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Nonlocal heat equations in the Heisenberg
group

Raúl E. Vidal

Abstract. We study the following nonlocal diffusion equation in the Heisen-
berg group Hn,

ut(z, s, t) = J ∗ u(z, s, t) − u(z, s, t),

where ∗ denote convolution product and J satisfies appropriated hypoth-
esis. For the Cauchy problem we obtain that the asymptotic behavior of
the solutions is the same form that the one for the parabolic equation for
the fractional laplace operator. To obtain this result we use the spherical
transform related to the pair (U(n),Hn). Finally we prove that solutions
of properly rescaled nonlocal Dirichlet problem converge uniformly to
the solution of the corresponding Dirichlet problem for the classical heat
equation in the Heisenberg group.
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1. Introduction and preliminaries

During the last years, many authors have studied the asymptotic behavior for
several nonlocal diffusion models in the whole R

n. In some cases, this behavior
is related with the asymptotic behavior of the local diffusion model.

In [13] the authors consider some u(x, t) that models the probabilist den-
sity function of a single population at the point x at time t. Let J be a func-
tion with

∫
Rn J(x) dx = 1; J(x − y) as a probability distribution of jump-

ing from location y to location x; J ∗ u(x, t) =
∫
Rn J(y − x)u(y, t) dy is the

rate at which individuals are arriving to position x from all other places, and
u(x, t) =

∫
Rn J(x − y)u(x, t) dy is the rate at which they are leaving location

x to travel to all other sites. Then u satisfies a nonlocal evolution equation of
the form

ut(x, t) = J ∗ u(x, t) − u(x, t), (1.1)
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In [9] the authors study the Cauchy problem associated to (1.1). They prove
that the long time behavior of the solutions is determined by the behavior of
the Fourier transform Ĵ of J near the origin. If Ĵ(ξ) = 1−A|ξ|α+o(|ξ|α), (0 <
α ≤ 2), the asymptotic behavior is the same as the one for solutions of the
evolution given by the α/2 fractional power of the Laplacian. Concerning the
Dirichlet problem for the nonlocal model they prove that the asymptotic be-
havior is given by an exponential decay to zero at a rate given by the first
eigenvalue of an associated eigenvalue problem with profile an eigenfunction
of the first eigenvalue. Finally, they analyse the Neumann problem and find
an exponential convergence to the mean value of the initial condition.

In the work [10] the authors prove that solutions of properly rescaled
nonlocal Dirichlet problems of the Eq. (1.1) approximate uniformly the solution
of the corresponding Dirichlet problem for the classical heat equation in R

n.
These type of problems have been studied for the case of different nonlocal

problems and equations of the form

ut(x, t) =
∫

Rn

J(x, y)G(u(y, t) − u(x, t)) dy, (1.2)

have been considered. Depending on how is G, the operators behave in a similar
way to elliptic operators: see [6,22] and [24]. If we choose G(s) = |s|p−2s, the
solution of the problems involving the Eq. (1.2) have similar behavior to the
p-Laplacian operator, see [2–4,17,19].

Although these problems were very study in the literature in recent years,
only in the case of the (1.1) it was determined asymptotic profile and the
asymptotic behavior in L∞ norm for of the solution of the Cauchy problem.
As mentioned above, in this case, the nonlocal operator behaves equally to the
fractional Laplace operator.

At the present work we consider a nonlocal operator defined by

ut(x, t) = J ∗ u(x, t) − u(x, t), (1.3)

where the convolution product is in the Heisenberg group and J satisfies appro-
priate hypothesis. We show that a properly rescaled of the kernel J converges
to the Heisenberg Laplacian, see Lemma 3.6. Following the ideas of [10] we
prove that solutions of the rescaled nonlocal Dirichlet problem converge uni-
formly to the solution of the corresponding Dirichlet problem for the classical
heat equation in the Heisenberg group. We also study similar problems to the
ones in [9]: for the Cauchy problem we determine the asymptotic profile and
we prove that the asymptotic behavior in L∞ norm for the solution is the same
that the solution of the evolution problem involving the fractional Laplace in
the Heisenberg group. In order to do this we have to consider the results ob-
tained in [23], the fact that Hn is a homogeneous group and the harmonic
analysis related to the action of the unitary group U(n) by automorphism on
Hn.

In the Heisenberg group has not yet been studied this type of nonlocal
problems. The Cauchy problem involving the Eq. (1.3) may be useful to model
populations whose density functions have an asymptotic behavior equally to
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the solutions of the parabolic problem concerning the fractional Laplacian in
the Heisenberg group.

Concerning the local problems, in [23] the author considers the classic
heat equation for Carnot groups and settles the asymptotic behavior of the
solution. In [26] the authors study the existence and large-time behavior of
global positive solutions to a semilinear parabolic equation on Carnot groups.
In [7] the authors determined the asymptotic profile of the solution of the
Dirichlet problem for the p-Laplacian in Carnot groups and they investigate
the limit as p goes to infinity. The Heisenberg group is the main example of
the Carnot groups.

Let Hn = C
n×R the 2n+1 dimensional Heisenberg group, with law group

(z, s) · (z̃, s̃) = (z + z̃, s + s̃ + 1
2 Im〈z, z̃〉), where 〈z, z̃〉 denote the Hermitian

inner product of C
n. The Haar measure of the group is de Lebesgue measure.

If we write z = x + iy, with x, y in R
n we have a global coordinate system

(x, y, s) and the vector fields Xj = ∂
∂xj

− yj

2
∂
∂s , Yj = ∂

∂yj
+ xj

2
∂
∂s , and S = ∂

∂s

form a basis for the Lie algebra hn of Hn.

The Heisenberg Laplacian is L :=
n∑

j=1

X2
j + Y 2

j . In coordinates is given

by

L =
n∑

j=1

(
∂2

∂x2
j

+
∂2

∂y2
j

)

+
1
4

∂2

∂s2

n∑

j=1

(
x2

j + y2
j

)
+

∂

∂s

n∑

j=1

(

xj
∂

∂yj
− yj

∂

∂xj

)

,

(1.4)

The Laplacian L is a second order degenerate elliptic operator of Hörmander
type and hence it is hypoelliptic see [18].

We recall that a Lie group is called a homogeneous group if it is a con-
nected, simply connected, nilpotent Lie group G, whose Lie algebra g is en-
dowed with a family of dilatation {δr}r∈N. Let exp: g → G be the exponential
map, which in this case is a diffeomorphism. The maps exp δr exp−1 are group
automorphisms of G also denoted by δr and called dilations of G. A stan-
dard example is given by δr(z, s) = (r

1
2 z, rs), r > 0 and (z, s) ∈ Hn. If f

is a function defined in the Heisenberg group we denote by δrf the function
δrf(z, s) := f(r

1
2 z, rs).

Let U(n) the unitary group, which acts by automorphism on Hn by
g · (z, s) = (gz, s), g ∈ U(n) and (z, s) ∈ Hn. We will denote by S(Hn)U(n)

the space of functions in the Schwartz space that are invariant by the action
of U(n) and we will denote by L1(Hn)U(n) the space of L1(Hn) the functions
that are invariant by the action of U(n). Since (L1(Hn)U(n), ∗) is a commuta-
tive algebra, its spectrum Σ is given by the family of the spherical functions
{ϕλ,k}λ∈R\{0},k∈N ∪ {ηr}r∈R≥0 associated with the Gelfand pair (Hn, U(n)),
see [16,20,25].

As usual, U(hn) will denote its universal enveloping algebra, which can
be identified with the algebra of left invariant differential operators on Hn.
It is well known that the commutative subalgebra U(hn)U(n) of the elements
which commute with the action of U(n) is generated by S and the Heisenberg



57 Page 4 of 21 R. E. Vidal NoDEA

Laplacian L. The spherical functions are eigenfunction of the operators L and
S, they satisfying

{
Lϕλ,k = −|λ|(2k + n)ϕλ,k, λ ∈ R\{0}, k ∈ N

iSϕλ,k = λϕλ,k.
(1.5)

and {
Lηr = −r2ηr, r ∈ R, r ≥ 0
iSηr = 0.

Explicitly

ϕλ,k(z, s) = eiλsLn−1
k

( |λ|
2

|z|2
)

e− |λ|
4 |z|2 ,

ηr(z, s) =
2n−1(n − 1)!

(r|z|)n−1
Jn−1(r|z|),

where Ln−1
k denotes, as usual, a Laguerre polynomial of order n−1 and degree

k normalized by Ln−1
k (0) = 1 and Jn−1 is a Bessel function of order n − 1 of

the first kind. The ϕλ,k functions satisfy the following properties:

If c ∈ R then ϕcλ,k(z, s) = δcϕλ,k(z, s) = ϕλ,k(
√

c z, cs), (1.6)

‖ϕλ,k‖L∞(Hn) = 1.

The spectrum Σ is identify with the set of eigenvalues, Σ = {(λ, |λ|(2k +
n)) : λ ∈ R\{0}, k ∈ N} ∪ {r ∈ R, r ≥ 0}, with the following measure, if
g ∈ L1(Σ) we have

‖g‖L1(Σ) =
∑

k∈N

∫

R

|g(λ, k)| |λ|ndλ < ∞.

For f ∈ S(Hn) we define the spherical transform, f̂ : Σ −→ R, by

f̂(λ, k) =
∫

Hn

f(z, s)ϕλ,k(−z,−s) dz ds (1.7)

f̂(0, r) =
∫

Hn

f(z, s)ηr(−z,−s) dz ds.

If f ∈ L1(Hn)U(n) and f̂ ∈ L1(Σ), (for example f ∈ S(Hn)U(n)), we use
the next Plancherel inversion formula to decompose f , see [25],

f(z, s) =
∑

k≥0

∞∫

−∞
(f ∗ ϕλ,k)(z, s)|λ|ndλ (1.8)

=
∑

k≥0

∞∫

−∞
f̂(λ, k)ϕλ,k(z, s)|λ|ndλ.

Also, spherical functions determine the spectral decomposition of the
operator L, see p. 353 of [25], and for 0 < α ≤ 1 the following formula is valid
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for the fractional Laplacian, see p. 181 of [14], also see [15]. If f ∈ L1(Hn)U(n)

and f̂ ∈ L1(Σ) we have

(−L)αf(z, s) =
∑

k≥0

∞∫

−∞
|λ|α(2k + n)α(f ∗ ϕλ,k)(z, s)|λ|ndλ (1.9)

=
∑

k≥0

∞∫

−∞
|λ|α(2k + n)αf̂(λ, k)ϕλ,k(z, s)|λ|ndλ.

Now let us consider the classical heat equation for the Heisenberg group,
defined by

{
vt(z, s, t) = Lv(z, s, t),
v(z, s, 0) = u0(z, s). (1.10)

In [14] the author proved there is a unique heat kernel P : Hn × (0,∞) −→ R,
P (z, s, t) = Pt(z, s) with P0 = δ0, Pt ≥ 0 and

∫
Hn

Pt = 1. The solution of the
Eq. (1.10) is given by v(z, s, t) = Pt ∗u0(z, s), where the convolution product is
in the Heisenberg group. He also proves that Pt is C∞, (see also [1,8,11,12,21]).

In [23] the author proves that if u0 ∈ L1(Hn) then

‖v(·, ·, t)‖∞ ≤ Ct
−(2n+2)

2 , (1.11)

where the constant C depends on the norm ‖u0‖L1(Hn).
Finally, for an initial data u0 ∈ L1(Hn)U(n) and û ∈ L1(Σ), if we consider

the equation
{

vt(z, s, t) = −(−L)αv(z, s, t),
v(z, s, 0) = u0(z, s), (1.12)

we can apply the spherical transform
{

v̂t(λ, k, t) = −|λ|α(2k + n)αv̂(λ, k, t),
v̂(λ, k, 0) = û0(λ, k). (1.13)

Then

v̂(λ, k, t) = e−|λ|α(2k+n)αtû0(λ, k), (1.14)

and as û ∈ L1(Σ) we can apply the inverse of the spherical transform to obtain
and solution of (1.12).

Now, we are going to establish the behavior of the solution v of the
problem (1.12).

Lemma 1.1. Let u0 ∈ L1(Hn)U(n) with û ∈ L1(Σ) and let v be the solution of
the problem (1.12). Then

‖v‖∞ ≤ C‖u0‖∞t
−(n+1)

α . (1.15)
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Proof. Let v(z, s, t) be a solution of (1.12), with initial datum v(z, s, 0) =
u0(z, s). Then by Eqs. (1.8) and (1.14) we have

|v(z, s, t)| =

∣
∣
∣
∣
∣
∣

∑

k≥0

∫ ∞

−∞
v̂(λ, k, t)ϕλ,k(z, s)|λ|ndλ

∣
∣
∣
∣
∣
∣

≤
∑

k≥0

∫ ∞

−∞

∣
∣
∣e−(|λ|(2k+n))αtû0(λ, k)

∣
∣
∣ |λ|ndλ.

We make the change of variables λ(2k+n)t1/α = η, and then (|λ|(2k+n))αt =
|η|α and dλ(2k + n)t1/α = dη. Thus,

|v(z, s, t)| ≤
∑

k≥0

∫ ∞

−∞

∣
∣
∣e−(|λ|(2k+n))αtû0(λ, k)

∣
∣
∣ |λ|ndλ

≤ t
−(n+1)

α ||û0||∞
[∫ ∞

−∞
e−|η|α |η|ndη

]∑

k≥0

1
(2k + n)n+1

≤ C‖u0‖∞t
−(n+1)

α

�

In this work we consider the nonlocal equation given by (1.3)

ut(z, s, t) = J ∗ u(z, s, t) − u(z, s, t),

where J satisfies the following hypothesis:
(H ) J : Hn → R is a positive function invariant by the action of U(n)

with
∫
Hn

J(z, s) dzds = 1.
We will assume (H ) throughout the paper.
Let us now state our results concerning the asymptotic behavior.
The first problem to be addressed is the Cauchy diffusion problem in Hn.

We consider the equation
{

ut(z, s, t) = J ∗ u(z, s, t) − u(z, s, t),
u(z, s, 0) = u0(z, s). (1.16)

For this problem we study the asymptotic behavior in the infinity and
use the spherical transform to prove the following result

Theorem 1.2. Let u be the solution of the problem (1.16) with u0 in L1(Hn)U(n)

and û0 in L1(Σ). Assume that J satisfies (H) and we assume

Ĵ(λ, k) = 1 − (|λ|(2k + n))α + o((|λ|(2k + n))α),

with lim
|λ|(2k+n)→0

o((|λ|(2k + n))α)
(|λ|(2k + n))α

= 0.

Then the asymptotic behavior of u(z, s, t) is given by

lim
t−→∞ t

n+1
α max

(z,s)
|u(z, s, t) − v(z, s, t)| = 0, (1.17)

where v is the solution of parabolic equation for the Heisenberg group (1.12).
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The asymptotic profile is given by:

lim
t−→∞ max

(z,s)
|tn+1

α δtαu(z, s, t) − Gu0(z, s)| = 0,

where Gu0(z, s) satisfies Ĝu0(λ, k) = e−|λ|α(2k+n)α

û0(0, k).
We also have,

‖u(·, ·, t)‖L∞(Hn) ≤ Ct−
(n+1)

α ,

and by interpolation for 2 < p < ∞,

‖u(·, ·, t)‖Lp(Hn) ≤ Ct−
(n+1)

α
p−2

p .

Remark 1.3. In the literature, estimates of the decay in infinite norm have been
obtained only for nonlocal equation that approximate the fractional laplacian
operator and not for a more general fractional elliptic operator. The Heisenberg
laplacian operator for a function u invariant by the action of U(n), is given in
polar coordinates by

Lu =
∂2u

∂r2
+

2n − 2
r

∂u

∂r
+

r2

4
∂2u

∂s2
.

where r2 =
∑n

i=1 x2 + y2. For this reason, Theorem 1.2 gives an example of
another fractional elliptic operator that can be approximated by a nonlocal
equation in infinite norm.

Let us see the existence of a function J that satisfies the hypotheses of
the Theorem 1.17. We are only going to consider the case α = 1.

Lemma 1.4. There exists a positive function J invariant by the action of U(n)
with

∫
Hn

J(z, s) dzds = 1, and the spherical transform of J is of the form

Ĵ(λ, k) = 1 − |λ|(2k + n) + o(|λ|(2k + n)),

with lim
|λ|(2k+n)→0

o(|λ|(2k + n))
|λ|(2k + n)

= 0.

Proof. Let

g(λ, k) = e−|λ|(2k+n) =
∑

j≥0

(−|λ|(2k + n))j

j!
= 1 − |λ|(2k + n) + o(|λ|(2k + n)).

Then by (1.14) g is the spherical transform of the heat kernel P1, and so
J(z, s) = P1(z, s) is a positive function invariant by the action of U(n) and∫
Hn

J(z, s) dzds = 1 with Ĵ(λ, k) = g(λ, k). �

Next we consider a bounded smooth domain Ω ⊂ Hn and impose bound-
ary conditions to our model. From now on we assume that J is continuous.
We consider the next Dirichlet problem

⎧
⎨

⎩

ut(z, s, t) = J ∗ u(z, s, t) − u(z, s, t), for (z, s) ∈ Ω and t > 0,
u(z, s, t) = g(z, s, t), for (z, s) /∈ Ω and t > 0,
u(z, s, 0) = u0(z, s), for (z, s) ∈ Ω.

(1.18)
If J satisfies the following hypothesis
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(H̃) J is continuous, no negative with J(0, 0) > 0; J have compact sup-
port and is symmetric in the variable s. We assume there exists a constant C1

with
∫
Hn

J(z, s)x2
j dzds = C1,

∫
Hn

J(z, s)y2
j dzds = C1,

∫
Hn

J(z, s)s2 dzds =
C1.

We will consider the rescaled kernel

Jε(z, s) =
2C−1

1

ε2n+2
δε−2J (z, s) =

2C−1
1

ε2n+2
J
(z

ε
,

s

ε2

)

and the problem
⎧
⎪⎨

⎪⎩

uε
t(z, s, t) =

1
ε2

Jε ∗ u(z, s, t) − u(z, s, t), for (z, s) ∈ Ω and t > 0,

uε(z, s, t) = g(z, s, t), for (z, s) /∈ Ω and t > 0,
uε(z, s, 0) = u0(z, s), for (z, s) ∈ Ω.

(1.19)
We prove that the solution of (1.19) approximate uniformly to the so-

lution of the corresponding Dirichlet problem for the classical heat equation,
given by

⎧
⎨

⎩

vt(z, s, t) = Lv(z, s, t), for (z, s) ∈ Ω and t > 0,
vt(z, s, t) = g(z, s, t), for (z, s) ∈ ∂Ω and t > 0,
v(z, s, 0) = u0(z, s), for (z, s) ∈ Ω.

(1.20)

Our result are as follows.

Theorem 1.5. Let Ω be a bounded C2+α domain for some 0 < α < 1. Let
v ∈ C2+α,1+α/2(Ω × [0, T ]) be the solution to (1.20) and let uε be the solution
to (1.19) with Jε as above and J satisfying (H) and (H̃). Then, there exists
C = C(T ) such that

sup
t∈[0,T ]

‖uε(·, ·, t) − v(·, ·, t)‖L∞(Ω) ≤ C εα, as ε → 0.

Remark 1.6. Observe that since the initial data u0(z, s) is not necessarily
invariant by the action of U(n), L is given by the formula (1.4) and the solution
of problem (1.19) approaches to the solution of a more irregular equation, given
in (1.20).

Finally we observe, that if J is symmetric in the variable s and as J is
invariant by the action of U(n), we have

J

(

z − z̃, s − s̃ − 1
2
Im〈z, z̃〉

)

= J

(

z̃ − z, s̃ − s −
(

−1
2
Im〈z, z̃〉

))

(1.21)

= J

(

z̃ − z, s̃ − s − 1
2
Im〈z̃, z〉

)

.

Then, if we write K((z, s), (z̃, s̃)) = J
(
z − z̃, s − s̃ − 1

2 Im〈z, z̃〉), K is a non-
negative and symmetric Kernel. Therefore Theorem 2 of [9] is true for the
nonlocal equation defined by the kernel K. That is to say that g(z, s, t) ≡ 0 in
(1.7) and J is also symmetric in the variable s, we find an exponential decay
given by the first eigenvalue of an associated problem and the asymptotic
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behavior of solutions is described by the unique (up to a constant) associated
eigenfunction. Let λ1 = λ1(Ω) be given by

λ1 = inf
u∈L2(Hn)

1
2

∫
Hn

∫
Hn

J
(
(z − z̃, s − s̃ − 1

2
Im〈z, z̃〉))(u(z, s) − u(z̃, z̃))2 dzds dz̃ds̃

∫
Ω
(u(z, s)2)dzds

.

(1.22)

Theorem 1.7. Let u0 ∈ L1(Ω) ∩ L2(Ω). Assume that J is continuous, satisfies
(H) and is symmetric in the variable s. Then the solutions of (1.18), with
g(z, s, t) ≡ 0, decay to zero as t → ∞ with an exponential rate

‖u(·, ·, t)‖L2(Ω) ≤ ‖u0‖L2(Ω)e
−λ1t.

If u0 is continuous, positive and bounded then there exist positive constants C
and C̃ such that

‖u(·, ·, t)‖L∞(Ω) ≤ Ce−λ1t,

and

lim
t→0

max
(z,s)

|eλ1tu(z, s, t) − C̃φ1(z, t)| = 0,

where φ1 is the eigenfunction associated to λ1.

We consider next the Neumann boundary conditions:
⎧
⎨

⎩
ut(z, s, t) =

∫

Ω

J

(

z − z̃, s − s̃ − 1
2
Im〈z, z̃〉

)

[u(z̃, s̃, t) − u(z, s, t)]dz̃ds̃,

u(z, s, 0) = u0(z, s).
(1.23)

If we impose that J is symmetric in the variable s by Eq. (1.21) the Theorem
3 of [9] is true. And, in this case, we find that the asymptotic behavior is given
by an exponential decay determined by an eigenvalue problem. Let β1 be given
by:

β1 = inf
u∈L2(Ω),

∫
u=0

1
2

∫
Ω

∫
Ω

J
(
z − z̃, s − s̃ − 1

2
Im〈z, z̃〉) [u(z̃, s̃) − u(z, s)]2dz̃ds̃dzds

∫
Ω
(u(z, s))2dzds

.

(1.24)

Theorem 1.8. Let J be a continuous kernel symmetric in the variable s that
satisfies (H). For every u0 ∈ L1(Ω) there exists a unique solution u of (1.23)
such that u ∈ C([0,∞);L1(Ω)). This solution preserves the total mass in Ω:

∫

Ω

u(z, s, t) dzds =
∫

Ω

u0(z, s) dzds.

Moreover, let M =
1

|Ω|
∫

Ω

u0(z, s) dzds. Then the asymptotic behavior of so-

lutions of (1.23) is described as follows: if u0 ∈ L2(Ω),

‖u(·, ·, t) − M‖L2(Ω) ≤ e−β1t‖u0 − M‖L2(Ω),
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and if u0 is continuous and bounded there exists a positive constant C such
that

‖u(·, ·, t) − M‖L∞(Ω) ≤ Ce−β1t.

The rest of the paper is organized as follows: in Sect. 2, we prove existence
and uniqueness of the Cauchy problem given by (1.16) and we also prove The-
orem 1.2. In Sect. 3 we prove existence, uniqueness and a comparison principle
of the Dirichlet problem given by (1.18), and we also prove the convergence
result for Dirichlet problem, Theorem 1.5.

2. The Cauchy problem

In this section, we will use that the function u0 is invariant by the action of
U(n), this allows us to use the spherical transform of Hn in order to obtain
explicit solutions of Cauchy problem (1.16).

Theorem 2.1. Let u0 in L1(Hn)U(n) and û0 in L1(Σ). Let J satisfy (H). Then
there exists a unique solution u ∈ C0([0,∞), L1(Hn)) of problem (1.16) and it
is given by:

û(λ, k, t) = e(Ĵ(λ,k)−1)tû0(λ, k).

Proof. First observe that since
∫
Hn

J(z, s) dzds = 1, then Ĵ ∈ C0(Σ) and

Ĵ(0, 0) = 1.
We have

ut(z, s, t) = J ∗ u(z, s, t) − u(z, s, t).

Applying the spherical transform to this equation, we obtain:

ût(λ, k, t) = (Ĵ(λ, k) − 1)û(λ, k, t).

Hence,

û(λ, k, t) = e(Ĵ(λ,k)−1)tû0(λ, k).

Since û0 ∈ L1(Σ) and e(Ĵ−1)t is continuous and bounded, the result follows by
taking the inverse of the spherical transform. �

Lemma 2.2. Let J ∈ S(Hn)U(n) satisfy (H) and u0 = δ0 (the Dirac delta in
Hn). Then the fundamental solution of (1.16) can be decomposed as

w(z, s, t) = e−tδ0 + ν(z, s, t),

with ν(z, s, t) smooth. Moreover, if u is a solution of (1.16) with initial con-
dition a function u0 invariant by the action of U(n), it can be written as

u(z, s, t) = w ∗ u0(z, s, t).
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Proof. By the previous result, we have

ŵt(λ, k, t) = (Ĵ(λ, k) − 1)ŵ(λ, k, t).

Hence δ̂0 = 1, in the sense of distributions, we have

ŵ(λ, k, t) = e(Ĵ(λ,k)−1)t = e−t(eĴ(λ,k)t − 1) + e−t.

Now let us prove that, for each fixed t, eĴ(λ,k)t −1 ∈ L1(Σ). By the mean value
theorem

∑

k∈N

∫

R

|eĴ(λ,k)t − 1| |λ|ndλ =
∑

k∈N

∫

R

|Ĵ(λ, k)teĴ(λ′,k′)t| |λ|ndλ

≤ C
∑

k∈N

∫

R

|Ĵ(λ, k)t| |λ|ndλ

By [5] exist a function g ∈ S(R2) such that Ĵ(λ, k) = g(λ, |λ|(2k + n)) then
∑

k∈N

∫

R

|eĴ(λ,k)t − 1| |λ|ndλ ≤ C
∑

k∈N

∫

R

|g(λ, |λ|(2k + n)t)| |λ|ndλ

= C
1

tn+1

∑

k∈N

∫

R

∣
∣
∣
∣g

(
η

(2k + n)t
, η

)∣
∣
∣
∣

|η|n
(2k + n)n+1

dη

As g belongs in S(R2) exist constants C1 and C2 such that |g(x, y)| ≤ C1 and
|g(x, y)| ≤ C2

|y|n+2 , then

∑

k∈N

∫

R

|eĴ(λ,k)t − 1| |λ|ndλ

≤ C
1

tn+1

∑

k∈N

1
(2k + n)n+1

[∫

|η|≤1

C1 |η|ndη +
∫

|η|>1

C2

|η|2 dη

]

< ∞

Therefore the first part of the lemma follows applying the inverse spherical
transform.

Note that since J and u0 are invariant by the action of U(n) it is enough
to show that there exist L(r)(ν) and Sr(ν), for all r ∈ N, to prove that ν ∈
C∞(Hn)U(n). this is shown similarly to the previous account using (1.5).

To finish the proof, we observe, that

ŵ ∗ u0(λ, k, t) = ŵ(λ, k, t)û0(λ, k) = e(Ĵ(λ,k)−1)tû0(λ, k).

By Theorem (2.1) the solution of problem (1.16) satisfies

û(λ, k, t) = e(Ĵ(λ,k)−1)tû0(λ, k).

Then the result is followed since the spherical transform is injective. �

Next we will prove the asymptotic behavior for the nonlocal diffusion
equation (1.16).
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Proof of Theorem 1.2. We remark that from our hypotheses on J ,

Ĵ(λ, k) = 1 − |λ|α(2k + n)α + o(|λ|α(2k + n)α),

with lim
|λ|(2k+n)−→0

o((|λ|(2k + n))α)
(|λ|(2k + n))α

= 0.

We have that,

Ĵ(λ, k) ≤ 1 − |λ|α(2k + n)α + |λ|α(2k + n)αh(|λ|(2k + n)), (2.1)

where h is a bounded positive function and lim|λ|(2k+n)−→0 h(|λ|(2k +n)) = 0.
As

∫
Hn

J(z, s) dzds = 1 we have that |Ĵ(λ, k)| ≤ 1, then there exist a number
ξ > 0 and constants D > 0 and E > 0 such that

Ĵ(λ, k) ≤ 1 − D|λ|α(2k + n)α, if |λ|(2k + n) ≤ ξ, (2.2)

Ĵ(λ, k) ≤ 1 − E, if |λ|(2k + n) > ξ.

As in the proof of the Theorem (2.1), we have

û(λ, k, t) = e(Ĵ(λ,k)−1)tû0(λ, k).

On the other hand, let v(z, s, t) be a solution of the problem given by the Eq.
(1.12), with the same initial datum v(z, s, 0) = u0(z, s). By Eq. (1.14) we get

v̂(λ, k, t) = e−|λ|α(2k+n)αtû0(λ, k).

Then, by (1.8) and (1.6), we have

|u(z, s, t) − v(z, s, t)| =

∣
∣
∣
∣
∣
∣

∑

k≥0

∫ ∞

−∞
(û − v̂)(λ, k, t)ϕλ,k(z, s)|λ|ndλ

∣
∣
∣
∣
∣
∣

≤
∑

k≥0

∫ ∞

−∞

∣
∣
∣
(
e(Ĵ(λ,k)−1)t − e−|λ|α(2k+n)αt

)
û0(λ, k)

∣
∣
∣

× |λ|ndλ.

We decompose the equation in two parts, when |λ|α(2k + n)α
√

t ≥ 1 and
|λα|(2k + n)α

√
t < 1.

|u(z, s, t) − v(z, s, t)|

≤
∑

k≥0

∫

|λ|≥ 1

(2k+n)t
1
2α

∣
∣
∣
(
e(Ĵ(λ,k)−1)t − e−|λ|α(2k+n)αt

)
û0(λ, k)

∣
∣
∣ |λ|ndλ

+
∑

k≥0

∫

|λ|< 1

(2k+n)t
1
2α

∣
∣
∣
(
e(Ĵ(λ,k)−1)t − e−|λ|α(2k+n)αt

)
û0(λ, k)

∣
∣
∣ |λ|ndλ

:= I + II.
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First we work with I,

I ≤
∑

k≥0

∫

|λ|> 1

(2k+n)t
1
2α

∣
∣
∣
(
e(Ĵ(λ,k)−1)t − e−|λ|α(2k+n)αt

)
û0(λ, k)

∣
∣
∣ |λ|ndλ

≤
∑

k≥0

∫

|λ|> 1

(2k+n)t
1
2α

∣
∣
∣e(Ĵ(λ,k)−1)tû0(k, λ)

∣
∣
∣ |λ|ndλ

+
∑

k≥0

∫

|λ|> 1

(2k+n)t
1
2α

∣
∣
∣e−|λ|α(2k+n)αtû0(λ, k)

∣
∣
∣ |λ|ndλ

:= I1 + I2.

For I2, we make the change of variables λ(2k+n)t
1
α = η, then |λ|(2k+n)t

1
α =

|η| and dλ(2k + n)t
1
α = dη, and

t
n+1

α I2 = t
n+1

α

∑

k≥0

∫

|λ|> 1

(2k+n)t
1
2α

∣
∣
∣e−|λ|α(2k+n)αtû0(λ, k)

∣
∣
∣ |λ|ndλ

≤ ‖û0‖∞

[∫

|η|>t
1
2α

e−|η|α |η|ndη

]
∑

k≥0

1
(2k + n)n+1

.

Note that the sum is finite and by the dominated convergence theorem,

lim
t→∞ t

n+1
α I2 = 0.

Now, we work with I1. By (2.2) I1 is bounded by

I1 =
∑

k≥0

∫

|λ|> 1

(2k+n)t
1
2α

∣
∣
∣e(Ĵ(λ,k)−1)tû0(λ, k)

∣
∣
∣ |λ|ndλ

=
∑

k≥0

∫

ξ
2k+n >|λ|> 1

(2k+n)t
1
2α

∣
∣
∣e(Ĵ(λ,k)−1)tû0(λ, k)

∣
∣
∣ |λ|ndλ

+
∑

k≥0

∫

|λ|≥ ξ
2k+n

∣
∣
∣e(Ĵ(λ,k)−1)tû0(λ, k)

∣
∣
∣ |λ|ndλ

≤
∑

k≥0

∫

ξ
2k+n >|λ|> 1

(2k+n)t
1
2α

∣
∣
∣e−D|λ|α(2k+n)αtû0(λ, k)

∣
∣
∣ |λ|ndλ + ‖û0‖L1(Σ)e

−Et.

We now make the change of variables λ(2k + n)t
1
α = η, and then

t
n+1

α I1 ≤ ‖û0‖∞
∑

k≥0

1
(2k + n)n+1

∫

ξt
1
α >|η|>t

1
2α

e−D|η|α |η|ndη

+ ‖û0‖L1(Σ)t
n+1

α e−Et

≤ ‖û0‖∞

[∫

|η|>t
1
2α

e−D|η|α |η|ndη

]
∑

k≥0

1
(2k + n)n+1

+ ‖û0‖L1(Σ)t
n+1

α e−Et.
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Therefore t
n+1

α I1 → 0 when t → ∞.
Finally we will estimate II. Again we make the change of variables λ(2k+

n)t
1
α = η, if t

1
α is a sufficiently large number, by (2.1), we have

t
n+1

α II

= t
n+1

α

∑

k≥0

∫

|λ|< 1

(2k+n)t
1
2α

∣
∣
∣
(
e[Ĵ−1+|λ|α(2k+n)α]t − 1

)
e−|λ|α(2k+n)αtû0(k, λ)

∣
∣
∣

× |λ|ndλ

≤ t
n+1

α ‖û0‖∞
∑

k≥0

∫

|λ|< 1

(2k+n)t
1
2α

∣
∣
∣e|λ|α(2k+n)αh(|λ|(2k+n))t−1

∣
∣
∣e−|λ|α(2k+n)αt

× |λ|ndλ

≤Ct
n+1

α ‖û0‖∞
∑

k≥0

∫

|λ|< 1

(2k+n)t
1
2α

|λ|α(2k + n)αh(|λ|(2k + n))te−|λ|α(2k+n)αt

× |λ|ndλ

≤ C‖û0‖∞
∑

k≥0

∫

|η|<t
1
α

1
(2k + n)n+1

h

( |η|
t

1
α

)

e−|η|α |η|n+1dη

≤ C‖û0‖∞

⎛

⎝
∑

k≥0

1
(2k + n)n+1

⎞

⎠
∫

R

h

( |η|
t

1
α

)

e−|η|α |η|n+1dη.

Observe that h

( |η|
t

1
α

)

→ 0 when t → ∞. Also

h

( |η|
t

1
α

)

e−|η|α |η|n+1 ≤ ‖h‖∞|η|n+1e−|η|α ,

and then by convergence dominated theorem t
n+1

α II → 0 when t → ∞.
Thus we have showed that

lim
t−→∞ t

n+1
α max

(z,s)
|u(z, s, t) − v(z, s, t)| = 0

since

lim
t−→∞ t

n+1
α max

(z,s)
|u(z, s, t) − v(z, s, t)|

≤ lim
t−→∞ t

n+1
α

∑

k≥0

∫ ∞

−∞
|û − v̂|(λ, k, t)|λ|ndλ = 0.

Now we will prove that the asymptotic profile is given by

lim
t→∞ max

(z,s)
|tn+1

α u(t
α
2 z, tαs, t) − Gu0(z, s)| = 0,

where Gu0(z, s) is the function such that Ĝu0(λ, k) = e−|λ|α(2k+n)α

û0(0, k).
Indeed, we have

v̂(t−αλ, k, t) = e−|λ|α(2k+n)α

û0(t−αλ, k) → e−|λ|α(2k+n)α

û0(0, k). (2.3)
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Now, taking the spherical transform and by (1.6) and (1.7), we get

t
n+1

α ̂δtαv(·, ·, t)(λ, k, t) = t
n+1

α

∫

Hn

v(t
α
2 z, tαs, t)ϕtαt−αλ,k(−z,−s) dz ds (2.4)

= t
n+1

α

∫

Hn

v(t
α
2 z, tαs, t)ϕt−αλ,k(−t

α
2 z,−tαs) dz ds

=
∫

Hn

v(z, s, t)ϕt−αλ,k(−z,−s) dz ds

= v̂(t−αλ, k, t).

By (1.17), (2.3) and (2.4) we have

lim
t→∞max

(z,s)
|tn+1

α δtαu(z, s, t)−Gu0(z, s)|

≤ lim
t→∞max

(z,s)
|tn+1

α δtαu(z, s, t)−t
n+1

α δtαv(z, s, t)|

+ lim
t→∞ max

(z,s)
|tn+1

α δtαv(z, s, t) − Gu0(z, s)| = 0.

Finally, since ‖v(·, ·, t)‖L∞(Hn) ≤ Ct−
n+1

α , (see (1.15)), we have

‖u(·, ·, t)‖L∞(Hn) ≤ Ct−
n+1

α .

and by interpolation for 2 < p < ∞,

‖u(·, ·, t)‖Lp(Hn) ≤ ‖u(·, ·, t)‖
2
p

L2(Hn)‖u(·, ·, t)‖
p−2

p

L∞(Hn).

As (1.16) has bounded the L2(Hn) norm, because it is the solution given
through the spherical transform, we have

‖u(·, ·, t)‖Lp(Hn) ≤ Ct−
n+1

α
p−2

p .

�

3. The Dirichlet problem

3.1. Existence and properties of solutions

We shall first derive the existence and uniqueness of solutions of (1.18), which
is a consequence of Banach’s fixed point theorem. The main arguments are
basically the same of [9] or [10], but we write them here to make the paper
self-contained.

Theorem 3.1. Let u0 ∈ L1(Ω) and be J a kernel that verifies (H) and (H̃).
Then there exists a unique solution u of (1.18) such that u ∈ C([0,∞), L1(Ω)).

Recall that a solution of the Dirichlet problem is defined as a u ∈ C([0,∞),
L1(Ω)) satisfying (1.18).

Proof. We use the Banach’s fixed point theorem. Fix t0 > 0 and consider the
Banach space

Xt0 :=
{
w ∈ C([0, t0];L1(Ω)), and w(z, s, t) = g(z, s, t) if (z, s) /∈ Ω

}
,
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with the norm

|||w||| := max
0≤t≤t0

‖w(·, ·, t)‖L1(Ω).

We will obtain the solution as a fixed point of the operator T : Xt0 → Xt0

defined by

T(w)(z, s, t) :=

⎧
⎨

⎩
w0(z, s) +

∫ t

0

J ∗ w(z, s, r) − w(z, s, r) dr if (z, s) ∈ Ω,

g(z, s, t) if (z, s) /∈ Ω,

where w0(z, s) = w(z, s, 0).
Let w, v ∈ Xt0 . Then there exists a constant C depending on J and Ω

such that

|||T(w) − T(v)||| ≤ Ct0|||w − v||| + ‖w0 − v0‖L1(Ω). (3.1)

We will prove (3.1). Indeed,
∫

Ω

|T(w) − T(v)| (z, s, t)dzds ≤
∫

Ω

|w0 − v0|(z, s)dzds

+
∫

Ω

∣
∣
∣
∣

∫ t

0

J ∗ (w − v)(z, s, r) − (w − v)(z, s, r) dr

∣
∣
∣
∣ dzds

≤ ‖w0 − v0‖L1(Ω) + t(‖J‖L∞(Ω) + 1)|||(w − v)|||.
Taking the maximum in t (3.1) follows.

Now, taking v0 ≡ v ≡ 0 in (3.1) we get that T(w) ∈ C([0, t0];L1(Ω)) and
this says that T maps Xt0 into Xt0 .

Finally, we will consider Xt0,u0 = {u ∈ Xt0 : u(z, s, 0) = u0(z, s)}. T
maps Xt0,u0 into Xt0,u0 and taking t0 such that (C + 1)t0 < 1, where C is the
constant given in (3.1) we can apply the Banach’s fixed point theorem in the
interval [0, t0] because T is a strict contraction in Xt0,u0 . From this we get the
existence and uniqueness of the solution in [0, t0]. To extend the solution to
[0,∞) we may take as initial data u(x, t0) ∈ L1(Ω) and obtain a solution up
to [0, 2t0]. Iterating this procedure we get a solution defined in [0,∞). �

In order to prove a comparison principle of problem given by (1.18) we
need to introduce the definition of sub and super solutions.

Definition 3.2. A function u ∈ C([0, T ];L1(Ω)) is a supersolution of (1.18) if
⎧
⎨

⎩

ut(z, s, t) ≥ J ∗ u(z, s, t) − u(z, s, t), for (z, s) ∈ Ω and t > 0,
ut(z, s, t) ≥ g(z, t), for (z, s) /∈ Ω and t > 0,
u(z, s, 0) ≥ u0(z, s), for (z, s) ∈ Ω.

(3.2)

As usual, subsolutions are defined analogously by reversing the inequalities.

Lemma 3.3. Let u0 ∈ C(Ω), u0 ≥ 0, and u ∈ C(Ω × [0, T ]) a supersolution of
(1.18) with g ≥ 0. Then, u ≥ 0.

Proof. Assume to the contrary that u(z, s, t) is negative in some point. Let
v(z, s, t) = u(z, s, t)+εt with ε > 0 small such that v is still negative somewhere.
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Then, if (z0, s0, t0) is a point where v attains its negative minimum, there it
holds that t0 > 0 and

vt(z0, s0, t0) = ut(z0, s0, t0) + ε > J ∗ u(z0, s0, t0) − u(z0, s0, t0)

=
∫

Hn

J(z̃ − z, s̃ − s − 1
2
Im〈z̃, z〉)(v(z̃, s̃, t0) − v(z0, s0, t0))dz̃ds̃

≥ 0.

This contradicts that (z0, s0, t0) is a minimum of v. Thus, u ≥ 0. �

Corollary 3.4. Let J ∈ L∞(Hn). Let u0 and v0 in L1(Ω) with u0 ≥ v0 and
g, h ∈ L∞((0, T );L1(Hn\Ω)) with g ≥ h. Let u be a solution of (1.18) with
u(z, s, 0) = u0(z, s) and Dirichlet datum g, and let v be a solution of (1.18)
with v(z, s, 0) = v0(z, s) and datum h. Then, u ≥ v a.e. Ω.

Proof. Let w = u−v. Then, w is a supersolution with initial datum u0−v0 ≥ 0
and datum g −h ≥ 0. Using the continuity of the solutions with respect to the
data and the fact that J ∈ L∞(Hn), we may assume that u, v ∈ C(Ω × [0, T ]).
By Lemma (3.3) we obtain that w = u− v ≥ 0. So the corollary is proved. �

Corollary 3.5. Let u ∈ C(Ω × [0, T ]) (resp., v) be a supersolution (resp., sub-
solution) of (1.18). Then, u ≥ v.

Proof. It follows from the proof of the previous corollary. �

3.2. Convergence to the heat equation

In order to prove a to prove Theorem 1.5, let ṽ be a C2+α,1+α/2 extension of
v to Hn × [0, T ], where v is the solution of (1.20). Let us define the operator

L̃ε(w)(z, s, t) :=
1
ε2

Jε ∗ w(z, s, t) − w(z, s, t).

Then ṽ verifies
⎧
⎨

⎩

ṽt(z, s, t) = L̃ε(v)(z, s, t) + Fε(z, s, t), for (z, s) ∈ Ω and t ∈ [(0, T ],
ṽ(z, s, t) = g(z, s, t) + G(z, s, t), for (z, s) /∈ Ω and t ∈, (0, T ]
ṽ(z, s, 0) = u0(z, s), for (z, s) ∈ Ω.

(3.3)
Since Lv(z, s, t) = Lṽ(z, s, t) for (z, s) ∈ Ω, we have

Fε(z, s, t) = Lṽ(z, s, t) − L̃ε(v)(z, s, t).

Moreover, as G is smooth and G(z, s, t) = 0 if (z, s) ∈ ∂Ω we have

G(z, s, t) = o(ε) for (z, s) such that dist((z, s), ∂Ω) ≤ εd.

We set wε = ṽ − uε and we note that
⎧
⎨

⎩

wε
t(z, s, t) = L̃ε(wε)(z, s, t) + Fε(z, s, t), for (z, s) ∈ Ω and t ∈ (0, T ],

wε(z, s, t) = G(z, s, t), for (z, s) /∈ Ω and t ∈, (0, T ],
wε(z, s, 0) = 0, for (z, s) ∈ Ω.

(3.4)



57 Page 18 of 21 R. E. Vidal NoDEA

Lemma 3.6. Let ṽ, L̃ε and Fε be as previously defined. Then we have that

sup
t∈[0,T ]

‖Fε‖L∞(Ω) = o(εα). (3.5)

Proof. By ṽ ∈ C2+α,1+α/2(Hn × [0, T ]), we have that

Fε(z, s, t) = Lṽ(z, s, t) − L̃ε(v)(z, s, t)

In the global coordinate system (x, y, s), we obtain

L̃ε(v)(x, y, s, t) =
2C−1

1

ε2n+4

∫

R2n+1
J

(
x̃ − x

ε
,
ỹ − y

ε
,
s̃ − s

ε2
− 1

2
x̃y − ỹx

ε2

)

· (v(x̃, ỹ, s̃, t) − v(x, y, s, t)) dx̃dỹds̃.

We now make the change of variables x̃−x
ε = x̂, ỹ−y

ε = ŷ and s̃−s
ε2 = x̂, and so,

L̃ε(v)(x, y, s, t) =
2C−1

1

ε2

∫

R2n+1
J

(

x̂, ŷ, ŝ − 1
2

(εx̂ + x)y − (εŷ + y)x
ε2

)

· (v(εx̂ + x, εŷ + y, εŝ + s, t) − v(x, y, s, t)) dx̂dŷdŝ

=
2C−1

1

ε2

∫

R2n+1
J

(

x̂, ŷ, ŝ − εx̂y − εŷx

2ε2

)

· (v(εx̂ + x, εŷ + y, εŝ + s, t) − v(x, y, s, t)) dx̂dŷdŝ.

By a simple Taylor expansion we have

v(εx̂ + x, εŷ + y, εŝ + s, t) − v(x, y, s, t)

=
n∑

j=1

∂

∂xj
v(x, y, s, t)εx̂j +

n∑

j=1

∂

∂yj
v(x, y, s, t)εŷj

+
∂

∂s
v(x, y, s, t)ε2ŝ +

1
2

∑

j,i

∂2

∂xj∂xi
v(x, y, s, t)ε2x̂j x̂i

+
1
2

∑

j,i

∂2

∂yj∂yi
v(x, y, s, t)ε2ŷj ŷi +

∑

j,i

∂2

∂xj∂yi
v(x, y, s, t)ε2x̂j ŷi

+
1
2

n∑

j=1

∂2

∂xj∂s
v(x, y, s, t)ε3x̂j ŝ +

n∑

j=1

∂2

∂yj∂s
v(x, y, s, t)ε3ŷj ŝ

+
1
2

∂2

∂s2
v(x, y, s, t)ε4ŝ2 + o(ε2+α).
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By the fact that J verifies the hypothesis (H̃),

L̃ε(v)(x, y, s, t)

=

⎡

⎣
n∑

j=1

∂2

∂x2
j

+
∂2

∂y2
j

+ ε2
∂2

∂s2

⎤

⎦ v(x, y, s, t)

+

⎡

⎣1
4

∂2

∂s2

n∑

j=1

(
x2

j + y2
j

)
+

∂

∂s

n∑

j=1

(

xj
∂

∂yj
− yj

∂

∂xj

)
⎤

⎦ v(x, y, s, t) + o(εα)

= Lv(x, y, s, t) + o(εα) = Lṽ(x, y, s, t) + o(εα).

�

Proof of Theorem 1.5. In order to prove the theorem by a comparison argu-
ment we first look for a supersolution. Let w be given by

w(z, s, t) := K1ε
αt + K2ε. (3.6)

For (z, s, t) ∈ Ω × [0, T ] we have L̃ε(w)(z, s, t) = 0, and if K1 is large by
Lemma 3.6 and Eq. (3.4):

wt(z, s, t) − L̃ε(w)(z, s, t) = K1ε
α ≥ Fε(z, s, t) = wε

t(z, s, t) − L̃ε(wε)(z, s, t).
(3.7)

Since

G(z, s, t) = o(ε) for (z, s) such that dist((z, s), ∂Ω) ≤ εd,

choosing K2 large, we obtain

w(z, s, t) ≥ wε
t(z, s, t), (3.8)

for (z, s) /∈ Ω such that dist((z, s), ∂Ω) ≤ ε and t ∈ [0, T ]. Moreover, it is clear
that

w(z, s, 0) = K2ε > 0 = wε
t(z, s, 0). (3.9)

By (3.7), (3.8) and (3.9) we can apply the comparison result, Corollary 3.4,
and conclude that

wε(z, s, t) ≤ w(z, s, t) = K1ε
αt + K2ε. (3.10)

In a similar way we prove that w(x, t) = −K1ε
αt − K2ε is a subsolution and

hence,

wε(z, s, t) ≥ w(z, s, t) = −K1ε
αt − K2ε. (3.11)

Therefore by (3.10), (3.11) and since 0 < α < 1, we get

sup
t∈[0,T ]

‖v − uε‖L∞(Ω) = sup
t∈[0,T ]

‖wε‖L∞(Ω) ≤ C(T )εα.

This proves the theorem. �
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