniform convergence of u^{ε} and u_{ε} to u as $\varepsilon \to 0$.

Suppose to the contrary that $m_{\varepsilon} > \nu$ for sufficiently small $\varepsilon > 0$. Let $(\bar{x}, \bar{y}, \bar{t}) \in \overline{B_R(z_0)} \times \overline{B_R(z_0)} \times [T/2, T]$ be a point such that

$$
m_{\varepsilon} = u^{\varepsilon}(\bar{x}, \bar{t}) - u_{\varepsilon}(\bar{y}, \bar{t}) - \Phi(\bar{x}, \bar{y}, \bar{t}), \text{ and } \delta := d(\bar{x}, \bar{y}).
$$

Then by the assumption that $m_{\epsilon} > \nu$, and Corollary [3.5,](#page-21-1) it follows that

$$
A_1 \phi \left(\frac{\delta}{R} \right) + A_2 \left\{ \frac{1}{2R^2} d_{z_0}^2(\bar{x}) + \frac{1}{2R^2} d_{z_0}^2(\bar{y}) + \frac{1}{2T^2} (\bar{t} - T)^2 \right\} + \nu
$$

$$
< u^{\varepsilon}(\bar{x}, \bar{t}) - u_{\varepsilon}(\bar{y}, \bar{t})
$$

$$
\leq C_0 \frac{\delta}{R} \left(\log \frac{R}{\delta} \right)^2 + \nu.
$$
 (3.54)

for sufficiently small $0 < \varepsilon < \varepsilon_0$. Here constants $C_0 > 0$ and $\varepsilon_0 > 0$ are the constants appearing in Corollary [3.5.](#page-21-1) Arguing similarly as in the proof of Proposition [3.1,](#page-8-4) we see that $(\bar{x}, \bar{y}, \bar{t}) \in B_R(z_0) \times B_R(z_0) \times (T/2, T]$ and
Claim 2.2 holds two for outficiently large constants $A > 1$ and $A > 1$ and Claim [3.2](#page-9-2) holds true for sufficiently large constants $A_1 > 1$ and $A_2 > 1$, and sufficiently small $\varepsilon > 0$. With the use of (3.10) and (3.54) , it follows that

$$
|\eta| \le \frac{A_2}{R^2} d_{z_0}(\bar{x}) + \frac{A_2}{R^2} d_{z_0}(\bar{y}) \le \frac{C_1}{R} \sqrt{\frac{\delta}{R}} \cdot \log \frac{R}{\delta}
$$
(3.55)

for some constant $C_1 > 0$ depending on n, p₋, p₊, q, $\sqrt{\kappa}R_0$, θ max (e, R₀) log R_0), βR_0^{1-q} , and T^{-1} max (R^{p_-}, R^{p_+}) . Since

$$
\frac{1}{2} \le \phi'(r) < 1 \quad \forall r \in \left(0, \, 2^{-1/(\sigma - 1)}\right),\tag{3.56}
$$

the estimate [\(3.11\)](#page-10-6) holds with the function ϕ given by [\(3.53\)](#page-22-1) for sufficiently large $A_1 > 1$.

As in the estimate (3.42) , we have

$$
|\mathcal{T}_1| \le \frac{C_1}{R^{p(y_*, s_*)}} A_1^{p(y_*, s_*) - 1 + q_0} \log A_1 \tag{3.57}
$$

by using [\(3.56\)](#page-22-2) and selecting $A_1 > 1$ sufficiently large and $\varepsilon > 0$ sufficiently small. In light of (3.43) and (3.57) , we get

$$
|\mathcal{T}_2| \le \frac{C_1}{R^{p(y_*,s_*)}} A_1^{p(y_*,s_*)-1+q_0} \tag{3.58}
$$

For the estimate of \mathcal{T}_3 , we use (3.44) , (3.39) , (3.35) and (3.55) to deduce that

$$
|\mathcal{T}_3| \le C_1 \left[\frac{A_1}{R} \phi' \left(\frac{\delta}{R} \right) \right]^{p(y_*, s_*)-3} \cdot |\eta| \cdot |P|
$$

\$\le \frac{C_1}{R^{p(y_*, s_*)}} A_1^{p(y_*, s_*)-2+q_0} \cdot \sqrt{\frac{R}{\delta}} \cdot \log \frac{R}{\delta} . \tag{3.59}

By [\(3.49\)](#page-18-4), it holds that

$$
\mathcal{T}_4 \leq \frac{C_0}{R^{p(y_*,s_*)}} A_1^{p(y_*,s_*)-2} \left[A_1 \phi''\left(\frac{\delta}{R}\right) + C_1 A_1 \cdot \frac{\delta}{R} + C_1 \right].
$$

This combined with $(3.40), (3.35), (3.57), (3.58)$ $(3.40), (3.35), (3.57), (3.58)$ $(3.40), (3.35), (3.57), (3.58)$ $(3.40), (3.35), (3.57), (3.58)$ $(3.40), (3.35), (3.57), (3.58)$ $(3.40), (3.35), (3.57), (3.58)$ $(3.40), (3.35), (3.57), (3.58)$ and (3.59) implies that

$$
-A_1 \phi''\left(\frac{\delta}{R}\right) \le C_1 \left\{ A_1^{1+q_0} \log A_1 + A_1^{q_0} \sqrt{\frac{R}{\delta}} \cdot \log \frac{R}{\delta} + A_1^{1+q+q_0} \right\} \quad (3.60)
$$

for sufficiently large $A_1 > 1$. Let $q_2 := (1 + q + q_0) / 2 \in (1/2, 1)$. Since (3.54) implies that

$$
\frac{\delta}{2R} \le \phi\left(\frac{\delta}{R}\right) \le \frac{3}{A_1} \ll 1
$$

for sufficiently large $A_1 > 1$ and small $\varepsilon > 0$ (see [\(3.6\)](#page-9-3)), it follows from [\(3.60\)](#page-23-3) that

$$
A_1^{1+q_2} \left(\frac{R}{\delta} \right)^{2-\sigma-q_2} + A_1 \left(\frac{R}{\delta} \right)^{2-\sigma} \leq C_1 \left\{ A_1^{2q_2} \log A_1 + A_1^{q_0} \sqrt{\frac{R}{\delta}} \cdot \log \frac{R}{\delta} \right\},\,
$$

where we note that $1 < \sigma < 3/2$. This gives a contradiction for sufficiently large $A_1 > 0$ since $q_2 < 1$, $2 - \sigma - q_2 = (1 - q_2)/2 > 0$, and $q_0 < 1$. Therefore we have shown that $m_{\varepsilon} \leq \nu$ for sufficiently small $\varepsilon > 0$ provided that positive constants A_1 and A_2 are sufficiently large, completing the proof. constants A_1 and A_2 are sufficiently large, completing the proof.

In view of the proof of Lemma [3.6,](#page-21-2) the following corollary holds.

Corollary 3.7. (Lipschitz estimate in spatial variables) *With the same assumption as Corollary* [3.4](#page-21-0)*, we have that for any* $x, y \in B_R(z_0)$ *and* $t \in (T/2, T]$ *,*

$$
|u(x,t) - u(y,t)| \leq C_0 \frac{d(x,y)}{R}.
$$

Here a constant C_0 > 0 *depends only on* $||u||_{L^{\infty}(B_{2R}(z_0)\times(0,T])}$ *,* $||f||_{L^{\infty}(B_{2R}(z_0)\times(0,T])}, n, p_-, p_+, q, \sqrt{\kappa}R_0, \theta \max(e, R_0 \log R_0), \beta R_0^{1-q}, and$

T⁻¹ may (*pp*-*pp*+) T^{-1} max (R^{p_-}, R^{p_+}) .

Using Corollary [3.7](#page-23-4) and uniform convergence of u^{ε} and u_{ε} to u as ε tends to 0, we have the following corollary.

Corollary 3.8. *With the same assumption as Proposition* [3.1](#page-8-4)*, let* $\nu \in (0,1)$ *be a constant. Then there exists a small constant* $\varepsilon_0 > 0$ *such that* if $0 < \varepsilon < \varepsilon_0$, *then*

$$
|u^{\varepsilon}(x,t) - u_{\varepsilon}(y,t)| \leq C_0 \, \frac{d(x,y)}{R} + \nu
$$

for any $x, y \in \overline{B_R(z_0)}$ *and* $t \in [T/2, T]$ *.*

4. 1*/***2-H¨older estimate in time variable**

Using a comparison argument as in [\[8](#page-28-9)] with the help of a Lipschitz estimate in spatial variables, we prove an $1/2$ -Hölder continuity with respect to time variable for viscosity solutions.

Lemma 4.1. *Under the same assumption as Proposition [3.1,](#page-8-4) we have*

$$
|u(x,t) - u(x,s)| \leq C T^{-1/2} |t - s|^{1/2}
$$

for any $x \in B_R(z_0)$ *and* $t, s \in (T/2,T]$ *. Here a constant* $C > 0$ *depends only* \overline{O} *on* n*,* p_−*,* p₊*,*</sub> q *,* $\sqrt{\kappa}R_0$ *,* θ max (e, $R_0 \log R_0$)*,* βR_0^{1-q} *,* $T^{-1} \max (R^{p_-}, R^{p_+})$ *,* and $T \max (R^{-p_-}, R^{-p_+})$ $T \max (R^{-p_{-}} \cdot R^{-p_{+}}).$

Proof. Fix $(x_0, t_0) \in B_R(z_0) \times (T/2, T)$, and let

$$
\sigma_0:=\max\left(\,2,\,1+\frac{1}{p_--1}\,\right).
$$

Let ν be a constant in $(0, 1)$ and let σ be a constant such that $\sigma_0 < \sigma < \sigma_0 + 1$. For each constant $\eta > 0$, consider

$$
\varphi(x,t) := \nu + \frac{\eta}{T} + A_1(t - t_0) + A_2 \left[\frac{d_{x_0}(x)}{R} \right]^\sigma \quad \forall (x,t) \in \overline{B_{R/4}(x_0)} \times [t_0, T]
$$

with some constants $A_1 > 0$ and $A_2 > 0$ to be determined later.

Firstly, we select A_2 large enough such that

$$
A_2 = C_0^{\sigma_0 + 1} \left\{ \left(\frac{\eta}{T} \right)^{1 - \sigma} + 1 \right\} \tag{4.1}
$$

for a large constant $C_0 > 1$, where a constant $C_0 > 1$ will be chosen later depending only on n, p_, p_, q, $\sqrt{\kappa}R_0$, θ max $(e, R_0 \log R_0)$, βR_0^{1-q} , and $T^{-1} \max(RP-P+)$ With the same notation as in the proof of Proposition 3.1 T^{-1} max (R^{p_-}, R^{p_+}) . With the same notation as in the proof of Proposition [3.1,](#page-8-4) we deduce in light of Corollary [3.8,](#page-24-2) and [\(4.1\)](#page-24-3) that

$$
u^{\varepsilon}(x,t_0) - u_{\varepsilon}(x_0,t_0) \leq C_0 \frac{d_{x_0}(x)}{R} + \nu < \varphi(x,t_0) \quad \forall x \in \overline{B_{R/4}(x_0)}
$$

for sufficiently small $\varepsilon > 0$ and large $C_0 > 1$. Hence using the assumption [\(3.1\)](#page-8-1), it follows that

$$
u^{\varepsilon}(x,t) - u_{\varepsilon}(x_0,t_0) < \varphi(x,t) \qquad \forall (x,t) \in \left\{ \overline{B_{R/4}(x_0)} \times \{t_0\} \right\} \cup \left\{ \partial B_{R/4}(x_0) \times [t_0, T] \right\} \tag{4.2}
$$

for a sufficiently large constant $C_0 > 1$ and any positive constant A_1 . If $A_1 > 1$ is sufficiently large, it can be checked that

$$
u^{\varepsilon}(x,t) - u_{\varepsilon}(x_0,t_0) \leq \varphi(x,t) \qquad \forall (x,t) \in \overline{B_{R/4}(x_0)} \times [t_0,T]. \tag{4.3}
$$

We choose the minimal constant A_1 satisfying (4.3) , and let $(\bar{x}, \bar{t}) \in \overline{B_{R/4}(x_0)} \times$ $[t_0, T]$ be a point such that

$$
u^{\varepsilon}(\bar{x},\bar{t}) - u_{\varepsilon}(x_0,t_0) = \varphi(\bar{x},\bar{t}). \tag{4.4}
$$

We claim that for each $\eta > 0$, the minimal constant A_1 has a uniform upper bound which is independent of small constants ε and ν , and a constant $\sigma \in (\sigma_0, \sigma_0 + 1)$. Here a uniform upper bound for A_1 may depend on η . Obviously, for a fixed $\eta > 0$, the minimal constant A_1 is either bounded from above by $2 \max (R^{-p_+}, R^{-p_-})$ or bigger than $2 \max (R^{-p_+}, R^{-p_-})$.

Case 1: $A_1 \leq 2 \max(R^{-p_+}, R^{-p_-})$ for a given $\eta > 0$. In the case, it is immediate from [\(4.3\)](#page-25-0) that

$$
u^{\varepsilon}(x_0, t) - u_{\varepsilon}(x_0, t_0) \le \nu + \frac{\eta}{T} + 2 \max\left(R^{-p_+}, R^{-p_-}\right)(t - t_0) \qquad \forall t \in [t_0, T].
$$
\n(4.5)

Case 2: $A_1 > 2 \max(R^{-p_+}, R^{-p_-})$ for a given $\eta > 0$. Firstly, [\(4.2\)](#page-24-4) implies that $(\bar{x}, \bar{t}) \in B_{R/4}(x_0) \times (t_0, T]$, and we see that $\bar{x} \notin \text{Cut}(x_0)$ by employing
some convexity of ℓ^{ε} and $[40, \text{Corollary 2.8}]$, refer to the proof of $C \text{lim } 3.2$. semi-convexity of u^{ε} , and [\[40](#page-30-10), Corollary 2.8]; refer to the proof of Claim [3.2.](#page-9-2) In light of the contacting property (4.4) with (4.3) , it holds that

$$
\left(\partial_t\varphi(\bar{x},\bar{t}),\nabla\varphi(\bar{x},\bar{t}),D^2\varphi(\bar{x},\bar{t})\right)\in\mathcal{P}^{2,+}u^{\varepsilon}(\bar{x},\bar{t}),
$$

and hence by Proposition 3.3 of [\[39](#page-30-8)], there exists a point $(\bar{y}, \bar{s}) \in B_{3R/2}(z_0)$ × $(T/8, T]$ such that

$$
\bar{y} = \exp_{\bar{x}} \varepsilon \nabla \varphi(\bar{x}, \bar{t})
$$
 and $\bar{s} \in [\bar{t} - 2\sqrt{\varepsilon}, T] \subset (3T/8, T],$ (4.6)

satisfying

$$
u^{\varepsilon}(\bar{x},\bar{t}) = u(\bar{y},\bar{s}) - \frac{1}{2\varepsilon} \left\{ d^2(\bar{y},\bar{x}) + |\bar{s} - \bar{t}|^2 \right\}
$$
 (4.7)

and

$$
\begin{aligned}\n\left(\partial_t \varphi(\bar{x}, \bar{t}), L_{\bar{x}, \bar{y}} \nabla \varphi(\bar{x}, \bar{t}), L_{\bar{x}, \bar{y}} D^2 \varphi(\bar{x}, \bar{t})\right. \\
&\left. + \kappa \min \left\{ \varepsilon \, |\nabla \varphi(\bar{x}, \bar{t})|^2, 2\omega \left(2\sqrt{\varepsilon}\right) \right\} \mathbf{I} \right\} \in \mathcal{P}^{2,+} u(\bar{y}, \bar{s})\n\end{aligned} \tag{4.8}
$$

for sufficiently small $\varepsilon > 0$.

We first consider the case when $\bar{x} = x_0$. Since $\sigma > 2$, we have that $|\nabla \varphi(\bar{x}, \bar{t})| = |\nabla \varphi(x_0, \bar{t})| = 0$, which combined with [\(4.6\)](#page-25-2) and [\(4.7\)](#page-25-3) yields that $\bar{x} = \bar{y}$ and

$$
u^{\varepsilon}(x_0, \bar{t}) = u(x_0, \bar{s}) - \frac{1}{2\varepsilon} |\bar{s} - \bar{t}|^2.
$$
 (4.9)

On the other hand, by [\(4.3\)](#page-25-0) and the definition of u^{ε} , we obtain that

$$
u(x, t + \bar{s} - \bar{t}) - \frac{1}{2\varepsilon} |\bar{s} - \bar{t}|^2 \le u^{\varepsilon}(x, t) \le \varphi(x, t) + u_{\varepsilon}(x_0, t_0)
$$
(4.10)

for any $(x, t) \in B_{R/4}(x_0) \times (t_0 + (\bar{t} - t_0)/2, \bar{t}]$ since

$$
t + \bar{s} - \bar{t} \in (\bar{s} - (\bar{t} - t_0)/2, \bar{s}] \subset (\bar{s} - T/4, \bar{s}] \subset (T/8, T].
$$

Setting

$$
\psi(x,s) := \varphi(x,s-\bar{s}+\bar{t}) + u_{\varepsilon}(x_0,t_0) + \frac{1}{2\varepsilon} |\bar{s}-\bar{t}|^2,
$$

the contacting property (4.4) with the use of (4.9) and (4.10) implies that

$$
\begin{cases} u(x,s) \le \psi(x,s) & \forall (x,s) \in B_{R/4}(x_0) \times (\bar{s} - (\bar{t} - t_0)/2, \bar{s}]; \\ u(x_0, \bar{s}) = \psi(x_0, \bar{s}). \end{cases}
$$
(4.11)

Since u is a viscosity subsolution of (1.5) and $\sigma > \sigma_0$, we deduce in light of [\(4.11\)](#page-26-0) and Lemma [2.4](#page-6-0) that

$$
-A_1 \ge -R^{-p(x_0,\bar{s})},
$$

which is a contradiction to the assumption that $A_1 > 2 \max (R^{-p_+}, R^{-p_-}).$ Thus we have proved that $\bar{x} \neq x_0$ when $A_1 > 2 \max(R^{-p_+}, R^{-p_-}).$

Since $\bar{x} \neq x_0$, it follows from Definition [2.1,](#page-4-0) and [\(4.8\)](#page-25-6) that

$$
\begin{split} |\nabla \varphi(\bar{x},\bar{t})|^{p(\bar{y},\bar{s})-2} & \text{tr}\left[\left(\mathbf{I}+\left(p(\bar{y},\bar{s})-2\right)\frac{\nabla \varphi}{|\nabla \varphi|} \otimes \frac{\nabla \varphi}{|\nabla \varphi|}\right)\right. \\ &\left.\left\{\left.D^2\varphi(\bar{x},\bar{t})+\kappa\sqrt{2\varepsilon\omega\left(2\sqrt{\varepsilon}\right)}\left|\nabla \varphi(\bar{x},\bar{t})\right|\mathbf{I}\right\}\right]\right] \\ &\geq A_1 - R^{-p(\bar{y},\bar{s})} - \beta|\nabla \varphi(\bar{x},\bar{t})|^{p(\bar{y},\bar{s})-1+q} \\ &- \theta|\nabla \varphi(\bar{x},\bar{t})|^{p(\bar{y},\bar{s})-1}\left|\log\left|\nabla \varphi(\bar{x},\bar{t})\right|\right|. \end{split}
$$

Here we used the facts that $|\nabla \varphi(\bar{x}, \bar{t})| = |L_{\bar{x}, \bar{y}} \nabla \varphi(\bar{x}, \bar{t})| > 0$, and $D^2 \varphi(\bar{x}, \bar{t})$ and $L^2 \varphi(\bar{x}, \bar{t})$ have the same signified and the equality (2.20). Moreover, $L_{\bar{x},\bar{y}}D^2\varphi(\bar{x},\bar{t})$ have the same eigenvalues and the equality [\(3.30\)](#page-13-4). Moreover, using [\(4.8\)](#page-25-6) and arguing similarly as for the proof of Corollary [3.7,](#page-23-4) it holds that

$$
\frac{\sigma A_2}{R} \left[\frac{d_{x_0}(\bar{x})}{R} \right]^{\sigma - 1} = |\nabla \varphi(\bar{x}, \bar{t})| = |L_{\bar{x}, \bar{y}} \nabla \varphi(\bar{x}, \bar{t})| \le \frac{C_0}{R}
$$
\n(4.12)

for some constant $C_0 > 1$ since $\bar{x} \notin \{x_0\} \cup \text{Cut}(x_0)$ and $(\bar{y}, \bar{s}) \in B_{3R/2}(z_0) \times$ $(T/8, T]$. Therefore we conclude that

$$
A_1 \leq R^{-p(\bar{y},\bar{s})} + \beta R_0^{1-q} R^{-p(\bar{y},\bar{s})} C_0^{p(\bar{y},\bar{s})-1+q}
$$

+ $\theta R^{-p(\bar{y},\bar{s})+1} \left[C_0^{p(\bar{y},\bar{s})-1} \log C_0 + C_0^{p(\bar{y},\bar{s})-1} |\log R| \right]$
+ $(n+p_+ - 2)\kappa \sqrt{2\varepsilon \omega (2\sqrt{\varepsilon})} R^{-p(\bar{y},\bar{s})+1} C_0^{p(\bar{y},\bar{s})-1}$
+ $|\nabla \varphi(\bar{x},\bar{t})|^{p(\bar{y},\bar{s})-2} \operatorname{tr} \left[\left(\mathbf{I} + \left(p(\bar{y},\bar{s}) - 2 \right) \frac{\nabla \varphi}{|\nabla \varphi|} \otimes \frac{\nabla \varphi}{|\nabla \varphi|} \right) D^2 \varphi(\bar{x},\bar{t}) \right]$
 $\leq C_1 R^{-p(\bar{y},\bar{s})} + |\nabla \varphi(\bar{x},\bar{t})|^{p(\bar{y},\bar{s})-2} \operatorname{tr} \left[\left(\mathbf{I} + \left(p(\bar{y},\bar{s}) - 2 \right) \frac{\nabla \varphi}{|\nabla \varphi|} \otimes \frac{\nabla \varphi}{|\nabla \varphi|} \right) D^2 \varphi(\bar{x},\bar{t}) \right]$ (4.13)

(for sufficiently small $\varepsilon > 0$ which depends on ν and R) since $0 \le q < 1$ and $1 < p_- \leq p(\bar{y}, \bar{s}) \leq p_+ < \infty$. If $p_- \geq 2$, then $p(\bar{y}, \bar{s}) \geq 2$ and thus it holds that

$$
\begin{aligned} &|\nabla \varphi(\bar{x},\bar{t})|^{p(\bar{y},\bar{s})-2}\operatorname{tr}\left[\left(\mathbf{I}+\left(p(\bar{y},\bar{s})-2\right)\frac{\nabla \varphi}{|\nabla \varphi|}\otimes\frac{\nabla \varphi}{|\nabla \varphi|}\right)D^2\varphi(\bar{x},\bar{t})\right]\\ &\leq C_1R^{-p(\bar{y},\bar{s})}C_0^{p_+-2}\cdot \sigma_0(\sigma_0+1)A_2\left[\frac{d_{x_0}(\bar{x})}{R}\right]^{\sigma-2}\leq C_1R^{-p(\bar{y},\bar{s})}A_2, \end{aligned}
$$

since $d(x_0, \bar{x}) \leq R/4$ and $\sigma > 2$. Here we used a Hessian estimate for squared distance functions in [\[20](#page-29-14), Lemma 3.12]. When $1 < p_- < 2$, we use [\(4.12\)](#page-26-1) to obtain that

$$
|\nabla \varphi(\bar{x},\bar{t})|^{p(\bar{y},\bar{s})-2} \operatorname{tr}\left[\left(\mathbf{I} + \left(p(\bar{y},\bar{s}) - 2 \right) \frac{\nabla \varphi}{|\nabla \varphi|} \otimes \frac{\nabla \varphi}{|\nabla \varphi|} \right) D^2 \varphi(\bar{x},\bar{t}) \right] \n\leq C_1 \sigma_0 \left(\sigma_0 + 1 \right)^{p(\bar{y},\bar{s})-1} R^{-p(\bar{y},\bar{s})} A_2^{p(\bar{y},\bar{s})-1} \left[\frac{d_{x_0}(\bar{x})}{R} \right]^{(\sigma-1)(p(\bar{y},\bar{s})-1)-1} \n\leq C_1 R^{-p(\bar{y},\bar{s})} A_2^{p(\bar{y},\bar{s})-1} \left[\frac{d_{x_0}(\bar{x})}{R} \right]^{(\sigma-1)(p(\bar{y},\bar{s})-p-)} \cdot \left[\frac{d_{x_0}(\bar{x})}{R} \right]^{(\sigma-1)(p_{-}-1)-1} \n\leq C_1 R^{-p(\bar{y},\bar{s})} A_2^{p(\bar{y},\bar{s})-1} \left(\frac{C_0}{\sigma_0 A_2} \right)^{p(\bar{y},\bar{s})-p_{-}} \leq C_1 \left(\frac{C_0}{\sigma_0} \right)^{p_{+}-p_{-}} R^{-p(\bar{y},\bar{s})} A_2^{p_{-}-1}
$$

since $(\sigma - 1)(p_+ - 1) > (\sigma_0 - 1)(p_- - 1) \geq 1$. Therefore we deduce that

$$
\begin{split} |\nabla \varphi(\bar{x},\bar{t})|^{p(\bar{y},\bar{s})-2} & \text{tr}\left[\left(\mathbf{I}+\left(p(\bar{y},\bar{s})-2\right)\frac{\nabla \varphi}{|\nabla \varphi|} \otimes \frac{\nabla \varphi}{|\nabla \varphi|}\right) D^2 \varphi(\bar{x},\bar{t})\right] \\ &\leq C_1 R^{-p(\bar{y},\bar{s})} \min\left(A_2,\, A_2^{p,-1}\right), \end{split}
$$

from which [\(4.13\)](#page-26-2) yields that

 $A_1 \leq C_1 \max\left(R^{-p_+}, R^{-p_-}\right) A_2^{\sigma_1} \text{ with } \sigma_1 := \min\left(1, p_- - 1\right)$ (4.14)

in the case when $A_1 > 2 \max (R^{-p_+}, R^{-p_-})$ for a given $\eta > 0$. Recalling the definition of φ and using [\(4.3\)](#page-25-0), [\(4.1\)](#page-24-3), and [\(4.14\)](#page-27-0), we obtain that for $t \in [t_0, T]$

$$
u^{\varepsilon}(x_0, t) - u_{\varepsilon}(x_0, t_0) \leq \nu + \frac{\eta}{T}
$$

+ $C_1 \max (R^{-p_+}, R^{-p_-}) \left\{ 1 + \left(\frac{\eta}{T}\right)^{-(\sigma - 1)\sigma_1} \right\} (t - t_0)$ (4.15)

when $A_1 > 2 \max (R^{-p_+}, R^{-p_-})$ for a given $\eta > 0$.

With the use of (4.5) , the estimate (4.15) holds true for any cases: either $A_1 \leq 2 \max (R^{-p_+}, R^{-p_-})$ or $A_1 > 2 \max (R^{-p_+}, R^{-p_-})$. In order to optimize the above estimate (4.15) with respect to $\eta > 0$, we choose

$$
\frac{\eta}{T} = \left[C_1 \max\left(R^{-p_+}, R^{-p_-} \right) \cdot (t - t_0) \right]^\gamma \quad \text{with } \gamma = \frac{1}{1 + (\sigma - 1)\sigma_1}
$$

and then it follows that

$$
u^{\varepsilon}(x_0, t) - u_{\varepsilon}(x_0, t_0) \leq \nu + C_1 \max (R^{-p_+}, R^{-p_-})(t - t_0)
$$

+ $\left[C_1 \max (R^{-p_+}, R^{-p_-}) (t - t_0) \right]^{\gamma}$.

Letting $\varepsilon \to 0$, $\nu \to 0$ and $\sigma \to \sigma_0$, the proof is finished since $(\sigma_0 - 1)\sigma_1 = 1$. \Box

Proof of Corollary [1.3.](#page-4-2) For any $x, y \in M$ and $t, s \in \mathbb{R}$, Corollary [1.2](#page-4-3) implies that

$$
|u(x,t) - u(y,s)| \le C\left(\frac{d(x,y)}{R} + \frac{|t-s|^{1/2}}{R^{p/2}}\right)
$$

for sufficiently large $R > 0$, where a constant $C > 0$ depends only on n, p, and $||u||_{L^{\infty}(M\times\mathbb{R})}$. Letting $R\to\infty$, the result follows. $□$

Acknowledgements

This work is partially supported by National Research Foundation of Korea (NRF) Grant No. NRF-2018R1C1B6003051.

References

- [1] Acerbi, E., Mingione, G.: Regularity results for stationary electro-rheological fluid. Arch. Ration. Mech. Anal. **164**(3), 213–259 (2002)
- [2] Acerbi, E., Mingione, G., Seregin, G.A.: Regularity results for parabolic systems related to a class of non-Newtonian fluids. Ann. Inst. H. Poincaré Anal. Non Lin´eaire **21**, 25–60 (2004)
- [3] Antontsev, S., Shmarev, S.: Anisotropic parabolic equations with variable nonlinearity. Publ. Mat. **53**, 355–399 (2009)
- [4] Antontsev, S., Shmarev, S.: Evolution PDEs with Nonstandard Growth Conditions. Atlantis Press, Paris (2015)
- [5] Antontsev, S., Zhikov, V.V.: Higher integrability for parabolic equations of $p(x, t)$ -Laplacian type. Adv. Differ. Equ. $10(9)$, 1053–1080 (2005)
- [6] Azagra, D., Ferrera, J., Sanz, B.: Viscosity solutions to second order partial differential equations on Riemannian manifolds. J. Differ. Equ. **245**, 307–336 (2008)
- [7] Azagra, D., Jimenez-Sevilla, M., Macia, F.: Generalized motion of level sets by functions of their curvatures on Riemannian manifolds. Calc. Var. Partial Differ. Equ. **33**, 133–167 (2008)
- [8] Barles, G., Biton, S., Ley, O.: A geometrical approach to the study of unbounded solutions of quasilinear parabolic equation. Arch. Ration. Mech. Anal. **162**, 287– 325 (2002)
- [9] Baroni, P., Bögelein, V.: Calderón–Zygmund estimates for parabolic $p(x, t)$ -Laplacian systems. Revista Mat. Iberoam. **30**(4), 1355–1386 (2014)
- [10] Barles, G., Georgelin, C.: A simple proof of convergence for an approximation scheme for computing motions by mean curvature. SIAM J. Numer. Anal. **32**(2), 484–500 (1995)
- [11] Birindelli, I., Demengel, F.: The Dirichlet problem for singular fully nonlinear operators. Discret. Contin. Dynam Syst. Suppl. 110–121 (2007)
- [12] Birindelli, I., Demengel, F.: Eigenfunctions for singular fully nonlinear equations in unbounded domains. Nonlinear Differ. Equ. Appl. **17**(6), 697–714 (2010)
- [13] Birindelli, I., Demengel, F.: $C^{1,\beta}$ regularity for Dirichlet problems associated to fully nonlinear degenerate elliptic equations. ESAIM COCV. **20**(40), 1019–1024 (2014)
- [14] Bögelein, V., Duzaar, F.: Higher integrability for parabolic systems with nonstandard growth and degenerate diffusions. Publ. Mat. **55**(1), 201–250 (2011)
- [15] Bögelein, V., Duzaar, F.: Hölder estimates for parabolic $p(x, t)$ -Laplacian system. Math. Ann. **354**(3), 907–938 (2012)
- [16] Cabr´e, X.: Nondivergent elliptic equations on manifolds with nonnegative curvature. Commun. Pure Appl. Math. **50**, 623–665 (1997)
- [17] Caffarelli, L.A., Cabré, X.: Fully Nonlinear Elliptic Equations, American Mathematical Society Colloquium Publications, vol. 43. American Mathematical Society, Providence (1995)
- [18] Chen, Y.G., Giga, Y., Goto, S.: Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations. J. Differ. Geom. **33**(3), 749–786 (1991)
- [19] Chen, Y., Xu, M.: Hölder continuity of weak solutions for parabolic equations with nonstandard growth conditions. Acta Math. Sin. (Engl. Ser.) **22**(3), 793–806 (2006)
- [20] Cordero-Erausquin, D., McCann, R.J., Schmuckenschl¨ager, M.: A Riemannian interpolation inequality λ la Borell, Brascamp and Lieb. Invent. Math. $146(2)$, 219–257 (2001)
- [21] Crandall, M.G., Ishii, H., Lions, P.-L.: User's guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. **27**, 1–67 (1992)
- [22] Dávila, G., Felmer, P., Quaas, A.: Harnack inequality for singular fully nonlinear operators and some existence results. Calc. Var. Partial Differ. Equ. **39**(3–4), 557–578 (2010)
- [23] Demengel, F.: Existence results for parabolic problems related to fully non linear operators degenerate or singular. Potential Anal. **35**(1), 1–38 (2011)
- [24] Diehl, J., Friz, P.K., Oberhauser, H.: Regularity theory for rough partial differential equations and parabolic comparison revisited. In: Stochastic Analysis and Applications, vol. 2014, pp. 203–238. Springer (2014)
- [25] Duzaar, F., Habermann, J.: Partial regularity for parabolic systems with non standard growth. J. Evol. Equ. **12**(1), 203–244 (2012)
- [26] Duzaar, F., Mingione, G., Steffen, K.: Parabolic systems with polynomial growth and regularity. Mem. Am. Math. Soc. **214**(1005), 128 (2011)
- [27] Evans, C., Spruck, J.: Motion of level sets by mean curvature. J Differ. Geom. **33**, 635–681 (1991)
- [28] Imbert, C., Silvestre, L.: $C^{1,\alpha}$ regularity of solutions of degenerate fully nonlinear elliptic equations. Adv. Math. **233**, 196–206 (2013)
- [29] Imbert, C., Silvestre, L.: Estimates on elliptic equations that hold only where the gradient is large. J. Eur. Math. Soc. **18**, 1321–1338 (2016)
- [30] Imbert, C., Jin, T., Silvestre, L.: Hölder gradient estimates for a class of singular or degenerate parabolic equations. arXiv preprint [arXiv:1610.04987](http://arxiv.org/abs/1610.04987)
- [31] Ishii, H., Lions, P.-L.: Viscosity solutions of fully nonlinear second order elliptic partial differential equations. J. Differ. Equ. **83**(1), 26–78 (1990)
- [32] Ishii, H., Souganidis, P.: Generalized motion of noncompact hypersurfaces with velocity having arbitrary growth on the curvature tensor. Tohoku Math. J. **47**, 227–250 (1995)
- [33] Jensen, R.: The maximum principle for viscosity solutions of fully nonlinear second order partial differential equations. Arch. Ration. Mech. Anal. **101**, 1–27 (1988)
- [34] Jensen, R., Lions, P.-L., Souganidis, P.E.: A uniqueness result for viscosity solutions of second order fully nonlinear partial differential equations. Proc. Am. Math. Soc. **102**, 975–978 (1988)
- [35] Jin, T., Silvestre, L.: Hölder gradient estimates for parabolic homogeneous p-Laplacian equations. J. Math. Pures Appl. **108**, 63–87 (2017)
- [36] Juutinen, P.: On the definition of viscosity solutions for parabolic equations. Proc. Am. Math. Soc. **129**, 2907–2911 (2001)
- [37] Juutinen, P., Kawhol, B.: On the evolution governed by the infinity Laplacian. Math. Ann. **335**, 819–851 (2006)
- [38] Kim, S., Kim, S., Lee, K.-A.: Harnack inequality for nondivergent parabolic operators on Riemannian manifolds. Calc. Var. **49**, 669–706 (2014)
- [39] Kim, S., Lee, K.-A.: Parabolic Harnack inequality of viscosity solutions on Riemannian manifolds. J. Funct. Anal. **267**, 2152–2198 (2014)
- [40] Kim, S.: Harnack inequality for degenerate and singular operators of p-Laplacian type on Riemannian manifolds. Math. Ann. **366**, 1721–1785 (2016)
- [41] Ohnuma, M., Sato, K.: Singular degenerate parabolic equations with applications to the p-Laplace diffusion equation. Commun. Partial Differ. Equ. **22**(3–4), 381–411 (1997)
- [42] Rajagopal, K., Růžička, M.: Mathematical modelling of electro-rheological fluids. Cont. Mech. Therm. **13**, 59–78 (2001)
- [43] Růžička, M.: Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Mathematics. Springer, Berlin (2000)
- [44] Winkert, P., Zacher, R.: Global a priori bounds for weak solutions to quasilinear parabolic equations with nonstandard growth. Nonlinear Anal. **145**, 1–23 (2016)
- [45] Yao, F.: Hölder regularity for the general parabolic $p(x, t)$ -Laplacian equations. NoDEA Nonlinear Differ. Equ. Appl. **22**(1), 105–119 (2015)
- [46] Zhikov, V.V., Pastukhova, S.E.: On the property of higher integrability for parabolic systems of variable order of nonlinearity. Mat. Zametki **87**(2), 179–200 (2010)

Soojung Kim School of Mathematics Korea Institute for Advanced Study Seoul Republic of Korea e-mail: soojung26@gmail.com; soojung26@kias.re.kr

Received: 16 May 2017. Accepted: 30 May 2018.