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Abstract. We study the existence of ground states to a nonlinear fractional
Kirchhoff equation with an external potential V . Under suitable assump-
tions on V , using the monotonicity trick and the profile decomposition, we
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not satisfy the Ambrosetti–Rabinowitz type condition or monotonicity
assumptions.

Mathematics Subject Classification. 35Q55, 35Q51, 53C35.

Keywords. Fractional Kirchhoff type problems, Ground state solutions,
Profile decomposition.

Contents

1. Introduction and results 2
1.1. Overview 2
1.2. Main results 3
1.3. Main difficulties 5

2. Variational setting 6
3. The perturbed functional 8
4. Upper estimate of cλ and limit problems 12

4.1. An energy estimate 12
4.2. The limit problem 15

5. Behaviour of Palais–Smale sequences 16
5.1. Splitting lemmas 16
5.2. Profile decomposition 20

Z. Liu is supported by the NSFC (11626127). M. Squassina is member of the Gruppo
Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of
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1. Introduction and results

1.1. Overview

In this paper we are concerned with the existence of positive ground state
solutions to the following nonlinear fractional Kirchhoff equation

⎧
⎪⎨

⎪⎩

(

a + b

∫

RN

|(−Δ)
α
2 u|2dx

)

(−Δ)αu + V (x)u = f(u) in R
N ,

u ∈ Hα(RN ), u > 0 in R
N ,

(K)

where a, b are positive constants, α ∈ (0, 1) and N > 2α. The operator (−Δ)α

is the fractional Laplacian defined as F−1(|ξ|2αF (u)), where F denotes the
Fourier transform on R

N . When a = 1 and b = 0, then (K) reduces to the
following fractional Schrödinger equation

(−Δ)αu + V (x)u = f(u) in R
N , (1.1)

which has been proposed by Laskin [20] in fractional quantum mechanics as a
result of extending the Feynman integrals from the Brownian like to the Lévy
like quantum mechanical paths. For such a class of fractional and nonlocal
problems, Caffarelli and Silvestre [8] expressed (−Δ)α as a Dirichlet–Neumann
map for a certain local elliptic boundary value problem on the half-space. This
method is a valid tool to deal with equations involving fractional operators
to get regularity and handle variational methods. We refer the readers to [16,
34] and to the references therein. Investigated first in [12,13] via variational
methods, there has been a lot of interest in the study of the existence and
multiplicity of solutions for (1.1) when V and f satisfy general conditions. We
cite [11,33,36] with no attempts to provide a complete list of references.

If α = 1, then problem (K) formally reduces to the well-known Kirchhoff
equation

−
(

a + b

∫

RN

|∇u|2dx

)

Δu + V (x)u = f(u) in R
N , (1.2)

related to the stationary analogue of the Kirchhoff–Schrödinger type equation

∂2u

∂t2
−

(

a + b

∫

Ω

|∇u|2dx

)

Δu = f(t, x, u),

where Ω is a bounded domain in R
N , u denotes the displacement, f is the

external force, b is the initial tension and a is related to the intrinsic properties
of the string. Equations of this type were first proposed by Kirchhoff [19] to
describe the transversal oscillations of a stretched string. Besides, we also point
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out that such nonlocal problems appear in other fields like biological systems,
where u describes a process depending on the average of itself. We refer readers
to Chipot and Lovat [10], Alves and Corrêa [1]. However, the solvability of
the Kirchhoff type equations has been well studied in a general dimension by
various authors only after Lions [23] introduced an abstract framework to such
problems. For more recent results concerning Kirchhoff-type equations we refer
e.g. to [4,17,26,28].

In [22], by using a monotonicity trick and a global compactness lemma,
Li and Ye proved that for f(u) = |u|p−2u and p ∈ (3, 2N/(N − 2)), problem
(1.2) has a positive ground state. Subsequently, Liu and Guo [25] extended the
above result to p ∈ (2, 2N/(N − 2)). Fiscella and Valdinoci [14], proposed the
following stationary Kirchhoff variational equation with critical growth

⎧
⎪⎨

⎪⎩

M

(∫

RN

|(−Δ)
α
2 u|2dx

)

(−Δ)αu = λf(x, u) + |u|2∗
α−2u in Ω,

u = 0 in R
N\Ω,

(1.3)

which models nonlocal aspects of the tension arising from measurements of
the fractional length of the string. They obtained the existence of non-negative
solutions when M and f are continuous functions satisfying suitable assump-
tions. Autuori et al. [3] considered the existence and the asymptotic behavior
of non-negative solutions of (1.3). Pucci and Saldi [30] established multiplic-
ity of nontrivial solutions. Via a three critical points theorem, Nyamoradi [27]
studied the subcritical case of (1.3) and obtained three solutions. See also
[9,15,29,31,39] for related results.

To the best of our knowledge, there are few papers in the literature on
fractional Kirchhoff equations in R

N . Recently, Ambrosio and Isernia [2] con-
sidered the fractional Kirchhoff problem

(

a + b

∫

RN

|(−Δ)
α
2 u|2dx

)

(−Δ)αu = f(u) in R
N , (1.4)

where f is an odd subcritical nonlinearity satisfying the well known Beresty-
cki and Lions [6] assumptions. By minimax arguments, the authors establish
a multiplicity result in the radial space Hα

rad(RN ) when the parameter b is
sufficiently small. As in [22], Teng [37] also searched for ground state solutions
for the fractional Schrödinger–Poisson system in R

3 with critical growth
{

(−Δ)αu + V (x)u + φu = μ|u|q−2u + |u|2∗
α−2u in R

3,
(−Δ)tφ = u2 in R

3.

We point out that, in [22,37] the corresponding limit problems play an im-
portant role. In order to get the existence of ground state solutions of the
limit problems, the authors used a constrained minimization on a manifold M
obtained by combining the Nehari and Pohožaev manifolds.

1.2. Main results

Motivated by the works above, in this paper we aim to study the existence of
positive ground state solutions to the fractional Kirchhoff equation with the
Berestycki–Lions type conditions of critical type, firstly introduced in [40].
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1.2.1. Assumptions on V . On the external potential we assume the following:
(V1) V ∈ C1(RN ,R) and, setting W (x) := max{x · ∇V (x), 0}, we assume

‖W‖
L

N
2α (RN )

< 2aαSα, Sα := inf
u∈Dα,2(RN )

u�=0

∫

RN

|(−Δ)
α
2 u|2dx

(∫

RN

|u|2∗
αdx

)2/2∗
α

,

2∗
α :=

2N

N − 2α
;

(V2) there exists V∞ ∈ R such that

V (x) ≤ lim
|y|→∞

V (y) = V∞, for all x ∈ R
N ;

(V3) the operator a(−Δ)α + V (x) : Hα(RN ) → H−α(RN ) satisfies

inf
u∈Hα(RN )

u�=0

∫

RN

(
a|(−Δ)

α
2 u|2 + V (x)u2

)
dx

∫

RN

|u|2dx

> 0.

1.2.2. Assumptions on f . We assume that f(t) = 0 for all t ≤ 0 and

(f1) f ∈ C1(R+,R) and limt→0
f(t)

t = 0;
(f2) limt→∞

f(t)

t2
∗
α−1 = 1;

(f3) there are D > 0 and 2 < q < 2∗
α such that f(t) ≥ t2

∗
α−1 + Dtq−1 for any

t ≥ 0.
Now we state our first result.

Theorem 1.1. Assume (V1)–(V3), (f1)–(f3) and N = 2 with α ∈ (1
2 , 1) or

N = 3 with α ∈ (3
4 , 1).

(i) If q ∈ (2, 2∗
α), there is D1 > 0 such that, for D ≥ D1, (K) admits a

positive ground state solution.
(ii) If q ∈ ( 4α

N−2α , 2∗
α), for any D > 0, (K) admits a positive ground state

solution.

Remark 1.2. It is worth pointing out that we have to restrict α ∈ (1
2 , 1) when

N = 2 or α ∈ ( 3
4 , 1) if N = 3 in the process of proving the Mountain-Pass

geometry for the corresponding energy functional. Moreover, in order to get
a positive ground state solution, we construct a perturbed functional whose
nontrivial critical points can be proved in such restrictions on α. However,
when α is small, the argument in proving the two statements above does not
work any more. For the details, see Lemmas 3.3 and 6.1.

We point out that without any symmetry assumption on V , the ground
state solution obtained above maybe is not radially symmetric. In the follow-
ing, we impose a monotonicity assumption of V and show that (K) admits a
radially symmetric solution.
Assume now that V is radially symmetric and increasing, that is

for all x, y ∈ R
N : |x| ≤ |y| ⇒ V (x) ≤ V (y). (V4)
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Theorem 1.3. Under the assumptions of Theorem 1.1 and (V4), (K) admits a
radially symmetric positive solution at the global (unrestricted to radial paths)
mountain pass energy level.

As a main tool to prove Theorem 1.1 we shall give the profile decomposi-
tion of the Palais–Smale sequences by which we can derive some compactness
and get a positive ground states for (K). The main tool for the proof of The-
orem 1.3 is a symmetric version of the monotonicity trick [35]. We recall that
Zhang and Zou [41] studied the critical case for Berestycki–Lions theorem of
the Schrödinger equation −Δu+V (x)u = f(u). They obtained positive ground
state solutions when V satisfies similar assumptions as (V1)–(V3), f satisfies
(f1)–(f3) and

(f4) |f ′(t)| ≤ C(1 + |t| 4
N−2 ), for t > 0 and some C > 0.

We should mention that in the present paper, (f4) is removed.

1.3. Main difficulties

We mention the difficulties and the idea in proving Theorem1.1.
Firstly, without the Ambrosetti–Rabinowitz condition, it is difficult to get

the boundedness of Palais–Smale sequences. In order to overcome this difficulty,
inspired by [22], we will use the monotonicity trick developed by Jeanjean [18],
introduce a family of functionals Iλ and obtain a bounded (PS)cλ

sequence for
Iλ for almost all λ in an interval J , where cλ is given in Sect. 3.

Secondly, by the presence of the Kirchhoff term, one obstacle arises in
getting the compactness of Iλ, even in the subcritical case. Precisely, this does
not hold in general: for any ϕ ∈ C∞

0 (RN ),
∫

RN

|(−Δ)
α
2 un|2dx

∫

RN

(−Δ)
α
2 un(−Δ)

α
2 ϕdx

→
∫

RN

|(−Δ)
α
2 u|2dx

∫

RN

(−Δ)
α
2 u(−Δ)

α
2 ϕdx,

where {un}n∈N is a (PS)-sequence of Iλ satisfying un ⇀ u in Hα(RN ). Then,
even in the subcritical case, it is not clear that weak limits are critical points of
Iλ. In [2], for (1.4) the compactness was recovered by restricting Iλ to the radial
space Hα

rad(RN ), which is compactly embedded Ls(RN ) for all s ∈ (2, 2∗
α). For

the related works in the bounded domains, see e.g. [14,30,39].
In the present paper, we do not impose any symmetry and just consider

(K) in Hα(RN ). So the arguments mentioned above cannot be applied. Inspired
by [22], in place of Iλ, we consider a family of related functionals Jλ, whose
corresponding problem is a non Kirchhoff equation.

Thirdly, the critical exponent makes the problem rather tough. The (PS)-
condition does not hold in general and to overcome this difficulty, we show
that the mountain pass level cλ is strictly less than some critical level c∗

λ.
For −Δu + V (x)u = λf(u) with critical growth, if S is the best constant of
D1,2(RN ) ↪→ L2∗

(RN ), one can show that [7]

c∗
λ =

1
N

S
N
2 λ

2−N
2 .
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For −
(
a + b

∫

R3 |∇u|2dx
)
Δu + V (x)u = λf(u) in R

3 involving critical growth
[21,24]

c∗
λ =

ab

4λ
S3 +

[b2S4 + 4λaS]
3
2

24λ2
+

b3S6

24λ2
.

However, for fractional Kirchhoff equations, to give the exact value of c∗
λ is com-

plicated, since one cannot solve precisely a fractional order algebra equation.
A careful analysis is needed at this stage. With an estimate of cλ, inspired
by [41], we establish a profile decomposition of the Palais–Smale sequence
{un}n∈N (Lemma 5.4) related to Jλ. Thanks to this result, for almost every
λ ∈ [1/2, 1] we obtain a nontrivial critical point uλ of Iλ at the level cλ. Fi-
nally, choosing a sequence λn ⊂ [1/2, 1] with λn → 1, thanks to the Pohožaev
identity we obtain a bounded (PS)c1-sequence of the original functional I.
Using the idea above again, we obtain a nontrivial solution of problem (K).

Throughout this paper, C will denote a generic positive constant.
The paper is organized as follows.
In Sect. 2, the variational setting and some preliminary lemmas are pre-

sented.
In Sect. 3, we consider a perturbation of the original problem (K). Then

using the monotonicity trick developed by Jeanjean, we obtain the bounded
(PS)cλ

-sequence {un}n∈N for almost all λ. In Sect. 4, an upper estimate of the
mountain pass value is obtained and the limit problem is discussed. In Sect. 5,
we give the profile decomposition of {un}n∈N. In Sect. 6, Theorem 1.1 and 1.3
are finally proved.

2. Variational setting

In this section we outline the variational framework for (K) and recall some
preliminary lemmas. For any α ∈ (0, 1), the fractional Sobolev space Hα(R3)
is defined by

Hα(RN ) :=

{

u ∈ L2(RN ) :
|u(x) − u(y)|
|x − y|N+2α

2

∈ L2(RN × R
N )

}

.

It is known that
∫

R2N

|u(x) − u(y)|2
|x − y|N+2α

dxdy = 2C(n, α)−1

∫

RN

|(−Δ)
α
2 u|2dx,

where

C(n, α) =
(∫

RN

1 − cos ζ1

|ζ|N+2α
dζ

)−1

.

We endow the space Hα(RN ) with the norm

‖u‖Hα(RN ) :=
(∫

RN

|u|2dx +
∫

RN

|(−Δ)
α
2 u|2dx

)1/2

.
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Hα(RN ) is also the completion of C∞
0 (RN ) with ‖ · ‖Hα(RN ) and it is continu-

ously embedded into Lq(RN ) for q ∈ [2, 2∗
α]. The homogeneous space Dα,2(RN )

is

Dα,2(RN ) :=

{

u ∈ L2∗
α(RN ) :

|u(x) − u(y)|
|x − y|N+2α

2

∈ L2(RN × R
N )

}

,

and it is also the completion of C∞
0 (RN ) with respect to the norm

‖u‖Dα,2(RN ) :=
(∫

RN

|(−Δ)
α
2 u|2dx

)1/2

.

Lemma 2.1. (Norm equivalence) Assume (V2)–(V3). Then there exist ε0 > 0
and ω > 0 with

∫

RN

(
(a − ε)|(−Δ)

α
2 u|2 + V (x)u2

)
dx ≥ ω

∫

RN

|u|2dx,

for every u ∈ Hα(RN ) and all ε ∈ (0, ε0).

Proof. By contradiction, for ε0 = ω = 1/n there exist εn → 0 and {un}n∈N ⊂
Hα(RN ) with

∫

RN

(
(a − εn)|(−Δ)

α
2 un|2 + V (x)u2

n

)
dx ≤ 1

n

∫

RN

|un|2dx.

Then, up to a standard nomalization, we may assume that ‖un‖Hα(RN ) = 1
and

∫

RN

(
(a − εn)|(−Δ)

α
2 un|2 + V (x)u2

n

)
dx ≤ 1

n
.

In view of (V3), we get ‖un‖2 → 0, which implies from (V2) and the above in-
equality that {un}n∈N goes to zero in Dα,2(RN ). Therefore un → 0 in Hα(RN ),
which contradicts the normalization. �

Let

H :=
{

u ∈ Hα(RN ) :
∫

RN

V (x)u2dx < ∞
}

be the Hilbert space equipped with the inner product

〈u, v〉H := a

∫

RN

(−Δ)
α
2 u(−Δ)

α
2 v dx +

∫

RN

V (x)uv dx,

and the corresponding induced norm

‖u‖ :=
(∫

RN

a|(−Δ)
α
2 u|2dx +

∫

RN

V (x)u2dx

)1/2

.

From Lemma 2.1, it easily follows that the above norm is equivalent to ‖ ·‖Hα .
A function u ∈ H is a (weak) solution to problem (K) if, for every ϕ ∈ H, we
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have
(

a + b

∫

RN

|(−Δ)
α
2 u|2dx

) ∫

RN

(−Δ)α/2u(−Δ)α/2ϕdx +
∫

RN

V (x)uϕdx

=
∫

RN

f(u)ϕdx.

We stress that, under assumptions (V1)–(V3) and (f1)–(f3), if u is a weak
solution to the above problem, then u is globally bounded and Hölder regular
allowing the pointwise reppresentation of (−Δ)αu by the results of [13]. In
particular u > 0 a.e. wherever u ≥ 0. In what follows, we recall a fractional
varsion of Lions lemma whose proof can be seen in [32].

Lemma 2.2. (Lions lemma) Assume that {un}n∈N is bounded in H and

lim
n→∞ sup

y∈RN

∫

Br(y)

|un|2dx = 0,

for some r > 0. Then un → 0 in Ls(RN ) for all s ∈ (2, 2∗
α).

The energy functional associated with (K), I : H → R, is defined as

I(u) =
1
2
‖u‖2 +

b

4

(∫

RN

|(−Δ)
α
2 u|2dx

)2

−
∫

RN

F (u)dx, u ∈ H,

with F (u) =
∫ u

0
f(t)dt. Obviously I ∈ C1(H) and its critical points are weak

solutions to (K).

3. The perturbed functional

Since we do not impose the well-known Ambrosetti–Rabinowitz condition, the
boundedness of the Palais–Smale sequence becomes complicated. To overcome
this difficulty, we adopt a monotonicity trick due to Jeanjean [18].

Theorem 3.1. (Monotonicity trick [18]) Let (E, ‖ · ‖) be a real Banach space
with its dual space E′ and J ∈ R

+ an interval. Consider the family of C1

functionals on E

Iλ = A(u) − λB(u), ∀λ ∈ J,

with B nonnegative and either A(u) → +∞ or B(u) → +∞ as ‖u‖ → ∞,
satisfying Iλ(0) = 0. We set

Γλ := {γ ∈ C([0, 1], E) | γ(0) = 0, Iλ(γ(1)) < 0}, for all λ ∈ J.

If for every λ ∈ J , Γλ is nonempty and

cλ = inf
γ∈Γλ

max
s∈[0,1]

Iλ(γ(s)) > 0,

then for almost any λ ∈ J , Iλ admits a bounded Palais–Smale sequence
{un}n∈N ⊂ E, namely supn∈N

‖un‖ < ∞, Iλ(un) → cλ and I ′
λ(un) → 0 in

E′. Moreover λ → cλ is left continuous.
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Set J := [12 , 1], E := H and

A(u) :=
1
2
‖u‖2 +

b

4

(∫

RN

|(−Δ)
α
2 u|2dx

)2

, B(u) :=
∫

RN

F (u)dx.

We consider the family of functionals Iλ : H → R defined by Iλ(u) = A(u) −
λB(u), that is

Iλ(u) =
1
2
‖u‖2 +

b

4

(∫

RN

|(−Δ)
α
2 u|2dx

)2

− λ

∫

RN

F (u)dx.

It is easy to see that B(u) ≥ 0 for all u ∈ H and A(u) → +∞ as ‖u‖ → ∞.
In the following H denotes a closed half-space of R

N containing the origin,
0 ∈ H. We denote by H the set of closed half-spaces of RN containing the
origin. We shall equip H with a topology ensuring that Hn → H as n → ∞
if there is a sequence of isometries in : RN → R

N such that Hn = in(H) and
in converges to the identity. Given x ∈ R

N , the reflected point σH(x) will also
be denoted by xH . The polarization of a nonnegative function u : RN → R+

with respect to H is defined as

uH(x) :=

{
max{u(x), u(σH(x))}, for x ∈ H,

min{u(x), u(σH(x))}, for x ∈ R
N\H.

Given u, the Schwarz symmetrization u∗ of u is the unique function such that
u and u∗ are equimeasurable and u∗(x) = h(|x|), where h : (0,∞) → R+ is a
continuous and decreasing function.
We set H+ := {u ∈ H : u ≥ 0}. Now we state a symmetric version of Theo-
rem 3.1.

Lemma 3.2. (Symmetric monotonicity trick [35]) Under the assumptions of
Theorem 3.1 for E = H, assume that Iλ(|u|) ≤ Iλ(u) for any λ ∈ J and u ∈ H
and

Iλ(uH) ≤ Iλ(u), for any λ ∈ J , u ∈ H+ and H ∈ H .

Then, for any p ∈ [2, 2∗
α], Iλ has a bounded Palais–Smale sequence {un}n∈N ⊂

H with ‖un − |un|∗‖p → 0.

Lemma 3.3. (Uniform Mountain-Pass geometry) Assume that (f1)–(f3) and
(V1)–(V3) hold. Furthermore let N = 2 with α ∈ (1

2 , 1) or N = 3 with α ∈
(3
4 , 1). Then we have:

(1) Γλ �= ∅, for every λ ∈ J ;
(2) there exist r, η > 0 independent of λ, such that ‖u‖ = r implies

Iλ(u) ≥ η. In particular cλ ≥ η.

Proof. (1) For every ϕ ∈ H+\{0}, taking into account of (f3), we have

Iλ(ϕ) ≤ 1
2
‖ϕ‖2 +

b

4

(∫

RN

|(−Δ)
α
2 ϕ|2dx

)2

− D

2q

∫

RN

ϕqdx − 1
22∗

α

∫

RN

ϕ2∗
αdx.

Under the assumptions on N and α, it follows that 2∗
α > 4. Then there exists

t0 > 0 sufficiently large, independent of λ ∈ J , such that Iλ(t0ϕ) < 0. Setting
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w := t0ϕ ∈ H, we have Iλ(w) < 0 and we can define the corresponding Γλ.
Then, setting γ(t) := tw, we have γ ∈ Γλ �= ∅ for every λ ∈ J .

(ii) (f1)-(f2) imply that, for any ε > 0, there exists Cε > 0 such that

|F (s)| ≤ ε|s|2 + Cε|s|2
∗
α , for all s ∈ R.

Then there exist σ1, σ2 > 0 such that

Iλ(ϕ) ≥ σ1‖ϕ‖2 − σ2‖ϕ‖2∗
α , for every ϕ ∈ H.

Hence there exist r, η > 0, independent of λ, such that for ‖u‖ = r, Iλ(u) ≥ η
(and Iλ(ϕ) > 0 as soon as ‖ϕ‖ ≤ r with ϕ �= 0). Now fix λ ∈ J and γ ∈ Γλ.
Since γ(0) = 0 and Iλ(γ(1)) < 0, certainly ‖γ(1)‖ > r. By continuity, we
conclude that there exists tγ ∈ (0, 1) such that ‖γ(tγ)‖ = r. Therefore, for
every λ ∈ J , we conclude cλ ≥ infγ∈Γλ

Iλ(γ(tγ)) ≥ η > 0. �

Lemma 3.4. (Iλ decreases upon polarization) Assume (V4) holds. Then for
any λ ∈ J , for all u ∈ H+ and H ∈ H there holds Iλ(uH) ≤ Iλ(u).

Proof. It is known (see [5, Theorem 2]) that
∫

R2N

|uH(x) − uH(y)|2
|x − y|N+2α

dxdy ≤
∫

R2N

|u(x) − u(y)|2
|x − y|N+2α

dxdy, for all u ∈ H+.

Furthermore, we have (see [38])
∫

RN

F (uH)dx =
∫

RN

F (u)dx, for all u ∈ H+,

and, by the monotonicity assumptions on V ,
∫

RN

V (x)(uH)2dx ≤
∫

RN

V (x)u2dx, for all u ∈ H+,

which concludes the proof by the definition of Iλ. �

Assume (V1)–(V3) and (f1)–(f3). As a consequence we now get the following
result.

Corollary 3.5. (Bounded Palais–Smale with sign) For almost every λ ∈ J , there
is a bounded sequence {un}n∈N ⊂ H+ such that Iλ(un) → cλ, I ′

λ(un) → 0.
Furthermore, ‖un − |un|∗‖2∗

α
→ 0 if (V4) is assumed.

Proof. For a.a. λ ∈ J , a bounded (PS)-sequence {un}n∈N ⊂ H for Iλ is pro-
vided by combining Theorem 3.1 with Lemmas 3.3 and 3.4. Furthermore, if
(V4) holds, using Lemma3.2 in place of Theorem 3.1, we also get ‖un −
|un|∗‖2∗

α
→ 0. Next we show that we can assume that un is nonnegative.

Indeed, we know that 〈I ′
λ(un), u−

n 〉 = 〈μn, u−
n 〉 with μn → 0 in H′ as n → ∞,

with u−
n = min{un, 0}, namely (f(s) = 0 for s ≤ 0)

(

a + b

∫

RN

|(−Δ)
α
2 un|2dx

)∫

RN

(−Δ)αunu−
n dx+

∫

RN

V (x)|u−
n |2dx = 〈μn, u−

n 〉.

As it is readily checked, for all x, y ∈ R
N , we have

(un(x) − un(y))(u−
n (x) − u−

n (y)) ≥ (u−
n (x) − u−

n (y))2,
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which yields that

2C(n, α)−1

∫

R3
(−Δ)αunu−

n dx

=
∫

R2N

(un(x) − un(y))(u−
n (x) − u−

n (y))
|x − y|N+2α

dxdy

≥
∫

R2N

(u−
n (x) − u−

n (y))2

|x − y|N+2α
dxdy = 2C(n, α)−1‖u−

n ‖2
Dα,2 .

Thus ‖u−
n ‖ = on(1), which also yields that {u+

n }n∈N is bounded. We can now
prove that Iλ(u+

n ) → cλ and I ′
λ(u+

n ) → 0. Of course ‖un‖2 = ‖u+
n ‖2 + on(1)

and
(∫

RN

|(−Δ)
α
2 un|2dx

)2

=
(∫

RN

|(−Δ)
α
2 u+

n |2dx

)2

+ on(1).

Notice that from (f1)–(f2), we get
∣
∣
∣
∣

∫

RN

F (un)dx −
∫

RN

F (u+
n )dx

∣
∣
∣
∣ ≤ C

∫

RN

(|un| + |un|2∗
α−1)|u−

n | ≤ C‖u−
n ‖2

+C‖u−
n ‖2∗

α
= on(1).

This shows that Iλ(u+
n ) → cλ. We claim that I ′

λ(u+
n ) → 0. Setting wn :=

I ′
λ(un)− I ′

λ(u+
n ), it is enough to prove that wn → 0 in H′. For any ϕ ∈ H with

‖ϕ‖H ≤ 1, we have

〈wn, ϕ〉 =
(

a + b

∫

RN

|(−Δ)
α
2 un|2dx

)∫

RN

(−Δ)α/2un(−Δ)α/2ϕdx

−
(

a + b

∫

RN

|(−Δ)
α
2 u+

n |2dx

)∫

RN

(−Δ)α/2u+
n (−Δ)α/2ϕdx

+
∫

RN

V (x)u−
n ϕdx − λ

∫

RN

(f(un) − f(u+
n ))ϕdx

=
(

a + b

∫

RN

|(−Δ)
α
2 u+

n |2dx

) ∫

RN

(−Δ)α/2u−
n (−Δ)α/2ϕdx

+
∫

RN

V (x)u−
n ϕdx − λ

∫

RN

f(u−
n )ϕdx + 〈ξn, ϕ〉,

for some ξn → 0 in H′. Then, by (f1)-(f2), |〈wn, ϕ〉| ≤ C‖u−
n ‖H + ‖ξn‖H′ ,

proving the claim. Observe now that by the triangular inequality and the
contractility property of the Schwarz symmetrization in Lp-spaces (i.e. ‖w∗ −
z∗‖p ≤ ‖w − z‖p for all w, z ∈ Lp(RN ) with w, z ≥ 0), we get

∣
∣‖u+

n − (u+
n )∗‖2∗

α
− ‖un − |un|∗‖2∗

α

∣
∣

≤ ‖u−
n + ((u+

n )∗ − |un|∗)‖2∗
α

≤ ‖u−
n ‖2∗

α
+ ‖(u+

n )∗ − |un|∗‖2∗
α

≤ ‖u−
n ‖2∗

α
+ ‖u+

n − |un|‖2∗
α

= 2‖u−
n ‖2∗

α
≤ C‖u−

n ‖H = on(1).

Since ‖un − |un|∗‖2∗
α

→ 0, we have ‖u+
n − (u+

n )∗‖2∗
α

→ 0 as n → ∞. This ends
the proof. �
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4. Upper estimate of cλ and limit problems

In this section, we give an upper estimate of the mountain pass value cλ.
Moreover, the corresponding limit problem is discussed.

4.1. An energy estimate

Next we provide a crucial energy estimate for cλ.

Lemma 4.1. (Energy estimate) Suppose that (f1)–(f3) and (V1)–(V3) hold. For
any λ ∈ [12 , 1], assume that

q ∈
(

4α

N − 2α
, 2∗

α

)

or q ∈
(

2,
4α

N − 2α

]

with D large enough.

Then we have

cλ < c∗
λ, c∗

λ :=
aSα

2
TN−2α +

bS2
α

4
T 2N−4α − λ

2∗
α

TN ,

where T = T (λ) > 0 continuously depends on λ.

Proof. Let η ∈ C∞
0 (R3) be a cut-off function with support in B2(0) such that

η ≡ 1 on B1(0) and η ∈ [0, 1] on B2(0). It is well known that Sα is achieved
by

T (x) := κ
(
μ2 + |x − x0|2

)− N−2α
2

for arbitrary κ ∈ R, μ > 0 and x0 ∈ R
N . Then, taking x0 = 0, we can define

vε(x) := η(x)uε(x), uε(x) = ε− N−2α
2 u∗(x/ε), u∗(x) :=

T
(
x/S

1/(2α)
α

)

‖T ‖2∗
α

.

Then (−Δ)αuε = |uε|2
∗
α−2uε and ‖(−Δ)

α
2 uε‖2

2 = ‖uε‖2∗
α

2∗
α

= S
N
2α
α . As in [33],

we have

Aε :=
∫

RN

|(−Δ)
α
2 vε(x)|2dx = S

N
2α
α + O(εN−2α). (4.1)

On the other hand, for any q ∈ [2, 2∗
α), we obtain

∫

RN

|vε|qdx ≥ εN− (N−2α)q
2 κq‖T ‖−q

2∗
α

|SN−1|SN/(2α)
α

∫ 1

εS
1/(2α)
α

0

rN−1

(μ2 + r2)
(N−2α)q

2

dr,

where SN−1 is the unit sphere in R
N . Observe that, as ε → 0,

∫ 1

εS
1/(2α)
α

0

rN−1

(μ2 + r2)
(N−2α)q

2

dr

⎧
⎪⎨

⎪⎩

→ c ∈ (0,∞), if q > N
N−2α ,

= O(log (1
ε )), if q = N

N−2α ,

= O(ε(N−2α)q−N ), if q < N
N−2α .

Then

Cε :=
∫

RN

|vε|qdx ≥

⎧
⎪⎨

⎪⎩

O(εN− (N−2α)q
2 ), if q > N

N−2α ,

O(log (1
ε )εN− (N−2α)q

2 ), if q = N
N−2α ,

O(ε
(N−2α)q

2 ), if q < N
N−2α .

(4.2)
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Since 2 < N
N−2α ,

∫

RN

|vε|2dx ≥ O(εN−2α).

Similar as above,
∫

RN

|vε|2dx ≤ ε2ακ2‖T ‖−2
2∗

α
|SN−1|SN/(2α)

α

∫ 2

εS
1/(2α)
α

0

rN−1

(μ2 + r2)N−2α
dr

≤ O(εN−2α).

So that we have

Bε :=
∫

RN

|vε|2dx = O(εN−2α). (4.3)

As can be seen in [33], it holds

Dε :=
∫

RN

|vε|2
∗
αdx = S

N
2α
α + O(εN ).

Step 1. For any ε > 0 small there exists t0 > 0 such that Iλ(γε(t0)) < 0, where
γε(t) := vε(·/t). Indeed, by (V2) and (f3), for any t > 0,

Iλ(γε(t)) ≤ a

2

∫

RN

|(−Δ)
α
2 γε(t)|2dx +

b

4

(∫

RN

|(−Δ)
α
2 γε(t)|2dx

)2

+
V∞
2

∫

RN

|γε(t)|2dx − λ

∫

RN

[
|γε(t)|2

∗
α

2∗
α

+ D
|γε(t)|q

q

]

dx

=
aAε

2
tN−2α +

bA2
ε

4
t2N−4α +

(
V∞Bε

2
− λDε

2∗
α

− λDCε

q

)

tN . (4.4)

Noting that 2α < N < 4α, we have 0 < 2N − 4α < N . Then by (4.3),

V∞Bε

2
− λDε

2∗
α

→ −λS
N
2α
α

2∗
α

, as ε → 0.

So it follows from (4.1) that for any ε > 0 small enough, Iλ(γε(t) → −∞ as
t → +∞. Then there exists t0 > 0 such that Iλ(γε(t0)) < 0.
Step 2. Notice that, as t → 0+, we have

∫

RN

[
|(−Δ)

α
2 γε(t)|2 + |γε(t)|2

]
dx = tN−2αAε + tNBε → 0

uniformly for ε > 0 small. We set γε(0) = 0. Then γε(t0·) ∈ Γλ, where Γλ is
as in Theorem 3.1 and

cλ ≤ sup
t≥0

Iλ(γε(t)).

Recalling that cλ > 0, by (4.4), there exists tε > 0 such that

sup
t≥0

Iλ(γε(t)) = Iλ(γε(tε)).
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By (4.1), (4.2) and (4.4), we get Iλ(γε(t)) → 0+ as t → 0+ and Iλ(γε(t)) → −∞
as t → +∞ uniformly for ε > 0 small. Then there exist t1, t2 > 0 (independent
of ε > 0) such that t1 ≤ tε ≤ t2. Let

Jε(t) :=
aAε

2
tN−2α +

bA2
ε

4
t2N−4α − λDε

2∗
α

tN ,

then

cλ ≤ sup
t≥0

Jε(t) +
(

V∞Bε

2
− λDCε

q

)

tNε

By formula (4.2), for any q ∈ (2, 2∗
α), we have

Cε ≥ O(εN− (N−2α)q
2 ).

Then by (4.3), we conclude that

cλ ≤ sup
t≥0

Jε(t) + O(εN−2α) − O(DεN− (N−2α)q
2 ).

Noting that N −2α > 0 and N −(N −2α)q/2 > 0, we have supt≥0 Jε(t) ≥ cλ/2
uniformly for ε > 0 small. As above, there are t3, t4 > 0 (independent of ε > 0)
such that supt≥0 Jε(t) = supt∈[t3,t4] Jε(t). By (4.1),

cλ ≤ sup
t≥0

K
(
S

1
2α
α t

)
+ O

(
εN−2α

)
− O

(
DεN− (N−2α)q

2

)
, (4.5)

where

K(t) =
aSα

2
tN−2α +

bS2
α

4
t2N−4α − λ

2∗
α

tN .

Observe that for t > 0,

K ′(t) =
(N − 2α)tN−2α−1

2
K̃(t), where K̃(t) := aSα + bS2

αtN−2α − λt2α,

and K̃ ′(t) = tN−2α−1(bS2
α(N − 2α) − 2λαt4α−N ). Since 4α > N , there is a

unique T > 0 such that K̃(t) > 0 if t ∈ (0, T ) and K̃(t) < 0 if t > T . Hence,
T is the unique maximum point of K. Then by (4.5),

cλ ≤ K(T ) + O(εN−2α) − O
(
DεN− (N−2α)q

2

)
. (4.6)

If q > 4α/(N−2α), then 0 < N−(N−2α)q/2 < N−2α, which implies by (4.6)
that for any fixed D > 0, cλ < K(T ) for ε > 0 small. If 2 < q ≤ 4α/(N − 2α),
for ε > 0 small and D ≥ ε(N−2α)q/2−2α−1, then also in this case cλ < K(T ),
which completes the proof. �
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4.2. The limit problem

Note that V (x) → V∞ as |x| → ∞. For any λ ∈ [1/2, 1], we consider the
problem

⎧
⎪⎨

⎪⎩

(

a + b

∫

RN

|(−Δ)
α
2 u|2dx

)

(−Δ)αu + V∞u = λf(u) in R
N ,

u ∈ Hα(RN ), u > 0 in R
N ,

whose energy functional is defined by

I∞
λ (u) :=

1
2

∫

RN

(a|(−Δ)
α
2 u|2 + V∞u2)dx +

b

4

(∫

RN

|(−Δ)
α
2 u|2dx

)2

−λ

∫

RN

F (u)dx.

We will use of the following Pohožaev type identity, whose proof is similar as
in [11].

Lemma 4.2. (Pohožaev identity) Let u be a critical point of I∞
λ in H for

λ ∈ [12 , 1]. Then Pλ(u) = 0,

Pλ(u) :=
N − 2α

2

∫

RN

a|(−Δ)
α
2 u|2dx +

N − 2α

2
b

(∫

RN

|(−Δ)
α
2 u|2dx

)2

+
N

2

∫

RN

V∞u2dx − Nλ

∫

RN

F (u)dx.

(4.7)
Notice that Pλ(u) = d

dtI
∞
λ (u(·/t))

∣
∣
t=1

.

Lemma 4.3. For λ ∈ [12 , 1], if wλ ∈ H\{0} solves Pλ(wλ) = 0, then there
exists γλ ∈ C([0, 1],H) such that γλ(0) = 0, I∞

λ (γλ(1)) < 0, wλ ∈ γλ([0, 1]),
0 �∈ γλ((0, 1]) and

max
t∈[0,1]

I∞
λ (γλ(t)) = I∞

λ (wλ).

Proof. Note that

I∞
λ (wλ(·/t)) =

tN−2α

2

∫

RN

a|(−Δ)
α
2 wλ|2dx +

bt2N−4α

4

(∫

RN

|(−Δ)
α
2 wλ|2dx

)2

+
tN

2

∫

RN

V∞w2
λdx − tNλ

∫

RN

F (wλ)dx = 0,

which, by (4.7), yields

lim
t→∞ I∞

λ (wλ(·/t)) < 0.

Then there is t0 > 0 such that I∞
λ (wλ(·/t0)) < 0. Let γλ(t) = wλ(·/tt0))

for 0 < t ≤ 1 and γλ(0) = 0. Then γλ ∈ C([0, 1],H), wλ ∈ γλ([0, 1]) and
maxt∈[0,1] I

∞
λ (γλ(t)) = I∞

λ (wλ) as t = t−1
0 is the unique maximum point of

t �→ I∞
λ (γλ(t)) by Lemma 4.2. �
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5. Behaviour of Palais–Smale sequences

By Corollary 3.5, for almost every λ ∈ [1/2, 1], there exists a bounded Palais–
Smale sequence {un}n∈N ⊂ H for Iλ at the level cλ. Then there exists a
subsequence of {un}n∈N, still denoted by {un}n∈N, such that un ⇀ u0 in H
and un → u0 a.e. in R

N as n → ∞. Let

v1
n := un − u0.

Then v1
n ⇀ 0 in H and v1

n → 0 a.e. Notice that, since un ≥ 0, the dominated
convergence theorem implies that (v1

n)− → 0 in Lq(RN ) for any 2 ≤ q ≤ 2∗
α.

5.1. Splitting lemmas

Let us set

g(t) := f(t) − (t+)2
∗
α−1, G(t) :=

∫ t

0

g(s)ds.

In order to get the profile decomposition of {un}n∈N, we state the following
splitting lemmas.

Lemma 5.1. (Splitting lemma I) We have
∣
∣
∣
∣

∫

RN

(g(un) − g(u0) − g(v1
n))ϕdx

∣
∣
∣
∣ ≤ on(1)‖ϕ‖, (5.1)

where on(1) → 0 as n → ∞, uniformly for any ϕ ∈ C∞
0 (RN ).

Proof. For each n ≥ 1, there exists θn ∈ (0, 1) such that

|g(un) − g(v1
n)| ≤ |g′(v1

n + θnu0)||u0|. (5.2)

In view of (f1)-(f3), for any ε > 0, there exists D̄ > 0 such that

|g(t)| ≤ ε|t|2∗
α−1, for |t| ≥ D̄/2. (5.3)

Let Ωn(D̄) := {x ∈ R
N : |un(x)| ≥ D̄} and for r > 0, Br := {x ∈ R

N : |x| <
r}, Bc

r := R
N\Br(0). Since u0 ∈ H, we have |Bc

R ∩ {|u0(x)| ≥ D̄/2}| → 0 as
R → ∞. Then for ε given as above, there exist R > 0 and ΩR ⊂ R

N with
|ΩR| ≤ Λε such that |u0(x)| < D̄/2 for x ∈ Bc

R\ΩR, where Λε > 0 will be
chosen later small enough. Then, by Hölder’s inequality, (5.2) and (5.3), we
have
∫

Bc
R\ΩR

|g(un) − g(v1
n)||ϕ|dx

≤
∫

(Bc
R\ΩR)∩Ωn(D̄)

|g(un) − g(v1
n)||ϕ|dx

+
∫

(Bc
R\ΩR)∩Ωc

n(D̄)

|g(un) − g(v1
n)||ϕ|dx

≤ εC
(
‖un‖2∗

α−1
2∗

α
+ ‖v1

n‖2∗
α−1

2∗
α

)
‖ϕ‖ + max

|t|≤2D̄
|g′(t)|

(∫

Bc
R

u2
0(x)dx

)1/2

‖ϕ‖.

(5.4)
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It follows from (f1) and (f2) that, for ε > 0 given, there exists Cε = Cε(f) > 0
such that
∫

ΩR

|g(un) − g(v1
n)||ϕ|dx

≤ ε

∫

ΩR

(
|un|2∗

α−1 + |v1
n|2∗

α−1
)

|ϕ|dx + Cε

∫

ΩR

(
|un| + |v1

n|
)
|ϕ|dx

≤ εC
(
‖un‖2∗

α−1
2∗

α
+ ‖v1

n‖2∗
α−1

2∗
α

)
‖ϕ‖ + Cε|ΩR| 2α

N

(
‖un‖2∗

α
+ ‖v1

n‖2∗
α

)
‖ϕ‖2∗

α
.

(5.5)
By (5.4) and (5.5), by choosing Λε such that CεΛ

2α/N
ε ≤ ε, there exists C > 0

with ∫

Bc
R

|g(un) − g
(
v1

n

)
||ϕ|dx ≤ Cε‖ϕ‖. (5.6)

Moreover,
∫

Bc
R

|g(u0)||ϕ|dx ≤ C

∫

Bc
R

|u0||ϕ|dx +
∫

Bc
R

|u0|2
∗
α−1|ϕ|dx

≤ C

(∫

Bc
R

|u0|2dx

)1/2

‖ϕ‖ + C

(∫

Bc
R

|u0|2
∗
αdx

)(2∗
α−1)/2∗

α

‖ϕ‖.

(5.7)
It follows from (5.6) and (5.7) that, for ε > 0 above, we choose R > 0 above
large enough such that

∣
∣
∣
∣
∣

∫

Bc
R

(g(un) − g(u0) − g(v1
n))ϕdx

∣
∣
∣
∣
∣
≤ Cε‖ϕ‖, (5.8)

where C is independent of n, ε and ϕ ∈ C∞
0 (RN ). On the other hand,

∫

BR

|g(un) − g(u0)||ϕ|dx

≤
(∫

BR

|g(un) − g(u0)|2
∗
α/(2∗

α−1)dx

)(2∗
α−1)/2∗

α
(∫

BR

|ϕ|2∗
α

)1/2∗
α

.

Observe that

lim
t→+∞

g2∗
α/(2∗

α−1)(t)
t2

∗
α

= lim
t→0+

g2∗
α/(2∗

α−1)(t)
t2

∗
α/(2∗

α−1)
= 0.

Then |g(un) − g(u0)|2
∗
α/(2∗

α−1) → 0 in L1(BR). Hence, we deduce
∫

BR

|g(un) − g(u0)||ϕ|dx ≤ on(1)‖ϕ‖. (5.9)

Similarly, we also obtain that
∫

BR

|g(v1
n)|ϕdx ≤ on(1)‖ϕ‖, (5.10)

for any ϕ ∈ C∞
0 (RN ). It follows from (5.8), (5.9) and (5.10) that (5.1)

holds. �
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Lemma 5.2. (Splitting lemma II) We have
∣
∣
∣
∣

∫

RN

(
|un|2∗

α−2un − |u0|2
∗
α−2u0 − |v1

n|2∗
α−2v1

n

)
ϕdx

∣
∣
∣
∣ ≤ on(1)‖ϕ‖,

where on(1) → 0 as n → ∞, uniformly for any ϕ ∈ C∞
0 (RN ).

Proof. For any ε > 0, there exists R = R(ε) > 0 such that
∣
∣
∣
∣
∣

∫

RN \BR(0)

(
|un|2∗

α−2un − |u0|2
∗
α−2u0 − |v1

n|2∗
α−2v1

n

)
ϕdx

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

∫

RN \BR(0)

(
|un|2∗

α−2un − |v1
n|2∗

α−2v1
n

)
ϕdx

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

∫

RN \BR(0)

|u0|2
∗
α−2u0ϕdx

∣
∣
∣
∣
∣

≤ C

∫

RN \BR(0)

(
|un|2∗

α−2 + |v1
n|2∗

α−2
)

|u0ϕ|dx

+
∫

RN \BR(0)

|u0|2
∗
α−1|ϕ|dx ≤ Cε‖ϕ‖.

(5.11)

On the other hand, for every r > 0, we have
∣
∣
∣
∣
∣

∫

BR(0)

(
|un|2∗

α−2un − |u0|2
∗
α−2u − |v1

n|2∗
α−2v1

n

)
ϕdx

∣
∣
∣
∣
∣

≤
∫

BR(0)∩{|v1
n|≤r}

∣
∣
∣|un|2∗

α−2un − |u0|2
∗
α−2u0 − |v1

n|2∗
α−2v1

n

∣
∣
∣ ϕdx

+
∫

BR(0)∩{|v1
n|≥r}

∣
∣
∣|un|2∗

α−2un − |u0|2
∗
α−2u0 − |v1

n|2∗
α−2v1

n

∣
∣
∣ ϕdx =: I1 + I2.

Now, there exists r = r(R) such that r|BR(0)|1/2∗
α ≤ ε. Therefore, we have

I1 ≤ C

∫

BR(0)∩{|v1
n|≤r}

(
|un|2∗

α−2 + |u0|2
∗
α−2 + |v1

n|2∗
α−2

)
|v1

nϕ|dx

≤ Cr|BR(0)|1/2∗
α‖ϕ‖ ≤ Cε‖ϕ‖. (5.12)

For such r,R fixed above, un converges to u in measure in BR(0), i.e. |BR(0)∩
{|vn| ≥ r}| → 0 for n → ∞. Therefore, for n ≥ 1 large,

I2 ≤ C

∫

BR(0)∩{|v1
n|≥r}

(
|un|2∗

α−2 + |v1
n|2∗

α−2
)

|u0ϕ|dx

+
∫

BR(0)∩{|v1
n|≥r}

|u0|2
∗
α−1|ϕ|dx ≤ Cε‖ϕ‖. (5.13)

Then (5.11), (5.12) and (5.13) yield the assertion. �

Lemma 5.3. (Splitting lemma III) We have
∫

RN

f(un)undx =
∫

RN

f(v1
n)v1

ndx +
∫

RN

f(u0)u0dx + on(1),
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where on(1) → 0 as n → ∞. Furthermore
∫

RN

F (un)dx =
∫

RN

F (v1
n)dx +

∫

RN

F (u0)dx + on(1).

Proof. Since f(t) = g(t)+t2
∗
α−1 for t ≥ 0, by the standard Brezis–Lieb lemma,

it suffices to prove
∫

RN

g(un)undx =
∫

RN

g(v1
n)v1

ndx +
∫

RN

g(u0)u0dx + on(1),

where on(1) → 0 as n → ∞. Fixed ε > 0, there exists Cε > 0 such that

|g(t)| ≤ εt2
∗
α−1 + Cεt, t ≥ 0. (5.14)

Then there exists R = R(ε) > 0 large enough such that
∣
∣
∣
∣

∫

RN

g(u0)v1
ndx

∣
∣
∣
∣ ≤

∫

BR

|g(u0)v1
n|dx +

∫

Bc
R

|g(u0)v1
n|dx

≤
∫

BR

(
ε|u0|2

∗
α−1 + Cε|u0|

)
|v1

n|dx + ε
(
‖v1

n‖2 + ‖v1
n‖2∗

α

)

≤ Cε + Cεon(1).
(5.15)

and
∣
∣
∣
∣

∫

RN

g
(
v1

n

)
u0dx

∣
∣
∣
∣ ≤

∫

BR

|g
(
v1

n

)
u0|dx +

∫

Bc
R

|g
(
v1

n

)
u0|dx

≤
∫

BR

(
ε|v1

n|2∗
α−1 + Cε|v1

n|
)

|u0|dx

+
∫

Bc
R

(
ε|v1

n|2∗
α−1 + Cε|v1

n|
)

|u0|dx

≤ Cε + Cεon(1).

(5.16)

It follows from (5.15), (5.16) and Lemma 5.1 that
∣
∣
∣
∣

∫

RN

(g(un)un − g(u0)u0 − g(v1
n)v1

n)dx

∣
∣
∣
∣ ≤

∫

RN

|(g(un) − g(u0) − g(v1
n))un|dx

+
∫

RN

|g(v1
n)u0|dx +

∫

RN

|g(u0)v1
n|dx

≤ on(1)‖un‖ + Cε + Cεon(1).

Letting n → ∞ and ε → 0+ completes the proof of the first assertion. The
second assertion follows from the standard Brezis–Lieb lemma and

∫

RN

G(un)dx =
∫

RN

G(v1
n)dx +

∫

RN

G(u0)dx + on(1),

whose proof is left to the reader. �
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5.2. Profile decomposition

In the following, we give the profile decomposition of {un}n∈N, which plays a
crucial role in getting the compactness. Since cλ > 0, for some B̄ > 0 we have

∫

RN

|(−Δ)
α
2 un|2dx → B̄2, as n → ∞.

Now, for any u ∈ H, let

Jλ(u) :=
a + bB̄2

2

∫

RN

|(−Δ)
α
2 u|2dx +

1
2

∫

RN

V (x)|u|2dx − λ

∫

RN

F (u)dx

and

J∞
λ (u) :=

a + bB̄2

2

∫

RN

|(−Δ)
α
2 u|2dx +

1
2

∫

RN

V∞|u|2dx − λ

∫

RN

F (u)dx,

which are respectively the corresponding functional of the following problems

(a + bB̄2)(−Δ)αu + V (x)u = f(u),
(a + bB̄2)(−Δ)αu + V∞u = f(u), u ∈ H.

Here we point out that in contrast with the original problem (K), the problems
above are both non Kirchhoff. Now we take advantage of this to get the profile
decomposition of {un}n∈N.

Lemma 5.4. (Profile decomposition) Let {un}n∈N ⊂ H be the sequence men-
tioned above and assume that conditions (V1)-(V3), (f1)-(f3) hold and N < 4α.
Then J ′

λ(u0) = 0 with u0 ≥ 0, and there exist a number k ∈ N∪{0}, nontrivial
positive critical points w1, . . . , wk ∈ Hα(RN ) of J∞

λ which decay polynomially
at infinity as wj(x)|x|N+2α = O(1), such that

(i) |yj
n| → +∞, |yj

n − yi
n| → +∞ if i �= j, 1 ≤ i, j ≤ k, n → +∞,

(ii) cλ + bB̄4

4 = Jλ(u0) +
k∑

j=1

J∞
λ (wj),

(iii) ‖un − u0 −
k∑

j=1

wj(· − yj
n)‖ → 0,

(iv) B̄2 = ‖(−Δ)
α
2 u0‖2

2 +
k∑

j=1

‖(−Δ)
α
2 wj‖2

2.

Moreover, we agree that in the case k = 0 the above holds without wj. In
addition, if (V4) holds, then k = 0 and u0 ∈ Hα

rad(RN ).

Proof. Observe that, from Iλ(un) = cλ + on(1) and I ′
λ(un) → 0 in H′, we

obtain

Jλ(un) = cλ +
bB̄4

4
+ on(1), J ′

λ(un) → 0 in H′.
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Then, it is standard to get J ′
λ(u0)ϕ = 0 for all ϕ ∈ H. From Lemma 5.3, we

get
∫

RN

F (v1
n)dx =

∫

RN

F (un)dx −
∫

RN

F (u0)dx + on(1),
∫

RN

f(v1
n)v1

ndx =
∫

RN

f(un)undx −
∫

RN

f(u0)u0dx + on(1).

It follows that

Jλ(un) = Jλ(v1
n) + Jλ(u0) + on(1), (5.17)

J ′
λ(v1

n)v1
n = J ′

λ(un)un − J ′
λ(u0)u0 + on(1) = on(1). (5.18)

On the other hand, by a slight variant of [11, Proposition 4.1], u0 satisfies the
Pohǒzaev identity

N − 2α

2
(a + bB̄2)

∫

RN

|(−Δ)
α
2 u0|2dx +

1
2

∫

RN

∇V (x) · xu2
0dx

+
N

2

∫

RN

V (x)u2
0dx − Nλ

∫

RN

F (u0)dx = 0.

Then by (V1) and N < 4α, we have

NJλ(u0) = α(a + bB̄2)
∫

RN

|(−Δ)
α
2 u0|2dx − 1

2

∫

RN

∇V (x) · xu2
0dx

≥ α(a + bB̄2)
∫

RN

|(−Δ)
α
2 u0|2dx − 1

2
‖W‖ N

2α
‖u0‖2

2∗
α

≥ α(a + bB̄2)
∫

RN

|(−Δ)
α
2 u0|2dx − aα

∫

RN

|(−Δ)
α
2 u0|2dx

= αbB̄2

∫

RN

|(−Δ)
α
2 u0|2dx > 0,

which implies that

Jλ(u0) ≥ bB̄2

4

∫

RN

|(−Δ)
α
2 u0|2dx. (5.19)

We claim that one of the following conclusions holds for v1
n:

(v1) v1
n → 0 in H, or

(v2) there exist r′ > 0, σ > 0 and a sequence {y1
n}n∈N ⊂ R

N such that

lim inf
n→∞

∫

Br′ (y1
n)

|v1
n|2dx ≥ σ > 0. (5.20)

Indeed, suppose that (v2) does not occur. Then for any r > 0, we have

lim
n→∞ sup

y∈RN

∫

Br(y)

|v1
n|2dx = 0.

Therefore, it follows from Lemma 2.2 that v1
n → 0 in Ls(RN ) for s ∈ (2, 2∗

α).
It follows from (5.14) that for any ε > 0, there exists Cε > 0 such that

∫

RN

|g(v1
n)v1

n|dx ≤ ε

(∫

RN

|v1
n|2 + |v1

n|2∗
α

)

dx + Cε

∫

RN

|v1
n|qdx.



50 Page 22 of 32 Z. Liu, M. Squassina and J. Zhang NoDEA

So from v1
n → 0 in Lq(RN ) and the arbitrariness of ε, we can easily obtain

that
∫

RN

f(v1
n)v1

ndx =
∫

RN

((v1
n)+)2

∗
αdx + on(1).

Furthermore, from J ′
λ(v1

n)v1
n = on(1) in (5.18), we have

‖v1
n‖2 + bB̄2

∫

RN

|(−Δ)
α
2 v1

n|2dx = λ‖(v1
n)+‖2∗

α
2∗

α
+ on(1). (5.21)

In view of conditions (V2)-(V3), we can check that V∞ > 0. And so we
can also get

∫

RN

V (x)|v1
n|2dx =

∫

RN

V +(x)|v1
n|2dx + on(1),

which, together with the definition of Sα and (5.21), implies that

aSα

(∫

RN

|v1
n|2∗

αdx

) 2
2∗

α

+ bS2
α

(∫

RN

|v1
n|2∗

αdx

) 4
2∗

α

≤ λ

∫

RN

|v1
n|2∗

αdx + on(1).

(5.22)
Let � ≥ 0 be such that

∫

RN |v1
n|2∗

αdx → �N . If � > 0, then it follows from (5.22)
that

K ′(�) =
(N − 2α)�−1

2
(aSα�N−2α + bS2

α�2N−4α − λ�N ) ≤ 0,

where K has been defined in Lemma 4.1. This also implies that � ≥ T (T is
the unique maximum point of K). On the other hand, by (5.17) and (5.19),
we have

cλ +
bB̄4

4
=

∫

RN

(
a + bB̄2

2

∣
∣
∣(−Δ)

α
2 v1

n

∣
∣
∣
2

+
1

2
V (x)

∣
∣
∣v

1
n

∣
∣
∣
2 − λ

2∗
α

((
v1

n

)+
)2∗

α

)

dx

+ Jλ(u0) + on(1)

≥
∫

RN

((
a

2
+

bB̄2

4

) ∣
∣
∣(−Δ)

α
2 v1

n

∣
∣
∣
2

+
1

2
V (x)

∣
∣
∣v

1
n

∣
∣
∣
2 − λ

2∗
α

((
v1

n

)+
)2∗

α

)

dx

+
bB̄4

4
+ on(1),

which, together with (5.21) and the definition of Sα, implies that

cλ ≥
(

1
2

− 1
2∗

α

)

a

∫

RN

∣
∣(−Δ)

α
2 v1

n

∣
∣2 dx +

(
1
4

− 1
2∗

α

)

b

(∫

RN

∣
∣(−Δ)

α
2 v1

n

∣
∣2 dx

)2

+ on(1)

≥
(

1
2

− 1
2∗

α

)

aSα

(∫

RN

∣
∣v1

n

∣
∣2

∗
α dx

) 2
2∗

α

+
(

1
4

− 1
2∗

α

)

bS2
α

(∫

RN

∣
∣v1

n

∣
∣2

∗
α dx

) 4
2∗

α

+ on(1).
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Thus, combining
∫

RN |v1
n|2∗

αdx → �N and � ≥ T , K ′(T ) = 0, we have

cλ ≥
(

1
2

− 1
2∗

α

)

aSα�N−2α +
(

1
4

− 1
2∗

α

)

bS2
α�2N−4α

≥
(

1
2

− 1
2∗

α

)

aSαTN−2α +
(

1
4

− 1
2∗

α

)

bS2
αT 2N−4α

=
1
2
aSαTN−2α +

1
4
bS2

αT 2N−4α − λ

2∗
α

TN = c∗
λ,

contradicting cλ < c∗
λ. Hence, � = 0. It follows from (5.21) that ‖v1

n‖ → 0, that
is, un → u0 in H. Then Lemma 5.4 hold with k = 0 if (v2) does not occur. In
particular, if we assume (V4) holds, then by Corollary 3.5, ‖un −|un|∗‖2∗

α
→ 0.

Obviously, {|un|∗}n∈N ⊂ Hα
rad(RN ) is bounded and ‖un − |un|∗‖q → 0 for

q ∈ (2, 2∗
α). Since {|un|∗}n∈N has a strongly convergent subsequence in Lq(RN )

for q ∈ (2, 2∗
α), without loss of generality, we assume that un → u0 in Lq(RN )

for q ∈ (2, 2∗
α) and u0 = u∗

0. As a consequence, (v2) does not hold and as
above, un → u0 in H.

In the following, otherwise, suppose that (v2) holds, that is (5.20) holds.
Consider v1

n(·+y1
n). The boundedness of {v1

n}n∈N and (5.20) imply that v1
n(·+

y1
n) ⇀ w1 �= 0 in H. Thus, it follows from v1

n ⇀ 0 in H that {y1
n}n∈N

is unbounded and, up to a subsequence, |y1
n| → +∞. Let us prove that

(J∞
λ )′(w1) = 0. It suffices to show that (J∞

λ )′(v1
n(· + y1

n))ϕ → 0 for any
ϕ ∈ C∞

0 (RN ).
Combining Lemmas 5.1 and 5.2, we obtain

|J ′
λ(un)ϕ − J ′

λ(u0)ϕ − J ′
λ(v1

n)ϕ| ≤ on(1)‖ϕ‖, ∀ϕ ∈ C∞
0 (RN ),

which implies that |J ′
λ(v1

n)ϕ| ≤ on(1)‖ϕ‖, for all ϕ ∈ C∞
0 (RN ), as n → ∞.

Notice that

J ′
λ(v1

n)ϕ(· − y1
n)

=
C(n, α)

2
(a + bB̄2)

∫

R2N

(v1
n(x) − v1

n(y))(ϕ(x − y1
n) − ϕ(y − y1

n))
|x − y|N+2α

dxdy

+
∫

RN

V (x)v1
n(x)ϕ(x − y1

n)dx − λ

∫

RN

g(v1
n(x))ϕ(x − y1

n)dx

− λ

∫

RN

((v1
n(x))+)2

∗
α−1ϕ(x − y1

n)dx = on(1)‖ϕ(· − y1
n)‖ = on(1)‖ϕ‖.

Thus, as n → ∞, it follows that

C(n, α)
2

(a + bB̄2)
∫

R2N

(v1
n(x + y1

n) − vn(y + y1
n))(ϕ(x) − ϕ(y))

|x − y|N+2α
dxdy

+
∫

RN

V (x + y1
n)v1

n(x + y1
n)ϕ(x)dx − λ

∫

RN

g(v1
n(x + y1

n))ϕ(x)dx

−
∫

RN

((v1
n(x + y1

n))+)2
∗
α−1ϕ(x)dx = on(1)‖ϕ‖.

(5.23)
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Since |y1
n| → ∞ and ϕ ∈ C∞

0 (RN ), we obtain
∫

RN

(V (x + y1
n) − V∞)v1

n(x + y1
n)ϕ(x)dx → 0. (5.24)

Thus, combining (5.23) and (5.24), we have for any ϕ ∈ C∞
0 (RN ),

(J∞
λ )′(v1

n(· + y1
n))ϕ

=
C(n, α)

2
(a + bB̄2)

∫

R2N

(v1
n(x + y1

n) − vn(y + y1
n))(ϕ(x) − ϕ(y))

|x − y|N+2α
dxdy

+
∫

RN

V∞v1
n(x + y1

n)ϕ(x)dx − λ

∫

RN

g(v1
n(x + y1

n))ϕ(x)dx

− λ

∫

RN

((v1
n(x + y1

n))+)2
∗
α−1ϕ(x)dx = on(1).

Then, (J∞
λ )′(w1) = 0, w1 > 0 and w1(x)|x|N+2α = O(1) as |x| → ∞. Finally,

let us set
v2

n(x) = v1
n(x) − w1(x − y1

n), (5.25)
then v2

n ⇀ 0 in H. Since V (x) → V∞ as |x| → ∞ and v1
n → 0 strongly in

L2
loc(R

N ), we have
∫

RN

(V (x) − V∞)(v1
n)2dx = on(1).

It follows that
∫

RN

V (x)|v2
n|2dx =

∫

RN

V (x)|v1
n|2dx +

∫

RN

V (x + y1
n)|w1(x)|2dx

− 2
∫

RN

V (x + y1
n)v1

n(x + y1
n)w1(x)dx

=
∫

RN

V∞|un|2dx −
∫

RN

V∞|u0|2dx −
∫

RN

V∞|w1|2dx + on(1)

=
∫

RN

V (x)|un|2dx −
∫

RN

V (x)|u0|2dx

−
∫

RN

V∞|w1|2dx + on(1), (5.26)

and (it is easy to see that ‖(v2
n)−‖2∗

α
) = on(1)) also

⎧
⎨

⎩

‖(−Δ)
α
2 v2

n‖2
2 = ‖(−Δ)

α
2 un‖2

2 − ‖(−Δ)
α
2 u0‖2

2 − ‖(−Δ)
α
2 w1‖2

2 + on(1),

‖(v2
n)+‖2∗

α
2∗

α
= ‖un‖2∗

α
2∗

α
− ‖u0‖2∗

α
2∗

α
− ‖w1‖2∗

α
2∗

α
+ on(1),

(5.27)

∫

RN

G(v2
n)dx =

∫

RN

G(un)dx −
∫

RN

G(u0)dx −
∫

RN

G(w1)dx. (5.28)

It is readily checked that we also have
∫

RN

g(v2
n)ϕdx =

∫

RN

g(un)ϕdx −
∫

RN

g(u0)ϕdx

−
∫

RN

g(w1(· − y1
n))ϕdx + on(1)‖ϕ‖,

(5.29)
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for any ϕ ∈ C∞
0 (RN ). Combining (5.26), (5.27), (5.28) and (5.29), we deduce

that

(1) Jλ(v2
n) = Jλ(un) − Jλ(u0) − J∞

λ (w1) + on(1),

(2) J ′
λ(v2

n)ϕ = J ′
λ(un)ϕ − J ′

λ(u0)ϕ − (J∞
λ )′(w1(· − y1

n))ϕ + on(1)‖ϕ‖
= on(1)‖ϕ‖,

(3) J∞
λ (v2

n) = J∞
λ (v1

n) − J∞
λ (w1) + on(1)

for any ϕ ∈ C∞
0 (RN ). Thus {v2

n}n∈N is a Palais–Smale sequence and we get

Jλ(v2
n) = cλ +

bB̄4

4
− Jλ(u0) − J∞

λ (w1) + on(1) < c∗
λ +

bB̄4

4
.

Remark that one of (v1) and (v2) holds for v2
n. If v2

n → 0 in H, then Lemma
5.4 holds with k = 1. Otherwise, {v2

n} is non-vanishing, that is, (v2) holds for
v2

n. Similarly, we repeat the arguments. By iterating this procedure we obtain
sequences of points {yj

n} ⊂ R
N such that |yj

n| → +∞, |yj
n −yi

n| → +∞ if i �= j
as n → +∞ and vj

n = vj−1
n −wj−1(x−yj−1

n ) (like (5.25)) with j ≥ 2 such that
vj

n ⇀ 0 in H, (J∞
λ )′(wj) = 0. Using the properties of the weak convergence,

we have

(a)‖un‖2 − ‖u0‖2−
k∑

j=1

‖wj(· − yj
n)‖2 = ‖un − u0−

k∑

j=1

wj(· − yj
n)‖2 + on(1),

(b)Jλ(un) = Jλ(u0) +
k∑

j=1

J∞
λ (wj) + J∞

λ (vk+1
n ) + on(1).

(5.30)
Note that there is ρ > 0 such that ‖w‖ ≥ ρ for every nontrivial critical point
w of J∞

λ and {un}n∈N is bounded in H. By (5.30)(a), the iteration stops at
some k. That is, vk+1

n → 0 in H. We stress that the polynomial decay of the
limiting profiles wj can be justified as in [13, Theorem 3.4 and Theorem 1.5].
The proof is now complete. �

6. Proof of the main results

In order to obtain the existence of ground state solutions of problem (K),
our strategy is that we firstly obtain the existence nontrivial solutions of the
perturbed problem, then as λ goes to 1, we get a nontrivial solution of the
original problem. Finally, thanks to the profile decomposition of the (PS)-
sequence, we obtain the existence of ground state solutions of problem (K).

6.1. Nontrivial critical points of Iλ

Lemma 6.1. Assume that (V1)-(V3) and (f1)-(f3) hold. For almost every λ ∈
[1/2, 1], there exists uλ ∈ H\{0} such that Iλ(uλ) = cλ and I ′

λ(uλ) = 0. In
addition, if (V4) holds, then uλ ∈ Hα

rad(RN ).



50 Page 26 of 32 Z. Liu, M. Squassina and J. Zhang NoDEA

Proof. For almost all λ ∈ [1/2, 1], there is a bounded sequence {un}n∈N ⊂ H
such that Iλ(un) → cλ, I ′

λ(un) → 0. From Lemma 5.4, up to a subsequence,
there exist u0 ∈ H and B̄ > 0 such that

un ⇀ u0 in H,

∫

RN

|(−Δ)
α
2 un|2dx → B̄2, as n → ∞

and J ′
λ(u0) = 0. Furthermore, there exist k ∈ N∪{0}, nontrivial critical points

w1, . . . , wk of J∞
λ and k sequences of points {yj

n} ⊂ R
N , 1 ≤ j ≤ k, such that

∥
∥
∥
∥
∥
∥
un − u0 −

k∑

j=1

wj(· − yj
n)

∥
∥
∥
∥
∥
∥

→ 0, cλ +
bB̄4

4
= Jλ(u0) +

k∑

j=1

J∞
λ (wj) (6.1)

and

B̄2 = ‖(−Δ)
α
2 u0‖2

2 +
k∑

j=1

‖(−Δ)
α
2 wj‖2

2. (6.2)

Now we claim that if u0 �= 0, then by N < 4α,

Jλ(u0) >
bB̄2

4

∫

RN

|(−Δ)
α
2 u0|2dx. (6.3)

Indeed, since J ′
λ(u0) = 0, similar as in [11], we get

P̄λ(u0) :=
N − 2α

2
(a + bB̄2)

∫

RN

|(−Δ)
α
2 u0|2dx +

N

2

∫

RN

V (x)u2
0dx

+
1
2

∫

RN

(∇V (x), x)u2
0dx − Nλ

∫

RN

F (u0)dx = 0.

By hypothesis (V1) we have

Jλ(u0) =
α

N
(a + bB̄2)

∫

RN

|(−Δ)
α
2 u0|2dx − 1

2N

∫

RN

∇V (x) · xu2
0dx

>
α

N
bB̄2

∫

RN

|(−Δ)
α
2 u0|2dx,

which implies that (6.3) holds. For each nontrivial critical point wj , (j =
1, ..., k) of J∞

λ ,

N − 2α

2
(a + bB̄2)

∫

RN

|(−Δ)
α
2 wj |2dx +

N

2

∫

RN

V∞|wj |2dx

−Nλ

∫

RN

F (wj)dx = P∞
λ (wj) = 0.

Then it follows from (6.2) that

a(N − 2α)
2

∫

RN

|(−Δ)
α
2 wj |2dx +

b(N − 2α)
2

(∫

RN

|(−Δ)
α
2 wj |2dx

)2

+
N

2

∫

RN

V∞|wj |2dx − Nλ

∫

RN

F (wj)dx ≤ 0.
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Then there exists tj ∈ (0, 1] such that

atN−2α
j

2
(N − 2α)

∫

RN

|(−Δ)
α
2 wj |2dx

+
bt2N−4α

j

2
(N − 2α)

(∫

RN

|(−Δ)
α
2 wj |2dx

)2

+
NtNj

2

∫

RN

V∞|wj |2dx − NtNj λ

∫

RN

F (wj)dx = 0.

(6.4)

That is, wj(·/tj) satisfies the identity Pλ(u) = 0 and it follows from Lemma
4.3 that there exists γλ ∈ C([0, 1],H) such that γλ(0) = 0, I∞

λ (γλ(1)) < 0,
wj ∈ γλ([0, 1]) and

I∞
λ (wj(·/tj)) = max

t∈[0,1]
I∞
λ (γλ(t)).

By hypothesis (V2), we have maxt∈[0,1] I
∞
λ (γλ(t)) ≥ maxt∈[0,1] Iλ(γλ(t)), which,

by the definition of cλ, implies that I∞
λ (wj( ·

tj
)) ≥ cλ. In particular, if V (x) �≡

V∞, then
I∞
λ (wj(·/tj)) > cλ. (6.5)

So by (6.4) we have

J∞
λ (wj) = J∞

λ (wj) − 1
N

P∞
λ (wj) = (a + bB̄2)

(
1
2

− 1
2∗

α

) ∫

RN

|(−Δ)
α
2 wj |2dx

≥
(

1
2

− 1
2∗

α

)

a

∫

RN

|(−Δ)
α
2 wj(

x

tj
)|2dx

+
(

1
4

− 1
2∗

α

)

b

(∫

RN

|(−Δ)
α
2 wj(

x

tj
)|2dx

)2

+
bB̄2

4

∫

RN

|(−Δ)
α
2 wj |2dx

= I∞
λ

(

wj

(
·
tj

))

− 1
N

Pλ(wj(
·
tj

)) +
bB̄2

4

∫

RN

|(−Δ)
α
2 wj |2dx

= I∞
λ

(

wj

(
·
tj

))

+
bB̄2

4

∫

RN

|(−Δ)
α
2 wj |2dx

(6.6)
and then we conclude that

J∞
λ (wj) ≥ cλ +

bB̄2

4

∫

RN

|(−Δ)
α
2 wj |2dx,

where the inequality is strict if V (x) �≡ V∞. Then by formulas (6.2)-(6.3),

cλ +
bB̄4

4
= Jλ(u0) +

k∑

j=1

J∞
λ (wj) ≥ kcλ +

bB̄4

4
, (6.7)

with strict inequality if V (x) �≡ V∞ or u0 �= 0.
• If k = 0, we are done. If condition (V4) holds, then k = 0 and u0

is radial. Then it follows that Iλ(u0) = Jλ(u0) − bB̄4/4 = cλ and I ′
λ(u0) =

J ′
λ(u0) = 0.

• If k = 1 and V (x) �≡ V∞ or u0 �= 0, then (6.7) yields a contradiction
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• If k = 1 and V (x) ≡ V∞ and u0 = 0, then B̄2 = ‖(−Δ)
α
2 w1‖2

2 and it
follows from (6.1) that

cλ = J∞
λ (w1) − bB̄4

4
= J∞

λ (w1) − b

4
‖(−Δ)

α
2 w1‖4

2 = Iλ(w1), I ′
λ(w1) = 0,

as desired. Hence, in any case, the assertion follows. �

6.2. Completion of the proof

Choosing a sequence {λn}n∈N ⊂ [12 , 1] satisfying λn → 1, we find a sequence
of nontrivial critical points {uλn

}n∈N (still denoted by {un}n∈N) of Iλn
and

Iλn
(un) = cλn

. In particular, if (V4) holds, then {un}n∈N ⊂ Hα
rad(RN ). Now

we show that {un} is bounded in H. Remark that un satisfies the Pohožaev
identity as follows

N − 2α

2

∫

RN

a|(−Δ)
α
2 un|2dx +

N − 2α

2
b

(∫

RN

|(−Δ)
α
2 un|2dx

)2

+
N

2

∫

RN

V (x)u2
ndx +

1
2

∫

RN

∇V (x) · xu2
ndx − Nλ

∫

RN

F (un)dx = 0.

It follows that

NIλn
(un) = α

∫

RN

a|(−Δ)
α
2 un|2dx +

(

α − N

4

)

b

(∫

RN

|(−Δ)
α
2 un|2dx

)2

−1
2

∫

RN

∇V (x) · xu2
ndx.

Since c∗
λ is continuous on λ, Iλn

(un) = cλn
+ on(1) < c∗

λn
. It follows from (V1)

that there is a positive number κ ∈ (0, 2aα) such that ‖W‖ N
2α

≤ κSα. Hence,
(
aα − κ

2

) ∫

RN

|(−Δ)
α
2 un|2dx ≤ NIλn

(un),

which implies that
∫

RN a|(−Δ)
α
2 un|2dx is bounded from above. By (V3), (f1)-

(f2) and I ′
λn

(un)un = 0, there is ν > 0 such that for any ε > 0, there exists
Cε > 0 with

ν

∫

RN

u2
ndx ≤

∫

RN

a|(−Δ)
α
2 un|2dx +

∫

RN

V (x)u2
ndx ≤ ε

∫

RN

u2
ndx

+Cε

∫

RN

u
2∗

α
n dx,

which yields that {un}n∈N is bounded in L2(RN ). Then {un}n∈N is bounded
in H. By Theorem 3.1,

lim
n→∞ I(un) = lim

n→∞

(

Iλn
(un) + (λn − 1)

∫

RN

F (un)dx

)

= lim
n→∞ cλn

= c1

and for any ϕ ∈ C∞
0 (RN ),

lim
n→∞ I ′(un)ϕ = lim

n→∞

(

I ′
λn

(un)ϕ + (λn − 1)
∫

RN

f(un)ϕdx

)

= 0.



NoDEA Ground states for fractional critical Kirchhoff equations Page 29 of 32 50

That is, {un}n∈N is a bounded Palais–Smale sequence for I at level c1. Then
by Lemma 6.1, there is a nontrivial critical point u0 ∈ H (radial, if (V4) holds)
for I and I(u0) = c1. Set

ν = inf{I(u) : u ∈ H\{0}, I ′(u) = 0}.

Of course 0 < ν ≤ I(u0) = c1 < ∞. By the definition of ν, there is {un}n∈N ⊂
H with I(un) → ν and I ′(un) = 0. We deduce that {un}n∈N is bounded in H.
Up to a sequence, for some B̄ > 0,

∫

RN

|(−Δ)
α
2 un|2dx → B̄2.

Let us set J(u) := J1(u) and J∞(u) := J∞
1 (u), for any u ∈ H. From Lemma

5.4 there exists u0 ∈ H such that un ⇀ u0 in H and J ′(u0) = 0. Furthermore,
there exist k ∈ N ∪ {0}, nontrivial critical points w1, . . . , wk of J∞ and k
sequences of points {yj

n}n∈N ⊂ R
N , 1 ≤ j ≤ k, such that

∥
∥
∥
∥
∥
∥
un − u0 −

k∑

j=1

wj(· − yj
n)

∥
∥
∥
∥
∥
∥

→ 0, ν +
bB̄4

4
= J(u0) +

k∑

j=1

J∞(wj) (6.8)

and

B̄2 = ‖(−Δ)
α
2 u0‖2

2 +
k∑

j=1

‖(−Δ)
α
2 wj‖2

2.

If k = 0, we are done. If k ≥ 1, assume by contradiction that u0 �= 0. Then, as
in Lemma 6.1,

J(u0) >
bB̄2

4

∫

RN

|(−Δ)
α
2 u0|2dx, (6.9)

for each j there is tj ∈ (0, 1] such that I∞(wj(·/tj)) ≥ c1, which is strict if
V (x) �≡ V∞, and

J∞(wj) ≥ c1 +
bB̄2

4

∫

RN

|(−Δ)
α
2 wj |2dx,

where the inequality is strict if V (x) �≡ V∞. Then by formulas (6.8)-(6.9) and
ν ≤ c1, we get

c1 +
bB̄4

4
≥ ν +

bB̄4

4
= J(u0) +

k∑

j=1

J∞(wj) > kc1 +
bB̄4

4
,

a contradiction. Hence u0 = 0 and k = 1, in which case a contradiction follows
as in the proof of Lemma 6.1. The proof is complete. �
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